Multidimensional Data-Driven Modelling of Engine Test Cell Data

dc.contributor.authorAndersson, Helena
dc.contributor.departmentChalmers tekniska högskola / Institutionen för matematiska vetenskapersv
dc.contributor.examinerSagitov, Serik
dc.contributor.supervisorAndersson-Hedberg, Per
dc.contributor.supervisorJohansson, Anton
dc.date.accessioned2024-09-18T12:19:52Z
dc.date.available2024-09-18T12:19:52Z
dc.date.issued2021
dc.date.submitted
dc.description.abstractIn the journey towards a more sustainable vehicle fleet, requirements for lower emissions and improved energy efficiency in gasoline engines lead to more components being added to the internal combustion engines. This adds to the degrees of freedom when trying to model air flow in the engine using volumetric efficiency. This paper presents a way of modelling volumetric efficiency from engine test cell data provided by T-Engineering – a company that designs and develops control systems for vehicles. The model uses Gaussian process regression (GPR) for inter- and extrapolation, including noise reduction of the measurement data. Furthermore, a local interpretable model-agnostic explainer (LIME) is used to find regions of uncertainty by explaining what features contribute to increasing the variance of the GPR predictions. In addition, a neural network model is implemented in order to improve the prediction runtime, with the purpose of enabling real-time predictions in the control systems. The model(s) were found to give a more physically accurate description of volumetric efficiency than the one currently used at T-Engineering. The runtime for making predictions for 50 data points with the neural network was ~ 0.14 ms on an AMD Ryzen 7 PRO 4750U with Radeon Graphics 1.70 GHz and 32.0GB RAM. It remains to investigate what the runtime on a limited CPU in the control systems will be.
dc.identifier.coursecodeMVEX03
dc.identifier.urihttp://hdl.handle.net/20.500.12380/308695
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectGaussian process regression, LIME, neural networks, volumetric efficiency, test-cell data, multidimensional modelling
dc.titleMultidimensional Data-Driven Modelling of Engine Test Cell Data
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeEngineering mathematics and computational science (MPENM), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_thesis_Helena Andersson_2021.pdf
Storlek:
8.05 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: