
Computationally Efficient Model Predictive Direct
Torque Control

Author: YASHAR ZEINALY

Examiner: Prof. BO EGARDT

Supervisor: Dr. TOBIAS GEYER

Automatic Cotnrol Group

Department of Signals and Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Göteborg, Sweden 2010

ii

Acknowledgements

It is a pleasure to thank those who made this thesis possible. I owe my deepest gratitude to my
supervisor Dr. Tobias Geyer for attracting me to New Zealand to work on such an interesting
topic and for his efforts to make me feel welcome in Auckland. I appreciate his continuous
support of my thesis, his patience in dealing with my mistakes and his immense knowledge.
Most importantly, I would like to thank him for his kind advices that helped me to plan my
future life.

Beside my supervisor, I would like to express my sincere gratitude to my examiner Prof. Bo
Egardt who has made available his help and support in a number of ways. I appreciate his
encouragement, enthusiasm and insightful comments.

I am indebted to Marie Iwanow in the student administration office who was so nice to me, and
helped me in a number of ways with the administrative issues.

I thank my best friends Iman and Ramin for helping me out with ’LYX’ issues and for the happy
moments we had together.

Last but not the least, I would like to express my loving thanks to my mom, my dad, my sister
Sahar and my brother Aidin for their loving support and encouragement throughout my life.

Yashar Zeinaly

November 2010, Göteborg

iii

iv

Abstract

Model predictive direct torque control (MPDTC) is a recent control scheme for three-phase
ac electric drives based on direct torque control (DTC). Using a dynamic model of the drive,
MPDTC predicts several future switching transitions, extends the output trajectories and chooses
the inverter switch positions that minimize the switching frequency. The latest version of
MPDTC allows for a long switching horizon, which is composed of multiple switching events
(group of switching transitions) connected by extension segments. This enables us to achieve
prediction horizons of 100 steps and more, which can significantly reduce the switching losses
and the total harmonic distortions (THDs). The performance of MPDTC depends on the length
of the switching horizon and the accuracy of the predictions. However, MPTDC schemes with
long switching horizons and very accurate predictions are computationally demanding neces-
sitating a very fast controller hardware. To reduce the associated computational burden, the
following is proposed:

(i) Introducing methods for extending the output trajectories that yield fast yet accurate predic-
tions.

(ii) Finding the promising switching transitions using the branch and bound technique and ex-
tending them, rather than enumerating all admissible switching transitions. This allows us to
reduce the search space and thus the computation time.

In (i) we propose different extension methods and evaluate their performance in terms of the as-
sociated computational complexity, the accuracy of the predictions and closed-loop simulations.
It is shown that these methods can achieve a good performance while reducing the computa-
tional burden of the MPDTC algorithm. In (ii) a branch and bound scheme for MPDTC is
presented and its performance is compared with the original MPDTC algorithm. It is shown
that using the proposed branch and bound algorithm, the number of iterations to obtain the
optimal switch position can be reduced.

Keywords: power electronics, drive system, direct torque control, model predictive control,
model predictive direct torque control.

v

vi

Contents

1 Introduction 1

2 Background 3

2.1 Variable Speed Medium-Voltage Drives . 3

2.2 Direct Torque Control (DTC) . 4

2.3 Model Predictive Direct Torque Control (MPDTC) 5

2.3.1 Physical Model . 5

Physical Model of the 3-Level Inverter 5

Physical Model of the Induction Machine 7

The Simplified Model for Prediction 8

2.3.2 Switching Horizon . 9

2.3.3 Minimizing the Cost Function . 10

3 Trajectory Extension Methods 15

3.1 Open-loop Simulation (OL) . 15

3.2 Linear Extrapolation (LE) . 16

3.3 Quadratic Extrapolation (QE) . 19

3.4 Prediction with Quadratic Interpolation (QI) 20

3.5 Iterative Prediction with Quadratic Interpolation (QII) 20

3.6 Iterative Prediction with Quadratic Interpolation Non-overlapping (QII2) 22

3.7 Analytical Approach (ANL) . 22

3.7.1 Analytic Solutions of the State Equations 23

3.7.2 Simplified Solutions of State Equations 27

3.7.3 Output Polynomials . 31

vii

viii CONTENTS

4 Performance Evaluation of Extension Methods 35

4.1 Accuracy of Predictions . 35

4.2 Computational Complexity . 37

4.2.1 Pseudo codes and Analysis . 38

Open-loop Simulation (OL) . 39

Linear Extrapolation (LE) . 39

Quadratic Extrapolation (QE) . 40

Prediction with Quadratic Interpolation (QI) 40

Iterative Prediction with Quadratic Interpolation (QII) 41

Prediction with Quadratic Interpolation non-overlapping (QII2) 41

Analytical Method . 42

4.3 Closed-loop Performance . 43

5 Branch and Bound 47

5.1 Background . 47

5.2 Ingredients of Branch and Bound Algorithm 49

5.2.1 Bounding Function . 49

5.2.2 Branching Strategy . 52

5.2.3 Warm Start . 52

5.3 Performance Evaluation . 55

6 Conclusions and Future Work 57

6.1 Discussion . 57

6.2 Future work . 58

A Details on Derivations and Approximations 61

A.1 Approximating (sI − A)−1 . 61

A.2 Coefficients of Analytic Solutions of the State Equations in Chapter 3. 62

A.3 Affine Approximation of the Stator Flux Components in Chapter 3 67

A.4 Quadratic Approximation of the Rotor Flux Components in Chapter 3 67

A.5 Quadratic Approximation of the Neutral Point Potential in Chapter 3 68

A.6 Finding Real Roots of Polynomials of Degree 3 68

CONTENTS ix

References 71

x CONTENTS

Chapter 1

Introduction

Variable speed medium-voltage (MV) drives have found wide-spread applications in industry.
They are used for wind turbines, pipeline pumps in the petrochemical industry, traction ap-
plications in the transportation industry, fans in the cement industry, pumps in water pumping
stations and steel rolling mills in the metal industry [1]. In order to drive the machine at a vari-
able speed, it must be fed with a variable frequency sinusoidal voltage. In power electronics, the
inverter device synthesizes such a voltage by switching. As a consequence of switching, high-
power inverters may generate a considerable amount of voltage and current harmonics. These
harmonics cause additional power losses in the motor winding and the magnetic core, which
also reduce the life-time of the motor. Distorted currents wave forms also give rise to torque
pulsations, which are not desirable in most applications and may cause damage to the shaft,
couplings and other mechanical components in the system. Increasing the switching frequency,
reduces total harmonic distortions of the motor currents and the torque. However, the maxi-
mum switching frequency is limited due to constraints on the switching devices. Additionally,
the switching loss in the inverter constitute a significant amount of total power loss in the MV
drive. The switching loss minimization reduces the manufacturing and the maintenance costs
of the MV drive. Therefore, in medium-voltage drives control, efforts are made to minimize the
total harmonic distortions with limited switching frequency.

Direct torque control (DTC) is a common industrial scheme for controlling the speed and the
torque of the medium voltage drives. DTC achieves a fast dynamic response with a simple con-
troller structure. The control logic is stored on a pre-defined switching table. Model predictive
direct torque control (MPDTC) inherits the core objectives of DTC and uses the elements of
model predictive control to minimize the switching frequency of the inverter. In Chapter 2, the
drive system and direct torque control are briefly presented. Then, the concept of model pre-
dictive direct torque control and its ingredients are briefly explained. It is shown in [2] that by
using long switching horizons, the switching frequency and the total harmonic distortions can
be reduced significantly.

1

2 Introduction

The MPDTC algorithm enumerates the tree of all admissible switching sequences, and pre-
dicts the associated output trajectories to obtain the optimal switch position than minimizes the
average switching frequency. However, for long switching horizons, the full enumeration is
computationally very expensive due to the combinatorial explosion of the number of admissi-
ble switching sequences to be explored. Throughout this thesis, we were looking for methods
to reduce the computational complexity of the MPDTC algorithm so that MPDTC with long
switching horizons can be implemented in real-time using the currently available controller
hardware. Our focus has been on (i) Developing methods for predicting the output trajectories
that yield fast yet accurate predictions and (ii) Pruning the search tree using the branch and
bound technique so that the number of switching sequences to be explored is reduced signifi-
cantly.

In Chapter 3, trajectory extension methods are introduced which use the model-based predic-
tions along with extrapolation and interpolation to obtain the predicted output trajectories. Ad-
ditionally, using the simplified model of the drive, the state equations are solved and the result-
ing solutions are used to establish the analytical method for predicting the output trajectories.

In Chapter 4, the performance of the proposed trajectory extension methods is evaluated in the
terms of their accuracy, computational complexity and their closed-loop performance.

In Chapter 5, the branch and bound technique tailored to the MPDTC problem [3] is introduced
and its efficiency in reducing the computational burden is evaluated.

Chapter 2

Background

2.1 Variable Speed Medium-Voltage Drives

The development of medium-voltage drives started in mid-1950s when 4500-V gate turn off
(GTO) thyristors became available on the market [1]. With rapid technology advancements in
power semiconductor devices, insulated gate bipolar transistors (IGBT) and gate commutated
thyristors (GCT) replaced the GTO in the inverter devices due to their superior switching char-
acteristics, low switching losses, ease of gate control and snubberless operation. The medium-
voltage drives have power ratings from 0.4 MW to 40 MW or more at voltage levels ranging
between 2.3 kV to 13.8 kV. However, according to [1] the majority of installed medium-voltage
drives have power ratings between 1 MW to 4 MW and voltage ratings between 3.3 kV to 6.6
kV. Fig. 2.1 shows the schematic of a medium-voltage drive.

z
load

VSD

Rectifier dc-link inverter

IM

ac mains

Figure 2.1: Simplified schematic of variable speed drive.

In these systems, DC/AC inverters are used to drive the induction motors as 3-phase variable
frequency sources. The inverters are generally categorized into two main groups: i)Voltage
source inverters (VSI) and ii)Current source inverters (CSI). Fig. 2.2a shows a simplified 2-
level voltage source inverter, which is capable of producing two voltage levels 0 and vd at its
output terminals, where vd is the dc-link voltage of the inverter. By manipulating the switch
groups S1-S6, the inverter converts the DC voltage at its input to a 3-phase variable frequency
sinusoidal voltage as shown in Fig. 2.2b.

3

4 Background

(a) (b)
Figure 2.2: 2-level inverter for high power applications. (a) Simplified representation (b) Output wave

forms.

2.2 Direct Torque Control (DTC)

One of the methods that are used for controlling the induction machines’ torque and speed is
Direct Torque Control, which was introduced in 1985 and gradually became an industrial stan-
dard for induction motor drives [4]. DTC is based on the fast dynamic response of the stator flux
vector when applying a voltage to the machine terminals. By choosing the right switch com-
binations on the inverter device, DTC drives the stator flux vector to the desired position such
that the desired torque is achieved. The control logic is stored on a state of the art pre-designed
switching table that is evaluated at every controller sampling-time Ts = 25µs. Depending on
the application, the switching table may be designed to address a number of control objectives.
In many applications the objectives are to keep the machine’s electromagnetic torque and the
stator flux magnitude within predefined hysteresis bounds. With 3-level neutral point clamped
inverters [1], it is also necessary to balance the neutral point of the inverter. Fig. 2.3 introduces
the principles of the DTC. For more information on DTC see [1, 4, 5].

2.3 Model Predictive Direct Torque Control (MPDTC) 5

��� ������ ����� �� � �������� �������� � �|��||��| �����|��| � ����� ����� ����					
�� � �����	
��� ��������

��

��
��������	������� �� ���

���������	
���
��

Figure 2.3: Principle of DTC. At each sampling-time DTC finds the right voltage vector to push the
stator flux vector into the target window. The eight voltage vectors of a 2-level inverter are
shown as well as the target window.

2.3 Model Predictive Direct Torque Control (MPDTC)

The idea underlying MPDTC [6, 7] is to replace the switching table in conventional DTC [4,
8] with a constrained optimal controller with a receding horizon policy [9–12]. The control
objectives are to keep the machine’s electromagnetic torque and the stator flux magnitude within
predefined hysteresis bounds, which is referred to as the feasible region. With 3-level neutral
point clamped inverters [1], it is also desired to balance the neutral point of the inverter. It is
shown in [2, 6, 7, 13] that MPDTC significantly improves the performance of DTC by reducing
the switching frequency of the inverter device.

2.3.1 Physical Model

The physical model is an essential ingredient of MPDTC, which enables us to predict the be-
havior of the drive.

Physical Model of the 3-Level Inverter

The simplified schematic of a 3-level voltage source inverter feeding an induction machine is
shown in Fig. 2.4.

6 Background

Figure 2.4: Equivalent representation of a 3-level inverter feeding an induction machine showing the
switch positions. The picture belongs to T. Geyer [13]

The inverter can produce three different voltage levels, −Vdc
2

, 0 and Vdc
2

, at each of its three legs.
The switch positions in each leg of the inverter are denoted by the integer values ua, ub, uc ∈
{−1, 0, 1}, where the integers -1, 0, 1 yield the phase voltages −Vdc

2
, 0 and Vdc

2
, respectively.

There are in total 27 switch positions of the form uabc ∈{−1, 0, 1}3. The switch positions in
3-phase domain are transformed into the stator stationary reference frame using abc to αβ0

transformation matrix P .

P =
2

3

 1 −1
2
−1

2

0
√

3
2
−
√

3
2

1
2

1
2

1
2

 (2.1)

The resulting 27 voltage vectors are shown in Fig. 2.5.

The voltage applied to the motor is obtained from

vαβ0 = Vdc
2
Puabc (2.2)

The inverter dynamics include one state, which represents the inverter’s neutral point potential
vn [6]

dvn
dt

= − 1
2xC

((1− |ua|) isa + (1− |ub|) isb + (1− |uc|) isc) (2.3)

where isa, isb and isc are the stator phase currents and xC is one of the two dc-link capacitors.
Since for a three-phase symmetrical load ia + ib + ic = 0, it can be shown that vn can be
equivalently represented by (2.4), where is,αβ0 is the stator current in the stator reference frame.

2.3 Model Predictive Direct Torque Control (MPDTC) 7

)0,0,1(

)1,1,1(−−)1,1,0(−−

)0,1,1(
)1,0,1(−

)1,1,1(−

)1,0,0(−

)1,1,0(−

)0,1,0(

)1,1,1(−−

)1,0,1(−−

)0,1,1(−

)1,1,0()1,1,1(−

)0,0,1(−

)1,0,1(−)1,0,0(
)0,1,1(−−

)1,1,1(−−
)1,1,0(−

)1,0,1(

)1,1,1(−

)0,1,0(−)0,1,1(−

βj

α2324 25
24

5
3

69
7810

121113
14 15 16

17 18
20

21
19 22

Figure 2.5: The voltage vectors of the 3-level inverter on αβ plane with the corresponding 3-phase
switch positions and the associated voltage vector numbers n. The three switch positions
(−1,−1,−1), (0, 0, 0) and (+1,+1,+1), with the corresponding voltage vector numbers
n = 26, n = 1 and n = 27, respectively, are mapped into the origin of the αβ plane

In (2.4), |uabc| = [|ua| , |ub| , |uc|]T is the component-wise absolute value of the inverter switch
positions.

dvn
dt

= 1
2xC
|uabc|T P−1is,αβ0 (2.4)

Physical Model of the Induction Machine

Assuming that the induction motor is three-phase symmetrical and its magnetic core is linear
with a negligible core loss, the dynamics of induction machine are modeled in the stator αβ0

reference frame1 [1]. The state variables are the α−and β−components of the stator and the
rotor linkage fluxes ψsα, ψsβ , ψrα and ψrβ , respectively, and the angular speed of the rotor
(electrical) ωr. The model parameters are the stator and the rotor winding resistances rs and rr,
the stator, the rotor and the mutual reactances xls, xlr and xm. The inputs are vα and vβ , which
are the α−and β−components of the voltage applied to the machine in αβ0 reference frame.
Please note that all the rotor variables and parameters are referred to the stator side. Throughout
this report we assume that we are using the normalized quantities. The state equations are [6]

1This is called the stationary reference frame as well.

8 Background

αsi� sr lsx lrx
αriβψω rr−

mx

�
mi

�� �� αψ sp

�� αψrp

+-+- βsi� sr lsx lrx βriαψω rr

mx

�
mi

�� �� βψ sp
�� βψ rp

+-+--+-+αsv

rr rr

βsv

Figure 2.6: The equivalent circuits of the induction machine in α and β axis.

dψsα
dt

= −rs xrrD ψsα + rs
xm
D
ψrα + vα

dψsβ
dt

= −rs xrrD ψsβ + rs
xm
D
ψrβ + vβ

dψrα
dt

= rr
xm
D
ψsα − rr xssD ψrα − ωrψrβ

dψrα
dt

= rr
xm
D
ψsβ + ωrψrα − rr xssD ψrβ

dωr
dt

= 1
J

(Te − Tl)

(2.5)

where xrr, xss and D are defined as

xss = xls + xm

xrr = xlr + xm

D = xssxrr − x2
m

(2.6)

and the electromagnetic torque is defined as the cross product of the stator flux and rotor flux
vectors.

Te =
xm
D

(ψsβψrα − ψsαψrβ) (2.7)

The magnitude of the stator flux is given by

Ψs =
√
ψ2
sβ + ψ2

sα (2.8)

The above equations constitute the model of the induction motor whose equivalent circuit is
shown in Fig. 2.6.

The Simplified Model for Prediction

The time-constant of the rotor angular velocity, as captured by the last equation in (2.5), is
larger than the prediction interval by several orders of magnitude. Therefore, we may omit the
last equation in (2.5) assuming a constant ωr during the prediction horizon.

2.3 Model Predictive Direct Torque Control (MPDTC) 9

The inverter is modeled with one state as in (2.4), which is described in terms of the stator
currents in αβ0 reference frame. The α-, β-components of is,αβ0 are related to the stator and
the rotor flux components according to (2.9) while the 0 component is always zero [6].

is,αβ0 =
1

D

[
xrrψsα − xmψrα xrrψsβ − xmψrβ 0

]T
(2.9)

The state vector of the drive is defined as

x =
[
ψsα ψsβ ψrα ψrβ vn

]T
(2.10)

The input vector is the switch positions ua, ub, uc

u = uabc =
[
ua ub uc

]T
(2.11)

The electromagnetic torque, the stator flux magnitude and the neutral point potential of the
inverter constitute the output vector

y =
[
Te Ψs vn

]T
(2.12)

The last step for obtaining the discrete-time prediction model is to combine the simplified model
equations (2.5), (2.7) and (2.8) with the inverter equations (2.4) and (2.9), and to use forward
Euler method with sampling-time Ts = 25µs to discretize the equations. For more details
see [6, 13].

2.3.2 Switching Horizon

At time-step k, given the last control input u(k− 1) and current measurements, the MPDTC al-
gorithm explores the tree of all admissible 2 switching sequences to find the candidate sequences

U(k) =
[
u(k), ..., u(k +Np − 1)

]
. Traveling through the tree of admissible switching se-

quences is controlled by the switching horizon, which is composed of switching events ’S’ and
extension events. During the ’S’ event, new nodes are added to the tree by enumerating all
admissible switching transitions and predicting the associated outputs (i.e. the electromagnetic
torque, the stator flux magnitude and the inverter neutral point potential) using the nonlinear
discrete-time model of the drive sampled at the sampling interval Ts = 25µs. During the ’E’
event, the predicted output trajectories are extended3 producing the extended nodes. At the end
of the enumeration of the tree, the candidate sequences are the sequences whose associated

2Not all switching transitions are possible due to the physical constraints on the inverter.
3By ’extension’ we mean to freeze the input and use one on the methods in Chapter 3 to obtain the future

samples of the outputs.

10 Background
���

� ��� � 1�� ����� ��� � 1��� �0, 0, 0�� �1, 0, 0�� �0,0,0��� �0, 0, 0�� ��1, 0, 0�� �0, �1, 0��� �0, 0, 0�� ��1, 0, �1�� �0, 1, 0�������

�� � ������ ��������
�� � � 1� � � 10�

(a) An example of the switching horizon ’SSE’.
Three trajectories associated with three candidate
sequences are shown within their bounds. The
’S’ events happen at time-instants k and k + 1
followed by an ’E’ event. For each candidate se-
quence, the length of the prediction horizon is the
number of time-steps for which the trajectories
remain within the bounds.

�
(b) An example of the search tree for the switch-

ing horizon ’SSESE’. The ovals (blue), the stars
(green) and the inverted (red) Ts denote the in-
complete, candidate and non-candidate switch-
ing sequences, respectively. The ’S’ events are
shown by thin (black) lines while the ’E’ events
are shown by thick (blue) lines. This picture is
taken from [3].

Figure 2.7: An example showing the switching horizon and the associated search tree

output trajectories are at every time-step either feasible, or pointing in the proper direction4.
For each candidate sequence, the length of the prediction horizon Np is given by the time dura-
tion for which the extended predicted outputs remain within their bounds. Fig. 2.7b shows the
search tree for the switching horizon ’SSESE’. Fig. 2.7a provides an example of the switching
horizon ’SSE’.

2.3.3 Minimizing the Cost Function

For each candidate sequence, the average switching frequency is calculated as the total number
of switching transitions in the switching sequence divided by the prediction horizon length
according to

ci =
1

Np,i

k+Np−1∑
l=k

‖ui(l)− ui(l − 1)‖1 (2.13)

4A trajectory points in the proper direction if the magnitude of the bound violation is strictly decreasing over
time.

2.3 Model Predictive Direct Torque Control (MPDTC) 11

The optimal switching sequence is obtained by minimizing the average switching frequency
over all candidate switching sequences. According to the receding horizon policy, only the first
input of the optimal sequence, u(k), is applied to the drive and this procedure is repeated at
the next controller sampling time (k + 1)Ts with new data. Minimizing the average switching
frequency is an indirect way of minimizing the switching losses. Alternatively, the cost function
may penalize the switching losses directly. The interested reader is referred to [2] for details.

One important characteristic of MPDTC algorithm is that the cost function is evaluated over a
variable prediction horizon Np. Table 2.1 shows the optimization step for the example trajecto-
ries of Fig. 2.7a.

u(k − 1) u(k) u(k + 1)
∑
|u| Np c

1 [0 0 0] [1 0 0] [0 0 0] 2 6 0.33

2 [0 0 0] [−1 0 0] [0 − 1 0] 3 8 0.375

3 [0 0 0] [−1 0 -1] [0 1 0] 5 10 0.5
Table 2.1: An example of the optimization step for the switching horizon ’SSE’. The optimal input is

the first step in switching sequence 1, i.e. u(k) = [1 0 0].

Fig. 2.9 shows maps of the optimal cost and the associated switching input for the switch-
ing horizon ’SE’ with u(k − 1) = [0 0 0]T when the switching frequency is penalized.
The maps in Fig. 2.9 are calculated over a grid of ψsα and ψsβ including the target window
for a fixed rotor angle as shown in Fig. 2.8a. It is also interesting to observe the behavior of
the cost function along boundaries of the target window as the controller needs to make de-
cisions when the outputs are about to hit their bounds.We can observe that when the output
variables are within their bounds, the cost to go is zero as the controller does not need to switch.
Moreover, when the upper bound of the output variables are violated, the MPDTC chooses
u(k) = [0 0 0]T = u(k − 1) as, according to the model, the zero voltage vector drives
the outputs to the feasible region with zero switching effort. The regions with non-zero cost
are those where the lower bound on one of the output variables is violated requiring expensive
switching by the controller to push the stator flux vector into the target window. Fig. 2.10
depicts maps of the optimal cost and the associated switching input for switching horizon ’SE’
when the switching losses are minimized. The maps are obtained over a grid of x and θr as
shown in Fig. 2.8b, where x is the distance traveled on an edge of the boundary and θr is the
rotor angle.

In both cases, the ’cost to go’ maps can be divided into regions. Similar regions are noticed
on the optimal input maps, which shows the controller makes consistent decisions over each
region.

12 Background�

��

��
��� ���

�������	
��	�
�� � �
����

(a) The region associated with maps in Fig 2.9.
The grid over which the maps are plotted
(shaded oval) is shown along with the tar-
get window.

�

��

��
��� ��� �������	
��	���
���

(b) The region associated with maps in Fig.
2.10. x and θr are shown along with the
target window .

Figure 2.8: The regions used for obtaining the ’cost to go’ maps

2.3 Model Predictive Direct Torque Control (MPDTC) 13

Ψs,max

Te,max

(a) The cost to go map for θr = 0.24 rad along
with the bounds on the torque and the stator flux
magnitude.

R2

R1

R4

R5
R3

(b) The optimal input map for θr = 0.24 rad along
with the switching regions. R1 : n = 1, R2 :
n = 7, R3 : n = 6, R4 : n = 9, R5 : n = 10

Te,maxΨs,max

(c) The cost to go map for θr = 0.96 rad along
with the bounds on the torque and the stator flux
magnitude.

R3
R2

R1

R4

(d) The optimal input map for θr = 0.96 rad along
with the switching regions. R1 : n = 1, R2 :
n = 7, R3 : n = 10, R4 : n = 13

Figure 2.9: The ’cost to go’ and optimal input maps when minimizing the switching frequency using the
switching horizon ’SE’ at Te = 1pu and ωe = 0.8pu.

14 Background

0

0.4

0.8

1.2

0.02

0.06

θr
x

co
st

(a) The cost to go map along Te,min at Te = 1pu
and ωe = 0.8pu .

0

0.4

0.8

1.2

0.02

0.06

θr

x

N

R2

R5

R1

R3

R4

(b) The optimal input map along Te,min at Te =
1pu and ωe = 0.8pu. R1 : n = 3, R2 : n = 7,
R3 : n = 10, R4 : n = 13, R5 : n = 11

0

0.4

0.8

1.2

0.02

0.06

θr

x

co
st

(c) The cost to go map along Ψs,max at Te = 1pu
and ωe = 0.5pu.

0

0.4

0.8

1.2

0.02

0.06

θr

x

N

R1

R2

R3

R4

(d) The optimal input map along Ψs,max at Te =
1pu and ωe = 0.5pu. R1 : n = 1, R2 : n = 9,
R3 : n = 10, R4 : n = 13

Figure 2.10: The ’cost to go’ and optimal input maps when minimizing the switching frequency using
the switching horizon ’SE’.

Chapter 3

Trajectory Extension Methods

In deriving the formula for the different extension methods (refer to Sect. 2.3.2), for the sake
of simplicity, we limit ourselves to the switching horizon ’SE’, which means a switching action
at time k is followed by an extension event. It is straightforward to generalize the results to an
arbitrary switching horizon. Before proceeding, some notations have to be introduced.

• x = [ψsα ψsβ ψrα ψrβ]T, y = [Te Ψs vn]T and u = [ua ub uc]T denote
the state, output and input vectors, respectively. The i-th element in the state and output
vectors are denoted by xi and yi, respectively.

• ymin = [Te,min Ψs,min vn,min]T and ymax = [Te,max Ψs,max vn,max]T are the
lower and upper bounds on the output variables. The lower and upper bounds on the i-th
output are denoted by yi,max and yi,min, respectively.

• f(.) and g(.) are the drive’s state and output equations discretized at the sampling time
Ts, respectively.

• fd(.) and gd(.) are the drive’s state and output equations discretized at the coarse sampling-
time dTs, respectively.

3.1 Open-loop Simulation (OL)

The most accurate way of extending the output trajectories is to use the internal model of the
drive in an open-loop simulation [2]. Even though this requires excessive computational power
making this approach impractical, this method is regarded as a benchmark to evaluate the per-
formance of other extension methods against.

The switch position at time-step k, u(k), is applied to the nonlinear discrete-time model of the
drive to compute the outputs from time-instant k on. The trajectories are extended until one

15

16 Trajectory Extension Methods

of the outputs hits a bound, which determines the length of the prediction horizon Np. The
extended trajectories are described from time-step k to k +Np − 1 according to

x(k + n) = f (x(k + n− 1),u(k)) , 0 ≤ n ≤ Np − 1

y(k + n) = g (x(k + n)) , 0 ≤ n ≤ Np − 1
(3.1)

For an example, see Fig. 3.1a. More details about this method can be found in [2, 13].

3.2 Linear Extrapolation (LE)

The switch position from the last ’S’ event, u(k), is applied to the nonlinear discrete-time model
of the drive once to obtain the output sample at time-instant k + 1 according to

x(k + 1) = f (x(k),u(k))

y(k + 1) = g (x(k + 1))
(3.2)

The output trajectories are then extrapolated from time-instant k on linearly using the samples
at time-instances k and k + 1 until an output variable hits a bound. The extended trajectories
are described from time-step k to k +Np − 1 according to

y(k + n) = (y(k + 1)− y(k))n+ y(k), 0 ≤ n ≤ Np − 1 (3.3)

The points where the output bounds are crossed are calculated analytically according to (3.4).

ni = min

(
max

(
0,

yi,max − yi (k)

yi (k + 1)− yi (k)

)
,max

(
0,

yi.min − yi (k)

yi (k + 1)− yi (k)

))
(3.4)

The length of the prediction horizon, Np, is given by

Np = min
i
{ni} (3.5)

See Fig. 3.1a for an example.

Linear extrapolation is proposed in [6]. It is worth mentioning that MPDTC with the switch-
ing horizon ’SE’ has been successfully implemented and tested on ABB’s ACS6000 medium-
voltage drive [7].

3.2 Linear Extrapolation (LE) 17

�

�� � � �� ���� � �����
�� �
����������������������� ���� �

�� ���� �

	��� �

(a)�
�� �

����������������������� ���� �
�� ���� �

���� �

�� � � �� � � �� � � ��� � � ���� � �� ���� � 	��
�
(b)

Figure 3.1: Examples of predicted torque trajectories between their bounds and the associated switch
positions for the switching horizon ’SE’. The ’S’ event happens at time-step k. (a) Com-
parison between the OL (dash-dotted line) and LE (solid line) methods and the associated
prediction horizon lengths (bi-directional arrows). The points (bold dots) used for the ’LE’
method are shown as well. (b) Comparison between the ’QE’ (dashed), ’QI’ (dotted) and
’QII’ (solid) methods and their prediction horizon lengths. The ’QE’ method uses the points
at time-instants k, k+ 1 and k+ 2. The ’QI’ method uses the points at time-instants k, k+d
and k + 2d. The ’QII’ method uses the additional point at time-step k + 3d to refine the
predicted trajectory as the length of prediction horizon increases.

18 Trajectory Extension Methods

(a)

(b)
Figure 3.2: Examples of predicted torque trajectories using (a) QII and (b) QII2 extension methods for

the switching horizon ’SE’. The ’S’ event happens at time-step k. The segments are shown
with different lines styles. For this particular example, the trajectory extended using QII is
composed of four segments whereas the trajectory extended using QII2 is composed of two
segments.

3.3 Quadratic Extrapolation (QE) 19

3.3 Quadratic Extrapolation (QE)

Since the machine’s exact output trajectories are of quadratic and trigonometric types, they can
be better approximated by quadratic curves rather than lines. The switch position obtained at
the last ’S’ event is applied twice to the drive model to obtain the outputs at time-instants k + 1

and k + 2 according to

x(k + n) = f (x(k + n− 1),u(k)) , n = 1, 2

y(k + n) = g (x(k + n)) , n = 1, 2
(3.6)

Using the output samples at time instants k, k+ 1, k+ 2 the output trajectories are extrapolated
quadratically from time-step k on until the first of the three output variables leaves the feasible
region. The extended trajectories are described by second order polynomials from time-step k
until k +Np − 1 according to

y(k + n) = an2 + bn+ c, 0 ≤ n ≤ Np − 1 (3.7)

with the quadratic coefficient vectors a, b and c given by

 a
T

bT

cT

 =

1
2
y(k)− y(k + 1) + 1

2
y(k + 2)

−3
2
y(k) + 2y(k + 1)− 1

2
y(k + 2)

y(k)

T

(3.8)

The cross over points of the output bounds are given by (3.9) from which the length of the
prediction horizon, Np, is obtained according to (3.10).

ni = min

max

0,
−bi ±

√
b
2

i − 4ai (ci − yi,max)
2ai

 (3.9)

, max

0,
−bi ±

√
b
2

i − 4ai (ci − yi,min)

2ai

Np = min
i
{ni} (3.10)

Fig. 3.1b provides an example of how the trajectories are extended.

20 Trajectory Extension Methods

3.4 Prediction with Quadratic Interpolation (QI)

Predicting the output samples far ahead in the future and then interpolating between them yields
extended trajectories with better accuracy. The algorithm uses the switching input derived at
the last ’S’ event to compute the output samples at time-instants k + d and k + 2d according to

x(k + nd) = fd (x(k + (n− 1)d),u(k)) n = 1, 2

y(k + nd) = gd (x(k + nd)) n = 1, 2
(3.11)

Interpolating between outputs at time-instants k, k + d and k + 2d quadratically yields the ex-
tended trajectories. The trajectories are extended until the first out of the three output variables
becomes infeasible. The extended trajectories are

y(k + n) = an2 + bn+ c, 0 ≤ n ≤ Np − 1 (3.12)

with

 a
T

bT

 =

 d2 d

4d2 2d

−1 y(k + d)− y(k)

y(k + 2d)− y(k)

T

cT = y(k)T

(3.13)

aT

bT

cT

 =

1
2d2
y(k)− 1

d2
y(k + d) + 1

2d2
y(k + 2d)

− 3
2d
y(k) + 2

d
y(k + d)− 1

2d
y(k + 2d)

y(k)

T

(3.14)

We can solve forNp analytically, which is given by (3.9) and (3.10). The choice of the parameter
d is crucial for this algorithm to yield good results. It should be chosen such that 2d covers the
prediction horizon with a high probability. See Fig. 3.1b for more details.

3.5 Iterative Prediction with Quadratic Interpolation (QII)

Particularly for long prediction horizons, the extrapolation (interpolation) based on few pre-
dicted output samples can give rise to large errors with respect to the open-loop simulation

3.5 Iterative Prediction with Quadratic Interpolation (QII) 21

method. If required, the QII method uses additional predicted output samples to refine the ex-
trapolation as the length of the extended trajectories increases. As for prediction with quadratic
interpolation, a quadratic curve is interpolated between the output samples at time-instants k,
k+d and k+2d. If no output bound is violated in the [k k+2d] interval, everything is shifted by
d time-steps and the outputs at time instant k + 3d are predicted using (3.11). A new quadratic
curve is interpolated between the output samples at time-instants k+d, k+ 2d and k+ 3d. This
procedure is continued until a bound violation is detected.

The QII method yields extended trajectories that are composed of m segments. Each segment
is characterized by a second order polynomial. The extended trajectories from time-step k to
k +Np − 1 are

y(k + n) =

a1n2 + b1n+ c1 0 6 n 6 d

a2(n− d)2 + b2(n− d) + c2 d < n 6 2d
...

...

am(n− (m− 1)d)2 + bm(n− (m− 1)d) + cm (m− 1)d < n 6 md

(3.15)

with

 a
iT

bi
T

 =

 d2 d

4d2 2d

−1 y (k + id)− y (k + (i− 1) d)

y (k + (i+ 1)d)− y (k + (i− 1) d)

T

ci
T

= y (k + (i− 1) d)T

(3.16)

aiT

bi
T

ci
T

 =

1
2d2
y (k + (i− 1) d)− 1

d2
y (k + id) + 1

2d2
y (k + (i+ 1)d)

− 3
2d
y (k + (i− 1) d) + 2

d
y (k + id)− 1

2d
y (k + (i+ 1)d)

y (k + (i− 1) d)

T

(3.17)

In contrast to the LE, QE and QI methods, the solution of Np cannot be found analytically as m
is not know a priori and depends on Np according to

m =

⌈
Np
d

⌉
− 1 Np ≥ 2d

1 Np < 2d
(3.18)

22 Trajectory Extension Methods

3.6 Iterative Prediction with Quadratic Interpolation Non-
overlapping (QII2)

This method, similarly to QII, interpolates between the output samples predicted using the
model of the drive sampled at the coarse sampling time dTs. The only difference is that if no
bound violation is detected in the [k k + 2d] interval, the algorithm computes the outputs at
time-instants k + 3d and k + 4d and the new quadratic curve will be interpolated using the
output samples at k + 2d, k + 3d and k + 4d. This procedure is continued until one of the
outputs leaves the feasible region. The extended trajectories consist of m segments of second
order polynomials and are given by (3.19)

y(k + n) =

a1n2 + b1n+ c1 0 6 n 6 2d

a2(n− 2d)2 + b2(n− 2d) + c2 2d < n 6 4d
...

...

am(n− (m− 1)2d)2 + bm(n− (m− 1)2d) + cm (m− 1)2d < n 6 2md

(3.19)

where ai, bi and ci are

aiT

bi
T

ci
T

 =

1
2d2
y (k + (i− 1) 2d)− 1

d2
y (k + (2i− 1) d) + 1

2d2
y (k + 2id)

− 3
2d
y (k + (i− 1) 2d) + 2

d
y (k + (2i− 1) d)− 1

2d
y (k + 2id)

y (k + (i− 1) 2d)

T

As it was the case with QII method, There is no analytical solution for Np. The number of
segments in the extended trajectory, m, is a function of Np according to (3.20)

m =

⌈
Np

2d

⌉
(3.20)

3.7 Analytical Approach (ANL)

The methods discussed so far are based on (iterative) extrapolation (interpolation). In this sec-
tion we will introduce an analytical method to extend the output trajectories. We aim at express-

3.7 Analytical Approach (ANL) 23

ing the outputs (i.e. the torque, the stator flux and the neutral point’s potential) by polynomials
of degree three or less, which enables us to solve for Np analytically1.

As the drive’s model is represented by the linear set of state equations (2.5) and (2.3)2, one
can solve the set of linear differential equations to obtain the exact expressions describing the
drive’s states. For prediction purpose, these expressions are simplified by taking advantage of
some important properties of the drive’s model and using Taylor’s series to approximate them
about the nominal length of the prediction horizon. The output polynomials are obtained by
using these expressions in the nonlinear output equations (2.8) and (2.7). Finally, the output
polynomials are used to find Np.

3.7.1 Analytic Solutions of the State Equations

Machine States The machine’s state equations in (2.5) can be rewritten in matrix form

ẋ(t) = Ax(t) +Bu(t) (3.21)

with

x(t) =
[
ψsα ψsβ ψrα ψrβ

]T
(3.22)

and

u =
[
vα vβ

]T
(3.23)

The matrices A and B are

A =

−a 0 b 0

0 −a 0 b

c 0 −f −ωr
0 c ωr −f

 B =

1 0

0 1

0 0

0 0

 (3.24)

with a = rs
xrr
D

, b = rs
xm
D

, c = rr
xm
D

and f = rr
xss
D

, where rs, rr, xrr, xm, xss and D are the
motor parameters in Chapter 2.

1Polynomials of higher degree or other nonlinear functions will necessitate the use of a numerical root finding
algorithm.

2Note that the equation describing the neutral point voltage is not linear in its inputs. However, having the
numerical values for the switch positions, the equation can be treated as linear.

24 Trajectory Extension Methods

The solution of the matrix differential equation (3.21) with the initial condition x(0) = x0

is [14]

x(t) = eAtx0 +

t∫
0

eA(t−τ)Bu(τ)dτ (3.25)

with

eAt = L−1
{

(sI − A)−1} (3.26)

where I , s and L−1(.) are the identity matrix of appropriate size, the Laplace variable and the
inverse Laplace operator, respectively.

sI − A =

W︷ ︸︸ ︷
s+ a 0

0 s+ a

−c 0

0 −c︸ ︷︷ ︸
Y

X︷ ︸︸ ︷
−b 0

0 −b
s+ f ωr

−ωr s+ f︸ ︷︷ ︸
Z

(3.27)

Defining the matrix blocks W , X , Y and Z as in (3.27) and using Sherman-Morrison inversion
formula [15], we have

(sI −A)
−1

=

[
W X

Y Z

]−1

(3.28)

=

[
W−1 +W−1X

(
Z − YW−1X

)−1
YW−1 −W−1X

(
Z − YW−1X

)−1

−(Z − YW−1X)YW−1
(
Z − YW−1X

)−1

]
(3.29)

When calculating the block matrices in (3.28), we approximate the expressions based on the
fact that the prediction model is to be used for medium to high frequency range (i.e. s >> 0)
so eliminating the terms that are too small within this frequency range3. Please see Appendix A
for the details.

3The prediction model is not intended to be used for steady state

3.7 Analytical Approach (ANL) 25

(sI − A)−1 ' 1

(s+ f)2 + ω2
r

(s+f)2+ω2

r

s+a
−bc ωr

(s+a)2
b s+f
s+a

−b ωr
s+a

bc ωr
(s+a)2

(s+f)2+ω2
r

s+a
b ωr
s+a

b s+f
s+a

c s+f
s+a

−c ωr
s+a

s+ f −ωr
c ωr
s+a

c s+f
s+a

ωr s+ f

 (3.30)

Now we can rewrite (3.25) as

x(t) =
(
L−1

{
(sI − A)−1})x0 + L−1 {G(s)U(s)} (3.31)

where G(s) = (sI − A)−1B is the transfer function matrix given by

G(s) = (sI − A)−1B =
1

(s+ f)2 + ω2
r

(s+f)2+ω2

r

s+a
−bc ωr

(s+a)2

bc ωr
(s+a)2

(s+f)2+ω2
r

s+a

c s+f
s+a

−c ωr
s+a

c ωr
s+a

c s+f
s+a

 (3.32)

and U(s) = L {u(t)} is the Laplace transform of the switch positions in αβ reference frame
given by

U(s) = L {u(t)} =
1

s

[
vα vβ

]T
(3.33)

Finally, (3.31) becomes

x(t) =
(
L−1

{
(sI − A)−1}) [

x01 x02 x03 x04

]T
+ L−1

{
G(s)

s

[
vα vβ

]T
}

(3.34)

Taking the inverse Laplace transform and expanding (3.34) yields

x1(t) = l1vα + l2vβ + (x01 + k1x02 + k4x03 − k5x04 − l1vα + l3vβ) e−at (3.35)

+ (k2x02 + l4vβ) te−at + (k3x02 + k5x03 + k4x04 + l5vβ) e−ft sin(ωrt)

+ (−k1x02 − k4x03 + k5x04 + l6vβ) e−ft cos(ωrt)

x2(t) = l1vβ − l2vα + (−k1x01 + x02 + k5x03 + k4x04 − l3vα − l1vβ) e−at (3.36)

+ (−k2x01 − l4vα) te−at + (−k3x01 − k4x03 + k5x04 − l5vα) e−ft sin(ωrt)

+ (k1x01 − k5x03 − k4x04 − l6vα) e−ft cos(ωrt)

26 Trajectory Extension Methods

x3(t) = p1vα + p2vβ + (m1x01 −m2x02 + p3vα + p4vβ) e−at (3.37)

+ (m2x01 +m1x02 − x04 + p5vα + p6vβ) e−ft sin(ωrt)

+ (−m1x01 +m2x02 + x03 − p6vα + p5vβ) e−ft cos(ωrt)

x4(t) = p1vβ − p2vα + (m2x01 +m1x02 + p3vβ − p4vα) e−at (3.38)

+ (−m1x01 +m2x02 + x03 + p5vβ − p6vα) e−ft sin(ωrt)

+ (−m2x01 −m1x02 + x04 − p6vβ − p5vα) e−ft cos(ωrt)

where the coefficients ki, li, mi and pi are functions of a, b, c and f . See Appendix A for details
on how to derive them.

Inverter State The inverter’s neutral point in (2.4) is nonlinear in terms of the switch positions
uabc = [ua ub uc]T. However, as the vector uabc and, consequently, |uabc| is known in the
beginning of the extension step, it can be treated as a constant vector. This renders (2.4) a linear
differential equation.

dvn
dt

= 1
2xC
|uabc|T P−1is,αβ0 = γ1is,α + γ2is,β (3.39)

where
[
γ1 γ2 γ3

]
= 1

2xC
|uabc|T P−1 are constant coefficients.

The α−and β−components of is,αβ0 are expressed in terms of the stator flux and the rotor
flux α- and β−components according to (2.9). Substituting for is,α and is,β from (2.9), (3.39)
becomes

v̇n(t) =
γ1

D
(xrrx1(t)− xmx3(t)) +

γ2

D
(xrrx2(t)− xmx4(t)) (3.40)

Integrating (3.40) gives

vn(t) =

t∫
0

(γ1

D
(xrrx1(τ)− xmx3(τ)) +

γ2

D
(xrrx2(τ)− xmx4(τ))

)
dτ + vn(0) (3.41)

The expression for vn(t) is obtained by plugging in the expressions for xi(t), i = 1, ..., 4, from
(3.35), (3.36), (3.37) and (3.38) into (3.41), and integrating.

3.7 Analytical Approach (ANL) 27

So far we have obtained the complete solutions of the states. These expressions, however, are
too complicated to be used in the analytical approach straight away. In the next section, a simple
analytical solution will be developed based on some simplifying assumptions on the model of
the drive and the complete solutions derived here.

3.7.2 Simplified Solutions of State Equations

Consider the machine model again.

dψsα
dt
dψsβ
dt

dψrα
dt

dψrβ
dt

 =

−rs xrrD 0 rs

xm
D

0

0 −rs xrrD 0 rs
xm
D

rr
xm
D

0 −rr xssD −ωr
0 rr

xm
D

ωr −rr xssD

ψsα

ψsβ

ψrα

ψrβ

+

1 0

0 1

0 0

0 0

[
vα

vβ

]
(3.42)

Stator Flux The−rs xrrD terms account for the losses in the stator whereas the rs xmD terms are
the positive contributions from the the rotor flux to the stator flux. Since ψr ≈ ψs, the losses in
the stator are almost offset by the positive contributions from the rotor flux. Moreover, as rs is
typically very small, these terms become negligible. We shall consider two cases. (i) neglecting
the effect of rs (i.e. rs = 0) and (ii) taking into account the effect of rs.

i) Stator flux trajectories when rs = 0

In this case the stator flux is only moved by the voltage vectors and the stator flux dynamics
are reduced to

ψ̇s =

[
0 0

0 0

]
ψs +

[
vα

vβ

]
(3.43)

which yields the following expression for the stator flux

ψs(t) = ψs(0) + tv (3.44)

where ψs(0) are the initial conditions and t is the time.

The same result can be obtained by setting rs = 0 in (3.35) and (3.36), which makes all coeffi-
cients zero apart from l1(l1 = 1

a
). This reduces them to

x1(t) = x01 + lim
a→0

vα
a

(
1− e−at

)
(3.45)

= x01 + tvα

28 Trajectory Extension Methods

x2(t) = x02 + lim
a→0

vβ
a

(
1− e−at

)
(3.46)

= x02 + tvβ

ii) Taking into account the effect of rs
Including the effect of the stator resistance, rs, allows us to predict the stator flux trajectories

more accurately. For this purpose, we shall consider the most dominant terms in (3.35) and
(3.36) that account for the stator losses as well as the interaction between the rotor flux and the
stator flux. The terms associated with l1and k5 are determined to be the most dominant.

x1(t) = x01e−at + k5e−ft (x03 sin(ωrt) + x04 (cos(ωrt)− 1)) + l1vα
(
1− e−at

)
(3.47)

x2(t) = x02e−at + k5e−ft (x04 sin(ωrt)− x03 (cos(ωrt)− 1)) + l1vβ
(
1− e−at

)
(3.48)

By using first order Taylor expansions of e−at, e−ft sin(ωrt) and e−ft cos(ωrt) around the nomi-
nal time-duration of the prediction horizon tp, (3.47) and (3.48) can be expressed, in the original

variables
[
ψsα ψsβ

]T
=
[
x1 x2

]T
, as

ψsα(t) = s1t+ r1 (3.49)

ψsβ(t) = s2t+ r2 (3.50)

where si and ri are constants. See Appendix A for details.

Fig. 3.3 depicts the effect of rs on approximating the stator flux components.

Rotor Flux The ωr terms correspond to the rotation of the rotor flux vector with constant
magnitude, whereas the −rr xssD terms account for the losses due to rr that shorten the length
of the rotor flux. The rr xmD terms are the positive contributions from the stator flux due to the
mutual inductance xm. As the stator and the rotor flux almost lie on top of each other (i.e.,
ψs ≈ ψr), the losses in the rotor flux are almost offset by the positive contribution from the
stator flux. Moreover, rr and consequently −rr xssD and rr xmD are typically very small compared
to ωr. These observations allow us to omit the −rr xssD and rr xmD terms in (3.42), which yields

3.7 Analytical Approach (ANL) 29

0 0.2 0.4

0.9302

0.9306

0.931

Time [ms]

ψ
s
,α

0 0.2 0.4

0.347

0.348

0.349

0.35

Time [ms]

ψ
s
,β

actual
r
s
>0

r
s
=0

actual
r
s
>0

r
s
=0

Figure 3.3: Trajectories of the stator flux components for some initial conditions and uk =[
0 0 0

]T. For zero voltage vectors, the approximated flux components associated to
rs = 0 case (dotted line) are constant. The dashed line approximate the flux components
more accurately in the vicinity of the nominal time-duration of the prediction horizon (i.e.,
0.1 ms).

ψ̇r =

[
0 −ωr
ωr 0

]
ψr (3.51)

Equation (3.51) is a system rotating with a fixed speed and a constant magnitude. The solution
of (3.51) is

[
ψrα

ψrβ

]
=

[
cos(ωrt) sin(ωrt)

− sin(ωrt) cos(ωrt)

][
ψrα(0)

ψrβ(0)

]
(3.52)

or equivalently

ψrα(t) = Ψr cos(ωrt+ Θ) (3.53)

ψrβ(t) = Ψr sin(ωrt+ Θ) (3.54)

where Ψr =
√
ψ2
rα (0) + ψ2

rβ (0) and Θ = arcsin
(
ψrβ(0)

Ψr

)
are the length and angle of the

rotor flux, respectively. Fig. 3.4 shows that the rotor flux can be seen as a rotating vector with
constant speed and length over the prediction horizon.

Equations (3.53) and (3.54) can be verified by setting rr = 0 in (A.14) and (3.38). We use
second order Taylor expansions of Ψr sin(ωrt + Θ) and Ψr cos(ωrt + Θ) around the nominal

30 Trajectory Extension Methods

0 0.5 1 1.5 2

0.2

0.6

0.8

Time [ms]

θ r

0 0.5 1 1.5 2

0.902

0.906

0.91

0.914

0.918

Time [ms]
Ψ

r

Figure 3.4: The actual (solid) and approximated (dashed) phase and angle of the rotor flux over a typical
prediction horizon.

duration of the prediction horizon tp, to express the rotor flux components in polynomials of
degree two.

ψrα(t) = a1t
2 + b1t+ c1 (3.55)

ψrβ(t) = a2t
2 + b2t+ c2 (3.56)

Please refer to Appendix A for explicit expressions of ai, bi and ci. The approximated rotor flux
components are depicted in Fig 3.5b.

Inverter’s Neutral Point Potential Using (3.49), (3.50), (3.55) and (3.56) in (3.41) yields

vn =

t∫
0

(γ1

D
(xrr (s1τ + r1)− xmΨr cos (ωrt+ Θ)) +

+
γ2

D
(xrr (s2τ + r2)− xmΨr sin (ωrt+ Θ))

)
dτ + vn(0)

=
γ1

D

(
xrr

(s1

2
t2 + r1t

)
− xm

Ψr

ωr
(sin (ωrt+ Θ)− sin (Θ))

)
+
γ2

D

(
xrr

(s2

2
t2 + r2t

)
+ xm

Ψr

ωr
(cos (ωrt+ Θ)− cos (Θ))

)
+ vn(0) (3.57)

By using the second order Taylor expansion of Ψr cos (ωrt+ Θ) and Ψr sin (ωrt+ Θ) around
the nominal duration of the prediction horizon, equation (3.57) will be a polynomial of degree
two.

3.7 Analytical Approach (ANL) 31

vn(t) = u1t
2 + u2t+ u3 (3.58)

The coefficients ui are derived in Appendix A.

3.7.3 Output Polynomials

The polynomial forms of the state trajectories, obtained in Sect. 3.7.2, are used along with the
output equations in Chapter 2 to express the outputs in polynomials of degree 3 or less. This
allows us to solve for the length of the prediction horizon analytically.

The stator flux polynomial is a second order polynomial obtained by using (3.49) and (3.50) in
(2.8).

Ψ2
s(t) = (s1t+ r1)2 + (s2t+ r2)2

=
(
s2

1 + s2
2

)
t2 + 2t (s1r1 + s2r2) + r2

1 + r2
2 (3.59)

The time duration for which the stator flux remains within its bounds is given by

Ψs(t)−Ψs,min = 0→ t = t∗1 ≥ 0 (3.60)

Ψs(t)−Ψs,max = 0→ t = t∗2 ≥ 0 (3.61)

tp1 = min(t∗1, t
∗
2) (3.62)

where Ψs,min and Ψs,max are the lower and upper bound on the stator flux.

The torque is a third degree polynomial which is obtained by using (3.49), (3.50), (3.55) and
(3.56) in (2.7)

Te(t) =
xm
D

(
(s2t+ r2)

(
a1t

2 + b1t+ c1

)
− (s1t+ r1)

(
a2t

2 + b2t+ c2

))
=

xm
D

(
(s2a1 − s1a2) t3 + (s2b1 + r2a1 − s1b2 − r1a2) t2

+ (s2c1 + r2b1 − s1c2 − r1b2) t+ (r2c1 − r1c2)) (3.63)

It is always possible to find the real root(s) of a third order polynomial analytically4. See
Appendix A for details. The time duration for which the torque remains feasible is given by

4A third order polynomial has at least one real root

32 Trajectory Extension Methods

Te(t)− Te,min = 0→ t = t∗1 (3.64)

Te(t)− Te,max = 0→ t = t∗2 (3.65)

tp2 = min(t∗1, t
∗
2) (3.66)

where Te,min and Te,max are the lower and upper bounds on the torque.

The polynomial form of the inverter’s neutral point potential was obtained in Sect. 3.7.2.

vn(t) = u1t
2 + u2t+ u3 (3.67)

The time duration for which the neutral point potential remains within its bounds is given by

vn(t)− vn,min = 0→ t = t∗1 (3.68)

vn(t)− vn,max = 0→ t = t∗2 (3.69)

tp3 = min(t∗1, t
∗
2) (3.70)

where vn,min and vn,max are the associated lower and upper bounds .

The time-duration for which all outputs are feasible is given by

tp = min (tp1, tp2, tp3) (3.71)

The prediction horizon length, Np, is the number of time-steps corresponding to tp, which is
given by

Np =

⌊
tp
Ts

⌋
(3.72)

where Ts is the sampling time.

Fig. 3.5 compares the actual state trajectories with the approximate trajectories for given initial
conditions and input. Fig. 3.6 shows the associated output trajectories.

3.7 Analytical Approach (ANL) 33

0 0.5 1 1.5 2 2.5 3 3.5 4

1

1.2

1.4

1

1.2

Time [ms]

ψ
s
α

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.3

−0.1

0.2

0.4

Time [ms]

ψ
s
α

(a) Approximation of the stator flux components (solid line) by polynomials of degree one (dashed line)
taking into account the effect of rs.

0 0.5 1 1.5 2 2.5 3 3.5 4

0.4

0.6

0.8

1

Time [ms]

ψ
r
α

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.3

0.5

0.7

0.9

Time [ms]

ψ
r
β

(b) Approximation of the rotor flux components (solid line) by polynomials of degree two (dashed line).
Figure 3.5: Comparison between simplified state solutions and exact state solutions for given initial

conditions and input.

34 Trajectory Extension Methods

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.97

1.015

Time [ms]

Ψ
s

(a) Approximation of the length of the stator flux (dashed line) by its associated polynomial (dotted
line).

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.88

1.12

Time [ms]

T
e

(b) Approximation of the torque (dashed line) by its associated polynomial (dotted line).

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.04

0.04

Time [ms]

v n

(c) Approximation of the inverter’s neutral point potential (dashed line) by its associated polynomial
(dotted line).

Figure 3.6: Comparison between the exact output trajectories and their approximations, which are based
on the simplified model. The trajectories are drawn between their bounds and almost lie on
top of each other.

Chapter 4

Performance Evaluation of Extension
Methods

4.1 Accuracy of Predictions

Using a 3-level voltage source inverter with a 2.5 MVA induction machine [5] as an example, the
accuracy of the different extension methods is compared with the open-loop simulation method
as it yields the most accurate predictions. For this purpose, we define the relative prediction
horizon error as N rel

p =
Nol
p −Np
Nol
p

where Np and N ol
p are the prediction horizons of the method

under consideration and of the open-loop simulation method, respectively. The accuracy of
predictions associated with each method is measured by the relative error histograms. The
accuracy of predictions along the edges of the target window, as shown in Fig. 4.1, is depicted
in Fig. 4.2. Since the performance of the QII and QII2 methods are almost identical, we have
only shown the histograms for the QII method.

A few remarks are to be mentioned about the histograms of relative error of the prediction
horizon length. They show how accurately the outputs can be predicted at the end of one
extension step (i.e. for ’SE’ switching horizon). We need the state vector in the switching step to
build the output samples used for extending the trajectories. Thus, for long switching horizons
like ’SESE’, we have to obtain the state vector at the end of each ’E’ event. For the ’OL’ method,
the state vector is automatically obtained as a part of the extension step. For other methods, the
states are extended in the same way as outputs. In order to keep the correspondence between the
extended state and output vectors, we need to predict the states accurately. Particularly the rotor
states cannot be predicted accurately by linear extrapolation as discussed in Chapter 3. This is
shown in Fig. 4.3 where the discontinuity in the predicted output trajectory happens because
the correspondence between the extended output and state vector is lost. Therefore, for long

35

36 Performance Evaluation of Extension Methods

�

��

���
��� ��� ����	� ��������

���
Figure 4.1: The region over which the histograms of relative error of the prediction horizon length are

obtained. x is the distance traveled along the boundary of target window and θr is the rotor
angle.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ili

ty
 d

en
si

ty

a

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ili

ty
 d

en
si

ty

b

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ili

ty
 d

en
si

ty

c

(c)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ili

ty
 d

en
si

ty

d

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ili

ty
 d

en
si

ty

e

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Nrel
p

pr
ob

ab
ili

ty
 d

en
si

ty

f

Figure 4.2: Histograms of relative error of the prediction horizon length obtained through simulation
along the edges of the feasible region for the switching horizon ’SE’, at Te = 1pu and ωe =
0.8pu, where Te and ωe are the electromagnetic torque and speed references, respectively.
(a) LE, (b) QE, (c) ANL with tp = 7Ts, (d) ANL with rs = 0, (e) QI with d = 14 and (f)
QII with d = 7. The probability density of the relative error for the ’QII’ method is highly
concentrated about zero highlighting its accuracy.

4.2 Computational Complexity 37

1+kk 9+k

max,eT

min,eT

3+k

αϕ r

steptime −

Figure 4.3: The extended torque and ψrα trajectories using ’LE’ method. The first ’S’ event takes place
at time-step k. The torque and state trajectories are extend until at time-step k + 3 the next
’S’ action is triggered. However, a jump in the predicted output trajectory happens at time-
step k + 3 because the extended state (solid line) is an inaccurate estimation of the actual
state (dashed-line).

Table 4.1: Number of operations in the sub-functions of the pseudo code
Basic Operations

function ± × ÷ sum
StateUpdate(Pred) 42 76 2 120

OutputUpdate 2 9 0 11
LinSolve 12 0 6 18

QuadSolve 42 39 30 111
AnlSolveStator 14 23 4 41
AnlSolveTorque 20 50 16 86
AnlSolveNeutral 27 69 23 119

switching horizons the ’LE’ method does not work properly although it yields rather accurate
predictions for the ’SE’ switching horizon.

4.2 Computational Complexity

In this section the algorithms for the proposed extension methods are given as pseudo code and
the associated computational burden is analyzed. As with modern Digital Signal Processors all
basic operations such as additions, multiplications, divisions require one cycle, we only count
the number of basic operations and do not distinguish between them. All other operations for
loading and storing the variables, comparisons and execution of loops are neglected.

38 Performance Evaluation of Extension Methods

0 10 20 30 40 50 60

1,000

3,000

5,000

7,000

X: 25.01
Y: 746

Np

N
u
n
m
be
ro
f
ca
lc
u
la
ti
o
n
s

X: 23.01
Y: 877

Figure 4.4: The number of calculations plotted as a function of the prediction horizon length for the
OL (dotted line), QII (dashed line) and QII2 (solid line) methods for the switching horizon
’SE’ and d = 10 steps. The computational burden for the QII and QII2 methods increases
stepwise at every d and 2d steps, respectively. As shown in the graph, the number of the
calculations for QII method is below QII2’s for d ≤ Np ≤ 3d, which is the most likely
prediction horizon length if the parameter d is chosen properly.

4.2.1 Pseudo codes and Analysis

Table 4.1 shows the number of basic operations involved with each sub-function in the pseudo
codes. The sub-function StateUpdate updates the drive’s current state using the model dis-
cretized at Ts. StateUpdatePred updates the driver’s current state using the model sampled
at dTs. LinSolve solves for the length of the linearly extrapolated trajectories. QuadSolve
solves for length of the trajectories, which are extended by quadratic curves. The functions
AnlSolveStator, AnlSolveTorque and AnlSolveNeutral are used in the analyti-
cal approach to solve the stator flux magnitude, the torque and the neutral point polynomials,
respectively.

Let X(k) = [x(k)], Y (k) = [y(k)] denote the state and the associated output trajectories to
be extended and u(k) denote the last switching input in the switching sequence. The state
and output samples from k on are computed to obtain X(k) = [x(k), ..., x(k +Np − 1)]

and Y (k) = [y(k), ..., y(k +Np − 1)] until the output trajectory becomes infeasible. The
results are stored in data structure Pred. Fig. 4.4 compares the computational complexity of
the iterative methods (i.e., OL, QII and QII2).

4.2 Computational Complexity 39

Table 4.2: The computational burden associated with each extension method, where d.e denotes the
ceiling function.

extension method LE QE QI ANL
solution approach analytic analytic analytic analytic

total number of calc. 149 373 373 246

extension method QII QII2 OL
solution approach sequential sequential sequential

total number of calc.

{
242

⌈
Np
d

⌉
− 111 Np > 2d

373 Np ≤ 2d
373

⌈
Np
2d

⌉
131Np

Open-loop Simulation (OL)

Pred = [];

Np=1;

X(k) = x(k);

Y(k) = y(k);

While y(k+Np-1) feasible

x(k+Np)=StateUpdate(x(k+Np-1),u(k));

y(k+Np)=OutputUpdate(x(k+Np));

Np = Np + 1;

X(k) = [X(k) x(k+Np-1)];

Y(k) = [Y(k) y(k+Np-1)];

end

store X(k), Y(k) in Pred;

The code script in the while loop runs as many times as the length of the prediction horizon,
Np. The number of calculations for one ’E’ event is give by

CE = Np (120 + 11) = 131Np (4.1)

Linear Extrapolation (LE)

Let Ymaxand Ymin denote the upper and lower bounds on the output variables, respectively.

Pred = [];

X(k) = x(k);

Y(k) = y(k);

x(k+1)=StateUpdate(x(k),u(k));

y(k+1)=OutputUpdate(x(k+1));

[X(k), Y(k), Np] = LinSolve(y(k),y(k+1),Ymax,Ymin);

store X(K), y(K) in Pred;

40 Performance Evaluation of Extension Methods

For LE method, solution of the prediction horizon length can be found analytically so the com-
putational burden is not a function of Np and is given by

CLE = 120 + 11 + 18 = 149 (4.2)

Quadratic Extrapolation (QE)

Pred = [];

X(k) = x(k);

Y(k) = y(k);

x(k+1)=StateUpdate(x(k),u(k));

y(k+1)=OutputUpdate(x(k+1));

x(k+2)=StateUpdate(x(k+1),u(k));

y(k+2)=OutputUpdate(x(k+2));

[X(k), Y(k), Np] = QuadSolve(y(k),y(k+1),y(k+2),Ymax,Ymin);

store X(k), Y(k) in Pred;

Similar to LE, the solution for prediction horizon length is found analytically. The number of
calculations for one ’E’ event is given by

CQE = 2× (120 + 11) + 111 = 373 (4.3)

Prediction with Quadratic Interpolation (QI)

Pred = [];

X(k) = x(k);

Y(k) = y(k);

x(k+d)=StateUpdatePred(x(k),u(k));

x(k+2d)=StateUpdatePred(x(k+d),u(k);

y(k+d)=OutputUpdate(x(k+d));

y(k+2d)=OutputUpdate(x(k+2d));

[X(k), Y(k), Np] = QuadSolve(y(k+1),y(k+1+d),y(k+1+2d),Ymax,Ymin);

store X(k), Y(k) in Pred;

The solution of Np is obtained analytically thus this approach is non-iterative. The number of
required calculations is given by

CQI = 2× (120 + 11) + 111 = 373 (4.4)

4.2 Computational Complexity 41

Iterative Prediction with Quadratic Interpolation (QII)

Pred = [];

X(k) = x(k);

Y(k) = y(k);

Np = 2d;

x(k+d)=StateUpdatePred(x(k),u(k));

y(k+d)=OutputUpdate(x(k+d));

j = 1;

While Np>=2d

x(k+(j+1)d)=StateUpdatePred(x(k+jd),u(k));

y(k+(j+1)d)=OutputUpdate(x(k+(j+1)d));

[Xj(k), Yj(k), Np] = QuadSolve(y(k+(j-1)d),y(k+jd),y(k+(j+1)d),Ymax,Ymin);

X(k) = [X(k) Xj(k)];

Y(k) = [Y(k) Yj(k)];

j = j + 1;

end

store X(k), Y(k) in Pred;

The number of times for which the while loop is executed is given by

n =

⌈
Np
d

⌉
− 1 N ≥ 2d

1 N < 2d
(4.5)

The Quadsolve function is called n times while the StateUpdate(Pred) and OutputUpdate
functions are called n+ 1 times. Therefore, the total number of basic operations is given by

CQII =

131
⌈
Np
d

⌉
+ 111

(⌈
Np
d

⌉
− 1
)

Np > 2d

131× 2 + 111 Np ≤ 2d

=

242
⌈
Np
d

⌉
− 111 Np > 2d

373 Np ≤ 2d
(4.6)

As in ’OL’ method, the computational burden depends on the length of the prediction horizon.

Prediction with Quadratic Interpolation non-overlapping (QII2)

Pred = [];

X(k) = x(k);

Y(k) = y(k);

N = 2d;

j = 1;

42 Performance Evaluation of Extension Methods

While Np>=2d

x(k+(2j-1)d)=StateUpdatePred(x(k+2d(j-1)),u(k));

y(k+(2j-1)d)=OutputUpdate(x(k+(2j-1)d));

x(k+2jd)=StateUpdatePred(x(k+(2j-1)d),u(k));

y(k+2jd)=OutputUpdate(x(k+2jd));

[Xj(k), Yj(k), Np] = QuadSolve(y(k+2d(j-1)),y(k+(2j-1)d),y(k+2jd),Ymax,Ymin);

X(k) = [X(k) Xj(k)];

Y(k) = [Y(k) Yj(k)];

j = j + 1;

end

store X(k), Y(k) in Pred;

The number of times for which the while loop is executed is given by

n =

⌈
Np

2d

⌉
(4.7)

The Quadsolve function is called n times while the StateUpdate(Pred) and OutputUpdate
functions are called 2n times. Therefore, the total number of basic operations is given by

CQII2 = 131

(
2

⌈
Np

2d

⌉)
+ 111

(⌈
Np

2d

⌉)
= 373

⌈
Np

2d

⌉
(4.8)

As in ’QII’ method, the computational burden depends on the length of the prediction horizon.

Analytical Method

Pred = [];

X(k) = x(k);

Y(k) = y(k);

[ParamStator Np1] = AnlSolveStator(x(k),Ymax,Ymin);

[ParamRotor Np2] = AnlSolveTorque(x(k),ParamStator,Ymax,Ymin);

[ParamNeutral Np3 = AnlSolveNeutral(x(k),ParamStator,ParamRotor,Ymax,Ymin);

Np = min(Np1,Np2,Np3);

[X(k), Y(k)] = extendTraj(ParamStator,ParamRotor,ParamNeutral);

store X(k), Y(k) in Pred;

The number of calculations for each ’E’ event is given by

CANL = 246 (4.9)

4.3 Closed-loop Performance 43

4.3 Closed-loop Performance

Using a 3-level voltage source inverter with a 2.5 MVA induction machine [5] as an example,
the closed-loop performance of different methods is compared for different switching horizons
when the switching frequency is minimized. Table 4.3 and Table 4.4 compare the extension
methods in terms of the switching frequency, the torque THD and the switching losses. The re-
sults suggest that for the switching horizon ’SE’ all methods exhibit fairly similar performance.
As can be seen for the open-loop simulation method, with respect to MPDTC with the switching
horizon ’SE’, MPDTC with the switching horizon ’SSESE’ reduces the switching frequency by
about 20%, while the switching losses are reduced by almost 30%. At the same time, the torque
THD almost remains constant as the switching horizon is increased. The QI and QII exhibit the
same performance as the open-loop simulation method as the switching horizon is increased.
For the analytical method, with respect to MPDTC with the switching horizon ’SE’, MPDTC
with the switching horizon ’SSESE’ reduces the switching frequency by almost 14%, while
the switching losses are reduced almost by 20%. This inferior performance as compared to the
performance of the QI and QII methods, is partly due to the fact that the output equations are
not approximated about the correct value of tp. As mentioned before, the LE methods is not ap-
plicable for long switching horizons. The QE method can be used for long horizons only when
the machine operates at ωe < 0.7pu. Fig. 4.5 shows the switch positions and the associated
outputs.

Table 4.3: Closed-loop simulation results when minimizing the switching frequency. The table shows
the average inverter switching frequency (Hz), the torque’s total harmonic distortion (THD)
and the switching losses for different extension methods for the machine running at 100%
torque and 80% speed.

Switching Horizon Extension Method OL LE QE QI QII ANL
Freq. (Hz) 224 229 228 224 224 221

’SE’ Te,THD 6.50 6.50 6.63 6.63 6.63 6.64
Losses (kW) 6.15 6.26 6.29 6.14 6.14 6.07
Freq. (Hz) 191 N/A N/A 198 196 200

’SESE’ Te,THD 6.44 N/A N/A 6.43 6.53 6.63
Losses (kW) 4.50 N/A N/A 4.98 4.89 5.15
Freq. (Hz) 182 N/A N/A 184 182 192

’SSESE’ Te,THD 6.40 N/A N/A 6.22 6.45 6.53
Losses (kW) 4.35 N/A N/A 4.64 4.41 4.81

44 Performance Evaluation of Extension Methods

0 10 20 30 40 50

0.9

0.95

1

1.05

1.1

Time[ms]

T
e
[p
u
]

(a) The torque

0 10 20 30 40 50

0.97

0.98

0.99

Ψ
s
[p
u
]

Time[ms]

(b) The length of the stator flux

0 10 20 30 40 50

−1

0

1

−1

0

1

−1

0

1

Time[ms]

u
a
bc

(c) 3-phase switch positions
Figure 4.5: Closed-loop simulation for the switching horizon ’SE’ using the ’OL’ at ωe = 0.8pu, Te =

1pu

4.3 Closed-loop Performance 45

Table 4.4: Closed-loop simulation results when minimizing the switching frequency. The table shows
the average inverter switching frequency (Hz), the torque’s total harmonic distortion (THD)
and the switching losses for different extension methods for the machine running at 100%
torque and 50% speed.

Switching Horizon Extension Method OL LE QE QI QII ANL
Freq. (Hz) 194 202 199 198 198 205

’SE’ Te,THD 6.24 6.26 6.27 6.15 6.14 6.11
Losses (kW) 7.21 7.21 7.22 7.27 7.27 7.14
Freq. (Hz) 170 N/A 171 168 172 175

’SESE’ Te,THD 6.28 N/A 6.13 6.14 6.16 6.26
Losses (kW) 6.41 N/A 6.36 6.37 6.41 6.00

46 Performance Evaluation of Extension Methods

Chapter 5

Branch and Bound

5.1 Background

As mentioned in Chapter 2, the MPDTC algorithm explores the tree of all admissible switch-
ing sequences to find the candidate switching sequences. The number of allowed switching
transitions at every time-step to the power of number of ’S’ events in the switching horizon
determines the worst case computational complexity of the MPDTC algorithm. The number
of allowed switching transitions at every-time step is determined by the inverter’s topology,
whereas the switching horizon is a control parameter. Long switching horizons improve the
control performance in terms of the switching losses and the torque/current THD1 [2]. So far,
we have investigated all admissible switching sequences to find the candidate sequences. This
method is called full enumeration. However, this approach cannot be used for long switching
horizons due to the combinatorial explosion in the number of admissible switching sequences.
In [3], it is shown that, using branch and bound technique, certain parts of the search tree can be
discarded without affecting the performance and thus reducing the computational complexity
significantly.

Starting from the root node, child nodes are created from the parent nodes by applying the con-
trol events in the switching horizon. The child nodes whose associated output sequences are
non-candidate, are called non-candidate nodes. These nodes will be removed from the tree and
will not be branched on any further (i.e., they won’t yield any child nodes.) The so far candidate
child nodes with control events left are referred to as bud nodes, which are incomplete solutions
of the optimization problem. These nodes are considered for further branching. The nodes with
no control events left, whose associated output sequences meet the candidacy requirements at
every time-step, are referred to as complete candidate nodes. They correspond to fully calcu-
lated candidate switching sequences. Fig. 5.1 provides an example of the search tree, where

1Total harmonic distortion

47

48 Branch and Bound

�
Figure 5.1: Examples of search tree for the switching horizon ’SSESE’. The ovals (blue), the stars

(green) and the inverted (red) Ts denote the incomplete, candidate and non-candidate switch-
ing sequences (nods), respectively. The ’S’ events are shown by thin (black) lines while the
’E’ events are shown by thick (blue) lines. This picture is taken from [3].

the bud and root nodes, the non-candidate nodes and the complete candidate nodes are marked
with blue (ovals), inverted (red) Ts and (green) starts, respectively.

Now we will define some terminology. The index i refers to the i-th switching sequence (node).

• Let Ei and Np,i represent the sum of switching transitions (switching losses) and the
length of the switching sequence, respectively. The cost associated with a complete
switching sequence is given by ci = Ei

Np,iTs
, where Ts is the controller sampling-time.

• c∗ is the optimal (minimal) cost for all candidate switching sequences.

• c is the smallest cost found in the search tree so far. We have c ≥ c∗.

• Np,max is the maximal length of the prediction horizon and Np,max ≥ Np,i for all i.

• ci = Ei
Np,maxTs

is the lowest cost achievable by the i-th bud node (incomplete switching
sequence), where Ei is the sum of the switching losses (transitions) incurred so far for
this sequence.

The formal definition of the branch and bound algorithm tailored to the MPDTC problem is
described in detail in [3]. Here we will introduce the algorithm briefly by an example.

Example 1: Consider Fig 5.2. Assume that node 1 (solid-line) is an incumbent node found at
some stage during the evolution of the search tree with the associated cost c1 = e1+e2

Np,1Ts
, where

5.2 Ingredients of Branch and Bound Algorithm 49

�
Figure 5.2: The cost evolution of four candidate sequences taken from [3].

Np,1 = 12 time-steps. As node 1 is the only candidate sequence found so far, the incumbent
minimal cost becomes c = c1. Having computed the second switching transition at k + 7 with
switching losses e3, we can find a proof before extending sequence 2 (dashed-line) that this
node and its descendants will not yield any better solution than what we already have, i.e. it
will yield to solutions that are inferior to the incumbent minimal (node 1). To achieve this, the
algorithm compares the lower bound on the cost of node 2, which is calculated as c2 = e1+e3

Np,maxTs
,

with the incumbent minimal cost c. If c2 ≥ c this node will be pruned from the search tree
and will not be considered for further branching. Otherwise, it will be considered for further
branching, in the case extension, to produce child node(s). Similar argument holds for node 3
(dash-dotted-line). Having computed the first switching losses e4, this node and its descendants
are discarded if c4 = e4

Np,maxTs
≥ c.

5.2 Ingredients of Branch and Bound Algorithm

There are two major ingredients to the branch and bound algorithm. (i) A function to calculate
the lower bound on the cost of the bud nodes, which is referred to as the bounding function.

(ii) Branching Strategy, which determines which bud node is first to be considered for further
branching.

5.2.1 Bounding Function

In the context of branch and bound, the bounding function estimates the minimum value of
the cost obtainable by a bud node when it is further grown. It is important that the bounding
function underestimates the actual minimum cost achievable by growing a bud node, yet be as
accurate estimator as possible [16].

50 Branch and Bound

For the branch and bound algorithm tailored to the MPDTC problem, finding the lower bound on
the cost associated to a bud node, ci, reduces to estimating the maximal length of the prediction
horizon Np,max. Unfortunately, it is not straightforward to estimate the maximal length of the
prediction horizon for an incomplete switching sequence. One approach is to assign a fixed
Np,max to all bud nodes in the search tree. The value of Np,max for the current optimization
problem is set equal to the maximal length of the prediction horizon obtained during the last
optimization problem. The other approach is to group the nodes and assign a Np,max to each
group. We shall introduce this approach by an example.

Example 2: For the search tree generated by the switching horizon ’SESE’, the maximal length
of the prediction horizon is estimated as follows. For the first ’S’ event, the algorithm looks for
all admissible switch position at time-step k and finds two of them, namely u1and u2 as shown in
Fig. 5.3a. For the first ’E’ event, the number of time-steps for which the output trajectories (i.e.
the torque, the stator flux and inverter’s neutral point potential) can be extended using u1 and u2

are analytically calculated as in Chapter 3 and referred to as N1
p1and N2

p1 , respectively. In Fig.
5.3b, the evolution of the stator flux vector during this step is shown as (blue) solid vectors in αβ
plane. For the second ’S’ event, the switch positions u3 and u4, whose corresponding voltage
vectors have the shortest length among those pointing in the tangent direction to the lower bound
on the stator flux magnitude, are chosen. For the second ’E’ event, the number of time steps for
which the stator flux magnitude can be extended using u3 and u4 before hitting its upper bound
are calculated and referred to as N1

p2 and N2
p2, respectively. Fig. 5.3b shows the evolution of

the stator flux vector during this step as (orange) dashed vectors. The maximal length of the
prediction horizon for all switching sequences starting with ui is given by N i

p,max = N i
p1 +N i

p2,
i = 1, 2.

More formally, the algorithm for estimating Np,max works as following. Regroup consecutive
’S’ events in the switching horizon into a single ’S’ event. For instance, the switching horizon
’SSESE’ becomes ’SESE’. For the first ’S’ event followed by the ’E’ event, calculate the number
of time-steps for which the output trajectories can be extended using the i-th admissible switch
position at time-step k and denote it as N i

p1. For the j-th (j ≥ 2) ’S’ event followed by the ’E’
event, choose the set of voltage vectors with the shortest length in αβ plane that are tangent to
the lower bound on the stator flux magnitude (i.e. the inner circle in Fig. 5.3b). If this set is
empty, find the closest voltage vectors to the tangent vector. This ensures that the stator flux
magnitude will hit its upper bound as late as possible.2. Ignore the bounds on the torque and
calculate the number of time-steps for which the stator flux magnitude stays within its bounds
using this switch position and denote it as N i

pj . The maximal length of the prediction horizon
for the switching sequences starting with the i-th switch position is given by

2In fact, it will not hit the lower bound at all.

5.2 Ingredients of Branch and Bound Algorithm 51

α

βj

1u

2u

3u

4u

(a) The voltage vectors of a 3-level inverter corresponding to switch positions in
Example 2. Among voltage vectors pointing in the tangent direction to the
lower bound on the length of the stator flux, the one with the shortest length
is chosen.

rω

α

βj

sϕ
rϕ

1u
2u

4u

3u

(b) Evolution of the stator flux vector in α−β plane explained in Exam-
ple 2. The feasible region (shaded) is bounded by the the upper (outer
circle) and lower (inner circle) bounds on the length of the stator flux
and the bounds on the torque (two parallel lines).

Figure 5.3: Estimating the maximal length of the prediction horizon

52 Branch and Bound

N i
p,max = N i

p1 +
m∑
j=2

N i
pj (5.1)

where m denotes the number of ’S’ events in the regrouped switching horizon.

A few remarks about the described algorithm are to be mentioned. Rather than having a fixed
Np,max for all switching sequences, the switching sequences starting with identical switch posi-
tion are assigned a certain Np,max. Thus, there will be different Np,max(s) to the number of the
admissible switching transitions at time-step k. The first part of Np,max (i.e., Np1) may under-
estimate the actual length of the prediction horizon whereas the remaining parts, overestimate
the actual length of prediction horizon by ignoring some constraints. At the end, we hope that
Np,max provides a rather tight upper bound on the length of the prediction horizon.

5.2.2 Branching Strategy

Any bud node with a c smaller than the incumbent cost, c, is a possible candidate for branching.
A policy is needed to choose among the candidates, which may be quite large in number. Two
such policies are

• Best-first or global-best node: the bud node with the lowest cost anywhere on the search
tree is selected for branching. For long switching horizons (e.g., ’SSESE’) it may take
many iterations (i.e., nodes to visit) to reach an incumbent node making us unable to
prune the search tree during early iterations.

• Depth-first: the bud node with the lowest cost among the set of bud nodes that are just
created is selected for branching. Depth-first branch and bound has the advantage that it
takes us one level deeper into the search tree at each iteration, so it is more likely to reach
an incumbent node more quickly. This allows us to start pruning at early iterations if the
incumbent solution is good enough. If it is not possible to proceed any deeper into the
tree, we will back up one level and choose another bud node from that level. However, it
may take more nodes to visit (i.e. iterations) to find the optimal switching sequence with
the associated cost c∗.

5.2.3 Warm Start

Getting a good incumbent solution early is extremely useful in pruning as many bud nodes will
never be created if the lower bound on their costs is higher than the incumbent minimal cost.
Particularly, we will consider generating a complete candidate switching sequence even before
beginning the branch and bound process. A simple rule base was designed based on which an

5.2 Ingredients of Branch and Bound Algorithm 53

Switch position u1 = [1, 1, 0] u2 = [0, 0,−1] u3 = [1, 1,−1] u4 = [0, 1,−1]

dU 2 1 3 3
Table 5.1: The number of switching transitions associated with admissible switch positions at point A,

which can increase the toque and length of the stator flux. The last switch position is u0 =
[0, 0, 0].

Switch position u5 = [0, 1, 1] u6 = [−1, 0, 0]

dU 2 1
Table 5.2: The number of switching transitions associated with admissible switch positions at point B,

which can decrease the toque and length of the stator flux. The last switch position is u0 =
[0, 0,−1].

incumbent solution is be generated at the beginning of optimization process. Hopefully, this
solution will be good enough to allow us to prune some nodes in very early iterations. This idea
is introduced by an example.

Example 3: Fig. 5.4b shows the state of the machine using a 3-level inverter and the switching
horizon ’SESE’ at some point during the simulations. Initially, we are at point A. With the last
switch position being u0 = [0 0 0]T, the torque has hit its lower bound and the stator flux
magnitude is below it’s mid-level. Thus, the set of admissible switch positions increasing the
torque and length of the stator flux are identified as in Table 5.1. Out of this set, the switch
position inducing the minimum number of switching transitions (i.e, u2) is selected, which
moves the stator flux as shown by (blue) solid line. The number of time-steps for which this
switch position can be applied until we reach point B is calculated analytically and referred to as
Np1. As the length of the stator flux has hit its upper bound and the torque is above its mid-level
in point B, the switch positions increasing the torque and decreasing the length of the stator
flux will probably yield a long prediction horizon. Table 5.2 lists such switch positions and
the associated switching transitions. Once again, the switch position with minimum number
of switching transitions (i.e., u6) is chosen, which moves the stator flux vector as shown by
(orange) dashed line. The number of time-steps until we reach point C is calculated and referred
to as Np2. The complete switching sequence is given by

U(k) =

[
u2, . . . , u2︸ ︷︷ ︸
Np1 times

, u6, . . . , u6︸ ︷︷ ︸
Np2 times

]
(5.2)

More formally, the admissible switching positions of the inverter are divided into five categories,
namely, increasing Te, decreasing Te, increasing Ψs, decreasing Ψs and constant Ψs. Depending
on the state of the machine’s outputs (i.e., the torque and length of the stator flux) a switch
position is chosen for each ’S’ event in the switching horizon according to Table 5.3 where the
pair (+,+) means switch positions that belong to the intersection of the sets ’increasing Te’ and
’increasing Ψs’, and (+, ?) denotes the switch positions that belong to the set ’increasing Te’.

54 Branch and Bound

α

βj

1u
2u

3u
4u

6u

5u

(a) The voltage vectors of a 3-level inverter corresponding
to switch positions in Example 3.

rω

α

βj

sϕ
rϕ

2u

6u

A

BC

(b) The incumbent switching sequence that moves the stator flux vector
from point A to point C for switching horizon ’SESE’. The feasible
region (shaded) is bounded by the upper (outer circle) and lower (in-
ner circle) bounds on the length of the stator flux and the bounds on
the torque (two parallel lines).

Figure 5.4: Finding an incumbent switching sequence for the switching horizon ’SESE’

5.3 Performance Evaluation 55

(Te,Ψs) Te = Te,max Te = Te,min

Ψs < Ψs,ref (−, 0), (−,+) (+,+), (+, ?)
Ψs > Ψs,ref (−, 0), (−,−) (+,−), (+, ?)

(a) The set of switch positions when the torque is about to
hit its bounds, where Ψs,ref =

Ψs,max+Ψs,min

2 .

(Te,Ψs) Ψs = Ψs,max Ψs = Ψs,min

Te < Te,ref (+,−), (?,−) (+,+), (?,+)
Te > Te,ref (−,−), (?,−) (−,+), (?,+)

(b) The set of switch positions when the magnitude of the
stator flux is about to hit its bounds, where Te,ref =
Te,max+Te,min

2 .
Table 5.3: The logic to generate an incumbent solution. The first pair in each column is the first prefer-

ence. The second pair is chosen if the first pair returns an empty set.

0 400 800
0

20

40

P
ro
ba
bi
li
ty

Iteration

(a) No pruning

0 400 800
0

20

40

P
ro
ba
bi
li
ty

Iteration

(b) Fixed Np,max

0 400 800
0

20

40

P
ro
ba
bi
li
ty

Iteration

(c) Variable Np,max

Figure 5.5: Histograms of nodes visited to obtain optimal u(k) for the switching horizon ’SESE’ at
Te = 1 pu, ωe = 0.5 pu where the mean and 95% probability points are specified.

5.3 Performance Evaluation

The performance of MPDTC algorithm with full enumeration is compared with MPDTC algo-
rithm using branch and bound. Fig. 5.5 compare the histogram of iterations associated with full
enumeration, fixed Np,max and variable Np,max methods. It is clear that the last method reduces
the number of iterations effectively. Table. 5.4 summarizes the closed-loop simulation results.

56 Branch and Bound

Table 5.4: Closed-loop simulation results when minimizing the switching frequency. The table shows
the average inverter switching frequency (Hz), the torque’s total harmonic distortion (THD)
at 100% torque.

Op. Point [pu] Controller settings Pred. horizon Nodes explored Performance
ωe Sw. horizon Node Sel. Np,max Warm start avg. max. avg. max. Sw. Freq ITHD Te,THD

0.5 SESE — — — 45.59 105 224 422 172 7.84 6.32
0.5 SESE best-first fixed no 44.68 105 135 240 172 7.84 6.32
0.5 SESE best-first variable no 39 103 91 145 172 7.63 6.12
0.5 SESE best-first variable yes 38 103 89 284 173 7.53 6.06
0.5 SESE depth-first variable no 38 103 88 302 168 7.73 6.18

Chapter 6

Conclusions and Future Work

6.1 Discussion

The trajectory extension methods were introduced in Chapter 3. The linear extrapolation method
yields the least accurate predictions according to the histograms obtained in Chapter 4 but it is
the cheapest one in terms of the computational complexity. For the switching horizon ’SE’ at
low speeds, the LE method seems to be a reasonable choice as the closed-loop performance
of LE method is not significantly different from the performance of the open-loop simulation
method while the associated computational burden is significantly reduced. For the switching
horizon ’SE’ at high speeds, the quadratic extrapolation, quadratic interpolation and analytical
methods all exhibit an acceptable closed-loop performance with a reasonable number of basic
calculations. With the same computational burden, the quadratic interpolation approach out-
performs the quadratic extrapolation. The analytical method is computationally cheaper than
quadratic interpolation at the cost of adding one more tuning parameter tp.

As discussed in Chapter 4, the linear extrapolation and quadratic extrapolation methods are not
applicable for long switching horizons. The analytical method can be used for long prediction
horizons if the output polynomials are approximated about the right value of tp, which depends
on the operating point of the machine and the switching horizon. Based on the histograms of
the relative error of the prediction horizon length, the prediction with quadratic interpolation
outperforms the analytical method at the cost of a slightly increased computational burden. The
iterative prediction with quadratic interpolation method yields the most accurate predictions
as its histograms are highly concentrated about zero and its closed-loop performance is very
similar to the performance of the open-loop simulation method. The disadvantage is that the
associated computational burden increases with the length of the prediction horizon. The QII2
method performs equally well but its associated computational burden is higher than the one of
the QII method for the nominal length of the prediction horizon. Therefore, for long switching
horizons the QI and QII methods are preferred.

57

58 Conclusions and Future Work

In Chapter 5, a method is proposed to estimate the maximal length of the prediction horizon
which is required for obtaining the upper bound on the cost of each switching sequence. It is
shown, via simulations, that the branch and bound algorithm employing such bounding func-
tion can significantly reduce the number of iterations required to find the optimal switching
sequence. Two branching strategies, namely best-first and depth-first, were considered. No sig-
nificant difference was observed between the associated number of iterations required to obtain
the optimal switching sequence. The warm start concept was introduced in Chapter 5, where
a simple switching logic was used to generate a complete candidate switching sequence before
enumerating the branch and bound tree. However, as the proposed switching logic was very
simple, the generated candidate switching sequences were far from the optimal. Consequently,
the proposed approach was not effective in reducing the number of nodes required to obtain the
optimal switching sequence.

6.2 Future work

The major disadvantage of the analytical method presented in Chapter 3 is that for a particular
switching horizon and operating point of the machine, the correct value of tp needs to be identi-
fied. Alternatively, instead of approximating the output equations about t = tp using the Taylor
series, one can use iterative root finding algorithms such as the Newton-Raphson algorithm to
solve for the length of the prediction horizon and compare. Then the accuracy of this method
and its associated computational complexity should be compared with the ones of the open-loop
simulation approach.

The proposed switching logic for initializing the branch and bound tree was too simple to make a
significant difference. Alternatively, the DTC switching tables along with the analytical method
can be used to find a ’near-optimal’ incumbent switching sequence to initialize the branch and
bound tree. If this initial switching sequence is good enough, we may start pruning the search
tree at early iterations and thus reduce the total number of iterations required to obtain the
optimal switching sequence.

In addition to using best-first or depth-first node selection strategies, one can use branching
heuristics to branch on the most promising nodes first. One possible approach would be as fol-
lowing. At every switching event, the switch position which incurs the minimum cost according
to the ’cost to go’ maps of Fig. 2.10 is chosen for further branching among all possible switch
positions. For this purpose, the algorithm must identify the output bound that is about to be
violated1, and determine the rotor angle θr and value of x as in Fig. 2.8b. Then the the plots
of Fig. 2.10, can be used to find the switch position associated with the minimum cost. A few
remarks are to be mentioned about the proposed method. The plots in Fig. 2.10 are obtained

1Note that we assume the switching event happens only when an output variable is about to hit its bounds

6.2 Future work 59

for θr ∈ [0, π
3
). If the rotor flux lies in any other region in αβ plane, we can exploit the two

important properties of the drive system, namely symmetry of voltage vectors and invariance of
motor outputs under flux rotations [13], to map the flux vectors into [0, π

3
) region, to obtain the

switch position associated with the minimum cost using plots in Fig. 2.10, and to map the result
back into the original region to obtain the actual switch position for further branching. Details
on how to map the flux vectors can be found in [13].

60 Conclusions and Future Work

Appendix A

Details on Derivations and
Approximations

A.1 Approximating (sI − A)−1

The A matrix is given by

A =

−a 0 b 0

0 −a 0 b

c 0 −f −ωr
0 c ωr −f

 (A.1)

with a = rs
xrr
D

, b = rs
xm
D

, c = rr
xm
D

and f = rr
xss
D

, where rs, rr, xrr, xm, xss and D are the
motor parameters. Thus, we will have

sI − A =

W︷ ︸︸ ︷
s+ a 0

0 s+ a

−c 0

0 −c︸ ︷︷ ︸
Y

X︷ ︸︸ ︷
−b 0

0 −b
s+ f ωr

−ωr s+ f︸ ︷︷ ︸
Z

(A.2)

Using Sherman-Morrison inversion lemma [15], the inverse of (A.2) is

61

62 Details on Derivations and Approximations

(sI −A)
−1

=

[
W X

Y Z

]−1

(A.3)

=

[
W−1 +W−1X

(
Z − YW−1X

)−1
YW−1 −W−1X

(
Z − YW−1X

)−1

−(Z − YW−1X)YW−1
(
Z − YW−1X

)−1

]

Let ∆ denote the first block in (A.3) (i.e., W−1 + W−1X (Z − YW−1X)
−1
YW−1). We shall

show the steps of simplifying ∆. The other blocks are simplified in the same manner.

∆ =
1

(s+ f − bc
s+a)2 + ω2

r

[
(s+ f − bc

s+a) bc
(s+a)2 − bcωr

(s+a)2

bcωr

(s+a)2
(s+ f − bc

s+a) bc
(s+a)2

]
(A.4)

+
1

s+ 1

[
1 0

0 1

]

With s >> 0 and f being an order of magnitude greater than bc , bc
s+a

becomes negligible when
compared to s+ f and can be omitted. Thus, equation (A.4) becomes

∆ =
1

(s+ f)2 + ω2
r

[
bc(s+f)
(s+a)2

+ (s+f)2+ω2
r

s+a
− bcωr

(s+a)2

bcωr
(s+a)2

bc(s+f)
(s+a)2

+ (s+f)2+ω2
r

s+a

]
(A.5)

a≈f
=

1

(s+ f)2 + ω2
r

[
bc

(s+a)
+ (s+f)2+ω2

r

s+a
− bcωr

(s+a)2

bcωr
(s+a)2

bc
(s+a)

+ (s+f)2+ω2
r

s+a

]

As bc
(s+a)2

is orders of magnitude smaller than (s+f)2+ω2
r

s+a
, (A.5) becomes

∆ =
1

(s+ f)2 + ω2
r

[
(s+f)2+ω2

r

s+a
− bcωr

(s+a)2

bcωr
(s+a)2

(s+f)2+ω2
r

s+a

]

A.2 Coefficients of Analytic Solutions of the State Equations
in Chapter 3.

The solution of system equations in Laplace domain is given by

X(s) = (sI − A)−1 x0 +G(s)U(s) (A.6)

with

A.2 Coefficients of Analytic Solutions of the State Equations in Chapter 3. 63

(sI − A)−1 ' 1

(s+ f)2 + ω2
r

(s+f)2+ω2

r

s+a
−bc ωr

(s+a)2
b s+f
s+a

−b ωr
s+a

bc ωr
(s+a)2

(s+f)2+ω2
r

s+a
b ωr
s+a

b s+f
s+a

c s+f
s+a

−c ωr
s+a

s+ f −ωr
c ωr
s+a

c s+f
s+a

ωr s+ f

 (A.7)

G(s) =
1

(s+ f)2 + ω2
r

(s+f)2+ω2

r

s+a
−bc ωr

(s+a)2

bc ωr
(s+a)2

(s+f)2+ω2
r

s+a

c s+f
s+a

−c ωr
s+a

c ωr
s+a

c s+f
s+a

 (A.8)

x(0) =
[
x01 x02 x03 x04

]T
(A.9)

U (s) =
[
vα vβ

]T
(A.10)

We shall present the steps for deriving the complete solutions of X1(s) and X3(s) in Chapter 3.
The solutions of X2(s) and X4(s) are obtained in similar manner.

X1(s) =
1

(s+ a)
x01 +

−bcωr
[(s+ f)2 + ω2

r] (s+ a)2
x02 (A.11)

+
−bωr

[(s+ f)2 + ω2
r] (s+ a)

x04 +
b(s+ f)

[(s+ f)2 + ω2
r] (s+ a)

x03

+
1

s

1

(s+ a)
vα +

1

s

−bcωr
[(s+ f)2 + ω2

r] (s+ a)2
vβ

X3(s) =
c(s+ f)

[(s+ f)2 + ω2
r] (s+ a)

x01 +
−cωr

[(s+ f)2 + ω2
r] (s+ a)

x02 (A.12)

+
s+ f

(s+ f)2 + ω2
r

x03 +
−ωr

(s+ f)2 + ω2
r

x04

+
1

s

c(s+ f)

[(s+ f)2 + ω2
r] (s+ a)

vα +
1

s

−cωr
[(s+ f)2 + ω2

r] (s+ a)
vβ

Using the partial fractions expansions of Table A.1, we can write X1(s) and X2(s) as

64 Details on Derivations and Approximations

X1(s) = (l1vα + l2vβ)
1

s
+ (k2x02 + l4vβ)

1

(s+ a)2
(A.13)

(x01 + k1x02 + k4x03 − k5x04 − l1vα + l3vβ)
1

s+ a

+ (k3x02 + k5x03 + k4x04 + l5vβ)
ωr

(s+ f)2 + ω2
r

+ (−k1x02 − k4x03 + k5x04 + l6vβ)
s+ f

(s+ f)2 + ω2
r

X3(s) = (p1vα + p2vβ)
1

s
+ (m1x01 −m2x02 + p3vα + p4vβ)

1

s+ a
(A.14)

+ (m2x01 +m1x02 − x04 + p5vα + p6vβ)
ωr

(s+ f)2 + ω2
r

+ (−m1x01 +m2x02 + x03 − p6vα + p5vβ)
s+ f

(s+ f)2 + ω2
r

where the coefficients pi, mi, ki and li are

A.3 Affine Approximation of the Stator Flux Components in Chapter 3 65

l1 = 1
a

l2 = −bcωr

(
1
a2

(f−a)2+ω2
r

+
3f2−4af+a2+ω2r

f2+ω2r
− 2(f−a)

a

[(f−a)2+ω2
r]2

)
a≈f
≈ −bc

(1
a2

ωr
+ 1

ω3
r

)
≈ − bc

a2
1
ωr

l3 = −bcωr
(

2(f−a)
a

[(f−a)2+ω2
r]2
−

1
a2

(f−a)2+ω2
r

)
≈ bc

a2
1
ωr

l4 = bcωr
1
a

(f−a)2+ω2
r
≈ bc

a
1
ωr

l5 = bc
3f2−4af+a2+ω2r

f2+ω2r
−2(f−a)

[(f−a)2+ω2
r]2

≈ bc
ω4
r
≈ 0

l6 = bcωr

3f2−4af+a2+ω2r
f2+ω2r

[(f−a)2+ω2
r]2
≈ bc

ω3
r
≈ 0

k1 = bcωr
2(f−a)

[(f−a)2+ω2
r]2
≈ 0

k2 = −bcωr 1
(f−a)2+ω2

r
≈ − bc

ωr
≈ 0

k3 = −bcf
2−2af+a2−ω2

r

[(f−a)2+ω2
r]2
≈ bc

ω2
r
≈ 0

k4 = b f−a
(f−a)2+ω2

r
≈ 0

k5 = bωr
1

(f−a)2+ω2
r
≈ b

ωr

p1 = c
f−a
a

+
ω2r−f(f−a)
f2+ω2r

(f−a)2+ω2
r
≈ c

ω2
r

p2 = −cωr
1
a

+ a−2f

f2+ω2r

(f−a)2+ω2
r
≈ − c

ωr
(1
a
− a

ω2
r
) ≈ − 1

a
c
ωr

p3 = c
a−f
a

(f−a)2+ω2
r
≈ 0

p4 = cωr
1
a

(f−a)2+ω2
r
≈ 1

a
c
ωr

p5 = c
a−f
ωr
−ω

2
r−f(f−a)
f2+ω2r

f
ωr

(f−a)2+ω2
r

≈ − cf
ω3
r
≈ 0

p6 = c
1+

f(a−2f)

f2+ω2r

(f−a)2+ω2
r
≈ c

ω2
r

m1 = c f−a
(f−a)2+ω2

r
≈ 0

m2 = c ωr
(f−a)2+ω2

r
≈ c

ωr

The equations for x1(t) and x3(t) in Chapter 3 are simply obtained by taking the inverse Laplace
transform of (A.13) and (A.14) using Table A.2.

66 Details on Derivations and Approximations

Table A.1: Partial fraction expansions
fraction partial expansion

1
[(s+f)2+ω2

r](s+a)2

1

(f−a)2+ω2r
(s+a)2

+

−2(f−a)

[(f−a)2+ω2r]2

s+a
+

2(f−a)

[(f−a)2+ω2r]2
s+

3f2−4af+a2−ω2r
[(f−a)2+ω2r]2

(s+f)+ω2
r

s+f
[(s+f)2+ω2

r](s+a)

f−a
(f−a)2+ω2r

s+a
+
− f−a

(f−a)2+ω2r
s+

ω2r−f(f−a)
(f−a)2+ω2r

(s+f)2+ω2
r

1
[(s+f)2+ω2

r](s+a)

1

(f−a)2+ω2r
s+a

+
− 1

(f−a)2+ω2r
s+ a−2f

(f−a)2+ω2r
(s+f)2+ω2

r

1
s(s+a)

1
a

s
+
− 1
a

s+a

1
s(s+a)2

1
a2

s
+
− 1
a2

s+a
+

−1
a

(s+a)2

1
s[(s+f)2+ω2

r]

1

f2+ω2r

s
+

−1

f2+ω2r
s+ −2f

f2+ω2r

(s+f)2+ω2
r

Table A.2: Laplace transform pairs

Laplace domain time domain (t ≥ 0)
1
s

1
1
s+a

e−at
1

(s+a)2
te−at

ωr
(s+f)2+ω2

r
e−ftsin(ωrt)

s+f
(s+f)2+ω2

r
e−ftcos(ωrt)

Table A.3: First order Taylor expansion of Fi(t) about the nominal point t = t0, Fi(t) ≈ pit+ qi

F1(t) e−at p1 −ae−at0 q1 e−at0(1 + at0)
F2(t) e−ft p2 −fe−ft0 q2 e−ft0(1 + ft0)
F3(t) e−ftcos(ωrt) p3 -e−ft0 (fcos(ωrt0) + ωrsin(ωrt0)) q3 e−ft0 (cos(ωrt0) + ft0cos(ωrt0) + ωrt0sin(ωrt0))
F4(t) e−ftsin(ωrt) p4 e−ft0 (ωrcos(ωrt0)− fsin(ωrt0)) q4 e−ft0 (sin(ωrt0) + ft0 sin(ωrt0)− ωrt0 cos(ωrt0))

A.3 Affine Approximation of the Stator Flux Components in Chapter 3 67

A.3 Affine Approximation of the Stator Flux Components in
Chapter 3

si and ri, are given by

s1 = p1x01 + k5p3x03 + k5(p4 − p2)x04 −
p1

a
vα (A.15)

r1 = q1x01 + k5q3x03 + k5(q4 − q2)x04 +
1− q1

a
vα

s2 = p1x02 + k5p3x04 − k5(p4 − p2)x03 −
p1

a
vβ (A.16)

r2 = q1x02 + k5q3x04 − k5(q4 − q2)x03 +
1− q1

a
vβ

where pi and qi are the first order Taylor expansions obtained about the nominal point t = t0,
which are given in Table A.3.

A.4 Quadratic Approximation of the Rotor Flux Components
in Chapter 3

The coefficients ai, bi and ci are obtained by second order Taylor expansion of Ψr cos(ωrt+ Θ)

and Ψr sin(ωrt+ Θ) about t = t0.

a1 = Ψr

(
−1

2
ω2
r cos(ωrt0 + Θ)

)
(A.17)

b1 = Ψr

(
t0ω

2
r cos(ωrt0 + Θ)− ωr sin(ωrt0 + Θ)

)
c1 = Ψr

(
cos(ωrt0 + Θ) + ωrt0 sin(ωrt0 + Θ)− 1

2
t20ω

2
r cos(ωrt0 + Θ)

)

a2 = Ψr

(
−1

2
ω2
rsin(ωrt0 + Θ)

)
(A.18)

b2 = Ψr

(
ωr cos(ωrt0 + Θ) + t0ω

2
rsin(ωrt0 + Θ)

)
c2 = Ψr

(
sin(ωrt0 + Θ)− ωrt0 cos(ωrt0 + Θ)− 1

2
t20ω

2
rsin(ωrt0 + Θ)

)

68 Details on Derivations and Approximations

A.5 Quadratic Approximation of the Neutral Point Potential
in Chapter 3

The coefficients of the second order polynomial describing the neutral point potential is given
by

u1 =
γ1

D

(
xrr
2
s1 −

xm
ωr
a2

)
+
γ2

D

(
xrr
2
s2 +

xm
ωr
a1

)
(A.19)

u2 =
γ1

D

(
xrrr1 −

xm
ωr
b2

)
+
γ2

D

(
xrrr2 +

xm
ωr
b1

)
u3 = vn(0)− γ1

D

xm
ωr

(c2 − sin(Θ)) +
γ2

D

xm
ωr

(c1 − cos(Θ))

where ai, bi and ci are given by (A.17) and (A.18).

A.6 Finding Real Roots of Polynomials of Degree 3

If we have
f(x) = ax3 + bx2 + cx+ d (A.20)

with a, b, c, d ∈ R and a 6= 0, let

q =
3ac− b2

9a2
(A.21)

r =
9abc− 27a2d− 2b3

54a3

we define the discriminant

∆ = q3 + r2 (A.22)

There are two distinct cases

• ∆ > 0

In this case there are one real root and two complex roots that are conjugates. We define

s =
3

√
r +

√
4 (A.23)

t =
3

√
r −

√
4

A.6 Finding Real Roots of Polynomials of Degree 3 69

• ∆ ≤ 0

In this case there are three real roots. For the sake of simplicity, we will express the
complex number r + i

√
−∆ in polar form:

r + i
√

∆ = ρeiθ = (ρ, θ) (A.24)

where

ρ =
√
−q3

θ = arccos(
r

ρ
)

We define

s =

(
3
√
ρ,
θ

3

)
(A.25)

t =

(
3
√
ρ,−θ

3

)

In both cases, the solutions are

x1 = s+ t− b

3a
(A.26)

x2 = −1

2
(s+ t)− b

3a
+ i

√
3

2
(s− t) (A.27)

x3 = −1

2
(s+ t)− b

3a
− i
√

3

2
(s− t) (A.28)

70 Details on Derivations and Approximations

References

[1] B. Wu, High-Power Converters and AC Drives, 1st ed. Wiley-IEEE Press, 2006.

[2] T. Geyer, “Generalized model predictive direct torque control: Long prediction horizons
and minimization of switching losses,” in Proceedings of the 48th IEEE Conference on

Decision and Control, 2009, pp. 6799 –6804.

[3] ——, “Computationally efficient model predictive direct torque control,” in Proceedings

of IEEE Energy Conversion Congress and Exposition, Sept. 2010.

[4] I. Takahashi and T. Noguchi, “A new quick-response and high-efficiency control strategy
of an induction motor,” IEEE Transactions on Industry Applications, vol. IA-22, no. 5, pp.
820 –827, Sept. 1986.

[5] P. Krause, O. Wasynczuk, and S. Sudhoff, Analysis of Electric Machinery and Drive Sys-

tems. Wiley-IEEE Press, Feb. 2002.

[6] T. Geyer, G. Papafotiou, and M. Morari, “Model predictive direct torque control - part I:
Concept, algorithm, and analysis,” IEEE Transactions on Industrial Electronics, vol. 56,
no. 6, pp. 1894 –1905, Jun. 2009.

[7] G. Papafotiou, J. Kley, K. Papadopoulos, P. Bohren, and M. Morari, “Model predictive
direct torque control - part II: Implementation and experimental evaluation,” IEEE Trans-

actions on Industrial Electronics, vol. 56, no. 6, pp. 1906 –1915, Jun. 2009.

[8] G. Buja and M. Kazmierkowski, “Direct torque control of pwm inverter-fed ac motors - a
survey,” IEEE Transactions on Industrial Electronics,, vol. 51, no. 4, pp. 744 – 757, Aug.
2004.

[9] D. Q. Mayne and J. B. Rawlings, “Constrained model predictive control: stability and
optimality,” Automatica, vol. 36, no. 6, pp. 789 – 814, Jun. 2000.

[10] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control: theory and practice—
a survey,” Automatica, vol. 25, no. 3, pp. 335–348, May 1989.

71

72 REFERENCES

[11] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,”
Control Engineering Practice, vol. 11, no. 7, pp. 733 – 764, Jul. 2003.

[12] D. Q. Mayne and J. B. Rawlings, Model Predictive Control: Theory and Design, 1st ed.
Nob Hill Publishing, LLC, Aug. 2009.

[13] T. Geyer, “Low complexity model predictive control in power electronics and power sys-
tems,” Ph.D. dissertation, ETH Zurich, 2005.

[14] W. J. Rugh, Linear system theory, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1996.

[15] A. J. Laub, Matrix Analysis For Scientists And Engineers. Philadelphia, PA, USA: Soci-
ety for Industrial and Applied Mathematics, 2004.

[16] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,” OPERATIONS

RESEARCH, vol. 14, no. 4, pp. 699–719, 1966.

