

MASTER’S THESIS

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Swedish dialect classification
using Artificial Neural Networks and
Gaussian Mixture Models

DAVID LIDBERG
VIKTOR BLOMQVIST

Thesis for the Degree of Master of Science

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology and University of Gothenburg
SE – 412 96 Gothenburg, Sweden

Gothenburg, August 2017

Swedish dialect classification using Artificial Neural Networks
and Gaussian Mixture Models

David Lidberg
Viktor Blomqvist

Swedish Dialect Classification using
Artificial Neural Networks and Gaussian Mixture Models
David Lidberg
Viktor Blomqvist

Copyright c© David Lidberg and Viktor Blomqvist, 2017

Supervisor: Adam Andersson, Syntronic Software Innovations
Supervisor & Examiner: Mihály Kovács, Department of Mathematical Sciences

Master’s Thesis 2017
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

ii

Swedish Dialect Classification using
Artificial Neural Networks and Gaussian Mixture Models
David Lidberg
Viktor Blomqvist
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

Variations due to speaker dialects are one of the main problems in automatic speech
recognition. A possible solution to this issue is to have a separate classifier identify
the dialect of a speaker and then load an appropriate speech recognition system. This
thesis investigates classification of seven Swedish dialects based on the SweDia2000
database. Classification was done using Gaussian mixture models, which are a widely
used technique in speech processing. Inspired by recent progress in deep learning
techniques for speech recognition, convolutional neural networks and multi-layered
perceptrons were also implemented. Data was preprocessed using both mel-frequency
coefficients, and a novel feature extraction technique using path signatures. Results
showed high variance in classification accuracy during cross validations even for simple
models, suggesting a limitation in the amount of available data for the classification
problems formulated in this project. The Gaussian mixture models reached the
highest accuracy of 61.3% on test set, based on singe-word classification. Performance
is greatly improved by including multiple words, achieving around 80% classification
accuracy using 12 words.

Keywords: Swedish, SweDia2000, dialect classification, Gaussian mixture models,
convolutional networks, artificial neural networks, deep learning, path signatures.

iii

Acknowledgements

First and foremost we want to express our gratitude to our supervisors Adam
Andersson and Mihály Kovács for continued support and feedback throughout
working with this project. We give thanks to the people behind the Swedia2000
project for the data used in this thesis, in particular Anders Eriksson who let us use
his maps for our illustrations. Furthermore we want to thank Syntronic for providing
us with the opportunity to work with this project, as well as the department of
Mathematical Sciences at Chalmers for letting us use their computational resources.

Viktor Blomqvist and David Lidberg, Gothenburg, June 2017

v

Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Delimitations . 2
1.2 Outline . 2

2 Dialect Classification 3
2.1 Speech Corpus . 3
2.2 Dialect Regions . 5
2.3 Classification . 5

2.3.1 Wordwise . 7
2.3.2 Generalization to Spontaneous Speech 7

3 Signature Theory 9
3.1 Preliminaries . 9

3.1.1 Tensor Product Spaces . 9
3.1.2 Formal Power Series . 10
3.1.3 Paths and Line Integrals . 13

3.2 Signature Definition . 14
3.3 Log Signature . 15
3.4 Practical Calculations . 17

3.4.1 Chen’s Identity . 18
3.4.2 Recursive Iterated Integral Expressions 20
3.4.3 Log Signatures . 24

4 Feature Extraction 25
4.1 Short-Time Fourier Transform . 25
4.2 Mel-Frequency Spectral Coefficients 26
4.3 Mel-Frequency Cepstral Coefficients 28

4.3.1 Shifted Delta Cepstra . 29
4.4 Log Signatures as Acoustic Features 30
4.5 Normalization . 31

5 Classifiers 33
5.1 Gaussian Mixture Models . 33

5.1.1 Training . 34
5.1.2 Classification . 36

vii

Contents

5.2 Artificial Neural Networks . 36
5.2.1 Network Building Blocks . 37
5.2.2 Network Architectures . 40
5.2.3 Training . 42

6 Experiments 45
6.1 Generalization . 45

6.1.1 K-Fold Cross-Validation . 46
6.2 Metrics . 46

6.2.1 Confusion Matrix . 47
6.3 Single-word Calibration . 47
6.4 Multi-word Classification . 48

6.4.1 Splitting . 48
6.4.2 Forward Selection . 49

6.5 Spontaneous Speech Classification . 49

7 Results 51
7.1 Hyperparameter Calibration . 51

7.1.1 Gaussian Mixture Models . 51
7.1.2 Multilayer Perceptron . 51
7.1.3 Convolutional Neural Network 52
7.1.4 Modular Network . 53

7.2 Performance on Calibration Words 53
7.3 Multi-word Performance . 54
7.4 Other Signature-based Implementations 57
7.5 Spontaneous Speech Classification . 57
7.6 Effect of Speaker Identity . 58

8 Conclusions 61

A Tables 63

Bibliography 68

viii

List of Figures

2.1 SweDia2000 recording locations. From [1]. Reproduced with permis-
sion from the copyright holder. 4

2.2 A map showing the division of SweDia recording locations into seven
sub-regions, used as dialects. From [1]. Adapted with permission from
the copyright holder. 6

4.1 Fourier spectrogram. The figure shows logarithm of the pixel values
for illustrativ purposes. 26

4.2 Mel-scale filter bank with 15 filters. 27
4.3 Mel spectrogram of the word dagar from a dalarna dialect 28
4.4 Spectrogram that has been decorrelated using a discrete cosine trans-

form, hence a cepstrogram. The columns in the figure are MFCC
feature vectors. Commonly only coefficients 0-12 are used, which
means the other rows in the figure are discarded. 29

5.1 An example of how the distribution of cluster of data points in R2 can
be approximated with a GMM constructed with the EM algorithm. . 35

5.2 Artificial neural network with four-dimensional input and two hidden
layers, mapping to two output nodes. The arrows between the neurons
show the structure of the connections. 40

5.3 Example of a convolutional neural network architecture with two
convolutional layers with max-pooling layers between them. The final
two layers of the network are fully connected layers. 41

5.4 Modular network setup for a case when two different types of input
are available. Module A and B process different inputs, and their
outputs are concatenated and fed to a decision module that performs
classification. 42

7.1 Normalized confusion matrix for a Gaussian mixture model on the
word kaka. 54

7.2 Normalized confusion matrix for a convolutional neural network on
the word kaka. 55

7.3 Average validation set accuracy over three independent training runs
for ensemble classifiers combining multiple single-word classifiers via
forward selection. 56

7.4 Normalized confusion matrix for a multi-word GMM using a forward
selected set of words. 57

ix

List of Figures

7.5 Four word utterances. The two upper figures are from the same
speaker uttering the word jaga. The bottom left is also from this
speaker, uttering saker. Bottom right is again jaga but from a different
speaker. 59

A.1 Normalized confusion matrix for the Gaussian mixture model on the
word kaka. 64

A.2 Normalized confusion matrix for the Convolutional network on the
word kaka. 64

A.3 Normalized confusion matrix for a multi-word GMM using a forward
selected set of words. 65

x

List of Tables

2.1 The SweDia2000 recording locations assigned to each dialect region. . 6
2.2 Percentage of audio files which have a corresponding annotation file

per dialect region. 7

3.1 Word splitting of w = (i, j, k) as a result of g2(w). The operator
gathers all words u1 and u2 so that u1u2 = w. 19

3.2 An example of how the operator s(·) works, here applied on the word
(1, 2, 3, 4), i.e. (u, v) ∈ s(1, 2, 3, 4). 20

7.1 Tested hyperparameters when calibrating the Gaussian Mixture Model
classifier for single word dialect classification. 52

7.2 Average test set classification accuracy over 5-fold cross-validation on
the four calibration words for hyperparameter-calibrated classifiers. . 53

7.3 Average classification accuracy and number of words selected over
three random initializations of multiword data. 56

A.1 The number of unique speakers in each dialect region as well as
information about how many speakers in each dialect provides at least
n utterances for every wordlist word. 65

A.2 Number of utterance available per word in each dialect in the wordlist
category. Only words occurring frequently across all seven dialects
are included. 66

A.3 Average ranking of words in forward selection, sorted from best to
worst overall ranking. Blue rows indicate words used for calibration. . 67

xi

Chapter 1

Introduction

There are several factors that affect human speech. There are speaker-to-speaker
variations — humans can often identify a person from their voice based solely on a
few words. Age, gender and emotional state are other factors that have an impact
on speech [2]. One of the challenges in automatic speech recognition (ASR) is to
overcome such sources of variation. This thesis focuses on a particular factor, namely
the dialects of speakers. Dialects can come with different pronunciations of words
and phones, tone of voice and even completely different words, and can therefore
have significant impact on performance of speech recognition systems [3]. Dialect
classification is an approach to address this difficulty. By first determining the dialect
of a speaker, an ASR system adapted for that dialect can be activated and thus
improve recognition accuracy.

Previous research on dialect classification have taken various approaches. Classifi-
cation of American accents based acoustic features of specific words were investigated
in [4]. Phonetic context has been used to classify Arabian dialects, where the dialects
are identified based the order of phonemes [5]. Both these works are based on Mel cep-
stral features, which are standard features in many speech processing applications [6].
More linguistical approaches involve vocabularies and lexical features [7].

This thesis investigates Swedish dialect classification, and compares methods for
achieving such a classification. The study covers Gaussian mixture models (GMMs),
which is a standard technique in ASR and has been used for dialect classification as
well [8–10]. In fact, ASR and dialect classification, as well as speaker and gender
identification, are generally implemented using similar methods. While GMMs
historically have been successful in ASR applications, recently deep artificial neural
networks have risen as a strong candidate to replace GMM’s [11, 12]. Therefore
this thesis also investigates the performance of a convolutional neural network and
multi-layered perceptrons in dialect classification.

In addition to the standard features centered around the Mel scale new methods
involving the signature transform is tested as feature extraction. The signature is a
non-linear transformation with roots in rough paths theory [13]. By calculating the
signature of a path one obtains a collection of coefficients that contains properties
of that path. Signatures and the closely related log signatures have recently been
successfully implemented in Chinese character recognition [14] and studied as a
method for sound compression [15]. Whilst the project does not aim to extend
the theory behind signatures, deriving and implementing efficient procedures for
calculating the transform is a part of the project outcome.

1

Chapter 1. Introduction

Implementation are written in Python 3 with the exception of a shared library
written in C. Scikit-learn1 and Tensorflow2 are the main libraries used for classifiers.

1.1 Delimitations

This thesis focuses solely on acoustic speech features, relating more or less directly
to the original sound signal. This is partly motivated by the fact that prosodical and
similar features are linguistically complex and require thoroughly annotated sound
samples.

Furthermore the main part of classification experiments deal with dialect clas-
sification based on utterances of single words, or multiple utterances of different
words. This is in contrast to spontaneous speech which is perhaps the more common
variant of raw data. The incorporation of dialect identification into automatic speech
recognition, possibly improving performance, is not tested.

As no examples of Swedish dialect classification with defined dialect regions have
been found, seven dialects are presented and used here for the first time.

1.2 Outline

Chapter 2 introduces the data which is later used for experiments, defines dialects
and outlines the type of experiments that are possible given the data and dialects.
In Chapter 3 the theory behind signatures and log signatures of paths is introduced
along with the necessary preliminaries. Expressions for calculating these in practice
under some assumptions are also presented.

Thereafter the focus changes to machine learning with Chapter 4 that introduces
typical feature extraction methods for speech data and Chapter 5 in which the
classifiers used in the thesis are explained. Chapter 6 explains the details of the
experiments and the results of these together with comments are presented in Chapter
7. Lastly, Chapter 8 contains conclusions and reflections on the work.

1http://scikit-learn.org
2https://www.tensorflow.org/

2

http://scikit-learn.org
https://www.tensorflow.org/

Chapter 2

Dialect Classification

Dialect classification, also called dialect identification, is the problem of detecting
and classifying different ways of speaking the same language. A strict interpretation
of dialect would be versions of a language with different phrases or words, and accent
then meaning variants of pronunciation. In this thesis we use dialect to indicate
variance in both word choices and pronounciation.

2.1 Speech Corpus

The data used in this thesis comes from SweDia 20001, a research database containing
Swedish speech recordings [16]. The data consists of interviews with people at over
one hundred different locations in Sweden and Swedish-speaking parts of Finland,
as shown in Figure 2.1. At each location there are interviews from, on average, 12
different persons residing in the local area. The interviewed persons are all adult
but divided by age and gender. Generally 3 elderly males, 3 elderly females, 3 young
males and 3 young females at each location. The average age of in these demographic
groups are, 66, 66, 26 and 25 years old respectively.

The database is further divided into four different categories, each one correspond-
ing to a type of interview. The four categories are quantity, prosody, wordlist and
spontaneous. The first three extract multiple utterances of predefined words. The
specific words depends on the category and in some cases the recording location. Out
of these three categories, only wordlist is used since its content varies less between
different recording locations and contains a larger number of words. In contrast to
the other three, the spontaneous interviews do not follow a script. As the name
suggests each interview is actually a spontaneous dialogue between an interviewer
and one (sometimes two) interviewee(s).

Most audio files in the database are accompanied by an annotation file containing
a transcription of what is said and by whom. These files make it possible to
divide audio from the interviewer and interviewee. This is necessary since only the
interviewee can be assumed to have a dialect tied to the location where the recording
took place. Since transcribing speech is very time consuming not all audio-files in the
database have been annotated. The coverage is especially sparse in the spontaneous
category, where transcription is very time consuming.

The sound files are in the Waveform Audio File Format (commonly referred to

1http://swedat.ling.gu.se/

3

http://swedat.ling.gu.se/

Chapter 2. Dialect Classification

Recordings
• 107 locations

– 31 Northern parts of Sweden
 3 Ostrobothnia (Finland)

– 27 Central parts of Sweden
 7 Nyland och Åland

– 39 Southern parts of Sweden
• 12 speakers per location

– 3 older men 51–89, M 66
– 3 older women 42–84, M 66
– 3 younger men 19–40, M 26
– 3 younger women 17–36, M 25

• In totalt about 1300
speakers

SweDia
2000

Asby
Järsnäs

Rimforsa
Korsberga

Stenberga

Ankarsrum

Burseryd

Floby

Frillesås

Öxabäck
Kärna

Orust S:t Anna

Böda Sproge

Fole

Segerstad

Väckelsång

Torsås

Bredsätra

Jämshög

Torhamn

Hamneda

Broby

Hällevik

Össjö

N. Rörum

Tjällmo
V. Vingåker

Viby Länna
St. Mellösa

Sorunda

Haraker

Skinnskatteberg
Villberga

Skuttunge

Järnboås
Gåsborn

Gräsmark
GrangärdeMalung

Kårsta

Nora

Årsunda
Gräsö

Ockelbo
Leksand

Orsa Skog
Ovanåker

Saltvik

Dalby

Älvdalen

Brändö

Fårö

Skee

Köla

Skillingmark

S, Finnskoga

Årstad-Heberg

Våxtorp

DelsboFärilaLillhärdal

Bjuv

Närpes

VöråKramfors
Ragunda

Piteå

Bjurholm

Houtskär

Dragsfjärd

Särna

Munsala

Snappertuna

Kyrkslätt

Strömsund Fjällsjö

Löderup
Bara

Nysätra

Borgå

Anundsjö

Arjeplog

Aspås

Bengtsfors

Berg

BurträskFrostviken

Frändefors

Indal

Kalix
Nederluleå

Sorsele

Storsjö

Torp

Torsö

Vemdalen

Vilhelmina

Vindeln

Åre

Östad

Överkalix

Figure 2.1: SweDia2000 recording locations. From [1]. Reproduced with permission from
the copyright holder.

4

Chapter 2. Dialect Classification

as wav) recorded as mono sound (with a few exceptions). The bit depth is 16 bits
and sample rate 16kHz.

2.2 Dialect Regions

Clearly defined dialects is a precondition for performing dialect classification. One
could argue that every recording location represents its own (albeit very local) dialect.
Such micro-dialects are however unfeasible in practice as there would not be enough
data available in each dialect.

It is therefore necessary to pool together recording locations in close geographical
proximity into larger dialect regions. One such division of the Swedish language area
was proposed by Wessén in [17] which divided the area into six regions of varying
size. However, pooling into too large regions leads to ambiguity in where to draw
the borders between dialects, as there are no clear cut lines between dialects [17].

To get around these problems we define a set of seven dialect regions, partly
inspired by Wesséns division. Out of Wesséns six regions, only Gotland is too small,
and it is therefore dropped from our definition. Furthermore we have chosen to
split the northern part of Sweden in two, as it is geographically the largest. This
also provides an opportunity for studying the variance inside what is a single region
according to Wessén. We also include the Swedish province Dalarna, located in
the central west part of mainland Sweden, as its own dialect region, since it is a
distinct and recognizable dialect [18]. This leaves us with the seven dialects/regions:
Norrbotten, Jämtland, Dalarna, Sydfinland, Mälardalen, Västkusten and Skåne.

Finally, all regions are not included in full, rather locations from internal subsets
of some regions are chosen to represent the dialect, providing a margin between
dialect areas and regions of comparable size. In column two of Table A.1 we see that
the numbers of unique speakers in each dialect are relatively balanced.

Our seven dialect regions are shown in Figure 2.2. The exact locations included in
each dialect is presented in Table 2.1. The discrepancy between the figure and table
specifying dialect regions is due to unusable locations in the database. The locations
Älvdalen and Orsa, inside the Dalarna region, and Bjuv in Skåne are marked on the
map but contain none or very few files in the version of the database we used, and
were dropped from the corresponding regions. To compensate for this, Dalarna and
Skåne were expanded to balance the number of speakers across dialects, meaning
they look larger on the map but they are in fact not larger in data size.

2.3 Classification

As mentioned above, only data from the wordlist and spontaneous categories are
used in this thesis. The annotation coverage in each of the categories across the
seven dialects is presented in Table 2.2. Clearly, annotations are not a problem in
the wordlist category. The situation is as expected less optimistic in spontaneous.
Based on these data limitations, two different experimental approaches to dialect
classification are formulated below.

5

Chapter 2. Dialect Classification

Norrbotten

Jämtland

Skåne

Sydfinland
Dalarna

Västkusten

Mälardalen

Figure 2.2: A map showing the division of SweDia recording locations into seven sub-
regions, used as dialects. From [1]. Adapted with permission from the copyright holder.

Table 2.1: The SweDia2000 recording locations assigned to each dialect region.

Norrbotten Jämtland Sydfinland Dalarna Mälardalen Västkusten Skåne

Arjeplog Åre Borga Södra
Finnskoga Skuttunge Orust Vaxtorp

Överkalix Aspås Kyrkslätt Dalby Villberga Frändefors Broby

Nederkalix Frostviken Snappertuna Malung Haraker Kärna Össjö

Piteå Berg Dragsfjärd Leksand Kårsta Östad Bara

Sorsele Strömsund Houtskär Grangärde Länna Öxabäck Löderup

Nederluleå Ragunda Brändö Husby Sorunda Frillesås Norra
Rörum

Sarna Graso

6

Chapter 2. Dialect Classification

Table 2.2: Percentage of audio files which have a corresponding annotation file per dialect
region.

Dialect Spontaneous (%) Wordlist (%)

Norrbotten 21.13 100.00
Jämtland 34.92 100.00

Sydfinland 29.17 97.22
Dalarna 6.58 98.86

Mälardalen 19.72 100.00
Västkusten 10.96 100.00

Skåne 37.50 100.00

Overall 22.49 99.45

2.3.1 Wordwise

Our first experiment category ignores the spontaneous data completely and focuses
on utterances of single words from the wordlist category of interviews. With dialects
defined, the frequency of words in the data can be studied. Out of all the different
words uttered in wordlist interviews, 43 words occur frequently across all dialects,
shown in Table A.2.

Four of the most frequently occurring: dörr, flytta, kaka and lär, are selected
as calibration words. This is necessary since classifiers are set up and tuned based
on data, but calibrating each classifier for each of the 43 words would be too time
consuming. By limiting calibration to four words we hope to find hyperparameters
which are suitable for capturing the complexity in single-word dialect classifications.
It is assumed that a classifier setup which works well for the four calibration words
will generalize without great loss of performance to the other 39 words.

It is then possible to evaluate the performance of dialect classifiers which operate
on utterances of one specific word, and also find which words among the 43 are best
suited for dialect classification. Lastly it is tested if combining multiple single-word
classifiers into an ensemble classifier which takes a tuple of word utterances from a
single speaker as input can be used to further improve performance.

2.3.2 Generalization to Spontaneous Speech

Compared to word-specific dialect classifiers, classifying spontaneous speech is ar-
guably more practical, mostly due to the fact that a spontaneous classifier does not
required predefined to perform classification.

The limited annotation coverage in the spontaneous category prohibits both
training and evaluating classifiers on spontaneous speech. Instead we test if a
classifier trained on the complete set of wordlist single word utterances (all 43 words),
performs well when evaluated on spontaneous data. This tests if utterances of single
words contain the same, or similar, dialectal markers as spontaneous speech.

7

Chapter 3

Signature Theory

In this chapter we introduce the concept of expressing information about a path in
Rd by its signature. Formal power series and iterated integrals are introduced as
these are necessary when defining the signature. We also present explicit expressions
for transforming the signature into a log signature, and derive methods for practical
signature and log signature calculations.

3.1 Preliminaries

This section provides a short overview of the mathematics used later in this chapter.

3.1.1 Tensor Product Spaces

The tensor product of two inner product spaces U and V is the space U ⊗ V , here
called W . If there is a bilinear map ⊗ so that

U × V → W, (u, v) 7→ u⊗ v

and W has an inner product 〈·, ·〉W so that for u1, u2 ∈ U and v1, v2 ∈ V

〈u1 ⊗ v1, u2 ⊗ v2〉W = 〈u1, u2〉U〈v1, v2〉V (3.1)

holds, we will callW the tensor product space corresponding to a particular ⊗, which
in this thesis will always be the outer product.

If the spaces U and V are spanned by basis vectors eu1 , . . . , e
u
m and ev1, . . . , e

v
n,

then W is the space spanned by the basis of paired vectors eui ⊗ evj for (i, j) ∈
{1, . . . ,m} × {1, . . . , n}. Hence we have for the dimension of W that

dim(W) = dim(U)dim(V).

Another consequence of this is that any element w ∈ W can be be written as

w =

m,n∑
i,j=1

wi,j(e
u
i ⊗ evj).

It follows that for elements u ∈ U and v ∈ V on the form

u =
m∑
i=1

uie
u
i and v =

n∑
j=1

vje
v
j

9

Chapter 3. Signature Theory

we can construct the object u⊗ v ∈ W as

u⊗ v =

m,n∑
i,j=1

uivj(e
u
i ⊗ evj).

For an n-fold tensor product of an element v ∈ V , we use the notation

v⊗n = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n

.

The object v⊗n is an element of V ⊗n which is defined analogously.
We can also join spaces U and V with direct summation, constructing a new

space W = U ⊕ V . The direct summation is similar to the Cartesian product, in
that the resulting space W consists of all possible ordered pairs of elements from U
and V . The direct summation however, also defines addition on W . With u1, u2 ∈ U
and v1, v2 ∈ V the addition on W is defined as

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2).

The basis of W will be the combined set of basis elements from U and V , with
slight modification. Using the notation (ei, 0) or (0, ej) to indicate basis vectors
paired with a zero vector (from V or U respectively) together with standard notation
for basis vectors in U and V , the set of vectors (eu1 , 0), . . . , (eum, 0), (0, ev1), . . . , (0, e

v
n)

make up a basis for W . From this we can see that dim(W) = dim(U) + dim(V).

3.1.2 Formal Power Series

As we shall see later on, signatures are elements in an infinite direct sum of tensor
product spaces. A convenient way to express such an object is in the form of a formal
power series. Formal power series are sums containing so called formal indeterminates,
denoted by ei. It is no coincidence that the notation for formal indeterminates is
the same as for basis vectors, since both lend structure to a mathematical objects.
The main difference however is that a formal indeterminate does not represent any
numerical value, but merely acts as a placeholder corresponding to its index i. Since
formal indeterminates never take on any values, we do not have to worry about the
convergence of a formal power series and are therefore allowed to have infinitely
many non-vanishing elements in the series. For example we can use a formal power
series to conveniently express a vector with an infinite number of elements as

∞∑
i=1

λiei,

where λi are real valued coefficients.
We define our formal indeterminates to be non-commutative, meaning that

eiej 6= ejei if i 6= j. This allows us to use formal power series for writing an infinite
matrix as

∞∑
i,j=1

λi,jeiej.

10

Chapter 3. Signature Theory

With formal power series, we can represent tensors of arbitrary order. A series of
one index of indeterminates constitutes a first order tensor, or vector. Two indices
allows us to represent matrices, as above, and three indices would represent a third-
order tensor, etc. Since the addition of two formal power series is practically direct
summation, we can write a mathematical object which is a vector and a matrix as

∞∑
i=1

λiei +
∞∑

i,j=1

λi,jeiej.

We will use addition for formal power series to represent both direct summation and
standard addition. Should two formal indeterminates be identical during addition of
two formal power series, standard component-wise addition is done. For differing
indeterminates, addition refers to direct summation and extends the dimensionality
of the object.

To represent constants in formal power series, we define the special empty
indeterminate e∅ which is implicitly placed after all terms that do not already have
indeterminates. This indeterminate is special in that e∅ei = ei, which means all
operations we want to use also hold when scalars are present.

Another operation which we let formal power series inherit from the tensor
product spaces is the inner product, but only between formal power series with
finitely many terms, as else problems with convergence would arise. For example,
the inner product between two vectors F and G with d elements, represented by the
finite formal power series

F =
d∑
i=1

λ
(F)
i ei and G =

d∑
i=1

λ
(G)
i ei,

is

〈F,G〉 =
d∑
i=1

λ
(F)
i λ

(G)
i .

The inner product also extends naturally to object constructed from the direct
summation and tensor products. For example, for F and G such as

F =
d∑
i=1

λ
(F)
i ei +

d∑
i,j=1

λ
(F)
i,j eiej,

G =
d∑
i=1

λ
(G)
i ei +

d∑
i,j=1

λ
(G)
i,j eiej

we have:

〈F,G〉 =
d∑
i=1

λ
(F)
i λ

(G)
i +

d∑
i,j=1

λ
(F)
i,j λ

(G)
i,j .

The inner product can also be used even when there isn’t a perfect symmetry
between the formal indeterminates in both arguments. We can practically view every
formal power series as containing every possible indeterminate combination, but with

11

Chapter 3. Signature Theory

coefficient 0 for the ones we don’t see. An example of this would be two vectors with
different lengths, written as

F =

dF∑
i=1

λ
(F)
i ei and G =

dG∑
i=1

λ
(G)
i ei

where dF < dG. The inner product between these vectors is then

〈F,G〉 =

dF∑
i=1

λ
(F)
i λ

(G)
i .

Lastly, we want to point that we can construct arbitrary tensors, i.e elements of
the tensor product spaces, with formal power series. For example the two formal
power series

F =
d∑

i1=1

. . .
d∑

ik=1

λ
(F)
i1,...,ik

e1 . . . ek and G =
d∑

i1=1

. . .
d∑

ik=1

λ
(G)
i1,...,ik

e1 . . . ek,

are kth order tensors with d dimensions. The inner product between these two formal
power series, defined in (3.1), is the sum

〈F,G〉 =
d∑

i1=1

. . .
d∑

ik=1

λ
(F)
i1,...,ik

λ
(G)
i1,...,ik

.

This shows us that formal power series are related to inner product spaces.
Therefore we want to introduce the tensor product operation to the formal power series
notation. First of all we define the tensor product between two formal indeterminates
ei and ej to be ei ⊗ ej = eiej, satisfying (aei)⊗ (bej) = abeiej for any a, b ∈ R and
having the distributive property (ei+ej)⊗ (ek +e`) = eiek +eie`+ejek +eje`. This
distributive property means that a tensor product is also defined between formal
power series, since these are simply sums of indeterminate terms.

For finite formal power series, this definition exactly mimics, by design, the tensor
product related to inner product spaces presented in Section 3.1.1. This is the reason
for having non-commutative formal indeterminates with the same behaviour as the
outer product that we use as bilinear map. The tensor product for two finite formal
power series F and G is then by definition

F ⊗G =
d∑
i=1

λ
(F)
i ei ⊗

d∑
j=1

λ
(G)
j ej =

d∑
i,j=1

λ
(F)
i λ

(G)
j eiej.

For infinite formal power series the behaviour of the tensor product is very similar
to the finite case. For example the tensor product between the two infinite formal
power series

F =
∞∑
i=1

λ
(F)
i ei and G =

∞∑
j=1

λ
(G)
j ej

12

Chapter 3. Signature Theory

is by definition

F ⊗G =
∞∑
i=1

λ
(F)
i ei ⊗

∞∑
j=1

λ
(G)
j ej =

∞∑
i,j=1

λ
(F)
i λ

(G)
j eiej.

For infinite formal power series, however, the tensor product must differ from
that of Section 3.1.1, since such series are, as noted above, not equipped with an
inner product. This means that the tensor product between formal power series is a
generalization, accommodating both finite and infinite series.

We will also preserve the notation of n-times repeated tensor products as F⊗n
for formal power series.

3.1.3 Paths and Line Integrals

A path is a continuous function X : [a, b]→ Rd which intuitively can be understood
as a point moving through the space Rd over the time interval [a, b]. A path is said to
be smooth if the first derivative Ẋ : [a, b]→ R exists and is continuous on [a, b]. The
integral of an integrable function f : Rd → R over a smooth path X : [a, b]→ Rd is
defined as

b∫
a

f(Xt) dXt =

b∫
a

f(Xt)Ẋt dt.

If X is not smooth on the whole of [a, b] but rather piecewise smooth on the
partitions a = t0 < t1 < . . . < tn = b the line integral over X is defined as the sum
of path integrals over each smooth segment

b∫
a

f(Xt) dXt =

t1∫
t0

f(Xt) dXt +

t2∫
t1

f(Xt) dXt + . . .+

tn∫
tn−1

f(Xt) dXt.

As X = (X1, . . . , Xd) each X i, which describes the change of X in direction i,
is itself a path, but in R instead of Rd. The line integral of the constant function
f = 1 over one of the coordinate paths X i in an interval with an endpoint decided
by t ∈ [a, b] is

I(X)
(i)
a,t =

t∫
a

1 dX i
s =

t∫
a

Ẋ i
s ds = X i

t −X i
a

which, again, is a path in R. Since it is possible to integrate functions mapping R
into itself over paths in R we can integrate I(X)

(i)
a,t along any of the paths describing

the change of X. If Xj is one of these paths, the function

I(X)
(i,j)
a,t =

t∫
a

I(X)(i)a,s dXj
s =

t∫
a

s∫
a

dX i
r dXj

s =

t∫
a

s∫
a

Ẋ i
r drẊj

s ds

is yet another path in R. This wrapping of the single dimensional paths describing
the change of X leads to the concept of iterated integrals. The real number I(X)

(i)
a,b

13

Chapter 3. Signature Theory

is the 1-fold iterated integral of X along index i. The 2-fold iterated integral would
be I(X)

(i,j)
a,b which is along the pair of indices i, j. The general formula for a k-fold

iterated integral is made over a sequence of k indices i1, . . . , ik and is the real number

I(X)
(i1,...,ik)
a,b =

∫
a<tk<b

I(X)
(i1,...,ik−1)
a,tk

dX ik
tk

=

∫
a<tk<b

. . .

∫
a<t1<t2

dX i1
t1 . . . dX

ik
tk
.

3.2 Signature Definition

The signature of a path is closely related to iterated integrals, in fact it is the infinite
collection of all iterated integrals along the path. A collection of real numbers which
contains information about the path [19]. By using formal power series we can
express this infinite set of numbers in a structured manner.

First we generalize the series of indices used in iterated integrals by introducing
a lexical notation. Given a path X = (X1, X2, . . . , Xd) we call each index i a letter
belonging to the alphabet A = {1, 2, . . . , d}. Finite sequences of indices are called
words and, if of finite length, are written as w = (i1, i2, . . . , ik) with |w| denoting
the number of letters in w so that |w| = k. For a given alphabet there is an infinite
number of possible words if no limit on word length is imposed. This set of words
is denoted by W and contains the special empty word ∅ which has no letters and
|∅| = 0. With this notation we write iterated integrals as I(X)wa,b where each letter
ij in w represents an integral along X ij . The iterated integral with respect to the
empty word is equal to one by definition.

The signature of a path X is the collection of all iterated integrals corresponding
to words in the infinite set W . To write this mathematical object in a meaningful
way we will use formal indeterminates as placeholders for letters.

Definition 1. The signature of a path X : [a, b]→ Rd is the formal power series

S(X)a,b =
∞∑
k=0

∑
i1,...,ik∈A

I(X)
(i1,...,ik)
a,b ei1ei2 . . . eik .

The outer summation is over the length k of words, also called the level of the
signature. The zeroth level contains only a single element which is equal to 1 by
definition. The first level holds all iterated integrals based on one-letter words, and
so for a d-dimensional path, the first level resides in Rd. The second level is a matrix
in Rd ⊗ Rd, and the third is a tensor in (Rd)⊗3. This increase in the dimension of
the space which each signature level resides in continues indefinitely. The entire
signature resides in a space given by direct summation of each level-space, hence a
signature is an element in T (Rd) =

⊕∞
k=0(Rd)⊗k.

Expressed as this formal power series, the operations defined in Section 3.1.2
can be applied to or between signatures1. An important result in the theory of
signatures is that the tensor product of two signatures (corresponding to paths of
equal dimensionality) will also be in T (Rd) and is therefore a valid signature. This is
due to, and the reason behind, the zeroth level being defined as 1.

1Since signatures are infinite formal power series, this refers to the tensor product without an
inner product.

14

Chapter 3. Signature Theory

3.3 Log Signature

While the signature is a full representation of its path, not all of its elements are
independent. The log signature is a condensed representation, and contains the same
information expressed with significantly fewer and independent elements [15].

This section demonstrates a method for extracting a basis representation for the
log signatures, and we use the short-hand notation λw = I(X)wa,b to make calculations
more readable. We begin by writing the signature as the formal power series

S(X)a,b = 1 +
∞∑
k=1

∑
i1,...,ik∈A

λ(i1,...,ik)ei1ei2 . . . eik

with the term corresponding to the empty word moved out of the sum. The logarithm
of a formal power series F = a0 +

∑∞
k=1 akek is defined as

logF = log a0 +
∞∑
n=1

(−1)n

n

(
1− F

a0

)⊗n
.

Combining this definition with the signature gives

logS(X) =
∞∑
n=1

(−1)n+1

n

 ∞∑
k=1

∑
i1,...,ik∈A

λ(i1,...,ik)ei1ei2 . . . eik

⊗n (3.2)

which has terms corresponding to every word in W except the empty word. We
define W ∗ to be the set of all non-empty words, and let ew denote the basis element
for each letter in w, i.e. ew = ei1 . . . eik if w = (i1, . . . , ik). Using this notation we
want to find a number λ̂w for every w ∈ W ∗ so that (3.2) can be rewritten as

logS(X) =
∑
w∈W ∗

λ̂wew. (3.3)

For an arbitrary word w of length |w| > 0, all contributions to λ̂w comes from
the first |w| tensor products in (3.2). Any higher n will only give rise to words longer
than w. Let the concatenation of two words u = (u1, . . . , uk) and v = (v1, . . . , v`) be
written as uv = (u1, . . . , uk, v1, . . . , v`). Then we can use w1 . . . wn = w to indicate a
summation over all possible ways of splitting w into n non-empty subwords. The
sought coefficient corresponding to the word w is then

λ̂w =

|w|∑
n=1

(−1)n+1

n

∑
w1...wn=w

λw1 . . . λwn . (3.4)

This representation of the log signature has only one element less compared to the
signature, namely the one corresponding to the empty word. Hence the redundancies
are still present. To get rid of these we will project this expression for the log
signature onto a basis, thereby using the smallest possible number of elements for
expressing the same information.

15

Chapter 3. Signature Theory

It has been shown [19] that there exists numbers γi1,...,ik so that the log signature
can be written with elements wrapped in Lie brackets as

logS(X) =
∑
k≥1

∑
i1,...,ik∈A

γi1,...,ik [ei1 , [ei2 , [. . . , [eik−1
, eik] . . .]]. (3.5)

The Lie bracket [·, ·] is a commutator for formal indeterminates defined as [ei, ej] =
eiej − ejei. The fact that the log signature can be written as (3.5) means that it
is an element in the so-called free Lie algebra. For an introduction to the subject
of Lie algebras we refer to [20]. We note that the bracket-nested indeterminates in
(3.5) does not form a basis in this algebra. For example, [e1, e2] and [e2, e1], which
only differ in sign when expanded, both appear in the sum.

But there are known bases for the free Lie algebra, and projecting the log signature
onto a basis reduces the number of terms and redundancies such as the one above.
Here we apply the Lyndon basis outlined in [21]. Each element in the Lyndon basis
corresponds to a Lyndon word. The set of Lyndon words L make up a strict subset
of all non-empty words W ∗. For instance all single letter words are Lyndon words,
but no words consisting of a single repeated letter (more than once) are Lyndon
words.

The formal indeterminates which serve as basis elements in the Lyndon basis
are similar to those in (3.5) in that they are also nested in Lie brackets. In [21]
the operator σ(·) is defined, which maps a Lyndon word w to nested Lie bracket
expression, specifying the Lyndon basis element corresponding to w. Let the Lyndon
suffix of a word w be the longest word v so that w = uv with u 6= ∅ and v ∈ L.

Here we define the operator σ(·) recursively. If w is a single letter word w = (i)
then σ(w) = i. If w is more than one letter long then it is divided into w = uv where
v is the Lyndon suffix of w and σ(w) = [σ(u), σ(v)]. The Lyndon basis element
corresponding to a Lyndon word w is then the bracket structure given by σ(w) but
with all letters replaced by their corresponding formal indeterminates, denoted by
eσ(w).

For example the Lyndon word w = (1, 2, 2) has the Lyndon suffix v = (2) since v
is a Lyndon word but (2, 2) is not. Therefore w is bracked-wrapped to

σ(w) =
[
σ((1, 2)), σ((2))

]
= [[1, 2], 2]

and then

eσ(w) = [[e1, e2], e2] = [e1e2 − e2e1, e2] = e1e2e2 + e2e2e1 − 2e2e1e2. (3.6)

In the general case for any Lyndon word w we will have the basis element ew. The
exact linear combination which ew corresponds to can be found via the same procedure
as in the example above. The word w is bracket-wrapped and the corresponding
expression using formal indeterminates is expanded into a linear combination, giving
us

eσ(w) =
∑

v∈Wσ(w)

cvev, w ∈ L,

where ci ∈ Z and Wσ(w) is a subset of the words that have the same length as w, as
demonstrated in (3.6).

16

Chapter 3. Signature Theory

With the form of Lyndon basis elements known we now want to project the log
signature expressed as in (3.3) onto each Lyndon basis element eσ(w) to find the
corresponding coefficients λ̃w. The projection is calculated using the inner product
〈·, ·〉. Since Wσ(w) only contains words of the same length as w, it is sufficient to
project only level k = |w| of the log signature onto the basis. We use the notation
logS(X)

∣∣
k
to denote the kth level of the log signature. This means both arguments

in the inner product are finite. The coefficient λ̃w is then given by

λ̃w =

〈
logS(X)

∣∣
|w|, eσ(w)

〉
|eσ(w)|2

=

〈 ∑
u∈W ∗
|u|=|w|

λ̂ueu,
∑

v∈Wσ(w)

cvev

〉
〈 ∑
v∈Wσ(w)

cvev,
∑

v∈Wσ(w)

cvev

〉
In the numerators inner product, the right hand element is only non-zero for the
elements in Wσ(w), thus only those terms will survive the product. Therefore the
numerator is simply the linear expression which appears when expanding the commu-
tators but with λ̂w instead of ew. The denominator is even simpler since the nested
basis element scalar produced with itself is the sum of squared cv’s. In conclusion

λ̃w =

∑
v∈Wσ(w)

cvλ̂
v

∑
v∈Wσ(w)

c2v
, w ∈ L

and the log signature can be written as

logS(X) =
∑
w∈L

λ̃weσ(w). (3.7)

3.4 Practical Calculations

Given the definition of signatures in Section 3.2, we now present two different
techniques for calculating the signature and log signature of a path X under some
assumptions. First of all we make an assumption regarding the paths in this thesis:

Assumption 1. All paths are piecewise linear, and each linear segment corresponds
to 1 time unit.

This assumption is reasonable due to the fact that in this project every path is
derived by interpolation from discretely sampled measurements. A path constructed
from n+ 1 discrete measurements is the interpolated path X = (X1

t , . . . , X
d
t) which

maps the interval [0, n]→ Rd.
Under these assumptions, calculating signatures for linear paths is of interest,

and such signatures are easily computed. Let Xt = a+ bt with a, b ∈ Rd be a linear
path parameterized by t ∈ [p, p+ 1]. It can then be easily shown that the signature
element corresponding to the word w = (w1, . . . , w|w|) becomes

I(X)wp,p+1 =
1

|w|

|w|∏
j=1

Ẋwj =
1

|w|

|w|∏
j=1

bwj , (3.8)

17

Chapter 3. Signature Theory

where Ẋwj indicates the derivative of Xwj
t with regards to the time parameter t.

3.4.1 Chen’s Identity

In this section we present a theorem called Chen’s Identity, and use it to derive
an explicit form for the signature of a path and a method of computing it. The
theorem fuses together signatures from consecutive segments of a path by relating
path concatenation to the tensor products of signatures, and while we will make use
of Chen’s Identity, the proof is beyond the scope of this thesis.

Theorem 1 (Chen’s Identity). Let a < c. For a path X : [a, c] → Rd, it holds for
a < b < c that

S(X)a,c = S(X)a,b ⊗ S(X)b,c.

Consider a path such as in Theorem 1. We keep the notation from the previous
section and write λ(i1,...,ik)a,b = I(X)

(i1,...,ik)
a,b and λ

(i1,...,ik)
b,c = I(X)

(i1,...,ik)
b,c so that the

signature S(X)a,b can be written on the form

S(X)a,b =
∑
k

∑
i1,...,ik∈A

λ
(i1,...,ik)
a,b e1e2 . . . ek,

and analogously for S(X)b,c. We can calculate the signature of the concatenated
path using Chen’s Identity, by performing a tensor multiplication between the two
signatures. The tensor product is distributive and so for two signatures we have

(λ
(0)
a,be∅ + λ

(i)
a,bei + λ

(i,j)
a,b eiej + ...)⊗ (λ

(0)
b,ce∅ + λ

(i)
b,cei + λ

(i,j)
b,c eiej + ...) (3.9)

where all subscripts takes values in the alphabet {1 . . . , d}.
To calculate the signature of the concatenated path, we gather resulting terms

from (3.9) according to words, keeping in mind the behaviour of the tensor product
in Section 3.1.2. For word length k = 0, the tensor product yields only the scalar
multiplication of the zeroth level elements from the two signatures, i.e.

I(X)(0)a,c = λ
(0)
a,bλ

(0)
b,c .

While we recall that the zeroth level of a signature is the empty word which is set to
1 by definition, we keep these in the calculations for the sake of correctness of the
tensor product.

For k = 1 we have all words i ∈ {1, . . . , d}, and the concatenation gives

I(X)(i)a,c = λ
(0)
a,bλ

(i)
b,c + λ

(i)
a,bλ

(0)
b,c .

Continuing with increasing word size, now for k = 2:

I(X)(i,j)a,c = λ
(0)
a,bλ

(i,j)
b,c + λ

(i)
a,bλ

(j)
b,c + λ

(i,j)
a,b λ

(0)
b,c .

To illustrate the procedure we do one more step and obtain

I(X)(i,j,k)a,c = λ
(0)
a,bλ

(i,j,k)
b,c + λ

(i)
a,bλ

(j,k)
b,c + λ

(i,j)
a,b λ

(k)
b,c + λ

(i,j,k)
a,b λ

(0)
b,c .

18

Chapter 3. Signature Theory

Table 3.1: Word splitting of w = (i, j, k) as a result of g2(w). The operator gathers all
words u1 and u2 so that u1u2 = w.

u1 u2

∅ (i, j, k)

(i) (j, k)

(i, j) (k)

(i, j, k) ∅

To gather terms for an arbitrary word in the new signature, we define a word
splitting operator gn, which distributes the letters of a word into all possible splits
of n factors that give rise to the same word (the zero letter is "empty" and since
it is a scalar it does not affect the order or changes the word). For n = 2, this
operator distributes the word (i, j, k) as in Table 3.1. Essentially, gn is an operator
that gathers terms that correspond to the same words after performing n tensor
products.

This process of concatenation can be expanded, and using Theorem 1, we can
express the signature of an entire path by dividing it into n segments as

S(X)0,n = S(X)0,1 ⊗ S(X)1,2 ⊗ . . .⊗ S(X)n−1,n (3.10)

In the light of (3.10), we consider the signature element S(X)w0,n for an arbitrary
word w. We may write this as a concatenation of the segments [0, n−1] and [n−1, n].
Using the operator g2, we then write S(X)w0,n as

I(X)w0,n =
∑

(u1,u2)∈g2(w)

λu10,n−1λ
u2
n−1,n.

We proceed with a recursive strategy and consider λ0,n−1 to be the result of a
concatenation of [0, n− 2] and [n− 2, n− 1], and write

I(X)w0,n =
∑

(u1,u2)∈g2(w)

 ∑
(u′1,u

′
2)∈g2(u1)

λ
u′1
0,n−2λ

u′2
n−2,n−1

λu2n−1,n. (3.11)

By repeating this process recursively we have a method with which we can calculate
signatures for entire paths by building it up from smaller segments. If we expand
(3.11) it becomes

I(X)w0,n =
∑

(u1,u2,u3)∈g3(w)

λu10,n−2λ
u2
n−2,n−1λ

u3
n−1,n.

Repeating this procedure for all n segments of the path, the signature element for
the word w = (i1, ..., ik) can be written explicitly as

I(X)w0,n =
∑

(u1,...,un)∈gn(w)

n−1∏
p=0

λ
up
p,p+1.

19

Chapter 3. Signature Theory

Table 3.2: An example of how the operator s(·) works, here applied on the word (1, 2, 3, 4),
i.e. (u, v) ∈ s(1, 2, 3, 4).

j u v

0 ∅ (1,2,3,4)
1 (1) (2,3,4)
2 (1,2) (3,4)
3 (1,2,3) (4)

We remember that λwp,p+1 is precisely the signature element for word w on the
segment [p, p+ 1]. For paths that satisfies Assumptions 1, these signature elements
are readily available for according to (3.8).

3.4.2 Recursive Iterated Integral Expressions

An alternative approach for finding the real numbers making up the signature of a
path is to calculate each iterated integral. The idea behind this approach is to use
the assumed piecewise linearity to reduce integrals into sums and take advantage of
iterated integrals recursive properties.

Since it is assumed that each piecewise linear segment corresponds to a unit
increment in time we introduce the notation Ẋ i

m = X i
m+1 −X i

m for the increment of
X in dimension i over the time interval [m,m+ 1].

Expanding the iterated integrals corresponding to the first four levels (not counting
the zeroth) in the signature of X reveals a distinct pattern

I(X)
(i)
0,n = X i

n

I(X)
(i,j)
0,n =

n−1∑
m=0

[
I(X)

(i)
0,mẊ

j
m +

Ẋ i
mẊ

j
m

2

]

I(X)
(i,j,k)
0,n =

n−1∑
m=0

[
I(X)

(i,j)
0,m Ẋ

k
m + I(X)(i)m

Ẋj
mẊ

k
m

2!
+
Ẋ i
mẊ

j
mẊ

k
m

3!

]

I(X)
(i,j,k,l)
0,n =

n−1∑
m=0

[
I(X)

(i,j,k)
0,m Ẋ l

m + I(X)
(i,j)
0,m

Ẋk
mẊ

l
m

2!

+ I(X)(i)m
Ẋj
mẊ

k
mẊ

l
m

3!
+
Ẋ i
mẊ

j
mẊ

k
mẊ

l
m

4!

]
.

To generalize this trend and write an expression for arbitrary iterated integrals we
define the operator s(.) for splitting words w into two parts. If (u, v) ∈ s(w) then u
are the first j letters of w and v are the letters after the j-th, with j = 0, . . . , |w| − 1.
When j = 0 the sub-word u is an empty word which corresponds to a signature term
equal to 1 by definition. Table 3.2 shows an example of how this split operator works,
note that s is similar but not equivalent to the operator g2 defined in the section
above.

20

Chapter 3. Signature Theory

Under the assumed interpolation of n discrete measurements the signature of X
consists of iterated integrals over the interval [0, n]. However any proof of a general
expression for iterated integrals has to deal with the real valued times inside each
linear segment, therefore the following theorem is formulated to hold for arbitrary
times t.

Theorem 2. Let X : [0,∞)→ Rd be a path satisfying Assumption 1. Furthermore
let w = (i1, . . . , ik) be an arbitrary word with letters in the alphabet A = {1, . . . , d}.
Then for any t ∈ [0,∞) with n = btc the iterated integral I(X)w0,t is given by

I(X)w0,t =
n−1∑
m=0

 ∑
(u,v)∈s(w)

I(X)u0,m
1

|v|!
∏
i∈v

Ẋ i
m

+
∑

(u,v)∈s(w)

I(X)u0,n
(t− n)|v|

|v|!
∏
i∈v

Ẋ i
n.

(3.12)

Proof. First we note that if t = n in (3.12) the second sum vanishes and

I(X)w0,n =
n−1∑
m=0

 ∑
(u,v)∈s(w)

I(X)u0,m
1

|v|!
∏
i∈v

Ẋ i
m

hence (3.12) can be written in a slightly shorter but equivalent form

I(X)w0,t = I(X)w0,n +
∑

(u,v)∈s(w)

I(X)u0,n
(t− n)|v|

|v|!
∏
i∈v

Ẋ i
n. (3.13)

Note that I(X)w0,n does not explicitly depend on t.
To prove that these equations hold for any word w, induction over the word

length is used. The base case is a word of length 1, i.e. some single index i. For a
single letter word the split operator s will only produce one pair of sub-words where
u = ∅ and v = (i). Starting at the definition of an iterated integral and using the
piecewise linearity of X i

t we get that

I(X)
(i)
0,t =

t∫
0

1 dX i
t =

t∫
0

Ẋ i
t dt =

n−1∑
m=0

m+1∫
m

Ẋ i
t dt+

t∫
n

Ẋ i
t dt.

Since Ẋ i
t is constant on each interval between two whole numbers it can be moved

outside the integrals and

I(X)i0,t =
n−1∑
m=0

Ẋ i
m

m+1∫
m

dt+ Ẋ i
n

t∫
n

dt =
n−1∑
m=0

Ẋ i
m +X i

n(t− n)

which shows that (3.12) holds when w = (i).
For the induction step first assume that (3.13) (which is equivalent to (3.12))

holds for I(X)w0,t where w is a word with k letters. Add an extra letter j ∈ A to this
word to get w̃ = (w, j) which has k + 1 letters. We now want to show that (3.12)

21

Chapter 3. Signature Theory

is fulfilled for w̃ by using the inductive assumption. The definition of the iterated
integral corresponding to w̃ can be expanded into

I(X)w̃0,t =

t∫
0

I(X)w0,t dXj
t =

t∫
0

I(X)w0,tẊ
j
t dt

=
n−1∑
m=0

Ẋj
m

m+1∫
m

I(X)w0,t dt+ Ẋj
n

t∫
n

I(X)w0,t dt = (I) + (II).

The terms (I) and (II) will be expanded independently. Starting with (I) we
replace I(X)w0,t according to the induction assumption which leads to

n−1∑
m=0

Ẋj
m

m+1∫
m

I(X)w0,t dt

=
n−1∑
m=0

Ẋj
m

m+1∫
m

I(X)w0,m +
∑

(u,v)∈s(w)

I(X)u0,m
(t−m)|v|

|v|!
∏
i∈v

Ẋ i
m

 dt

=
n−1∑
m=0

Ẋj
m

I(X)w0,m

m+1∫
m

dt+
∑

(u,v)∈s(w)

I(X)u0,m

m+1∫
m

(t−m)|v|

|v|!
dt
∏
i∈v

Ẋ i
m

 .

The integrals in this expression are computed by a change of variable

m+1∫
m

(t−m)|v|

|v|!
dt =

1∫
0

s|v|

|v|!
ds =

1

(|v|+ 1)!
.

Thus

n−1∑
m=0

Ẋj
m

m+1∫
m

I(X)w0,t dt

=
n−1∑
m=0

I(X)w0,mẊ
j
m +

∑
(u,v)∈s(w)

I(X)u0,m
1

(|v|+ 1)!

∏
i∈v

Ẋ i
m

 Ẋj
m

=

n−1∑
m=0

 ∑
(u,v)∈s(w̃)

I(X)u0,m
1

|v|!
∏
i∈v

Ẋ i
m

(3.14)

where in the final step the term outside the sum over s(w) and the factor Ẋj
p is

absorbed when instead summing over s(w̃).

22

Chapter 3. Signature Theory

Similarly, the term denoted by (II) can be manipulated into

Ẋj
n

t∫
n

I(X)w0,t dt

= Ẋj
n

t∫
n

I(X)w0,n +
∑

(u,v)∈s(w)

I(X)u0,n
(t− n)|v|

|v|!
∏
i∈v

Ẋ i
n

 dt

= Ẋj
nI(X)w0,n

t∫
n

dt+ Ẋj
n

∑
(u,v)∈s(w)

I(X)u0,n

t∫
n

(t− n)|v|

|v|!
dt
∏
i∈v

Ẋ i
n

where the integrals are computed as before, yielding

t∫
n

(t− c)|v|

|v|!
dt =

t−n∫
0

s|v|

|v|!
ds =

(t− n)|v|+1

(|v|+ 1)!
.

Resolving the integrals and once again absorbing extra terms into a sum over s(w̃)
gives

Ẋj
n

t∫
n

I(X)w0,t dt

= I(X)w0,n(t− n)Ẋj
n +

∑
(u,v)∈s(w)

I(X)u0,n
(t− n)|v|+1

(|v|+ 1)!

∏
i∈v

Ẋ i
n

 Ẋj
n

=
∑

(u,v)∈s(w̃)

I(X)u0,n
(t− n)|v|

|v|!
∏
i∈v

Ẋ i
n.

This, when combined with (3.14), means that

I(X)w̃0,t =
n−1∑
m=0

 ∑
(u,v)∈s(w̃)

I(X)u0,m
1

|v|!
∏
i∈v

Ẋ i
m

+
∑

(u,v)∈s(w̃)

I(X)u0,n
(t− n)|v|

|v|!
∏
i∈v

Ẋ i
n,

recognised as the formula we want to prove, which means that the induction step
holds and the proof is complete.

The previous theorem shows that it is possible to calculate any iterated integral
of X by starting with single letter words and iteratively calculating more and more
complex iterated integrals. The sum over m indicates that is it not sufficient to
only know the lower order iterated integrals on the entire interval [0, n], one has to
know all n− 1 partial iterated integrals on the intervals [0,m] for m = 0, . . . , n− 1.
Since in practical applications, the signature up to a real valued time t is not of any
interest, we formulate a corollary which only concerns iterated integrals over whole
number intervals.

23

Chapter 3. Signature Theory

Corollary 3. Let X : [0, n+ 1]→ Rd be a path satisfying Assumption 1. Then for
an arbitrary word w = (i1, . . . , ik) with letters in A = {1, . . . , d} the iterated integral
I(X)w0,n+1 is given by

I(X)w0,n+1 = I(X)w0,n +
∑

(u,v)∈s(w)

I(X)u0,n
1

|v|!
∏
i∈v

Ẋ i
n.

Proof. Follows directly from (3.13) since t = n.

With this corollary it becomes evident that a program which calculates signature
elements can do so by looping over a finite set of words and over the segments of the
piecewise linear path.

3.4.3 Log Signatures

The log signature of a path can be calculated from a signature first by (3.4) and
then (3.7). The only details missing in this computation is how to retrieve the set of
Lyndon words L. While the set of Lyndon words is infinite, practical applications
must put a limit to the number of levels in a log signature. Such a truncated set
of Lyndon words up to a certain word length k can be calculated with Duval’s
algorithm [22,23]. The exact procedure is described in Algorithm 1.

Notation :Let w−1 denote the last letter of the word w
Input :n ∈ Z+ – maximum Lyndon word length

d ∈ Z+ – alphabet size
Output :Ln – A set of integer tuples corresponding to all Lyndon words of

up to length n based on the alphabet {1, . . . , d}
1 Ln = ∅
2 w ← (0)
3 while |w| > 0 do
4 w−1 ← (w−1 + 1) mod d // Increment last digit
5 Ln ← Ln ∪ {w} // Now w is a Lyndon word
6

7 w ← www . . . // Repeat w
8 w ← (w1, . . . , wn) // Trim to length n
9

10 while w−1 = d and |w| > 0 do
11 w ← (w1, w2, . . . , w|w|−1) // Remove trailing d’s
12 end
13 end

Algorithm 1: A procedure for generating a finite list of Lyndon words on the
alphabet {1, 2, . . . , d}, based on Duval’s algorithm [22].

24

Chapter 4

Feature Extraction

In many applications of signal processing and data analysis, raw data is often difficult
to make use of. For example sound data is sampled thousands of times per second.
This means that a raw data sample is extremely high-dimensional. Furthermore, noise
can distort the signal and translation issues occur since samples are not necessarily
aligned in time. Data preprocessing is necessary in order to avoid these issues and
extract usable information. The goal of preprocessing is to extract a set of so called
features from a raw sample, expressing properties of the sample.

When dealing with sound as raw data, there are several options for feature
extraction. In speech recognition [6] as well as language [4,24] and dialect classification
[25], the most prominent technique involves Mel-frequency cepstral coefficients
(MFCCs) which are based on the idea of mimicking human hearing.

In this thesis we will work with MFCCs and a closely related feature representation
called Mel-frequency spectral coefficients (MFSCs). Furthermore, we also investigate
the possibility of using signatures, both as a stand-alone feature and as a data
enhancing compliment to other features.

4.1 Short-Time Fourier Transform

Given an audio signal, we are interested in the frequencies contained in the sample
and how these change over time. The short-time Fourier transform (STFT) computes
the frequency spectrum of a small time interval window, moving through the signal.
This produces a spectrogram that provides us with an overview of how the frequencies
evolve throughout the speech sample.

The window size is set to 25 ms, with the assumption that human speech is
stationary on a short time interval [26]. Before calculating the Fourier transform of a
window frame, however, the frame should be smoothed using some window function
to avoid artifacts arising from the edges of the window. A common window function
is the Hamming window, which is also the function of choice in this thesis. It is the
weighted cosine with coefficients given by

wn = 0.54− 0.46 cos

(
2πn

L− 1

)
, 0 ≤ n < L

with L being the window size. This function ensures that the signal vanishes towards
the edges of the window. To make up for the fact that this causes loss of information
near the edges, the window frames are made to overlap by 15 ms. After application

25

Chapter 4. Feature Extraction

of the window function, we calculate the frequency spectrum F (x) by discrete Fourier
transform. Letting the signal in a window be x = (x0, . . . , xL−1):

F (x)k =
L−1∑
n=0

wnxne
−i2πkn/L, k = 0, . . . , 2K − 2

where wn are the components of the Hamming window and 2K − 2 is the number of
frequency bins used in the transform. Here we choose 2K − 2 = 512. All frequencies
above the Nyquist frequency are discarded, which for a 16kHz sample rate is 8 kHz.
This leaves us with K = 257 actual frequency bins. The transformation is done
using fast Fourier transform, and the result of the STFT is a spectrogram where
each column contains the frequency spectrum of its respective time frame.

0 10 20 30 40 50
Time frames

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y
[k

H
z]

Fourier Spectrogram

Figure 4.1: Fourier spectrogram. The figure shows logarithm of the pixel values for
illustrativ purposes.

4.2 Mel-Frequency Spectral Coefficients

This section presents Mel-Frequency Spectral Coefficients, or MFSCs. The first step
is to calculate a frequency spectrogram by transforming the raw signal through STFT.
In the second step, we use a Mel scale filter bank. The Mel-scale is a non-linear
frequency scale that mimics human hearing [27]. The human ear has finer frequency
resolution at lower frequencies and the Mel scale aims to be linear in terms of
human perception, rather than in actual frequency. The Mel-frequency relates to the
standard frequencies according to the relation

m = 2595 log10

(
1 +

f

700

)
. (4.1)

The Mel-scale filter bank consists of a set of overlapping triangular filters, with
centers equidistantly spaced in the Mel-scale of (4.1). From a discrete and uniform

26

Chapter 4. Feature Extraction

frequency range (0 = f0 < . . . < fK = 8000), we compute the corresponding discrete
Mel-frequency range using (4.1) and then place the filters uniformly on this range as
seen in Figure 4.2, where 15 filters were used. The Mel-scale ensures that the filters
are more densely distributed at lower frequencies, and that they grow farther apart
and wider at higher frequencies.

0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

15 filters

Figure 4.2: Mel-scale filter bank with 15 filters.

Given a speech sample x ∈ RN , we begin by computing the corresponding
spectrogram, as done in Figure 4.1. Before applying a Mel filter bank however, each
column in the STFT spectrogram is transformed into a power spectrum

Pk =
1

L
|F (x)k|2, k = 0, . . . , K

with K frequency bins. The result is a power spectrogram SP ∈ RK×T with K rows
representing frequency bins and T columns, corresponding to the time frames.

The power spectrogram is then passed through a filter bank such as the one
in Figure 4.2. Each filter is a function b : R → [0, 1], and a filter bank B with F
filters is a matrix the rows of which will contain the set of uniformly discretized
triangular filters. For each row i we have Bi = (b(i)(f0), . . . , b

(i)(fK). Thus, B is an
object in RF×K . Applying this filter bank to the power spectrogram produces a new
spectrogram SMel ∈ RF×T :

SMel = BSP.

After transforming SMel to decibels, this yields the MFSCs, which are actually Mel-
frequency spectrograms. Figure 4.3 shows an example of a Mel spectrogram for a
person saying the Swedish word dagar.

The number of filters in the filter bank determines the number of rows in the
spectrogram. Figure 4.3 used F = 40 filters. Common values range from 20–40
filters.

27

Chapter 4. Feature Extraction

0 10 20 30 40 50 60
Time frames

0

5

10

15

20

25

30

35

40
M

el
 fr

eq
ue

nc
y

bi
ns

Mel Frequency Spectrogram

Figure 4.3: Mel spectrogram of the word dagar from a dalarna dialect

4.3 Mel-Frequency Cepstral Coefficients

In a spectrogram each column is a frequency spectrum, or Mel spectrum, for a
specific time frame. This gives an overview of how the frequencies change throughout
the sample. However, the frequency bins in the MFSCs are correlated, something
that is worsened by the fact that the filters in the filter bank are overlapping. This
poses a problem for classification algorithms that uses covariance matrices, such as
Gaussian Mixture Models. Therefore, MFCCs proceeds one step further, in which
the spectrogram is transformed using a discrete cosine transform (DCT), defined as

ck =
N−1∑
n=0

Xn cos

(
πk

N

(
n+

1

2

))
, k = 0, . . . , N − 1

along each column, which decorrelates the rows.
This also has the benefit of allowing us to discard the higher-order terms of

the DCT, without losing valuable information. These terms represent rapid, high-
frequency changes in the Mel spectrum that carries little information about the
sound. The lower-order terms instead correspond to the overall spectral shape, or
spectral envelope. Thus, the DCT step can be thought of as a frequency analysis of
the frequencies, known as cepstral analysis. Keeping only lower order terms, provides
a smoother spectrum and a more dense representation. The result is a set of MFCC
feature vectors, as illustrated in Figure 4.4 where each column is a MFCC vector.

Not all classification techniques utilizes covariance matrices, however. Artificial
neural networks can handle correlated samples, and convolutional networks are even
based on the idea of local correlations within samples and so would benefit from the
correlation. Therefore we will make use of both MFSCs and MFCC.

28

Chapter 4. Feature Extraction

0 10 20 30 40 50 60
Time frames

0

5

10

15

20

25

30

35

M
FF

C
s

Mel-Frequency Cepstrogram

Figure 4.4: Spectrogram that has been decorrelated using a discrete cosine transform,
hence a cepstrogram. The columns in the figure are MFCC feature vectors. Commonly
only coefficients 0-12 are used, which means the other rows in the figure are discarded.

4.3.1 Shifted Delta Cepstra

While an MFCC sample does capture how a sound signal changes over time, we
below present classifiers which see each column in such a matrix as its own individual
sample. Such classifiers are limited to finding properties of the signal which fits inside
single time frames. To get around this restricted temporal context we will use a
method for expanding MFCC feature vectors with additional temporal information.

Temporal context is achieved by delta vectors [4], which express the change in
features across neighbouring values. Let (x1, x2, . . . , xT) be the column vectors in a
Mel-frequency cepstrogram with N cepstral coefficients. By letting xt = x1 if t < 1
and xt = xT if t > T we indicate that the cepstrogram is extended at the left and
right edges by repeating the first and last column respectively.

The classical definition for the delta features at time t with parameter n is
∆xt = xt+n − xt−n which only utilizes the edges of the interval [t− n, t+ n] [28, 29].
While this is a well-tested method we have opted for the alternative approach where
change around xt is approximated using all neighbouring values [30]. The alternative
definition of delta feature vectors is

∆xt =

∑n
k=−n kxt+k∑n
k=−n k

2
for t = 1, . . . , T. (4.2)

This approach is perhaps most easily understood via linear regression. For each
time t = 1, . . . , T we define a linear model

xt+k = α + βk + ek for k = −n, . . . , n

where α is intercept, β is slope and ek are residuals. The aim is to approximate β
and use that approximation as our delta feature vector for time t. Note that while all

29

Chapter 4. Feature Extraction

terms in the linear model are vectors, the regression is done for each component of
the vectors, independently. Using least squares to find our approximations produce
the slope estimate ∑n

k=−n(k − k̄)(xt+k − x̄)∑n
k=−n(k − k̄)2

where the bar notation indicates an average over k = −n, . . . , n. Since k̄ = 0 this
reduces to (4.2).

Now it is possible add temporal information to each MFCC feature vector xt by
concatenating it with its corresponding delta vector ∆xt. This would result in T
feature vectors of length 2N . This can be taken a step further by applying the above
procedure to ∆xt instead of xt, resulting in delta-delta vectors and combined feature
vectors of length 3N .

Here however, Shifted Delta Cepstra (SDC) [28,29] which is a generalization of
the delta and delta-delta methodology are used. In SDC multiple delta features
from shifted time positions are concatenated, providing temporal context. SDC
features are based on the delta vectors, meaning that we have both xt and ∆xt for
t = 1, . . . , T calculated with parameters N and n respectively. The parameter P
denotes the difference in time index between each shifted delta vector and k denotes
how many delta vectors will be picked out and concatenated for each time-frame.
Finally the SDC vector at time t is the concatenation[

∆T
t ,∆

T
t+P ,∆

T
t+2P , . . . ,∆

T
t+(k−1)P

]T
.

Combining MFCC and SDC vectors by yet another concatenation results in the final
MFCC + SDC feature vectors, each containing (k + 1)N elements.

4.4 Log Signatures as Acoustic Features

When incorporating signatures into dialect classification we have focused on log
signatures, since it has non-redundant coefficients and is smaller in size, which will
aid classification methods. To calculate log signatures it is necessary that the input
data can be seen as a path. A sound signal is sampled over time, and is therefore
inherently a path. Using amplitude as a single dimensional path however is not an
option, since the log signature of a path in R consists of just one element (due to
properties of the Lyndon basis).

Instead we have focused on the interpretation of MFCC samples as paths. MFCC
samples are sequences of feature vectors with length N , corresponding to how many
cepstral coefficients are kept. By interpreting each cepstral coefficient as a dimension,
the sequence of feature vectors become a path in an N-dimensional space, from which
log signature can be computed. In practice truncated log signatures are used, which
contain elements up to some level `.

Log signatures calculated from un-normalized MFCC feature vectors are numeri-
cally unstable, producing extremely large elements in higher levels. To remedy this,
before the log signature is calculated for a path, all path elements are normalized to
zero mean and standard deviation one.

30

Chapter 4. Feature Extraction

To simplify classification on log signatures we step away from the formal power
series notation

logS(X) =
∑
w∈L

λ̃weσ(w)

and instead express the log signature as the vector

logS(X) = [λ̃w1 , λ̃w2 , . . .]

for a fixed ordering of Lyndon words {w1, w2, . . .} ⊂ L of length up to `. In both
notations each λ̃w is a feature which will vary depending on the sample to log
signature is calculated for.

4.5 Normalization

The last step when preparing data for classification is normalization, specifically
featurewise normalization, which is applied to extracted features. The desired
outcome of featurewise normalization is a set of feature samples where the average
and standard deviation of every feature over the entire set is equal to zero and one
respectively.

If the feature samples are vectors where each index corresponds to some feature,
as is the case with our log signature features, normalization is very simple. If all
feature vectors are gathered as columns in a matrix, the normalized feature vectors
would be the original vectors minus the row means and divided by the column
standard deviations.

For the spectro- and cepstro-scopic features however, there are multiple mea-
surements for each feature per sample, since each row corresponds to a spectral or
cepstral feature. Therefore the statistics are the average and standard deviation
of each row across all spectrograms or cepstrograms. The actual normalization is
similar to the vectorized case, each column in the sample matrices are shifted and
skewed individually with the computed statistics.

31

Chapter 5

Classifiers

The classification problems formulated in this thesis are examples of what is called
supervised classification which is a general procedure were classifiers are constructed
(also called trained) from examples. The training is based on a set of samples
x1, x2, . . . , xN ∈ X (also called the training set) and their corresponding labels
Y1, Y2, . . . , YN ∈ {1, . . . , D}. The specifics of the input space X depends on which
type of features are used but the labels always indicate which class each sample
belongs to (or comes from).

A classifier is in this context just a function or method for performing the mapping

X → {1, . . . , D}

as accurately as possible. This accuracy is both in terms of the examples available
through the test data (samples and labels), and ideally, accurate in terms of data
collected in the future.

We will see that classifiers are often defined in terms of parameters, of which there
are two important categories. Hyperparameters are specified before training and
state, for example, how large the classifier is or how the training should be controlled.
The other kind are simply parameters, sometimes called trainable parameters for
clarity, and as this name suggest these are derived during training such that the
intended mapping to predictions is accurate. A classifier or classification method
can produce very different results depending on its hyperparameters. It is therefore
a fundamental part of supervised classification to find suitable hyperparameters.

5.1 Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are one of the standard approaches to identifi-
cation tasks on speech data [31]. Their suitability arises from their capability to
adapt to arbitrarily shaped density functions. As the name suggests the mixture
components in GMMs are normal distributions. The multivariate normal distribution
in Rd with mean vector µ ∈ Rd and covariance matrix Σ ∈ Rd×d has the density
function

f(x; µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rd,

where |Σ| denotes the determinant of Σ.

33

Chapter 5. Classifiers

A GMM is built up from a weighted sum of M Gaussian density functions, often
called components of the mixture model. Besides a mean vector and covariance
matrix, each component is associated with a positive weight parameter w. The sum
of all weight parameters is equal to one which means that the mixture model itself is
a valid probability distribution on Rd. For brevity we introduce θ = {wi, µi,Σi}Mi=1

as the complete set of parameters in a single GMM. The density function of a GMM
with parameters θ is then given by

G(x | θ) =
M∑
i=1

wi f(x; µi,Σi), x ∈ Rd.

The most demanding operation in GMMs is the inverse of the covariance matrix
which is present in every mixture components density function. To decrease computa-
tional load we assume all covariance matrices to be non-zero only on their diagonals.
While this is a pruning of which densities the GMM can mimic, the setback can be
compensated by adding more mixtures [32, p. 75].

5.1.1 Training

Since a GMM is entirely described by its parameters, fitting a GMM to data is
a matter of finding θ such that the density of the GMM resembles the unknown
distribution of which the data is presumed to be sampled from. Here this is achieved by
maximum likelihood estimation, i.e. finding parameters that maximize the likelihood
of the GMM given a set of training vectors X = {x1, . . . , xN} ⊂ Rd. The likelihood
function is

L(θ | X) =
N∏
n=1

G(xn | θ).

To this end the Expectation–Maximization (EM) algorithm is utilized. The algorithm
is an iterative procedure applicable to a wide array of statistical models. In each step
model parameters are updated so that the model likelihood increases monotonically.
In the case of GMMs there are fairly simple explicit expression for how to update
θ. Exactly how many iterations are needed for convergence depends on the initial
parameters. While initialization of parameters can be done randomly, the implemen-
tation used for GMMs in this thesis uses k-means clustering [33] (calculated with
Elkan’s algorithm [34]).

A two-dimensional example of what a GMM can look like post training is presented
in Figure 5.1. The figure also indicates that the enforced diagonality of covariance
matrices is not an issue when a suitably large number of components is chosen. The
overall shape of the data cluster is captured by the log-density function, which is the
intended outcome.

5.1.1.1 k-means clustering

The goal with using k -means clustering for parameter initialization is to assign every
vector in X to a mixture component. Then wi, µi and Σi can be initialized based on
the vectors assigned to the mixture with index i.

34

Chapter 5. Classifiers

0 5 10 15 20 25
x

0

5

10

15

20

25
y

Data points

0 5 10 15 20 25
x

GMM components

0 5 10 15 20 25
x

-2
9.

51
7

-29
.51

7

-21.186

-21.186

-1
6.

22
2

-1
6.

22
2

-16.222

-12.668

-9
.78

4

-7.437

-5.607

-5.607

GMM level curves

Figure 5.1: An example of how the distribution of cluster of data points in R2 can be
approximated with a GMM constructed with the EM algorithm.

In k -means clustering X is divided intoM non overlapping subsets, called clusters,
C = {C1, C2, . . . , CM} so that the sum of variances from each cluster is minimized.
This can be expressed as the optimization of finding C that minimizes the quantity

M∑
i=1

∑
x∈Ci

‖x−mi‖2.

Here ‖.‖ is the euclidean norm and mi is the mean of points in cluster i.
After optimal clusters have been found the initial parameters for the mixture

component with index i are calculated as

w
(0)
i =

1

N

∑
x∈Ci

1, µ
(0)
i = mi and (Σi)

(0)
j,j =

1

N

∑
x∈Ci

x2 −m2
i for j = 1, 2, . . . , d.

5.1.1.2 EM algorithm

With initial parameters θ(0) = {w(0)
i , µ

(0)
i ,Σ

(0)
i }Mi=1 in place the EM algorithm is used

to refine the parameters [32]. Iteration k of the algorithm begins by calculating the
intermediary probabilities

P
(k)
i,n = f(xn; µ

(k)
i ,Σ

(k)
i), for i = 1, . . . ,M and n = 1, . . . , N

which represent how probable it is that sample xn belongs to mixture i under
the model parameters θ(k). Then the next set of parameters θ(k+1) are computed
according to the update rules

w
(k+1)
i =

1

N

N∑
n=1

P
(k)
i,n , µ

(k+1)
i =

∑N
n=1 xnP

(k)
i,n∑N

n=1 P
(k)
i,n

35

Chapter 5. Classifiers

and (
Σ

(k+1)
i

)
jj

=

∑N
n=1 x

2
nP

(k)
i,n∑N

n=1 P
(k)
i,n

− (µ
(k+1)
i)2 for j = 1, 2, . . . , d.

Stopping conditions are implementation specific. In the package used here the
algorithm stops when the gain from updating parameters falls below a specified
tolerance.

5.1.2 Classification

When using GMMs for supervised classification each class is represented by its
own GMM. For D distinct classes this will results in D different sets of parameters
θ1, . . . , θD which are found when training using data from only the corresponding class.
Then each GMM mimics the distribution of that specific category and prediction is
then a question of seeing which GMM agrees the most with the sample. Suppose a
sample is a collection of N feature vectors on the form X = {x1, . . . , xT} ⊂ Rd. We
define the average log likelihood for the GMM θ as

`(X | θ) =
1

T

T∑
t=1

logG(xt | θ)

which is a more robust measurement of how well the sample fits to the GMM than
the regular likelihood, especially when the number of vectors per sample varies. The
predicted class of the sample X is then the GMM with the highest average log
likelihood, meaning

Ŷ = arg max
i=1,...,D

`(X | θi).

5.2 Artificial Neural Networks

A deep neural network consists of multiple layers of nodes, often referred to as
neurons. Similarly to the neurons of the brain, these neurons can be activated and
produce a response upon receiving an input signal, modeled by some activation
function.

Layers of neurons are linked together so that a signal can propagate forward
through the network. Each connecting link between neurons in two layers is associated
with a weight and a bias. These weights and biases make up the parameters θ of
the network. The purpose of an artificial neural network is to construct a model
of neuron layers, linked through various connection designs and operations, and
adjust its parameters so that the network approximates the true distribution p(y|x).
Thus, neural networks are layered models, and can be expressed as a composition1

of functions, mapping input x to output ŷ as

ŷ = (F (L) ◦ F (L−1) ◦ . . . ◦ F (1))(x),

where the F (1), . . . , F (L) are functions representing the neuron layers, which can be
associated with different designs and operations in order to build the desired type of
network.

1The composition of two functions g(x), f(x) is written as (g ◦ f)(x) = g(f(x))

36

Chapter 5. Classifiers

5.2.1 Network Building Blocks

The layered structure of feedforward neural networks means that as long as each layer
produces output in a space which is the input space of the next layer, different layers
can be combined in different orderings. This section lists the layers and operations
that make up the networks used in this thesis.

5.2.1.1 Fully Connected Layer

The perhaps most basic type of layer is a fully connected, or dense, layer, in which
every neuron is linked to every single neuron in the previous layer. Hence, two
layers ` and ` + 1 with n and m neurons respectively, are connected through a
weight matrix W ∈ Rn×m and bias vector b ∈ Rm. In layer `, the neural network
computes the neuron activations h(`+1) ∈ Rm of the next layer through a function
H(`+1) : Rn → Rm such that

h(`+1) = H(`+1)(h(`)) = G
(
W (`)h(`) + b(`)

)
. (5.1)

G is a function that applies the so-called activation function g : R→ R component-
wise, so that G(x) = [g(x1), . . . , g(xd)]

T .

5.2.1.2 Activation Functions

The activation function is a vital component of artificial neural networks. If g
is chosen to be a non-linear function, this allows the network to learn non-linear
properties of the data. Common alternatives for g include sigmoid functions and
tanh, as well as rectified linear units (ReLU) which are the activation function of
choice in this thesis. A ReLU is defined as

g(x) = max(0, x). (5.2)

This function is non-linear, and have readily available derivatives which are used
when training networks. It is worth noting that (5.2) is technically not differentiable
in x = 0, however in practice this is not an issue since x is unlikely to be exactly zero,
and should it occur it is easily dealt with by defining the gradient to zero at x = 0.

5.2.1.3 Output Layer

As already stated, ReLUs are used for activations in this thesis. In the last layer of
a network, however, a different activation function is applied. As mentioned above,
the final layer corresponds to the class associations. In order to help us make sense
of the output, we apply a softmax function, which allows us to interpret the output
of the network as probabilities. The true distribution y = (y1, . . . , yD) will then be
a one-hot representation, meaning that yd = 1 for a sample that belongs to class
d, and all other elements in y will be zero, since a sample can only belong to one
class. If ô is the output of the network without any activation function, the softmax
function generates the final output ŷ, corresponding to the probabilities of a sample

37

Chapter 5. Classifiers

x belonging to class d through

ŷd =
eôd∑D
j e

ôj
, (5.3)

so that ŷd = P(Y = d|x) where Y denotes the random variable representing class
labels. The artificial neural network thus models the distribution p(y|x, θ), where
the parameters θ are the weights and biases of the network.

5.2.1.4 Convolutional Layers

The layers in the network architecture in Figure 5.2 are called dense or fully connected
layers, since each neuron is connected to all neurons in the previous layer. Hence, the
number of parameters in deep fully connected network architectures grows extremely
fast as the complexity increases. Convolutional layers are a design that exploits
local correlations in the input by convolving small filters with the input. In each
convolutional layer a set of trainable filters, each with its own weights and biases,
are swept across the entire input looking for patterns. While the filters are randomly
initialized, they will be trained to search for patterns that are useful for classification.
Such a setup greatly reduces the number of parameters in the model since the filters
have limited support and are small compared to the input, and the convolution
allows the filters to detect patterns anywhere in input, regardless of position.

During the convolution, the input x ∈ Rd is extended with zeroes around the
edges, in order to maintain the dimensions, so that xi = 0 for i < 1 and i > d. This
procedure also means that we reduce a bias towards the center of the input, since
without this extension of zeros, elements near the edges of x would be included in
fewer filters. In the one-dimensional case for a convolution between an input vector
x ∈ Rd and a filter f ∈ RM , the convolution operation can be written as

(f ∗ x)n =
M∑
m=1

fmxn−m+µ, n = 1, . . . , d

for filter size M and where µ is an offset parameter that takes care of the padding so
µ = M+1

2
for M odd and µ = M

2
for M even. Due to the padding procedure where x

is extended with zeros, we can maintain the dimension after the convolution so that
f ∗ x ∈ Rd.

The convolution can be generalized to any dimension. For x ∈ Rd1×...×dN , a
convolution with a filter f ∈ RM1×...×MN is defined as

(f ∗ x)n1,...,nN =

M1∑
m1=1

...

MN∑
mN=1

fm1,...,mNxn1−m1+µ1,...,nN−mN+µN .

with n1, . . . , nN running from 1 to d1, . . . , dN , respectively.
A convolutional layer can and usually does contain multiple filters, that can be

taught to search for different patterns in the input. For a 2D-image input, a layer
might for instance contain one filter that has learned to look for horizontal edges,
another for vertical edges and a third could be searching for curved patterns. Each

38

Chapter 5. Classifiers

filter in the layer thus give rise to individual outputs, called feature maps, and as
these filters sweep across the image they will produce a high activation when looking
on a subsection of the image that matches their specific patterns. After the filter
convolution, biases are added and finally an activation function is applied to produce
the output of the convolutional layer.

For a two-dimensional input image x ∈ Rd×d, a first convolutional layer with N (1)

number of M -by-M filters will have a kernel W ∈ RM×M×N(1) , which is a tensor that
stores the filters of the layer. The layer will also have biases b ∈ RN(1)×d×d . For filter
n, this layer produces feature map hn ∈ Rd×d, according to

hn = G (Wn ∗ x+ bn) , (5.4)

with Wn ∈ RM×M being the n:th slice of the kernel that represents filter n and bn
the bias of that filter. It is common to have a single bias term per filter, hence all
components in bn ∈ Rd×d will be identical.

The result of the first convolutional layer will be h ∈ Rd×d×N(1) . Hence, for
subsequent convolutional layers, the input will have another dimension determined
by the number of filters in the previous layer (the input layer could also have additional
dimensions, as is the case for RGB-images, for which the input is x ∈ R3×d×d). A
general convolutional layer with N (`+1) filters can thus be described by a function
KN(`+1) : Rd×d×N(`) → Rd×d×N(`+1) that applies (5.4) for all filters in the kernel
W (`+1) ∈ RN(`)×M×M×N(`+1) :

h(`+1) = KN(`+1)(h(`)) =

G(W1 ∗ h(`) + b1)

G(W2 ∗ h(`) + b2)
...

G(WN(`+1) ∗ h(`) + bN(`+1))

5.2.1.5 Max-Pooling

Max pooling is a downsampling technique that is often applied after a convolutional
layer. Feature maps are downsampled by only keeping the maximum value from
regions of the input. This type of non-linear downsampling is called max-pooling.
While in general max-pooling can be done using k-by-k sized patces, a common setup
in image applications is non-overlapping two-by-two max-pooling, which reduces
the image size by a factor of four by only keeping the max value of each 2-by-2
patch. This reduction in data size is one of the reasons for max-pooling, as it makes
computations easier for subsequent layers. Another reason is that this provides
a local translation invariance, since it will not matter where in the pooling patch
the filter has been maximally activated. In turn, this can help the network handle
local noise and variations. Two-by-two max-pooling can be written as the function
P : Rd×d → Rd/2×d/2, with d ∈ N being even:

h
(`+1)
i,j = P (h(`))i,j = max

{
h
(`)
2i,2j, h

(`)
2i,2j+1, h

(`)
2i+1,2j, h

(`)
2i+1,2j+1

}
.

39

Chapter 5. Classifiers

5.2.2 Network Architectures

Using the building blocks of the previous sections, we construct two well-known
types of network architectures. The first is a more basic design and it uses only fully
connected layers. The other type is the convolutional network design, which have
proven very successful in wide-spread applications.

5.2.2.1 Multi-layer Perceptrons

By stacking fully connected layers such as in Section 5.2.1.1, we map some input
feature vector x from the first layer, through intermediate hidden layers, to an output
ŷ. Such a network architecture is referred to as a multi-layer perceptron (MLP). A
MLP network of L layers can thus be written as a series of function compositions

ŷ = (H(L) ◦H(L−1) ◦ . . . ◦H(1))(x).

Figure 5.2 illustrates a MLP using two hidden layers and two output classes. The
network maps an input vector x ∈ R4, through two hidden layers h(1), h(2) ∈ R5 to a
final output vector ŷ ∈ R2, where each hidden layer performs the operation described
by (5.1).

Figure 5.2: Artificial neural network with four-dimensional input and two hidden layers,
mapping to two output nodes. The arrows between the neurons show the structure of the
connections.

5.2.2.2 Convolutional Neural Networks

A convolutional neural network (CNN) are another type of network architecture
which, logically, utilizes the convolutional layers described in Section 5.2.1.4. However,
CNNs aren’t composed solely of convolutional layers. As mentioned, the activations
of the filters in a convolutional layer are called “feature maps”. These feature maps
tells us if and where in the input the filters found their patterns. In this sense,

40

Chapter 5. Classifiers

convolutional layers act like feature extractors, and therefore convolutional layers are
usually followed by one or more fully connected layers, which perform classification
on the features and feature locations, as found by the convolutional layers. An
example of a CNN architecture is shown in Figure 5.3. Using the building blocks of
operations described in this chapter, the network in Figure 5.3 can be written as

ŷ = (H ◦H ◦ P ◦K32 ◦ P ◦K32)(x),

with a flattening of the tensor after the second max-pooling layer. This is necessary
whenever a fully connected layer follows a convolutional layer, since the output of
the latter is a set of 2D-feature maps while the fully connected layer disregards such
structure and simply takes a flattened feature vector as input.

Figure 5.3: Example of a convolutional neural network architecture with two convolutional
layers with max-pooling layers between them. The final two layers of the network are fully
connected layers.

5.2.2.3 Modular Neural Networks

The building blocks of artificial neural networks allows for some freedom in terms
of network architectures. A plethora of options exists; multi-layered perceptrons,
convolutional networks and recurrent networks are perhaps the most common types.
The choice of network type depends on application and the nature of the data.
However, in some cases, multiple types of input data could be available that does not
necessarily fit into a specific kind of network. A system looking to identify people
could make use of a modular network where a convolutional network extracts visual
features from images and another network processes audio such as voice samples. A
modular neural network architecture could then fuse these modules together as in
Figure 5.4, for instance by simply concatenating their output into a single vector
and then proceed with the concatenated vector for classification.

41

Chapter 5. Classifiers

Figure 5.4: Modular network setup for a case when two different types of input are
available. Module A and B process different inputs, and their outputs are concatenated
and fed to a decision module that performs classification.

5.2.3 Training

Once a network has been designed, we want to modify the weights and biases of
network in order to learn a good approximation of the true distribution p(y|x). This
process is known as training.

Letting y and ŷ be the true and predicted label distributions for all samples
x1, x2, . . . , xN in our the data set that we will use to train our model, we begin by
defining our cost function as the cross entropy error function

C(θ;y, ŷ) = − 1

N

N∑
i=1

∑
d

y
(i)
d log(ŷ

(i)
d), (5.5)

where i denotes a sum over all N samples in the so-called training data set. The cross
entropy has several properties that makes it an attractive choice as cost function.
Since y(i)d and ŷ(i)d are probabilities, C is always positive, and will give a high cost if
ŷ
(i)
d is small when y(i)d = 1. Furthermore, this cost function will give zero cost only if
ŷ exactly equals y. Even if the network were to predict the correct label for a sample,
a cost would be present unless the prediction was done with 100% confidence, i.e.
ŷ
(i)
d = 1. This means that the cross entropy cost function can distinguish between a
network that predicts the correct labels with high margin and one that just barely
made the right guess. The logarithm in (5.5) always defined, since the network will
never hypothesize that a class has zero probability thanks to the softmax function
(5.3) in the output layer.

We are now looking to adjust the weights, filters and biases that constitute θ in
order to minimize the cost function for our training set. The gradients ∇θC can be

42

Chapter 5. Classifiers

be found through the so-called backpropagation algorithm, in which we find gradients
by chaining partial derivatives of the cost function w.r.t all trainable parameters θ
in the network, such as ∂C

∂W (`) and ∂C
∂b(`)

. The cost can then be minimized using some
gradient descent method. Unfortunately, computing the full gradient is in practice
very expensive. The cost function (5.5) contains all samples in our training data
set, so finding the full gradient would require us to feed our entire data set through
the network, which is infeasible in many applications due to the size of data sets.
The solution is the stochastic gradient descent method, where the cost function is
approximated by the cost Ĉ of a small batch of randomly chosen samples with labels
yb, ŷb:

Ĉ(θ;yb, ŷb) = − 1

B

B∑
i=1

∑
d

y
(i)
d log(ŷ

(i)
d), (5.6)

where B is the size of the batches, chosen so that B << N . This circumvents the
need for repeatedly going through a large training set at every step, and also provides
stochasticity that helps the optimization escape local optima. During training,
batches are continuously fed to the network. A full sweep of data set, i.e. the entire
data set has been passed to training, is referred to as an epoch. During training, it
is common to perform several epochs in order to reach high performance.

For training, we use the Adaptive Moment Estimation (Adam) algorithm [35],
which is a stochastic gradient descent technique. The name stems from the fact that
it utilizes an adaptive learning rate based on past gradients from previous iterations.
Given the gradient gt = ∇θĈ(θt−1;y, ŷ) at iteration t, the Adam algorithm calculates
first and second moments mt and vt as

mt = β1mt−1 + (1− β1)gt, t ∈ N (5.7)
vt = β2vt−1 + (1− β2)g2t , t ∈ N (5.8)

where β1 and β2 are hyperparameters of the algorithm. Adam then updates the
parameters θ with some learning rate α, according to the update rule

θt = θt−1 − α
m̂t√
v̂t + ε

, t ∈ N (5.9)

The number ε is a small constant included for numerical stability. The moments m̂t

and v̂t are bias-corrected versions of mt and vt, for details see [35].
The update (5.9) is a combination of the current gradient and previous updates.

The moments counteract oscillations in the path of convergence by providing an
inertia that drags the updates in the directions of gradients from earlier time steps,
which leads to faster convergence.

5.2.3.1 Regularization

One of the major issues with artificial neural networks is their proneness to overfit to
the training data, which gives poor generalization abilities. This is explained in more
detail below but in short a network which performs too well on the training data
might not be the best network overall. To combat this, regularization techniques are
applied to networks, or components in networks.

43

Chapter 5. Classifiers

One such technique is L2-regularization, which can be applied to some or all
parameters (weights and biases) in a network. The regularized parameter’s L2-
penalty is added to the cost function to discourage the network from growing too
large parameters. If some subset of the parameters in a network θr ⊂ θ are L2-
regularized this means that the cost function (5.6) is changed to

Ĉ(θ;yb, ŷb) = − 1

B

B∑
i=1

∑
d

y
(i)
d log(ŷ

(i)
d) + α||vec(θr)||2,

where θr, which contains all L2-regularized weights matrices and filters, is flattened
to a vector its norm added as a penalty term. The influence of the penalty is
controlled through the parameter α. This is to keep individual filters or weights from
dominating the output of the network, which counteracts overfitting.

Dropout [36] is another form of regularization where neurons in a network are
randomly dropped during training. Neuron dropping is controlled by the drop rate
P(d) ∈ (0, 1) which can be specific for each layer or even each neuron. The dropping
of neurons occur at the start of each batch, and the output of all dropped neurons
are then fixed at zero. After parameters have been updated all neurons are brought
back online, then a new set of randomly selected neurons are dropped for the next
batch. This forces the network to train on randomly selected sub-networks of itself at
each iteration, which again keeps individual features or weights from dominating the
decision process. During evaluations of the network, however, the network should
use all its capacity and so all neurons are made available once training is complete.

44

Chapter 6

Experiments

In this chapter we present and explain the implementations for experiments outlined
in Section 2.3. There are three main categories of experiments: hyperparameter
calibrations for single word classifiers, construction of multi-word classifiers and
lastly testing the performance of a classifier trained with single word utterances
on spontaneous speech. Before the details of each experiment are given, some
prerequisites are presented.

6.1 Generalization

When performing classification with trainable models, one of the most important
goals is to construct a model which can accurately classify data it has not seen before.
This is the concept of generalization. To test generalization it is necessary to refrain
from training classifiers on all available data and instead set aside some data for
evaluation, emulating the concept of unseen data. Similarly, any pre-processing steps
which involve aggregated information about the data, such as normalization, is only
calculated from training data, but applied to all data.

Furthermore, when the performance of multiple versions of a classifier (differing
in hyperparameters) are compared, the winner’s accuracy will have a selection bias.
Essentially the classifier which performs the best on the held out data, might do so
because of some intrinsic property of that specific evaluation set.

Thus it is necessary to further split the data, setting aside yet another set which the
winning model can be evaluated on, producing a fair performance estimate. In total,
data is split into three sets: training which is used when training classifiers, validation
used for comparing their performance, and testing which accurately measures the
performance of the model with the best validation performance. All splits are made
randomly. Here a typical 70% for training and 15% for validation and testing each is
used if nothing else is specified.

In all different experiments of this thesis, there are multiple samples coming from
the same speaker. For example in single word experiments each subject leaves on
average five utterances of each word. Therefore it is necessary that all splitting of
the data is made based on speakers and not samples, meaning that all samples from
a speaker must be in the same subset (training, validation or testing). If a certain
speaker has samples present in both training and evaluation sets, the properties of
their speech is not strictly unseen and result will be skewed.

45

Chapter 6. Experiments

6.1.1 K-Fold Cross-Validation

One problem when splitting data in this fashion is that the outcome, i.e. the test
accuracy, is dependent on which data happened to be chosen as test data. If a
particularly difficult or simple sample ends up in the validation or test set, it might
skew the results.

K-fold cross-validation is a method for mitigating this variance dependent on
splits. Instead of just splitting data once, the data is randomly divided into k subsets.
One at a time, the subsets take turns being the evaluation set, with the other k − 1
subsets making up the training set. This means every sample will be in the evaluation
set exactly once, and the average of the validation performance for all k folds is a
more robust performance measure. This procedure is most commonly used after a
testing set has been set aside and the remaining data is to be divided into training
and validation. But one can also go a step further and cross-validate the test set
and the validation set, as a sort of nested k-fold cross-validation.

6.2 Metrics

To measure performance of trained classifiers we employ the accuracy score as metric.
A trained classifier can map a set of samples x1, . . . , xN to either predicted labels
Ŷ1, . . . , ŶN or predicted class densities ŷ1, . . . , ŷN . If a classifier produces densities
we pick the most probable class as the prediction by

Ŷi = arg max
d=1,...,D

yi,d for i = 1, . . . , N.

The accuracy score of the classifier on the dataset is then the percentage of correctly
predicted labels

100

N

N∑
i=1

IYi=Ŷi .

When predicting class labels, every error will, from the point of view of a class
d, be interpreted in one of two possible ways. Either a sample that is of class d is
predicted to be of some other class, called a false negative, or a sample which is
not in class d is mistakenly predicted as such, called a false positive. To quantify
these errors we introduce the metrics recall and precision, which we express using
the indicator function I.

The recall of a classifier with regards to class d is the proportion of samples in
category d that are also classified as d, given by∑N

i=1 IYi=Ŷi=d∑N
i=1 IYi=d

.

As such recall puts a number on how well the classifier covers all samples from the d
category.

Precision on the other hand quantifies the false positives of the classifier with
respect to some class d. It is defined as∑N

i=1 IYi=Ŷi=d∑N
i=1 IŶi=d

46

Chapter 6. Experiments

which is the proportion of samples predicted as class d that are truly belonging to
class d. A high precision would indicate that samples assigned the label d most likely
actually belongs to that class.

6.2.1 Confusion Matrix

The confusion matrix is a way of visually illustrating the precision and recall for a
classifier regarding all classes at the same time. It also shows exactly which classes
are mistaken for each other by the classifier.

In a classification problem with D classes the confusion matrix is a D×D matrix
where rows indicate the true label of samples, and columns indicate predicted labels.
Each element Ci,j in a confusion matrix is how many samples from class i were
predicted to be from class j. On this form a perfect classifier would only be non-zero
on the diagonal.

We define the normalized confusion matrix as the confusion matrix but normalized
such that each row sums to 1. The normalization means that if an element on the
diagonal is equal to one, then all samples from that class are predicted to be in
that class, indicating perfect recall. However samples from other classes could be
mistakenly predicted as belonging to this class as well, meaning precision is not
necessarily perfect in this case.

6.3 Single-word Calibration

As stated above the calibration of each classifier to single word dialect classification
is done by focusing on one of the calibration words dörr, flytta, kaka and lär at a
time. For each word all utterances available in the wordlist data is extracted with
information about speaker id. and dialect. All utterances shorter than one frame
(25ms) were discarded since they cannot be used to construct features. On the
other end all samples longer than 2 seconds were discarded since they were found to
often contain irrelevant additional sound bedsides the sought after calibration word
utterance. For each of the calibration words there are around 1400 samples.

To mitigate the variance in test accuracy 5 fold cross-validation is employed,
creating five non overlapping test sets. The remaining data in each fold is then
split once more into five, where each fifth takes turns being the validation set. The
remaining four subsets in the inner splits are training data. Each hyperparameter
combination of a classifier is fit and evaluated on the five training and validation
data pairs. From this an average accuracy on the validation sets is obtained for each
hyperparameter combination, and the best one indicates the winner. This whole
procedure is then repeated for all five test folds, producing five (possibly different)
winning setups.

For each classifier, an overall winner is picked manually based on either most
frequent wins or consistently high ranking among all five folds. The average per-
formance of this calibrated version of each classifier on the test folds can then be
used to compare the classifiers. Some of the classifiers do not need the validation set
during training, therefore their calibrated winners are trained on the remaining data
in each test-fold, i.e. no splitting to training and validation sets.

47

Chapter 6. Experiments

6.4 Multi-word Classification

To construct multi-word ensemble classifiers we reuse the optimal setup of each
classification method as per the calibration described above. The procedure is the
same for all classifiers: for each of the 43 wordlist words an independent calibrated
classifier are trained on samples of only that word, which is extracted in the same
fashion as for the calibration words. Then an ensemble classifier which uses the
predicted class probabilities from multiple single word classifiers is constructed.
Which single word classifiers to include is decided by forward selection.

The major difference between a single- and a multi-word classifier is that the
latter takes an n-tuple of input samples, one for each of the n internal single word
classifiers it consists of. Our implementation of a multi-word classifier predicts labels
by sending each sample in the input tuple to the corresponding internal single word
classifier. This produces n different class distributions that are merged by summation
and the predicted label for the input tuple is then the argmax of the sum. This
procedure is straightforward for neural networks, which use a softmax activation to
produce output in [0, 1]D. When GMMs are used in multi-word classifiers they are
redefined to instead output the average log likelihood of each internal distribution
given the sample, which can be summed in the same manner as a density.

6.4.1 Splitting

While the single word classifiers used as building blocks in the multi-word classifier
are trained independently (and therefore can be done in parallel), evaluation on
testing and validation data must be done with n-tuples of input samples. Exactly
which words will be included is needs to be set beforehand, since it is necessary
to be able to evaluate the classifier using all 43 words. For this to be possible the
validation and test sets must be constructed so that for every speaker, at least one
sample for each of the 43 words is present.

Therefore the validation and test sets are constructed around speakers rather
than samples, so that each item in either set consists of utterances for all 43 words
from a single speaker. In Table A.1 we see that there are not enough speakers in
the data uttering all 43 words to enable folded cross-validation, for example in the
Jämtland dialect only 33% of speakers have uttered all 43 words at least once. But
there are enough speakers uttering all words for a static split with 15% validation
and 15% test data. In fact there are a large enough subset of speakers uttering all
words at least twice, meaning we can construct evaluation sets for the multi-word
classifiers as follows.

For each dialect, approximately 30% of the number of speakers are selected from
the speakers with at least two samples per word. These are divided evenly into
test and validation speakers. This selection and division of speakers is performed
exactly once and every multi-word simulation loads the same division. This stops
any variance in results from including different people in validation/testing between
simulations.

From this, test and validation sets are constructed so that for each speaker, two
series of all 43 words are randomly sampled without replacement from their available

48

Chapter 6. Experiments

utterances. The limiting of each speaker only supplying two utterances per word
is to keep a balance between dialects and speakers. This sampling of utterances,
together with the stochasticity in classifier training, introduces randomness between
simulations and some variance is expected between runs for multi-word classifiers.

Lastly the training sets are specific to each word, and therefore is unaffected if
utterances for all 43 words aren’t available for some speakers. There are 43 sets of
training data, each one containing all utterances of a word except those coming from
speakers selected for testing or validation. These training sets are what is used to
initialize and train all 43 single word classifiers. Then comes the question of how to
best combine them.

6.4.2 Forward Selection

To select an optimal subset of words for dialect classification we implement forward
selection. For this we define two sets of words: W+ which is initially empty, which
holds the words added to the multi-classifiers and W− which holds the words not yet
added to the classifier, initially containing all 43 words. We define A(W) to be the
accuracy score of multi-word classifier using the set of words W . Forward selection
is the iterative procedure where in each step the word w ∈ W− maximizing

A(W+ ∪ {w})

is added to W+ and removed from W−. This will grow the set of words one word
at a time, and by saving the validation accuracy for the chosen set of words at
each iteration as ai where i goes from 1 to 43, we study how adding words affects
performance.

To mitigate the mentioned randomness between runs this procedure is repeated
three times for each classifier used as basis in multi-word classification. This means,
that three times over, data is initialized, single word classifiers are trained, combined
through forward selection, and the best model is evaluated on the test set.

6.5 Spontaneous Speech Classification

As we saw in Table 2.2, some dialects do not have sufficient annotation coverage
for testing the performance on spontaneous speech. Therefore we restrict ourself
to only three dialects: Jämtland, Sydfinland and Skåne. In each of these dialects
around 30% of speakers have an annotated spontaneous interview, which means
they can be used in the test and validation sets for this experiment. These speakers
are split randomly into testing and training. For each such speaker, all annotated
sound samples are extracted and trimmed if necessary to a maximal length of 10
seconds. For the remaining 70% of speakers, all utterances of the 43 wordlist words
are extracted and used in the training set.

Of course, this is an easier problem than a 7-way classification, and earlier results
will not be comparable. To get a fair reference the calibrated classifiers are trained
and evaluated for each calibration word, using the same split of speakers as above
on the 3-way dialect classification.

49

Chapter 7

Results

7.1 Hyperparameter Calibration

Here we present which classifiers are used with which features for dialect classifica-
tion. We also identify which tuneable hyperparameters each classifier and feature
combination has.

7.1.1 Gaussian Mixture Models

As a dialect classifier, GMMs are combined with MFCC +SDC features. This
combination is henceforth referred to in short as GMM. As MFCC feature vectors
are coefficients of an orthogonal (cosine) basis, the assumption of diagonal covariance
matrices made when defining GMMs is plausible. Of course the vectors might not
be perfectly decorrelated, depending on properties of the underlying data.

The varying length of samples is not an issue for a GMM classifier. In training
all samples in each dialect are combined when constructing that dialect model. And
in prediction the average log-likelihood is insensitive to varying length.

The hyperparameters specifying this classifier are the number of components
M in each dialect mixture model, and the quadruple (N, n, P, k) which states how
MFCC and SDC vectors are generated, as explained in Section 4.3.1. A filterbank
with 20 filters were used when generating MFCC features. Table 7.1 shows which
values of hyperparameters were tested, all possible combinations of these were trained
and evaluation according to the nested folding procedure outlined above. The table
also shows which hyperparameter setup performed on average the best. Most notably
the smallest number of mixture components performed the best, whereas in other
dialect identification studies 256 (and even up to 2048 when a lot of data is available)
mixture components have been used [8]. Most likely this is due to utterances of single
words makes up less complex distributions than spontaneous speech and therefore
not as many mixture components are needed. As indicated larger GMMs are also
more common in situations where more data is available for training them.

7.1.2 Multilayer Perceptron

As a classifier for log signature feature vectors (based on MFCC paths) we have
chosen a Multilayer Perceptron. The maximum log signature level is fixed to ` = 3
and path dimension is fixed to N = 10. This results in vectorized log signatures that

51

Chapter 7. Results

Table 7.1: Tested hyperparameters when calibrating the Gaussian Mixture Model classifier
for single word dialect classification.

Parameter Values

M 64, 128, 256
N 8, 10, 12
n 1, 3, 5
P 6, 10
k 1, 2, 3

are elements of R385. During training the MLP uses 32 samples per mini-batch and
all weights and biases are L2-regularized with the hyperparameter α.

In hyperoptimzation, network architecture, α and the number of training epochs
are varied. Networks were designed so that the first hidden layer had 64, 128, 256
and 512 neurons. All consecutive hidden layers then has half the amount of neurons
as the previous one. Following this pattern networks two, three and four layers deep
were constructed. Each network architecture was combined with all combinations of
α = 0.0001, 0.001, 0.01 and Nepochs = 100, 500, 1000 when evaluated according to the
nested cross-validation scheme.

The results of this hyper-optimization were more inconclusive, with many different
network architectures performing the best on different folds, although compared to
the other classifiers they all performed poorly. The network with two hidden layers
of size 512 and 256 was chosen together with α = 0.001 and Nepochs = 500 to play
the role of calibrated multilayer perceptron.

7.1.3 Convolutional Neural Network

Convolutional neural networks are an extension of MLPs, and as such they have even
more hyperparameters. Combined with longer training times, thorough parameter
sweeps are not feasible. Instead, a number of setups were chosen for testing.

The number of convolutional layers was varied from a single layer to three
consecutive layers, followed by two or three fully connected layers. After each
convolutional layer, a 2-by-2 max-pooling layer was implemented. Filter sizes of
5-by-5, 10-by-5 and 5-by-10 were tested, and the number of filters in the convolutional
layers were either 64, 32 or 16. Initial learning rates of 0.0001 and 0.001 were tested.
All networks were designed with L2-regularization on the fully connected layers, and
a drop rate of 0.5 on all fully connected layers during training. All setups used ReLU
activation functions for all hidden layers.

Performances were similar for all tested designs.The network with two convo-
lutional layers with 32 and 16 filters respectively, followed by two fully connected
layers with 512 and 7 neurons, gave the highest accuracy.

52

Chapter 7. Results

Table 7.2: Average test set classification accuracy over 5-fold cross-validation on the four
calibration words for hyperparameter-calibrated classifiers.

Classifier Features
Calibration word performance (avg. %)

dörr flytta kaka lär

GMM MFCC + SDC 61.3 60.3 61.4 55.7
MLP Log signature 42.5 41.7 46.0 39.3
CNN MFSC 55.4 56.3 58.7 49.7

Modular MFSC +Log Sig. 56.7 54.4 59.6 52.6

7.1.4 Modular Network

The modular network was not optimized for any parameters, partially due to time
restrictions but also the even larger number of parameters available to choose from.
Instead, the structure was chosen from the winning convolutional neural network
along with a MLP structure of two hidden layers with 256 and 7 neurons each.

Since the modular network contains more parameters than the winning convolu-
tional network, dropout regulation was used not only on the fully connected layers
but also on the last convolutional layer.

7.2 Performance on Calibration Words

We now want to compare the performance of our calibrated classifier setups. It was
found that performance of single word classification varied strongly between runs,
depending on how data was split, which is the motivation for employing folded cross-
validation. For example the test accuracy of the calibrated GMM varied between
52.2% and 60.0% on the five folds.

The average accuracies over folds for calibrated classifiers are shown in Table 7.2.
The Gaussian mixture models gave better performance than any of the networks,
outperforming the convolutional neural network with 3–g6%. While the higher
accuracy of the GMM is consistent for all four words, the CNN and the modular
net are quite close. A reason for this could be that GMMs are well known and fine
tuned as a method, whereas CNNs are newer in this application and the optimal
structure of layers might not have been found. Furthermore, the CNN could also
suffer more than the GMM from the relatively small amount of available data.

The multilayer perceptron, however, lagged behind the GMM on average by 17.3%
over the four words. This large discrepancy among otherwise similar performances
could indicate that the log signatures passed to the MLP are not suitable for one-word
dialect classification. A convolutional network based on log signatures is unlikely to
perform better than the MLP since the log signatures do not contain local correlations,
which CNNs is designed to capture.

Figures 7.1 and 7.2 show normalized confusion matrices from classification meth-
ods based on utterances of the word kaka with a GMM and CNN respectively
(numerical versions of these matrices can be found in Appendix A). The confusion

53

Chapter 7. Results

Nor
rb

ott
en

Jäm
tla

nd

Syd
fin

lan
d

Dala
rn

a

Mäla
rd

ale
n

Väs
tku

ste
n

Skå
ne

Norrbotten

Jämtland

Sydfinland

Dalarna

Mälardalen

Västkusten

Skåne

GMM on kaka

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.1: Normalized confusion matrix for a Gaussian mixture model on the word kaka.

matrices are basically in agreement between the two classifiers. Both classifiers reach
highest precision and recall for Skåne, suggesting that this is the most distinguishable
dialect. Also, Norrbotten and Jämtland have high confusion between them, which is
in agreement with the dialect division done by Wessén as discussed in Section 2.2,
where these two regions are considered to share the same dialect.

7.3 Multi-word Performance

In Table 7.2, the word lär yields significantly lower performance than the other
three. This indicates that some words are more suitable than others for use in dialect
classification, which is the motivation behind multi-word classifiers.

Each of the four classifiers were implemented as root for an ensemble classifier
over words. As mentioned the experiment was repeated three times for each classifier
and moderate variance in results was observed. The average results are shown in
Figure 7.3. It appears that using multiple words during classification significantly
improves classification performance.

Most surprisingly, the multilayer perceptron combined with log signatures, which
had the worst performance on calibration words, catches up with the other ensembles
in terms of validation accuracy. This behavior is similar to that of [4], where an
accuracy of 76.92% was reported for seven North American dialects (TIMIT) using
five words, with the best one-word classifier reaching 41.35% accuracy.

Table 7.3 shows the average number of words picked by forward selection and
the average validation and test accuracy for the picked multi-word classifiers. The
results suggests that the MLP classifier using log signature features benefit to a
higher degree from the information in multiple words. While the GMM performed

54

Chapter 7. Results

Nor
rb

ott
en

Jäm
tla

nd

Syd
fin

lan
d

Dala
rn

a

Mäla
rd

ale
n

Väs
tku

ste
n

Skå
ne

Norrbotten

Jämtland

Sydfinland

Dalarna

Mälardalen

Västkusten

Skåne

CNN on 'kaka'

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.2: Normalized confusion matrix for a convolutional neural network on the word
kaka.

best on the test set, the difference in accuracy compared to the other classifiers is
barely significant. The GMM also required the fewest number of words, but again
only with a small margin except for the MLP.

All four classifiers benefit from the ensemble setup with multiple words, reaching
the best performance using around 15 words, after which accuracy actually starts
dropping. This indicates that adding some words merely confuse the classification.
While some words have higher individual accuracy than others, the forward selection
doesn’t simply choose the best individual words, which means that it is not neces-
sarily the words with the lowest individual accuracy on their own that causes this
degradation. One run chose sitt as the fifth word, while leaving gata at 34:th place,
despite the words having an individual accuracy of 42% and 61% respectively. Hence,
word combinations seem to matter for the classifiers. This suggests that different
words can carry complimentary information that is valuable for dialect classification.

Table A.3 shows the order in which the forward-selections chose each word,
averaged over three runs for each classifier. The fact that three of the calibration
words are in the top 9 most chosen words indicates that results can be skewed.
Because the calibration words were used to tune the classifiers, they are unfairly
favored. A more robust method for a multi-word classifier would not just train a
classifier for each word, but also tune it individually.

A normalized confusion matrix for a multiword classifier using GMMs can be
seen in figure Figure 7.4 (again, a numerical equivalent can be found in Appendix A).
Interestingly enough, Skåne is no longer the easiest dialect to classify, and the
confusion between Norrbotten and Jämtland is much less pronounced. A notable
trend here would be that many persons are incorrecly predicted to come from Dalarna.

55

Chapter 7. Results

0 10 20 30 40
Number of words

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Av
g.

 v
al

id
at

io
n

ac
cu

ra
cy

 (%
)

Forward selection over words

GMM
MLP
CNN
BNET

Figure 7.3: Average validation set accuracy over three independent training runs for
ensemble classifiers combining multiple single-word classifiers via forward selection.

Table 7.3: Average classification accuracy and number of words selected over three random
initializations of multiword data.

Classifier
Average forward select results

Num. of words Val. acc. (%) Test acc. (%)

GMM 12.0 88.6 80.1
MLP 19.3 89.1 79.3
CNN 14.3 84.9 78.0

Modular 13.7 87.4 79.7

56

Chapter 7. Results

Nor
rb

ott
en

Jäm
tla

nd

Syd
fin

lan
d

Dala
rn

a

Mäla
rd

ale
n

Väs
tku

ste
n

Skå
ne

Norrbotten

Jämtland

Sydfinland

Dalarna

Mälardalen

Västkusten

Skåne

Multiword GMM

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.4: Normalized confusion matrix for a multi-word GMM using a forward selected
set of words.

7.4 Other Signature-based Implementations

During the course of this project, several signature-based implementations were
investigated, however, initial results were not promising. In [14], signatures were
calculated on moving windows along a path. Inspired by this, we implemented a short-
time signature transform in combination with convolutional networks, analogously
to the short-time Fourier transform in Section 4.1, but classification was very poor.

Signatures were also computed from MFSCs, rather than MFCCs as in the results
above, but yet again no increased performance was observed. Trials were run using
both GMMs and MLPs. Signatures were investigated as a feature to provide temporal
information for GMMs by replacing shifted delta-cepstra with log signatures. Paths
derived from lead-lag transforms [19] were attempted, but generally led to very low
classification accuracy.

In [15] the path is divided into sub-paths, motivated by the idea that multiple
signatures with few levels capture more information than one single signature with
many levels. This was implemented in combination with MFCC features and
convolutional networks but did not surpass the performance of a single large signature.

7.5 Spontaneous Speech Classification

For the simplified problem of discerning the dialects Jämtland, Sydfinland and Skåne,
the calibrated classifiers gained much higher accuracies. A calibrated GMM reached
classification accuracies of 87.6% on dörr, 75.2% on flytta, 76.1% on kaka and 67.5%
on lär. This is a significant gain in accuracy compared to the classification with

57

Chapter 7. Results

secen dialects, which is to be expected. All of these classifiers had test accuracies
that were around 10% higher than their validation accuracies. This indicates that
this specific split caused the test set to be easier, and highlights the importance of
folded cross validation, which unfortunately is impossible with the current data.

When training a GMM on all 43 words, it is necessary to increase the number of
components. Rudimentary hyperparameter optimization showed that 1024 mixture
components were suitable for this task, achieving a validation accuracy of 59.0%.
The test accuracy for this GMM was 69.0%. While this is not on par with the single
word classifiers, it shows that there is at least some overlap in dialectal features
between utterances of words and spontaneous speech.

7.6 Effect of Speaker Identity

As discussed in Section 6.1, the experiments in this thesis was conducted by dividing
samples in the data into training, validation and test sets based on speaker identity.
However, the relatively low number of unique speakers leads to high variance in
the experiments, as accuracy can be heavily influenced by a difficult speaker being
present in the test or validation set. This suggests that the number of speakers is
important to achieve decent classification.

In fact, speaker identity appear to be a very significant factor. During this
investigation, a single CNN was trained and evaluated on all 43 wordlist words.
Classification on data splits that allows for samples from a particular speaker being
present in training, validation and test sets reached over 90% accuracy for seven
dialects. While repeated utterances of the same word by the same speaker are very
similar, as shown in the two upper panels in Figure 7.5, and therefore easily identified
if such utterances are found in both training and test sets, such cases does not explain
the entire gain in accuracy. This was illustrated by an experiment in which data
again was split so that we allowed the same speakers to be present in all three sets,
but now restricted utterances of particular words to be present only in one set. This
experiment reached close to 80% for seven dialects, which suggests that the models
more easily picks up on speaker identity itself, even when it is exposed to words that
it has never encountered before.

In Figure 7.5, it is perhaps possible that the pronunciations of the vowel a, visible
as a tilted V -shape in the spectrogram, are similar for the samples from Speaker
1 (all but the bottom right pane). Such local features could feasibly explain why
speaker identity appears to be a dominating source of variance in our data set.

58

Chapter 7. Results

0 10 20 30 40
0

10

20

30

40
Speaker 1: 'jaga'

0 10 20 30 40 50
0

10

20

30

40
Speaker 1: 'jaga'

0 10 20 30 40 50 60
0

10

20

30

40
Speaker 1: 'saker'

0 10 20 30 40 50
0

10

20

30

40
Speaker 2: 'jaga'

Figure 7.5: Four word utterances. The two upper figures are from the same speaker
uttering the word jaga. The bottom left is also from this speaker, uttering saker. Bottom
right is again jaga but from a different speaker.

59

Chapter 8

Conclusions

The results of this thesis suggest that classification of Swedish dialects based on
acoustic features is possible and can be done with similar performance as in other
languages. As the SweDia2000 project continues to annotate their database, it is
not unfeasible that future studies can also test this on entirely spontaneous data.
Furthermore, state of the art dialect classifiers use combinations of the different
features such as the lexical or prosodical features, whereas here only acoustic ones were
used. Such a pooling of information about samples will very likely push performance
even further.

In this thesis we have only looked at dialect classification itself. It would be of
interest to evaluate the intended boost in speech recognition performance in Swedish
that would come from tailoring automatic speech recognition methods for each dialect.
Using such a system it would also be possible which dialects (and which formulations
of them) are distinct enough

While the established Gaussian mixture models and convolutional neural networks
were superior for single-word classification, the relatively simple feedforward network
applied to the log signature of Mel-frequency cepstrums caught up in performance
as a multi-word classifier. This is both remarkable and suspicious, and may indicate
that a larger data set should be used to verify the result. Many different methods for
incorporating signatures or log signatures into speech features were tested without
success, but the search has by no means been exhaustive. It is certainly possible
that the optimal way of utilizing signatures is yet to be discovered.

Across the board, the experiments in this thesis has been formulated with the
available data in mind. In the end, many experiments were on the edge of what is
acceptable in terms of data size. It would therefore be of interest to expand the
dialect regions, most likely resulting in more robust experiments. This would at the
same time decrease the margin between them, and depending on the outcome of
classification on such regions, the idea of smooth transitions between dialects can be
tested.

61

Appendix A

Tables

63

Appendix A. Tables

Nor
rb

ott
en

Jäm
tla

nd

Syd
fin

lan
d

Dala
rn

a

Mäla
rd

ale
n

Väs
tku

ste
n

Skå
ne

Norrbotten

Jämtland

Sydfinland

Dalarna

Mälardalen

Västkusten

Skåne

.57

.27

.00

.05

.05

.06

.01

.21

.55

.00

.10

.02

.10

.02

.00

.03

.65

.18

.11

.01

.01

.02

.04

.10

.53

.20

.04

.06

.02

.02

.03

.11

.72

.08

.02

.07

.11

.00

.09

.18

.50

.06

.01

.01

.00

.03

.05

.10

.80

GMM on kaka

Figure A.1: Normalized confusion matrix for the Gaussian mixture model on the word
kaka.

Nor
rb

ott
en

Jäm
tla

nd

Syd
fin

lan
d

Dala
rn

a

Mäla
rd

ale
n

Väs
tku

ste
n

Skå
ne

Norrbotten

Jämtland

Sydfinland

Dalarna

Mälardalen

Västkusten

Skåne

.57

.33

.00

.00

.00

.07

.03

.15

.67

.00

.00

.03

.03

.12

.00

.09

.77

.09

.05

.00

.00

.04

.02

.16

.56

.20

.00

.02

.00

.02

.02

.14

.73

.09

.00

.04

.08

.00

.02

.20

.56

.10

.04

.00

.00

.06

.02

.10

.78

CNN on 'kaka'

Figure A.2: Normalized confusion matrix for the Convolutional network on the word
kaka.

64

Appendix A. Tables

Nor
rb

ott
en

Jäm
tla

nd

Syd
fin

lan
d

Dala
rn

a

Mäla
rd

ale
n

Väs
tku

ste
n

Skå
ne

Norrbotten

Jämtland

Sydfinland

Dalarna

Mälardalen

Västkusten

Skåne

.77

.09

.00

.05

.00

.09

.00

.10

.70

.00

.00

.05

.15

.00

.00

.00

.80

.15

.05

.00

.00

.00

.00

.00

.96

.00

.04

.00

.00

.00

.00

.04

.96

.00

.00

.00

.00

.00

.09

.05

.86

.00

.00

.00

.00

.09

.00

.00

.91

Multiword GMM

Figure A.3: Normalized confusion matrix for a multi-word GMM using a forward selected
set of words.

Table A.1: The number of unique speakers in each dialect region as well as information
about how many speakers in each dialect provides at least n utterances for every wordlist
word.

Dialect
Unique
speakers

n = 1 n = 2 n = 3 n = 4 n = 5

Norrbotten 79 30 (38.0%) 24 (30.4%) 20 (25.3%) 16 (20.3%) 4 (5.1%)
Jämtland 72 24 (33.3%) 24 (33.3%) 22 (30.6%) 17 (23.6%) 5 (6.9%)
Sydfinland 70 33 (47.1%) 30 (42.9%) 28 (40.0%) 2 (2.9%) 0 (0.0%)
Dalarna 87 43 (49.4%) 41 (47.1%) 32 (36.8%) 6 (6.9%) 0 (0.0%)
Mälardalen 82 71 (86.6%) 71 (86.6%) 61 (74.4%) 6 (7.3%) 0 (0.0%)
Västkusten 75 61 (81.3%) 60 (80.0%) 58 (77.3%) 28 (37.3%) 2 (2.7%)
Skåne 75 62 (82.7%) 61 (81.3%) 60 (80.0%) 28 (37.3%) 2 (2.7%)

65

Appendix A. Tables

Table A.2: Number of utterance available per word in each dialect in the wordlist category.
Only words occurring frequently across all seven dialects are included.

Västk. Sydfin. Jämtland Skåne Norrb. Dalarna Mälard.

lott 741 282 373 698 292 336 328
lär 387 302 456 383 411 429 411
dagar 384 271 384 403 353 363 357
kaka 335 266 414 347 360 358 357
dörr 343 290 382 330 333 365 354
flytta 375 283 365 339 340 348 346
panna 333 292 374 317 376 346 355
saker 347 262 387 332 360 351 352
blöt 350 257 380 354 341 361 343
käke 347 274 385 327 356 361 333
fara 345 264 384 317 348 377 347
nät 338 293 353 332 349 358 359
leta 353 277 369 316 346 369 350
särk 318 301 402 331 342 347 332
lat 335 284 366 341 338 358 349
sitt 346 268 364 332 355 342 363
söt 356 277 367 346 349 344 327
nagel 350 257 363 333 362 348 352
lass 337 279 367 320 347 345 359
själen 353 239 367 334 346 353 360
mage 334 256 357 346 347 364 346
hage 358 248 362 317 356 363 341
dör 351 267 384 327 305 356 355
gata 345 256 364 343 347 347 342
sot 348 279 368 341 295 362 349
disk 337 274 370 325 343 348 345
tala 328 252 373 324 365 349 348
lös 332 276 382 332 342 342 332
vana 341 262 373 323 348 346 344
lus 329 290 368 333 333 348 335
jaga 327 263 375 326 338 352 351
rasa 352 255 352 331 343 357 334
bada 329 259 367 323 352 353 336
lett 355 219 377 347 349 333 338
lång 357 265 352 317 306 355 363
laga 345 249 355 319 344 361 341
dis 336 276 383 339 260 358 336
såll 329 250 372 330 290 333 337
sytt 328 242 393 326 288 305 344
ludd 331 256 360 350 308 278 337
dalar 355 249 235 328 327 362 343
tysk 334 254 364 329 227 347 341
typ 337 282 306 322 305 293 341

Total: 19482 15239 18939 18792 17204 17914 17332

66

Appendix A. Tables

Table A.3: Average ranking of words in forward selection, sorted from best to worst overall
ranking. Blue rows indicate words used for calibration.

Word GMM MLP CNN BNET Overall

saker 1 15 2 3 5
själen 9 2 2 11 6
leta 15 5 17 12 12
kaka 2 12 14 26 14
flytta 11 19 9 15 14
blöt 17 12 9 19 15
disk 22 11 15 14 16
dörr 10 17 24 14 17
särk 7 9 28 23 17
typ 15 26 18 8 17
dör 28 2 23 15 17

vana 21 27 13 10 18
rasa 13 24 16 21 19
lat 9 22 35 11 19

lång 25 15 27 11 19
lass 12 30 7 30 20
lett 31 8 21 20 20
hage 30 16 23 11 20
dalar 7 29 26 18 20
tala 30 6 23 23 21
sot 16 15 26 25 21
laga 33 20 17 14 21
nagel 11 27 13 36 22
gata 14 35 18 22 22
lös 24 26 20 21 23
dis 23 20 22 27 23

ludd 36 23 21 17 24
fara 30 18 23 28 25
lott 13 30 23 35 25

panna 35 25 27 18 26
käke 29 16 29 33 27
jaga 22 42 17 26 27
bada 20 33 32 23 27
nät 22 31 21 34 27

dagar 23 29 31 27 27
mage 33 27 33 25 30
sitt 32 32 27 28 30
sytt 35 18 35 32 30
lus 26 40 27 33 31
söt 42 35 23 29 32
lär 43 33 37 17 32
såll 38 28 34 40 35
tysk 30 34 38 39 35

67

Bibliography

1. A. Eriksson, Swedia recording locations, http://www.ling.gu.se/~anders/SWEDIA/
kartor/Map.pdf, 2016, Online, accessed 2017-05-08.

2. H. Petkar, A review of challenges in automatic speech recognition, In-
ternational Journal of Computer Applications 151 (2016), no. 3, 23–26,
DOI: 10.1016/j.specom.2007.02.006.

3. F. Biadsy, Automatic dialect and accent recognition and its application to
speech recognition, Ph.D. thesis, Columbia University, 2011, URL: http://www.
cs.columbia.edu/speech/ThesisFiles/fadi_biadsy.pdf.

4. M. Rizwan, B. O. Odelowo, and D. V. Anderson, Word based dialect
classification using extreme learning machines, Neural Networks (IJCNN),
2016 International Joint Conference on, IEEE, 2016, pp. 2625–2629,
DOI: 10.1109/IJCNN.2016.7727528.

5. N. F. Chen, W. Shen, J. P. Campbell, and P. A. Torres-Carrasquillo, Informative
dialect recognition using context-dependent pronunciation modeling, Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International Conference
on, IEEE, 2011, pp. 4396–4399, DOI: 10.1109/ICASSP.2011.5947328.

6. S. A. Majeed, H. Husain, S. A. Samad, and T. F. Idbeaa, Mel frequency cepstral
coefficients (mfcc) feature extraction enhancement in the application of speech
recognition: A comparison study, Journal of Theoretical and Applied Information
Technology 79 (2015), no. 1, 38.

7. A. Faria, Accent classification for speech recognition, vol. 3869, pp. 285–293,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, DOI: 10.1007/11677482_25.

8. P. A. Torres-Carrasquillo, T. P. Gleason, and D. A. Reynolds, Dialect identifica-
tion using gaussian mixture models, ODYSSEY04-The Speaker and Language
Recognition Workshop, 2004, pp. 297–300, URL: http://www.isca-speech.org/
archive_open/archive_papers/odyssey_04/ody4_297.pdf.

9. M.-L. Gu and B. Zhang, Chinese dialect identification using sc-
gmm, Advanced Materials Research, vol. 433-440, 2012, pp. 3292–3296,
DOI: 10.4028/www.scientific.net/AMR.433-440.3292.

10. S. Deshpande, S. Chikkerur, and V. Govindaraju, Accent classification in speech,
Fourth IEEE Workshop on Automatic Identification Advanced Technologies
(AutoID’05), vol. 2005, IEEE, 2005, pp. 139–143, DOI: 10.1109/AUTOID.2005.10.

69

http://www.ling.gu.se/~anders/SWEDIA/kartor/Map.pdf
http://www.ling.gu.se/~anders/SWEDIA/kartor/Map.pdf
http://dx.doi.org/10.1016/j.specom.2007.02.006
http://www.cs.columbia.edu/speech/ThesisFiles/fadi_biadsy.pdf
http://www.cs.columbia.edu/speech/ThesisFiles/fadi_biadsy.pdf
http://dx.doi.org/10.1109/IJCNN.2016.7727528
http://dx.doi.org/10.1109/ICASSP.2011.5947328
http://dx.doi.org/10.1007/11677482_25
http://www.isca-speech.org/archive_open/archive_papers/odyssey_04/ody4_297.pdf
http://www.isca-speech.org/archive_open/archive_papers/odyssey_04/ody4_297.pdf
http://dx.doi.org/10.4028/www.scientific.net/AMR.433-440.3292
http://dx.doi.org/10.1109/AUTOID.2005.10

Bibliography

11. J. Pan, C. Liu, Z. Wang, Y. Hu, and H. Jiang, Investigation of deep neural
networks (dnn) for large vocabulary continuous speech recognition: Why dnn
surpasses gmms in acoustic modeling, Chinese Spoken Language Processing
(ISCSLP), 2012 8th International Symposium on, IEEE, 2012, pp. 301–305.

12. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, Deep neural networks
for acoustic modeling in speech recognition: The shared views of four research
groups, IEEE Signal Processing Magazine 29 (2012), no. 6, 82–97.

13. T. Lyons, Differential equations driven by rough signals, Revista
Matemática Iberoamericana 14 (1998), no. 2, 215–310 (English),
URL: http://intlpress.com/site/pub/files/_fulltext/journals/mrl/1994/
0001/0004/MRL-1994-0001-0004-a005.pdf.

14. B. Graham, Sparse arrays of signatures for online character recognition, arXiv
preprint (2013), arXiv:1308.0371.

15. T. J. Lyons and N. Sidorova, Sound compression: a rough path approach, Pro-
ceedings of the 4th international symposium on Information and communi-
cation technologies, Trinity College Dublin, 2005, pp. 223–228, URL: http:
//www.ucl.ac.uk/~ucahnsi/Papers/lyons_sidorova_capetown.pdf.

16. O. Engstrand, R. Bannert, G. Bruce, C.-C. Elert, and A. Eriksson, Phonetics and
phonology of swedish dialects around the year 2000: a research plan, FONETIK
98, PHONUM 4 (1997), 97–100, URL: https://pdfs.semanticscholar.org/df3e/
075333e55b95a749bdee9026eb09df5ba93d.pdf.

17. E. Wessén, Våra folkmål, 4 ed., Fritze, 1969 (Swedish).

18. F. Schaeffler, Phonological quantity in swedish dialects : Typological aspects,
phonetic variation and diachronic change, Ph.D. thesis, Umeå University, Philos-
ophy and Linguistics, 2005, p. 142, URL: http://umu.diva-portal.org/smash/
get/diva2:143871/FULLTEXT01.pdf.

19. I. Chevyrev and A. Kormilitzin, A Primer on the Signature Method in Machine
Learning, ArXiv e-prints (2016), arXiv:1603.03788.

20. P. Lalonde and A. Ram, Standard lyndon bases of lie algebras and enveloping
algebras, Transactions of the American Mathematical Society 347 (1995), no. 5,
1821–1830, DOI: 10.1090/S0002-9947-1995-1273505-4.

21. J. Reizenstei, Calculation of iterated-integral signatures and log sig-
natures, 2016, URL: http://www2.warwick.ac.uk/fac/cross_fac/complexity/
people/students/dtc/students2013/reizenstein/logsignatures.pdf.

22. J. Berstel and M. Pocchiola, Average cost of duval’s algorithm for generat-
ing lyndon words, Theoretical Computer Science 132 (1994), no. 1, 415–425,
DOI: 10.1016/0304-3975(94)00013-1.

70

http://intlpress.com/site/pub/files/_fulltext/journals/mrl/1994/0001/0004/MRL-1994-0001-0004-a005.pdf
http://intlpress.com/site/pub/files/_fulltext/journals/mrl/1994/0001/0004/MRL-1994-0001-0004-a005.pdf
https://arxiv.org/pdf/1308.0371
http://www.ucl.ac.uk/~ucahnsi/Papers/lyons_sidorova_capetown.pdf
http://www.ucl.ac.uk/~ucahnsi/Papers/lyons_sidorova_capetown.pdf
https://pdfs.semanticscholar.org/df3e/075333e55b95a749bdee9026eb09df5ba93d.pdf
https://pdfs.semanticscholar.org/df3e/075333e55b95a749bdee9026eb09df5ba93d.pdf
http://umu.diva-portal.org/smash/get/diva2:143871/FULLTEXT01.pdf
http://umu.diva-portal.org/smash/get/diva2:143871/FULLTEXT01.pdf
https://arxiv.org/pdf/1603.03788
http://dx.doi.org/10.1090/S0002-9947-1995-1273505-4
http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/reizenstein/logsignatures.pdf
http://www2.warwick.ac.uk/fac/cross_fac/complexity/people/students/dtc/students2013/reizenstein/logsignatures.pdf
http://dx.doi.org/10.1016/0304-3975(94)00013-1

Bibliography

23. J. P. Duval, Factorizing words over an ordered alphabet, Journal of Algorithms 4
(1983), no. 4, 363 – 381, DOI: 10.1016/0196-6774(83)90017-2.

24. L. M. Arslan and J. H. L. Hansen, Language accent classification in american
english, Speech Communication 18 (1996), no. 4, 353–367.

25. V. Arora, P. Sood, and K. U. Keshari, A stacked sparse autoencoder based
architecture for punjabi and english spoken language classification using mfcc
features, 2016 3rd International Conference on Computing for Sustainable Global
Development (INDIACom), Bharati Vidyapeeth, 2016, pp. 269–272.

26. K. Paliwal and K. Wojcicki, Effect of analysis window duration on
speech intelligibility, IEEE Signal Processing Letters 15 (2008), 785–
788, URL: https://research-repository.griffith.edu.au/bitstream/handle/
10072/23589/53526_1.pdf.

27. J. Volkmann, S. S. Stevens, and E. B. Newman, A scale for the measurement
of the psychological magnitude pitch, The Journal of the Acoustical Society of
America 8 (1937), no. 3, 208–208.

28. M. A. Kohler and M. Kennedy, Language identification using shifted delta cepstra,
Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium
on, vol. 3, IEEE, 2002, pp. III–69.

29. P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J. Greene, D. A. Reynolds,
and J. R. Deller Jr, Approaches to language identification using gaussian mixture
models and shifted delta cepstral features, Interspeech, 2002, URL: https://pdfs.
semanticscholar.org/4c0d/706b7fd1ab191c733e83ab0843e0d5d88f30.pdf.

30. D. R. González and J. Calvo de Lara, Speaker verification with shifted delta
cepstral features: its pseudo-prosodic behaviour, Proceedings on I Iberian
SLTech (2009), 85–88, URL: http://m.isca-speech.org/archive_open/sltech_
2009/papers/isl9_085.pdf.

31. Y. Lei and J. H. L. Hansen, Dialect classification via text-independent training and
testing for arabic, spanish, and chinese, IEEE Transactions on Audio, Speech, and
Language Processing 19 (2011), no. 1, 85–96, DOI: 10.1109/TASL.2010.2045184.

32. D. A. Reynolds and R. C. Rose, Robust text-independent speaker identification
using gaussian mixture speaker models, IEEE Transactions on Speech and Audio
Processing 3 (1995), no. 1, 72–83, URL: http://www.cs.toronto.edu/~frank/
csc401/readings/ReynoldsRose.pdf.

33. J. Wu, Advances in k-means clustering: A data mining thinking, 1 ed., Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, DOI: 10.1007/978-3-642-29807-3.

34. C. Elkan, Using the triangle inequality to accelerate k-means, ICML, vol. 3, 2003,
pp. 147–153, URL: http://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf.

35. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv
preprint (2014), arXiv:1412.6980.

71

http://dx.doi.org/10.1016/0196-6774(83)90017-2
https://research-repository.griffith.edu.au/bitstream/handle/10072/23589/53526_1.pdf
https://research-repository.griffith.edu.au/bitstream/handle/10072/23589/53526_1.pdf
https://pdfs.semanticscholar.org/4c0d/706b7fd1ab191c733e83ab0843e0d5d88f30.pdf
https://pdfs.semanticscholar.org/4c0d/706b7fd1ab191c733e83ab0843e0d5d88f30.pdf
http://m.isca-speech.org/archive_open/sltech_2009/papers/isl9_085.pdf
http://m.isca-speech.org/archive_open/sltech_2009/papers/isl9_085.pdf
http://dx.doi.org/10.1109/TASL.2010.2045184
http://www.cs.toronto.edu/~frank/csc401/readings/ReynoldsRose.pdf
http://www.cs.toronto.edu/~frank/csc401/readings/ReynoldsRose.pdf
http://dx.doi.org/10.1007/978-3-642-29807-3
http://www.aaai.org/Papers/ICML/2003/ICML03-022.pdf
https://arxiv.org/pdf/1412.6980

Bibliography

36. N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, Journal of
Machine Learning Research 15 (2014), no. 1, 1929–1958, URL: https://www.cs.
toronto.edu/~hinton/absps/JMLRdropout.pdf.

72

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

	List of Figures
	List of Tables
	Introduction
	Delimitations
	Outline

	Dialect Classification
	Speech Corpus
	Dialect Regions
	Classification
	Wordwise
	Generalization to Spontaneous Speech

	Signature Theory
	Preliminaries
	Tensor Product Spaces
	Formal Power Series
	Paths and Line Integrals

	Signature Definition
	Log Signature
	Practical Calculations
	Chen's Identity
	Recursive Iterated Integral Expressions
	Log Signatures

	Feature Extraction
	Short-Time Fourier Transform
	Mel-Frequency Spectral Coefficients
	Mel-Frequency Cepstral Coefficients
	Shifted Delta Cepstra

	Log Signatures as Acoustic Features
	Normalization

	Classifiers
	Gaussian Mixture Models
	Training
	Classification

	Artificial Neural Networks
	Network Building Blocks
	Network Architectures
	Training

	Experiments
	Generalization
	K-Fold Cross-Validation

	Metrics
	Confusion Matrix

	Single-word Calibration
	Multi-word Classification
	Splitting
	Forward Selection

	Spontaneous Speech Classification

	Results
	Hyperparameter Calibration
	Gaussian Mixture Models
	Multilayer Perceptron
	Convolutional Neural Network
	Modular Network

	Performance on Calibration Words
	Multi-word Performance
	Other Signature-based Implementations
	Spontaneous Speech Classification
	Effect of Speaker Identity

	Conclusions
	Tables
	Bibliography

