
Real-Time Global Illumination
in Web-Browsers

Marcus Bertilsson1, Hannes von Essen1, Daniel Hesslow1,
Niklas Jonsson1, Simon Moos1, and Olle Persson2

1Computer Science and Engineering, Chalmers University of Technology
2Computer Science and Engineering, University of Gothenburg

May 2018

Göteborg, Sweden

i

Real-Time Global Illumination in Web-Browsers

Marcus Bertilsson, Hannes von Essen, Daniel Hesslow, Niklas Jon-
sson, Simon Moos, and Olle Persson

c©Marcus Bertilsson, Hannes von Essen, Daniel Hesslow, Niklas Jonsson, Simon
Moos, Olle Persson, 2018.

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg, Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden 2018

ii

Real-Time Global Illumination in Web-Browsers
Marcus Bertilsson, Hannes von Essen, Daniel Hesslow, Niklas Jon-
sson, Simon Moos, and Olle Persson.
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

Global illumination is important for a rendered image to appear realistic. Accu-
rate global illumination can be achieved but most algorithms are very computa-
tionally expensive and only suitable for offline rendering where long rendering
times can be allowed, and not for real-time rendering where many images every
second is needed. We have looked at the limited case of global illumination for
certain real-time applications in web-browsers. We present a comparative study
of three academic papers that describe algorithms that might be suitable and
successfully implemented and adapted them to our context. The results vary in
terms of real-time performance, precomputation time and visual fidelity. One
algorithm produced results that are not very accurate compared to a reference
image but might be visually convincing enough while having the advantage of
very high performance and no precomputation. The other two algorithms both
produce results of higher fidelity but are generally slower in real-time and require
some precomputation. One algorithm requires a couple of seconds at most and
the other minutes or even hours depending on the scene. Finally, we conclude
that all three techniques are suitable for rendering real-time global illumination,
but they have different pros and cons.

Keywords: global illumination, real-time rendering, WebGL, computer graph-
ics

iii

Real-Time Global Illumination in Web-Browsers
Marcus Bertilsson, Hannes von Essen, Daniel Hesslow, Niklas Jon-
sson, Simon Moos, and Olle Persson.
Department of Computer Science and Engineering
Chalmers University of Technology

Sammanfattning

Global illumination är viktigt för att en renderad bild ska se realistisk ut. Verk-
lighetstrogen global illumination är möjligt men de flesta algoritmer är väldigt
beräkningsmässigt tunga och passar endast för offlinerendering där l̊anga render-
ingstider kan till̊atas, och inte för realtidsrendering där flera bilder per sekund
behövs. Vi har tittat p̊a det begränsade fallet av global illumination i vissa typer
av realtidsapplikationer i webbläsaren. Vi presenterar en jämförande studie av
tre vetenskapliga publikationer som beskriver algoritmer som kan vara passande,
och implementerade dem i v̊art kontext. Resultaten varierar i realtidsprestanda,
förberäkningstid, och visuell exakthet. En av algoritmerna producerar resultat
som inte är särskilt visuellt exakta jämfört med en referensbild, men som och
har fördelarna av hög prestanda och avsaknaden av förberäkningar, och resul-
tatet kan vara övertygande nog. De andra tv̊a algoritmerna producerar b̊ada
resultat av högre exakthet men är oftast l̊angsammare i realtid och kräven viss
förberäkning. Den ena algoritmen kräver endast ett par sekunder och den andra
minuter eller till och med timmar, beroende p̊a vilken scen som används. Vi
drar slutsatsen att alla tre tekniker passar väl för att rendera global illumination
i realtid, men de har alla olika styrkor och svagheter.

iv

List of Abbreviations

GI Global illumination
FPS Frames per second
BRDF Bidirectional reflectance distribution function
SH Spherical harmonics
MRT Multiple render targets
GPU Graphics processing unit
RSM Reflective shadow map
SVD Singular-value decomposition
tSVD Truncated singular-value decomposition
GV Geometry volume
LPV Light propagation volume
SPP Samples per pixel

CONTENTS v

Contents

1 Introduction 1
1.1 Aim . 2
1.2 Scope . 2
1.3 Methodology . 2

2 Relevant Theory 4
2.1 Radiometry in Computer Graphics 4
2.2 The Rendering Equation . 5
2.3 Real-Time Rendering . 5
2.4 Global Illumination . 6
2.5 Light Fields . 7
2.6 Spherical Harmonics . 8

2.6.1 Projecting onto the Spherical Harmonics Basis 9
2.6.2 Ringing . 10

2.7 Multiple Render Targets . 10
2.8 Shadow Maps . 11
2.9 Reflective Shadow Maps . 12
2.10 Variance Shadow Maps . 13

3 Choice of Techniques 14

4 Technique 1: Real-Time Global Illumination using Precom-
puted Light Field Probes 16
4.1 Octahedral mapping . 16
4.2 Probe Image-Space Ray-Tracing 17
4.3 Diffuse Indirect Light . 18
4.4 Implementation Details . 19

5 Technique 2: Real-time Global Illumination by Precomputed
Local Reconstruction from Sparse Radiance Probes 21
5.1 Theory . 22
5.2 Computing Receiver Locations 23
5.3 Computing Probe Locations . 24
5.4 Interpolation of the Probes . 25
5.5 Computing the Local Transport Matrix 26
5.6 Gathering Radiance at the Probes 26
5.7 Extracting the Global Illumination Solution 27
5.8 Data Structures and Program Flow 28
5.9 Compressing the Local Transport Matrix 30
5.10 Dynamic Objects . 33

6 Technique 3: Light Propagation Volumes 35
6.1 Reflective Shadow Map Generation 35

CONTENTS vi

6.2 Radiance Injection . 35
6.3 Geometry Injection . 38
6.4 Radiance Propagation . 38

6.4.1 Blocking of Light . 40
6.5 Scene Lighting . 41
6.6 Dynamic objects . 42

7 Results 43
7.1 Technique 1 . 43
7.2 Technique 2 . 45

7.2.1 Effect of varying the number of SH bands 45
7.2.2 Dynamic objects . 46

7.3 Technique 3 . 47
7.3.1 Propagation Iterations . 47
7.3.2 Many Lights . 47
7.3.3 Incorrect Light Bleeding 48

7.4 Comparative . 49

8 Discussion & Future Work 54
8.1 Technique 1 . 54
8.2 Technique 2 . 55
8.3 Technique 3 . 56

8.3.1 Many Lights . 56
8.3.2 WebGL Limitations . 57

8.4 Comparative . 57

9 Conclusion 59

1. INTRODUCTION 1

1 Introduction

Global Illumination (GI) algorithms in computer graphics are techniques for
rendering 3D images that take into account not only the direct illumination
from light sources but also the indirect illumination caused by light that is
reflected from the directly lit objects onto nearby surfaces. For example, an
object in a room lit by a single light source will cast a shadow where it occludes
the direct light from hitting the floor. If only direct light is taken into account,
this shadow will be pitch black because there is no light reaching it. If indirect
light is included, the light that hits the wall behind the object will bounce into
the shadow region, giving it a brighter, more nuanced appearance. Indirect light
includes not only this first bounce but also secondary, tertiary, and potentially
infinitely many light bounces, and its effects are not limited to brightening
shadows but also include such phenomena as color bleeding–when objects are
colored by the bounced light from nearby colored surfaces. Global Illumination
can have a substantial effect on the perceived realism of the rendered images, but
most algorithms that produce realistic results have been highly computationally
intensive and not suitable for real-time rendering where many frames per second
have to be rendered for the motion to appear fluid. The application of these
algorithms has instead traditionally been limited to offline use cases, such as
photo-realistic images and 3D animated movies, where each frame is allowed to
take several hours or even days to render.

In recent years however, the introduction of novel algorithms as well as the
continuing growth of computational power is beginning to change this, making
Global Illumination feasible for real-time applications. There are a variety of
solutions that seek to approximate the effects of GI, each with different levels
of fidelity and with different limitations. We explore techniques for global il-
lumination in the specific use case of largely static scenes with some dynamic
geometry, in a web-browser setting. This use case may be found in for example
interior design software, where the basic structure of a room may be predeter-
mined (static) and the furniture interactively positioned and customized by the
user (dynamic). The deployment as a web application is an increasingly popu-
lar choice and has many important advantages: it inherently provides a strong
cross-platform support and facilitates quick access and dissemination to a large
audience. At the same time, it does bring with it some technical limitations,
and many of the algorithms have been tested only in desktop environments,
which makes real-time GI development for the web-browser an interesting area
in need of further investigation.

1. INTRODUCTION 2

1.1 Aim

The aim of this project is to investigate and compare possible real-time global
illumination techniques, with the goal of finding the optimal technique for our
use case. The use case is more precisely defined in terms of a set of criteria for
how techniques should be able to perform. An optimal technique should...

1. be able to produce reasonably realistic images with global illumination
that are comparable in visual fidelity to a ground-truth high-end ray tracer

2. allow for objects and light sources in the scene to be moved

3. be fast enough to be used in interactive, real-time graphics

4. be implementable in a web-browser

1.2 Scope

Optimally all previously existing techniques that fulfill the criteria (see section
1.1) should be evaluated for us to gain the best possible overview. However,
given the limited amount of resources available we have no possibility of doing
that. For this reason we have had to limit the number of techniques evaluated
to three promising alternatives. The choices made are of course critical to
our results so the decision making process was thorough and is documented in
section 3.

The fact that the technique should be implementable in a web-browser (criterion
4, section 1.1) limits the choice of API to either WebGL 1.0 or WebGL 2.0.
Although not fully supported in all web-browsers [1], WebGL 2.0 provides some
features that we consider instrumental to achieving the goal, such as Multiple
Render Targets (see section 2.7). We therefore only require of the techniques
that they are implementable in WebGL 2.0.

1.3 Methodology

The main focus of this project was to implement and evaluate different algo-
rithms for real-time global illumination in web-browsers. A number of algo-
rithms were investigated and three were chosen to be implemented. The imple-
mentations are described in detail in their respective sections and will, in line
with the evaluation criteria, be compared in terms of

• Visual fidelity compared to a reference image

1. INTRODUCTION 3

• Handling of dynamic lights and objects

• Average frame rendering time in milliseconds

• Precomputation time

As the project was targeted towards 3D-rendering in web applications, the
OpenGL-based WebGL 2.0 [2] was a natural choice and also suitable to the
group as it is implemented using JavaScript which the group members had pre-
vious experience with. PicoGL (v0.8.8) [3] was used to speed up the WebGL
development by abstracting away some of the boilerplate code. PicoGL is a
library that adds an additional layer to the WebGL API, providing easier ac-
cess to the functionality of WebGL while still allowing full access to lower-level
constructs.

2. RELEVANT THEORY 4

2 Relevant Theory

2.1 Radiometry in Computer Graphics

Radiometry is the study of the measurement of light [4]. In radiometry, light
is often though of as the received/emitted energy per unit of time, i.e. flux or
radiant power Φ (Watt). Because light can be colored, the representation is
often divided into the red, green and blue components so that the radiometric
quantities are stored as RGB vectors (in contrast to usual RGB pixel values,
radiometric RGB values can take values above 1.0 – representing light that
is brighter than a computer screen) [5]. In addition to power, two important
radiometric quantities in computer graphics are radiance and irradiance.

Radiance, denoted L, measures power per area per solid angle. For an infinites-
imal area and infinitesimal solid angle, radiance effectively measures the power
Φ traveling along a single ray of light. A ray is parameterized as r(t) = o + tv,
with origin o and normalized direction v for a distance of t from the origin, and
is often used to simulate light. The color of a given pixel on the screen directly
corresponds to the incoming radiance at the camera’s origin in the direction
corresponding to the pixel.

Irradiance, denoted E, measures flux per area incident on a surface [5, ch. 5].
This means that light rays that are not perpendicular to the surface have to
be multiplied by the cosine of the angle between the surface normal and the
light ray in order to obtain the component of the light that is perpendicular
to the surface. While radiance can be seen as measuring the incoming light
of a single ray, irradiance measures the combined light of the incoming rays
from all directions around the surface. This quantity is important because the
defining characteristic of Lambertian diffuse surfaces (the most common type
of material in computer graphics) is that the outgoing radiance is proportional
to the incoming irradiance on the surface. The outgoing radiance from such a
surface is thus the same in every direction, and is given by Equation 1 [5, ch. 5]

E ⊗ a

π
(1)

where ⊗ represents element-wise multiplication and a is the surface’s albedo.
Albedo is the proportion of received light that is reflected rather than absorbed
by the material, and is what we would normally call the object’s color. For in-
stance, an object with albedo rgb = (0.0, 1.0, 0.0) would reflect all of its incoming
green light, and absorb all its red and blue light, giving it a green appearance.

2. RELEVANT THEORY 5

2.2 The Rendering Equation

In 1986 Kajiya presented the Rendering Equation as a generalized version of
many previously known rendering algorithms [6]. By solving the equation it is
possible to retrieve a physically correct render of most materials.

There exist many variations of the Rendering Equation. In this paper the
following definition is used (Equation 2):

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

fr(x, ωo, ωi)Li(x, ωi)cos(θi) dωi (2)

using the following symbols:

• Lo(x, ωo) Total outgoing radiance from point x in direction ωo

• Le(x, ωo) Outgoing emitted radiance from point x in direction ωo

•
∫

Ω
dωi Integral over all incoming directions ωi in the surface normal ori-

ented hemisphere

• fr(x, ωo, ωi) The bidirectional reflectance distribution function (BRDF)
for the material, evaluated at point x. The BRDF describes the proportion
of incoming light from ωi that leaves in the direction ωo.

• Li(x, ωi) Incoming radiance at point x from direction ωi

• cos(θi) The cosine of the angle between the surface normal and ωi, model-
ing light attenuation, i.e. the fact that the light becomes more spread out
(and therefore less intense) as the angle to the surface normal increases.

Note that the the Li term is evaluated through the Rendering Equation as well,
i.e. the equation is infinitely recursive, and has no closed form. It does, however,
converge and can therefore be approximated though numerical evaluation [6].

The BRDF defines the material of a surface. A common BRDF for diffuse
surfaces is the Lambertian BRDF, defined as fr(x, ωo, ωi) = 1

π for a white
material, or fr(x, ωo, ωi) = a

π for a material with albedo a.

2.3 Real-Time Rendering

Real-time rendering usually refers to three-dimensional (3D) computer graphics
rendering which is performed in real-time [5, ch. 1].

An important aspect of real-time rendering is interactivity: ”An image appears

2. RELEVANT THEORY 6

on the screen, the viewer acts or reacts, and this feedback affects what is gen-
erated next.” [5, p. 1]. For this to work, new images have to be generated at
a high frame-rate. [5] argues that 15 frames (i.e. images) per seconds (FPS)
is considered real-time, however it is also mentioned that higher rates are pre-
ferred since it decreases the response time of the user. Studies such as [7] and
[8] similarly indicate that that the viewer’s ability to react is improved with
frame rate, and argue for 30-60 FPS as a suitable frame rate for interactivity,
which translates to approximately 16.7 to 33 milliseconds of time to generate
each image.

Note that the definition of real-time rendering does not preclude precomputation
steps; for instance computations that are specific to a certain static scene can
be performed beforehand and saved together with the scene in order to speed
up the real-time execution of the program. The only piece of data that has to
be generated in real-time is the image shown on the screen.

2.4 Global Illumination

Global Illumination (GI) refers to a collection of techniques for adding indirect
light to surfaces in an image [5]. An image without GI has only direct light,
i.e. light that reaches surfaces directly from light sources. Indirect light, on the
contrary, is light that hits surfaces after bouncing one or more times on other
surfaces. The difference can be explained in terms of the Rendering Equation
(Equation 2) as the recursion depth for the Li term. While GI requires full
evaluation of the equation (or some approximation of it), images without GI
only require that Li is evaluated once for each direction ωi, i.e. light incoming
directly from light sources.

The effect of GI can be observed in Figure 1; note especially the surfaces that
are not directly visible from the light source, and how the color of surfaces are
affected by the color of neighbouring surfaces.

2. RELEVANT THEORY 7

Figure 1: The Cornell Box scene [9] rendered twice in Blender Cycles Ren-
derer with all settings except global illumination (i.e. number of light bounces)
kept the same. Left: without global illumination. Right: with global illumina-
tion.

While in the real world there exists no distinction between direct and indirect
light, the distinction is important in computer graphics since there is a signifi-
cant difference in the amount of computations needed for the two types of light.
In offline rendering the high computational requirement for indirect light is not
a significant problem because it can be correctly simulated with good results if
enough time is spent. In the context of real-time rendering on the other hand,
GI is difficult since a frame should not require more than 33 milliseconds to
render (see section 2.3).

Since the Rendering Equation is infinitely recursive and has no closed form (see
section 2.2) approximations are imperative for achieving real-time performance,
and real-time GI solutions often mostly differ in what approximations they
use and how they are applied. One common approximation is based on the
precomputation of certain aspects of GI offline, to simplify the calculations
performed in real-time.

2.5 Light Fields

We have previously discussed how radiance can be used to describe the light
flow of a single ray of light at a point in space (see section 2.1). Viewed as a
function of position and direction, radiance can be used to describe the light
flow at every point and in every direction in a scene. This function is called the
light field of the scene [10].

2. RELEVANT THEORY 8

2.6 Spherical Harmonics

There are many possible ways to represent the light field around a point in
space. A common approach is to use a mapping from the three-dimensional
vectors on the unit sphere to two-dimensional points on a rectangle (e.g. cube
maps or octahedral maps), allowing the light field at a point to be stored as an
image texture [5]. An alternative method is to project the surroundings onto the
spherical harmonics (SH) basis functions. This yields a compact representation
in the form of a few numbers – the coefficients of the included basis functions.

A spherical function is a function that takes as input a three-dimensional direc-
tion on the sphere. This direction can be specified by two angles or equivalently
by a three-dimensional unit direction vector. Spherical harmonics is a series of
specific spherical functions that together constitute an orthogonal basis over the
sphere, which means that an arbitrary spherical function can be represented as
a linear combination of them [11]. The function can be approximated arbitrarily
well by choosing to include a large enough number of spherical harmonics basis
functions. On the other hand, including only a small number of basis functions
(such as the 16 in Figure 2) yields a low frequency approximation of the func-
tion, while only requiring the coefficients of this small number of basis functions
to be stored.

Figure 2: Visualization of the first 16 spherical harmonics basis functions. Each
function is represented here by a color-coded surface around its center. For a
given direction, the magnitude of the function is given by the distance from the
center to the surface in that direction, with blue indicating positive values and
yellow indicating negative values. For example, the first function has a constant
positive value in every direction and the three functions in the second band are
positive in one direction and negative in the other, varying smoothly in-between.
Image generated using [12].

2. RELEVANT THEORY 9

Each SH basis function is characterized by its band index (l) (the horizontal
rows in Figure 2, starting at band zero) and the basis function index within
that band (m) – with zero at the center column in the figure, decreasing to the
left (-1, -2, ...) and increasing to the right (1, 2, ...) [11]. Each band corresponds
to polynomials of that degree. For our purposes, it is convenient simply to refer
to the basis functions with a single index, going from left to right in each row
of the figure starting at the top; i.e. assigning the index i = l(l + 1) + m.
We will denote the ith SH basis function Yi(d), where d is the input direction.
Assume that we have a spherical function f(d), and denote its corresponding SH
coefficients ci, i = 0, 1, 2, ...n− 1. The approximated value of f in the direction
d is then evaluated by the following linear combination:

f(d) ≈
n−1∑
i=0

ci · Yi(d) (3)

2.6.1 Projecting onto the Spherical Harmonics Basis

In order to utilize the compact representation of spherical harmonics, we need
to be able to convert an arbitrary spherical function (such as the incoming
radiance around a point as a function of the direction) into the coefficients of
the SH basis functions that can be used to approximate the function, i.e. we
need to project the function into the SH basis.

A vector v can be projected onto another vector u using the dot product, as
described by the projection formula: v·u

|u| . For functions, the dot product is

not defined. Instead, to project a function onto another function we must use
the generalized version – the inner product, denoted 〈f, g〉 where f and g are

the operands. To project f onto g the formula then becomes 〈f,g〉|g| . For func-

tions, the inner product is defined as 〈f, g〉 =
∫
x
f(x)g(x). This integral can

be approximated with numerical integration. We are interested in projecting
an arbitrary function f onto the spherical harmonics basis. Since the SH basis
functions are orthogonal it is possible to approximate each of these functions
separately; the ith SH coefficient is given by the projection of f onto the ith
SH basis function Yi(d). Additionally, SH basis functions are normalized which
means that the division by the norm is not necessary. If we sample uniformly
each sample has the same weight and the formula becomes

ci =

∫
d∈Ω

Yi(d)f(d) ≈
n∑

k,dk∈Ω

4π

n
Yi(d)f(d) (4)

Here ci denotes the coefficient for the ith basis function in the approximation,

2. RELEVANT THEORY 10

d a direction on the sphere Ω, dk the kth uniformly sampled direction, Yi(d)
ith basis function evaluated in the direction d and f(d) the spherical function
evaluated in the direction of d.

However, to use rasterization provided by graphics hardware this formulation is
not quite sufficient. It is not possible to uniformly sample the function since no
linear functions that maps the plane onto the sphere exists. Instead a common
representation of spherical functions in computer graphics is cube maps. How-
ever, when using cube maps the sampling is no longer uniform (pixels near the
center of the cube faces map to larger areas on the sphere compared to pixels
near the corners). Therefore we must weight the samples by their projected
area on the sphere, as is done in [11].

2.6.2 Ringing

Storing a function as SH coefficients has many advantages over traditional
texture-based methods: the approximation is generally very smoothly varying,
with none of the pixelated artifacts seen when using low-resolution textures,
and it is possible to perform seamless rotations through mathematical opera-
tions on the coefficients. However, there are also unique problems associated
with spherical harmonics representation, one of the most common being ringing
artifacts [11]. This is often seen when there are rapid and large variations in the
spherical function to be approximated and too few SH basis functions are used,
and is caused by the included SH basis functions’ limited ability to represent
these sharp variations. Because the basis functions generally have both positive
and negative contributions (see Figure 2), the need to approximate an extreme
positive value in one direction may inadvertently cause a large negative value
in the other direction. There have been attempts at mitigating ringing artifacts
through various techniques such as windowing [11].

2.7 Multiple Render Targets

A render target texture is a modern alternative to standard rendering where
all rendering is done using a default frame buffer. A frame buffer is a place in
memory containing data that is to be rendered to the screen. A render target
texture is a user defined frame buffer object which makes it possible to render
objects independently of the rest of the scene. A benefit of using a render target
texture instead of the default frame buffer is that effects can be applied to the
rendered image as the target texture can be passed into a shader where the data
can be manipulated [5].

Multiple render targets (MRT) is an extension to render target textures in
modern computer graphics which allows the fragment shader to output multiple

2. RELEVANT THEORY 11

vectors, each to its own render target, which can improve performance; instead
of rendering to one target texture followed by a render to another target texture
it is possible to render to multiple target textures at once, removing the need
to recompute time-consuming vertex transformations that are shared between
textures [5].

For OpenGL and WebGL the extension ARB draw buffers [13] allows for ren-
dering to multiple render targets and is available to use in all WebGL 2.0 con-
texts [2, ch. 3.7.11].

2.8 Shadow Maps

Shadow mapping [14] is an algorithm used to generate shadows. The algorithm
makes use of a depth map where at every pixel the distance between the corre-
sponding world space position and the light source is stored. To test whether a
pixel is in shadow or not we render a depth map from the light’s point of view
followed by a render of the scene from the camera’s point of view. The pixel’s
position in the camera’s point of view is then transformed into light space and
if the depth is greater than the value stored in the depth map the pixel is in
shadow and if the depth is less than the value stored in the depth map the pixel
is lit [5]. A shadow map can be visualized by rendering the depth values on a
scale from black (near) to white (far) as seen in Figure 3.

Figure 3: Image of a depth map. The pixel color indicates the distance to the
rendered point in the scene from the perspective of the light source [5].

2. RELEVANT THEORY 12

2.9 Reflective Shadow Maps

The reflective shadow map technique was first described in 2005 [15] by Carsten
Dachsbacher and Marc Stamminger. Reflective shadow maps (RSM) is an
extension to regular shadow maps where aside from the depth, the world space
coordinates, the world space normals and flux (the radiant power of a light
source) are also stored in different textures, together composing the reflective
shadow map.

The idea behind RSMs is that we consider each pixel of a shadow map as an
indirect light source that generates a single bounce of indirect illumination. This
means that if we have a single point light source all the indirect illumination
generated by a single bounce will be visible in its shadow map. By utilizing this
method we are able to efficiently and in parallel sample secondary light sources
on a modern graphics processing unit (GPU).

The world space coordinates and the normals can be fetched from the geometry
as usual. The flux has to be calculated depending on the type of light source.
The reflected flux for directional lights is calculated by multiplying the surface
color with the color of the light source and the clamped dot product between
the light direction and the surface normal, as shown in Equation 5.

φp = cl · dp · (np u−vl) (5)

Here φp is the resulting flux of a point p, cl is the color of a light source l, np is
the normal of a surface point, vl is the directional vector of a light source and
u denotes the dot product clamped between 0 and 1. When rendering from
the perspective of a directional light source, an orthographic projection matrix
is used. Flux could easily be calculated for other types of light sources by also
accounting for the perspective of the light source by instead using a perspective
projection matrix.

Figure 4: From left: the depth, world space positions, normals, and flux of the
RSM for an example scene.

The different textures of the RSM for an example scene is shown in Figure 4.
From these it is trivial to fetch the desired values from the different textures.

2. RELEVANT THEORY 13

2.10 Variance Shadow Maps

Variance Shadow Maps [16] is another extension of regular shadow maps that
differ in that they can be filtered just like color textures. Filtering (such as
blurring) regular shadow maps does not result in filtered shadows, but it does
for variance shadow maps. While regular shadow maps use a boolean test to
evaluate if a point is in shadow, variance shadow maps use a statistical test
based on the one-tailed version of Chebychev’s inequality (Equation 6).

Let X be a random variable with the distribution of the depth values in the
filtered shadow maps at the current pixel with mean µ and variance σ2. t
indicates the actual distance from the shading point to the light source which
is what should be tested. Given that t > µ:

P (X ≥ t) ≤ σ2

σ2 + (t− µ)2
(6)

If t < µ the point is not in shadow. Otherwise P (X ≥ t) indicates the probability
that the point is in shadow. Since this is a continuous and smoothly varying
value between 0 and 1 it can be used to indicate how much of the point is in
shadow, from not in shadow to fully shadowed.

The mean µ in Equation 6 is the filtered pixel value, i.e. E(x). The variance σ2

can be calculated as σ2 = E(x2) − E(x)2. To get E(x2) the squared depth x2

is stored in the variance shadow map in addition to the depth x in a separate
channel which is filtered identically. Note that while Equation 6 is an inequality,
it can be an equality in a more constrained case which is similar to the case of
variance shadow maps [16, ch. 3.1]. Therefore the inequality can be though of
as an equality in the context of variance shadow maps and can be evaluated as
such.

3. CHOICE OF TECHNIQUES 14

3 Choice of Techniques

Given the aim of this project and the constraints set up, it is clear that a major
challenge lies in the decision of which algorithms to focus on. Real-time GI is
an active research area with many different directions (see [17]), choosing only
three to implement and evaluate is not an easy task. Furthermore, the quality
of this work is directly dependent on the quality of our choices, since the final
results will inevitably be based on what we have implemented. Because of the
small sample size out of all existing techniques the choice will undoubtedly be
biased. To try to select a set of promising methods we developed a number of
heuristics to evaluate possible candidates:

1. Because of the aforementioned breadth of the research field it is important
that the three techniques reflect that property in terms of:

(a) the amount of precomputations needed

(b) how large changes in terms of dynamic objects and light sources the
technique can tolerate

2. All of the three techniques should be relevant today

With these heuristics and constraints the following three techniques were chosen:

1. Real-Time Global Illumination using Precomputed Light Field Probes [18]

2. Real-time Global Illumination by Precomputed Local Reconstruction from
Sparse Radiance Probes [19]

3. Light Propagation Volumes (Crysis) [20]

Both [18] and [19] were published in 2017 and are therefore highly relevant.
While [20] was published in 2009 it is arguably still relevant, since it requires
no precomputing and is in use in popular and current game engines, such as
Unreal Engine 4 [21].

Regarding the first heuristic, all of the three chosen algorithms differ signif-
icantly. As mentioned, [20] requires no precomputation and related to that
supports fully dynamic objects and light sources. On the contrary, [19] requires
minutes to hours of precomputation, depending on the complexity of the scene,
and for that reason has to be performed in a separate step from the real-time
part. This technique fully supports dynamic light sources, but it does not sup-
port dynamic objects by itself. However, after reading the paper it became clear
that at least some limited support for dynamic objects should be possible, and
given the very promising results for static scenes presented by the authors, it
was deemed worthwhile to investigate the possibility of adapting the technique

3. CHOICE OF TECHNIQUES 15

to our semi-dynamic use case. [18] does require precomputation but the time
required is somewhere between a few seconds to a minute. It was therefore
judged plausible that the precomputation could be performed at load time and
therafter partially per frame, hopefully at a rate fast enough for our real-time
use case. The technique by itself does not support any dynamic objects or light
sources at all, but by recalculating the precomputations (partially over multi-
ple frames) in the event of changes, the possibility of achieving the effect of
dynamic light sources and objects seemed high enough for the technique to be
worth further investigation.

The techniques thus each have their own unique strengths related to our aim,
and through evaluating these three techniques we believe we have covered a
wide range of the research field with respect to the heuristics set up.

4. TECHNIQUE 1: REAL-TIME GLOBAL ILLUMINATION USING
PRECOMPUTED LIGHT FIELD PROBES 16

4 Technique 1: Real-Time Global Illumination
using Precomputed Light Field Probes

This GI technique was first published in 2017 by McGuire et al. [18], and builds
upon the idea of light fields (see section 2.5). By encoding the light field at
discrete locations, i.e. light field probes, in a grid, we approximate the con-
tinuous light field for the enclosing volume of surfaces that should be shaded.
Each probe maps its surroundings in terms of the incident radiance (i.e. the
light field), the radial distance to the point closest to the probe in the outgoing
direction and the surface normal of that point.

Using the light field and the additional information it is possible to perform
ray-tracing in image-space of the probes, but to make the ray-tracing easy and
efficient a set of optimizations are applied to the data.

4.1 Octahedral mapping

Octahedral mapping [22] is a way of encoding spherical data into a flat 2D
representation. In the case of this technique it is used to map all six sides
of a cubemap to a single 2D texture. This is often advantageous to do since
it compresses the data into a single texture with one common 2D coordinate
system. An illustration of what the mapping performs can be seen in Figure 5,
and pseudo code for encoding and decoding can be found in the Algorithms 1
and 2, respectively.

Input: Unit vector v
Output: Octahedral encoded coordinate o on the [−1,+1] square

norm← |v.x|+ |v.y|+ |v.z|
o← v.xy / norm
if o.z < 0.0 then

o← (1.0− |o.yx|) · signNotZero(o.xy)
end

Algorithm 1: Encoding to the octahedral projection. signNotZero returns
+1 for inputs x ≥ 0 and −1 otherwise.

There exist other mappings that can achieve similar results, such as the common
spherical mapping [22]. A unique feature about octahedral mapping which
makes it suitable for use in this technique is that it preserves straight lines.
A straight line (e.g. a ray) maps to 1-4 line segments (on separate octahedral
faces) with C0 continuity, also known as a polyline, which is trivial to trace.

4. TECHNIQUE 1: REAL-TIME GLOBAL ILLUMINATION USING
PRECOMPUTED LIGHT FIELD PROBES 17

Input: Octahedral encoded coordinate o on the [−1,+1] square
Output: Unit vector v

v ← vec3(o.x, o.y, 1.0− |o.x| − |o.y|)
if v.z < 0.0 then

v.xy ← (1.0− |v.yx|) · signNotZero(v.xy)
end
v ← normalize(v)

Algorithm 2: Decoding from the octahedral projection. signNotZero returns
+1 for inputs x ≥ 0 and −1 otherwise.

4.2 Probe Image-Space Ray-Tracing

Rays can be traced within a probe by marching the ray along its polyline in
octahedral-space and comparing its distance from the probe to the precomputed
distance. Ray-marching is a technique where ray-tracing is approximated by
iteratively stepping along a line in discrete steps, such as texel-coordinates in
image-space. By doing this it is possible to approximate the Rendering Equation
(Equation 2) in a way that only depends on the resolution of the precomputed
distance and not the number of triangles in the scene, which is a major problem
with ray-tracing performance. For the rest of this report this process is referred
to as probe image-space ray-tracing.

For the reason discussed above it is possible to use several different resolutions
of the precomputed distance. By storing both a high resolution map (such as
10242) and a very low resolution map (such as 642) very good ray-marching
performance can be achieved.

The lower resolution distance map can be used until the ray is close to a surface,
where it is swapped with the high resolution map to increase precision. The
result of a trace will be Hit if the ray hits a surface, Miss if the ray does not hit
any surface, or Unresolvable if the ray travels behind some surface to a part
of the scene which is occluded from the probe. If the result is Unresolvable,
a new probe is selected and the routine is repeated from another probe.

A new probe is selected by considering the probes that create a bounding box
around the area in which the previous probe trace terminated. If this is the
same bounding box as the last attempt, the probe of the bounding eight probes
which is furthest away form the previous probe is selected in an attempt to avoid
the occluding geometry. If the previous probe trace terminated in another cube
of bounding probes, the same procedure is repeated considering the new probes.

In the case of a Hit, the precomputed surface normal is used to get the angle
of the bounced ray. The normal is also used to perform backface testing for the
rays.

4. TECHNIQUE 1: REAL-TIME GLOBAL ILLUMINATION USING
PRECOMPUTED LIGHT FIELD PROBES 18

Figure 5: Illustrations of the octahedral mapping. Top [22]: visualization of
how sections of the sphere surface maps to triangles in the octahedral represen-
tation. Bottom: faces of a radiance cubemap in an example scene [9] mapped
to an octahedral represenation. Note that edges (red) do not line up between
representations!

4.3 Diffuse Indirect Light

By tracing rays across the probes, glossy reflections in world space can be calcu-
lated efficiently enough for real-time applications. For diffuse reflections, three
algorithms are presented in the paper. The first one is a brute-force Lamber-
tian importance sampling technique where multiple glossy rays are computed to
achieve good, but very expensive, results. The second algorithm is an extension
and optimization on the first that does not require as many rays to be com-
puted. Given the rendering times specified in the paper [18, ch. 6] we consider
both of these algorithms to be too slow for real-time use, though.

The third algorithm–Irradiance with (Pre-)Filtered Visibility–is the main focus
of the paper and also the one that is fastest and most suitable for real-time
applications with dynamic objects, so this is the algorithm we implemented. For
this method, two additional octahedral maps have to be precomputed for each

4. TECHNIQUE 1: REAL-TIME GLOBAL ILLUMINATION USING
PRECOMPUTED LIGHT FIELD PROBES 19

probe: one Lambertian-prefiltered irradiance map, and one variance shadow
map (see section 2.10). Both are generated from the existing radiance and
distance cubemaps.

To estimate the incident irradiance at a shading point, the irradiance maps
of the bounding box of eight surrounding probes are trilinearly interpolated,
combined with two visibility test. Using the variance shadow maps for the
probes a smooth visibility check is performed where the probe does not affect
the overall irradiance if the shading point is not visible from the probe. Variance
shadow maps are used (instead of regular shadow maps) to allow the replication
of the ”soft”/smooth nature of indirect diffuse light and their shadows. A basic
smooth backface test is also performed, as described in Equation 7, to make
sure only forward facing surfaces are affected by the indirect light from a given
probe.

backface-test factor = max(0, n̂surf ·
pprobe − psurf

||pprobe − psurf||
) (7)

where n̂surf is the surface normal at the shading point, psurf is the position of
the shading point, and pprobe is the position of the probe.

4.4 Implementation Details

The precomputation is performed in three steps for each probe. The first step
is to render cubemaps for radiance, surface normals, and distance at the probe
location. This is done in one pass using MRT (see section 2.7). The cubemaps
are then mapped to octahedrals for the radiance, distance, and normal maps,
also in one pass. For the irradiance and filtered distance maps the filtering
is performed in the coordinate space of the cubemaps, for convenience, and is
mapped directly into their respective octahedral maps.

For filtering the irradiance and filtered distance maps for diffuse indirect light the
technique described in Algorithm 3 is used. The uniform distribution of sample
points on the sphere is generated on the CPU and accessed in shaders through
a uniform buffer. The function uniformPointOnSphere in the algorithm simply
picks the ith sample in the uniform buffer.

As discussed in section 3, this technique does not by itself allow for dynamic
objects and light sources; to make it work we perform the precomputation in
the background as changes in the scene are made. While the precomputation
needed for a single probe does not take a significant amount of time to perform,
it becomes substantial when all probes are considered. To allow the precompu-
tation to be performed dynamically while still retaining real-time performance
only a few probes are precomputed per frame over a span of multiple frames.

4. TECHNIQUE 1: REAL-TIME GLOBAL ILLUMINATION USING
PRECOMPUTED LIGHT FIELD PROBES 20

for pixel, uv in pixels to filter do
n← octahedralDecode(uv)
pixel← vec3(0)
for i .. number of samples do

d← normalize(n+ s · uniformPointOnSphere(i))
pixel← pixel + texture(cubemap, d)

end
pixel← pixel / number of samples

end

Algorithm 3: The filtering algorithm used for calculating irradiance and
filtered distance octahedral maps. s defines the size of the filter kernel; for
Labertian irradiance filterering s = 1, while for the filtered distance should be
kept small, e.g. s ≤ 0.5.

Turnaround time, i.e. the time for the GI to respect the new world state, now
becomes relevant instead, and should be kept as low as possible to achieve good
results when visually significant changes occur.

The real-time step is performed using the supplemental shader code provided
with the paper. However, changes had to be done to make it compile in GLSL
version 300 es, which is the most recent version supported in WebGL 2.0 [2,
ch. 4.3].

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 21

5 Technique 2: Real-time Global Illumination
by Precomputed Local Reconstruction from
Sparse Radiance Probes

The second technique, introduced by Silvennoinen and Lehtinen in 2017 [19], is
also probe-based. It assumes, in its original formulation, that the scene geometry
is static which allows for a large portion of the algorithm to be precomputed.
By using a sophisticated spatial interpolation of the probes that is more precise
than previous versions, fewer probes are needed to get a good result.

To render a scene all we need to know is the radiance at the scene’s surfaces;
the light field in its entirety, which covers every point in space, is not necessarily
needed. Because the scene surface is assumed to be static, we can define a set
of static points on the scene surface beforehand, what will be referred to as the
receivers. Assuming that the scene surface is Lambertian diffuse, the radiance
from a receiver is the same in every direction (see section 2.1), and so can be
represented by a single RGB value. The scene’s lighting could then be repre-
sented as a vector of each receiver’s radiance value. Using this representation,
the global illumination problem could be described as a matrix M where each
element Mij is a factor describing how much a point light at the position of
receiver i increases the light at the position of receiver j, i.e. how the radiance
at j is affected by the radiance at i. This matrix would describe the relation-
ship between all pairs of surface points in the scene, and would allow a global
illumination simulation to be run by starting with a vector of radiance values
assigned to the receivers that represents the previously known direct light situ-
ation, and then iteratively propagating the light between all receiver pairs, by
multiplying our irradiance vector with the matrix M from the left. Similarly,
the vector representing n+1 bounces would be obtained by left-multiplying the
vector representing n bounces. However, to get a good result the number of
receivers would have to be large; in typical scenes within an order of magnitude
of 105. This would imply that the matrix M would have on the order of 1010

entries, and take approximately 40GB to store densely.

For this reason, probes are introduced into the scene. These are a small set of
points in free space where the incoming radiance from the receivers is gathered
in every direction. We can then define the indirect illumination at a receiver as
a function of the probes. This function is described using a matrix and will be
referred to as the local transport matrix. As noted by Silvennoinen and Lehtinen,
this representation should in principle store exactly the same information as the
other representation.

It is still not immediately obvious why this problem formulation simplifies the
problem, because it would still theoretically require each probe to store the inci-
dent radiant intensity in all directions. However, to make the problem practical,

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 22

each probe stores only an approximation of its incident light field. Silvennoinen
and Lehtinen use the first few spherical harmonics (see section 2.6) as a basis for
their approximation, effectively applying a low pass filter over the probe. While
the approximation introduces some errors in the solution, it is still a suitable
choice because indirect light tends to be more slowly varying than direct light.

5.1 Theory

To find the radiance of the receivers in a certain direction ω in terms of the
probes we might be tempted to simply spatially interpolate the radiance in
direction ω at nearby probes:

L(x, ω) =

∑
i wi(x)L(pi, ω)∑

k wk(x)
(8)

where wi(x) is the spatial interpolation weight for the ith probe, taking the value
1 at the position of the probe and gradually decreasing for positions further away
until it reaches 0 for values outside its support radius r. More precisely, let

f(t) =

{
2t3 − 3t2 + 1, if 0 ≤ t ≤ 1

0, otherwise.
(9)

Then the spatial interpolation weight is defined as

wi(x) = f(
||x− pi||2

r
) (10)

where pi is the position of the ith probe and r is the support radius mentioned
above.

While some early work indeed took the approach of simple spatial interpolation
(Equation 8) [23] [24], it has two problems. Firstly, querying the probes using
the same direction ω is incorrect because the probes are not at the same position
as the receiver and therefore need to look in slightly altered directions in order
to see what the receiver sees in that direction. This is corrected by querying
the probes not in the direction ω but in the direction of the point h seen by the
receiver in the direction ω. This direction is dependent on the probe position
and is denoted ψi(ω) where i denotes the index of the probe. The interpolation
using this correction (sheared spatial interpolation) is illustrated in Figure 6.

The second problem is that the interpolation is susceptible to light leakage –
when light incorrectly passes through objects. This is a problem both for the

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 23

simple and the sheared version above, and is illustrated for the sheared version
in Figure 7 together with the solution – the visibility-aware sheared version.
The visibility-aware sheared version incorporates a binary visibility factor Vi(ω)
that causes probes that do not see the point h in the direction ψi(ω) to be
left out of the interpolation. The final formula, with both corrections above,
becomes:

L(x, ω) =

∑
i wi(x)Vi(ω)L(pi, ψi(ω))∑

k wk(x)Vk(ω)
(11)

Simple spatial
interpolation

Sheared spatial
interpolation

xp1

p2
ω ω

ω

xp1

ψ
ω

1 p2(ω)

ψ
2 (ω)

h h

Figure 6: Illustration of simple spatial interpolation and sheared spatial inter-
polation. We can see in the simple version that the arrows from the probes (p1

and p2) in the direction ω hit the surface at points far from the true hit point
h for the receiver x in that direction. While this error could be mitigated by
increasing the number of probes, the sheared version instead solves the problem
by querying the probes in the direction of h, ψi(ω), giving a correct interpolation
even for sparse probe sets.

5.2 Computing Receiver Locations

First, the entire scene is mapped to a to a texture so that each 3D triangle in the
scene corresponds to a 2D triangle in the texture and so that no two triangles are
overlapping in the texture. This is often referred to as uv unwrapping, because
it can be thought of as folding the surface that wraps around the 3D model
into a flat surface, whose 2D coordinates are called u and v rather than x and

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 24

Visibility­aware
sheared spatial interpolation

xp1

ψ
ω

1 p2(ω)

ψ
2 (ω)

h

Sheared spatial
interpolation

xp1

ψ
ω

1 (ω)

ψ
2 (ω)

h

p2

V1(ω)=0 V2(ω)=1

Figure 7: Illustration of sheared spatial interpolation and visibility-aware
sheared spatial interpolation. Without visibility awareness, probe p1 contributes
radiance from the block instead of from the desired surface point h. This is in-
correct and could lead to light leakage. With visibility awareness the probe p1

is ignored because it cannot provide information about the radiance from h.

y. By creating this mapping we can conveniently define the receivers as the
points on the scene surface (in world space) that correspond to each texel on
the map. To get these world space positions we must rasterize the triangles
and interpolate the world positions. However, it is not sufficient to only include
the texels that overlap with a triangle; we must rather include all texels that
will be included when interpolating light for all positions in the triangle. This
is equivalent to adding all texels which have a triangle within a manhattan
distance of a pixel size from the pixel’s center. We approximate this by using
conservative rasterization followed by a runtime padding of the lightmap. Since
it is difficult to create a good uv unwrapping, the library thekla atlas [25] was
utilized.

5.3 Computing Probe Locations

In order to use the probes as effectively as possible, the probes should be well
spread out to provide a good coverage of the scene. We use the approach
described by Silvennoinen and Lehtinen [19]. First the scene is voxelized. A
voxel is the three-dimensional analog of a pixel. While pixels are arranged in a
2D grid, voxels are arranged in a 3D grid, and voxelizing the scene means that,
starting with a 3D grid enclosing the entire scene, we fill all voxels that contain
part of the scene surface, giving us a blocky approximation of the surface that is

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 25

simpler to work with than the surface itself. The probes should be placed outside
any object, but the previous voxelization only fills the voxels that intersect with
the surfaces in the scene. In order to be able to place probes only on outside
of object surfaces, we want both the voxels intersecting with the scene surfaces
and voxels in the interior of the scene surfaces to be filled. This is done by
flood-filling the scene, which means that groups of neighbouring empty voxels
all get filled.

In the next step, we go through all empty voxels that have a filled neighbor. For
each of these empty voxels, we generate a candidate probe at its center. After
this, we will have a set of candidate probes that all (1) lie outside of objects and
(2) lie close to the scene surfaces. This set is typically very large, and needs to
be reduced to get a suitable number of probes. This is done iteratively, removing
the probe from the densest region of probes each time, which leads to an even
distribution of probes with an approximately constant density. The density is
measured in the following way:

density(pk) =
∑
i

wi(pk) (12)

where density(pk) is the density at probe pk and wi is the weight function defined
in Equation 10.

5.4 Interpolation of the Probes

As it would be computationally expensive to include all probes in the interpo-
lation of probes for a receiver, it is desirable to select a smaller subset of the
probes for each receiver. To decide which probes each receiver should interpo-
late between Silvennoinen and Lehtinen use the support radius for each probe
– the r in Equation 10. A receiver uses a probe in the interpolation only if the
receiver lies within the probe’s support radius. This means that the number of
probes used can vary between receivers. However, at least a few probes should
be included in the interpolation in order to avoid discontinuities. Experimen-
tally we have found 6 to be sufficient. To achieve this, [19] use an average of 10
probes to interpolate between.

To reduce the amount of computation, instead of using a constant probe support
radius, we chose to use a variable radius, for each receiver. This way we can set
each receiver’s radius such that each receiver interpolates between exactly the
minimum number of probes necessary for the desired quality. If we choose n−1
probes to interpolate between, we set the radius of the receiver to the distance
to the nth closest probe. This ensures smooth transitions between the probes
and considerably reduces the computation needed.

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 26

5.5 Computing the Local Transport Matrix

During the computation of the local transport matrix we will need to query if
many different points are visible from a given probe. To facilitate this query
a cube-map with depth is generated for all probes, which can be considered a
point-light shadow map.

The local transport is computed in two passes for each direction we want to
sample. First we compute the normalized weights Wi for all probes to be inter-
polated, modulated by visibility, Equation 13.

Wi =
Viwin · (h− p)∑

k Vkwk
(13)

where h is the hit point, p is the world space position of the receiver and n is
the normal of receiver.

The spherical function is then approximated with spherical harmonics by mul-
tiplying it with the basis functions in the reprojected, h − p, direction. While
it is possible to compute this with a ray-tracer, we choose to use traditional
rasterization to utilize the parallelism of the GPU. To achieve this the spherical
harmonics where projected from cube maps as described in 2.6.1.

5.6 Gathering Radiance at the Probes

To be able to effectively query the radiance at surfaces in the scene, a lightmap
is generated. Each probe stores its incident light field as a set of spherical
harmonics coefficients. To reach this compact representation we need to perform
numerical integration as described in 2.6.1. Thus we need to sample the incident
radiance in a set of random directions. For each of these random directions,
the incident radiance is found by looking at the closest intersection point with
the scene in this direction – the color of the scene surface at this point is the
desired radiance. Performing this ray-tracing in real-time would be prohibitively
expensive. Instead, by deciding on a fixed set of directions, the lightmap uv
coordinates corresponding to the hit point in each of these fixed directions can be
precomputed beforehand. Then at run-time, the expensive ray-tracing operation
for each sample is simply reduced to a texture lookup in the lightmap.

The fixed directions should be uniformly distributed on the sphere to get a rep-
resentative sample of the incident radiance. We use an iterative approximation
of Poisson-Disc Sampling, similar to the algorithm described by [26]. The algo-
rithm consists of an initially empty set of selected points and a set of candidate
points:

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 27

Figure 8: Left: Visualization of the radiance captured by a probe’s relight rays,
in 100 directions. Right: The resulting SH representation, using 16 coefficients.

1. Generate a new set of k independent candidate points on the unit sphere,
each following a uniform distribution.

2. For each candidate point, calculate the minimum distance to previously
selected points, and add the candidate with the greatest such minimum
distance to the set of selected points. If the selected set is large enough,
terminate. Otherwise, go to step 1.

The greater the parameter k is, the lower the risk of points being unnecessarily
close.

5.7 Extracting the Global Illumination Solution

Finally, the global illumination solution at each receiver is computed by mul-
tiplying the coefficients in the light transport matrix with the corresponding
coefficients of the probes. It is important to note that since there are only a
few probes that contribute to each receiver we only need to compute and store
the non-zero coefficients. The result is then stored in a separate lightmap. The
scene can then be rendered using this lightmap in addition to the direct light.

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 28

Precomputation

px_map probe_indices rec_sh_coeffs

Real­Time

relight_uvs relight_shs

probes_sh_coeffs

gi_lightmap lightmap

screen

Figure 9: Diagram of the flow between the vertex buffers and textures used in
the program.

5.8 Data Structures and Program Flow

The general flow of the program and the division between precomputation and
real-time is illustrated in Figure 9, which includes the following textures and
vertex buffers:

• relight uvs – the uv coordinates that describe where the relight rays
from each of the probes hit the scene, stored as a texture of RG32 floats
(red = u, green = v) of size num relight rays * num probes.

• relight shs – the values of the included SH basis functions evaluated in
each of the relight ray directions, stored as a texture of R32 floats of size
num sh coefficients * num relight rays.

• px map – the uv coordinates of each receiver, stored as a vertex buffer of
size-2 integer vectors.

• probe indices – the identifying indices of the eight closest probes to each
receiver, stored compactly as a vertex buffer of size-4 integer vectors, with
each integer (32 bits) storing two 16-bit values.

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 29

• rec sh coeffs – the local transport matrix, stored as a flattened-out tex-
ture of RGBA16 floats (each RGBA16 texel contains 4 SH coefficients, so
that four consecutive texels together store the full 16 SH local transport
coefficients of a certain probe in a certain receiver’s list of its eight closest
probes).

• probes sh coeffs (real-time) – the SH coefficients that represent the in-
cident light field at each of the probes, stored as a texture of RGB16
floats (each color component has its own set of 16 SH coefficients) of size
num sh coefficients * num probes.

• gi lightmap (real-time) – the light map for the resulting indirect light.

• lightmap (real-time) – the full light map, containing direct light + indirect
light.

• screen (real-time) – contains the final render of the scene with direct
light + indirect light; it is thus very similar to lightmap. The difference
is that it only renders the surfaces seen from the camera’s point of view,
and computes the direct light per screen pixel rather than per lightmap
texel. This results in a higher resolution, where only the (slowly varying)
indirect light is limited by texture size and not the (fast varying) direct
light.

The precomputed data is loaded at the start of the program and stored in
textures and vertex buffers, and the lightmap texture initially only contains the
direct light of the scene. The relight uvs and relight shs data are fed into a
shader together with the current lightmap to compute probes sh coeffs – the
SH coefficients that represent the incident light field at each of the probes. The
main GI shader then combines this information about the radiance at the probes
with the precomputed information about the scene geometry that is stored
in px map, probe indices, and rec sh coeffs, resulting in the gi lightmap

texture, which now contains the illumination from the first bounce of indirect
light. The sum of the direct light and the gi lightmap is then used in two
different ways: (1) to render the final image on the screen, (2) to update the
lightmap texture. The second use (2) creates the final connection of a feedback
loop between probes sh coeffs, gi lightmap and lightmap as seen in Figure
9. After a single run through the loop, the lightmap has gone from including
only the direct light to including direct light + the first bounce of indirect light.
In the next frame, this new version of lightmap is used at the start of this cycle
so that after a second run through the loop, the lightmap contains direct light +
the first bounce + the second bounce of indirect light. This goes on indefinitely
so that at the nth frame the n first bounces of indirect light are included in the
approximation. It should be noted however that this typically converges after
only a few frames (bounces), because every new bounce will contain less energy
than the previous one.

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 30

5.9 Compressing the Local Transport Matrix

The previously discussed steps suffice to produce a good solution for the global
illumination problem. However, to reduce the runtime memory footprint Sil-
vennoinen and Lehtinen use clustered principal component analysis in line with
the work of Sloan et al. [27]. That is, first the receivers are divided into clusters
based on their position in world space, each of these clusters are then approxi-
mated using truncated singular value decomposition, tSVD [28, p.128].

We identify two problems with the clustering of receivers:

• it reduces the compressability by splitting the data into multiple smaller
data sets

• it introduces discontinuities on cluster boundaries

Silvennoinen and Lehtinen point out the computational cost associated with
computing the SVD directly. However, with randomized methods such as [29]
this computational cost is negligible in comparison with computing the local
transport matrix in the first place. There is, however, a very good reason to not
compute the tSVD without first clustering the receivers. The local transport
matrix T is very sparse. If it is approximated with truncated SVD T ≈ UΣV T ,
U is generally a linear combination of all principal components. Since we only
need to store the non-zero components of T , even if we remove a large number
of principal components we will not get any compression as a result of losing
the sparsity. By first applying clustering L is no longer sparse and the problem
disappears.

Let us consider the actual optimization problem that we are trying to solve: let
T be the local transportation matrix, P the vector of spherical harmonics for
all probes, and T ∗ = BD the approximation we are trying to find. The runtime
computation that we perform is B(DP). We want B to be as sparse as possible,
so we want to minimize the l0 pseudo norm, which counts the non-zero elements.
The approximation also needs to be accurate. This leads to the formulation in
Equation 14.

min|B|0
s.t.|T −BD|2 < ε

(14)

where ε is the maximum allowed error, B ∈ Rnk, D ∈ Rkm.

This problem is known as Dictionary Learning or the sparse coding problem.
The dictionary learning problem has gathered a lot of attention during the last
decade. It plays a large role in image processing problems such as denoising.

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 31

We will borrow some terminology commonly used in this problem formulation.
k is known as the number of atoms, D is known as the Dictionary and B the
sparse coding.

Dictionary learning is an NP-complete problem but there are many algorithms
that present accurate approximations. Generally these algorithms iteratively
solve two sub-problems:

1. Update the sparse codes given a constant dictionary

2. Update the dictionary given constant sparse codes

This formulation takes care of the sparsity problem of tSVD; however it rein-
troduces the problem of discontinuities seen with clustering.

If we add smoothness constraints to the solution we can decrease the disconti-
nuities i.e. in the approximation the difference between spatially close samples
should match the difference between the correct values of both samples. One
approach to solve the smooth version of the problem can be found in [30], which
solves the first sub problem with marginal regression second with Method of
Optimal Coherence-Constrained Directions (MOCOD) [31].

Data: matrix to approximate X, dictionary D, sparsity parameter λ
Result: Sparse code B
C ← DTX
for i .. rows(X) do

idx← indices of largest coeffs(Ci, λ)
minβ |Dβ −Xi,idx|2
Bi,idx = β

end
Algorithm 4: Marginal Regression

Where indices of largest coeffs is a function that returns the indices of the n
coefficients with largest magnitude such that the sum of those n coefficients
are smaller than a sparsity parameter λ. We also use the notation of indexing
multiple coefficients with a list of values such as that return by the previously
mentioned function.

Since the solving for D is over-determined simply using least squares is reason-
able. This is known as MOD or method of optimal directions. The previously
mentioned method MOCOD is a modified version of MOD adding additional
penalties to make the atoms more orthogonal and closer to normalized.

Data: matrix to approximate X, sparse code B
Result: Dictionary D
minD|DB −X|2

Algorithm 5: Method of Optimal Directons

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 32

A simple dictionary learning algorithm can then be defined as

Data: matrix to approximate X, sparsity parameter λ
Result: Dictionary D, sparse code B
D ← random matrix()
while not converged do

B ←MarginalRegression(D,X, λ)
D ←MOD(B,X)

end
Algorithm 6: Simple Dictionary Learning

The idea introduced in [30] is to not only compute the correlation between the
atoms and the sample to be approximated but instead the correlation between
a neighbourhood of samples and the atoms. I.e., instead of computing DTX we
compute DTXW , where W is some weight matrix between the samples. This
forces the method to use similar atoms for nearby samples which is desirable in
our application where discontinuities negatively impacts visual fidelity.

Marginal regression is very fast compared to other methods such as solving the
LASSO problem. For large dimensional problems it is approximately two or-
ders of magnitude faster [32]. But our problem instances can be larger than
what is feasible even for marginal regression. Therefore we introduce an addi-
tion to marginal regression that allows us to handle large dictionary sizes more
efficiently. We call this method partial marginal regression.

Instead of calculating the full correlation matrix in each step we observe that the
sparse coding for a given sample does not generally change that much between
iterations. As such we allow each matrix to only be a linear combination of a
small candidate set of the atoms. We define the candidate set as the atoms used
in the previous iteration and the n atoms that are most correlated with each of
the atoms used in the previous iteration.

Additionally instead of selecting the k coefficients such that their absolute sum
is smaller than λ we simply select the λ′ coefficients with the largest magnitude
where λ′ ∈ N. This has the disadvantage of using more coefficients over all
but the advantage that every sample is approximated with the same number of
coefficients. This choice is made to simplify our run-time calculations. We have
not investigated the impact of this decision.

An important implementation detail that holds for partial marginal regression
as well as traditional marginal regression is that if we solve the minimization
problem using the method of normal equations minx|Ax− y|2 = (ATA)−1AT y
both ATA and AT y can quickly be computed from previous results. In each
iteration we select the correct coefficients from DTD which is computed before
the loop and DTXi,idx can be computed by selecting the correct coefficients of
the correlation vector and multiplying it with the length of the corresponding

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 33

Data: matrix to approximate X, dictionary D, sparsity parameter λ,
previous sparse code B

Result: Sparse code B′

DN ← rowwise normalized(D)
AC ← DNTDN
ACS ←
rowwise select s largest coeffs(AC)
for i .. rows(X) do

cand set← indices of non zeros(Bp.row(i)ACS)
cand corr ← DNT .rows(cand set)X.row(i)
idx ← indices of n largest coeffs(cand corr, λ)
minβ |Dβ −Xi,idx|2
B′i,idx = β

end
Algorithm 7: Partial Marginal Regression

atoms. Additionally the inverse does not explicitly need to be computed, since
DTD is semi positive definitive we can solve it using LDL decomposition. Since
the matrix that is LDL decomposed is very small, [λ, λ], this operation is very
fast.

5.10 Dynamic Objects

While the original formulation in [19] only supports static geometry and dy-
namic lights, we extend the algorithm to support dynamic objects by retrieving
simply spatially interpolated irradiance from nearby probes to illuminate the
dynamic objects. While simple spatial interpolation is less correct than the
visibility-aware sheared version as has been shown in section 5.1, it is not de-
pendent on any precomputed quantities other than those for the relight rays,
and can therefore be evaluated at any position and direction in real-time. Note
that the probes store radiance rather than irradiance. In the ordinary algorithm,
irradiance is obtained through the numerical integration (with the cosine factor)
in the precomputation of the local transport matrix. In our dynamic solution,
we instead need to perform the conversion from the probes’ stored radiance to
irradiance purely in real-time. We do this using Ramamoorthi and Hanrahan’s
formulation [33, eq. 13], which combines the rotated clamped-cosine convolu-
tion with the evaluation in the normal direction. This is applied on all probes
within the support radius r, and the evaluated irradiance from each probe is
then simply spatially interpolated according to Equation 8.

This extension has a few inherent limitations; because the relight ray hit points
are still precomputed (and based only on the static geometry) the radiance
stored at the probes at run-time is independent of the dynamic objects, i.e.

5. TECHNIQUE 2: REAL-TIME GLOBAL ILLUMINATION BY
PRECOMPUTED LOCAL RECONSTRUCTION FROM SPARSE
RADIANCE PROBES 34

the dynamic objects are invisible to the probes. This means that the dynamic
objects can receive indirect light from the static environment but not from each
other, and they can also not cast indirect light (nor indirect shadows) onto the
static environment. What they can still do however is to cast direct shadows
(by blocking direct light) onto the static environment, which in turn has an
effect on the indirect light on both static and dynamic geometry.

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 35

6 Technique 3: Light Propagation Volumes

Light propagation volumes (LPV) is a technique for global illumination devel-
oped by Crytek, first described in 2009 by Anton Kaplanyan [20]. The algorithm
operates fully in real-time and uses no precomputed steps. Light propagation
volumes as implemented in this paper is able to approximate the first bounce of
light coming from direct light sources by using the surfaces lit as secondary (low-
frequency) light sources. Our implementation of the algorithm is also inspired
by the Cascaded Light Propagation Volumes [34] paper; published in 2010 by
Anton Kaplanyan and Carsten Dachsbacker. Our version alters the original im-
plementations presented by Crytek. The reason for this being the current day
restrictions with the WebGL API where some features of the modern versions
of OpenGL are not yet supported by WebGL.

The general idea behind light propagation volumes is to use the surfaces lit
by direct light as secondary light sources to calculate one bounce of indirect
light. The algorithm is divided into 4 steps which are described in detail in
the sections below. The first step generates surface data and stores it into a
reflective shadow map (RSM, section 2.9). The RSM data is then used to inject
the surface data into a 3D grid of virtual point lights. We also use geometry
injection to add blocking of light and indirect shadows during this step. The
light injected into the grid is then propagated between cells to achieve a better
light spread and light bleeding. Finally, in the fourth and final step we calculate
the indirect light and use it when rendering the scene.

6.1 Reflective Shadow Map Generation

The first step of the light propagation volume algorithm is to generate a RSM
for every light source of the scene. This is useful in later steps as it allows for
efficient data lookup with little computation needed.

Our implementation of light propagation volumes uses a 4096 × 4096 simple
shadow map for shadows. However it is not feasible to use a reflective shadow
map of this size in the injection stage, as it would require large amounts of
computing power and thus be too slow. To speed up the process, the RSM is
downsampled to a resolution of 512×512 by rendering it to another framebuffer
using a smaller viewport before initiating the injection stage.

6.2 Radiance Injection

After rendering the reflective shadow map, a point cloud bounded by the width
and height of the RSM is rendered as single vertices. Thus, we have a 2D point

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 36

cloud containing points with the positions 0 ≤ x, y ≤ RSMs, where RSMs is
the RSM size. The idea is to represent every texel in the RSM with a point
in the point cloud. The point cloud is then passed on to the vertex shader
where every vertex is automatically assigned a vertex ID. The ID can easily be
fetched using the built in variable gl V ertexID. The ID idp of a point is then
transformed into a texel txy on the RSM (Equation 15).

txy = (idp%RSMs, idp/RSMs) (15)

where % denotes the modulo operator.

The texel from each of the respective RSM textures is then fetched using txy.
To avoid self illumination, every world space position is displaced by half a cell
in the direction of the surface normal.

The objective of the injection stage is to save the lighting contributions in dif-
ferent directions for the different positions as virtual point lights in a grid in a
3D-texture. Using the grid size, cell size, and the displaced world space position
fetched from the RSM, it is possible to calculate a position in the grid for a
virtual point light. The grid cell is fetched by dividing the distance from the
minimum grid cell to the displaced world space position by the cell size.

In modern OpenGL versions you normally render a 3D-texture slice by slice,
meaning that you render every depth layer as an ordinary 2D-texture and stack
them upon each other. When rendering 3D-textures in modern OpenGL the
depth layer selection during runtime is handled via the geometry shader’s built-
in variable gl Layer. Unfortunately, the current WebGL pipeline has no support
for geometry shaders. This means that there is no simple way of selecting the
depth layer to render to during run-time. To solve this, a 2D-texture is utilized
instead by stacking the depth layers side by side. This means that a grid that
would be of the size 32× 32× 32 instead could be represented as a 2D-texture
of size 1024× 32.

After the 3D grid location has been computed the position on the texture to
render to need to be calculated. The 3D grid location glxyz and the grid size gs
are used to find the texture coordinates txy (Equation 16):

txy = (glx + glzgs, gly) (16)

The texture coordinate is then transformed into normalized device coordinate
(NDC) [35] space (where −1 ≤ x, y, z ≤ 1) and used as the rendering position
output by the vertex shader. The previously fetched RSM texel is also sent
through to the fragment shader.

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 37

In our implementation we use spherical harmonics of the second band, which
means that 4 coefficients are used. The directional distribution of a color is
represented as spherical harmonics projected on a clamped cosine lobe centered
around the surface normal. The cosine lobe is then scaled by the scalar intensity
of each of the colors (RGB) to get the directional intensity of a color. The
coefficients (c0, c1, c2, c3) for the cosine lobe around a normal n = (x, y, z) are
as shown in Equation 17 [36]:

c0 =

√
π

2

c1 = −
√
π

3
y

(17)

c2 =

√
π

3
z

c3 = −
√
π

3
x

This vector is then renormalized to form a hemispherical lobe by dividing the
resulting vector (c0, c1, c2, c3) by π. Additive blending is used in the injection
stage. Since positions inside a given grid cell are not accounted for, if there are
multiple texels that translate into the same grid cell the light is added to that
grid cell multiple times. Therefore, the weight of each texel has to be accounted
for when adding it to the cell. Each cosine lobe is therefore scaled by a texel
weight calculated by dividing the grid size by the RSM size.

As described above, the cosine lobes are stored in three separate vectors, each
scaled by the intensity of their respective color channel. The scaled cosine lobes
are then rendered into three different grid textures; one for each color channel.
The resulting grid after injection is visualized in Figure 10.

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 38

Figure 10: Spherical harmonics in the grid after light injection

6.3 Geometry Injection

In addition to performing radiance injection a geometry injection step is also
performed, where a volumetric approximation of the scene’s geometry is stored
in a second grid (geometry volume). These approximations are used to block the
light during propagation which results in the computation of indirect shadows.
The geometry volume (GV) is displaced such that the center of the geometry
volume lies on a corner of the light propagation volume. In the geometry in-
jection step the spherical harmonics projections of the blocking potential are
injected into the geometry volume which is used during the propagation step as
mentioned in Section 6.4.1.

6.4 Radiance Propagation

As previously mentioned and as the name implies the purpose of the propagation
stage is to spread the light of the cells to its neighbours in order to give a better
light distribution within the grid. The reason for this is that the light would be
visible with very sharp edges which then would seem unnatural if propagation
is not applied. This can clearly be seen in Figure 11. By propagating the light
the light bleeding effect, where the color of a surface hit by direct light affects
surfaces hit by the indirect light bounce, is achieved.

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 39

Figure 11: Light before propagation is applied. The edges of the grid cells are
clearly visible giving the light an unnatural appearance.

The propagation step consists of n sequential iterations where n should be ad-
justed to each application and scene in order to optimize the result. In the
propagation step the light contribution from every cell’s 6 neighbouring cells (in
3D) are sampled. A 2D illustration with 4 neighbours can be seen in Figure 13
to the left. After sampling the neighbours’ contributions the sum of these are
written to the cell’s own contribution. To compute the contribution of neigh-
bour n, the integral of the outgoing radiance going through each face f of n is
calculated, as seen in Figure 13 to the right. The sum of these makes up the
contribution of neighbour n. The four side faces of a cell can be seen in Figure
12.

Figure 12: The four side faces of a cell, in orange.

The input for the initial iteration of the propagation step is the LPV from the
injection step. This LPV is then modified in each propagation iteration and sent
to the next iteration. After n number of iterations the resulting LPV is used in

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 40

scene lightning, see section 6.5. Each cell in the LPV stores the intensity as a
SH-vector, one for each color channel (RGB).

The light is propagated from the center of the source cell in direction ωc to-
wards the center of each face in the neighbouring cell. This is done for all 6
neighbouring cells. The intensity, I(ωc), is evaluated by taking the dot product
of the sampled SH coefficients of the neighbour and the SH projection of the
direction vector ωc of the visibility cone.

source cell neighbouring cells

ωc

source cell neighbour cell

face f

Figure 13: Left: Each cell in the LPV stores the directional intensity used to
compute the light that is propagated from a source cell to its 4 neighbors (2D),
6 in 3D. Right: The flux is computed through each face f of the neighbour cell.

To avoid inaccurate integral values stemming from our low-order SH approxima-
tions the subtended solid angles of each face in the neighbour cell are computed.
The solid angles used in our implementation are Sd = 0.4006696846 for the di-
rect face (back face) and Ss = 0.4234413544 for the side faces. The flux is the
computed as φc = Sd/π · I(ωc).

The incoming flux is also re-projected to the center of the cell by determining
a re-projection direction rc. A cosine lobe of rc is projected into SH coefficients
and multiplied by the flux φi = Ss/π · I(ωc). This is done for each face f of the
neighbouring cell n. Pseudo code of the propagation algorithm can be found in
Algorithm 8. The steps are repeated for every color component.

6.4.1 Blocking of Light

In the propagation step we also include the blocking of light which is computed
from the geometry volume. The spherical harmonic coefficients of the geom-
etry volumes are interpolated and the occlusion for each color channel in the
propagation direction is evaluated. This is done to attenuate the intensity of
the light and produce indirect shadows. This evaluation of the occlusion is not
performed in the first step of propagation after radiance injection in order to
prevent self-shadowing.

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 41

Data: Direct face solid angle Sd, Side face solid angle Ss, neighbours of
source cell neighbours, faces of a cell faces

Result: Contribution Cs of source cell
for neighbour n in neighbours do

if !first iteration then
evaluate occluded contribution cd of direct face

end
cn ← cn + cd · I(ωc)
for face f in faces do

if !first iteration then
evaluate occluded contribution cs of side face

end
cn ← cn + cs · I(ωi)

end

end
Cs = cn

Algorithm 8: Radiance Propagation

6.5 Scene Lighting

After the propagation step is finished, the grid has been populated with indirect
light that has been distributed throughout the grid and projected onto the faces
of the grid cells. What remains is to use this data to light the scene.

To evaluate the light of a surface fragment the position of the fragment in
the grid is first calculated. When fetching the light contribution of the grid cell
from the grid, trilinear filtering is performed to achieve smooth light transitions.
Because of our 2D representation of the 3D grid we need do the trilinear filtering
manually in the fragment shader. Leveraging the hardware bilinear filtering,
only 2 texture lookups are needed for every value fetched. Since one grid is
used for every color channel, 3 values have to be fetched, meaning 3× 2 texture
lookups need to be performed.

The fragment’s normal n = (xyz) is then projected into spherical harmonic
basis to form the resulting vector Cn = (c0, c1, c2, c3) by multiplying n by the
first two bands of spherical harmonic coefficients (Equation 18) [11].

6. TECHNIQUE 3: LIGHT PROPAGATION VOLUMES 42

c0 =
1

2
√
π

c1 = −
√

3

2
√
π
y

(18)

c2 =

√
3

2
√
π
z

c3 =

√
3

2
√
π
x

The projected normal Cn is then dotted with each of the trilinearly interpolated
values Gr,Gg,Gb fetched from the grid earlier to form the resulting vector Irgb
containing the indirect light irradiance as shown in Equation 19.

Irgb = (Cn ·Gr,Cn ·Gg,Cn ·Gb) (19)

As negative light contributions in any channel is invalid, the vector Irgb is
clamped to values above 0 and divided by π to renormalize it [37]. The ir-
radiance vector is then multiplied by the diffuse color of the fragment to be lit,
resulting in the diffuse indirect light IDrgb for the fragment.

6.6 Dynamic objects

Even though the light propagation volumes technique is capable of running
completely in real time with dynamic lights, camera, and geometry it is not
necessary to update the light grid in every frame. When rendering a fully static
scene only the scene lighting step runs each frame, using the previously stored
light grid during rendering. Only when something has been updated since the
last rendered frame the light grid has to be updated, thus saving computation
time which can be very beneficial.

7. RESULTS 43

7 Results

We present the individual results of the techniques below, follow by a side by
side presentation. All results are rendered in Windows 10 by Mozilla Firefox
(version 59.0.3) on a 1920 × 1080 resolution, using an Intel i7-6700k with an
Nvidia Geforce GTX 780 (3 GB VRAM) and 16 GB of RAM if nothing else is
mentioned.

For testing and evaluation purposes Living room [9] and a modified1 Crytek
Sponza [9] was used (from now on referred to as Sponza).

7.1 Technique 1

Unless otherwise mentioned, all images for this technique are rendered with
cubemaps of the size 6 × 2562 pixels, octahedrals of the size 10242 pixels, and
the irradiance and filtered distance of the size 1282 pixels. For filtering, 2048
and 128 samples per pixel (SPP) were used, respectively.

For glossy indirect light, i.e. reflections, we did not manage to achieve results
close to the ones presented in the original paper (compare to [18]). While we
did use the supplementary code provided for the ray-tracing, changes had to be
done, as described in section 4.4. In Figure 14 the full technique is shown, i.e.
with both diffuse and glossy indirect light. From the figure it is clear that the
quality of the reflections is not very good. Large portions of the screen could
not successfully be ray-traced, but even the parts that do work seem to be of
low resolution: notice the jagged lines on the reflections of the arches.

Figure 14: Direct light, diffuse and glossy indirect light. While glossy indirect
light does work it is not of sufficient quality. Glossy indirect light due to rays
that could not be successfully traced (Unresolvable or Miss after tracing is
done) is colored magenta to highlight the problem.

While the number of samples and s (in Algorithm 3) for the filtered distance had
little significance to the overall quality of the GI, we found that the number of
samples for the irradiance was closely tied to the quality. In a tradeoff between

1Curtains and plants were removed and a green Teapot model [9] was inserted for color.

7. RESULTS 44

performance and quality we found 2048 SPP for a 1282 irradiance map worked
best, since it allowed good quality indirect light at real-time performance. With
2048 SPP there is still a significant amount of high-frequency noise in the irradi-
ance maps, which is not ideal. To remove most of the high-frequency artifacts,
SPP in the 104 order of magnitude or greater is needed. In Figure 15 images
rendered with only direct and diffuse indirect light can be seen; some artifacts
can be observed in the Living room scene on surfaces with smoothly varying
normals, such as the sofa cushions on the bottom right picture.

Figure 15: Direct and diffuse indirect light only, rendered using technique 1.
Top row: Sponza scene [9] with 8× 8× 4 = 256 probes. Bottom row: Living
room scene [9] with 3× 3× 4 = 36 probes.

For both glossy and diffuse indirect light we found the probe count and place-
ment to be closely tied to the quality of the GI (Figure 16). The probe count
is also directly tied to the precomputation time. Since we only precompute a
fixed number of probes per frame (we found 2 probes per frame worked best for
most computers) and spread out the precomputations for probes over multiple
frames, the number of probes changes the turnaround time from a change to
correct GI respecting the new state. Given 43 = 64 probes, 2 probes per frame,
and that 60 FPS can be maintained, the turnaround time would be 0.53 seconds.

7. RESULTS 45

Figure 16: Direct and diffuse indirect light only, rendered using technique 1.
The probe locations are drawn as green spheres in the scene. It can be observed
from the images that probe placement has a significant impact on the quality
of the GI. In the left image a probe is located right behind the sofa; because
the bright windows cannot be seen from that location the area is very dark. In
the right image there is no probe at that location, so it is significantly brighter
behind the sofa.

7.2 Technique 2

7.2.1 Effect of varying the number of SH bands

Figure 17: Rendering the scene with different number of bands of the spher-
ical harmonics. In order top to bottom, left to right. 1, 4, 9, 16 coefficients
respectively. Reference at the bottom.

7. RESULTS 46

In Figure 17 we can see that if we increase the number of bands that are used in
spherical harmonics approximation the image quality generally increases. Note
especially the light in the center of the sofa, the ambient occlusion in the niche
on the right hand side and the slight increase in brightness inside of the fire
place. Note also the decreased quality with four coefficients compared to with
only one.

The precomputation time for the Living room scene with 64 coefficients was
58 minutes on a Toshiba Satelite L50-B laptop from 2014, 2.6GHz quad-core
i7, integrated graphics card with 2GB VRAM. For the Sponza scene the pre-
computation time was similar. Precomputing only 16 coefficients reduces the
precomputaton time by roughly a factor of two.

7.2.2 Dynamic objects

Figure 18: Left: Living room scene with both the room and the interiors
statically precomputed (using 15 probes). Right: Living room scene with the
room statically precomputed (using 15 probes), but the interiors fully dynamic.

Our extension to include dynamic objects seems to work surprisingly well in
many cases with the dynamic objects relatively seamlessly blending in with the
static background (see Figure 18). In the above example it even performs better
in one way: it gets rid of the artifacts caused by the lightmap texture’s limited
size (the black spots). At the same time it clearly has a flatter, less detailed
appearance than the fully static version.

7. RESULTS 47

7.3 Technique 3

The light propagation volumes technique allows for fully real time rendered
scenes. Unless otherwise mentioned a grid size of 323 and RSM size of 5122 is
used with 16 propagation iterations on the Sponza [9] scene. When presenting
the results for technique 3 we will refer to dynamic and static scenes. In dynamic
scenes we update the shadow map for every light source between every frame,
while in static scenes we do not.

7.3.1 Propagation Iterations

We found that the number of propagation iterations and the grid size used when
rendering had significant impact on the quality of the indirect light. The grid
has to cover the entire area of which the indirect light calculations should be
done, otherwise the light will look irregular and unrealistic. For most scenes we
found that n

2 propagation iterations, where n is the grid size, gave us sufficiently
good results with good performance, as displayed in Figure 19.

Figure 19: From left to right: Sponza rendered without indirect light, 8 prop-
agation iterations, 16 propagation iterations. All without ambient light. Many
dark spots that should be lit are still visible when using 8 propagation iterations.

7.3.2 Many Lights

Technique 3 puts a lot of emphasis on performance and scales well with numerous
light sources in a static scene, albeit not very well in dynamic scenes. When
using 5 spotlights in a dynamic scene we still manage to get as high as 55 frames
per second with a frame time of 18.18 ms, this diminishes very quickly when
raising the amount of light sources until reaching 10 light sources, when the
frame rate decline begins to stagnate, as shown in Table 1. In addition to the
spotlights, the results below are rendered with one directional light.

7. RESULTS 48

Sponza (dynamic)

Spotlights FPS Frame time

0 163 6.13

5 55 18.18

10 14 71.43

15 14 71.43

20 11 90.90

25 9 111.11

Table 1: Performance comparison of dynamic scene performance using multiple
spotlights measured in frames per second (FPS) and milliseconds for the Sponza
scene.

When rendering static scenes there is little overhead and our implementation
scales very well with a high number of light sources. We can render a static
Sponza, using 100 spotlights in 50 frames per second. The results for static
scenes are presented in Table 2

Sponza (static)

Spotlights FPS Frame time

0 410 2.44

50 140 7.14

100 50 20.00

150 34 29.41

200 24 41.66

250 20 50

Table 2: Performance comparison of static scene performance using multiple
spotlights measured in frames per second (FPS) and milliseconds for the Sponza
scene.

7.3.3 Incorrect Light Bleeding

As described in section 6.2, the light in the cells are displaced half a cell in the
direction of the surface normal to prevent light bleeding through surfaces. It
is still a fact that some surfaces are thin enough to be completely surrounded
by grid cells and when we do trilinear filtering there is a chance that we fetch
a value on the wrong side of a surface. Because of this, even though effort has

7. RESULTS 49

been made to avoid it, light bleeding through thin surfaces is still a problem in
our implementation, Figure 20 visualizes this problem.

Figure 20: Image rendered with significant increase in amount of indirect light.
While not obvious, you can still see the green light bleeding from the teapot on
the lower level.

7.4 Comparative

As discussed in section 4.2 technique 1 allows for both diffuse and glossy re-
flections through the probe image-space ray-tracing. For the sake of fairness,
though, it will be compared to the other techniques with only diffuse indirect
light since that is supported by every technique.

Figures 21 and 22 show a visual comparison between the different techniques
and ground truth for two different scenes. For the Sponza scene very convincing
result can be achieved using technique 1 and 2, compared to the ground truth.
Technique 3 also provides good results, but compared to the ground truth there
are some significant differences, such as the amount and distribution of indirect
light on the ground and back wall in Figure 21. For technique 2 some spot-like
artifacts can be seen near the teapot. For comparison an ambient GI approx-
imation was also included. For ambient light a small factor of the material
color is simply added to the scene uniformly. While at first glance it might look
convincing for this scene it also lacks any form of color bleeding and all unlit
surfaces are equally bright; take notice of the brightness under the arches.

For the Living room scene the results differ more. Technique 2 achieves very
accurate GI compared to the ground truth, while technique 3 looks too bright
and washed out throughout and technique 1 looks too dark on some surfaces.
Technique 1 especially suffers on surfaces where indirect light of more than one

7. RESULTS 50

bounce is visually significant, such as the left wall, behind the sofa. A significant
difference can also be seen comparing all of the three techniques to the ambient
approximation. Since the color of the incoming light and the floor is tinted
towards yellow the ambient reference looks wrong since it does not take that
into account.

Run-time performance comparisons can be seen in Tables 3 and 4. At idle all
techniques performs well and are able to maintain 60 FPS (i.e. frame time
< 16.67 ms). Techniques 2 and 3 are also able to maintain 60 FPS on change,
with only minor impacts on frame time. Technique 1, though, has significant
performance degradation on change and for Living room is not able to main-
tain 60 FPS. For the performance comparisons technique 1 precomputes two
probes per frame on change. It is possible to maintain 60 FPS if only one probe
is precomputed per frame, but this also doubles the turnaround time.

The precomputation time of technique 1 (i.e. turnaround time) is limited to a
couple of seconds, and increases linearly with the number of probes. Technique
2 has a significantly longer precomputation time, ranging from minutes to hours
depending on the scene. A larger scene will have more receivers and take longer
to precompute. Technique 3 needs no precomputation.

In technique 1, for objects or light to change with correct global illumination,
the probes has to be precomputed for each frame. Technique 2 does not fully
support moving objects but light can move if the lightmap is updated and the
global illumination recalculated for each frame. Technique 3 fully supports
dynamic light and objects. However, the reflective shadow map of each light
has to be redrawn at each frame when using dynamic scenes, so performance
scales with the number of lights.

7. RESULTS 51

Sponza

Technique Frame time
(Idle)

Frame time
(On change)

1 4.78 13.70

2 2.47 4.57

3 2.44 6.13

Table 3: Performance comparisons for the different techniques, measured in
milliseconds, for the Sponza scene [9].

Living room

Technique Frame time
(Idle)

Frame time
(On change)

1 5.81 21.28

2 1.86 4.17

3 3.50 6.71

Table 4: Performance comparisons for the different techniques, measured in
milliseconds, for the Living room scene [9].

7. RESULTS 52

Figure 21: Comparison between only direct light, direct and ambient light,
the three techniques, and ground truth for the Sponza scene [9]. Top left:
only direct light. Top right: direct and ambient light. Middle left: path traced
ground truth using Blender Cycles Renderer. Middle right: technique 1. Bottom
left: technique 2. Bottom right: technique 3.

7. RESULTS 53

Figure 22: Comparison between only direct light, direct and ambient light,
the three techniques, and ground truth for the Living room scene [9]. Top
left: only direct light. Top right: direct and ambient light. Middle left: path
traced ground truth using Blender Cycles Renderer. Middle right: technique 1.
Bottom left: technique 2. Bottom right: technique 3.

8. DISCUSSION & FUTURE WORK 54

8 Discussion & Future Work

8.1 Technique 1

The Precomputed Light Field Probes technique [18] fulfills our aim reasonably
well for diffuse indirect light. The illumination is reasonably realistic and when
only calculating the diffuse light and omitting the ray-tracing necessary for
specular reflections, the performance is very good as well. The big drawback is
the precomputations needed, which makes dynamic objects a problem. However,
the average precomputation time for a modern desktop computer is less than a
millisecond per probe, which makes precomputation on the fly when the scene
changes fairly seamless, unless a lot of lighting and objects change quickly or
the scene requires a very large number of probes. There are also factors that
can be changes to affect this. If the context is a highly dynamic environment,
the number of probes and the resolution of the environment maps could be
reduced drastically so that precomputation can be done in real-time. If the
scene is largely static and it is acceptable for the global illumination to “snap
into place” shortly after something is moved or changed, a higher number of
probes with high resolution maps can be chosen.

Regarding the glossy reflections we believe the suboptimal results to be the result
of our rewrite, as discussed in section 4.4, not being perfect. When rewriting the
code we tried to achieve a perfect one-to-one mapping, functionality wise, but it
is very possible that this was not successful. In any case, the glossy reflections
are also very costly for complex scene [18, tab. 1] and are not relevant for the
comparison in this paper.

As mentioned in section 7.1 there exist high-frequency noise in the 1282 irradi-
ance maps after filtering with 2048 SPP. To maintain high enough performance
to be able to precompute in the background it is realistically not possible to go
much higher than 2048 SPP, and definitely not as high as 104 SPP as would
be required. By lowering the resolution of the irradiance map fewer SPP would
be required, but it would also not produce as smooth results. One possible
way of achieving smooth results could be to encode the irradiance into spherical
harmonics instead of an explicit irradiance map. Spherical harmonics guarantee
low-frequency changes while allowing infinite irradiance resolutions. This would
also require less VRAM than the current solution.

Also mentioned in the results is how the probe placement has an effect on the
quality of the GI. In our implementation we replicated what was done in the
original paper [18] and placed probes in an axis-aligned grid with fixed steps
between probes. While it allows for very optimized shader code for the ray-
tracing it is not a strict requirement. It is conceivable that a smart probe
placement strategy, such as the one used in technique 2 for receivers, could

8. DISCUSSION & FUTURE WORK 55

be employed. Combined with a spatial data structure such as a kD-tree for
picking the n closest probes to a point we hypothesize that similar real-time
performance could be achieved.

8.2 Technique 2

It is important to discuss the places where our implementation diverges from
that of Silvennoinen and Lehtinen. We changed how the probes are interpolated
as described in 5.4, this does not seem to negatively impact visual fiedelity
but only improve on the time needed for precomputation. We experimented
with another approach for compressing the local transport matrix which meant
that we did not have the time to implement the originally described method.
Additionally there are a number of places where the approach is not described
in enough detail for us to follow the paper.

• If, and in that case how, the lightmap is padded or if other approaches to
mitigate lightmap seams are used

• If it uses raytracing or rasterization for computing the local transport
matrix

• If any form of windowing was performed on the spherical harmonics to
reduce ringing artifacts

Additionally our results only use the first 4 bands – 16 coefficients – of the
spherical harmonics while Silvennoinen and Lehtinen generally use 8 bands – 64
coefficients. This reduces visual fidelity but improves performance.

The use of dictionary learning instead of clustered singular value decomposition
for the compression of the local transport matrix did not quite yield the results
that we were hoping for. While the problem formulation is quite accurate it does
not take into account the need to store indices for sparse representations which
for a clustered approach only need to be stored once per cluster. In addition
as the scene size grows larger the local transport matrix grows more and more
sparse, clustered approaches naturally divides large scenes into smaller ones and
as such the increased sparsity does not cause any problems. However, for dictio-
nary learning the increasing sparsity of the local transport matrix both increases
the computational cost and decreases the resulting quality. Our augmentations
to traditional marginal regression does mitigate these problems and for small
scenes it does produce good results, however, for large scenes the results are still
lacking.

While there was not enough time to explore other representations for evaluating
the relight rays than the lightmap and uv approach described in 5.6 other alter-
natives are possible. The simplest of which is to store the world space position,

8. DISCUSSION & FUTURE WORK 56

the normal and the color of the surface where the relight ray hit. Rendering
the lightmap adds an additional pass where the entire scene must be rendered.
Additionally it introduces another approximation since the lightmap has finite
resolution. However, it only requires minimal additional memory, is easy to im-
plement and has constant time complexity with regards to the number of relight
rays. Depending on how many bands of the spherical harmonics are used to ap-
proximate the probes and consequently the number of relight rays necessary,
diverging from the lightmap + uv representation might be possible.

8.3 Technique 3

Light propagation volumes is a great method of approximating global illumi-
nation in real time with many advantages, such as the flexibility; it is possible
to use this technique in many different scenes with only minor configurations.
But the technique also has its drawbacks, such as the incorrect light bleeding
discussed in section 7.3.3 or the fact that it only supports low frequency indirect
lighting[20]. The technique is also only able to approximate the first bounce of
indirect light. It can be extended to handle multiple bounces but these methods
has their drawbacks [34]. There are also extensions to LPVs that allow for glossy
reflections or participating media lighting[20]. Despite this our implementation
of LPVs achieves a reasonable result with respect to image fidelity and realism
but the strength of it lies in its ability to handle global illumination for fully
dynamic scenes in real-time.

8.3.1 Many Lights

In our implementation we use spotlights with positions generated on the CPU
that are sent to the GPU for light calculations. We update every one of the
shadow maps when the scene has been changed. An update of every single
shadow map is not necessary when conditions might only have changed for one
of the light sources. We would have liked to optimize this adding a scheme
where we keep track of individual light sources and thereby only update the
ones whose condition changes.

Another way of simulation a large number of light sources is by injecting already
propagated point lights in the grid. This method could be done on the GPU
without the overhead we have in our current implementation. This method is
discussed in the original light propagation volumes paper and reach great results
with lighting calculations taking 16.5 ms with 3000 light sources[20].

8. DISCUSSION & FUTURE WORK 57

8.3.2 WebGL Limitations

As discussed in section 6.2, we use a 2D texture to represent a 3D grid due to the
limitations of current day WebGL. When fetching a value from the 3D texture
position (x, y, z), we instead fetch it from (x+(z ·gridsize), y) in our 2D texture.
Doing this comes with some overhead, we have to do additional calculations
to find the new 2D position. Granted, this does not take very much time.
The largest drawback is that we have to do trilinear filtering manually when
rendering, instead of leveraging the hardware, which increases execution time.
Therefore, if we had not limited ourselves to WebGL we could have skipped some
intermediary steps in our implementation, thus making the algorithm faster.

Another limitation of WebGL is the lack of compute shaders. This would have
been especially beneficial in the propagation step as it would simplify the im-
plementation as we only need to propagate per cell. The simplification is due
to not having to split up what would otherwise be a single compute shader into
a vertex and fragment shader which require some setup before getting things
to work without redundant calculations in the case of the propagation step. A
more simple and straightforward implementation is the not the only benefit of
using a compute shader in favor of traditional vertex and fragment shaders. A
second benefit and perhaps of even more significance is that compute shaders
allow for more effective parallel programming methods which may increase the
performance of the program [38].

8.4 Comparative

Two of the techniques, 1 and 3, were significantly easier to implement than
technique 2. This is partially because of the inherent complexity of the different
techniques but also largely depends on how widely adopted the techniques are
in industry and the availability of reference code and implementations. For
technique 1 and 2 no resources other than the original papers were available. In
the papers for technique 1 additional shader code was included in the appendix,
while the paper for technique 2 did not describe all aspects of the implementation
process in detail. In addition to the papers for technique 3 there are publicly
available implementations to gather inspiration from.

Additionally, technique 2 involves long precomputation times which significantly
slows down the time of iteration and debugging. Technique 1 and 3 do not
require any precomputations before loading a scene, thus accelerating the time
between iterations.

Technique 1 and 2 achieve better visual fidelity than technique 3 but this comes
at the cost of performance and precomputation respectively. There were also
differences between the two scenes evaluated. Technique 1 achieved the most ac-

8. DISCUSSION & FUTURE WORK 58

curate results for the Sponza scene, and technique 2 achieved the most accurate
results for the Living room scene.

In technique 1, a grid of probes which gives full visibility of the scene is needed.
For the scenes we used this worked well but for very large and complex scene,
an unreasonable amount of probes would be needed for full visibility. This
limitation makes technique 1 much more suitable in certain contexts than others.
For example, a game in which rooms are loaded when you enter would work well
but large open world games would not. The other two techniques does not have
this limitation, and technique 3 specifically is not very affected by its context.

While these three techniques are viable for real-time GI, modern technology
such as the newly introduced DirectX Ray-Tracing [39] might fundamentally
change the global illumination landscape. There is still a notable difference
between path traced references and the explored techniques. With the increase
of computational power new techniques which are only viable in the offline
context might also be applicable in real-time.

9. CONCLUSION 59

9 Conclusion

All three techniques fulfill the criteria set up in section 1.1, and some of them
excelled.

Compared to the ground truth images we consider all of the techniques to pro-
vide visually convincing and reasonably realistic global illumination, according
to criterion 1, while also different.

We initially thought that handling dynamic light and objects would be a major
issue for technique 1 and 2 due to the precomputations performed, but it turned
out to work quite well in both.

There are also differences in performance between the techniques, but all tech-
niques clearly achieved well above what is needed for smooth interactivity while
also achieving adequate visual fidelity.

Even though there were differences in the difficulty of implementation, as dis-
cussed in 8.4, there were no technical constraints that we were unable to over-
come, and all the techniques were implementable in a web-browser as shown in
the results section.

We cannot conclusively decide on a single technique that is optimal in all re-
gards, but we consider all of the three evaluated techniques to be viable for
achieving real-time global illumination in web-browsers with respect to the lim-
itations of such a platform.

REFERENCES 60

References

[1] Can I use..., “Can I use? – WebGL 2.0,” accessed on: Feb 07 2018.
[Online]. Available: https://caniuse.com/#search=webgl2

[2] The Khronos Group Inc., “WebGL 2.0 Specification,” 2017. [Online].
Available: https://www.khronos.org/registry/webgl/specs/2.0/

[3] T. Sherif, “PicoGL.js,” accessed on: Mar 23 2018. [Online]. Available:
https://tsherif.github.io/picogl.js/

[4] M. McGuire, The Graphics Codex, 2nd ed. Casual Effects, 2016. [Online].
Available: http://graphicscodex.com

[5] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering,
Third Edition. CRC Press, 2008.

[6] J. T. Kajiya, “The rendering equation,” in Proceedings of the 13th
Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’86. New York, NY, USA: ACM, 1986, pp. 143–150.
[Online]. Available: http://doi.acm.org/10.1145/15922.15902

[7] B. F. Janzen and R. J. Teather, “Is 60 fps better than 30?: The impact of
frame rate and latency on moving target selection,” in CHI ’14 Extended
Abstracts on Human Factors in Computing Systems, ser. CHI EA ’14.
New York, NY, USA: ACM, 2014, pp. 1477–1482. [Online]. Available:
http://doi.acm.org/10.1145/2559206.2581214

[8] C. Ware and R. Balakrishnan, “Reaching for objects in VR displays: Lag
and frame rate,” ACM Trans. Comput.-Hum. Interact., vol. 1, no. 4,
pp. 331–356, Dec. 1994. [Online]. Available: http://doi.acm.org/10.1145/
198425.198426

[9] M. McGuire, “Computer graphics archive,” July 2017,
https://casual-effects.com/data. [Online]. Available: https://casual-effects.
com/data

[10] J. R. B. Edward H. Adelson, “The plenoptic function and the elements
of early vision,” in Computational Models of Visual Processing, M. Landy
and J. A. Movshon, Eds. Cambridge, MA, USA: MIT Press, 1991, pp.
3–20. [Online]. Available: http://www1.cs.columbia.edu/∼changyin/candidacy/
AdelsonCMVP1991.pdf

[11] P.-P. Sloan, “Stupid spherical harmonics (sh) tricks,” 2008. [Online]. Available:
http://www.ppsloan.org/publications/StupidSH36.pdf

[12] Íñigo Qúılez, “Spherical harmonics,” May 2014, accessed on: May 14 2018.
[Online]. Available: https://www.shadertoy.com/view/lsfXWH

[13] The Khronos Group Inc., “ARB draw buffers,” 2008. [Online]. Available: https:
//www.khronos.org/registry/OpenGL/extensions/ARB/ARB draw buffers.txt

https://caniuse.com/#search=webgl2
https://www.khronos.org/registry/webgl/specs/2.0/
https://tsherif.github.io/picogl.js/
http://graphicscodex.com
http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/2559206.2581214
http://doi.acm.org/10.1145/198425.198426
http://doi.acm.org/10.1145/198425.198426
https://casual-effects.com/data
https://casual-effects.com/data
http://www1.cs.columbia.edu/~changyin/candidacy/AdelsonCMVP1991.pdf
http://www1.cs.columbia.edu/~changyin/candidacy/AdelsonCMVP1991.pdf
http://www.ppsloan.org/publications/StupidSH36.pdf
https://www.shadertoy.com/view/lsfXWH
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_draw_buffers.txt
https://www.khronos.org/registry/OpenGL/extensions/ARB/ARB_draw_buffers.txt

REFERENCES 61

[14] L. Williams, “Casting curved shadows on curved surfaces,” in Proceedings of
the 5th Annual Conference on Computer Graphics and Interactive Techniques,
ser. SIGGRAPH ’78. New York, NY, USA: ACM, 1978, pp. 270–274. [Online].
Available: http://doi.acm.org/10.1145/800248.807402

[15] C. Dachsbacher and M. Stamminger, “Reflective shadow maps,” 2005. [Online].
Available: http://www.klayge.org/material/3 12/GI/rsm.pdf

[16] W. Donnelly and A. Lauritzen, “Variance shadow maps,” in Proceedings
of the 2006 Symposium on Interactive 3D Graphics and Games, ser. I3D
’06. New York, NY, USA: ACM, 2006, pp. 161–165. [Online]. Available:
http://doi.acm.org/10.1145/1111411.1111440

[17] M. Thomas, “Realtime global illumination techniques collection,” 05 2014,
accessed on: May 14 2018. [Online]. Available: https://extremeistan.wordpress.
com/2014/05/11/realtime-global-illumination-techniques-collection/

[18] M. McGuire, M. Mara, D. Nowrouzezahrai, and D. Luebke, “Real-time global
illumination using precomputed light field probes,” in Proceedings of the 21st
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ser.
I3D ’17. New York, NY, USA: ACM, 2017, pp. 2:1–2:11. [Online]. Available:
http://doi.acm.org/10.1145/3023368.3023378

[19] A. Silvennoinen and J. Lehtinen, “Real-time global illumination by precomputed
local reconstruction from sparse radiance probes,” ACM Transactions on
Graphics (Proceedings of SIGGRAPH Asia), vol. 36, no. 6, pp. 230:1–230:13,
Nov. 2017. [Online]. Available: https://doi.org/10.1145/3130800.3130852

[20] A. Kaplanyan, “Light propagation volumes in CryEngine 3,” 2009. [Online].
Available: http://www.crytek.com/download/Light Propagation Volumes.pdf

[21] Epic Games, “Light Propagation Volumes,” accessed on: May 12 2018.
[Online]. Available: https://docs.unrealengine.com/en-us/Engine/Rendering/
LightingAndShadows/LightPropagationVolumes

[22] Z. H. Cigolle, S. Donow, D. Evangelakos, M. Mara, M. McGuire, and Q. Meyer,
“A survey of efficient representations for independent unit vectors,” Journal of
Computer Graphics Techniques (JCGT), vol. 3, no. 2, pp. 1–30, April 2014.
[Online]. Available: http://jcgt.org/published/0003/02/01/

[23] G. J. Ward, F. M. Rubinstein, and R. D. Clear, “A ray tracing solution for
diffuse interreflection,” SIGGRAPH Comput. Graph., vol. 22, no. 4, pp. 85–92,
Jun. 1988. [Online]. Available: http://doi.acm.org/10.1145/378456.378490

[24] J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch, “Radiance caching for
efficient global illumination computation,” IEEE Transactions on Visualization
and Computer Graphics, vol. 11, no. 5, pp. 550–561, Sept 2005. [Online].
Available: https://ieeexplore.ieee.org/document/1471692/

[25] I. Castaño, “thekla atlas,” accessed on: May 13 2018. [Online]. Available:
https://github.com/Thekla/thekla atlas

http://doi.acm.org/10.1145/800248.807402
http://www.klayge.org/material/3_12/GI/rsm.pdf
http://doi.acm.org/10.1145/1111411.1111440
https://extremeistan.wordpress.com/2014/05/11/realtime-global-illumination-techniques-collection/
https://extremeistan.wordpress.com/2014/05/11/realtime-global-illumination-techniques-collection/
http://doi.acm.org/10.1145/3023368.3023378
https://doi.org/10.1145/3130800.3130852
http://www.crytek.com/download/Light_Propagation_Volumes.pdf
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightPropagationVolumes
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/LightPropagationVolumes
http://jcgt.org/published/0003/02/01/
http://doi.acm.org/10.1145/378456.378490
https://ieeexplore.ieee.org/document/1471692/
https://github.com/Thekla/thekla_atlas

REFERENCES 62

[26] D. Dunbar and G. Humphreys, “A spatial data structure for fast poisson-disk
sample generation,” in ACM SIGGRAPH 2006 Papers, ser. SIGGRAPH
’06. New York, NY, USA: ACM, 2006, pp. 503–508. [Online]. Available:
http://doi.acm.org/10.1145/1179352.1141915

[27] P.-P. Sloan, J. Hall, J. Hart, and J. Snyder, “Clustered principal components for
precomputed radiance transfer,” ACM Trans. Graph., vol. 22, no. 3, pp. 382–391,
Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/882262.882281

[28] J. W. Demmel, Applied numerical linear algebra. Siam, 1997, vol. 56.

[29] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for principal
component analysis,” SIAM Journal on Matrix Analysis and Applications, vol. 31,
pp. 1100–1124, 2009. [Online]. Available: https://arxiv.org/abs/0809.2274v4

[30] K. Balasubramanian, K. Yu, and G. Lebanon, “Smooth Sparse Coding via
Marginal Regression for Learning Sparse Representations,” ArXiv e-prints, Oct.
2012. [Online]. Available: https://arxiv.org/abs/1210.1121v1

[31] I. Ramı́rez, F. Lecumberry, and G. Sapiro, “Sparse modeling with
universal priors and learned incoherent dictionaries,” University of Minnesota.
Institute for Mathematics and Its Applications, 9 2009. [Online]. Available:
http://hdl.handle.net/11299/180327

[32] C. R. Genovese, J. Jin, L. Wasserman, and Z. Yao, “A comparison
of the lasso and marginal regression,” Journal of Machine Learning
Research, vol. 13, no. Jun, pp. 2107–2143, 2012. [Online]. Available:
http://www.jmlr.org/papers/v13/genovese12b.html

[33] R. Ramamoorthi and P. Hanrahan, “An efficient representation for irradiance
environment maps,” in Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’01. New
York, NY, USA: ACM, 2001, pp. 497–500. [Online]. Available: http:
//doi.acm.org/10.1145/383259.383317

[34] A. Kaplanyan and C. Dachsbacher, “Cascaded light propagation volumes for
real-time indirect illumination,” 2010. [Online]. Available: http://www.crytek.
com/download/20100301 lpv.pdf

[35] S. H. Ahn, “Opengl projection matrix,” 2008. [Online]. Available: http:
//www.songho.ca/opengl/gl projectionmatrix.html

[36] A. Kirsch, “Light propagation volumes – annotations,” 2010. [Online]. Available:
http://data.blog.blackhc.net/2010/07/lpv-annotations.pdf

[37] ——, “Light propagation volumes – corrections,” 2010. [Online]. Available:
http://data.blog.blackhc.net/2010/07/lpv-corrections.pdf

[38] F. Sans and R. Carmona, “A comparison between gpu-based volume ray casting
implementations: Fragment shader, compute shader, opencl, and cuda,” CLEI
Electronic Journal, vol. 20, no. 2, pp. 7:1–7:19, 2017. [Online]. Available:
http://www.clei.org/cleiej-beta/index.php/cleiej/article/view/26

[39] M. Sandy, “Announcing microsoft directx raytracing!” March 2018, accessed on:
May 14 2018. [Online]. Available: https://blogs.msdn.microsoft.com/directx/
2018/03/19/announcing-microsoft-directx-raytracing/

http://doi.acm.org/10.1145/1179352.1141915
http://doi.acm.org/10.1145/882262.882281
https://arxiv.org/abs/0809.2274v4
https://arxiv.org/abs/1210.1121v1
http://hdl.handle.net/11299/180327
http://www.jmlr.org/papers/v13/genovese12b.html
http://doi.acm.org/10.1145/383259.383317
http://doi.acm.org/10.1145/383259.383317
http://www.crytek.com/download/20100301_lpv.pdf
http://www.crytek.com/download/20100301_lpv.pdf
http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_projectionmatrix.html
http://data.blog.blackhc.net/2010/07/lpv-annotations.pdf
http://data.blog.blackhc.net/2010/07/lpv-corrections.pdf
http://www.clei.org/cleiej-beta/index.php/cleiej/article/view/26
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/

	Introduction
	Aim
	Scope
	Methodology

	Relevant Theory
	Radiometry in Computer Graphics
	The Rendering Equation
	Real-Time Rendering
	Global Illumination
	Light Fields
	Spherical Harmonics
	Projecting onto the Spherical Harmonics Basis
	Ringing

	Multiple Render Targets
	Shadow Maps
	Reflective Shadow Maps
	Variance Shadow Maps

	Choice of Techniques
	Technique 1: Real-Time Global Illumination using Precomputed Light Field Probes
	Octahedral mapping
	Probe Image-Space Ray-Tracing
	Diffuse Indirect Light
	Implementation Details

	Technique 2: Real-time Global Illumination by Precomputed Local Reconstruction from Sparse Radiance Probes
	Theory
	Computing Receiver Locations
	Computing Probe Locations
	Interpolation of the Probes
	Computing the Local Transport Matrix
	Gathering Radiance at the Probes
	Extracting the Global Illumination Solution
	Data Structures and Program Flow
	Compressing the Local Transport Matrix
	Dynamic Objects

	Technique 3: Light Propagation Volumes
	Reflective Shadow Map Generation
	Radiance Injection
	Geometry Injection
	Radiance Propagation
	Blocking of Light

	Scene Lighting
	Dynamic objects

	Results
	Technique 1
	Technique 2
	Effect of varying the number of SH bands
	Dynamic objects

	Technique 3
	Propagation Iterations
	Many Lights
	Incorrect Light Bleeding

	Comparative

	Discussion & Future Work
	Technique 1
	Technique 2
	Technique 3
	Many Lights
	WebGL Limitations

	Comparative

	Conclusion

