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Sensor fusion and sensor management for automated vehicles
A way to win the Grand Cooperative Driving Challenge
MATS SVENSSON
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
The development of the autonomous vehicle is one of modern technology’s widespread
goals and is therefore an area of great competition and rapid development. This puts
great pressure on technology as a whole, but on sensors and sensor fusion especially,
since they are instrumental for the implementation of active safety. This thesis ex-
amines how sensors and sensor fusion is used in the different autonomous vehicles
that participated in the 2016 Grand cooperative driving challenge (GCDC), and how
it was implemented in one of them specifically. The conclusion is that the GCDC
is a great incentive for the development of cooperative autonomous vehicles in gen-
eral, although it lacks in the specific area of sensors and sensor fusion. However, the
hardware and concepts used is an indication of what is needed for a vehicle to be
fully equipped to deal with the rigors of the real world and to guarantee everyone’s
safety in traffic.

Keywords: Sensor fusion, 2016 Grand Cooperative Driving Challenge, Autonomous
Vehicles, Kalman Filter
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1
Introduction

The work presented in this thesis is related to the participation of the Chalmers
truck team in the 2016 Grand cooperative driving challenge (GCDC). The GCDC
was a part of i-GAME, a European research project that promoted the development
of cooperative automated systems for vehicles. The event itself was a demonstration
of cooperation between automated vehicles, but was also a competition between the
participants to see which team could handle the different scenarios of the demon-
stration best [19]. The teams were judged not only on the individual achievements
but also on cooperation and helpfulness, all to promote the progress of the field.
The teams’ HMI designs were also judged separately to promote the communication
to other agents in the traffic [11].

The aim of this thesis was to use sensor fusion to enhance the performance of the
automated system by increasing the precision and reliability of the data and by
doing so give the team benefits in the GCDC. Sensor fusion is an umbrella term
for different techniques whose common goal is to combine different sensor inputs to
get an output of higher quality than from the individual inputs. One of the main
tasks in this work was to enhance the accuracy of the positioning of the truck using
data from GPS, Inertial Measurement Units (IMU:s), and actuators (steering wheel
and gas pedal). This is a fairly common application of sensor fusion and a typical
solution is to use a Kalman filter to combine sensor observations with calculated
predictions. Using several different sensors to increase robustness has been proven
effective [13], so furthermore this work will demonstrate how sensor fusion can be
used to combine the information from laser range finders, sonars, and cameras to
enhance the confidence levels of the localization of other cars and obstacles.

Additionally, as a secondary objective, this work also aimed to use the GCDC as a
source of information and to gather data about which sensors and methods other
teams were using. By doing this and by discussing the merits of different components
and techniques the goal is to compile a summary on quality and usefulness of the
contemporary resources used in the field of sensor fusion.

The level of success of the thesis work will be measured by comparing the results
from test runs without any sensor fusion to test runs with different sets of sensor
fusion techniques.

2



1. Introduction

1.1 The scenarios

This section will briefly describe the different scenarios that constitutes the GCDC.
Since the i-GAME project is all about cooperation between vehicles, these scenarios
focus on situations where communicating vehicles might be better suited than a
traditional autonomous vehicle that only react to passive information.

1.1.1 The lane merging scenario

This scenario starts with two lanes of traffic in the same direction, as can be seen
in Fig. 1.1. At a certain point a message will be broadcasted that there is road
maintenance up ahead on the road and that one of the lanes are blocked so that the
two platoons will have to merge. The vehicles will then slow down and the ones in
the blocked lane will each pair up with a vehicle behind them in the free lane. The
vehicle in the free lane that is paired with the lead vehicle in the blocked lane will
then create merging space in front of it by slowing down further. When the merging
space is sufficiently large it sends a safe to merge message to the lead vehicle in the
blocked lane after which it can safely join the remaining lane in front of the paired
vehicle. The procedure can then be repeated with the new lead vehicle.

Figure 1.1: The lane merging scenario
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1. Introduction

1.1.2 The intersection scenario

Fig. 1.2 shows the intersection scenario, where two competing vehicles approaches
an intersection from opposite directions while a reference vehicle approaches on an
adjoining road. The competing vehicles should achieve a speed of at least 30 km/h
before the area of the intersection, but as they get the signal that the reference
vehicle approaches, they are supposed to adjust their speeds sufficiently for the
other vehicle to join the traffic on the main road without interruptions.

Figure 1.2: The intersection scenario

1.1.3 The emergency vehicle scenario

This was only a demonstration scenario to show how useful cooperation between
autonomous vehicles can be in certain traffic situations and was not considered for
competitive purposes. As can be seen in Fig. 1.3 the intelligent vehicles travels side
by side on a two-lane road an emergency vehicle approaches from behind. As the
autonomous vehicles receives an emergency signal from the Emergency Vehicle (EV)
they are supposed to slow down and move to the sides of the road to make room for
the emergency vehicle in the middle. When the EV has passed, the vehicles should
resume their earlier speed and position.
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1. Introduction

Figure 1.3: The emergency vehicle scenario
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2
Background

2.1 Sensor fusion

A literal description of sensor fusion is that it is the combining of sensory data
or data derived from sensory data such that the resulting information is in some
sense better than would be possible when these sources were used individually. The
concept has been around at least since the 1950s, even if the term ‘sensor fusion’ is
a later construct [1]. In 1960 Kalman presented a paper explaining a mathematical
algorithm that did just that [8]. What became known as the Kalman filter is still
one of the most widely used methods in the field of sensor fusion today [1], albeit in
some different forms than was originally presented [10][14], many of them developed
by Kalman himself [9].

A Kalman filter basically consist of the two phases: Update and prediction. In the
update phase all measurable state variables are updated with actual values from
sensors. In the prediction phase a state model is used to predict a set of the state
variables for the upcoming time step. In the next update phase the values from the
sensors are merged with the predicted values to form the updated state variables.
In this way the filter will balance the practical measurements from the sensors that
might be unreliable against the theoretical values from the model that will never
fit reality perfectly, to form a more stable interpretation of the situation at hand
[1]. The area of motion tracking is especially adequate for the implementation of
Kalman filters and has been used for that for as long as the filters have existed [17].
For a Kalman filter to work properly though, a very important choice is the choice
of state model. For basic motion tracking a simple kinetic model might work, but
a common choice for vehicle models is the planar bicycle model [15], as this model
adds the benefit of taking the lateral forces on the tires of a vehicle into account
[16].

While sensor fusion has been used in engineering since the 1950s [8], similar concepts
have been used by evolution since time immemorial. Humans and most animals use
the senses of sight, smell, hearing, touch and taste to perceive their surroundings,
much like the sensors of an advanced piece of technology. Natures equivalent of
a computer, the brain, then fuses the data from these sensors and produces a dy-
namic model of the world with the help of the previously obtained knowledge of the
surroundings. One beautiful example of sensor fusion in the brain is the emergent
property of distance judgment by combining the input from two (or more) eyes. In
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2. Background

the end, the brain is able to predict the development of the environment and take
informed decisions based on this knowledge.

So why is sensor fusion used? The reasons can basically be broken down into two
groups: Limitations of the sensors and advantages of the algorithms. All sensors
are to some degree subject to limitations in the following areas: Domain, frequency,
propensity for breakdowns, precision, and certainty [1]. Many of these limitations
can be remedied by adding more sensors without any advanced fusion of data, but
especially imprecision and uncertainty can be greatly reduced by applying e.g. a
Kalman filter. A good implementation of sensor fusion can fuse the data from
several sensors to handle filtering of noise, produce emergent properties, and in
some sense predict the near future.

Any system using sensors to measure the world can potentially benefit from sensor
fusion and it is present in as diverse application as agriculture, home care and
navigation [4][12]. As a result there seems to be a common belief that everything
can be made better by the application of data refinement or by adding more data
to the process. Some researchers are critical to this way of thinking though, and
several papers are questioning the statement that sensor fusion always produces data
of higher quality in some aspect [6], that the addition of data is always beneficial
[5], and if the cost is worth the benefits [7]. This has of course in itself provoked the
opposite side to try to prove that the algorithms provide inherent enhancements of
the data [3]. The different examinations are of too limited scope to make a definite
conclusion, but that there is cause for some healthy skepticism is evident.

2.2 Autonomous vehicles

In the vehicular industry, sensor fusion is making an impact on the area of active
safety. The rapid approach of the milestone of self-driving vehicles makes the im-
portance of active safety even greater, and the software behind active safety craves
both accurate and reliable sensor data. The increase of computing power in vehicles
and the relative lack of space for sensors makes the vehicle platform even more ideal
for the application of sensor fusion.

The self-driving vehicle is something of the holy grail for modern technology and
car and truck companies vie for the honor of being the first ones to present a fully
autonomous and safe system. The level of automation in vehicles is usually measured
using SAE’s five levels of driving automation for on-road vehicles, see Fig. 2.1, from
the J3016 standard. Even if some of the criteria of the these levels are somewhat
subjective, the road to a level five vehicle seems long, but the truth is there are
vehicles with level four automation driving around in real world traffic situations
already today [20]. So far it is only in restricted areas and under certain conditions,
but it still proves how far the field has come.

The idea of autonomous cars is not new; it has been around at least since the 1930s
in science fiction novels and has appeared in many TV shows over the years. The
first time that a fully autonomous car seemed not only a possibility, but a reality
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2. Background

Figure 2.1: SAE International’s standard for vehicle automation levels

though, was at the third DARPA grand challenge (also known as the DARPA urban
challenge) in November 2007 [21]. In this challenge several teams managed to get
their vehicles to maneuver through traffic consisting of other vehicles and perform
advanced tasks, such as merging and negotiating intersections. The DARPA urban
challenge of course inspired other projects, such as the 2011 Grand cooperative
driving challenge in Eindhoven, the Netherlands. This challenge was aimed to drive
the development of intervehicle communication and cooperative autonomous driving
and was designed as a competition between different research groups [18]. The
outcomes of the first GCDC was both promising — vehicles of several different
brands had cooperated successfully due to common communication standards, which
had never been done before — and lacking — the trustworthiness of the data and the
adherence to said standards was atrocious in some cases [18]. Therefore, a second
GCDC event was eventually run within the 2016 i-GAME project [19], a framework
in which this thesis was created.
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3
Method

3.1 OpenDLV

The work on sension fusion performed in this masters thesis is implemented in a
framework OpenDLV. OpenDLV is an open source software project for self-driving
vehicles that was initiated and is currently developed at Chalmers’ vehicle laboratory
Revere. The software is mainly written in C++ and is heavily distributed and
modularized by the design principle of microservices, and developed with ease of
deployment and distributed development in mind. On the behavioral level, it is
biologically inspired and mimics the same principles as biological agents do when
mapping sensor input to action.

3.2 Sensors

For the purpose of sensing the world around it the truck was equipped with several
sensors:

• A 2D lidar mounted at the front of the truck below the windshield to measure
accurate distances to objects in front of the truck

• Two cameras that were mounted in the lower corners of the windshield inside
the cabin to localize the lanes and identify other vehicles

• A GPS that was placed in the cabin, with the antenna mounted on the roof
of the cabin, to track the absolute position of the truck

• An IMU installed in the cabin to measure the accelerations in different direc-
tions

• Six short range sonars that were distributed around the sides of the truck to
sense if other vehicles were present where the cameras and lidar couldn’t detect
them

• A vehicle-to-vehicle communication unit (V2V) for intervehicle communication

9



3. Method

3.3 Position tracking

The position of the truck is measured by the GPS, but such a sensor might sometimes
deviate and give unstable measurements. Therefore, to track the position accurately
the GPS position could be combined with a predicted position derived from other
sensor data such as velocity and actuation feedback from the steering wheel and
gas pedal. Combining measurements with predicted data, with the help of a well
designed state model, is exactly, as described above, what a Kalman filter is designed
to do. Therefore, such a scheme, as illustrated in Fig. 3.1, was used to monitor and
maintain the truck’s position [14].

Figure 3.1: Block view of a Kalman filter

3.3.1 State models

At first a simple kinetic model with x and y-position, heading-angle θ as system
state and longitudinal velocity v and the angle of the steering wheel φ as control
input was used to model the system:

State vector:



x
ẋ
y
ẏ
θ

θ̇


Control vector:

[
v
φ

]
(3.1)

State transition function f:
x̂ = x+ ẋ∆t
ˆ̇x = v cos θ
ŷ = y + ẏ∆t
ˆ̇y = v sin θ
θ̂ = θ + θ̇∆t
ˆ̇θ = v tanφ

l

(3.2)

The variable l is the distance between the front and rear wheel pairs.
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3. Method

Figure 3.2: Outline of the truck variables

However, it was soon concluded that a more refined dynamic model was needed to
accurately model the lateral movement. Therefore, a planar bicycle model (PBM)
was instead used as a prediction model. The PBM models the lateral forces on the
tires and it uses the lateral velocity and the yaw rate to calculate the lateral and
angular accelerations, which can be seen in the following functions:

[
u̇
ṙ

]
=
[−Cf −Cr

mv
−v + Crb−Cfa

mv
Crb−Cfa

Iv

−Cfa
2−Crb2

Iv

] [
u
r

]
+
[
Cf

m
Cfa

I

]
φ (3.3)

Description of constants:

m = mass of truck(kg)
Cf = front wheel cornering stiffness(N/rad)
Cr = rear wheel cornering stiffness(N/rad)
a = distance between front wheel and center of mass(m)
b = distance between rear wheel and center of mass(m)
I = moment of inertia(m2kg)

(3.4)

The lateral velocity is denoted u and the yaw rate is here denoted r, as shown in
Fig. 3.2. These variables were added to the control vector, and since it is preferred
to keep everything in a global reference frame, the lateral acceleration is split up
and added to the transition functions of the velocities in the x and y directions:

State vector:



x
ẋ
y
ẏ
θ

θ̇


Control vector:


v
u
φ
r

 (3.5)

The new state transition function:
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3. Method

x̂ = x+ ẋ∆t
ˆ̇x = v cos θ − u̇ sin θ∆t
ŷ = y + ẏ∆t
ˆ̇y = v sin θ + u̇ cos θ∆t
θ̂ = θ + θ̇∆t
ˆ̇θ = v tanφ

l
+ ṙ∆t

(3.6)

The u̇ and ṙ is calculated from the PBM equations in every time step. It might be
worthwhile to mention that both r and θ̇ refer to the yaw rate, but r refers to the
measured yaw rate, whereas θ̇ refers to the predicted yaw rate.

Since the vehicle model is non-linear, an extended Kalman filter needs to be used in
which the function derivatives are estimated in each time step by using the function’s
Jacobian matrix, given as:

Jf =



1 ∆t 0 0 0 0
0 0 0 0 −v sin θ − u̇ cos θ∆t 0
0 0 1 ∆t 0 0
0 0 0 0 v cos θ − u̇ sin θ∆t 0
0 0 0 0 1 ∆t
0 0 0 0 0 0


(3.7)

3.4 Pitch

As the GPS antenna was mounted at the roof of the truck cabin, and since the cabin
is suspended above the rest of the truck and thus will exhibit relative motion, the
pitch of the truck must be taken into consideration when calculating the position of
the truck. By using a simple model of the cabin suspended upon two equal sets of
spring and damper (see Fig. 3.3), the following equation can be derived:

mz̈ = −amv̇

b
− kz − dż (3.8)

Figure 3.3: Model of the cabin suspension
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3. Method

Here a is the distance from the bottom of the cabin to its center of mass, b half the
distance between the springs, k a spring constant, d a dampening constant and z
the altitudinal displacement of the cabin above one of the spring and damper pairs.
The longitudinal displacement l of the GPS antennae can be computed as follows:

l = −2az
b

= a

bk

(
mz̈ + amv̇

b
+ dż

)
(3.9)

From here, there are three options of how to calculate the antenna displacement:

The first option is to obtain all the variables in Eq. 3.9. The IMU in the cabin
directly gives the accelerations in the longitudinal and vertical directions (v̇ and
z̈) and the vertical velocity ż can be estimated from the pitch rate which is also
obtainable from the IMU. This method however uses several measurements and
error-prone estimations in an already heavily approximated model.

The second option is to simply take the difference of the pitch measurements from
the IMUs of the cabin and truck base respectively and calculate the displacement
trigonometrically. This might not be the most accurate way, but it is simple and
straightforward although it requires some tuning.

A third option is to make the assumption that since the displacement is primarily
caused by the longitudinal acceleration it is possible to make an accurate approx-
imation using only the acceleration as input. One way of implementing that is
illustrated in Eq. 3.10.

ẋ = (v + pv̇) cos θ − u̇ sin θ∆t
ẏ = (v + pv̇) sin θ + u̇ cos θ∆t (3.10)

Here p is the unknown constant that will approximate the complex system, and thus
has to be estimated. A good estimation might be the inverse of the steady-state
frequency of Eq. 3.9, i.e.

√
m/k.

3.5 World awareness

For any intelligent agent to be able to take an enlightened action that interacts
with its environment, such as moving in the case of a vehicle, it has to know its
surroundings. To keep updated about the world around it, the agent needs sensors
to interpret and maintain an internal description of the external environment [10].
In OpenDLV the world awareness is split into two parts: One that takes care of
the vehicles position relative to the world, and one that takes care of the vehicles
immediate surrounding.

The function maintaining the trucks own position is called geolocation and maps
the trucks location to absolute longitudinal and latitudinal coordinates. This is
done by applying the Kalman filter and state models from Sect. 3.3.1 on the data
supplied from the GPSs and IMUs.

13



3. Method

The immediate surroundings is taken care of in the function scene. The state of the
external environment is described by a set of objects and surfaces that are maintained
and updated by the sensors. An object is in this case most often a car, but might
also be an obstacle such as a wall or a tree. The object is primarily characterized by
a direction, a distance and an angular size, but can also contain information about
object type, angular rate (a measure of relative movement), angular size rate and
information sources. A surface in OpenDLV usually depicts a lane or road and is
defined by a quadrangle described by its four corners and if it is traversable or not.
Additionally it can contain information about information sources, other adjoining
surfaces and whether it is possible to move to these.

Just as an organism trusts its different senses to varying extents (like how a human
in most instances trusts the eyes over the ears), OpenDLV is supposed to have
nuanced faith in its sensors. For this reason, a confidence system for the different
information sources and data types is implemented in scene. Here each attribute
is assigned a confidence value between 0 and 1 for various degrees of certainty or
-1 if there is no information. These values are then updated as new information
is added by the sensors and as time passes by. To enhance the probability of an
enlightened decision all objects and surfaces are thus combined with a confidence
level and additionally contains a unique confidence value for every listed property.

3.6 Interviews

In an effort to evaluate which sensors and sensor fusion techniques that were used in
GCDC a list of questions were compiled to serve as a base for a series of interviews
of the competing teams that was conducted during the competition:

• Which kinds of sensors is used on the vehicle?

• Was there any plans on using more or other sensors on the vehicle?

• How is the sensor data processed?

• What data is used to determine the position of other vehicles?

• What would have been the next improvement if there were more time?

14



4
Results

4.1 Position tracking

To evaluate the Kalman filter with the kinematic model a set of test data with noisy
GPS data was run through the filter. The result of this can be seen in Fig. 4.1

Figure 4.1: Evaluation of Kalman filter using noisy test data

After establishing that the kinematic model was suitable it was also evaluated on
real data from a test drive at Lindholmen, Göteborg. The results from this can be
seen in Fig. 4.2

15



4. Results

Figure 4.2: Evaluation of the kinematic model using real data

As can be seen in Fig. 4.2 the kinematic model leaves room for improvement and
so it was complemented with a dynamic bicycle model.

To see how robust the model would be and how it responds to data loss it was also
tested on data with missing GPS points. An evaluation of the response to data loss
in the dynamic model can be seen in Fig. 4.3

Figure 4.3: Evaluation of the dynamic model with induced data loss. The green
blobs represent real GPS data, the blue pluses represent estimated position from
the GPS data and the red dots represents the predicted position when no GPS data
is available

4.2 Pitch compensation

To evaluate the pitch compensation schemes two GPSs were needed. The one on the
roof of the cabin used under normal circumstances and one mounted on the frame

16



4. Results

of the truck, to compare with to estimate the relative dislocation. The truck was
driven with this setup for several runs and a rendition of one of these runs can be
seen in Fig. 4.4.

Figure 4.4: Visualization of a test run with two GPSs mounted on the truck which
shows the path driven by the truck. The figure to the right is a zoom-in of the first
part of the drive.

As can be seen the two GPSs deviate quite far from each other, and notably in a
lateral direction which (hopefully) does not reflect reality as that would mean that
truck was was travelling side-wise. When considering the absolute distance between
the sensors in the same run — which is depicted in Fig. 4.5 — it can be observed
that it varies by more than 4 meters (and in some runs up to 10 meters).

Figure 4.5: Absolute distance between the two GPSs

17



4. Results

As the expected variation is less than a meter this data can not be used to evaluate
any pitch compensation scheme. A rough estimation of the second compensation
scheme from Sect. 3.4 done on data from the same run shows feasible values in Fig.
4.6 which confirms that it is not due to simple conversion errors.

Figure 4.6: Rough estimation of a pitch compensation scheme for the dislocation
of the main GPS receiver versus the acceleration of the truck

Despite some drifting — that is probably caused by the rough estimation — it can
be seen that the more significant deviations in dislocation corresponds to similar
deviations in the acceleration. Since the deviations of the GPSs was of magnitudes
larger than the pitch compensation no further evaluation was relevant, but with
more accurate sensor data a pitch compensation scheme would have been a valuable
tool to increase precision.

4.3 World awareness

In the end the function scene was used in a very limited scope, only to measure the
distance to the closest vehicle in front of the truck and keep track of the lanes. A
lot of work and thought went into implementing the confidence system though and
to try to visualize the surroundings of the truck in a good way. An early example
of a visualization scheme based on data from the lidar can be seen in Fig. 4.7

18



4. Results

Figure 4.7: Visualization of a lidar scan

4.3.1 Confidence

Although the confidence scheme was implemented and used to some extent, time
did not permit any tuning or testing of different thresholds and parameters, so the
system was mostly running on default values. Even so the process of setting it up
resulted in a lot of insights.

The information on an object can originate from several different sources in the
OpenDLV system and can therefore contain very diverse information of various
degrees of certainty. The lidar is one of the most trusted sensors as it gives very
accurate information, but does not provide information for all properties. It provides
very reliable data on distance, direction and angular size of an object, but can tell
nothing about the type of object it detects.

Information from the cameras via vehicle detection on the other hand gives pretty
good information on whether the object is a vehicle or not, while the information
on direction and angular size is a bit less trusted and the distance even less so. The
cameras also gives information on surfaces via lane detection and since it is the only
source of surfaces so far its relative confidence is rather high.

The V2V unit gives perfect information on the object type, but depending on who
the source of the signal is, the quality of the rest of the information provided might
range from excellent to worthless. For the scope of the GCDC there were therefore
plans of evaluating the different teams and assigning different levels of confidence
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according to their performance, but the probability of managing something similar
in a real life application is low, at least in a foreseeable future.

The sonars are in a way the least trusted of the sensors as they give just one mea-
suring point, that on top of that is pretty fuzzy. The purpose of them though is only
to tell if there are any objects at the vehicles sides and not to give an exact position,
and with the deployment of several at each side they still fill their function.

As the surroundings of a vehicle on the move are highly dynamical all new informa-
tion has to be matched and combined with the environment state from the previous
time step to maintain a reliable environment description. For an object, the match-
ing is done by comparing its direction and distance to these of the objects saved
in the environment function scene, with a slight emphasis on the angle, since the
forward vehicles are of most interest. If there is no match a new object is created
with the information from the sensor and relatively low confidence depending on the
source sensor. If there is a match however, the properties of the existing object in
scene is updated according to the quality of the match and the confidence of the
properties of the two objects. The updating process might also produce new prop-
erties such as angular rate and angular size rate, which are not actually measured
by the sensors. Each property has its own way of updating confidence, but some
general things might be said about the update process:

• A new matching reading increases the confidence of the object and generally
increase the confidence of properties

• Most property confidences increase with different amounts according to sensor
types and how well the properties of the objects matches up

• Detection of the same object by a new sensor gives a confidence boost

• Distance measures are updated with a bias for closer readings for safety reasons

• Property values are updated as a weighted average between the previous and
new values weighted with a bias for high confidence and a heavy bias for new
data, due to the dynamic nature of the system

Surfaces are mainly matched by overlap percentage, but otherwise the process is
much the same as for objects.

Since no sensors are fully reliable, objects and surfaces have a fade time —- a period
of time in which it doesn’t disappear even if no new detections of it are made by the
sensors. This is a safety feature, so that the vehicle does not ignore another vehicle
or obstacle just because the sensors missed it for a few moments. As time passes by
the reliability of the information deteriorates because of the dynamic nature of the
system, and so the confidence levels of the object and surface properties decrease
with time.
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4.4 Interviews

In an effort to evaluate which sensors and sensor fusion techniques was used in
GCDC a series of interviews was conducted with members of the attending teams.
In most cases only one or two of the team members were interviewed and the ones
interviewed was not always the expert in the team on the topics at hand. Even
though effort was taken to find the most knowledgeable member in the areas of
sensors and sensor fusion in each team they were not always available due to the
limited time at the site. This might of course skew the results somewhat, but
only responses where the interviewee was reasonably sure have been recorded. An
extensive compilation of the results of the interviews can be seen in appendix A.1,
but short summaries of the results will be provided below.

4.4.1 Sensors

All the participating teams use one or more GPSs to localize the vehicle, usually
mounted on the top of the vehicle and of course all teams also used the mandatory
V2V to communicate with the other participating vehicles. All competitors used
data collected from actuation feedback, but maybe somewhat surprising more than
one team had to use their own solution to measure the actuation, since they did not
have access to the signals from the inbuilt sensors. All teams had planned to use
either a lidar or a radar as well, but a few of the teams either did not manage to
incorporate their sensor into the SW or decided to be content with the data from
the V2V units to localize other vehicles. Almost all teams had also equipped their
vehicle with cameras, often more than one, but very few of them actually used them
in the competition setup.

4.4.2 Sensor fusion

Most teams used Kalman filters to determine their own position and some few also
kept track of the other vehicles using Kalman filters. Most of the teams had thoughts
on using confidence based merging of objects and properties although few used it
and those implementations ranged from simple mean values to advanced models
such as regressive object fusion. Some teams also used sensor fusion to keep track
of the environments: The KTH car team was setup to use simultaneous localization
and mapping (SLAM) to keep track of their surroundings and the German team
had scanned the environment prior to the competition day to be able to use the
pre-processed map in their environment scheme.

4.4.3 Identification and localization of other vehicles

All teams used the information provided by their V2V units, but the level of trust
in the information given ranges from teams that trusts the information fully and
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only uses that for localization to teams that only use the V2V information for
identification and trust other sensors to make the localization. A few teams even
assigned different confidence to data from different teams according to how reliable
that information was. Many of the teams kept track of the other teams positions in
their environment models and some of the teams even did it by maintaining state
vectors updated by their own Kalman filters.

4.4.4 Unused equipment and techniques

Virtually all of the competing teams had equipment and techniques that they did
not use either because of technical issues or because of lack of time, ranging from
simple sensors that were incompatible to classification schemes that proved to be
too computationally heavy to be of any use.
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5.1 Evaluation of the methods

In this section the sensor fusion methods used for Chalmers truck team’s participa-
tion in 2016 GCDC will be evaluated and discussed.

5.1.1 Localization

The work on position tracking and implementing the Kalman filter was of utmost
importance for the project. A trusted and accurate location is a fundamental base
for any autonomous agent in traffic and without it all other work would have been
of little consequence. In the end the implemented models fell out well and met the
requirements of the competition without fault. In future applications of the truck
software the localization schemes will have to be improved though, to counter a
tendency for drifting in curvy scenarios.

5.1.2 Pitch compensation

The pitch compensation schemes never played any part in the competition as the
benefits were to small to be relevant at that time. The reason for this was due to
the fact that the speeds (and thus accelerations) in the scenarios were relatively low
and the requirements on accuracy relatively lax, but had the rules been as strict as
initially proposed (with a required accuracy of under a decimeter) a compensation
scheme would definitely have been needed.

After the competition the work on the pitch compensation scheme continued for a
while and data was gathered to evaluate the performance of the different schemes.
Unfortunately the data gathered was of to low precision to show anything more than
a vague hint of that the schemes would be useful on data of higher quality. Since
the evaluation data was gathered via an extra GPS mounted on the chassis frame
a feasible real world solution could be to compensate with the support of such a
sensor even though that second GPS might be more prone to data loss due to the
location. In a commercial setting however, every penny counts, so if a compensation
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scheme could replace an extra sensor, that would be highly desired and therefore
there might be a future for such a scheme anyway.

5.1.3 World awareness

In the version of the code used in the competition the world awareness was reduced
to keeping track of the lanes and the vehicle in front of the truck. This proved
to be enough from a competitive point of view, but it leaves a lot of potential for
future improvement. For keeping track of one lane and one vehicle the developed
confidence schemes proved a bit overdeveloped, but it worked well in the context
of the competition and with adjusted parameters it should be able to handle larger
scopes as well. That would of course require a lot of work regarding tuning and
optimization of factors and thresholds, but with the emergence of the fields of big
data and neural networks the task of such parameter optimization should prove
more feasible in the near future.

Even if a lot of the work on world awareness never made it to the version of the
software that partook in the competition, it still gave some interesting insights into
the problems that the automotive industry faces as the implementation of fully
autonomous vehicles draws near. The work on confidence was inspiring and gave
an indication on how wide the range of areas still in need of improvement is and
just dipping a toe in the seemingly unending sea that is object identification via
neural network classification of visual data shows just how daunting the specific
area of visual recognition is. The work on visualizing the intent of the truck to both
driver/passenger and surroundings will also be interesting and especially possible to
follow even for a layman in the years to come.

5.2 Evaluation of the GCDC

This section contains evaluation and discussion on the impacts the 2016 GCDC had
and will have on development of the areas of sensors and sensor fusion.

5.2.1 Sensors

The fact that all teams used a V2V unit is no surprise since the GCDC was a project
aimed at improving cooperative behaviour and thus required one. The fact that the
different teams placed a very varied amount on trust in the data projected by the
V2V units gives a somewhat bleak outlook on their use in real world applications,
which is further discussed in Sect. 5.2.4.

The same can be said about GPSs: Since each vehicle had to broadcast their position
continuously it is really no surprise that all teams used GPS. A position can be
obtained through other means (knowing the start position and using odometers and
IMUs etc as an example), but the GPS solution is by far the easiest and most effective
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solution. Most teams were satisfied with the accuracy of their GPSs and from the
context of the competition there is nothing that indicates that the emergence of
autonomous vehicles will trigger any undue development in this field.

The fact that all teams used actuation feedback is also a expected: It is much easier
to control your own state if you know what is being done to change it. When it
comes to the use of lidar or radar all teams seems to agree that one of them should be
used for precise distance measuring and that they are mutually redundant. Which
one to use seems to be up to personal taste and ease of access, although the teams
with access to both lidar and radar preferred the radar due to its slightly higher
confidence. In this area most teams felt that there were room for improvement and
the development of self-driving vehicles will most likely spur an even more intense
evolution of range finding sensors.

As it comes to cameras all teams were very positive to the use of them, although
very few actually used them and those who did so only used them for verification.
This might very well be because all the vehicles in the competition were equipped
with V2V units and thus could find all relevant vehicles that way, and since the
scenarios required no identification of other objects, such as lanes or obstacles. In
a more realistic environment cameras would be necessary and heavily relied upon
to provide a wider range of information. The quality of the cameras used were
not a topic of any noteworthy interest as it seemed that even cameras of quite low
quality was able to provide the data necessary for the tasks in question. There is
undoubtedly a need for high quality camera equipment in the future of autonomous
vehicles, but the main focus will be on the software handling the data they produce.
The process of producing good data and training networks handling identification
of cars, trucks and other objects of interest is a daunting project and even with the
rapid development in the field of big data this will be an area of interest for many
years to come.

A final observation to remark upon regarding the sensors in the competition is the
fact that none of the other teams had sensors in any other direction than forwards.
This can with high confidence also be blamed on the somewhat simplified nature of
the scenarios. In the real world, sensors in all directions will be needed to create a
holistic view of the vehicles surroundings.

5.2.2 Sensor fusion

The usage of sensor fusion by the teams in the GCDC ranges from none at all to
sophisticated confidence systems. In particular most teams used some variant of the
Kalman filter for localization which will be further discussed in Sect. 5.2.3. Beyond
that sensor fusion was somewhat scarce in the competition and limited to different
classification and confidence schemes. One reason for this might be the fact that
most teams used relatively few sensors, which once again might be because of the
layout of the requirements of the scenarios. Since the scenarios lacked many of the
challenges one might encounter in real life, the vehicles did not need that many
sensors and with fewer sensors the need for sensor fusion naturally decreases. With

25



5. Discussion

the aim that the vehicles should be able to make their own way in the real world,
the need for more sensors in more directions will rise and so will the need for robust
sensor fusion.

5.2.3 Kalman filters

The scientific community as a whole seems to a agree that one of the variations of
Kalman filters is they way to go for localization using GPS data, possibly backed
up by an IMU [1].The experiences and interviews from the GCDC only reinforces
this, as all teams that used sensor fusion for positioning did so using Kalman filters.
However, some of the teams didn’t use any sensor fusion at all since the raw data
received from their GPS were enough in their opinion. All equipment has flaws
though, and the possibility that there will be situations where data loss and low
information quality occurs is very likely and at least for these reasons a Kalman
filter with a strong state model will always be a great complement to good sensors.
How advanced the state model of a filter needs to be, is up to the architect —
a simple kinetic model in a regular Kalman filter is enough to counter light data
loss and normal noise, while an advanced dynamic model in an extended or even
unscented Kalman filter may compensate for poor sensor quality or severe data loss.

As for the specific case of the Chalmers truck team’s participation in the GCDC it
ended up with the use of an extended Kalman filter on a simple kinematic model.
This was mostly because of the fact that a more dynamic model (such as the lateral
bicycle model introduced in Sect. 3.3.1) would have needed data from an IMU
and since the team didn’t get the time to integrate the IMUs into the system that
became impossible. However, since the scenarios in the GCDC did not call for much
movement in the lateral direction, this was not a problem for the competition, but
for future use of the truck in more complex areas the it is highly recommended to
use an implementation of the developed dynamic model.

5.2.4 Cooperative autonomous vehicular systems

The thought of cooperative autonomous units is very appealing on a visionary plane,
but there are a lot of different companies operating in the vehicular industry and
aspiring on presenting their own autonomous vehicles, and getting them to cooperate
is a whole other story. There is simply no innate incentive in being the first to
develop a cooperative system that your competitors can use for free, and charging
for it would most likely cause them to develop their own, which would defeat the
purpose with a unified cooperative system. The probability that they will agree on
a standard with acceptable accuracy on their own is therefore very low without at
at least some incentive from one authority or another. The most feasible solution
would be for the authority to develop and govern the whole cooperation part of
the system themselves, since that could also lead to some more abstract, secondary
benefits in areas like traffic flow and city planning.
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The GCDC was hosted by i-GAME which is an EU project, and EU is an example
such an authority. It is however also a very slow and bureaucratic authority and the
development of automated solutions in the vehicular industry is currently very rapid,
so the question is if it will be able to reach any conclusions regarding cooperative
autonomous vehicular systems in time for them to be of any use, but that is for the
future to tell.
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That the future will contain self-driving vehicles is certain, which puts high demands
on the technology involved. That the system controlling the truck needs to be
able to handle situations with malfunctioning sensors, uncertain data and corrupt
information is evident if the autonomous vehicles shall ever be safe enough for society
to accept them. This puts strain on the requirements for both sensors and algorithms
and so the need for qualitative sensor fusion will prevail for an unforeseeable future.

The GCDC is a great incentive for the development of systems capable of handling
complex traffic situations. For obvious reasons the scope of the scenarios needed to
be limited though and the main focus of the event was to further the cooperation
between autonomous vehicles, which actually unburdens the need of sensor fusion in
some sense. Disregarding the reasons the 2016 GCDC did not give the participating
teams enough incentive to equip the vehicles with all the sensors that a self-driving
truck would need in a real traffic situation. As a result of that the usage of sensor
fusion was limited overall, but some conclusions can be drawn anyway.

The usage of sensor fusion was obviously not a necessity for participating in the
competition, since some of the teams participated with good results without any
sensor fusion at all. However, the fact that the winners, Halmstad University, used
both Kalman filters and confidence schemes gives hope for a development in the
right direction. If it was an advantage with sensor fusion in a competition with
limited scope, where some teams’ success lived and died on the premise of accurate
sensors, it is evident that it would be mandatory for any real world application.
The implementation of that sensor fusion is less defined though. The development
of new, or fine-tuning of old algorithms and determining of appropriate parameter
values will be a huge undertaking in the years to come.
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A. Appendix 1

A
Appendix 1

A.1 Interviews

Figure A.1: Interviews with members of the teams attending GCDC regarding
sensors and sensor fusion
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