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Towards Improved Video Streaming from Repetitively Relocating Transmitters
Real-time available bandwidth prediction based on ARIMA models and bandwidth
maps defined through Gaussian process regression
CARL SÖDERPALM
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Video quality is of utmost importance when a vehicle is driven remotely. However,
long distance remote driving over wide area wireless networks may be subject to
significant variations in available network bandwidth. To proactively deal with
packet loss during real-time video streaming in such a scenario, the encoding bitrate
of the video can be adjusted to suit upcoming network conditions. To do this,
accurate prediction of future available bandwidth is necessary. In a repetitive setting,
where the vehicle is driven back and forth along the same route, such predictions can
utilize bandwidth maps. These maps are defined by deterministic features extracted
from historic throughput measurements. In this thesis, a new method for calculating
bandwidth maps, based on Gaussian process regression, is introduced. Moreover,
a new time series model incorporating a bandwidth map is described and shown
to outperform classical time series models in predictive accuracy when forecasting
throughput. The model is shown to have a root mean squared error close to 1
Mbit/s in a network with throughput between 0 and 8 Mbit/s and fluctuations of
more than 3 Mbit/s between measurements, about 18% better than a classical model.
Lastly, an algorithm for bitrate planning, utilizing the above model, is developed.
This results in a mean channel usage of around 65%, if the algorithm’s failure rate
(i.e., how often the throughput is less than the suggested bitrate) is set to be 5%.
Furthermore, these results are shown to be improvable with more data.

Keywords: real-time video streaming, throughput prediction, bandwidth maps,
Gaussian process regression, ARIMA.
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1
Introduction

This chapter first introduces the industry partnering company of the thesis and
describes the research problem addressed by the project. This is followed by a
background section that describes the origin of the problem, the aim of the project
and some limitations. The chapter concludes with a discussion about related work
and novel contributions of this thesis as well as an outline of the report.

1.1 Problem description

Einride develops a transportation system based on autonomous vehicles. For safety
reasons, this system includes technology for long-distance remote driving. When a
vehicle is driven remotely, the quality of the video presented to the remote driver is
extremely important: the more detailed the video is, the more likely the driver is to
avoid accidents. However, an increase in details implies an increase in bits needed
to represent the video. If the connection between the vehicle and the driver is too
weak to transmit a video of a certain quality, packet loss can occur (see Section 1.2).
When this happens, the quality of the video presented to the driver can be reduced
to an unacceptable level. A common approach for dealing with packet loss is using
loss recovery schemes [1], a reactive approach. However, Einride operates repetitive
logistic flows for its customers. The problem of this thesis is developing an algorithm
that utilizes this repetitiveness to predict upcoming connection speeds and suggest
suitable video qualities accordingly. This is in order to proactively avoid packet loss,
while still streaming with as high quality as possible.

1.2 Background

The Internet is a huge computer network, which connects an ever-increasing range
of different devices called hosts or end systems. It does this through communication
links and network devices, e.g., packet switches. These exist in different shapes and
forms and determine transmission rates and how packets are forwarded throughout
the network, respectively. In this thesis, transmission rates are measured in bits
per second. Packets are created by end systems through segmenting data before
transmission and act as the fundamental unit of information sent over the Internet.
Figure 1.1 shows a graphical representation of the Internet, in which the acronym
for Internet Service Provider (ISP) is used.

1



1. Introduction

Figure 1.1: Some pieces of the Internet [1].
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1. Introduction

All communication over the Internet is governed by different protocols. A high level
definition of protocols is [1]:

A protocol defines the format and the order of messages exchanged be-
tween two or more communicating entities, as well as the actions taken
on the transmission and/or receipt of a message or other event.

The Transmission Control Protocol (TCP) and the Internet Protocol (IP) are two of
the most famous protocols used by the Internet. The latter specifies the fields in the
network-layer packets (commonly called datagrams) and how end systems and net-
work devices act on these. This protocol is the glue that binds the Internet together
and is very important. For this thesis, however, the difference between TCP and the
User Datagram Protocol (UDP), the two transport protocols, is of great importance.

A packet switch within a packet switched network can be connected to many other
switches, hosts, and end systems through multiple communication links. Moreover,
every switch has a range of output queues, one for each link, which stores packets
to be sent over that link. Packet loss occurs when a packet arrives at a full queue.
Which packet is lost depends on the implementation of the queue, but a loss of
information is certain. Therefore, packet loss is in a direct relation with the level of
congestion in the network [1]. Figure 1.2 depicts the inflow of packets to the queue
of a switch and how packet loss can happen when the rate of inflow is higher than
the possible outflow rate.

Figure 1.2: Packet switching of a switch for which the potential inflow is greater
than the possible outflow [1].

3



1. Introduction

Applications connected through TCP enjoy built-in congestion control, among other
mechanisms that this protocol automatically employs. UDP, on the other hand,
is a lightweight and connectionless oriented protocol that has no such underlying
congestion-control mechanisms. Other than congestion control, TCP also has hand-
shaking, retransmission of lost packets, flow control, etc. [2]. Excluding these type
of features is clearly a double-edged sword: UDP is the protocol of choice for many
real-time applications, like live video streaming, due to the lack of retransmission
delays, but applications connected through it are especially vulnerable to packet
loss. Since Einride has chosen to use UDP in their real-time video streaming, they
have to deal with packet loss themselves.

Besides packet loss, there are two other critical performance measures for computer
networks: delay and throughput. While delay certainly is a crucial measurement
for real-time applications, the methods in this thesis does not work with this mea-
surement and a longer discussion about it is therefore left out. It is however worth
mentioning that there exist many different types of possible delays within a net-
work, shown in Figure 1.3. During a transmission between two end systems, all of
these contribute to the total end-to-end delay [1], often called latency or ping (al-
though, sometimes these terms refer to the round-trip delay). Throughput, however,
is central to the thesis: it is the measurement that corresponds to the speed of a con-
nection, mentioned in Section 1.1. All of these measures are related and are simply
different ways to evaluate the state of the connection between two end systems. To
predict one, like throughput, and adjust a system accordingly is therefore a feasible
approach when the objective is to minimize another, like packet loss.

Throughput is measured in bits per second and represents the rate of successfully
transferred bits of information. The term is often used interchangeably with band-
width, but the latter is actually a misnomer, as this is essentially synonymous to
maximum throughput, for which there also exist different types [3]. The measure

Figure 1.3: Delay occurs for different reasons; nodal processing, queueing, trans-
mission, and propagation [1].
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1. Introduction

Figure 1.4: A connection with multiple links {Ri}Ni=1 [1].

this thesis is interested in predicting is instead the Available Bandwidth (ABW),
i.e., the expected throughput, in the near future. This varies at all times and de-
pends on the rate of traffic in the network. Moreover, a connection between two
end systems often travels through multiple links, depicted in Figure 1.4, all possibly
subjected to different levels of intervening traffic. Therefore, there will always be
one that is the bottleneck link, defining the overall throughput of the connection. In
a Wireless Wide Area Network (WWAN), the ABW experienced by a moving end
system varies even more, due to the change of base stations, environmental factors,
etc. This results in both stochastic and deterministic features of ABW, illustrated
and discussed in more detail in Chapter 3.

Bits per second is also a crucial measurement for video encoding, the process of
reducing the amount of data required to represent a digital video signal. The amount
of data used to represent the video is determined by the bitrate of the encoding,
which refers to the number of bits used to represent the video over a certain time
span (commonly one second) [4]. For real-time video streaming, the bitrate is the
goodput required to avoid interruptions. Goodput is a portmanteau of good and
throughput and is the application-level throughput of a communication, i.e., the
number of useful information bits delivered by the network to a certain destination
per unit of time. The amount of data considered excludes protocol overhead bits
as well as retransmitted data packets. Hence, for UDP, goodput is almost equal
to throughput [1]. Because of this, a suitable encoding bitrate of a real-time video
streamed over UDP can be determined using ABW.

1.3 Aim

The aim of this thesis is to solve the problem stated in Section 1.1, i.e., present an
algorithm that predicts ABW and uses this knowledge to specify a suitable bitrate
for the real-time video streaming. In light of Section 1.2, this section expresses the
purpose of such an algorithm by defining a high level optimization problem.

The stochastic nature of ABW makes it impossible to predict an upcoming level
of ABW with absolute accuracy. An alternative is to design a heuristic algorithm
with a low prediction error. To let this algorithm predict the upcoming ABW is,
however, a mistake: if the predicted ABW is greater than the actual ABW, con-
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gestion and packet loss will occur. With the goal to minimize packet loss, a more
sensible objective is to predict a lower bound that the ABW is expected to be greater
than with a high probability. This lower bound can then serve as the bitrate for the
video encoding. The optimization problem of consideration is thus

maximize
∑
t∈N

B(t) (1.1)

subject to min
t∈N

{
B(t)

}
≥ b (1.2)

ε/n ≤ r, (1.3)

where N := {1, 2, ..., n}, for n discrete time points, and B(t) is the lower bound at
time t ∈ N , with b as the minimum allowed value of B(t), ∀t. Furthermore, ε is
the expected amount of time points where the lower bound is not low enough, i.e.,
ε := E|{t ∈ N : Tt < B(t)}|, where Tt is a stochastic variable that represents the
throughput at time t ∈ N . Lastly, r is the acceptable rate of failure.

To solve this optimization problem, ε has to be estimated. If the performance
of an algorithm for finding B(t) is assumed to be constant over time, then the av-
erage failure rate is a constant that can be estimated by the mean performance on
previous data. Then it is clear that this problem does not have a solution when
E|{t ∈ N : Tt < b}| > ε. Therefore, such cases will not be considered, meaning it is
assumed that a route has been chosen such that it is feasible for the application.

1.4 Limitations
Issues regarding improved video compression, potential improvements in wireless
computer communication technology, optimization of communication mast place-
ments, predictive image enhancement from previous images, and optimization in
the camera and display layers are not considered. Furthermore, the utilization of
adaptive forward error correction as loss recovery is not investigated.

The analysis within the thesis is also subject to major limitations. Firstly, the
algorithms cannot be tested in field due to system limitations. Hence, no tests on
the actual improvement in video quality are presented. There are, however, multiple
articles in the literature, for example [5, 6], which show the usefulness of techniques
like the ones in this thesis. Secondly, the amount of data is limited (see Chapter 3),
but enough for the results presented in Chapter 5.

1.5 Related work
The contents of this thesis belongs to the field of anticipatory networking, where
different patterns observed in networks are utilized to enhance their performances.
The techniques used in this field include many different approaches, such as user
mobility prediction, but also forecasting the state of a network in terms of conges-
tion, etc. With so many widely different approaches, it is useful to divide them
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1. Introduction

into subcategories, something that is done in [7]. This survey, from 2017, gives a
broad overview of the field and the interested reader is referred to it for the full
picture. The rest of this section will therefore focus on similar approaches to the
one presented in this thesis.

Bandwidth maps attained from geotagged data of historic throughput levels were
first proposed in [8] and in a subsequent article [9], which expanded on the for-
mer. In these articles, the idea of using a GPS-based bandwidth-look-up service
to predict upcoming ABW was introduced and shown to be effective for improving
video streaming quality. However, this was done in the setting of buffered streaming
through the Hypertext Transfer Protocol (HTTP) over TCP, using a 3G-network,
instead of the UDP- and 4G-setting of this thesis.

The previously mentioned article spurred more research into the area and several
more articles, such as [10, 11, 12, 13], worked with similar datasets of geotagged
ABW. In [10], the construction and usage of bandwidth maps was studied inten-
sively. The usefulness of these type of look-up services for video streaming was yet
again stressed and the Past Tells More Than Present (PTMTP) property was in-
troduced. This compared the predictive performances of geotagged past ABWs and
the current ABW for predicting an upcoming ABW. The methodologies behind the
construction of bandwidth maps in [9] and [10] will be discussed in Chapter 3.

Predicting throughput in a more general setting, without utilizing bandwidth maps,
is a well studied problem. Numerous algorithms of various levels of sophistication
have been proposed for this purpose [14, 15, 16, 17, 18]. This thesis will focus on
techniques from classical time series analysis, which has been successfully used in
multiple articles to predict upcoming ABW [19, 20, 21, 22, 23]. Many of these, such
as [19], focus on the usefulness of such methods, whereas others compare them to
more sophisticated machine learning methods. In [24], a lower empirical prediction
bound for throughput is established using the theory of differential entropy in in-
formation theory. Multiple algorithms are then compared to this bound and each
other. Among these algorithms are ARIMA-based ones, but also methods based on
Artificial Neural Networks (ANN), etc. The former are shown to be very effective
relative to their computational complexity.

Accurate real-time estimation of ABW is not a trivial task and has been studied
extensively [25, 26, 27]. This is not a research interest of this thesis, as Einride al-
ready has a system for this, but the problem that it implies is worth knowing about.
Since all logged levels of ABW will be due to a system like this, any predictions
made through this data will depend on the accuracy of the system.

1.6 Novel contributions
The novelty within this thesis is threefold. It includes a novel approach, to the
author’s knowledge, for defining bandwidth maps based on Gaussian process re-
gression (Section 2.6 and Section 3.3). Moreover, a new time series model tailored
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1. Introduction

for the problem of this thesis is introduced (Section 3.4). It essentially combines
the bandwidth map-based and ARIMA-based methods mentioned in Section 1.5 to
model ABW. Lastly, a lightweight real-time algorithm, which utilizes the previously
mentioned model, is presented. It suggests a suitable encoding bitrate by estimat-
ing the lower bound B(t + h) for a given lag h time steps away from current time
t (Section 4.3). These three novelties in turn give rise to novel results and discus-
sions regarding the convergence of bandwidth maps, the usefulness of position-based
ABW-predicting algorithms, and some insights regarding how to choose data when
constructing a bandwidth map.

1.7 Outline
The rest of the thesis is divided into five chapters. First, some necessary theory
regarding time series analysis will be tackled. Second, the method for data collection
will be introduced together with an analysis of the data, a discussion regarding
bandwidth maps, and the introduction of a novel time series model. Third, the
algorithm that was developed during the project will be presented together with
problems faced by it and alternative algorithms. Fourth, the various results of the
thesis will be discussed, with a focus on the performance of the different stages of the
proposed algorithm. Fifth, some conclusions consisting of remarks and suggestions
for future work will be given.

8



2
Time Series Analysis

The following chapter is focused on the analysis of time series. It begins with some
necessary preliminaries and introduces the reader to the classical way of analyzing
this type of data through ARIMA models. This is followed by three sections de-
scribing the details of this method and statistical tests that will be used throughout
the thesis to evaluate models and data characteristics. After this, a more general
way of modeling time series, that of state space models, is briefly discussed. Lastly,
Gaussian process regression is introduced as an alternative to Kalman smoothing
for finding an underlying state within noisy data.

Sections 2.1 and 2.2 are based on the standard introductory book [28], Introduc-
tion to Time Series and Forecasting, by Peter J. Brockwell and Richard A. Davis,
which the interested reader is referred to for more details. Moreover, definitions
given throughout these sections are the same as the corresponding definitions found
in [28], for the sake of consistency.

2.1 Preliminaries
A time series is a set of observations x1, ..., xn ordered in time. These are usually
equally spaced in a discretized time domain and exhibit some type of stochastic
behaviour. In the words of Brockwell and Davis [28]:

A time series model is a specification of the joint distributions of a se-
quence of random variables, of which a sequence of observations is pos-
tulated to be a realization.

This means that a time series model consists of the formulation of a stochastic
process in an attempt to describe how the time series came to be. However, the
distinction between the data and the underlying process is often dropped in the
literature and the phrase time series is used interchangeably.

White noise,

{Xt} ∼WN(0, σ2), t ∈ N, (2.1)

for example, is a sequence of uncorrelated random variables, each with zero mean
and variance σ2. This is a discrete stochastic process with an infinite set of possi-
ble time series realizations. One such realization can be seen in Figure 2.1. It is
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2. Time Series Analysis

a suitable choice for a first example, as it possesses an important feature for the
analysis of time series: stationarity. To define stationarity, the concepts of mean
and covariance functions need to be introduced.

Definition. If {Xt} is a time series with E(X2
t ) <∞, then the mean function of

{Xt} is
µX(t) = E(Xt). (2.2)

Definition. For the same time series as above, the covariance function is
γX(r, s) = Cov(Xr, Xs) = E[(Xr − µX(r))(Xs − µX(s))], (2.3)

for all integers r and s.

Definition. The time series {Xt} is (weakly) stationary if µX(t) is independent
of t and γX(t+ h, t) is independent of t for each h.

With these definitions, it is easy to verify the statement about the stationarity of
white noise. A random walk defined by the cumulative sum of a white noise, seen
in Figure 2.1, is an example of a nonstationary time series. To analyze such a time
series in a classical manner, achieving stationarity through some sort of transforma-
tion is necessary. In fact, this is one of the first steps of the so called Box-Jenkins
method, an iterative modeling approach for time series analysis, which classically
consists of three steps. The first step utilizes the following definitions.

Definition. Let {Xt} be a stationary time series. The Autocovariance Function
(ACVF) of {Xt} at lag h is

γX(h) = Cov(Xt+h, Xt), (2.4)

Figure 2.1: Gaussian white noise (to the left) and its cumulative sum, a random
walk (to the right).

10
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Definition. For a stationary {Xt}, the Autocorrelation Function (ACF) at lag
h is

ρX(h) = γX(h)
γX(0) = Cor(Xt+h, Xt). (2.5)

Definition. Let {Xt} yet again be stationary, then the Partial Autocorrelation
Function (PACF) at lag h is
α(h) = Cor[Xt − P (Xt|Xt+1, ..., Xt+h−1), Xt+h − P (Xt+h|Xt+1, ..., Xt+h−1)], (2.6)

where P (Y |Z) is the orthogonal projection of Y onto a linear subspace of the Hilbert
space spanned by Z. This means that it accounts for the values in-between Xt and
Xt+h and as such is a conditional correlation.

Definition. Let x1, ..., xn be observations of a time series. The sample mean is

x̄ = 1
n

n∑
t=1

xt, (2.7)

the sample covariance function is

γ̂(h) = n−1
n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n, (2.8)

and the sample autocorrelation function is

ρ̂(h) = γ̂(h)
γ̂(0) , −n < h < n. (2.9)

These functions are often presented in graphs called corellograms. In Figure 2.2, the
sample ACF of the white noise and the random walk in Figure 2.1 are plotted. The
lack of any autocorrelation in the white noise is clearly visible, while the opposite is
true for the random walk.

Figure 2.2: An example of ACF plots. Lags with values within the blue dashed
lines are uncorrelated with a confidence level of 95%.
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With the above in mind, the Box-Jenkins method is as follows:

1. Achieve stationarity through necessary transformations, then investigate the
stationary data through its ACF and PACF.

2. Using optimization, find the parameters and coefficients of the model that best
fit the data.

3. Determine if the model is reasonable through statistical tests.

A beginner in the field might at this point wonder what these transformations are,
how the optimization is carried out, and which statistical tests are used. The fol-
lowing three sections tackle these questions, with each section especially related to
the corresponding step in the method.

2.2 ARIMA models
The first step of the Box-Jenkins method is concerned with finding an appropriate
Autoregressive Integrated Moving Average (ARIMA) model for the data. Such a
model has three hyperparameters, which determine the structure and order of the
model, and is usually denoted ARIMA(p, d, q).

If d 6= 0, there is a d-differencing in the model. A 1-differencing of a time series
{Xt} results in a new time series {Yt} defined by

Yt = Xt −Xt−1, ∀t ∈ Z. (2.10)

A 2-differencing of {Xt} is the 1-differencing of {Yt}. This is often expressed in
terms of the difference operator, ∆, or the lag operator, L, defined as

∆Xt = (1− L)Xt = Xt −Xt−1. (2.11)

With these operations, a d-differencing of Xt is easily written as ∆dXt or (1−L)dXt.
An example of this transformation is a 1-differencing of the random walk defined
earlier, which would result in the underlying white noise (Figure 2.1).

Simple d-differencing is useful when trying to remove linear trend and is one of
three common ways to transform a time series to achieve stationarity. The other
common transformations are applying a logarithmic function to the data, to deal
with non-linear trend, and differencing due to a known seasonal length, to deal with
evenly spaced recurring patterns. (Monthly spaced data points are for example often
differenced with their 12th predecessor, an operation commonly denoted ∆12.) The
latter of these is known as a Seasonal ARIMA (SARIMA) model, one of a multitude
of available extensions to ARIMA. Another one of these, the Autoregressive Condi-
tional Heteroskedasticity (ARCH) model for variable variance, will be mentioned in
Section 2.4, together with a discussion on stationarity testing, i.e., how to decide if
the transformations used are sufficient.

The proper definition of an ARIMA(p, d, q) process {Xt} is that the process {Yt} =
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{∆dXt} is a (causal) ARMA(p, q) process. An ARMA(p, q) process is a stationary
time series consisting of two different regressions, AR(p) and MA(q). In an AR(p)
process, each value at a given time point is given by regressing on the p values before
it, hence the name autoregressive. This is commonly written as

Yt = c+ Zt +
p∑
i=1

φiYt−i, Zt ∼WN(0, σ2), ∀t ∈ Z, (2.12)

where c is a constant to achieve zero mean and Zt is uncorrelated with Xs, ∀s < t.
An MA(q) process can be thought of as a regression on the q preceding noise terms,
i.e.,

Yt = µ+ Zt +
q∑
i=1

θiZt−i, {Zt} ∼WN(0, σ2), ∀t ∈ Z, (2.13)

where µ is the expectation of Yt. Figure 2.3 shows an AR(1) process and an MA(1)
process. In this picture, both are stationary processes, but the AR process is close
to being nonstationary, which occurs when |φ| ≥ 1.

Putting AR(p) and MA(q) together gives the formulation for the celebrated ARMA(p, q)
process,

Yt = C + Zt +
p∑
i=1

φiYt−i +
q∑
i=1

θiZt−i, {Zt} ∼WN(0, σ2), ∀t ∈ Z. (2.14)

The above is sometimes expressed more concisely as φ(L, p)Yt = θ(L, q)Zt, where the
constant has been dropped, assuming zero mean, and with the operator polynomials
φ(L, p) = 1 − ∑p

i=1 φiL
i and θ(L, q) = 1 + ∑q

i=1 θiL
i. This then leads to the final

expression for an ARIMA(p, d, q) process {Xt}:

φ(L, p)∆dXt = θ(L, q)Zt, {Zt} ∼WN(0, σ2), ∀t ∈ Z. (2.15)

Having the above theory established enables a discussion on the manual selection
of p and q. As mentioned, this is commonly done through inspection of the sample

Figure 2.3: Realizations of an AR(1) process an MA(1) process.
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Figure 2.4: The ACF and PACF of the AR(1) realization displayed in Figure 2.3.
Note that the PACF created by the R function pacf does not show lag 0.

ACF and PACF of the time series. Intuitively, the ACF could be seen as portraying
the complete autocorrelation between two data points; it includes all the underlying
structures that cause correlation. The PACF is partial and removes these structures,
simply showing the direct correlation between the two points.

With this insight, the correlograms of a realization of an AR(p) process are quite eas-
ily understood. A strong correlation in the ACF up to p is to be expected, followed
by a slow decline due to the inertia created by earlier correlations. The PACF, on
the other hand, should rapidly decline and settle around a correlation of zero after
p. This can be seen in Figure 2.4.

A realization of an MA(q) process exhibits the opposite behaviour (seen in Figure
2.5), but this is not as easily grasped. Its ACF cuts off after q, because all noise terms
are uncorrelated, meaning each time point is only correlated with other time points
affected by the same noise terms. The behaviour of the PACF is best explained by
invertibility. As long as the coefficients θi, i = 1, 2, ..., q, of an MA(q) process are
within the unit circle, there is invertibility, meaning that it can be inverted to an
infinite AR process. This means that the PACF of this MA(q) process is really the

Figure 2.5: The ACF and PACF of the MA(1) realization displayed in Figure 2.3.
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PACF of an AR(∞) and therefore trails off into infinity. The interested reader is
referred to [28] for a deeper understanding of this concept and the proofs behind
it. Invertibility is furthermore the dual concept to the already mentioned causality,
which holds when all φi, i = 1, 2, ..., p, are within the unit circle.

How to use the above knowledge for the manual selection of p and q is summa-
rized in Table 2.1. Clearly, the inspection of ACF and PACF for estimating p and
q is not always useful. In fact, Brockwell and Davis suggest the use of information
criteria (Section 2.3) for order specification of mixture models. However, these re-
quire maximization of likelihood functions and are therefore not the most efficient
routes to take if a pure model of only AR or MA seems sufficient.

AR(p) MA(q) ARMA(p, q)
ACF Decays to 0 Cuts off after q Decays to 0
PACF Cuts off after p Decays to 0 Decays to 0

Table 2.1: Summary of ACF and PACF behaviours for different processes.

2.3 Parameter estimation and model selection
The second step in the Box-Jenkins method consists of estimating the parameters
in (2.14). This section is kept relatively short, leaving out intricate technical details.
Instead, it will serve as a high level description of the different methodological alter-
natives for estimating these parameters and give an understanding of what happens
under the hood in available solvers.

If the model is a pure AR process, the Yule-Walker equations,

γX(h) =
p∑
i=1

φiγX(h− i) + σ2δh,0, h = 0, ..., p, (2.16)

where δh, 0 is the Kronecker delta function, can be solved efficiently through various
algorithms. As seen in (2.16, these are a system of linear equations consisting of the
coefficients and the ACVF of the process. When put into matrix form, the equations
with h > 0 involve a Toeplitz matrix, which allows for the use of the Durbin-Levinson
algorithm instead of the less efficient Gauss-Jordan elimination. After this, the last
equation of h = 0 can easily be solved for σ2. If the model is purely MA, there is
the similar innovations algorithm [28].

Using the Yule-Walker equations for mixture models, known as the method of mo-
ments, is cumbersome and leads to inefficient estimates [29]. Instead, several other
approaches are used, all with their own strengths and weaknesses. A common first
step is to estimate starting values for the optimization procedure through for ex-
ample the Hannan-Rissanen algorithm, which involves the use of a high order AR
model and the Yule-Walker estimates for it [30].
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When first estimates have been attained, a common approach is using an ordinary
non-linear least squares optimization, for which the objective is minimizing the sum
of squared residuals (Section 2.4). This is useful, since it requires no assumptions
about the distribution of the innovations, i.e., one-step prediction errors. However,
when these can be assumed to be Gaussian, Maximum Likelihood Estimation (MLE)
is the weapon of choice, as it usually provides the most accurate estimates [28]. Such
an assumption can often be made, and MLE is therefore the default fitting mecha-
nism of for example the forecast-package in R [31, 32]. If {Xt} is a Gaussian time
series with zero mean and ACVF κ(i, j) = E(XiXj), with Xn = (X1, ..., Xn)> and
X̂n as its conditional expectation. Then the effective calculation of the likelihood

L(Γn) = (2π)−n/2(det Γn)−1/2 exp
{
−1

2X>nΓ−1
n Xn

}
(2.17)

of Xn relies on the fact that the calculation of the determinant and inverse of the
nonsingular covariance matrix Γn can be avoided. The proof of this can be found in
[28] and results in the following expression for the Gaussian likelihood of an ARMA
process:

L(φ,θ, σ2) = 1√
(2πσ2)nr0 . . . rn−1

exp

− 1
2σ2

n∑
j=1

(Xj − X̂j)2

rj−1

 , (2.18)

where ri, i = 0, ..., n, are due to the innovation variances vi through ri = vi/σ
2. The

maximum likelihood estimators φ̂, θ̂, and σ̂2 are then given by the maximization of
L w.r.t. φ and θ.

The usefulness of estimating the parameters through MLE is especially great if the
order selection is made through the evaluation of some information criterion. The
classical one is Aikaike’s Information Criterion (AIC), which is biased for small
sample sizes. For this reason, the corrected version, AICc is more common [28].

Definition. To apply Aikaike’s Corrected Information Criterion (AICc),
choose p, q,φp, and θq to minimize

AICc = −2 lnL
φp,θq,

1
n

n∑
j=1

(Xj − X̂j)2

rj−1

+ 2n p+ q + 1
n− p− q − 2 . (2.19)

With this tool, automating the modelling of ARMA processes is simple: conduct a
grid search over pre-specified spans for p and q and fit a model using each combina-
tion, then choose the most accurate model according to AICc.

2.4 Diagnostic checking
The third step of the Box-Jenkins method is concerned with model checking; the act
of statistically assessing the appropriateness of a fitted model. This is done through
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comparing the observed values with the corresponding predicted values. The resid-
uals can be defined in different ways, but defining them in the same way as the
forecast-package in R is the simplest, most intuitive, and easiest to work with, due
to this resource.

Definition. If φ̂, θ̂, and σ̂2 are the estimators given by some fitting procedure
applied to an ARMA(p, q) model, with the data Xn. Then X̂t(φ̂, θ̂), t = 1, ..., n is
the predicted value of Xt given X1, ..., Xt−1. The residual at time t is then defined
as

Rt = Xt − X̂t(φ̂, θ̂) (2.20)

and the collection of these is referred to as the residuals of the model.

For a model to be valid, the properties of its residuals should reflect those of the
white noise sequence generating the underlying ARMA process [28]. Therefore, the
residuals should exhibit no autocorrelation and, for the assumption necessary for
MLE to hold, be seemingly Gaussian. Noisy residuals also mean that all relevant
information is already extracted from the data and, due to the fitting procedure, at
an optimal rate. There are several ways to check if this is the case:

• Simply inspecting the time series of the residuals. If it is clearly is nonstation-
ary or exhibits other characteristics that are not likely to be found in a noise
sequence, the model is probably not sufficient [33].

• Testing for stationarity using the KPSS test, which tests the null hypothesis
that a given time series is stationary around a deterministic trend [34].

• Analyzing the sample ACF of the residuals. Its behaviour should resemble
that of a white noise process. This can be extended to fitting an AR model
to the residuals through AICc. A selected order of zero would suggest white
noise [28].

• Inspecting a lag plot can further strengthen the belief of no autocorrelation at
lag h = 1 [33].

• Conducting a portmanteau test. There exist several different ones of these,
but the most common ones are the Ljung-Box test, an improved version of the
Box-Pierce test, and the similar McLeod-Li test. These test the null hypothesis
that a given time series, in this case the residuals, are serially uncorrelated [28].

• Checking for normality. This can be done through inspection of the histogram
of the residuals and Q-Q or empirical CDF plots. There are also normality
tests, such as the Kolmogorov-Smirnov test, the Shapiro-Wilk test, and the
Jarque-Bera test. However, tests like these are not utilized in this thesis.
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The methods presented above are usually combined when assessing the appropri-
ateness of the model. During this assessment, the discovery of heteroscedasticity
within the residuals may occur. This is the presence of varying variance and can be
further assessed by for example the Breusch-Pagan test [35]. To deal with this, a
Generalized ARCH (GARCH) model needs to be used. Without the generalization,
this is an AR model that incorporates noise terms that themselves resemble AR
processes. The AR(p)/ARCH(r) model is defined as

Yt = c+ Zt +
p∑
i=1

φiYt−i (2.21)

Zt = et

(
α0 +

r∑
i=1

αiZ
2
t−i

)1/2

, {et} ∼ IIDN(0, 1), (2.22)

with α0 > 0 and αj ≥ 0, j = 1, ..., r. The generalization includes the necessary
adjustments for ARMA processes [28]. These types of processes will not be studied
in this thesis, but are worth knowing about. Note that for a process where the
opposite (homoscedasticity) holds, there is an equivalence between the innovations
of the process and the residuals of the MLE model.

2.5 State space models
With the theory of the Box-Jenkins method and ARIMA models established, it is
worth noting a common, modern way to represent these types of models and work
with them. State space representations have their origins in control engineering,
where they are used to model a physical system as a set of input, output and state
variables. For this brief section, the notation of [36] will be utilized. The interested
reader is referred to this book for a much deeper treatment of these methods.

The general linear Gaussian state space model can be written

yt = Ztαt + εt, εt ∼ N(0, Ht) (2.23)
αt+1 = Ttαt +Rtηt, ηt ∼ N(0, Qt), (2.24)

for t = 1, ..., n. In the observation equation (2.23), yt represents a vector of ob-
servations at time t, and in the state equation (2.24), αt represents the unknown
underlying vector of state variables. Essentially, this models a noisy system, due to
ηt, which naturally develops over time through a postulated propagation matrix, Tt.
This system is being measured through an observation matrix, Zt, an act that also
introduces noise, εt.

Interestingly, the set of all possible ARIMA models is a subset of the set of all
possible state space models. Hence, every ARIMA model can be put into a state
space representation. This is very useful, as various filters, like the famous Kalman
filter, can be applied to state space models. Filters like these are efficient recursive
algorithms for filtering out the noise in a measured system and predicting upcoming
values. This filtering and prediction is equivalent to the predictions of ARIMA mod-
els. Because of this, it has the same reactive look to it, like it is lagging behind the
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process it is predicting (an example of this is depicted in Figure 3.10). The advan-
tage of state space models and filters is that they provide retrospective smoothers.
These correct for this lag and attain an estimate of the underlying state that caused
the measurements. This is a suitable tool when the underlying state of past data
is of interest for future predictions. However, for the model described above, this
type of smoothing returns a piecewise linear estimate of the underlying state, which
is not necessarily the best approximation. Therefore, this thesis will not be using
the above methods other than through functions available in R that incorporate
them (e.g., the calculation of the likelihood (2.18) in R’s arima function, which is
done through the Kalman filter). Instead, estimation of the underlying state will be
achieved by Gaussian process regression.

2.6 Gaussian process regression

Gaussian Process Regression (GPR) is a way to perform Bayesian inference over
functions using a distribution of functions. This is in opposition to the common ap-
proach in supervised learning of inferring over a parametric representation of some
function f . This section is mainly due to Rasmussen and Williams [37], and the
condensed version of this given by Murphy [38].

A Gaussian Process (GP) is a stochastic process that has a multivariate normal
distribution for any arbitrarily chosen set of time points. The distribution of a GP
is the joint distribution of all of these random variables and is therefore a distribu-
tion over functions. In the setting of Bayesian inference, this defines a prior over
functions, which is converted into a posterior when given some observed data. The
attentive reader might realize that this is somewhat similar to the ARIMA processes
presented in earlier sections. Indeed, these processes are in the subset of GPs known
as discrete-time Gaussian Markov processes.

If the prior of the regression function is a GP, i.e.

f(x) ∼ GP (µ(x), κ(x,x′)), (2.25)

where µ and κ are the mean and covariance functions. Then, for a finite set of points
X, this process defines the joint Gaussian p(f |X) = N(f |µ,K), for which µ and K
are the mean vector and the matrix due to the covariance function of X. Moreover,
f denotes the vector of outputs of f given X.

Assuming a noise-free training set {(xi, f(xi)), i = 1, ..., n), for predicting func-
tion outputs f∗ from a test set X∗, means the estimated underlying function needs
to interpolate the training points. Then the joint distribution is

(
f
f∗

)
∼ N

((
µ
µ∗

)
,

(
K K∗
KT
∗ K∗∗

))
, (2.26)
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where K∗ = κ(X,X∗), etc. The posterior then has the form

p(f∗|X∗,X, f) = N(f∗|µ∗,Σ∗) (2.27)
µ∗ = µ(X∗) + KT

∗K−1(f − µ(X)) (2.28)
Σ∗ = K∗∗ −KT

∗K−1K∗. (2.29)

When noisy data is considered, the observations have to be assumed to be the re-
sult of the underlying function plus a noise term, i.e., y = f(x) + ε, ε ∼ N(0, σ2

y).
This means that the model is not required to interpolate the training data, but
should be close enough to doing so. There is then a covariance of the observa-
tions, Cov(yi, yj) = κ(xi,xj) + σ2

yδij, with δij being the Kronecker delta, meaning
Cov(y|X) = K + σ2

yIn =: Ky. This alters the joint distribution, which turns out to
be (

y
f∗

)
∼ N

(
0,
(

Ky K∗
KT
∗ K∗∗

))
, (2.30)

and leads to the key predictive equations for Gaussian process regression

p(f∗|X∗,X,y) = N(f∗|µ∗,Σ∗) (2.31)
µ∗ = KT

∗K−1y (2.32)
Σ∗ = K∗∗ −KT

∗K−1
y K∗, (2.33)

which for a single test point x∗ reduces to

p(f∗|x∗,X,y) = N(f∗|E(f∗),Var(f∗)) (2.34)
E(f∗) = k>∗K−1

y y (2.35)
Var(f∗) = κ(x∗,x∗)− k>∗K−1k∗. (2.36)

The above clearly indicates that the covariance function κ, or the kernel, as it is
often called, plays a critical role. The choice of it is therefore crucial to the predictive
performance of a GPR. There are several to choose from, but a common one is the
squared-exponential kernel, also known as the Gaussian kernel,

κy(xi, xj) = σ2
f exp(− 1

2l2 (xi − xj)2) + σ2
yδij. (2.37)

The hyperparameters of the kernel at use specifies the shapes of the functions that
will be considered. This can be seen in Figure 2.6.

The optimization procedure of GPR is the maximization of the marginal likelihood,

p(y|X) =
∫
p(y|f ,X)p(f |X) df , (2.38)

which depends on the kernel’s parameters. This is realized by observing that
p(y|X) = N(f |0,K) and p(y|f) = ∏

iN(yi|fi, σ2
y), which implies p(y|X) = N(y|0,Ky).

The optimization can then be done through calculating the partial derivatives of
the log marginal likelihood w.r.t. the parameters of the kernel and using a standard
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Figure 2.6: Given data generated by a GP with a Gaussian kernel and the hyper-
parameters (l, σf , σn) = (1, 1, 0.1). (a) shows a GPR with these same parameters,
while (b) shows a regression achieved by (l, σf , σn) = (0.3, 1.08, 0.00005) and (c) by
(l, σf , σn) = (3, 1.16, 0.89).

gradient-based optimizer. However, this has the problem of nonconvexity, so there
might exist nonglobal minima.

Further details about the implementation of the regression algorithm in terms of
computational efficiency and a discussion about how GPR is a linear smoother is
left out. The interested reader is referred to [37].
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3
Data Collection and Analysis

This chapter describes how to collect data like the ones in this thesis. It then includes
an initial analysis of these data and discusses the results of the analysis. This is
followed by a discussion on the different ways to define and calculate bandwidth
maps, which introduces a novel method for doing this using GPR and argues for its
usefulness. The chapter concludes with the introduction of a new type of time series
model, which is akin to a seasonal model, but uses differencing due to the spatial
instead of the temporal domain.

3.1 Geotagged data logging
The data in this thesis is due to manual recording, using an Android app called
G-NetTrack Pro, developed by Gyokov Solutions [39], along a certain route outside
of Gothenburg, between Delsjömotet and Mölnlycke (Figure 3.1). The data consists
of 10 distinct traces from 5 trips back and forth, i.e., 5 trips each way.

The route was chosen with its environment in mind. It exhibits many different
types of environments, which are all likely to be encountered by an autonomous
logistics vehicle. The speed limit never rises above 70 km/h and the environments
imply driving next to a highway, on a common country road, in-between vegetation,
next to a lake, through a town center, underneath a bridge, next to grocery stores,
and through neighborhoods.

G-NetTrack Pro allows its user to log a multitude of parameters, ranging form
GPS coordinates and movement speed, to latency, upload and download capacity,

Figure 3.1: An 11 minute drive from Delsjömotet to Nysätervägen, Mölnlycke.
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Reference Signals Received Power (RSRP), etc. To log latency and upload capacity
parameters, the user has to specify the corresponding URLs to use.

Since the measurements of interest in this thesis are throughput from a vehicle
to a control center, GPS coordinates, and speed, these parameters are logged as a
tuple approximately every second. To model the throughput, the upload capacity
in G-NetTrack Pro is used, with http://de.testmy.net/b/upload as the URL.

3.2 Initial data analysis
There are different ways to visualize the data logged by the method explained in the
previous section. A throughput measurement of a given trip could be plotted on the
y-axis against time on the x-axis, like a classical time series. The second possibility
is plotting it on the z-axis against an xy-plane representing the GPS coordinates.
Henceforth, the former will be referred to as the temporal representation and the
latter as the positional representation (spatial would have been suitable, but the
choice of a word with a first letter different from s will become clear in Section 3.4).

Starting with the positional representation and plotting every trip in the same plot,
the existence of some underlying state becomes clear (Figure 3.2). However, there
seem to be areas that are more stable, with smaller throughput variances, than
others (an unstable area is seen around Φ = 12.1, Λ ∈ [57.66, 57.665]). In the stable
areas, the sole use of a previously estimated underlying state should turn out to be
very useful. In the less stable areas, it is not clear how much such an estimate would
help.

Figure 3.2 implies that appending temporal representations to each other should

Figure 3.2: The total positional representation of the 10 trips, appended to each
other.

24

http://de.testmy.net/b/upload


3. Data Collection and Analysis

Figure 3.3: The temporal representation of the first 4 trips appended to each other.

result in a cyclic time series. Indeed, Figure 3.3 shows cyclicity, the presence of
recurring patterns with irregular time intervals. To see that the time series is indeed
cyclic and not seasonal, the 5 traces from Mölnlycke to Delsjömotet can be plotted
on top of each other. This results in Figure 3.4. Since every trip is subject to unique
happenstances, every trip will result in different travel times. Because of this, the
total time series of all data traces appended to each other cannot be regarded as a
pure seasonal one, but rather a cyclic one.

For the rest of the thesis, a particular data trace will be studied more than others;
the trace of the 10th trip. This is in order to stay consistent, but not overwhelm the
text with plots of all different trips. (However, carrying out the same analyses on
other trips is possible.) Looking at the temporal representation of the 10th trip and
its sample ACF and PACF gives some insight into the behaviour of these type of
time series.

Figure 3.4: An overlay plot of the 5 temporal representations given by driving
from Mölnlycke to Delsjömotet.
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Figure 3.5: The temporal representation and sample ACF and PACF of the 10th

trip.

In Figure 3.5, the ACF shows the nonstationarity of the time series, while the PACF
seems to indicate that it is almost a random walk, except for some subtle partial
autocorrelation for small lags.

A 1-differencing leads to Figure 3.6, which indicates that an ARIMA(0,1,1) or
ARIMA(0,1,2) model could fit. However, letting these serve as models for the time
series in figure 3.5 results in rejections by the Ljung-Box test and they are thus not
enough. Using AICc instead, the model turns out to have to be ARIMA(3,1,5), a
fairly complex model, in order not to get rejected. This example shows how prob-
lematic manual order selection can be, but also how little the correlograms say about
the order of ARMA models. Standard ARIMAs like these will be considered as al-
ternative algorithms in later chapters, for the sake of comparing how much better
forecasts become by using the cyclicity.

Estimating the underlying state in Figure 3.2 is a possible way to utilize the cyclic-
ity. This essentially means combining the temporal and positional representations
of the data traces in some way. How to do this is the subject of the rest of this
chapter.
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Figure 3.6: The 1-differencing of the 10th trip and its correlograms.

3.3 On the calculation of bandwidth maps

The underlying state present in Figure 3.2 is what the authors of [9] and [10] have
tried to attain, i.e., it is what would constitute a bandwidth map of the route. In
[9], the system queried for a predicted ABW once every 100 meters. The prediction
was given by the mean ABW of all historical data points within a 100 meter radius.
There are major problems with this strategy:

• The averaging over a set area results in the assumption that all positions in
that area have the same underlying state, which is not necessarily the case.

• It uses an arbitrary choice of what will henceforth be called window, defining
the size of the area and thus which historical points to use.

• This window is constant in size and not dependent on, for example, travelling
speed.

• All points are weighted equally during the averaging.

These problems result in a bandwidth map that is too smooth and misses out on
potential prediction possibilities, as can be seen in the comparison in Figure 3.8.

In [10], a different approach was taken when constructing a bandwidth map. This
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approach could be regarded as even more arbitrary and also less automatic. The
authors manually divided a route up into 500 meter segments beforehand. They
then logged throughput levels in these segments and let every segment’s bandwidth
map level be defined by the average of the data points logged in it. In a sense, it is
equivalent to the previously mentioned strategy, but with 500 meter query intervals
using 250 meter radius windows. However, the radius was actually never discussed
in this paper, leaving out the discussion on how uncertain GPS measurements should
be dealt with in a real-time system implementing this method.

Motivated by the shortcomings of the existing methods for calculating bandwidth
maps, a new method is introduced in this thesis. Using GPR on throughput mea-
surements paired with their distance along the route from a specified starting point
(say Delsjömotet), it is possible to attain a differentiable bandwidth map along the
entire route. This allows for a minimal amount of arbitrary parameter choices and
quick convergence to a stable bandwidth map. The rest of this section is dedicated
to the necessary preprocessing steps for this method.

There are a few problems with implementing GPR on the data used in this the-
sis. The GPR of consideration is a two-dimensional one (because higher dimensions
result in infeasible computational complexities). This means the data points need to
be represented in a two-dimensional space. However, the positional representation
of the data is three-dimensional. Therefore, a suitable transformation between the
two is needed.

The transformation needs to consist of several steps. The first step is calculating an
approximation of the route in the GPS-plane. This is because the exact GPS coor-
dinates of the route will not necessarily be known. The second step is to remove the
noise within the GPS coordinates of the data points. This can be done by projecting
every data point’s GPS coordinates onto the approximated route. The third and last
step is to make the approximated route represent the x-axis of a two-dimensional
space.

In this thesis, the first step is done through a linear interpolation of the first trip’s

Figure 3.7: Gaussian process regression on throughput measurements paired with
distances along the route.
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Figure 3.8: The 10th trip in its temporal representation and the predictions given
by various bandwidth maps.

positions. The second step is done through an orthogonal projection onto the piece-
wise linear curve given by the first step. The third step is achieved by letting the
x-axis of the two-dimensional space be represented by the distance along the piece-
wise linear curve. Preprocessing the data points in this manner results in the points
seen in Figure 3.7. Fitting a GPR with a Gaussian kernel to this data results in the
line seen in the same plot.

Points from the first 9 trips were used in Figure 3.7. This bandwidth map can
then be put alongside the temporal representation of the 10th trip. This is done by
applying the second step of the preprocessing procedure to every data point of the
10th trip. Every projected position implies a distance along the route, which in turn
implies a value of the bandwidth map. The result is seen in Figure 3.8, together with
the methods used in other articles (alternative 1 is the one used in [9], alternative 2
the one in [10]).

3.4 The PARIMA model
This chapter ends with the introduction of a new type of time series model, the
Positional ARIMA (PARIMA) model. It is an exogenous time series model, mean-
ing it depends on some external, independent time series.

Definition. The series {Xt} is a PARIMA(p, d, q) process if it has the representation

φ(L, p)∆d [Xt − ψ(Φt,Λt)] = θ(L, q)Zt, {Zt} ∼WN(0, σ2), (3.1)

where {Φt} and {Λt} are exogenous univariate time series and ψ : R2 → R.

The subtraction carried out inside the brackets in (3.1) will be referred to as posi-
tional differencing. The definition of ψ allows for the use of some coordinate-based
look-up-procedure, like the second step of the preprocessing based on orthogonal
projection, described in the previous section.

This definition makes model specification through positional differencing and ARIMA
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modeling on the resulting residuals possible. Essentially, such a model uses the band-
width map to reduce the complexity of the temporal representation of the data,
which then only portrays the deviation from the underlying state over time. Fitting
an ARIMA model to this deviation is a way to refine the predictions and deal with
less stable areas.

PARIMA(p, d, q) modeling on the 10th trip starts with the positional differencing
of the temporal representation. If ψ is the orthogonal projection procedure, the
residuals from the positional differencing are shown in Figure 3.9.

The correlograms of Figure 3.9 resemble those of an AR(1) process (Figure 2.4).
Indeed, fitting such a model to the data produces seemingly uncorrelated normally
distributed residuals (Figure 3.10). However, this is rejected by a Ljung-Box test.
Using AICc leads to PARIMA(2, 1, 4), which is not rejected. The positional differ-
encing has thus reduced the complexity necessary to describe the data by 25%, from
p+ q = 8 to p+ q = 6. Moreover, it reduced the Root Mean Squared Error (RMSE)
of the prediction (more on this in Chapter 5).

The PARIMA(1, 0, 0) results in an RMSE of 1084.917 kbit/s, an improvement on

Figure 3.9: The temporal representation and sample ACF and PACF of the 10th

trip.
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the predictions given by only the bandwidth map, which has an RMSE of 1218.402
kbit/s. PARIMA(2, 1, 4) results in a RMSE of 1076.947 kbit/s. This small difference
makes PARIMA(1, 0, 0) preferable for a lightweight predictive real-time algorithm.

Figure 3.10: Result of 1-step-ahead predicting the temporal representation of the
10th trip with PARIMA(1,0,0) and the sample ACF and Q-Q plot of the residuals.

Figure 3.11: Result of 1-step-ahead predicting the temporal representation of the
10th trip with PARIMA(2,1,4).
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4
Specifications of Algorithms

In this chapter, different algorithms for computing the lower boundary B(t), de-
scribed in Section 1.3, are specified. First, a reactive algorithm is introduced, in
order to have a basic implementation to compare the other algorithms to. This is
followed by a discussion regarding the problems faced by position-based real-time
algorithms. The chapter concludes with the introduction of a PARIMA-based al-
gorithm and alternative ones based on only ARIMA or only bandwidth maps. The
performances of all of these algorithms will be compared in Chapter 5.

4.1 A reactive algorithm
Reactive algorithms are common in networking. When applied to automatic bitrate
adjustment, they are frequently based on controllers of different kinds, which often
use all of the network measures mentioned in Section 1.2. Examples over TCP are
TCP Friendly Rate Control (TFRC), used in [10], and Bottleneck Bandwidth and
Round-trip propagation time (BBR), a more modern alternative to TFRC [40]. In
[41], a control algorithm for UDP called C3G, mimicking the behaviour of BBR, was
also implemented successfully. Moreover, Einride’s current system uses a type of
multivariate controller.

Since the data used in this thesis lacks delay and packet loss information, the reac-
tive algorithm has to only work with throughput. Because of this, the algorithm was
made to mimic the behaviour of C3G’s rate control, using only throughput (Figure
4.1). It is a modified discrete-time PID controller, where the integrated term has
been changed for the current value and a few extra features have been introduced.

Algorithm. If the boundary specified by the Reactive Algorithm (RA) is re-
ferred to as B(t) and Xt is the ABW at time t, with r, S, Kp, Ki, and Kd as free
parameters, the algorithm behaves as follows:

1. Initialization through B(1) = X1, assuming X1 is known. The value of B(t)
is bounded by the minimum allowance b.

2. For every time step t, one of the following actions is carried out (B(t) is still
bounded by the minimum allowance b):

• If B(t) > Xt, then B(t+ 1) = Xt− r[B(t)−Xt], meaning r specifies rest
in relation to overload.

• If B(t) ≤ Xt, time t is regarded as successful and B(t + 1) = B(t).
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However, if S consecutively successful time steps have been experienced,
the update is instead

B(t+ 1) = Kp[Xt −B(t)] +KiB(t) +Kd[B(t)−B(t− 1)]. (4.1)

Clearly, the above needs a counter for consecutively successful steps. The alternative
update exists in order for the algorithm to be able to probe for higher bitrates.

Figure 4.1: RA with r = 1, S = 3, Kp = 0.1, Ki = 1, and Kd = 0.3. Minimum
allowance arbitrarily set to 200 kbit/s.

4.2 Problems for position-based algorithms
When utilizing any position-based look-up procedure in a real-time algorithm, the
problem of predicting upcoming positions arises. Given a position (Φt,Λt) and as-
suming a time granularity of 1 second between data points, the estimate (Φ̂t+1, Λ̂t+1)
can easily be calculated with the velocity vt at time t. If the velocity is not available,
it can be approximated by the vector from (Φt−1,Λt−1) to (Φt,Λt). However, as soon
as (Φ̂t+h, Λ̂t+h), h > 1, is to be considered, the potential change in direction and
speed has to be dealt with.

In this thesis, the approximation of the route, described in Section 3.3, is used
to predict upcoming positions. The coordinates (Φt,Λt) can be orthogonally pro-
jected onto the route and the resulting coordinates can be used to predict upcoming
positions along the route. This can be done using speed estimates, assuming the
driving direction is known.

If current speed is an available variable that can be logged in the system, there
is the possibility of building a speed map through GPR as well (Figure 4.2). This
method has multiple positive aspects to it. Besides the lack of tuning parameters,
the actual speed st at time t can be utilized. This can be done by calculating the
ratio between the actual speed at time t and the corresponding speed map value,
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i.e., st/ψs(Φt,Λt), and use this to adjust the speed map so that it fits st. This will
serve all sorts of trips quite well, even the ones subjected to anomalistic speeds.
Examples of such scenarios are ending up behind a tractor or in a traffic jam. It can
be improved by incorporating acceleration. This would help in a situation when a
traffic jam suddenly clears up and the vehicle returns to the normal speed for the
area, for example. However, an improvement like this is not studied in this thesis.

Figure 4.2: A speed map calculated through GPR. An example of an adjusted
speed map is showcased, where st = 0.7ψs(Φt,Λt). The plot also includes the speed
trace of the 10th trip.

4.3 A PARIMA-based algorithm
The following algorithm is based on PARIMA modeling and is the algorithm pro-
posed in this thesis in order to solve the problem described in Section 1.1.

Algorithm. With B(t) andXt defined as for RA, the PARIMA Algorithm (PA)
is an algorithm with two stages. The first stage is preparation, which consists of three
steps:

1. Calculation of bandwidth map through GPR.
2. Fitting of PARIMA(1,0,0) model, using the bandwidth map, to the last logged

trip.
3. Calculation of speed map through GPR.

The second stage is real-time prediction, during which the following is carried out
once for every h time steps:

1. Estimation of h upcoming positions through speed map and current position.
2. Prediction of Xt+i, i = 1, ..., h, using the PARIMA model attained during the

preparation stage applied to the estimated upcoming positions.
3. Calculation of B(t+i), i = 1, ..., h. This is done by subtracting a set amount of

standard deviations, given by the bandwidth map, from every prediction Xt+i,
i = 1, ..., h. This offset is related to the expected rate of failure. Moreover,
B(t) is always bounded by the minimum b.
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Ideally, the preparation stage should be rerun after every new trip. Moreover, it
is entirely possible that weekday, time of day, month or season, and other aspects
affect the bandwidth map (although, articles like [10] have shown indications that
such differences are not significant). Therefore, an idea to improve the algorithm
over time is to classify traces due to aspects like these and build multiple bandwidth
maps. The real-time prediction stage would then only use the bandwidth map of its
classification. Due to data limitations, this is not investigated in this thesis.

4.4 Alternative algorithms
In this short section, alternatives to the previously mentioned algorithms will be
introduced. These will serve as comparisons in order to investigate how much better
PA performs and determine if it is actually useful or if a simpler algorithm is to be
preferred.

Algorithm. TheARIMA Algorithm (AA) only utilizes an ARIMA model fitted
to the temporal representation of the last logged trip. This is then used to predict
the throughput of a new trip in real-time. The boundary B(t) is given by a set
amount of standard deviations due to the estimated variance of the ARIMA model,
similar to the method used in PA, again bounded by the minimum allowance b.

Algorithm. TheMap Algorithm (MA) is equivalent to PA with a PARIMA(0,0,0)
model, i.e. it only uses the bandwidth map for its prediction step.

Algorithm. The Norwegian Algorithm (NA) is the algorithm proposed in [9].
It uses the first alternative bandwidth map seen in Figure 3.8 to predict the band-
width. In a similar fashion as this bandwidth map is created, through averaging, a
variance-based map is also created. The boundary B(t) is then defined by subtrac-
tion of a set amount of standard deviations, which are due to this variance-based
map. Of course, B(t) is yet again bounded by the minimum allowance b at all
times.

The amount of standard deviations subtracted is directly related to the expected
rate of failure mentioned in Section 1.3. Section 5.3 discusses how to attain a proper
amount of standard deviations for each of PA, AA, MA, and NA in order to compare
these. Therefore, this is not discussed here.
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This chapter presents the performance results. Many of them have already been
shown in plots throughout the text, but this chapter aims to compare the different
algorithms based on some predefined performance metrics. These are presented in
a table accompanied by plots. Moreover, this chapter discusses the convergence
time of bandwidth maps, i.e., how many trips are needed until a reasonable un-
derlying state has been attained. The chapter also includes discussions about how
free parameters of the algorithms are optimized and the time complexities of the
algorithms. Throughout all of this chapter, the target failure rate r will be 5% and
the minimum allowed value b for the lower boundary B(t), mentioned in Section 1.3,
will be 200 kbit/s, for all algorithms.

5.1 Performance metrics
To make it easy to compare the algorithms, certain performance metrics need to be
defined. According to (1.1), (1.2), and (1.3) of Section 1.3, the aim is to optimize
the sum of the lower boundary B(t). However, the magnitude of B(t) gives very
little actual insight into the performance of an algorithm after it has been used. All
algorithms of Chapter 4 use the lower bound of some confidence interval around a
prediction of ABW to define B(t). This confidence interval is given by an a priori
scaling factor, which will be discussed in further detail in Section 5.3. Hence, B(t)
is mainly useful in the sense that it is a common measurement for all algorithms,
directly related to the individual scaling factor of each algorithm. Therefore, an a
posteriori measure that is easily appreciated is introduced.

Definition. The a posteriori measurement Mean Channel Usage (MCU) is
defined as the average ratio between the boundary B(t) and the throughput Tt of
successful times t ∈ N := {1, 2, ..., n}, for a trip of n time steps, i.e.,

MCU = 1
|S|

∑
t∈S

B(t)
Tt

, S := {t ∈ N : Tt ≥ B(t)}.

The reason for using only successful time steps is due to the fact that unsuccessful
ones would increase this metric, which would paint a false picture of success, re-
warding failure.
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Other than MCU, ΣB = ∑
t∈N B(t) will also be considered, as well as the RMSE of

the prediction without the confidence interval offset. The latter is useful to know in
cases where MCU does not differ significantly between two algorithms. It portrays
if either prediction in itself would be more useful than the other in some alternative
scheme that would only use the prediction (such a scheme is, for example, used in
[10]).

5.2 Bandwidth map convergence
Studying the amount of change to the bandwidth map over time, given more and
more traces, says something about the maximum amount of traces that can be used
until another makes little difference. This is interesting because if the bandwidth
map indeed turns out to be different for different times of the day or season, etc.,
as discussed in 4.3, or change over time, then the bandwidth map is not static and
needs to be updated. Since using a lot of traces makes the GPR computation very
heavy, this measure can serve as a specification for the amount of traces that should
be utilized in the update.

The difference between successive bandwidth maps over amount of trips can be
seen in Figure 5.1. It seems to follow an exponential decay. The result of fitting
such a line to the collapsed mean of the surface plot on the left is seen in the plot
to the right. The function representing this line has a derivative of approximately
−9.2 at Trip = 11. This means that adding another data trace to a set of already
10 traces would on average change the bandwidth map with less than 10 kbit/s in
each position.

Another way to study the convergence of the bandwidth map is to study the perfor-
mance of the Map Algorithm. Studying its performance on the 10th trip, given more
and more previous traces, results in Figure 5.2. All performance metrics show clear
trends, seemingly related to the one in Figure 5.1. This makes sense, since including

Figure 5.1: The convergence of the whole bandwidth map and the convergence of
the mean along the Meter-axis.
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Figure 5.2: Performance metrics of the Map Algorithm on the 10th trip for an
increasing horizon of historic data to use, showing only the 9th trip being used for
the bandwidth map, then the 9th and 8th, and so on.

more and more trips will help the performance less and less due to the little differ-
ence it does to the map. However, this method also shows an interesting feature of
the route. The periodicity on top of the trend, most clearly seen in the RMSE, is
due to the fact that a drive from Deljömotet to Mölnlycke will be subjected to a
slightly different bandwidth map than a trip from Mölnlycke to Delsjömotet. This
can be seen in Figure 5.3.

Not surprisingly, the performance becomes better using only data from trips of the
same direction! For the 10th trip, letting the target failure rate be 5%, the MCU of
the Map Algorithm turned out to be 59.3% when using all previous 9 trips, while it

Figure 5.3: A comparison of bandwidth maps given different directions.
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Figure 5.4: The same type of convergence plots as those of Figure 5.1, using only
trips from Mölnlycke to Delsjömotet.

was 62.8% when using only the 4 trips of the same direction.
This also has an effect on the convergence plots. In Figure 5.4, it is clear that the
severe high points, which were in the unstable areas, are now closer to the mean.
Moreover, fitting an exponential decay to this data produces a function with deriva-
tive −5.15 at Trip = 11, i.e., almost half that of the previous exponential decay in
Figure 5.1. The performance metrics over time of this method is presented in Figure
5.5.

According to Figures 5.4 and 5.5, there is still much to gain from additional trips.
Thus, to expect an even better performance with more data traces from trips going in
the same direction is completely reasonable, but using more than 10 is unnecessary.
Einride and other implementers of algorithms based on GPR calculated bandwidth
maps are therefore hereby advised to apply a common-direction look-back method
of a horizon of about 10 traces. This can be easily updated during every preparation
stage, as this amount of data should be manageable for GPR in a reasonable time
frame. They are also advised to study the potential usefulness of various bandwidth
maps for different times, as mentioned in Section 4.3.

Figure 5.5: Performance metrics of the Map Algorithm through the same analysis
as in Figure 5.2, but with only the trips from Mölnlycke to Delsjömotet.
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5.3 Optimization and complexity aspects

Before the upcoming section of algorithm performance comparisons, it is impor-
tant to discuss the ways the various algorithms are tuned and optimized in order
to be comparable. This section discusses the scaling factor of B(t), the complexity
of the PARIMA Algorithm, and the optimization of φ in the PARIMA(1,0,0) model.

As stated in Chapter 4, all of the algorithms, except the Reactive Algorithm, use a
lowered version of some prediction as their definition for the lower boundary B(t).
This is done through finding a suitable scaling factor α to the standard deviation
measure acquired by each algorithm. Assuming an up-and-running system with
some set amount of former traces used in every bandwidth map for each trip, the
failure rates, {Fτ}mτ=1, of previous trips is of interest. The definition of α over time
is equivalent to the minimization of the RMSE between {Fτ}mτ=1 and the acceptable
rate of failure, r, mentioned in Section 1.3. It is entirely possible that, for a con-
stant α, {Fτ}mτ=1 would not be white noise. Then the best predictor for the expected
failure rate, F̂ = ε/n, of an upcoming trip τ = m + 1, would not necessarily be
r. However, this was not studied in this thesis, due to the lack of data. Instead,
in the comparisons in the next section, an a posteriori αm+1, tuned to minimize
|Fm+1− r|, will be used. This is similar to assuming an up-and-running system and
white noise behaviour of {Fτ}mτ=1 for a constant α. The tuning can easily be done
by a simple decreasing search over a reasonable interval, stopping when |Fm+1 − r|
starts increasing, to attain an as big α as possible. (Since α is actually some positive
and real-valued amount of standard deviations, a reasonable interval could be [0, 4].)

The complexity of the PARIMA Algorithm can be divided into the algorithm’s two
stages. The preparation stage is subjected to GPR, which runs in O(N3), where N
is the number of data points used in the training [37]. It also includes the specifica-
tion of φ, but this is a straight forward computation, as will be shown below. The
complexity of the prediction stage depends on the implementation of the noise cor-
rection of the GPS coordinates. The implementation that was used in the upcoming
section (the orthogonal projection onto a linear interpolation of the 1st trip’s GPS
coordinates) runs in O(N1) for every such orthogonal projection, with N1 being the
amount of data points of the 1st trip.

The calculation of φ during the fitting of the AR(1) model, to the positionally
differenced temporal representation of the latest trip m, is attained by the sample
autocorrelation of this time series [28]. This is because φ = ρ(1) for an AR(1) pro-
cess, meaning the best estimator φ̂ given by the Yule-Walker equations is ρ̂(1). This
value, as seen in Section 2.1, can be calculated in O(Nm).

5.4 Performance comparisons

In this section, the influence on MCU of the lag h will be analyzed for the Map Al-
gorithm. Then performance metrics for all algorithms will be shown and discussed.
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Figure 5.6: MCU of the Map Algorithm subjected to different lags, from 0 second
to 2 minutes, where 0 seconds means no estimation needed, i.e. the upcoming
position was assumed to be known. To the right is an enhancement of lags up to 30
seconds.

The lag h refers to how often a look-up in the bandwidth map is made, i.e., how
often upcoming ABWs are predicted and bitrate levels are scheduled. The reason
to only study the Map Algorithm is because the PARIMA Algorithm will converge
quickly to the Map Algorithm if more than a lag of 1 second is studied, because the
difference between the two is the AR(1) model, for which predictions of lags greater
than 1 quickly converge to the mean [28]. The result of applying the speed map
method (described in Section 4.2) to predict upcoming positions and predicting up-
coming ABWs every h second is presented in Figure 5.6. A clear downwards trend
is visible and the more seldom a look-up is made, the more random the performance
seems to become. Note that the look-up can be made less often than every second,
with 5 seconds having no detrimental effect to the performance. However, more
seldom than twice every minute is not a good idea.

For the performance comparisons, the upcoming position is assumed to be known.
This is, due to Figure 5.6, clearly a legitimate assumption to make, as several lags
perform equally well. The performance metrics seen in Table 5.1 were measured for
the various algorithms subjected to the 10th trip.

RA AA NA MA PA
MCU (1) 0.5528 0.5644 0.5014 0.6278 0.6426

ΣB (kbit/s) 1,850,000 2,007,000 1,855,000 2,219,000 2,273,000
RMSE (kbit/s) - 1,189 1,459 1,080 1,021

Table 5.1: Performances of the different algorithms subjected to the 10th trip and
a target failure rate of 5%. The RMSE is due to the underlying prediction scheme
before the creation of B(t), which means the Reactive Algorithm lacks a value for
this.
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Comparing the performance of the Reactive Algorithm and the ARIMA Algorithm,
the two reactive algorithms, shows that the latter is slightly better, although, this is
a much more sophisticated algorithm. However, the usefulness of reactive algorithms
is clear. A possible way to improve the performance of a proactive algorithm, like
the PARIMA Algorithm, is to incorporate the Reactive Algorithm to work together
with the PARIMA Algorithm. This could lead to better channel utilization.

Further, there are clear similarities between the Map Algorithm and the PARIMA
Algorithm; they are almost equal in performance. It is however important to ac-
knowledge that the step from the Map Algorithm to the PARIMA Algorithm is
extremely small computationally: it is an O(1) procedure, simply adding the knowl-
edge of the throughput in the previous time step to the calculation. As such, the
improvement of about 1.5% in MCU and a better prediction is enough to indicate
the usefulness of the PARIMA Algorithm. All algorithms presented in this thesis
show better performances than the Norwegian Algorithm.

To conclude this chapter, the result of the PARIMA Algorithm is presented in
Figure 5.7. It seems to work well. However, its performance depends greatly on the
magnitude of the variance of the noise in the time series. The difference in through-
put from one measurement to the next, a second later, is frequently 3 Mbit/s or
higher. This is very large considering the maximum recorded throughput is around
8 Mbit/s. During the 10th trip, for example, this happened 4% of the time. As
such, it is simply impossible to perform much better than what the PARIMA Al-
gorithm already does. For example, letting the PARIMA Algorithm work with a
PARIMA(2,1,4) model (Section 3.4) only increases MCU to 0.6459 and decreases
RMSE to 1, 008 kbit/s. There are a few hiccups in its lower boundary, which are
due to the bandwidth map. If these are eliminated by more data, the performance
will be be even closer to optimal. As a closing remark, an important observation is
that the RMSE of the ARIMA(3,1,5) model is about 18% larger than that of the
PARIMA(2,1,4), which serves as a final justification for the usefulness of the latter.

Figure 5.7: The plot corresponding to the performance metrics of the PARIMA
Algorithm in Table 5.1.
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6
Conclusions

In this concluding chapter, some remarks on the performance results illustrated in
Chapter 5 are given. These include conclusions and ideas for improvements. This
is followed by some closing words on possible future work that is less connected to
the methods used in this thesis, but could be interesting for further research.

6.1 Result remarks

From the results in Chapter 5, it can be concluded that a fully working real-time
algorithm for bitrate planning has been developed and presented in this thesis.
Moreover, the discussion regarding the convergence of bandwidth maps showed the
potential improvement of the performance of PA. Given more data, this performance
can possibly tend towards MCUs of 70%.

Another way to improve the performance of the PARIMA Algorithm could be to im-
plement a system for dealing with data traces of trip’s during which the throughput
behaved in nonrepresentative ways. For example, a large-scaled electrical outage
during a trip would result in a drop in throughput, which would be logged in the
trip’s data trace. If this trace was included in the calculation of the bandwidth map,
it would worsen the predictive performance of the algorithm for future trips. Ex-
cluding such traces through some statistical procedure during the preparation stage
could be a way to improve the bandwidth map.

The amount of data is, as mentioned, very important. Not only could multiple
bandwidth maps be created if more data was available, but the performance over
time could be analyzed as a time series in its own right. This was briefly mentioned
in Section 5.3. Doing this could greatly affect the accuracy of the scaling factor α
needed to achieve a failure rate as close as possible to the target rate r.

Lastly, the performance of the PARIMA Algorithm could of course simply be im-
proved by increasing the complexity of the underlying ARIMA model. In fact,
although the improvement would not be significant (as shown in Section 5.4), the
model fitting would only be done during the preparation stage, which already has
a complexity of O(N3), and as such would not imply any complexity problems.
The bigger problem with this improvement is the actual implementation of such a
system, since automatic ARIMA modeling libraries are uncommon among program-
ming languages.
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6. Conclusions

The major limitation in this work is the small amount of data. It could be that
more test data would show unforeseen problems. However, the general nature of the
algorithm and the fact that it works on only a tiny amount of data seems makes it
seem promising.

6.2 Future work
The first suggestion for future work is the combination of the PARIMA Algorithm
and some reactive algorithm. In [10], this is the way the bandwidth map was uti-
lized. This seems to have worked well and based on the performance of the Reactive
Algorithm, the combination of the Reactive Algorithm and the PARIMA Algorithm
or the Map Algorithm seems like an algorithm that could perform very well. For
example, if the Map Algorithm is used with a lag of 10, RA can be put into action
as soon as a new level is set. This can be combined with modifying the resting
parameter r of the Reactive Algorithm to take into account the lower boundary
B(t) given by the Map Algorithm. Another way to use a reactive algorithm with
the PARIMA Algorithm is to use the prediction of the PARIMA Algorithm as the
throughput measure in some controller, e.g., the one used by Einride at the moment.
This would make the controller proactive instead of reactive and could prove very
useful.

The second suggestion is the utilization of historic ABW measurements to create
bandwidth surfaces, similar to those created in geostatistics through Gaussian process
regression to estimate changing levels of some measure over an area, given scattered
historic measurements. Doing this would allow ABW to be predicted not only along
a certain route, but for every point in a given area. Such surfaces would be useful in
big open areas, like parks, where movement is not constrained, to predict upcoming
ABW for mobile users.
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