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Modeling and Controller Design for Spherical Robots
Robust and Nonlinear Approaches
Carl Andersson
Department of Electrical Engineering
Chalmers University of Technology

Abstract
This master thesis explores and evaluates different linear, and nonlinear algorithms
to control an unstable non-minimum phase nonlinear system, such as a spherical
robot platform. The robot is described by means of rigid body modeling concepts
using Lagrange’s equations. The model is a double-pendulum driven spherical robot,
with a regular and an inverted pendulum one. An algorithm is designed to control
the robot’s motion and balance an object at the same time. Simulations show
how well each of the control algorithms (state and output feedback, dynamic output
feedback H2, dynamic output feedback H∞, real µ synthesis, and nonlinear feedback
linearization) stabilizes the unstable nonlinear system. The report compares the
algorithms in terms of potential strengths and weaknesses in a complex nonlinear
simulation environment. Robustness, computational complexity and closed loop
performance are compared.

Keywords: robust, linear, nonlinear, control, modeling, Lagrange, spherical, ball,
robot, pendulum.
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1
Introduction

This master thesis is to explore and evaluate different control algorithms, both linear
and nonlinear, to control a nonlinear system. This project will explore the strengths
and weaknesses of different control algorithms, and compare them to each other from
different aspects. The nonlinear system model to be used is a spherical pendulum
driven robot which is balancing a non-rigid mass on top of the sphere. The goal for
the control algorithms is to make sure that when the spherical robot is moving, the
mass on top stays, and tries to minimize the fluctuation. That is to make sure that
the mass will be kept upright at all time, even when under changing inclination.

1.1 Background

In control theory both for linear and nonlinear cases, there exist several different
control algorithms with each having there’s strengths and weaknesses. To observe
the different strengths and weaknesses it would be of interest to evaluate how the
algorithms perform on a nonlinear system. This would give a deeper understanding
on the advantages and disadvantages of using the different algorithm. Which would
give a perspective of how they perform compared to each other, on a relative realistic
system. Therefore, a comparative evaluation of different control algorithms, linear
and nonlinear, on a system which is nonlinear. Would explore different aspects of
control, performance, and robustness of the algorithms, that clarify different aspects
on their respective strengths and weaknesses.

1.2 Objective

The objective of this master thesis is to explore and evaluate different control al-
gorithms, strengths and weaknesses, of controlling a nonlinear system. Comparing
the algorithms with each other to find advantages and disadvantages, and observe
how well a low complexity control algorithm works compared against a highly com-
plex control algorithm in different aspects. Some aspects to be considered is the
closed loop performance, computational complexity, measurement noise effect, and
robustness.
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1. Introduction

1.3 Limitations
The project will be limited by the fact that it focuses on theory. With one person
to work on the project will be limitations with time. Therefore, this project will
not consist of practical test the application in real life, but will consist of using
simulation for testing and evaluation instead.

1.4 Research Questions
Some main research questions considered will be to explore and evaluate the different
control algorithms, both for linear and nonlinear cases. The following research
questions are considered.

• Do the linear algorithms provide stable controllers to control the nonlinear
system, by that they use a linearized system of the nonlinear system?

• Are the linear algorithms enough to minimize wobbling and keeping the load
mass balanced?

• Between the linear algorithms, what was the respective advantages, and dis-
advantages compared to each other?

• Between using linear and nonlinear algorithms, what was the respective ad-
vantages, and disadvantages compared to each other?

• Disadvantages and benefits of the linear and nonlinear algorithms? Such as
numerical, dimensional, methodical etc.

• Is the simulation a reasonable representation of the system in a practical ap-
plication?

2



2
Theory

In this chapter the theoretical parts are described. Theoretical background about
rigid-body modeling of a nonlinear system, and linearization, both to a state-space
form, are given. Some analysis tools and properties for linear and nonlinear systems
will be described, and how to both solve and implement the different control algo-
rithms that will be used. To start some other related works will be discussed, to
widen the scope and observe what others have done.

2.1 Related Work

There have been many different projects, and inventions surrounding the use of ball-
or spherical robots, and designs. Many are designed to be used in a widely spread
area of applications, such as toys, transportation, security, planetary exploration,
with more applications potentials being discussed. Some inventions that has been
patented already as early 1900 and late 1800, such as a pendulum driven mechanical
toys [1] [2], a spherical vehicle [3], and a marine vehicle [4]. [5] The ball or spherical
body are of interest because of the properties that emerges of its use, such as its
environmental capability, and also other properties that may benefit the design
by having a spherical shaped construction. Even though there have been many
articles, projects, patents, and constructions that use the pendulum drive principle
with different ways of approach, designs, and methods. Not many exists (at this
time) about the combination of a pendulum, and inverted pendulum, to observe
how these two classical example systems is behaving, if merged together.

2.1.1 Spherical Design

Spherical designs have been used in different ways, and for different applications,
such as told before toys, transportation, security, planetary exploration. Why the
use of this ball or spherical shape is of that interest, may be because of its envi-
ronment benefits. That potential benefit may be discussed, however, as mentioned
before the use of this design choice had already schematics patented as early as the
late 1800. The older patented designs are both designs of transportation, and a
design that traverse water, these potential areas of use on land, obstacle handling
in rough terrain, and in water could be proven to be benefiting.

3



2. Theory

Old Inventions

Some brief view of the early patents of spherical designs that has been mentioned,
designs of toys [1], [2], a spherical vehicle [3], and a marine vehicle [4]. The two
toys are using a pendulum to drive, the earliest of these where made 1893 by the
inventor J.L.Tate, [1]. This invention is steered by a pendulum mechanic, and is
interesting because that even though it is a toy from late 1800, the mechanics used
in this invention is still a topic of research. The other spherical toy is a bit different
from the toy by the inventor J.L.Tate, [1] in late 1800, is that this one has a figure on
top of it, which is drives around with. This mechanical toy was made in 1909 by the
inventor E.E. Cecil, [2]. This mechanical toy is based on similar mechanics, however,
to accomplish this design some mechanical design have been made to accomplish
that task. Some other notable spherical designs of old patents, was more focused on
transportation. The spherical vehicle by the inventor J.E. Reilley in 1941,[3], and
the marine vehicle by the inventor H. William in 1889, [4]. The spherical vehicle was
designed for personal transportation, this design is interesting to observe, because if
one considers the application of the spherical design offers. That the spherical form
may be used as a vehicle design, potentially offers some beneficial properties for the
use of the shape. One of these potentially beneficial properties may be observed
from the marine vehicle by the inventor H. William in 1889, [4], where this mas
made to traverse water.

Applications

The spherical design has potential of a wide range of applications, where one may
argue that it can be used in different ways depending on what one wants to accom-
plish. Some inventions, and ideas that are using the spherical shape are constructed
for different purposes, such as surveillance of different kinds, planetary exploration,
robotics, and some potential ideas of newer transportation devises, and for underwa-
ter purposes. With the applications of use of the spherical shape, being investigated,
and studied.

2.1.2 Other Works
Different studies have been made, such as articles, master thesis, and candidate
works. Surrounding different aspects of pendulum driven spherical robots, and sim-
ilar constructions. Everything from the spherical design itself, and different struc-
tures of the pendulum drive system, to controlling the pendulum driven spherical
robot as trajectory, or just stabilize.

Summary of the Other Works

The different projects are focusing on different aspects of spherical design, some
focuses in control, steering, and tracking. While others are more directed towards
the design aspects of the model, or construction. Different ways, and methods
to make a spherical robot seems to indicate that there is no direct standard way of
approach. More directed to what is commonly used and is in different ways discussed

4



2. Theory

to how one would design the mechanics to make a spherical robot. Even the internal
mechanics are investigated and the interaction of the sphere to the external world.
Some of the design choices towards the pendulum drive system may involve multiple
pendulums designs. Such as a four pendulum omnidirectional spherical robot [6],
or "novel hybrid quadruped spherical mobile robot"[7], "Novel Spherical Robot with
Hybrid Pendulum Driving Mechanism"[8], a spherical mobile robot driven by two
perpendicular rotors [9], and other focuses on the displacement of the center of mass
[10]. Some of the works focuses on control aspects of a sort of spherical robot, or
model. They study the stability capability of their design, and some also include
trajectory following as a case of study [10] [7]. It varies if one uses simulations for
verification or others build a prototype and do tests with that one, or a combination.
A few designs focuses not just on land, but rather in water such as "A Novel Am-
phibious Spherical Robot Equipped with Flywheel, Pendulum, and Propeller"[11].
Facts about the benefits of the spherical design in water is explained, such as the
resistance to water pressure. Some works are also specified to make a comparison on
some controller designs on to a spherical robot [12], or uses some specific controller,
such as a nonlinear model predictive control (NMPC) [9], feedback linearization loop
with fuzzy controllers [13]. However, there are some works that are more focused
on a theoretical basis, where almost all works include some description of a math-
ematical formulation of the model equation of motion, in various details. Such as
to study the case if the sphere itself is not assumed to be totally rigid, but rather
is flexible [14], and also how it behaves on a generic surface [15], such as inclined
plane [16], with a variable slope [17]. A more mathematical formulation of geometric
account of kinematic control [18] of spherical robots. Also, dynamics and motion
planning strategy to make the control more suitable for real time applications [19],
and optimal motion planning and control [20]. Because some have used Newton’s
laws of motion, others have used Lagrange’s equation, and Hamiltonian mechanics,
no obvious direct approach to formulate the model is found.
A notable paper collection that comes in two parts (released close to each other),
that both is about "Controlled Motion of a Spherical Robot with Feedback" [21] [22].
Both papers are about the control of a spherical robot through feedback control, with
the dependence on the phase variables (the current position and velocities).

A master thesis that is mentioned for the case of controlling a spherical robot was
made in 2008 by Nagai Masaki [23]. That is about controlling a pendulum driven
spherical robot, where he in his thesis did construct, and conducted tests with. It is
shown a mathematical model of the drive system and steering system, where he later
shows the progress to construct a PID controller for his system. That shows that
even a relatively ’simple’ controller has the capability to control a pendulum driven
spherical robot. With an explanation of how the spherical robot was constructed,
and a description of the part that made the real system. There a connection between
the mathematical model, and the constructed spherical robot is shown.

The model to be made for this master thesis is a spherical robot which balances
a mass on top. Can be considered to be an option to the internal construction of
the fictional character BB-8 from the movie Star Wars: The Force Awakens. At
Chalmers University of Technology there have been some candidate works regarding

5



2. Theory

to construct such robot type, by different methods of internal mechanics [24], [25],
[26], [27]. Some of the different internal mechanics are based on omni-wheel design,
pendulum drive methods, and combinations. All these may fall into the use of a
pendulum construction way, by having a mass at the bottom and a sort of inverted
pendulum to keeping the load on place at the top. Of course, it can be argued
how much they resemble a pure pendulum with an inverted pendulum. However,
that does not counteract the fact that they use a bottom mass and some inverted
pendulum to balance the head. One specific candidate work has a similar model to
the model which is to be used [25], that project was done by Axel Andersson, Carl
Andersson ,, Gustav Andersson, Jacob Andrén, Jakob Laurell, and Fredrik Åvall.
They build up a mathematical model for both the drive system and steering, with
a pendulum drive system that utilizes a central axis that is connected to the outer
shell. With a sort of central connection box to be able to let the pendulum, and
inverted pendulum move in a two-dimensional way.
One thing to notice is that these candidate works was to construct a spherical robot
similar to the BB-8, therefore these projects are more focused to the construction
of the robot. While this master thesis will be in more focused to the theoretical
aspects of control, to compare the different control algorithms. Therefore, a new
model will be constructed to fully embrace the non-linearity of the pendulum and
inverted pendulum combined.

2.2 Mathematical Modelling
Making a mathematical model of a description may become difficult, and time con-
suming. Therefore, it is important to grasp what type of approach one should take
in order to easy up the burden, and effectively use one’s time. A brief explanation of
some potential approaches will be made, with some aspects that are to be consider
for this case of making a mathematical model of a system.

Mathematical Model Development
To formulate a sketch model into a mathematical model, different approaches exists
for this formulation. Together with an uncovering model sketch, that shows rela-
tions between angles, lengths, and masses. Some potential approaches to make a
mathematical model are.

• Newton’s laws of motion
• D’Alembert’s Principle
• Euler-Lagrange equation
• Hamiltonian mechanics

All of these are valid to be used in the formulation of the mathematical model, using
an uncovering model sketch. The four named potential approaches of dealing with
the formulation of mathematical model equations, will be briefly explained.

Newton’s laws of motion Using Newton’s laws of motion to formulate the math-
ematical model, one utilizes Newton’s three laws in order to get the formulation of
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the equations. This method focuses on forces (F), Newton’s three laws of motion is
as follows:
First law "Every body continues in its state of rest or of uniform rectilinear motion,

except if it is compelled by forces acting on it to change that state."[28]
Second law "The change of motion is proportional to the applied force and takes

place in the direction of the straight line along which that force acts."[28]
Third law "To every action there is always an equal and contrary reaction; or, the

mutual actions of any two bodies are always equal and oppositely directed
along the same straight line."[28]

The meaning, and full understanding of these three laws will not be discussed in
more details. It is to note that these formulations of the three laws are not exactly
how Newton formulated them, however, it is close to the original one. [28]

D’Alembert’s Principle The D’Alembert’s Principle, which is also known as the
Lagrange–d’Alembert principle, is in short considering every force’s, and constraint’s
individually in a system. With respect to each individual virtual displacement, the
virtual displacement may be defined by the definition 2.1.

Definition 2.1. Virtual Displacements
"A virtual displacement {δri} of the system is an arbitrary, infinitesimal change
of the coordinates that is compatible with the constraints and the applied forces.
It is performed at a fixed time and therefore has nothing to do with the actual,
infinitesimal motion {dri} of the system during the time change dt (i.e. the real
displacement)." [28]

D’Alembert’s Principle can be considered in two cases, namely the static case, and
dynamical case. For each case what is considered is the total force applied to each
particle Fi. The force for the static case can then be described by the equation 2.1.

Fi = Ki + Zi (2.1)

Ki is the real dynamic force, and Zi is the constraint force, for the N particles
considered, with some mass. The general formulation equation of the force and the
virtual displacement in equilibrium is then formulated as equation 2.2.

N∑
i=1

Fi · δri (2.2)

"However, since the virtual displacements must be compatible with the constraints,
the total work of the forces of constraints alone vanishes"[28]. Giving that the static
case becomes as shown in the equation 2.3.

N∑
i=1

(Ki) · δri = 0 (2.3)

For the dynamical case in which the system is in movement, the D’Alembert’s prin-
ciple of virtual displacements then by that Fi − ṗ = 0. Gives that the dynamical
case becomes as shown in equation 2.4 [28]

N∑
i=1

(Ki − ṗi) · δri = 0 (2.4)
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Lagrange’s equation Lagrange’s equation, also known as Euler–Lagrange’s equa-
tion, utilizes the energy of the system. More specifically the kinetic energy (T ), and
potential energy (U), to make the Lagrangian (L).
Remark. It is to be noted that the Lagrange’s equation may be formulated with the
D’Alembert’s Principle, how this is done is not mentioned here.

The Lagrangian is the kinetic energy subtracted the potential energy (L = T − U).
That is used in the Lagrange’s equation, shown in equation 2.5.

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Qi (2.5)

L = T − U (2.6)

L is the Lagrangian of the problem, qi is the generalized coordinate (considered
states of the system), and Qi are the generalized forces that act onto the system.
Sometimes the generalized forces are assumed to be zero, depending on the problem
at hand. Otherwise one needs to take the virtual work into consideration that the
system is experiences, by the external forces, and constraints [28] [29].

Hamiltonian mechanics Hamiltonian mechanics which has similarities to La-
grange’s equation, where not to got to deep into this, the Hamiltonian mechanics is
using the Hamiltonian function which is calculated with the Legendre transforma-
tion of L. With that f is the degree of freedom of q = {q1, q2, . . . , qf}. Then the
Hamiltonian function is defined if the Lagrangian has no explicit time dependence
by the equation (2.7) [28].

H̃(q, q̇) =
f∑
k=1

q̇k
∂L
∂q̇k
− L(q, q̇) (2.7)

This approach, or method is not described further here, there is more aspects to
this, and the above is just a very short, and narrow description.

2.3 Model Dynamics

The approach to be used in this master thesis is the Lagrange’s equation (Euler-
Lagrange’s equation), by solving the equation (2.5). With the Lagrangian shown in
equation (2.6). A brief explanation on this approach are mentioned in the section
2.2, with the Lagrangian, and the generalized forces to the system in question. The
reason for choosing this approach instead of the other ones, is because of some
properties that follows from its use, and will later be explained. However, it is not
to say that the other approaches are not suitable. Then to make a model using
the Lagrange’s equation approach a more wider explanation of the approach will be
given.
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Lagrange’s Equation Lagrange’s equation, or Euler–Lagrange’s equation, is as
one may say an approach to formulate mathematical equations of a physical sys-
tems. Instead of using force, it utilizes energies of the system, more specifically
here the kinetic energy, and potential energy. What these energies mean may be
shortly formulated. kinetic energy, is the energy of the system in question which is
making the system move. While the potential energy, is an energy that describes
the energy that is stored in the system, that can be given from an increase in height.
The Lagrange’s equation uses Lagrangian which is defined for kinetic energy (T ),
and potential energy (U), given in equation (2.6). Using the equation (2.6) one
may observe how the Lagrange’s equation works by its definition. With the gen-
eralized forces in its formulation, which is sometimes regarded as zero, depending
on the problem. The Lagrange’s equation is then formulated as given in the equa-
tion (2.5). qi is the generalized coordinate (considered states of the system), with
q̇ the derivatives of the considered states, and Qi the generalized forces that effect
the system. The generalized forces may be explained as, the forces that effect the
system, which is not described by the dynamics of the system. Such as external
forces, and constraints, by the virtual displacement of that force onto the body in
question. Some standard way to formulate the kinetic energy, and potential energy,
may be advantage to formulate, and observe. Therefore a general formulation of
these energies may be formulated, for N particles considered in the system. For a
position vector rk, and its derivative vk. Together with angles θk, and the angular
velocity ωk. Shown in the equations (2.8), and (2.11). [28]

• Kinetic energy:

T =
N∑
k=1

(Ttrans + Trot) (2.8)

Ttrans =1
2mkv

2
k = 1

2mkṙ
2
k, Translational kinetic energy (2.9)

Trot =1
2ωkIkωk = 1

2 θ̇kIkθ̇k, Rotational kinetic energy (2.10)

• Potential energy:

U =
N∑
k=1

mkghk (2.11)

m is the mass, I the inertia, g gravity, and h is the height compared to a certain
height level.
Remark. A noticeable point about the energies, is that they may have other aspects
to them, and not just the general formulations (2.8)-(2.11). If one express it an
energy, in terms of the kinetic-, or potential- energies in some sense, then the general
formulation may not be the necessary right formulation. However, it gives a grasp
on how it works. Example that may contribute to a slightly different energy terms,
are if one considers magnetic fields.

Observed from Lagrange’s equation (2.5), is that it is quite straightforward on how to
solve the left part. However, for the generalized forces it is not so obvious. Therefore
to find the generalized forces of the system, one needs to take into consideration all
the external forces, and constraints that effects the system. The forces are effecting
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the system by some sort of virtual work, that arise from the virtual displacement of
the acting forces. Virtual displacement may be described by the equation (2.12), for
all the generalized coordinates M [29]. With its definition 2.1.[28]

δrk =
M∑
i=1

∂rk
∂qi

δqi (2.12)

This gives that when a displacement of a particle in the system occur, that inflict a
virtual work from the particle. Then gives that the virtual work can be formulated,
by equation 2.13 [29].

δW = Fδr =
M∑
i=1

F · ∂r
∂qi

δqi (2.13)

The definition of a generalized force Qi may be found. Which is defined as a force
times a infinitesimal virtual displacement δqi, which gives that the equation (2.13),
may be reformulated into equation (2.14) [29].

δW =
M∑
i=1

Qiδqi (2.14)

This may be expressed for a single particle, instead of the sum of all. Expressed
easier to be used for Lagrange’s equation (2.5), by the equation (2.15) [29].

Qi = F · ∂r
∂qi

(2.15)

Depending on the formulations of one’s assumptions. Then as per definition, the
generalized forces is a virtual work. Then even though there is a force, if no dis-
placement occur there is no virtual work occurring form that force. For example, as
Anders Boström, says in his notes. "If the system is holonomic and the coordinates
are free then the constraints forces do not perform any virtual work"[29]. There
exist more cases when the virtual work is changed, or becomes zero, that however,
will not be addressed furthermore here.

2.4 External Forces
The external forces that may affect a system, can be a wide range of different types,
and potentially become confusing. Therefore, a brief explanation of some external
forces, that may occur onto a system will be shown. It is to be noted, is that there
may be other forces that affect one’s system. However, these should give some grasp
onto some basic external forces.

Frictional External Forces Various external forces exist that may affect one’s
system. For the case of frictional forces, that is friction opposes motion, where its
magnitude is independent of velocity and contact area [30]. One may categorize the
different types of frictions into two groups, in a standstill, and moving case.

• Static friction
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• Dynamic friction (Kinetic friction, or Sliding friction)
What those means is that static friction occur when the object in question is not
moving. Therefore, there is a counteracting force acting upon it, which oppose the
moment of the object. While dynamic friction is about the counteracting force that
is acting on an object which is in motion. Creating a dynamic friction, or as the
other name nicely put it a sliding friction. However, these may not be directly
obvious on how to add into one’s mathematical equation. Instead one can consider
the different components that they are made of. When thinking about the frictions
that effect the moment, one can model it by a static classical model [30], one can
then obtain the friction by the different components of frictional forces by the terms.

• Coulomb friction (Sometimes Dry friction)
• Viscous friction
• Stiction
• Stribeck effect (Sometimes Stribeck friction)

That may together be visualized by the frictional force diagram illustration, shown
in the Figure 2.1.

v

F

Coulomb friction

Viscous
frictionStribeckStiction

0

Figure 2.1: An illustration of different frictional forces (Stribeck Friction Model)
that erupt from standing still to moving, where there names are represented in the
figure.

If one assume that one’s system is in a moving state, one may neglect the Stiction,
and Stribeck effect. That’s because it is more like a threshold from the static friction
case, to the dynamical fiction case. While as can be observed from the Figure
2.1, is that the Coulomb friction is constant. That’s because it is proportional to
the normal force acting upon the place of interest. While the viscous friction is
increasing with increased velocity.

Other External Forces Other types of external forces exist, than just frictional
forces between two surfaces. Some may be interpreted as the same, where possible
external force factors that may be argued to be considered may be.
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• Rolling resistance
• Braking friction
• Drag (Also called Air resistance)

The interest reasons for these possible external forces is because. For rolling resis-
tance that occur because of the normal force similarly to dry friction. Just that
for the case of rolling resistance is more about the effect by deformation of surface.
Braking friction may occur for a system, if there is something in its construction
that may have a braking effect, or similar. Drag is airs effect onto the object, or
wind disturbance.

External Forces Summary If one where to sum all these frictional forces, and
other external forces that may occur in the system. One can express all these
different types rather compressed. This may result in that all the external forces
may be regarded as a summarized expression, as shown by equations (2.16), and
(2.17).

Fs = µsFN (2.16)
Fd = µdFNv (2.17)

That is representing the different parts of a system, in moving state. Fs is the
constant external force that act onto the system, and Fd is the velocity related
external force. FN is the normal force, v is the velocity and the coefficients µs, and
µd needs to include all the considered coefficients. Such as Coulomb friction, viscous
friction, rolling resistance, and braking friction, that effects the system. It may be
needed to instead of just using the force directly, calculate the torque effecting the
system. Also, express the velocity of an object into angular velocity. Torque (τ),
and angular velocity (ω) may be found using the standard formulas, shown in the
equations (2.18), and (2.19).

τ = Fr (2.18)

ω = v

r
(2.19)

F is the force acting upon the object, and r is a length, and v a velocity.

The magnetic forces

The magnetic forces may be an external force. That’s because of its properties
to inflict forces onto the system. However, for clarity it is separated, because its
effects are depending on some factors and therefore is suitable to be handled as its
own feature. Different ways to define the magnetic forces exists, where one first
consider the type of magnets in questions. One may have permanent magnets,
electro-permanent magnet, or electromagnet.

Permanent Magnets As the name says they have a permanent magnetic field.
Which is from the material which they are made of. This gives that no electricity is
needed, and they will always be emitting a magnetic field. However, that gives no
room for varying the intensity of the magnetic field.
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Electro-permanent Magnet Has similarities to permanent magnets exempt to
that it has a sort of switch that can turn on, and off the magnetic field. This switch
is controlled by electric current.

Electromagnet Is creating its magnetic field by electric current. Which gives
that it can control the intensity of the magnetic field.

To model the magnetic field there exist numerous ways to approach this, where dif-
ferent aspects to consider is the: Coulomb’s Law and the Electric Field, Gauss’s Law
and the Electric Potential, Faraday’s Law and Induction, and Maxwell’s Equations
[31]. Then gives information on how one may add into consideration the magnetic
field to the modeling aspects of the system. However, it is here assumed that the
magnetic field is constant and will not be considered more into. Which may give
additional frictional forces onto the system, and potentially some additional distur-
bance.

2.5 Nonlinear State-Space Model Representation
After modeling one may want to structure it, both for visualization and calculation
purposes. Therefore, for a nonlinear model system, one may form it in a state-space
format. To structure the nonlinear equations, one may utilize that. A nonlinear
system can be modeled by a finite number of coupled first-order ordinary differential
equations (2.20) [32].

ẋ1(t) = f1(t, x1(t), ..., xnx(t), u1(t), ..., unu(t))
ẋ2(t) = f2(t, x1(t), ..., xnx(t), u1(t), ..., unu(t))

...
ẋnx(t) = fnx(t, x1(t), ..., xnx(t), u1(t), ..., unu(t))

(2.20)

Internal states of the system xi(t), i = 1, 2, 3, ..nx and input states of the system
ui(t), i = 1, 2, 3, ..nu. That can be described with matrices and vectors, shown in
(2.21) [32].

x(t) =


x1(t)
x2(t)
...

xn(t)

 , u(t) =


u1(t)
u2(t)
...

un(t)

 , f(t, x, u) =


f1(t, x(t), u(t))
f2(t, x(t), u(t))

...
fn(t, x(t), u(t))

 (2.21)

That results in a (continuous) time varying nonlinear model, that can be represented
by the state-space formulation in equations (2.22), and (2.23).

ẋ(t) = f(t, x(t), u(t)) (2.22)
y(t) = h(t, x(t), u(t)) (2.23)

With internal states x(t) of the system and the input of the system u(t) [32]. To
represent the nonlinear system in a state-space representation. One could use a
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large matrix where all considered states and combinations of considered states are
put into the states vector. Similarly, to a linear state-space representation. However,
this may result in very large matrices. Another way is to consider the use of several
matrices, each have a certain state vector to it. Then one could use a more concise
nonlinear state-space representation. An example formulation of this is shown in
equation (2.24).

A


ẍ1
ẍ2
...
ẍn

+B


ẋ2

1
ẋ2

2
...
ẋ2
n

+ C


ẋ1ẋ2
ẋ1ẋ3
...

ẋn−1ẋn

+D


ẋ1
ẋ2
...
ẋn

+G = E (2.24)

The matrices A, B, C, and D are shown what variables they depend upon in the
equation (2.24). However, for G and E it may not be that apparent. The matrix G
is for the nonlinear ’constant’ terms, that may contain constants, but also trigono-
metrical functions. For the matrix E, that matrix contains the effects of the external
forces that acts onto the system. That depending on what approach one chose to
use, may wary somewhat to either be included in the equation directly or separately
considered. The formulation may be expanded to include more variables if needed.

2.6 Linear State-space Model Representation

To linearize the nonlinear model equations given in the chapter 2.5, equations (2.22)-
(2.23). One first need to have a reasonable stationary point, to linearize at (other
used names for this point are, work point, operating point, reference point, lineariza-
tion point, equilibrium point, steady state point). This stationary point should be
around the working, or operating area, and beneficially should be chosen to be an
equilibrium point, or steady state point. The reason for the importance of choice,
is the nonlinear property that is lost in the linearization. Which may result in that
the further away from that point, the larger the error becomes (How close one need
to be is depended on the system of interest). A stationary point named x0 for the
internal states, and u0 for the input states will be used. When formulating a gen-
eral expression of the linearization, the stationary point for a system is a topic of
discussion, that will be discussed later.
Remark. For notation convenience and to follow some typical notations the linear
and nonlinear states x(t), and u(t), have the same notions. However, these are
not to be confused to be the same in the actual calculations.

Small-angle Approximation

In the case that one’s nonlinear mathematical expression contains trigonometrical
functions, simplification and approximation of these terms may be advantageous.
The trigonometrical functions may be approximated by using Taylors series, Tay-
lors series expression of sinus, and cosinus trigonometrical equations is shown in

14



2. Theory

equations (2.25), and (2.26).

sin (x) =
∞∑
n=0

(−1)n

(2n+ 1)!x
2n+1 = x− x3

3! + x5

5! − · · · (2.25)

cos (x) =
∞∑
n=0

(−1)n

(2n)! x
2n = 1− x2

2! + x4

4! − · · · (2.26)

For this case where the objective is to linearize the nonlinear model, it may be suit-
able to use first-order approximation or second-order approximation. This method is
called small-angle approximation and as the name say it is an approximation of these
trigonometric functions when they have small angels. Using the first-order small-
angle approximation and second-order small-angle approximation. Then by Taylor
series of the trigonometrical equations (2.25), and (2.26), first-, and second-order
becomes as shown in equations (2.27)-(2.30).

First-order small-angle approximation

sin (θ) ≈ θ (2.27)
cos (θ) ≈ 1 (2.28)

Second-order small-angle approximation

sin (θ) ≈ θ (2.29)

cos (θ) ≈ 1− θ2

2 (2.30)

Linearization

Using the stationary point (x0, u0) to linearize the nonlinear model equations given
in the chapter 2.5, equations (2.22), and (2.23). To get the (continuous) linear-time
invariant (LTI) model equations which may be described by the general (continu-
ous) LTI state-space notation of equations (2.31), and (2.32), with respective name.
Notice that nonlinear and linear states x0, and u0 have the same notations, and
the matrices A, B, C, and D. That is for notation convenience and to follow some
typical notations, not to be confused to be the same.

State (dynamic) equation: ẋ(t) = Ax(t) +Bu(t) (2.31)
Measurement equation: y(t) = Cx(t) +Du(t) (2.32)

x(t) are the states, and u(t) the input signals. This gives that the formulation of the

linearization, using the general (continuous) nonlinear functions (2.22), and (2.23),
shown here for clarity.

ẋ(t) = f(t, x(t), u(t))
y(t) = h(t, x(t), u(t))

Using the general (continuous) nonlinear functions (2.22), and (2.23). One may
formulate the Jacobean matrices,

[
∂f
∂x

]
,
[
∂f
∂u

]
,
[
∂h
∂x

]
, and

[
∂f
∂u

]
, to approximate the
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nonlinear model equations around a stationary point. That is defined as shown in
the equations (2.33), and (2.34).

x(t) = δx(t)− x0 (2.33)
y(t) = δy(t)− y0 (2.34)

Then the Jacobian linearization [33] of the (continuous) nonlinear system (2.22),
and (2.23), becomes with its higher order term as shown in the equations (2.35),
and (2.36).

d

dt
(x0 + δx(t)) = f(x0, u0) +

[
∂f

∂x

]
x0,u0

δx(t) +
[
∂f

∂u

]
x0,u0

δu(t) + H.O.T. (2.35)

δy(t) =
[
∂h

∂x

]
x0,u0

δx(t) +
[
∂h

∂u

]
x0,u0

δu(t) + H.O.T. (2.36)

The Higher Order Terms (H.O.T) may be neglected and as one may observe from
the state equation (2.35), is that it contain a constant term named f(x0, u0). If this
term is not equal, or sufficiently close to zero one would get a constant term in the
expression. Resulting in that the linearization will not be equivalent to the linear
state-space representation given in equations (2.31), and (2.32). With the matrices
defined as shown in (2.37).

A =
[
∂f

∂x

]
x0,u0

, B =
[
∂f

∂u

]
x0,u0

, C =
[
∂h

∂x

]
x0,u0

, D =
[
∂h

∂u

]
x0,u0

(2.37)

The Jacobian’s are defined as matrices and are defined in general for a function
f ∈ Rm, with the states x ∈ Rn. Shown in equation (2.38).

[
∂f

∂x

]
=


∂f1
∂x1

· · · ∂f1
∂xn... ...

∂fm

∂x1
· · · ∂fm

∂xn

 (2.38)

Therefore as one can observe form state dynamic equation (2.35), it is of importance
to ensure that f(x0, u0) = 0. To linearize the nonlinear model equations into a linear
model equation. That is the reason for the important choice of stationary point.

2.7 Model Analysis
From a linear and nonlinear model, one may want to observe and identify certain
characteristics that the system has. This can be by analyzing the model, some tools
and theoretical background of these properties will be described and explained.

2.7.1 Linear State-space Model Analysis
Using the linear state-space model from equations (2.31), and (2.32). Then one may
analyze different aspects of the linear system, some of these are.
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• Eigenvalues
• State Reachability
• State Controllability
• State Stabilizability
• State Observability
• State Detectability

These are important to consider in order to observe if the system can be controlled
and that the states are observable. While if they are not, that at least they are stable.
The properties will be explained in what they mean, and why they are important
to consider. With how one may determine if they hold for a linear system.

Definition 2.2. Eigenvalues Analysis
For a linear time invariant (LTI) system: ẋ(t) = Ax(t) + Bu(t), where x(t) is the
states of the system, and u(t) is the input states of the system. Then the eigenvalues,
and eigenvectors of the LTI system are defined by

Av = λv (2.39)

Which may be found by the determinant of A − λIn, there λ is the eigenvalues,
with its corresponding eigenvector v. The square matrix A is describing the internal
dynamics of the system, where if the eigenvalue if on the right hand plane (RHP)
then the system is instable. While if in the left hand plane (LHP) it is asymptotically
stable.

Definition 2.3. Reachability
A linear system is reachable if, for any x0, xf ∈ Rn, there exists a T > 0 and u :
[0, T ] −→ R such that the corresponding solution satisfies x(0) = x0 and x(T ) = xf
[33].

One possible test for state reachability of a linear system, (definition 2.3) is to use
the reachability matrix. That is defined by equation (2.40).

R =
[
B AB A2B . . . Anx−1B

]
(2.40)

The system is reachable if the reachability matrix (equation (2.40)) is of full rank,
if n is the number of states then (rank(R) = n).

Definition 2.4. State Controllability
The dynamical system ẋ(t) = Ax(t) +Bu(t) or equivalently the pair (A,B). Is said
to be state controllable if, for any initial state x(0) = x0, any time t1 > 0 and any
final state x1, there exists an input u(t) such that x(t1) = x1. Otherwise the system
is said to be state uncontrollable [34].

Two possible tests for state controllability, (definition 2.4) is to either use the control-
lability matrix, or the controllability Gramian. The controllability matrix is defined
by equation (2.41).

C =
[
B AB A2B . . . Anx−1B

]
(2.41)

The system is controllable if the controllability matrix (equation (2.41)) is of full
rank, if n is the number of states then (rank(C) = n). Which is also the same for
the use of controllability Gramian, if full rank then the system is controllable.
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Remark. It is to be noted in continuous systems the Reachability, and controlla-
bility properties of definition, is giving that if one holds then the other also holds.
Which may be observed with that the reachability matrix, and controllability matrix
is defined exactly the same. (Depending on literature theirs names may just be reach-
ability matrix, or separated as shown, for clarity). However, this is not necessarily
true for discrete systems.

Definition 2.5. State Stabilizability
A system is stabilizable if all unstable modes are state controllable. While a system
with unstabilizable modes is said to contain hidden unstable modes [34].

Definition 2.6. State Observability
The dynamical system ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (or the pair
(A,C)). Is said to be state observable if, for any time t1 > 0, the initial state
x(0) = x0 can be determined from the time history of the input u(t) and the output
y(t) in the interval [0, t1]. Otherwise the system, or (A,C), is said to be state
unobservable [34].

Two possible ways to test state observability, (definition 2.6) is to either use the ob-
servability matrix, or the observability Gramian. The observability matrix is defined
by equation (2.42).

O =


C
CA
. . .

CAnx−1

 (2.42)

The system is observable if the observability matrix (equation (2.42)) is of full rank,
if n is the number of states then (rank(O) = n). Which is also the same for the use
of observability Gramian, if full rank then the system is observable.

Definition 2.7. State Detectability
A system is detectable if all unstable modes are observable. While a system with
undetectable modes is said to contain hidden unstable modes [34].

An important part of an analysis of a system, is if the system is stable or not. This
importance can be interpreted in different ways, such as input-output stable, or
internally stable. Both tells if a system is stable or not, but for different ways of
viewing stability of the system.

Definition 2.8. Internal Stability
A system is (internally) stable if none of its components contain hidden unstable
modes, and the injection of bounded external signals at any place in the system
results in bounded output signals measured anywhere in the system [34].

What this Internal Stability more or less means, is that there does not exist some
hidden dynamics of the system which is unstable. Which is guaranteed if the system
is stabilizable, definition 2.5. This may be observed by the eigenvalues of the system
dynamics, more specifically from the linear state-space, matrix A. As explained by
the Eigenvalue Analysis, definition 2.2.
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Definition 2.9. Input-Output Stability
For a linear system Input-Output stability can be interpreted to be that given a
bounded input, then the system should give a bounded output.

Bounded Input Bounded Output (BIBO) is that if the input is not going to infinity,
the output will not go to infinity.

Theorem 2.1. Minimality
Given the triplet (A,B,C), the LTI state space system is called minimal if it is both
observable and controllable at the same time.

If one has made a controller of some sort, one may want to observe how well the con-
troller is doing in different cases. That however may sometimes not be an option for
a real time application, or too costly to simulate for all (or many) cases. Therefore,
one may utilize some properties that consider the system with the controller. It can
consider cases of stability, performance, robustness, uncertainties in the model, and
such. The properties, or conditions are.

• Nominal Stability (NS)
• Nominal Performance (NP)
• Robust Stability (RS)
• Robust Performance (RP)

The properties are useful tools to observe how well the controller is acting towards
the system in different cases of not only stability, but more aspects such as the
performance in cases with perturbations to the system.

Definition 2.10. Nominal Stability (NS)
The system is stable with no model uncertainty [34].
This property may be observed to hold if the interconnected structure N , by the lower
LFT, definition 2.18, is internally stable, by the definition 2.8.

Definition 2.11. Nominal Performance (NP)
The system satisfies the performance specification with no model uncertainty [34].
This property may be observed to hold if the interconnected structure N is nominal
stable, by the definition 2.10, and that the infinity norm of the transfer from w to z
is below one (‖N22‖∞ < 1), as shown in the Figure 2.2a.

Definition 2.12. Robust Stability (RS)
The system is stable for all perturbed plants about the nominal model up to the worst-
case model uncertainty [34].
This property may be observed to hold if the interconnected structure N is nominal
stable, by the definition 2.10, and that the infinity norm of the transfer from u∆ to
y∆ is below one (‖N11‖∞ < 1), as shown in the Figure 2.2b. When the perturbation
coming from ∆ is limited such that ‖∆‖∞ ≤ 1.

Definition 2.13. Robust Performance (RP)
The system satisfies the performance specifications for all perturbed plants about the
nominal model up to the worst-case model uncertainty [34].
This property may be observed to hold if the robust stability holds, by the definition
2.12, and that the effect of the disturbance w will never be amplified over z, when the
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perturbation coming from ∆ is limited such that ‖∆‖∞ ≤ 1, followed the structure
shown in Figure 2.2b. That may be calculated by observing if the infinity norm of
the interconnected structure N is less than 1, (‖N‖∞ < 1).

One more analysis tool that are of interest is the µ-analysis. This will be described
later on how it works, in the chapter 2.9 under the title of µ-synthesis. That are
based on the same unit called structured singular value, or µ.

2.7.2 Nonlinear State-space Model Analysis
To analyze a nonlinear system model, is more difficult than for the linear system
model. That is because nonlinear systems have some properties that differs from a
linear system. Which may provide with greater challenges when trying to analyze
the nonlinear system. Some phenomenons that occurs with nonlinear systems, and
not in linear systems may be [32]

• Finite escape time
• Multiple isolated equilibria
• Limit cycles
• Subharmonic, harmonic, or almost-periodic oscillations
• Chaos
• Multiple modes of behavior

These may prove to make calculations more difficult, and potentially result in a sys-
tem which is not controllable, and stabilizable. Therefore, because of the increased
difficulties of analyzing a nonlinear system. This topic will be brief, mainly focusing
on a certain method. It is to be noted that all the points above is only to show that
there exist several things to be considered when dealing with nonlinear systems. One
method of determine the stability of the nonlinear system is to use the Lyapunov
stability criteria which is a sufficient (but not necessary) condition [34]. That may
be explained by the Lyapunov’s theorem 2.2.
Theorem 2.2. Lyapunov’s Stability theorem
Given a positive definite function V (x) > 0 ∀x 6= 0 and a autonomous system
ẋ = f(x), then the system ẋ = f(x) is stable if [34]

V̇ (x) = ∂V

∂x
f(x) < 0 ∀x 6= 0 (2.43)

Remark. It is to be noted that using the Lyapunov’s theorem may be very hard for
some nonlinear systems. Since one need to find a positive definite function V (x),
that both suits ones needs and is a valid Lyapunov function. In such case one may
turn to other methods, or when the Lyapunov stability fails, one can turn to other
method to verify. That is because it is not a necessary condition.

2.7.3 Definitions of Norms
A norm can be described as to be a "a single number which gives an overall measure
of the size of a vector, a matrix, a signal, or a system." [34]. The general definition
of a vector norm is defined as given in the definition 2.14, with the equation (2.44).
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Definition 2.14. Vector Norms
The general definition of vector norms are expressed as equation (2.44).

‖q‖p =
(∑

i

|qi|p
)1/p

(2.44)

For the definitions of the system norms, H2 and H∞, one should note that they are
based on matrix norms. If G(s) and G(t), is the plants or process, transfer function
of the system. Then the different system norms are defined in the definitions 2.16,
and 2.17, following the Parseval equality, definition 2.15.

Definition 2.15. Parseval theorem (equality)
Let g(t) be the function g in its time domain, where G(s) is the Laplace transforma-
tion of g(t), which is defined in the frequency domain. Then by Parseval theorem,
the equality of the norms is given as

‖g(t)‖2 = ‖G(s)‖2 (2.45)

Definition 2.16. H2 system norm
Let G be a proper linear stable system, and H stand for the complex conjugate trans-
pose. Then the H2 system norm is defined [34]

‖G(s)‖2 ,

√
1

2π

∫ ∞
−∞

tr (G(jω)HG(jω)) dω = ‖g(t)‖2 ,

√∫ ∞
0

tr (gᵀ(τ)g(τ)) dτ

(2.46)

Definition 2.17. H∞ system norm
Let G be a proper linear stable system, and σ̄ is the maximum singular value. Then
the H∞ system norm is defined [34]

‖G(s)‖∞ , max
ω

σ̄ (G(jω)) = max
ω

max
w(ω)6=0

‖z(ω)‖2
‖w(ω)‖2

= max
‖w(ω)‖2=1

‖z(ω)‖2 (2.47)

Remark. H∞ system norm, definition 2.17 is both the H∞ norm, and the induced
(worst-case) 2-norm. This also holds for time domain also, by Parseval’s theorem,
definition 2.15.

One may wonder how to compute the H∞ system norm, one way is to use Hamilto-
nian matrix H. That is calculated numerically from the linear state-space realization.
It is a iterative process to find the smallest γ value such that all the Hamiltonian
matrix, equation (2.48), eigenvalues have imaginary values (there is no eigenvalues
on the imaginary axis). The Hamiltonian matrix H is defined as in equation (2.48)
[34].

H =
[

A+BR−1DᵀC BR−1Bᵀ

−Cᵀ (I +DR−1Dᵀ)C − (A+BR−1DᵀC)ᵀ
]

(2.48)

With that R = γ2I −DᵀD, as mentioned before this is an iterative procedure That
one begin with a suitable large value for γ, and decrease it in steps [34].
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2.8 Control Structure
Many ways exist in which feedback design problems could be formulated. It is
therefore very useful to have a standard problem formulation of the control problem,
a general control problem formulation. That any of the particular problems could
be manipulated [34]. Two forms of standard problem formulation, namely one with,
and without uncertainty, would be useful for the different control algorithms to be
used. Both structures are shown in Figures 2.2.

P

K

w z

vu

(a) Standard problem formulation of
feedback design, without uncertainty

P

K

∆

w z

vu

y∆u∆

(b) Standard problem formulation of
feedback design, with uncertainty

Figure 2.2: Standard problem formulations of feedback designs

K is the controller, P the plant, and ∆ the uncertainty. w potentially contains
several different signals, these signal may be w =

[
n r d

]ᵀ
. n is the measurement

noise, r is the reference signal, and d is the disturbance signal. It is worth to
notice that depending on one’s system, they do not need to be a part of the system.
However, for generality they are included here. The output of the system, z, may
contain different signals depending on what one wants to take into consideration. A
common output may be to observe the feedback signal v. The two standard problem
formulations of feedback design Figures 2.2a, and 2.2b. Can be formulated together
as one box, this is done with linear fractional transformation (LFT). That have two
types of, depending on which blocks one box together, namely lower LFT, and upper
LFT.

Definition 2.18. lower Linear Fractional Transformation
Following the standard structure of Figure 2.2a, and consider the combined block to
be the block N, then N can be calculated by equation (2.49).

N = Fl (P,K) = P11 + P12K (I − P22K)−1 P21 (2.49)

Definition 2.19. upper Linear Fractional Transformation
Following the standard structure of Figure 2.2b, and that the Figure 2.2a tells what
the block N is consisting of. Then with the uncertainty block ∆ and N one can
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calculate the combination by equation (2.50).
Fu (N,∆) = N22 +N21∆ (I −N11∆)−1N12 (2.50)

The Figures 2.2a, and 2.2b, shows a general structure for a feedback system, with
and without uncertainty. One may add some sort of weights to each signal of w and
z, to reduce and determine the effects of these signals or for stability purposes. The
weights can be filters or constants, where one can have diagonal matrices as weights.
The added weights have different purposes, there one is to determine the output for
the system, namely z. This is a design choice to be made, that may affect the
stability and performance of the system. Which may for example be a measurement
of the error of the system to some reference signal. Another important part of the
system, as it may be designed with or without an uncertainty block ∆. If one does
have that one considers uncertainties in the system, which may be separated in two
different terms of uncertainties, namely structured and unstructured terms.

• Structured uncertainty (real or complex) (or, Parametric uncertainty)
• Unstructured uncertainty (or, Dynamic (frequency-dependent) uncertainty

Parametric uncertainty it considers the uncertainty of ones parameters, such as
masses, lengths, and other parameters uncertainties. Which can be modeled in
different ways, such as in percentage of a nominal value or in units around its
nominal value. As for unstructured uncertainty it considers the error made from
missing dynamics in the model, typically from the higher frequencies. This may
be from different reasons, such as deliberate neglecting some dynamics. Potentially
because that it is either hard to model, or ones lack of understanding of the physical
system. This unstructured uncertainty is always present for a real system. [34]

2.9 Control Algorithms
Here the different linear and nonlinear control algorithms that will be evaluated,
will be defined and explained to some extent. The control algorithms will be gen-
erally explained and include a brief explanation of PID - controller which will not
necessary be used for evaluation. However, it gives a certain perception on control,
and therefore is also included. An important point to make out about all the dif-
ferent control algorithms is that to be able to control a system, the system needs
to be stabilizable as defined in 2.5. If it is controllable as defined in 2.4, then it is
stabilizable, which is assumed the system is.

2.9.1 Linear Control Algorithms
The evaluated linear control algorithms will be formulated here using the linear
mathematical model. That either is defined as linear state-space model, or have
been linearized at a certain stationary point, as shown in chapter 2.6.

2.9.1.1 PID - Controller

A PID Controller, is a relative simple controller that one may say utilize three dif-
ferent mathematical ways, or terms to control. Namely Proportional, Integral, and
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Derivative, summarized as PID for short. That is the reason that is was originally
called three-term controllers [33]. There exist several ways one may define a PID
controller. What I mean is that because the PID controller is such a common con-
troller to use in different applications, such as in more than 95% of all industrial
control problems are solved PID control. Of these mostly PI controllers are used,
(Proportional-Integral controller) [33], and "is the most widely used control algo-
rithm in industry" [34]. For each way to control there are one adjustable parameter.
The case of a general expression of how the PID controller works, may be described
and shown by observing its input control signal u(t) directly, which is defined for a
PID by the equation (2.51) [33].

u(t) = kP e(t)+ki
∫ t

0
e(τ)dτ+kd

de(t)
dt

= kp

(
e(t) + 1

Ti

∫ t

0
e(τ)dτ + Td

de(t)
dt

)
(2.51)

How the PID controller works is that it takes into consideration the output as
feedback to the controller. That depending on if one uses a one, or two degree of
freedom controller, it can be defined differently. As mentioned before there exist
different ways to define the PID controller, even to that if one just wants a PI, PD,
or P controller. Also, one may argue on how one should tune the weights of the
PID controller, and so on. However, a major thing with PID controllers is that
they handle single input single output systems, or SISO for short. This will give
some restriction to the control purpose, that may result in that one need to have
more than one PID controller, to handle system with more than one inputs and
outputs. Therefore, if one wish to use a PID controller, there are three parameters
to tune, which may become time consuming. However, there exist some different
tuning approaches to use. One is the Ziegler-Nichols Tuning, which is a method
developed by Ziegler, and Nichols, for controller tuning. That is based on simple
characterization of process dynamics in the time and frequency domains [33]. Also,
an newer approach is the SIMC (Skogestad/Simple IMC).

Skogestad/Simple IMC The PID control feedback gain can be given by the
’ideal’ (or parallel) form, in Laplace domain, equation (2.52) [34].

KPID(s) = Kc

(
1 + 1

τIs
+ τDs

)
(2.52)

Kc is the proportional gain, τI is the integral time, and the τD is the derivative time.
It is described a typical implementation of a PID controller [34], this controller is
a two degrees of freedom controller. With the control signal becoming, in Laplace
domain, as equation (2.53).

u(s) = Kc

[(
1 + 1

τIs

)
(r(s)− ym(s))− τDs

ετDs+ 1ym
]

(2.53)

SIMC (Skogestad/Simple IMC) which is a "PID design for first- or second-order
plus delay process" [34], that won’t be described in more details here. It exists more
ways to determine the parameters, to get a working PID controller, which can be
used.
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2.9.1.2 Linear Quadratic Controllers (LQR, LQI, LQG)

Linear Quadratic Controllers, or LQ for short, exist in three general chases. Such
as Regulator (LQR), Integrator (LQI), and Gaussian (LQG) (exists also LQGI). All
these are similar in their cost function structure, with is as the name says quadratic.
The three are different in some structure, such as, an added integrator function, or
with a Kalman filter that estimates the states from the system output. In general,
for the LQ controllers is that they are utilizing a quadratic cost function, which can
be described by the equation (2.54).

J(x, u) = 1
2

∫ ∞
0

(xᵀ(τ)Qxx(τ) + uᵀ(τ)Quu(τ) + 2xᵀ(τ)Nu(τ)) dτ (2.54)

However, there exist also a type of LQ controller that utilizes a sort of filter, which es-
timates the states from the system output, more specifically a Kalman filter. Named
LQG, for linear quadratic Gaussian, that has a slightly variant of the cost function
in equation (2.54), which is defined in the average sense as equation (2.55).

J (x, u) = lim
T→∞

E

{
1
2

∫ T

0

1
T

(xᵀ(τ)Qxx(τ) + uᵀ(τ)Quu(τ) + 2xᵀ(τ)Nu(τ)) dτ
}
(2.55)

To yield the optimal solution, i.e. min J(x, u). One may utilize Lagrange’s equation
shown in chapter (2.5), to find the controller. With the considered states of q(t) =
{x(t), λ(t), u(t)}, with the Lagrangian defined by.

L(t, x, u, λ) = xᵀ(t)Qxx(t)+uᵀ(t)Quu(t)+2xᵀ(t)Nu(t)+λᵀ(t) (Ax(t) +Bu(t)− ẋ(t))

With that the system is a linear system, the generalized forces becomes zero, Qi = 0.
This may be more time consuming than utilizing the Riccati equation. Which is the
result from that calculation and therefore will not be addressed any further here.
This gives for different continuous cases of Riccati equation, what type of formulation
one may need to use. Some of the different ones are.

• (Continuous) Differential Riccati equation (DRE)
• Algebraic Riccati equation (ARE)
• Continuous Algebraic Riccati equation (CARE)
• Filter Algebraic Riccati equation (FARE)

These are given for the continuous case, discrete case for each type exists. Then
instead they then utilize Difference Riccati equation, and evaluate it to Discrete-time
Algebraic Riccati equation, or DARE instead of CARE. However, this will not be
discussed further, just that there exist for discrete time to. It is to be noted that
they do not necessarily have the same formulation.

Definition 2.20. (Continuous) Differential Riccati equation (DRE)
Let (A,B) be the linear state space matrices (ẋ(t) = Ax(t) +Bu(t)), and P ∈ Rn×n

is a positive definite, symmetric matrix that satisfy the equation (2.56), based on the
cost function equation (2.54).

Ṗ (t) + AᵀP (t) + P (t)A− (P (t)B +N)Q−1
u (BᵀP (t) +Nᵀ) +Qx = 0 (2.56)
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If the matrix N is equal to a zero matrix, then P ∈ Rn×n is a positive definite,
symmetric matrix that satisfy the equation (2.57) [33].

Ṗ (t) + AᵀP (t) + P (t)A− P (t)BQ−1
u BᵀP (t) +Qx = 0 (2.57)

Remark. There exists also a algebraic Riccati equation, however to not confuse with
notations, that one is not directly shown. Since the algebraic Riccati equation, or
ARE, is similar to the (continuous) differential Riccati equation shown. With the
exception that Ṗ (t) = 0. The ARE are similar to the continuous algebraic Riccati
equation, or CARE, and therefore won’t have its own definition.

Definition 2.21. Continuous Algebraic Riccati equation (CARE)
Let (A,B) be the linear state space matrices (ẋ(t) = Ax(t) +Bu(t)), and P ∈ Rn×n

is a positive definite, symmetric matrix that satisfy the equation (2.58), based on the
cost function equation (2.54).

AᵀP + PA− (PB +N)Q−1
u (BᵀP +Nᵀ) +Qx = 0 (2.58)

If the matrix N is equal to a zero matrix, then P ∈ Rn×n is a positive definite,
symmetric matrix that satisfy the equation (2.59) [33].

PA+ AᵀP − PBQ−1
u BᵀP +Qx = 0 (2.59)

The state-feedback gain K is defined as equation (2.60).

K = −Q−1
u (BᵀP +Nᵀ) (2.60)

For the case of the Filter Algebraic Riccati equation (FARE), that is based on the
theorem, (Kalman-Bucy, 1961 [35]), which says [33].

Theorem 2.3. (Kalman-Bucy, 1961 [35])
The optimal estimator has the form of a linear observer

dx̂(t)
dt

= Ax̂(t) +Bu(t) + L (y(t)− Cx̂(t))

Where L(t) = P (t)CᵀR−1
w and P (t) = E{(x(t)− x̂(t))(x(t)− x̂(t))ᵀ} and satisfies

dP (t)
dt

= AP (t) + P (t)Aᵀ − P (t)CᵀR−1
w CP (t) +NRvN

ᵀ, P [0] = E{x[0]xᵀ[0]}

When Rv, and Rw has constant intensity, 0 ≤ Rv, 0 < Rw.

With the theorem 2.3 in mind, one can define the FARE, which is defined by the
definition 2.22.

Definition 2.22. Filter Algebraic Riccati equation (FARE)
Let (A,B) be the linear state-space matrices (ẋ(t) = Ax(t) +Bu(t) +Nv(t)), and
(C,D) be the linear state space matrices (y(t) = Cx(t) +Du(t) + w(t)). Where w(t),
and v(t) are assumed to be Gaussian noise. Then P ∈ Rn×n is a positive defi-
nite, symmetric matrix that satisfy the equation, based on the cost function equation
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(2.55). Which by the theorem 2.3 and that the system becomes stationary, P (t)
converges, gives

AP + PAᵀ − (PCᵀ)R−1
w (PCᵀ)ᵀ +NRvN

ᵀ = 0 (2.61)

Then the observer gain becomes

L = PCᵀR−1
w (2.62)

Remark. An important thing to notice, is that the LQ controllers are controlling
in the local frame. What that means is from the fact that the linear model may be
based upon the true (nonlinear) system. This gives that one have linearized around
a certain point (described in the chapter 2.6). Therefore, the LQ is considering
working around that point, and not necessary around the origin. LQR is therefore
a local, not a global controller.

Linear Quadratic Regulator (LQR) Linear quadratic regulator, LQR for short,
is a state feedback controller which takes the states, and a reference as inputs, with
that formulate a control signal u(t). One degree of freedom, or two degrees of
freedom, can be used depending if one want to consider both the feedback, and
the reference individual (two d.o.f.), or together as an error (one d.o.f). To get
this controller gain K, one utilizes the cost function mentioned in equation (2.54),
this is more easier directly found by using one of Riccarti equations. Specifically
the continuous algebraic riccati equation, CARE for short, found in definition 2.21.
There Qx, and Qu are design parameters for the controller, costs for the states, and
the input respectively. The weights are needed to have positive elements, including
the zero value, Qx ≥ 0, and Qu ≥ 0. How to apply the LQR is ’quiet’ strait forward,
which is that it makes the input signal u(t) to the system. However, there is a small
difference with one, or two d.o.f, which can be illustrated with the linear state-space
representation (2.31)-(2.32), (shown for clarification).

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

The input signal u(t) can be formulated as either a one, or two d.o.f controller. The
input signals for these cases can be observed by first that e(t) is the error between
the feedback of the internal states x(t) and the reference r(t). For two d.o.f the
feedback, and reference (can be considered zero) are separately considered, which is
shown by the equation (2.64).

One d.o.f: u(t) = −Ke(t) = (2.63)
Two d.o.f: u(t) = −Kx(t) +Krr(t) (2.64)

For the case of one d.o.f controller the input signal is equation (2.63). Resulting in
that the linear state-space representation (2.31), and (2.32), becomes the equations
(2.65), and (2.66).

ẋ(t) = Ax(t) +B (−Kx(t)) = (A−BK)x(t) (2.65)
y(t) = Cx(t) +D (−Kx(t)) = (C −DK)x(t) (2.66)
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Combining the LQR two d.o.f. control signal, equation (2.64), with the linear state-
space system equations (2.31), and (2.32). Gives that one may write the new linear
state-space system with reference as the input to the controlled system, as shown
by equations (2.67), and (2.68).

ẋ(t) = (A−BK)x(t) +BKrr(t) (2.67)
y(t) = (C −DK)x(t) +DKrr(t) (2.68)

This gives more freedom to tune and may contribute to more time consumption in
order to get a working controller. However, as one may observe is that if one where
to want to formulate Kr, to just counteract the dynamic to make that if the states
and the reference is equal, then ẋ(t) = 0. This gives that the gain for the reference
may be calculated as equation (2.69).

Kr =
(
D − (C −DK) (A−BK)−1B

)−1
(2.69)

The feedback gain is the matrix K, and if one uses a two d.o.f control. The two
individual matrix multiplications are only added together to form the input signal
to the system.

Linear Quadratic Integrator (LQI) Linear quadratic integrator, LQI for short,
has a likewise properties as the LQR with an added integral. This integral action
considers the error between the desired, or reference, values and the current state
values. It integrates the error over time, which may improve control, such as the
steady state error which may occur. To add the integral action onto the linear
system, one may then augment the system with an integrated error z(t), shown in
equation (2.70).

z(t) =
∫ t

0
(r(τ)− y(τ)) dτ ⇒ ż(t) = (r(t)− y(t)) = r(t)− Cx(t)−Du(t) (2.70)

That gives the augmented system in matrix form, with consideration to the z(t) in
equation (2.70). Which gives that the augmented system in equations (2.71), and
(2.72).

[
ẋ(t)
ż(t)

]
=
[
A 0n×q
−C 0q

]
︸ ︷︷ ︸
Aaugmented

[
x(t)
z(t)

]
+
[
B 0n×q
−D Iq

]
︸ ︷︷ ︸
Baugmented

[
u(t)
r(t)

]
(2.71)

y(t) =
[
C 0q

]
︸ ︷︷ ︸
Caugmented

[
x(t)
z(t)

]
+Du(t) (2.72)

This gives an augmented linear state-space model, a illustrative figure to show how
a typical LQI system may be formulated can be seen in Figure 2.3.
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Figure 2.3: Linear Quadratic Integrator, a general negative feedback LQI system
block diagram

Remark. Observe that the Figure 2.3 is a negative feedback, it can also be defined
for a positive feedback. However, then the augmented system given in the equation
(2.71)-(2.72), needs to be altered to have a positive feedback instead.

The input signal to the plant, or process, seen in the Figure 2.3. Is similar to the
two d.o.f LQR, equation (2.64), with an added integral action. The two d.o.f control
law for the LQI may then be formulated by the equation (2.73) [33].

u(t) = −Kx(t)−Kzz(t) +Krr(t) (2.73)

This added integral action expands the states that the controller is using. Therefore
one may say that it has a similar structure to an LQR, in that the input controller
may be formulated by equation (2.74).

u(t) = −
[
K Kz

] [x(t)
z(t)

]
+Krr(t) (2.74)

To find this controller, is like how one finds the controller for the LQR case. With the
only difference that the states are augmented with z(t), the integrated error. This
gives that one can use the cost function 2.54, with the augmented states instead of
x(t). That one needs to solve the continuous algebraic Riccati equation shown in

equation (2.58), with the augmented states instead of x(t), using
[
x(t)
z(t)

]
. This results

in that the design parameter Qx is expanded to also embrace the new integral action.
Which has been added in the augmented linear state-space system, in equations
(2.71), and (2.72).
Remark. As discussed before for the case of LQR, if one wish to just have a one
d.o.f. Then one can just ignore Krr(t) term, and set x(t) = e(t) to take instead
account of the error between the feedback, and the reference.

Linear Quadratic Gaussian (LQG) Linear quadratic gaussian, LQG for short,
is a combination of a LQR, and a state observer. The state observer is typically a
Kalman filter. This may be used if one cannot observe all the states, which leads
to that one may not utilize a state feedback controller. That however may not be
the case if one uses a state observer to estimate the states using the output of the
system, with an appropriate model for estimation of the internal states. One may at
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first glance think, this will take time to make a combined LQR, and kalman filter,
that maybe true in some respects. However, by the Principle of separation that is
defined as, definition 2.23.

Definition 2.23. Principle of separation
The feedback gain of the state observer and there of the feedback controller can
separately be designed.

By the Principle of separation definition 2.23, one can design the LQR, and the
state observer separately. Giving that one can utilize the mentioned way to make a
LQR controller and separately design a state observer. An general illustration block
diagram of an linear quadratic Gaussian may be seen in the Figure 2.4.

System

Disturbances

ControllerReference

State Estimator Σ Noise

u

x̂
ym

y

Figure 2.4: Linear Quadratic Gaussian, a general LQG system block diagram

To make the state observer one may first consider its state-space, which is used
to estimate the states. Using the real systems output y(t), then the state-space is
described as equations (2.75), and (2.76).

˙̂x(t) = Ax̂(t) +Bu(t) + L (y(t)− ŷ(t)) (2.75)
ŷ(t) = Cx̂(t) (2.76)

x̂ is the estimated states, and ŷ the estimated output, with L as the observer gain.
This state estimation may be augmented together with the linear state-space, equa-
tions (2.31), and (2.32). The error between the estimated and true states, is ex-
pressed as x̃(t) = x(t) − x̂(t). This gives that the augmented system becomes as
shown by the equations (2.77), and (2.78).[

ẋ(t)
˙̃x(t)

]
=
[
A−BK BK

0n×q A− LC

] [
x(t)
x̃(t)

]
+
[
BKr

0n×q

]
r(t) (2.77)

y(t) =
[
C 0n

] [x(t)
x̃(t)

]
(2.78)

An advantage of using a Kalman filter is that one may account for noise that may
occur. This gives a sort of extended linear state-space, with noise.

ẋ(t) = Ax(t) +Bu(t) +Nv(t) (2.79)
y(t) = Cx(t) +Du(t) + w(t) (2.80)
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v(t), and w(t) are assumed to be white Gaussian noise. Then one may use the
FARE, definition 2.22, to make the state estimator. That defines a observer gain L
using the state observer state-space (2.77)-(2.78) and the linear system which it is
trying to control is based on the linear state-space (2.79)-(2.80). Then one have the
estimated states x̂(t) which can be used with a LQR, or LQI, to make the control
signal u(t). That may be defined as one- or two d.o.f. controller, equations (2.81),
and (2.82).

u(t) =−Kx̂(t) +Krr(t) (2.81)
u(t) =−Kx̂(t)−Kzz(t) +Krr(t) (2.82)

The controller gain K is calculated as mentioned before, for the LQR, or LQI cases.
It is to be noted that the names may become different, there if one uses an LQR
and a state estimator, this gives an LQG. While an LQI and a state estimator gives
a LQGI.
Remark. A point to add is that LQG is often compared to be a LQR with a Kalman
filter, which is in itself true. However, it is to be noted that may not always be the
case, because one may also as the LQI add an integral action to the LQR. Which is
then an LQG that is made from a LQI and a Kalman filter, and may be named as
Linear Quadratic Gaussian Integral (LQGI).

2.9.1.3 H2 and H∞ Control

H2 and H∞ control utilizes norms function for matrices. The matrix norms are
called H2 system norm, and H∞ system norm. An observation is that the H2 and
H∞ control have similarities to the linear quadratic controllers. Which one may
observe by the definition of the general vector norms in definition 2.14, shown in the
equation (2.44).

Remark. A point to make out is that even though there are similarities with the
linear quadratic controllers, and these controllers. It should be notice that LQR ⇐⇒
H2 state feedback, that does not mean that LQG is equivalent to H2 output feedback,
(LQG 6⇐⇒ H2 output feedback). LQG, and H2 control is only equivalent for a
specific special case of the generalized output feedback H2.

Similarities with LQ - Control It is of some interest to observe the similarities
as explained in some degree in the remark above. This may be observed through how
one find the controllers of LQ, specifically CARE and FARE shown in definitions
2.21, and 2.22, respectively. That gives a slightly modified definition, by that the
cost function becomes modified. Which can be seen in the definition of MCARE
definition 2.24, and MFARE definition 2.25.

Definition 2.24. Modified Continuous Algebraic Riccati equation (MCARE)
Let (A,B1, B) be the linear state space matrices ẋ(t) = Ax(t) +B1d(t) +Bu(t), and
P ∈ Rn×n is a positive definite, symmetric matrix that satisfy the equation, based
on the cost function equation

J(x, u, d) = 1
2

∫ ∞
0

(xᵀ(τ)Qxx(τ) + uᵀ(τ)Quu(τ) + 2xᵀ(τ)Nu(t)− γdᵀ(τ)d(τ)) dτ
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Alternatively, if the matrix N is an zero matrix, then the cost function would become
as shown by equation (2.83).

J(x, u, d) = 1
2

∫ ∞
0

(xᵀ(τ)Qxx(τ) + uᵀ(τ)Quu(τ)− γdᵀ(τ)d(τ)) dτ (2.83)

Then using the cost function, equation (2.83) and P ∈ Rn×n is a positive definite,
symmetric matrix that satisfy the equation (2.84).

PA+ AᵀP +Qx − P
(
BQ−1

u Bᵀ − 1
γ2B1B

ᵀ
1

)
P = 0 (2.84)

In which the design parameters that needs to be chosen, or found is Qx, Qu, and γ.
There the best control input signal u(t), and the worst disturbance d(t) is then given
by the equations (2.85), and (2.86).

u(t) =−Q−1
u BᵀPx(t) = −Kx(t) (2.85)

d(t) = 1
γ2B

ᵀ
1Px(t) = Kdx(t) (2.86)

Definition 2.25. Modified Filter Algebraic Riccati equation (MFARE)
Let (A,B) be the linear state space matrices (ẋ(t) = Ax(t) +B1d(t)), and (C,D) be
the linear state space matrices (y(t) = C2x(t) +D2,1d(t)). There d(t) is a deter-
ministic disturbance, and supposed that the (A,C2) pair is detectable and (A,B1) is
stabilizable. Then PF ∈ Rn×n is a positive definite, symmetric matrix that satisfy
the equation, based on the cost function equation (2.55). Which then by the theorem
2.3, also that the system becomes stationary, and P (t) converges, giving equation
(2.87)

.PFA
ᵀ + APF + PF

(
γ−2
F In − Cᵀ

2C2
)
PF +B1B

ᵀ
1 = 0 (2.87)

Then the observer gain becomes

L = −PFCᵀ
2 (2.88)

The similarities with the LQ case for the modified versions of CARE and FARE,
can be listed to be

• MCARE: H∞ state-feedback
• MFARE: H∞ state filter

That may be observed if comparing the definitions of the MCARE (definition 2.24),
and MFARE (definition 2.25). With how one may numerically compute the H∞, by
the Hamiltonian matrix shown in equation (2.48).

H2 - Controller The control objective that H2 optimal control problem is trying
to do, is to find a controller K which minimizes the H2 system norm of the lower
LFT (definition 2.18), which may be written as min ‖N‖2.
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H∞ - Controller The control objective thatH∞ optimal control problem is trying
to do, is to find a controller K which minimizes the H∞ system norm of the lower
LFT (definition 2.18), which may be written as min ‖N‖∞.
Remark. If one desire to achieve γmin (with some tolerance), then one may use
γ-iteration, where one iteratively improves the γ value. It should also be noted that
H∞ can be structured, like µ that will be explained next.

2.9.1.4 µ-synthesis (DK-iteration)

The µ-synthesis is a control synthesis which utilizes the structured singular value µ
(other short notation names are SSV, mu, and Mu). The structured singular value
µ is as Skogetad and Postlethwaite wrote: "a very powerful tool for the analysis of
RP with a given controller"[34]. RP, or robust performance is a criterion with may
be hard to achieve deepening on the system, and controller. Therefore µ-synthesis
is of interest because it considers RP. If one can get a controller that consider to
get a good robust performance, then other criteria will follow, such as RS, robust
stability. To fully embrace the µ-synthesis, first one consider the µ-analysis, more
specific what the meaning of structured singular value µ is. Then proceed to utilize
µ to make a controller for the system. However, a point to note is at the current time
there is no direct method to synthesize a µ-optimal controller. There is however,
a method named DK-iteration, for complex perturbations, which can be used. [34]
This is the method for the µ-synthesis that will be mentioned here.

Structured Singular Value (µ) The structured singular value, µ, may be for-
mulated with that it "is a function which provides a generalization of the singular
value, σ̄, and the spectral radius, ρ."[34]. It may also be formulated, "Conceptually,
the structured singular value is nothing but a straightforward generalization of the
singular values for constant matrices."[36]. What this implies is that that the µ, is
in its core a singular value, with a structure to it. This structure for this case is
the uncertainties, structured uncertainties, which was explained earlier in chapter
2.9.1.3 and share properties with the spectral radius. The singular value, and the
spectral radius, are defined as definitions 2.26, and 2.27.

Definition 2.26. Singular Value
Let G be a complex matrix, and GH is the complex conjugate transpose of G. Then
the singular value are the positive square roots of the eigenvalues of GHG. [34]

σi (G) =
√
λi (GHG) (2.89)

Remark. The maximum, and minimum singular values are indicated by a bar on
its top or bottom. The maximum singular value, σ̄, the minimum singular value,

¯
σ.

Definition 2.27. Spectral Radius
The eigenvalues are sometimes called characteristic gains. The set of eigenvalues
of a matrix A is called the spectrum of A. The largest of the absolute values of the
eigenvalues of A is the spectral radius of A. [34]

ρ (A) , max
i
|λi (A)| (2.90)
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Now one may wonder how this µ is defined, then a nicely and short statement. "Find
the smallest structured ∆ (measured in terms of σ̄ (∆)) which makes the matrix
I − M∆ singular; then µ (M) = 1/σ̄ (∆)"[34]. The concept that the structural
singular value is based upon, and how it works, can be described by the small gain
theorem, which it is shown in theorem 2.4.

Theorem 2.4. Small Gain Theorem
Consider a system with a stable loop transfer function L(s). Then the closed-loop
system, the Figure 2.5, is stable from {d1, d2} to {y1, y2} if

‖L(jω)‖ < 1,∀ω (2.91)

‖L‖ denotes any matrix norm satisfying ‖AB‖ ≤ ‖A‖ · ‖B‖ [34]. That is {d1, d2}
have to be bounded.

Σ A

B Σ

d1

d2

y1

y2

e1

e2

Figure 2.5: Block diagram illustration of the small gain theorem.

Then the formulation of the structural singular value can be made through if one
consider the small gain theorem, theorem 2.4. That is by considering the Figure
2.5, and say that A = ∆, and B = M . This gives that the main question can be
formulated to how large ∆ can be in the sense of ‖∆‖∞ (infinity norm). That does
not turn the feedback system (I −M∆) singular, in other words, destabilizes the
feedback system. The feedback system can be described by (I −M∆). Then one
may find that the system becomes singular if the determinant of the system becomes
equal to zero (det (I −M∆) = 0), that is because it describes the closed-loop poles.
Now for the main point to observe is that the small gain theorem, theorem 2.4,
says that the two interconnected systems, needs to have the term ‖A‖∞ ‖B‖∞ < 1
fulfilled. This givens that for this system the condition becomes ‖∆‖∞ ‖M‖∞ < 1,
if one assumes that for the ∆ block, ‖∆‖∞ < α, with that α > 0, that is sufficiently
small, so that the closed-loop system is stable. One may find a maximum for the
α, where the closed-loop system becomes singular (unstable), namely αmax. Which
gives by the small gain theorem, theorem 2.4.

1
αmax

= ‖M‖∞ := sup
s∈C̄+

σ̄ (M (s)) = sup
ω
σ̄ (M (jω)) (2.92)

Remark. Clarification, the ’sup’ in the equation (2.92), is called the supremum.
Which may be explained by saying that for a certain subset S of real numbers, the
largest element of all elements in the subset S is the supremum. There it is also
referred to as the least upper bound.
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A notable thing is that the αmax is the robust stability margin [36]. It is to be
noted that ∆ is not specified, that is because it can be unstructured or structured.
However, even though the definitions are similar in expression, there is difference.
The structured way is the representation for the µ, as the name also implies, which
may be formulated for any fixed s ∈ C̄+, when ∆ is structured.

σ̄ (M (s)) = 1
min{σ̄ (∆) : det (I −M∆) = 0,∆ is structured} = µ (M (s)) (2.93)

This shows that µ is interpreted as the largest structured singular value of M(s),
when ∆ is structured, more specifically, structured uncertainty. Which follows the
definitions of both singular values, and spectral radius, definitions 2.26, and 2.27
accordingly. This results in that one may define the structured singular value µ as
told in the definition 2.28.

Definition 2.28. Structured Singular Value, µ
For M ∈ Cn×n, µ∆ (M) is defined as

µ∆ (M) := 1
min{σ̄ (∆) : ∆ ∈∆, det (I −M∆) = 0} (2.94)

Unless no ∆ ∈∆ makes I −M∆ singular, in which case µ∆ := 0.[36]
Remark. To not be confused with the terminology of the definition of µ. It is to
notice that in comparison with the deviation to H2 and H∞ control algorithms, with
is based on a norm, µ is not a norm.

There one may use µ to get necessary and sufficient conditions for both RS (robust
stability), and RP (robust performance). Which can be described by the theorems
2.5, and 2.6.

Theorem 2.5. Structured Robust Stability
Let β > 0. The loop shown below is well-posed and internally stable for all ∆ (·) ∈
M (∆) with ‖∆‖∞ < 1

β
if and only if [36]

sup
ω∈R

µ∆ (G (jω)) ≤ β

Σ ∆

G(s) Σ

w1

w2

e1

e2

Theorem 2.6. Structured Robust Performance
Let β > 0. For all ∆ (s) ∈ M (∆) with ‖∆‖∞ < 1

β
, the loop shown below is well-

posed, internally stable, and ‖Fu (Gp,∆)‖∞ ≤ β if and only if [36]

sup
ω∈R

µ∆P
(Gp (jω)) ≤ β.
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Gp(s)

∆(s)

wz

Using the two theorems 2.5, and 2.6, one may observe that µ-synthesis, and µ-
analysis may express itself to get RS (robust stability), and RP (robust perfor-
mance). Depending if the value µ is sufficient for these criteria, which is the idea
behind the µ-synthesis and will be described how to do.
Remark. It has been mentioned two different names with µ, namely µ-synthesis,
and µ-analysis. To clarify µ-analysis is when one analyzes a system, and an existing
controller with the help of structured singular value. While µ-synthesis is when one
uses structured singular value to make a controller.

It is not totally obvious what values that µ needs to have in order to be ’good’,
or ’bad’. If µ = 1 then there exists a perturbation with σ̄ (∆) = 1, that makes
the matrix I −M∆ singular. Based on this value, one can then get a feeling that
larger value of µ gives that the matrix I − M∆ becomes singular with smaller
perturbations. While smaller values of µ gives that I −M∆ becomes singular with
larger perturbations [34].

DK-iteration As mentioned before because there are no presents of a method
that is directly synthesizes a µ-optimal controller. Since it is difficult to explore all
of ∆, and that it is a non-convex problem. One may use the DK -iteration method
that combines the H∞ synthesis, and µ-analysis to utilize the µ in its synthesis of a
controller. The DK -iteration is an iterative synthesis, it more or less repeats three
steps, until satisfactory performance is achieved. Such as ‖DN (K)D−1‖∞ < 1,
when the H∞ norm no longer decreases or within some tolerance. To formulate
the DK -iteration two building blocks needs to be studies, which is used in the DK -
iteration. One of these is how the upper bound on µ in terms of the scaled singular
value is defined.

Definition 2.29. Improved Upper Bound
Define D to be the set of matrices D which commute with ∆ (i.e. satisfy D∆ =
∆D). Then it follows from the properties of µ for complex perturbation, (µ (DM) =
µ (MD) and µ (DMD−1) = µ (M)),(ρ (M) ≤ µ (M) ≤ σ̄ (M)) that [34]

µ (M) ≤ min
D∈D

σ̄
(
DMD−1

)
(2.95)

The last building block that is needed to define the DK -iteration, is the definition in
which to find the controller. This controller minimizes the peak value over frequency
of this upper bound, definition 2.29, that then is defined by the equation (2.96).

min
K

(
min
D∈D

∥∥∥DN (K)D−1
∥∥∥
∞

)
(2.96)
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This leads to the formulation of the DK -iteration, that first starts by selecting an
initial stable rational transfer matrix D(s). It is appropriate to have a good initial
guess of the transfer matrix D(s). However, it is not always necessary because a
good initial choice given that the system is reasonably scaled for performance, is
to have the initial choice of D as the identity matrix [34]. Then the DK -iteration
procedure can be explained by these three steps [34]

1. K-step: Synthesize a H∞ controller for the scaled problem of the equation
(2.96), with the transfer matrix D(s) fixed to a certain value. This should
give the combined controller, and system, named N .
Before continuing one needs first to consider if the stop criteria is reached, this
criteria may wary (depending on tolerance, and considered criteria), however,
if the criteria is reached, stop, otherwise continue.

2. D-step: Find an upper bound that is defined in definition 2.29, with the equa-
tion (2.95). One want to find Dnew(jω) that minimizes at each frequency, with
a fixed N (Note, fit only in magnitude).

3. For each of the elements in Dnew(jω): Fit the element’s magnitude to a stable
and minimum-phase transfer function D(s).

Remark. A point to make about the DK-iteration, is that it is a fundamental prob-
lem with this approach. Which is that although each of the minimization steps (K-
step, and D-step) are convex, the joint convexity can not be guaranteed. However,
the iterations may converge to a local optimum [34], which is occurring because of
the increase in order of D(jω), (deg (Kdk∞(jω)) << deg (Kdk(iω))).

2.9.2 Nonlinear Control Algorithms
The evaluated nonlinear control algorithms will be described and formulated here.
Compared to the linear controllers, these controllers directly consider the nonlinear
system, instead of the linearized one. It is to be noted that these nonlinear controllers
are more complex, and because of that, only the main parts of these controllers will
be gone through. For the feedback linearization types of nonlinear controllers, there
is a certain condition that needs to be hold, which is defined in the definition 2.30.

Definition 2.30. From the nonlinear systems in equations (2.22), and (2.23). The
input affine nonlinear system becomes

ẋ(t) =f(x) + g(x)u(t) (2.97)
y(t) =h(x) (2.98)

There f : D → Rn and g : D → Rn×p are sufficiently smooth (all the partial
derivatives, that will appear later on, are defined and continuous) on a domain
D ⊂ Rn. Is said to be feedback linearizable (or input-state linearizable) if there
exists a diffeomorphism T : D → Rn such that Dz = T (D) contains the origin and
the change of variables z = T (x) transforms the system ?? into the form

ż(t) = Acz(t) +Bcγ(x) [u(t)− α(x)] (2.99)

With (Ac, Bc) controllable and γ(x) non-singular for all x ∈ D [32]. In our case
the Ac, and Bc are in controller canonical form. However, the matrices can just be
controllable.
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An illustrative figure of how a feedback linearization may looks like with the non-
linear system defined as in equations (2.97), and (2.98), can be seen in the Figure
2.6.

IntegratorΣg(x)Σβ(x)v

α(x)

f(x)

+ u + ẋ x

+ +

Figure 2.6: Illustrative figure of a feedback linearization of a nonlinear system.

v is the new input to the system, f(x) and g(x) is the nonlinear system. With the
feedback linearization part of β, and α, would aim to counteract the non-linearity
of the system, to make the system look linear. This gives that one may design a
controller of the feedback linearized system instead, with looks linear rather than
the nonlinear system. However, it is to be noted that the Figure 2.6, is missing the
output h(x), which will be explained with some methods of feedback linearization.

2.9.2.1 Feedback Linearization

The two considered feedback linearization forms that will be considered, and de-
scribed is the Input to output linearization, and Input to state linearization. Input
to output linearization is a sort of feedback linearization that takes the output into
consideration. Its similar controller input to state Linearization which takes the
state into consideration instead. The feedback linearization can be formulated as
a single input single output, (SISO) system, and multiple inputs multiple outputs
(MIMO). However, it is to be noted that to solve for MIMO systems there is much
larger difficulties and does not directly have a general method to solve for MIMO
systems. While for SISO systems there exist a general approach for the input to
output linearization, and input to state linearization. For SISO systems can be ex-
plained for a nonlinear system in the form of the equations (2.97), and (2.98), shown
for convenience.

ẋ(t) =f(x) + g(x)u(t)
y(t) =h(x)

f(x), g(x), and h(x) are sufficiently smooth functions as described earlier by the
definition 2.30, then the time derivative of y(t), named ẏ(t) becomes as shown in
equation (2.100).

ẏ(t) =∂h(t, x(t))
∂t

= ∂h(t, x(t))
∂x

ẋ(t) = ∂h

∂x
[f(t, x(t)) + g(t, x(t))u(t)]

= ∂h

∂x
f(t, x(t)) + ∂h

∂x
g(t, x(t))u(t) = Lfh(t, x(t)) + Lgh(t, x(t))u(t)

(2.100)
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=⇒ Lfh(t, x(t)) = ∂h

∂x
f(t, x(t)), Lgh(t, x(t)) = ∂h

∂x
g(t, u(t))u(t)

Lf and Lg are called the lie derivatives, with respect to f or g respectively. It
can be said that the Lie derivatives takes the derivatives of what is in front of it,
with respects of the states. For better clarity an example of the Lie derivatives,
with definition, can be seen in the definition 2.31. Which Lie algebra makes it
transparent.

Definition 2.31. Lie Derivative Example’s
Lie Derivative’s are defined as such [32]

Lfh(t, x(t)) = ∂h

∂x
f(t, x(t)), Lgh(t, x(t)) = ∂h

∂x
g(t, u(t))u(t) (2.101)

Which is shown by the results from the equation (2.100). This definition may be
explained by these example’s

LgLfh(t, x(t)) =∂Lfh(t, x(t))
∂x(t) g(t, x(t)

L2
fh(t, x(t)) =LfLfh(t, x(t)) = ∂Lfh(t, x(t))

∂x(t) f(t, x(t))

Lkfh(t, x(t)) =LfLk−1
f h(t, x(t)) =

∂Lk−1
f h(t, x(t))
∂x(t) f(t, x(t))

L0
fh(t, x(t)) =h(t, x(t))

The Lie derivatives are convenient to use when one have repeated calculations of
the derivatives with respect to the same vector field or a new one [32]. Using the
Lie derivatives one may obtain the relative degree of the system, what the relative
degree is may be defined by the definition 2.32.

Definition 2.32. Relative Degree
The nonlinear system (2.97)-(2.98) is said to have relative degree ρ, 1 ≤ ρ ≤ n, in
a region D0 ⊂ D if

LgLi−1
f h(t, x(t)) = 0, i = 1, 2, . . . , ρ− 1; LgLρ−1

f h(t, x(t)) 6= 0 (2.102)

For all x ∈ D0 [32].

To calculate the relative degree one does not necessary need to use the Lie derivatives.
As shown in the definition 2.32, one may also use the derivatives of the output y.
That is because as one may notice from the equations (2.100), and (2.101). Is that if
the output of the SISO system is shown for a certain derivative of y(i), for 0 ≤ i ≤ n.
Then that number n is the relative degree, as can be observed from the calculation
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shown in equation (2.103).

y =h(t, x(t)) = L(0)
f h(t, x(t))

y(1) =∂h(t, x(t))
∂t

= L(1)
f h(t, x(t))

...
y(i−1) =L(i−1)

f h(t, x(t))
y(i) =L(i)

f h(t, x(t)) + LgL(i−1)
f h(t, x(t))u(t)

(2.103)

Which shows that one may get the relative degree by just derive y = h(t, x(t)).
Then the relative degree becomes equal to the number of times one could derive
until a input is showing in the derivative, following the definition 2.32, ρ = n. If
the relative degree of the nonlinear system is known, one may start consider how to
formulate the input to output linearization. As shown by the condition definition
2.30, a change of variables is to be formulated. This transformation will have to
be a diffeomorphism transformation, by the definition 2.30. Also, that the transfor-
mation does not inflict difficulties to the calculation. One may use Lie derivatives
to formulate this transformation, there one may obtain the transformation by the
theorem 2.7.

Theorem 2.7. Consider the system (2.97)-(2.98), and suppose it has relative degree
ρ ≤ n in D. If ρ = n, then for every x0 ∈ D, a neighborhood N of x0 exists such
that the map

T (x) =


L(0)
f h(t, x(t))
L(1)
f h(t, x(t))

...
L(n−1)
f h(t, x(t))

 (2.104)

Restricted to N , is a diffeomorphism on N . If ρ < n, then for every x0 ∈ D,
a neighborhood N of x0 and smooth functions φ1(x), . . . , φn−ρ(x) exist such that
equation (2.107) is satisfied for all x ∈ N and the map T (x) of equation (2.106),
restricted to N , is a diffeomorphism on N [32].

Another way to formulate the map T (x) is to use the derivatives of y = h(t, x(t)).
As one may observe that they have similar structure to how the transformation T (x)
is formulated, if one compares the two equations (2.103), and (2.104). Which then
gives that the transformation T (x) can be formulated as equation (2.105).

T (x) =


L(0)
f h(t, x(t))
Lfh(t, x(t))

...
Ln−1
f h(t, x(t))

 =


y
y(1)

...
y(i−1)

 (2.105)

Which is the transformation used for input to state linearization, that is when the
relative degree is equal to the number of states. However, if the relative degree is
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not equal to the number of states, input to output linearization may be used. Then
a more general transformation may be expressed as equation (2.106).

z = T (x) =



φ1(x)
...

φn−ρ(x)
L(0)
f h(t, x(t))
Lfh(t, x(t))

...
Ln−1
f h(t, x(t))


,

[
φ(x)
ψ(x)

]
=
[
η
ξ

]
(2.106)

φ1(x) to φn−ρ(x) are chosen such that T (x) is diffeomorphism on a domain D0 ⊂ D
and that the condition, equation (2.107), is fulfilled.

∂φi
∂x

g(t, x(t)) = 0, for 1 ≤ i ≤ n− ρ, ∀x ∈ D0 (2.107)

The new state model following from the nonlinear system (2.97)-(2.98) with the
variable transformation given in equation (2.106), and following the definition 2.30,
gives that the new state model becomes

η̇ =f0 (η, ξ) (2.108)
ξ̇ =Acξ +Bc γ(x) [u− α(x)]︸ ︷︷ ︸

v

(2.109)

y =Ccξ (2.110)

There ξ ∈ Rρ, η ∈ Rn−ρ, u = α(x) + β(x)v, γ(x) = β−1(x), and (Ac, Bc, Cc) is
matrices that have canonical form, representation of chain of ρ integrals. The terms
in the state-space model (2.108)-(2.110), is as given in the equations (2.111), and
(2.112).

f0 (η, ξ) = ∂φ

∂x
f(x)

∣∣∣∣
x=T−1(z)

(2.111)

γ(x) = β−1(x) = LgLρ−1
f h(x), and α(x) = −

Lρfh(x)
LgLρ−1

f h(x)
(2.112)

A thing to take into consideration is the unobservable states that one’s controller
may inflict to the internal dynamics. These internal dynamics are described in the
equation (2.108), in which by setting that ξ = 0, one then gets the so called zero
dynamics,equation (2.113).

η̇ = f0 (η, 0) (2.113)

If this zero dynamics, equation (2.113), is asymptotically stable then it is said that
the system is said to be of minimum phase. Then if no zero dynamics exists, then
the system is said to be minimum phase [32]. However, if unstable input to output
linearization may not work [37].
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2.9.2.2 Feedback Linearization Control

From the different ways to define a feedback linearization, given in chapter 2.9.2.1.
Gives a way to make the system as described in the beginning of the chapter 2.9.2,
look linear like, which one then may use linear control algorithms to control the
feedback linearized system. However, some problems may occur, such as that the
zero dynamics might become difficult to investigate. This will result in that the
control of the system is not guaranteed, because the zero dynamics, or the unob-
served states, may inflict unknown effects upon the system being controlled. Also,
because controlling a nonlinear system that has been feedback linearized, one may
also think about what type of solution one will get, namely a global, or local one.
There some pole cancellation of non-minimum phase may have occurred in the pro-
cess, and other possibilities also exists. Therefore it may be difficult to make a
working feedback linearization, and controller. One way to solve this problem with
that the zero dynamics may be to hard to solve, is to use "linear output selection
for feedback linearization" [37]. That is going to be used for the nonlinear control
algorithm, and may solve the difficult task of ensuring that the zero dynamics is at
least locally asymptotically stable.

Feedback Linearization - Linear Output Selection As described in the article
"linear output selection for feedback linearization" [37], it can be hard to ensure that
the zero dynamics is stable. Therefore, they are saying that if one uses a linear
output selection, an LQR as the output y(t) = h(x) = Kx(t). Then one can obtain
a relative degree of the open loop to one, and then at the desired operating, or
stationary point. The zero dynamics at that point and in a neighborhood is locally
(or globally) asymptotically stable. They use a feedback linearized system, with the
output y(t) as an LQR, that results in that one gets that y(t) = h(x) = Kx(t) as
can be seen in the nonlinear state-space realization (2.114)-(2.115).

ẋ(t) = f(x) + g(x)u(t) (2.114)
y(t) = h(x) = Kx(t) (2.115)

Following feedback linearization procedure one gets that the input u(t) to the system
dynamics, can be written as the equation (2.116).

u(t) = α(x) + β(x)v(t) (2.116)

They use a linear feedback gain for parameterizing the controller, however one can
also use another linear controller. As shown in the Figure 2.6, with that the output
is determined by the LQR output selection, K. With a controller that controls the
feedback linearized system with output selection. The controller is giving v(t) as an
output to be used as the input of the system, as is shown in the Figure 2.7.
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Figure 2.7: Illustrative figure of the feedback linearized system, with linear output
selection of K, and a controller.

In Figure 2.7 the controller can be either a one d.o.f controller or a two d.o.f con-
troller. While how to set the α(x), and β(x) can be found in the description of the
two feedback linearization ways, shown in equation (2.112). Using those equations
with that the output is the output selection K, y(t) = h(x) = Kx(t). Gives that
the α(x), and β(x) can be formulated by the equation (2.117), and (2.118).

α(x) = −Lfh(x)
Lgh(x) = −K1f(x)

K1g(x) (2.117)

β(x) = γ(x)−1 = 1
Lgh(x) = 1

K1g(x) (2.118)

What to set the design parameters of the LQR, they [37] use cheap control policy
for the output selection. It is to observe that the controller doesn’t become too fast,
as it may then potentially drift away from the local controller.
Remark. Cheap control policy is when for the controller it is less expensive to
increase the control signal, rather than the states. This then penalize the states
more than the control signal, leading to that one may have high control signal values,
rather than high state values.
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3
Approach

This chapter will describe how the approach of the different stages was done. From
making the models, to how the different controllers were implemented. This include
the workflow, mathematical formulation of the problem, the design of the simula-
tions, analysis of the models, and how the control algorithms were implemented.

3.1 Mathematical Model

The mathematical modeling of the described problem will be shown how it was
made. Together with the assumptions that was taken into making a general model
for this problem. This results in nonlinear and linear models. The parameters that
was used and the structure of the problem will be described.

3.1.1 Description of the System

The system to be investigated and controlled is a pendulum driven spherical robot
with an inverted pendulum to balance a mass on top of the sphere. This system
combines two common examples of systems used in describing a linear system such
as a pendulum, and a nonlinear system such as an inverted pendulum. In this
system they are connected in the center of the sphere, which also gives rise to some
connections questions between the two sub-systems. The center of the sphere is
connected via an axis to the edges of the sphere, a central axis of sort, with the
connection box in the center of the sphere. Each of these sub-systems having their
specific work to accomplish, for the pendulum it is to steer the spherical robot, and
the inverted pendulum to balance the mass. For the inverted pendulum to hold on
to a load, magnets that attract the load to the inverted pendulum inside the sphere.
This gives that the load will be able to move on the surface of the sphere, if some
appropriate bearings is used, which is assumed. A illustrative figure of the system
is shown in the Figure 3.1.
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Figure 3.1: Illustration of the system, featuring the pendulum, inverted pendulum,
and the load on top.

The Figure 3.1 is an illustration on how the system for this thesis will be formulated.
As can be observed in the figure, is that the central axis’s sides are mounted to
the sphere. In the middle of the central axis there is the connection box that is
connecting the pendulum and inverted pendulum to the center axis shaft.

3.1.2 Nominal Parameters and Uncertainties

The parameter values and uncertainties will be described and shown. It is to no-
tice that the parameter values are all artificially made with consideration to a real
system. Therefore take into consideration that the parameters are not subjected to
practical tests as mentioned in the Limitations, chapter 1.3.

A table of the used parameters and their corresponding Real Parametric Uncertain-
ties (RPU). However, due to the number of used parameters some are not considered
to have RPU. That is to lessen the computational time needed for all the tests.
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Name Nominal Value RPU
ms: Sphere Mass 3.0kg 0%
mp: Pendulum Mass 12.0kg 0%
mpl

: Pendulum Shaft Mass 0.1kg 0%
mh: Inverted Pendulum Mass 1.0kg 0%
mpu : Inverted Pendulum Shaft Mass 0.1kg 0%
ml: Load Mass 2.0kg 0%

Table 3.1: Nominal values and uncertainties of the mass parameters

Name Nominal Value RPU
rs: Sphere Radius 0.50 Meter 0%
rp: Pendulum Shaft Length 0.45 Meter 0%
rh: Inverted Pendulum Shaft Length 0.45 Meter 0%
l: Load Length (Center to sphere’s shell) 0.15 meter 0%

Table 3.2: Nominal values and uncertainties of the length parameters

Name Nominal Value RPU
ϕ: Slope of the Ground 0 0
cl: Load Inertia Coefficient 0.5 20%

Table 3.3: Nominal values and uncertainties of the other parameters

3.1.3 Lagrange’s Equation formulation
To make the nonlinear model, one can use one of the given approaches in Mathe-
matical Model Development, chapter 2.2. The one which is to be used is Lagrange’s
equation approach. The reason for this is because of that the method uses energy
instead of force as Newton’s approach utilizes, that may be beneficial in this case
of having several sub-systems. Another property that is of interest is the gener-
alized forces Qi. Which was given in the description of the method, chapter 2.3.
That givens that one only must considering the virtual work acting on the object in
question.

3.1.3.1 Mathematical Model Uncovering

From the illustration of the system given in Figure 3.1, one can see how the model
will be structured. While some more aspects will have to be clarified to make the
model, there some the assumptions which the model is taking will be needed to be
explained, and motivated. To make the model one may think about how to model
the spherical robot, some parts of the system that may need to be considered is.

• Central connection box.
• Internal relations between the different sub systems, and masses.
• External forces that effects the system, such as friction.
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• The magnetic forces that hold the load in place.
• Inertia’s that effects the system.

All these are to consider when formulating the model uncovering. Then one may
observe that the connection box is not specified, that is because there exist different
ways of making this connection box. Which may be described by that one can have
that the pendulum and inverted pendulum are coupled, or decoupled. This gives
that for this system one may need to see the two different models to determine which
of the models that are suitable for one’s system design. The two models are shown
in the Figures 4.1, and 4.2 respectively. Forward drive is quite straight forward, a
short explanation may be. If the pendulum angle is increasing, then an increased
force trying to push the pendulum down (depending on the gravity applied on the
pendulum mass, and the angle of the pendulum), that is then applied to the sphere
by the central axis shaft, making it begin to rotate. For the case of steering, or
more specific for this model type turning. Because as one can observe from the
Figure 3.1, the system has a central axis. Therefore, one can’t use the same model
as for forward, or backward drive. Because of the central axis to be able to steer
the system, the system may tilt in order to turn. This can be done by tilting the
pendulum sideways, this is shown in the turning model in Figure 4.3.

3.1.3.2 Nonlinear Model formulation

Formulation of the nonlinear mathematical model equations, using Lagrange’s equa-
tion. Which gives that the formulation of the nonlinear mathematical model equa-
tions is, with respect to the uncovering models in Figures 4.1, 4.2, and 4.3. May
be formulated with Lagrange’s equation, described in chapter 2.3. The formula for
the Lagrange’s equation is given in equation (2.5). If one replace the Lagrangian,
equation (2.6), with its individual energy components, namely the kinetic and po-
tential energies (L = T −U). One get that Lagrange’s equation, may be formulated
with the kinetic and potential energies, instead of Lagrangian, as shown by equation
(3.1).

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂U

∂qi
= Qi (3.1)

T is the kinetic energy and U the potential energy, while the parameter Qi is the
generalized forces that is effecting the system. In this case these are frictional forces,
and other external forces, which was explained in the chapter External Forces, 2.4.
As for the generalized coordinate’s, (or in this case the states that are considered)
named qi in the equation (2.5), and (3.1). That are of interests for the pendulum
drive system and balance system, can be observed in the Figures 4.1, and 4.2.
Which is θs, θh, θp, and the derivatives, there the different letters stand for, s sphere,
h inverted pendulum, p pendulum. The formulation of the kinetic terms (Ti, i =
s, h, p) and potential terms (Ui, i = s, h, p), depends on for which system case
one consider, coupled or uncoupled. That is because even if they are similar, they
will have some different kinetic and potential energies. Therefore one may need to
consider both options, for both cases one may as the Figures 4.1, and 4.2 shows.
Must consider the effect of the pendulums shafts, because their effect on the system
may or may not be sufficiently small to be neglected from the calculations. That’s
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why they are considered a part of the model and assumed to have their center of
mass in the centers of them. For each model shown in the Figures 4.1, 4.2, and
4.3, its formulation of the kinetic, and potential energies for each individual system
parts. This gives the following energies for each system parts, for the individual
models parts, are as shown in the models I, II, and III.

3.1.3.3 Nonlinear State-space Models

The Lagrangian, equation (2.6), is the kinetic energy minus the potential energy.
Which gives that the Lagrangian for each different model can be described by equa-
tion (3.2).

L = T − U = (Ts + Tp + Th)− (Us + Up + Uh) (3.2)
Using the Lagrangian given in the equation (3.2), with the energy terms shown in
the Model’s I, II, and III. One may formulate the resulting equations, from using
the Lagrangian in Lagrange’s equation, equation (2.5). In a nonlinear state-space
form, by the general description is shown in equation (2.24).

A

θ̈sθ̈h
θ̈p

+B

θ̇
2
s

θ̇2
h

θ̇2
p

+ C

θ̇sθ̇hθ̇sθ̇p
θ̇hθ̇p

+D

θ̇sθ̇h
θ̇p

+G = E (3.3)

The matrices A, B, C, and D are shown what variables they depend upon in the
equation (3.3), however for G and E may not be that apparent. The matrix G is for
the nonlinear ’constant’ terms, these may contain constants, but also trigonometrical
functions. The matrix E contains the external forces that effects the system , which
is proportional to the generalized forces in the Lagrange’s equation (2.5), named Q.
Therefore one may say that the matrices A, B, C, D, and G are obtained from the
Lagrange’s equation, equation (2.5), left side. While the matrix E is obtained from
the right side after calculating the virtual work that the external forces do onto the
system. The external forces, which was described in details in the chapter External
Forces, chapter 2.4. Some of the frictional forces from that can be summarized to
the equations (3.4)-(3.7), expressed as torque.

τsh
= µsh

FNh
rs = µsh

(FNl
+ FNm) rs (3.4)

τdh
= µdh

FNh
ωsr

2
s = µdh

(FNl
+ FNm) θ̇sr2

s (3.5)
τsg = µsgFNgrs (3.6)
τdg = µdgFNgωsr

2
s = µdgFNg θ̇sr

2
s (3.7)

There FMm is the force applied by the magnets, and the values of the normal forces
FNi

, i = g, l is given as.

FNl
= mlg

cos (θh + θs)
(3.8)

FNg = mtotg

cos (ϕ) (3.9)

The contributions from the generalized forces to the dynamics in the Lagrange’s
equation, equation (2.5), with respect to the states θs, θh, θp. Results in different
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effecting factors in Q dependent on the states q, with the input torques for the
pendulums (τh, and τp). However, an important assumption of the model is that
the body is rigid, and therefore there is no slip. This gives by the definition of
virtual work, that virtual work is only done if there is a virtual displacement. By the
assumption of no slip into the model, gives that the frictions in equations (3.4)-(3.7)
do not have any virtual displacement. Giving that they are not contributing towards
the generalized forces [29]. Not to be confused with the external torques from the
motors of the system, τp is the torque from the driving motor for the pendulum,
and τh is the torque from the inverted pendulum motor. They will contribute to
the generalized forces depending on the angles that they are effected on, that differs
from the two cases of coupled, or decoupled model, show in the Model’s I, and II.
To achieve that the head kept aligned with the inverted pendulum, a magnetic field
is used that is acting between the load, and the inverted pendulum. For the sphere
to freely roll around on the sphere, using some sort of bearing. This will contribute
to some external force being applied onto the sphere, a magnetic field which can be
formulated in different ways, which was shortly described in The magnetic forces,
chapter 2.4. However, for simplicity it is assumed that it has a constant force which
is sufficiently large so that the head will be kept in place. Because it is assumed
that the sphere is rigid enough that there won’t be any virtual displacement, leads
to that no virtual work is done. Then it is not contributing to the system, and is
included in the equations (3.4)-(3.7), as FNm , a constant force.

3.1.4 Linear State-space Models

To make the linear state-space models, linearization of the nonlinear models given
in the chapter 2.5, equations (2.22)-(2.23), as explained in the chapter 2.6, is appro-
priate. Then one would need to have a reasonable stationary point, to linearize at.
This stationary point must result in that the nonlinear function is equal to zero, and
is close to the working, or operating area. That is because of the nonlinear property
which is lost in the linearization, which may result in that the further away from
that point the larger the error becomes. Therefore, one may argue which stationary
point to use, for that reason a general expression of the linearization will be obtained
for the models. For the case of the nonlinear state-space model representation given
in equation 3.3, (shown here for clarity).

A

θ̈sθ̈h
θ̈p

+B

θ̇
2
s

θ̇2
h

θ̇2
p

+ C

θ̇sθ̇hθ̇sθ̇p
θ̇hθ̇p

+D

θ̇sθ̇h
θ̇p

+G = E

To simplify the nonlinear models from trigonometrical functions one may use the
Taylors series, to express the trigonometrical functions as a number of terms instead,
Taylor polynomial, shown in equations (2.25)-(2.26). In this case it may be suitable
to use a first-order approximation. This method is called small-angle approximation,
and as the name say it is an approximation of these trigonometric functions when
they have small angels. This gives the approximation of the trigonometric functions,
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first-order approximation.

sin (θ) ≈ θ

cos (θ) ≈ 1

The angle of the ground slope ϕ, may be argued not to be considered small. This
results in that the assumption of small angles could give larger error for the slope,
this is assumed not to be of major issue. Using the general nonlinear function
formulation, equations (2.22)-(2.23).

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

Then to linearize the nonlinear model to a linear model of the form.

State (dynamic) equation: ẋ(t) = Ax(t) +Bu(t)
Measurement equation: y(t) = Cx(t) +Du(t)

x(t) is the states and u(t) the input signals. Using a stationary point (x0, u0) to
linearize the nonlinear functions f and h, gives as shown in the equation (2.35), and
(2.36). f is the resulting nonlinear function given from Lagrange’s equation (2.5).
While the states that are considered are θs, θh, θp, θ̇s, θ̇h, θ̇p, and the input signal are
the torque of the motors, τh, and τp. This gives that the internal states and control
signal is defined as shown in the equations (3.10), and (3.11).

x(t) =
[
θ̇s θ̇h θ̇p θs θh θp

]T
(3.10)

u(t) =
[
τp τh

]T
(3.11)

Using the nonlinear state-space equation (3.3), and rewrite it into a more workable
form for linearization, into the equation (3.12).θ̈sθ̈h

θ̈p

 =

f1
f2
f3

 = A−1E − A−1B

θ̇
2
s

θ̇2
h

θ̇2
p

− A−1C

θ̇sθ̇hθ̇sθ̇p
θ̇hθ̇p

− A−1D

θ̇sθ̇h
θ̇p

− A−1G (3.12)

The inverse matrix of A can be structured in its elements with the constant terms
of ai,j, for every i row, and j column.

A−1 =

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

 (3.13)

Using the linearization of the state (dynamic) equation (2.35) to linearize the non-
linear state-space model (3.12), into the linearized model given in equation (2.31).
With respect to the states θ̇s, θ̇h, θ̇p, θs, θh, θp, and the input states τp, and τh, shown
in the equations (3.10), and (3.11), with a general stationary point. Gives using
that the inverse matrix of A is defined as in equation (3.13), that the linear models
becomes as shown in the Models VI, and V.
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3.1.5 Inertias of the Models
The inertias of the individual parts of the system, is a question. They may be
assumed to be a certain geometrical structure like a cylinder or assumed to be a
thin line. This is to be considered for each of the parts, that is because even though
some parts may have negligible influence on the total system, it is not known for
certain. Therefore the different inertias are assumed to be as shown in equations
(3.14)-(3.19), with the assumed form and moment of inertia.

Thin spherical shell: Is = 2
3msr

2
s (3.14)

Unknown geometrical form: Il = clmlr
2
l (3.15)

Hemisphere: Ip = 2
5mpr

2
p (3.16)

Hemisphere: Ih = 2
5mhr

2
h (3.17)

Narrow straight bar: Ipl
= 1

12mpl

(
rp
2

)2
(3.18)

Narrow straight bar: Ipu = 1
12mpu

(
rh
2

)2
(3.19)

The load inertia Il is having a coefficient cl to it, that is because it is hard to define
exactly what type of geometrical structure the load will have. Therefore, it has an
assumed constant coefficient in front of it. Which is done in order to observe the
effect of different loads by using RPU on the coefficient cl for the load. The nominal
values, and RPUs are shown in the tables 3.1-3.3.

3.2 Simulation Programs
To evaluate the different control algorithms and observe how the system behaves
from them. Simulation will be made, to find how they perform in terms of stabilizing
and regulating the nonlinear mathematical model. The questions that the simulation
will be made to answer, can be found in chapter Research Questions, chapter 1.4.
However, because of limitations found in the chapter Limitations, chapter 1.3. Only
simulations will be made to verify the models and controllers. Therefore, it is of
importance to have reliable simulation setup, which to base upon. To synthesis the
controllers and simulate the controllers behavior with the nonlinear mathematical
models, MATLAB & Simulink (By MathWorks) will be used for the simulation
programs.

3.2.1 MATLAB
To build up the models and synthesis the controller algorithms MATLAB (Math-
Works) will be utilized for this purpose, MATLAB R2019a. The main reason is that
as mentioned Simulink will also be used, which gives the possibility of utilizing some
properties that follows. That they can be used together, what the meaning by that
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is that if MATLAB have some parameters values in its workspace then Simulink
may also use these. This gives that when one synthesis the linear and nonlinear
controllers in MATLAB, one can use these resulting controllers in the simulation
in Simulink. Which gives that is becomes easier to test out different settings of
controllers, and that one can utilize the functions that MATLAB have to synthe-
sis controllers. The linear and nonlinear models will be defined depending on the
controller to be used, with or without real parametric uncertainty. MATLAB will
also be used to determine properties of the models, such as controllability, stabiliz-
ability, observability, and detectability. But also, the combination of controller and
model to check nominal stability, nominal performance, robust stability, and robust
performance. Which are defined in Linear State-space Model Analysis, chapter 2.7.1.

3.2.2 Simulink
Using the resulting mathematical models and control algorithms fromMATLAB, one
may use Simulink to formulate a model based design of the system. The internal
dynamics of the system are described by the nonlinear mathematical models IV, and
V, depending on which model one wish to test. The models are given by a MATLAB
function block, to call the MATLAB functions which contains the mathematical
formulation of the system. This gives that the output is described by the angular
acceleration, and therefore is integrated to angular velocity and angular position.
Which gives that all tests of the control algorithms have a common building block
in the Simulink model, which is shown in the Figure 3.2.

Figure 3.2: The internal dynamics of the nonlinear system, a building structure
used in all simulations of the control algorithms.

Inside the MATLAB function block, in Figure 3.2, depending if one use the coupled
model, or the decoupled model, the parameter coupled_model_use will decide which
one to use for testing. This structuring of separating the internal dynamics of the
system, and the control algorithm can be viewed as to following the structure found
in Figure 2.2a. With the internal dynamics of the system designated as the P in the
figure, and K as the controller. As pointed out earlier this formulation is suitable
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for some control algorithms, this may need to be expanded to add uncertainties, in
this case real parametric uncertainties. Then the structure observed in Figure 2.2b
is more suitable for that. However, the ∆ is not a part of the simulation, it is for
calculating the control algorithms that needs it.

Measurement Noise The simulations will be done with and without measure-
ment noise, a white Gaussian noise of low magnitude. The noise is make by
MATLAB as an MATLAB function block in Simulink, the MATLAB function
’wgn(m,n,power)’ is used to create white Gaussian noise. ’m’, and ’n’ is defin-
ing the noise matrix output size of the MATLAB function, while the ’power’ is the
power of the noise. That may be interpreted in different ways, named ’powertype’
which is chosen as to be linear. This function may not be directly design for this,
however it does give white Gaussian noise, which will add a realistic touch to the
simulations. The choice of power of the white Gaussian noise, which was determined
to be very small, just to simulate some static noise, was chosen to be of the power
10−4.

Initial Values & Goal The initial values of the states is determined to be 10%
of the steady state, to observe how well it manage to stabilize the system away from
the steady state value.

3.3 Model Analysis Evaluation
Analysis of the model is important for the reason of observing if one even may control
and stabilize the system. Some parts of the model may contain unobservable states
for the controller, and if these states are not stable, the system may become unstable.
Therefore, it is of importance to analyze the models of the system, both with and
without the controller. Theoretical background of model analysis, with and without
controller, can be found in Model Analysis, chapter 2.7.

3.3.1 Linear Model Analysis
Analysis of the linear models shown in the Models VI, and VII, with the parameters
shown in the tables 3.1-3.3. Is done with the methods given in Linear State-space
Model Analysis, chapter 2.7.1. In which is done with respect to that the C, and D
matrices for the linear state-space representation, given in the equation (2.32). Is
defined as in equation (3.20).

C =

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , D =

0 0
0 0
0 0

 (3.20)

Then analysis of the models with the C, and D matrices, gives that one may express
the analysis in three stages. That is because there are real parametric uncertain-
ties in the system. Which gives that in order to analyze the different properties of
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the models, can be done by first checking the nominal linear models without con-
trollers. Followed with the nominal linear models with controllers, and last check
the uncertain linear models with controllers.

Nominal Linear Model’s Analysis without Controller Analysis of the nom-
inal linear models without controllers, is done before making the controllers to check
properties of the model itself. Such as the eigenvalues, controllablity, stabilizabiltiy,
observability, and detectability. Which are evaluated by the ways mentioned in the
chapter 2.7.1. That is to get some intuition of how the system dynamics is, and if
the models can be controlled and stabilized.

Nominal Linear Model’s Analysis with Controller This analysis needs a
controller to have been synthesized beforehand, which is then used to control the
system. That becomes as shown in the Figure 2.2a. This is to observe if the
controller can make the system stable, and if the performance specification is upheld,
as described in the chapter 2.7.1. Evaluation of the nominal stability (NS), and
nominal performance (NP) is followed by its definitions 2.10, and 2.11.

Uncertain Linear Model’s Analysis with Controller Similar to the Nominal
Linear Model’s Analysis with Controller case with that one adds the real parametric
uncertainties (RPU) found in the parameter tables 3.1-3.3. This gives a new view
of the system, that is if one considers that the system is not perfect and will have
some defects, imperfection, or errors from the original drawing. Which gives a range
of possibilities for different combinations of parameter values, that one may need
to consider in some worst-case scenario. The parameters uncertainty may turn out
to make the system too difficult to control, costly, and possibly even impossible to
control, if the uncertainty is too high. This uncertainty may be added as a block ∆,
as is illustrated in the Figure 2.2b. Which is to calculate the robust stability, and
robust performance by its definitions 2.12, and 2.13, as shown in the chapter 2.7.1.

3.3.2 Nonlinear Model Analysis

Analysis of the nonlinear models, coupled model IV, and decoupled model V. With
the parameters shown in the tables 3.1-3.3. Could be done with the method given
in Nonlinear State-space Model Analysis, chapter 2.7.2. However, as mentioned it
can be hard to analyze a nonlinear model for various reasons. Therefore, an easier
way for this is to assume that if the linear model is stable, then the nonlinear model
around the linearization point is also stable. Which may be strengthen by that the
stationary point is calculated with the nonlinear models. This gives that the point
itself is assumed to have a stable value at that point, and in some neighborhood
around the stationary point.
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3.4 Control Algorithms Evaluation
In this chapter a walk-through in the how the controllers were made, and the used
design parameters. Following the design method in Control Algorithms, chapter 2.9.

3.4.1 Linear Control algorithms
The linear control algorithms implementation will be explained and shown here.
Theoretical explanations of these algorithms are given in Linear Control Algorithms,
chapter 2.9.1. However, PID controller will not be made, shown because it is a
commonly used controller in some areas, such as industry. As explained in Simu-
lation Programs, chapter 3.2, MATLAB and Simulink will be used to simulate the
controllers behavior onto the unstable nonlinear system. For the output feedback
control algorithms, the C, and D matrices of the linear state-space model is given
in the equation (3.20).

3.4.1.1 Linear Quadratic Controllers (LQR, LQI, LQG)

Implementation of the linear quadratic controllers, was done with the MATLABs
built in functions, that can use the Riccarti functions, and other properties to calcu-
late the controllers. The controllers are depending on the tuning variable matrices,
or design parameters, that is shown for each of the three cases of linear quadratic
controllers (LQR, LQI, and LQG). How one can solve the different linear quadratic
controllers are shown in Linear Quadratic Controllers, chapter 2.9.1.2.

Linear Quadratic Regulator (LQR) Linear quadratic regulator, or LQR, the
controller is made using MATLABs build in function named ’lqr’. Which takes in
the linear system to be controlled together with three design matrix parameters.
The design matrix parameters that they name ’Q’, ’R’, and ’N’, is equivalent to
the design matrix parameters Qx, Qu, and N as described in the Linear Quadratic
Controllers, chapter 2.9.1.2. They are used to express how one should penalization
the different signals and states, with the cost function, as shown in the equation
(2.54). As mentioned, one can have a one or two degree of freedom controller, either
the error of the system is making the control signal, or the reference and feedback is
separately considered. Then added together to make the control signal. To test the
full potential of the LQR, an two degree of freedom controller is applied, the gain
matrix for the reference is calculated with the equation 2.69. Using cheap control
policy for the design choice of the design parameters, this means that one makes it
less expensive for the controller to have high input signals, rather than high state
values. This gives that the design parameters for the LQR, became as shown in the
equation (3.21).

Decoupled Model LQR controller parameters

Q =
[
I6×6

]
, R =

[
0.1 0
0 0.1

]
, N =

[
06×2

]
(3.21)

The resulting simulations with and without noise, is shown in the Linear Quadratic
Controllers, chapter 4.3.1.
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Linear Quadratic Integrator (LQI) Linear quadratic integrator, or LQI, is
as one can say an LQR controller with an added integral action. The controller
is made using MATLABs build in function named ’lqi’, which takes in the linear
system to be controlled together with three design matrix parameters. The design
matrix parameters that they name ’Q’, ’R’, and ’N’, is equivalent to the design
matrix parameters Qx, Qu, and N as described in the Linear Quadratic Controllers,
chapter 2.9.1.2. However, the matrix Q is extended to also include the integral
action error penalizations. They are used to express how one should penalization
the different signals and states, with the cost function, as shown in the equation
(2.54). With that the states x is expanded with the integral action, to z. One can
have a one or two degree of freedom controller, either the error of the system is
making the control signal, or the reference and feedback is separately considered.
Then added together to make the control signal. To test the full potential of the LQI,
an two degree of freedom controller is applied, the gain matrix for the reference is
calculated with the equation 2.69. Using cheap control policy for the design choice of
the design parameters, this means that one makes it less expensive for the controller
to have high input signals, rather than high state values. That however gave that
the signals became too high causing instability, therefore expensive control policy
was determined to be needed. This gives that the design parameters for the LQI,
became as shown in the equation (3.22).

Decoupled Model LQI controller parameters

Qstates =
[
I6×6

]
, Qintegration =

1 0 0
0 1 0
0 0 10−10


Q =

[
Qstates 0

0 Qintegration

]
, R =

[
100 0
0 100

]
, N =

[
06×2

] (3.22)

The resulting simulations with and without noise, is shown in the Linear Quadratic
Controllers, chapter 4.3.1.

Linear Quadratic Guassian (LQG) Linear quadratic Gaussian, or LQG, is as
one may say an LQR controller with that one can’t observe all the states, therefore
one has to estimate them with an state observer. The controller can be made using
MATLABs build in function named ’lqg’. That calculate an optimal linear quadratic
Gaussian controller, consisting of an LQR (or LQI), and a Kalman filter. However,
because of principle of separation, definition 2.23, one can separately design the
feedback controller and the state observer. Since an LQR has already been made,
and to observe how well it improves with a Kalman filter, the LQR from before
will be used. While a Kalman filter is made using MATLABs built in function
’Kalman’. The function ’Kalman’ takes in three design matrix parameters, namely
’Qn’, ’Rn’, and ’Nn’, which is the covariance matrices for the Kalman filter. The
design parameters for the Kalman filter, became as shown in the equation (3.23).

Qn =
[
0.1 0
0 0.1

]
, Rn =

0.01 0 0
0 0.01 0
0 0 0.01

 , Nn =
[
02×3

]
(3.23)
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The resulting simulations with and without noise, is shown in the Linear Quadratic
Controllers, chapter 4.3.1.

3.4.1.2 H2 and H∞ Controller

The implementation of the H2, and H∞ controllers is done in a similar way to each
other. Following the explanation given in H2, and H∞ Control, chapter 2.9.1.3.
With that the system structure are defined as a standard problem formulation with
uncertainties, shown in the Figure 2.2b. The system block P in the Figure 2.2b, is
the nominal open-loop plant state-space model GNominal. With weights to certain
inputs, and outputs. This is to filter parts of the signals and express contributions
to the plant P . The implementation structure for these two controllers may be seen
in the Figure 3.3.

GNominal Σ Σ

Gd

∆ u

Controller r

Σ

Wdd

Wrr

Wnn

WiM

Wu

Σ WP

+

−

+
+

+

+
z

u

+

+
v

Figure 3.3: Approach of a standard problem formulations of feedback designs,
with uncertainty and weighted signals. To construct the system, which is used to
defined the H2, and H∞ controllers.

The input to the system which may be denoted as w, contains the individual signals
of disturbance d, reference r, and noise n. The output named z, depends on what
one wants to have to measure. For this case, it is the error of the system compared
to some reference. Each of the signals have a weight block which is as described
in the H2, and H∞ controller synthesis theory, chapter 2.9.1.3, a way of tuning
the system build up. To find the appropriate weights was done by investigating the
uncertain system, more specifically the singular values of the uncertain system. That
was to find how the uncertainties was affecting the system, so one could determine
the appropriate weights to make the weights rule out unnecessary areas to look at.
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What that mean is that for the weight WiM one wants to observe the area where
the model is uncertain. For our systems singular values of the uncertain system is
shown in the Figure 3.4.

Figure 3.4: The singular value plot of the uncertain system, of the decoupled model,
that shows areas where the uncertainty is effecting the singular values of the system.

From the Figure 3.4, one can observe the area of frequencies that is needed to be
observed to see all uncertain parts of the system. WiM can be obtained with filters
on the diagonal. While for the noise, Wn, is assumed to be in the higher frequencies,
with low power. The reference is not affected and therefore is identity matrix. While
the input signal is changed with coefficients to change the input to the system. For
the WP , that is the performance weight. It works in that the performance is a
measurement of how well the system is behaving. The weights of the system used
to get the results shown in the chapter 4.3.3, and 4.3.2. Shown in Laplace domain,
by the equations (3.24)-(3.26).

Gd(s) =

1 0 0
0 1 0
0 0 1

 , Wd(s) =


0.01

103·s+1 0 0
0 0.001

103·s+1 0
0 0 0.01

103·s+1

 , Wr(s) =

1 0 0
0 1 0
0 0 1


(3.24)

Wn(s) =


0.01·s
s+1 0 0
0 0.001·s

s+1 0
0 0 0.01·s

s+1

 , WP (s) =


0.8
s+1 0 0
0 0.95

s+1 0
0 0 0.8

s+1

 (3.25)

WiM(s) =
[
0.005 · 106·s+1

104·s+1 0
0 0.01 · 106·s+1

104·s+1

]
, Wu(s) =

[
0.8 0
0 1

]
(3.26)

The nominal system GNominal that is defined as the nominal decoupled model. Then
to make the controllers MATLABs built in functions for H2, and H∞ optimal con-
trollers is used.
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H2 Controller Was made using MATLABs built in function ’h2syn’, which takes
in a P the open-loop plant state-space model P shown before. Together with three
more inputs namely ’nmeas’, ’ncont’, and ’opt’. ’nmeas’ is the number of measure-
ment output signals of the plant P , which here is equal to three. ’ncont’ is the
number of control input signals of the plant P , which is equal to two. ’opts’ is
optional options for the computation of the H2 controller, more specifically is the
’h2synOptions’ in MATLAB. The resulting simulations with and without noise, is
shown in H2 Controller, chapter 4.3.2.

H∞ Controller Similarly, to how the H2 controller was formulated, with instead
using MATLABs built in function ’hinfsyn’. That takes in a P that is the open-loop
plant state-space model P , while ’nmeas’, and ’ncont’ is the same as for the H2
controller. ’nmeas’ is the number of measurement output signals of the plant P ,
which here is equal to three. ’ncont’ is the number of control input signals of the
plant P , which is equal to two. ’opts’ is optional options for the computation of the
H∞ controller, more specifically is the ’hinfsynOptions’ in MATLAB. An input that
differs compared to the H2 controller, H∞ controller may have either ’gamTry’, or
’gamRange’ as an input. ’gamTry’ is for specifying an upper limit on the gamma
value of the controller, that may potentially fail to get a controller if too low. While
’gamRange’ is to specify an interval for the gamma value to limit the computational
time. The resulting simulations with and without noise, is shown in H∞ Controller,
chapter 4.3.3.

3.4.1.3 µ-synthesis (DK-iteration)

Implementation of the µ-synthesis controller, or as mentioned when describing the
µ-synthesis, in chapter 2.9.1.4, specifically DK-iteration. The implementation of this
controller was done by defining a system similar with how theH2, andH∞ controllers
was defined, showed in the Figure 3.3. Except with no uncertainty block ∆, with
that the uncertainty instead is inside the plant P , giving that the real parametric
uncertainty is inside the system matrix G. While the other weights are equal to their
values in equations (3.24)-(3.26). This gives an appearance similar to the standard
problem formulation without uncertainty, seen in Figure 2.2a. To solve this, one
can follow the steps of DK-iteration given in µ-synthesis, chapter 2.9.1.4, or as done
here use MATLABs built in function ’dksyn’. The input ’p’ is the uncertain open-
loop plant state-space model, which then the real parametric uncertainties need to
be a part of the system matrix. While similarly to the H2, and H∞ controllers,
’nmeas’ is the number of measurement output signals of the plant P , which here is
equal to three. ’ncont’ is the number of control input signals of the plant P , which
is equal to two. ’opts’ optional options for ’dksyn’ where one can specify the use
of DK-iteration or DGK-iteration, which is another approach one could use. The
resulting simulations with and without noise, is shown in µ-Synthesis, chapter 4.3.4.
However, due to stability problems of the controller containing unstable parts, only
the stable part of the controller is being used for the simulation. Giving that some
parts of the system is missing.
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3.4.2 Nonlinear Control algorithms
The nonlinear control algorithms implementation will be explained and shown here.
Theoretical explanations of these algorithms are given in Nonlinear Control Algo-
rithms, chapter 2.9.2. As explained in Simulation Programs, chapter 3.2, MATLAB
and Simulink will be used to simulate the controllers behavior onto the unstable
nonlinear system.

3.4.2.1 Feedback Linearization

The approach to make Feedback Linearization is not as strait forward as the linear
control algorithms. Theoretical background for this approach is given in the chapter
2.9.2.1. Which can be explained by either input to state linearization or input to
output linearization, depending if one have to consider some zero dynamics. Here
one have to find the relative degree, the state transformation, and check the zero
dynamics to be stable.

Formulating the Problem Using the general form of the models given by the
equation (3.3), to formulate the nonlinear equations (2.97)-(2.98). Which is for
the formulation of the transformation of the state, T (x), and finding the relative
degree. The states is then defined as equation (3.27), with its derivatives shown in
the equation (3.28).

x =



θ̇s
θ̇h
θ̇p
θs
θh
θp


=



x1
x2
x3
x4
x5
x6


(3.27)

ẋ =



f1
f2
f3
f4
f5
f6


=


−A−1B

x
2
1
x2

2
x2

3

− A−1C

x1x2
x1x3
x2x3

− A−1D

x1
x2
x3

− A−1G

x1
x2
x3


︸ ︷︷ ︸

f(x)

+


−A−1E

0
0
0


︸ ︷︷ ︸

g(x)

u

(3.28)
Instead of using the lie derivatives, the derivatives of the output y(t) is used to
determine the relative degree and the transformation of the state T (x). With the
output set to y = h(x) = x4 = θs, gives the calculation shown in equation (3.29).

y(t) =h(x) = x4 = θs, ∼ no inputs
ẏ =ẋ4 = ẋ4 = x1 = θ̇s, ∼ no inputs
ÿ =ẋ1 = ẍ4 = θ̈s = f1(x) + g1(x)u, ∼ inputs

(3.29)

This gives that the relative degree is equal to two. Which is telling us that there
exist some dynamics which is not observable, namely the zero dynamics. However,
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formulating the transformation map T (x) with that is known, then becomes as
shown in the equation (3.30).

z = T (x) =



φ1
φ2
φ3
φ4
y
ẏ


=
[
η
ξ

]
=⇒ ξ =

[
θs
θ̇s

]
(3.30)

Zero Dynamics The zero dynamic is the unobservable states of the feedback
linearized system, defined by equation (2.113). Using this definition with the model
may result in difficult equation. Which for this problem is occurring, that’s why it
cannot be guaranteed to have stable zero dynamics, because one can’t observe if it
is stable or not.

Input Manipulation for Linearization Using the feedback linearization to for-
mulate a control signal u(t), that results in that the nonlinear system behaves like
a linear one. This control signal can be formulated as mentioned in Feedback Lin-
earization, chapter 2.9.2.1. Which gives that one may formulate the new linear
looking state-space using a new v control signal.

ξ̇ =Acξ +Bc γ(x)[u− α(x)]︸ ︷︷ ︸
=v

y =Ccξ
(3.31)

Giving that one can formulate the control signal u(t) to cancel out the non-linearity.
The control signal u(t) may be formulated as shown in equation (3.32).

u(t) = α(x) + β(x)v =⇒ v = β−1(x)[u− α(x)] (3.32)

This gives that β−1(x) = γ(x), the calculation to formulate the control signal u(t)
is shown in the equation (3.33).

ÿ =θ̈s = f1 + g1u

u =α(x) + β(x)v
u =− g1(x)f1(x) + g−1

1 (x)v = g1(x) (−f1(x) + v)
=⇒ÿ = f1(x) + g1

(
−g−1

1 f1(x) + g−1
1 v

)
= v

(3.33)

This gives that the different parameters β and α becomes as shown in the equation
(3.34).

α(x) =− g−1
1 (x)f1(x)

β(x) =g−1
1 (x) =⇒ γ(x) = g1(x)

(3.34)

However, due to that the zero dynamics is not guaranteed to be stable, if one tries
to control this feedback linearized system one can get that it behaves strangely, or
even unstable. That is depending on if the zero dynamics is stable or not, therefore
another approach is to be considered.
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3.4.2.2 Feedback Linearization Controller

As shown in the Feedback Linearization, chapter 3.4.2.1, is that to check if the zero
dynamic is stable or not, will be a hard task. Therefore instead of having to checking
the zero dynamics, one can use linear output selection for the feedback linearization.
Which is described in Feedback Linearization Control, chapter 2.9.2.2. Using this
approach with the states given in equation (3.27), and its derivative given in the
equation (3.28). It is possible to formulate a feedback linearized control using the
feedback gain of an LQR controller, as shown in the Figure 2.7. This is as mentioned
done by setting the output h(x) equal to a linear function of the states obtained
from LQR design. Giving that the nonlinear state-space model becomes as shown
in the equations (3.35).

ẋ =f(x) + g(x)u
y =K1x

(3.35)

Then the feedback linearization parameters α(x), and β(x) can be calculated by
using that the output is h(x) = y = K1x. With that it has a relative degree of one,
the calculations are shown in the equation (3.36).

y =K1x

ẏ =K1ẋ

=K1 (f(x) + g(x)u)
(3.36)

To find a u that makes the system look linear like, could be if one use that u is as
shown in equation (3.37).

u =α(x) + β(x)v
=− (K1g(x))−1 (K1f(x)) + (K1g(x))−1 v

(3.37)

The equation (3.37), shows as also mentioned in the description of this approach in
chapter 2.9.2.2. That the α(x), and β(x) are defined as in equation (3.38).

α(x) =− K1f(x)
K1g(x)

β(x) = 1
K1g(x)

(3.38)

The two different LQRs used to make this feedback linearization and controller,
using cheap control policy. K, the output, has been chosen to have the design
parameters shown in equation (3.39).

Q =
[
I6×6

]
, R =

[
0.01 0

0 0.01

]
, N =

[
06×2

]
(3.39)

While the for the controller to not have to fast control, it does not have as strong
values for its design parameters. The design parameters for the LQR controller is
shown in the equation (3.40).

Q =
[
I6×6

]
, R =

[
0.1 0
0 0.1

]
, N =

[
06×2

]
(3.40)

The resulting simulation with and without measurement noise, can be seen in the
Feedback Linearization Control, chapter 4.4.1.
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4
Results

In this chapter the results from the simulations, and the different properties consid-
ered in the evaluation of the different control algorithms are shown. This will include
a small explanation of the results, a more detailed analysis is given in Discussion,
chapter 5. With the conclusions discussed in the Conclusion, chapter 6.

4.1 Mathematical Models
Here the resulting linear and nonlinear models will be shown. With the resulting
uncovering models, and the energies used for the Lagrange’s equation. The linear
and nonlinear models will be expressed in state-space formats, that was mentioned
in the Mathematical Modelling, chapter 2.2. For the linear state-space will be given
as the equations (2.31)-(2.32). While the nonlinear state-space will be given by the
equation (3.3), both are shown below for clarity.

Nonlinear State-space Model

A

θ̈sθ̈h
θ̈p

+B

θ̇
2
s

θ̇2
h

θ̇2
p

+ C

θ̇sθ̇hθ̇sθ̇p
θ̇hθ̇p

+D

θ̇sθ̇h
θ̇p

+G = E

Linear State-space Model

ẋ(t) =Ax(t) +Bu(t)
y(t) =Cx(t) +Du(t)

4.1.1 Models with Energies
The resulting uncovering models of the system, which defines the relations between
the different masses, lengths, and more. With its formulation of the kinetic and po-
tential energies for each individual system parts (sphere, pendulum, inverted pendu-
lum, and load). With the short notations (s: sphere, p: pendulum, and h: inverted
pendulum, l: load), for the individual models parts.
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Model I. Coupled Model
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Figure 4.1: Coupled model for the back-, and forward drive of the pendulum driven
spherical robot.
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4. Results
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4. Results

Model II. Decoupled Model
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Figure 4.2: Decoupled model for the back-, and forward drive of the pendulum
driven spherical robot.
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4. Results
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4. Results

Model III. Turning Model
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Figure 4.3: Turning model for the pendulum driven spherical robot, which de-
scribes the turning radius relationship.
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4. Results
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4. Results

4.1.2 Nonlinear State-space Model

The resulting matrices of the nonlinear state-space models. Which is given in the
format by equation (3.3), with Ai,j is the element in the i row, and j column of
matrix A.
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4. Results

B1,1 =
(
mhrh + 1
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4. Results

Model V. Nonlinear Decoupled Model
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4. Results

4.1.3 Linear State-space Model
The resulting matrices of the linear state-space models. Which is given in the format
by the equations (2.31)-(2.32), with Ai,j is the element in the i row, and j column
of matrix A.

Model VI. Linear Coupled Model

A (i, 1) =− ai,1 [b1,1]x0,u0

(
2θ̇s0

)
− ai,1 [c1,1]x0,u0

(
θ̇h0

)
− ai,1 [c1,2]x0,u0

(
θ̇p0

)
A (i, 2) =− ai,1 [b1,2]x0,u0

(
2θ̇h0

)
− ai,1 [c1,1]x0,u0

(
θ̇s0

)
− ai,1 [c1,3]x0,u0

(
θ̇p0

)
A (i, 3) =− ai,1 [b1,3]x0,u0

(
2θ̇p0

)
− ai,1 [c1,2]x0,u0

(
θ̇s0

)
− ai,1 [c1,3]x0,u0

(
θ̇h0

)
A (i, 4) =ai,1

[(
mhrh + 1

2mpurh +mlrl

)
rs −

(
mp + 1

2mpl

)
rprs

] (
θ̇2
s0

)
+ ai,1

[(
mhrh + 1

2mpurh +mlrl

)
rs

] (
θ̇2
h0

)
+ ai,1

[(
mhrh + 1

2mpurh +mlrl

)
rs −

(
mp + 1

2mpl

)
rprs

] (
θ̇2
p0

)
+ ai,1 [(2mhrh +mpurh + 2mlrl) rs]

(
θ̇s0 θ̇h0

)
+ ai,1 [(2mhrh +mpurh + 2mlrl) rs − (2mp +mpl

) rprs]
(
θ̇s0 θ̇p0

)
+ ai,1 [(2mhrh +mpurh + 2mlrl) rs]

(
θ̇h0 θ̇p0

)
+ ai,1

[
g
(
mhrh + 1

2mpurh +mlrl

)
− g

(
mp + 1

2mpl

)
rp

]
+ ai,2

[
g
(
mhrh + 1

2mpurh +mlrl

)]
+ ai,3

[
g
(
mhrh + 1

2mpurh +mlrl

)
− g

(
mp + 1

2mpl

)
rp

]
A (i, 5) =ai,1

[(
mhrh + 1

2mpurh +mlrl

)
rs

] (
θ̇2
s0 + θ̇2

h0 + θ̇2
p0

)
+ ai,1 [(2mhrh +mpurh + 2mlrl) rs]

(
θ̇s0 θ̇h0 + θ̇s0 θ̇p0 + θ̇h0 θ̇p0

)
+ (ai,1 + ai,2 + ai,3)

[
g
(
mhrh + 1

2mpurh +mlrl

)]
A (i, 6) =A (i, 4)
B (i, 1) =ai,1 + ai,2 + ai,3

B (i, 2) =ai,1 + ai,3

Where the integral i is for i = 1, 2, 3.
A (4, 1) =1
A (5, 2) =1
A (6, 3) =1
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4. Results

Disturbance matrix for the slope of the ground.

B2 (i, 1) =− ai,1
[(
mhrh + 1

2mpurh +mlrl

)
rs −

(
mp + 1

2mpl

)
rprs

] (
θ̇2
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)
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[(
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2mpurh +mlrl

)
rs

] (
θ̇2
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2mpurh +mlrl
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)
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) rprs]
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θ̇s0 θ̇p0

)
− ai,1 [(2mhrh +mpurh + 2mlrl) rs]

(
θ̇h0 θ̇p0

)
+ ai,1 [g (mh +ml +mp +mpl

+mpu +ms) rs]
Where the integral i is for i = 1, 2, 3.
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4. Results

Model VII. Linear Decoupled Model
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A (i, 3) =− ai,1 [b1,3]x0,u0

(
2θ̇p0

)
− ai,1 [c1,2]x0,u0

(
θ̇s0

)
A (i, 4) =ai,1
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)
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)
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]
A (i, 5) =ai,1
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)
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] (
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)
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)
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[
g
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)]
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[(
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2mpl

)
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] (
θ̇2
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)
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)
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[
g
(
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)
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]
B (i, 1) =ai,1 + ai,2

B (i, 2) =ai,1 + ai,3

Where the integral i is for i = 1, 2, 3.
A (4, 1) =1
A (5, 2) =1
A (6, 3) =1
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Disturbance matrix for the slope of the ground.

B2 (i, 1) =− ai,1
[(
mhrh + 1

2mpurh +mlrl

)
rs −

(
mp + 1

2mpl

)
rprs

] (
θ̇2
s0

)
− ai,1

[(
mhrh + 1

2mpurh +mlrl

)
rs

] (
θ̇2
h0

)
+ ai,1

[(
mp + 1

2mpl

)
rprs

] (
θ̇2
p0

)
− ai,1 [(2mhrh +mpurh + 2mlrl) rs]

(
θ̇s0 θ̇h0

)
+ ai,1 [(2mp +mpl

) rprs]
(
θ̇s0 θ̇p0

)
+ ai,1 [g (mh +ml +mp +mpl

+mpu +ms) rs]
Where the integral i is for i = 1, 2, 3.
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4.2 State-space Model Analysis
Here the results from analyzing the linear and nonlinear models, shown in the chapter
4.1, will be shown. The different results surrounding properties of the models will be
explained and shown if they hold or not. Theoretical background of the properties
and analysis tools are explained in Model Analysis, chapter 2.7.

4.2.1 Linear State-space Analysis
From the approach for linear state-space model analysis described in Linear State-
space Model Analysis, chapter 2.7.1. Analysis of the models before having a con-
troller, with the two linear models of coupled model VI, and decoupled model VII.
Then gives the following analysis results with the nominal parameter values given
in the tables 3.1-3.3.

Eigenvalues Analysis The analysis of the eigenvalues of the linear state-space
models, gave that the eigenvalues for the two different models become as shown in
table 4.1.

Nominal Coupled Model’s
Eigenvalues

Nominal Decoupled Model’s
Eigenvalues

−11.9065 −4.6597 · 10−10 + 7.9557i
+11.9065 −4.6597 · 10−10 − 7.9557i
−6.1074 +4.4873
+6.1074 −4.4873
−3.0130 · 10−8 +1.1796 · 10−7

+3.0130 · 10−8 −1.1796 · 10−7

Table 4.1: The nominal model’s eigenvalues.

Reachability & State Controllability The controllability for the two models
is evaluated with the controllability matrix in equation (2.41). This gives for the
coupled model VI, that the model is not controllable due to that the controllability
matrix is rank deficient. Which raises the question if the uncontrollable states are
stabilizable or not. However, for the decoupled model VII, the controllability matrix
is of full rank and therefore is controllable.

State Stabilizability As described in the definition of state stabilizability, defini-
tion 2.5, the uncontrollable states need to be stable for the models to be stabilizable.
The decoupled model VII are controllable and therefore is also stabilizable. How-
ever, for the coupled model VI which is not controllable, with a rank deficiency of the
controllability matrix, with two states being uncontrollable. From the eigenvalues
of the model, shown in the table 4.1, it can be seen that the eigenvalues are given
in pairs, with a stable and a unstable one. This gives that the coupled model VI is
not stabilizable and in so can’t be guaranteed to be stable while controlled.
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State Observability The observability for the two models is evaluated with the
observability matrix in equation (2.42). For both models coupled model VI, and
decoupled model VII, the observability matrix is of full rank. This gives that both
models are observable.

State Detectability As described in the definition of state detectability, defini-
tion 2.7, the unstable states need to be observable for the models to be detectable.
With that both models are observable, both systems are detectable.

4.2.2 Nonlinear State-space Analysis
As described in Nonlinear State-space Model Analysis, chapter 2.7.2. It can be hard
to analyze a nonlinear state-space model, due to various phenomenon’s that may
occur by the non-linearity. Many methods exists to analyze a nonlinear system, such
as the named Lyapunov’s Stability theorem, theorem 2.2. However, because it may
be hard to find a suitable Lyapunov function, therefore as mentioned in Nonlinear
Model Analysis, chapter 3.3.2. It will be assumed that the nonlinear state-space will
behave as the linear state-space in a neighborhood around the stationary point.

4.3 Linear Control Algorithms
Here the simulation results from the linear control algorithms will be presented, the
angular accelerations, angular velocities, angles, and the control input signals will
be presented. By that the linear model analysis results from the chapter 4.2.1, only
the decoupled model is used, for that the coupled model is not guaranteed to be
stabilizable. Two of each simulation will be done, one is for noise free situation and
the other is with measurement noise. For the output feedback control algorithms,
the C and D matrices of the linear state-space model is given by the equation (3.20).
The simulations results are shown in a certain order, with that five different plots
are done with the first one from above. That first from above shows the angular
accelerations. Then the second shows the angular velocity The third shows the
angles of the sphere (θs), and pendulum (θp). The fourth shows the angle of the
inverted pendulum (θh). While the fifth shows the control signals in torque, namely
the torque input of pendulum (τp), and inverted pendulum (τh).

4.3.1 Linear Quadratic Controllers (LQR, LQI, LQG)
The three different ways to define a linear quadratic controller resulting simulations,
will be presented with and without measurement noise. The approach to get these
results are given in Linear Quadratic Controllers, chapter 3.4.1.1.
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Figure 4.4: LQR Controller, simulation with the nonlinear Decoupled model with-
out measurement noise.

Figure 4.5: LQR Controller, simulation with the nonlinear Decoupled model with
measurement noise.
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From the simulations, Figures 4.4 and 4.5, one can observe how well the LQR sta-
bilize the system with and without measurement noise. With that the LQR is
upholding nominal stability (NS) and nominal performance (NP). From the simula-
tion without noise, Figure 4.4, one can observe that the inverted pendulum angle is
converging towards zero while moving forward. With some rather high values for the
angle of the inverted pendulum before beginning to converge towards zero. It does
have a steady control signal compared to with noise, Figure 4.5. Which shows that
with and without noise, the angles are behaving similar. However, with noise the
control signal and angular acceleration is affected in rather sporadic changes. With
that the noise effect on the inverted pendulum seem to be the most problematic.
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Figure 4.6: LQI Controller, simulation with the nonlinear Decoupled model without
measurement noise.

Figure 4.7: LQI Controller, simulation with the nonlinear Decoupled model with
measurement noise.
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From the simulations, Figures 4.6 and 4.7, one can observe how well the LQI stabilize
the system with and without measurement noise. With that the controller is giving
nominal stability (NS), even though it does not seem to be performing as intended.
From the simulation without noise, Figure 4.6, one can observe that the angle of the
inverted pendulum is around the value of π radian. Which then may be interpreted
as that the inverted pendulum is hanging as a pendulum. Giving that the LQI could
not stabilize the load. Similar to the LQR result, with noise the angular acceleration
and control signal is affected in rather sporadic changes, as can be observed from
Figure 4.7. With that the noise effect on the inverted pendulum seem to be the most
problematic. However, here it has higher magnitude for the angular accelerations,
angular velocity, and control signal.
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Figure 4.8: LQG Controller, simulation with the nonlinear Decoupled model with-
out measurement noise.

Figure 4.9: LQG Controller, simulation with the nonlinear Decoupled model with
measurement noise.
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From the simulations, Figures 4.8 and 4.9, one can observe how well the LQG
stabilize the system with and without measurement noise. With the LQR used here
is upholding nominal stability (NS) and nominal performance (NP), and that the
performance seems from the figures to be improved. From the simulation without
noise, Figure 4.8, one can observe that the inverted pendulum angle is around the
desired angle of zero radian. Trying to converge with some degree of success, as
can be seen by the control signal. The magnitudes of all the angular accelerations,
angular velocities, and control signals are not as high compared to LQR and LQI.
With that is has a steady increase of the angles for the pendulum and sphere.
Even with noise it still behaves similar as without, with some small effect on the
angular acceleration and angular velocity. With that the noise effect on the inverted
pendulum seem to be the most problematic.
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4.3.2 H2 - Controller

Figure 4.10: H2 Controller, simulation with the nonlinearDecoupled model without
noise. Gave an γ value equal to 2.7717, with NS:True, NP:False, RS:False, RP:False.

Figure 4.11: H2 Controller, simulation with the nonlinear Decoupled model with
noise. Gave an γ value equal to 2.7717, with NS:True, NP:False, RS:False, RP:False.
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From the simulations of the H2 controller, Figures 4.10 and 4.11, one can observe
how well the controller stabilize the system with and without measurement noise.
This controller got a γ value of 2.7717, which may be rather high. This is also shown
to only uphold the nominal stability (NS). While the other, nominal performance,
robust stability, and robust performance, is does not being uphold by this H2 con-
troller. Which results in that the even though the angles of the system is behaving in
a way one would want, in the noise free case, as can be observed in Figure 4.10. The
effect of adding some measurement noise gives the system some sporadic changes
for all the values, as can be observed in Figure 4.11. With that the noise effect on
the inverted pendulum seem to be the most problematic. Resulting in that it is not
a guaranteed way to ensure performance and robustness of the system. Even if for
the noise free case the angles, angular velocity, angular accelerations, and control
signals, have appreciated values of magnitude and behavior.
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4.3.3 H∞ - Controller

Figure 4.12: H∞ Controller, simulation with the nonlinear Decoupled model with-
out noise. Gave an γ value equal to 0.9772, with NS:True, NP:True, RS:True,
RP:True.

Figure 4.13: H∞ Controller, simulation with the nonlinear Decoupled model with
noise. Gave an γ value equal to 0.9772, with NS:True, NP:True, RS:True, RP:True.
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From the simulations of the H∞ controller, Figures 4.12 and 4.13, one can observe
how well the controller stabilize the system with and without measurement noise.
This controller got a γ value of 0.9772, that may be regarded as being close to be
high. But is an appreciated value to have. This is also shown to uphold all the
conditions of nominal stability (NS), nominal performance (NP), robust stability
(RS), and robust performance (RP). That results in that for the noise free case,
Figure 4.12, the angles, angular velocity, angular accelerations, and control signals,
have appreciated values of magnitude and behaviour. With that the measurement
noise may add some difficulties so the angular acceleration and angular velocity.
That however is not effecting the results when adding measurement noise, as can be
observed in Figure 4.13. Both the cases with and without measurement noise, does
have similar form in its signal curves. With that the noise effect on the inverted
pendulum seem to be the most problematic.
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4.3.4 µ-synthesis (DK-iteration)

Figure 4.14: µ-synthesis Controller, simulation with the nonlinear Decoupled model
without noise. Gave an µ value equal to 1.0837, with NS:True, NP:True, RS:True,
RP:False.

Figure 4.15: µ-synthesis Controller, simulation with the nonlinear Decoupled model
with noise. Gave an µ value equal to 1.0837, with NS:True, NP:True, RS:True,
RP:False.

91



4. Results

From the simulations of the µ-synthesis Controller, Figures 4.14 and 4.15, one can
observe how well the controller stabilize the system with and without measurement
noise. This controller got a µ value of 1.0837, that is a little too high value for some
criteria. Which is observed from that the robust performance is not being upheld.
While nominal stability (NS), nominal performance (NP), and robust stability (RS)
is upheld As mentioned in µ-synthesis (DK-iteration), chapter 3.4.1.3. Due to stabil-
ity problems of the controller containing unstable parts, only the stable part of the
controller is being used for the simulation. Giving that some parts of the controller
is missing. By the simulation without noise, Figure 4.14, one can observe that the
signals is behaving as intended. With that it tries to have the angle of the inverted
pendulum zero, with a smaller angle error compared to the other algorithms. While
all the signals seem to be small in magnitude, with a steady increase of the angles for
the pendulum and sphere. Giving that the robot is moving while keeping the load
on top, with some not to high input control signals. Comparing if one adds noise, it
seems that not a major change in behavior happens. Exempt some quite influential
noise effect on the inverted pendulum, that seem to be the most problematic.
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4.4 Nonlinear Control Algorithms
Here the simulation results from the nonlinear control algorithms will be presented,
the angular accelerations, angular velocities, angles, and the control input signal’s
will be presented. By that the linear model analysis results from the chapter 4.2.1.
Only the decoupled model is used, for that the coupled model is not guaranteed to
be stabilizable. Two of each simulation, one for noise free situation and the other is
with measurement noise.

4.4.1 Feedback Linearization Control
Following the implementation of the feedback linearization control with the use of
linear input selection, given in Feedback Linearization Controller, chapter 3.4.2.2
Gave that this controller with its settings was not able to control the nonlinear
decoupled system. While the reason may be argued for, this may be the result of
a to narrow selection of parameters that was needed to be found in order to get a
working controller for this system. That is more explained in the discussion of the
feedback linearization controller, given in chapter 5.4.2.
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5
Discussion

This chapter will discuss the different results of the control algorithms. With the
simulation results in the Results, chapter 4.

5.1 State-space Models

For all the control algorithms tested and evaluated, a common question may be how
well the state-space models relates to a real system of its kind. Providing with a
fair model for the comparison of all these control algorithms. For this case that
is a relevant question, due to that only simulation is used and not some practical
tests to verify the simulation results. However, this will be hard to show by that
no practical tests of the system are done. With that the careful calculations of the
nonlinear system with Lagrange’s equation will have to suffice. Together with that
the behavior of the system is as thought. Such as that the angles of the pendulum
and sphere is of opposite signs and has closely the same magnitude. Resulting in
that the system is in motion and is increasing its distance traveled.

While the level of non-linearity in the models could be increased. That however
would increase the computational time, therefore was kept at this level of non-
linearity. This also applies to that only one parameter was chosen to be uncertain.
One could have used so that all the parameters would have some uncertainty. That
would then increase the computational time and resources needed to simulate. Focus
more on to making a controller for the model, rather than to compare the different
algorithms. Therefore, it was determined that as few uncertain parameters was
to be used. With that one important parameter was to be uncertain, which in
this case was determined to be the load coefficient. Since the unstable part of the
models would contribute the most to the system. That in this case was the inverted
pendulum, and because the load could be of different shapes.

The model made for turning has not been used and verified, which is because of
several reasons. Mostly because of time restraints and that it was enough for the
comparison to be done on just the stabilization part. Argued one could say that it
would be a better comparison if one had used tracking performance comparison of
the algorithms. Tracking was potentially to be used for comparison. However, due
to limits which is why the model of turning is only given as an uncovering model
with its energies.
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5.2 Model Analysis
The analysis of the different models of coupled model and decoupled model. Showed
that both the coupled model and decoupled model was observable, and therefore both
are detectable. While the decoupled model was controllable, the coupled model was
not. Then because of the eigenvalues it was determined that the coupled model was
not guaranteed to be stabilizable. Therefore, was not used in the tests. The reason
to why this model was not stabilizable it due to rank deficiency of the controllability
matrix and the eigenvalues of the system. The eigenvalues was shown to be in a
pair of an stable and a unstable ones, seen in table 4.1. It may also be observed
that two of the columns of the linear coupled model is equal, seen in model VI. By
that it may be that a fully coupled system of this type is not an appropriate way
to construct such mechanic. With that the decoupled model was controllable and
therefore stabilizable. A potential mix of a decoupled and a coupled system could
work. That however is another topic to research.

5.3 Linear Control Algorithms
In this chapter discussion of the linear control algorithms is mad. Which the results
and implementation of these controllers will be discussed.

5.3.1 PID - Controller
Even though PID controllers was not tested, it is still a good start point to have.
That is because its relatively easy to formulate in different ways to control a system.
With that the main principles of the PID controller is the different properties of
proportional, integral, and derivative. Which can be to some extent read in PID -
Controller, chapter 2.9.1.1. That can be related to other algorithms, such as LQR
as using proportional, and LQI as using both proportional and integral. However, a
PID is made in a SISO way, that may be a negative property of using PID control,
and its similar controller. This would limit the controllers view of the many input
states considered. That is because as one may observe from the linear quadratic
case, the controller is dependent on knowing several states and not just one.

5.3.2 Linear Quadratic Controllers (LQR, LQI, LQG)
The linear quadratic controllers, which results one may observe from the many
figures in Linear Quadratic Controllers (LQR, LQI, LQG), chapter 4.3.1. LQ con-
trollers are using a cost function that is quadratic, (hence the name), which as
explained in Linear Quadratic Controllers (LQR, LQI, LQG), chapter 2.9.1.2. The
LQ controllers are relatively easy to formulate, with that there exist solvers for them.
This gives that one only more or less needs to consider the design parameters of these
controllers, or weight matrices. For the implementation of the LQ-controllers was
relative simple with the use of riccarti equation, which was used in the MATLAB
build in functions. The design parameters choices were mostly just tested out for
different values, until a good enough performance compared to other tests was found.

96



5. Discussion

Linear Quadratic Regulator From the implementation in Linear Quadratic
Controllers (LQR, LQI, LQG), chapter 3.4.1.1. When making the LQR cheap con-
trol was used to define the weights matrices. This is to make it cheap for the
controllers to have large values of their control signals, namely the torques. Which
was chosen in order to make the controller more aggressive. By the results of the
LQR controller in Linear Quadratic Controllers (LQR, LQI, LQG), chapter 4.3.1.
It can be observed from the Figures 4.4, and 4.5, that it was able to perform in a
good way. However, somewhat slow even though that was considered when choosing
cheap control policy. Then as can be seen from the Figure 4.5 is that noise is effect-
ing in some disturbing manners. Making the control signal and angular acceleration
of the inverted pendulum sporadic with high magnitudes. Resulting in that even
with low measurement noise, the impact of the noise in the LQR is not appreciated.

Linear Quadratic Integrator For the LQI controller, which implementation
is given in Linear Quadratic Controllers (LQR, LQI, LQG), chapter 3.4.1.1. A
potential problem of using an integral action is that one may end with an integral
windup problem. That may have disturbed some of the results of the LQI controller.
As can be seen by that the LQI controller could not maintain the inverted pendulum
standing as the LQR controller could, shown by the Figures 4.6, and 4.7. The
integral windup problem was not compensated in these tests. The problem with
the simulation as mentioned in Simulink, chapter 3.2.2. Is that the states are given
by integrating the angular acceleration, giving rise to a potential problem with the
integral action.

Linear Quadratic Gaussian For the LQG controller, which implementation is
given in Linear Quadratic Controllers (LQR, LQI, LQG), chapter 3.4.1.1. This
controller is using an LQR controller with a Kalman filter to estimate the states.
That is because it is not always possible to measure all states, therefore the states
of the velocity of the sphere, angle of the inverted pendulum, and the angle of the
pendulum was thought of being reasonable to be measured. Then they were used as
the output (y(t)) of the system. Which by the results of the LQG, Figures 4.8, and
4.9, seems to be sufficient to control the system. This controller is using the existing
LQR controller with adding a Kalman filter, to easier compare the two. By that one
could separately calculate the two, by the principle of separation, definition 2.23.
With that comparing the LQR and LQG results, gives that the added Kalman filter
gave improved performance for all the states and control signals. As can be observed
from the noise free case Figures 4.4, and 4.8. With added noise the LQR had some
difficulties maintaining a good control signal and angular acceleration. While for
the LQG the measurement noise is not affecting the states and control signals that
much. Mostly only noticeable by the angular acceleration and angular velocity of
the inverted pendulum. With low magnitude, as can be observed from the Figure
4.9.
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5.3.3 H2 & H∞ - Controllers
H2 & H∞ controllers takes some more work than the LQ-controllers. Due to that
one need to define a system as shown in the Figure 3.3. The weights of the system
may take some time to determine appropriate values for. They may however provide
with better control for general purposes and for perturbations of the systems. That
is because it does take into consideration uncertainty of the system, in this case
real parametric uncertainty. This gives that one can consider the robustness of the
system with controller, both robust stability (RS), and robust performance (RP).
As explained in the approach of using these controllers, chapter 3.4.1.2. The weights
for the system was the same for both controllers and was chosen by the way of using
the singular values of the uncertain system. The weights were determined so the
nominal, and robust conditions where uphold as much as possible. However, for
the H2 controller the robustness parts was hard to achieve, in comparison to the
H∞ controller. Which may be explained in how the robustness properties of robust
stability, and robust performance is determined. The H∞ norm of the system is
lower than one, when these are upheld. The results of the simulations of the H2
controller in chapter 4.3.2, and for the H∞ controller in chapter 4.3.3.

H2 Controller This controller only upheld nominal stability, with an γ value of
2.7717. With the results shown in Figure 4.10, and 4.11. Even though it has some
appreciated curves with the states and control signals. If one adds low measurement
noise all the states and control signals becomes sporadic with a not so appreciated
magnitude. Giving that the H2 controller may give some appreciated performance
if no noise is present. However, in reality there will be some noise, and that gives
that the H2 controller with these settings may not be that good compared to some
other algorithms. However, it is to notice that the design parameters to make this
can be altered to improve it. Thought that may take more time and resources.

H∞ Controller This controller upholds all the conditions namely nominal stabil-
ity, nominal performance, robust stability, and robust performance. With an γ value
of 0.9772. This is shown in the results of the H∞ controller, Figures 4.12, and 4.13.
That compared to the H2 controller, which has similar curves for the states and con-
trol signal. This has smoother values to boost, and the effect of the measurement
noise is not that overwhelming. Giving that this controller is handling measurement
noise well and is upholding robustness for the system. Meaning that this controller
will handle perturbations of the system as well, as holding the performance.

5.3.4 µ-synthesis (DK-iteration)
µ-synthesis, or more specifically the DK -iteration, as mentioned in the µ-analysis,
chapter 2.9.1.4. Was that there does not exist a direct way to use µ to synthesise
a controller, DK -iteration was one that could be used instead. Using this DK -
iteration, as mentioned in the implementation in chapter 3.4.1.3, gave the results
shown in the figures in chapter 4.3.4. Using the system defined for the H2 & H∞
controllers, with the same weight values. Therefore, it takes approximate the same
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amount of design time to create the system. However, with the exception that for
the µ-synthesis there does not exist a uncertain block ∆, because it is inside the
plant model. This gives that one does not have to determine the WiM weight,
and so one less weight to determine compared to the H2 & H∞ controllers. The
DK -iteration is an iterative process and therefore can take its time, depending on
one’s settings for the calculation of the controller. Due to stability problems of
the controller containing unstable parts, only the stable part of the controller is
being used for the simulation. Giving that some parts of the controller dynamics is
missing.

Simulation Results This µ-synthesis controller upholds the conditions of nomi-
nal stability, nominal performance, and robust stability. With an µ value of 1.0837,
that explains why the robust performance was not uphold, by that the µ is above 1.
The results of using this controller on the system, can be observed by the Figures
4.14, and 4.15. That shows improved performance of the states especially the angle
of the inverted pendulum, compared to the other algorithms. While even with added
measurement noise it still has the improved performance. However, with some dis-
turbance to the angular acceleration and angular velocity of the inverted pendulum.
While still having the same performance with the angle of the inverted pendulum.
Even though this controller used is missing some of its dynamics, it still performs
as good or even better than the other algorithms.

5.4 Nonlinear Control Algorithms
In this chapter discussion of the nonlinear control algorithms is made, namely the
linear output selection for feedback linearization. With a discussion around the
feedback linearization.

5.4.1 Feedback Linearlization
Feedback linearization which was calculated in Feedback Linearization, chapter 3.4.2.1.
Was shown to result in difficulty to determine if the zero dynamics was stable or not.
Therefore it was determined to not guarantee that the zero dynamics was stable.
Were another approach was used, however, this does not mean that this approach
is not valid. That is because if one can find an easier way to determine if the zero
dynamics is stable, one may then use that system together with some controller.

5.4.2 Feedback Linearization Controller
Using the another approach of "linear output selection for feedback linearization"
[37], gave that one could get stable zero dynamics. This gives as mentioned in
the approach, Feedback Linearization Controller, chapter 3.4.2.2, that this approach
is using a LQR as the output of the system. With an LQR as the controller of
the system, that was to have cheap control policy. Gave the results shown in the
Feedback Linearization Control, chapter 4.4.1. However, that was shown to not
being able to control the nonlinear system. The reason for this is because the local
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stability region obtained by the optimal output selection is small. While some other
unstable points may have a large region of attraction. Resulting in that to find the
potentially narrow local (or global) stable points region of attraction may be needed
to make the controller work for this system. Which is another topic to research more
into. This may also be observed by that for all the other controllers, both with and
without noise the inverted pendulum is hard to stabilize. Giving that for a system
that tries to consider the nonlinear system and not the linearized system around a
stationary point, may be provided with greater difficulties. When one must consider
the effects of non-linearity may potentially give even when one makes the nonlinear
system look linear like. It could potentially give rise to other problems with the
unstable and stable points, with regions of attraction and repulsion.
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6
Conclusion

6.1 State-space Models

By that only simulations are done, to test if the models are behaving like the real
system is hard to investigate. Therefore, the only way to observe if the assumptions
of the state-space models are appropriate. Is to use the simulation results and
observe if the models are behaving as intended from the knowledge of the mechanical
system. By that as discussed in State-space Models, chapter 5.1. One can conclude
that the decoupled model is working as intended. By that it may be assumed that the
coupled model is also working as intended, with that they are similar in structure.

6.2 Model Analysis

It may be summarized that for the different models, coupled model, and decoupled
model, they have different analytic properties. The decoupled model is controllable,
and observable. While the coupled model is only guaranteed to be observable. There-
fore because thecoupled model is not guaranteed to be stabilizable, it is not used for
simulation.

6.3 Control Algorithms

About the control algorithms used in the thesis, gives that a less complex controller
may be enough if one’s demand of the control system is not high. The less complex
controllers are easier to implement and tune, gives that they are more cost effective
even if the performance requirement isn’t high, or in focus. While for the robust
control algorithms, they can be formulated such that the performance is kept. This
comes with more complex implementation and tuning of the design parameters, with
a potential higher cost of implementation as a result. That, however, should not be
focused, since if one wish to guarantee a certain performance in a real system. It is
expected to contain noise and perturbations of the system, with model uncertainties.
That is because the models are simplified giving rise to some model uncertainty, and
uncertainties when constructing the real system, is certain to occur. That form the
discussion about the results of the algorithms, chapters 5.3, and 5.4. It may be
observed that even less complex controllers will give good performance (LQR), and
with some added complexity (LQG) it may even handle noise to the system. But
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with more complex controllers resulting in improved performance and noise handling,
with robustness to perturbations and uncertainties of the system.

6.4 Future Work
Some future work that could be investigated.

Modeling
• The interaction of the magnetic field onto the sphere, where adding this would

make a more extended models, than the general ones. It may have a possibility
of impacting the stability of the system.

• A new model that is a mix of the coupled model, and decoupled model, would
be a potential investigation, if one can make such a model.

Analysis
• Find out if the zero dynamics of the feedback linearization is guaranteed stable

or not.
• Investigate the nonlinear models stability aspects, with for example Lya-

punov’s Stability theorem.

Control
• It would be interesting to see the impact of the slope into the controllers. This

would give realistic simulations.
• Tracking performance as a measurement for comparison between the algo-

rithms would be the next step. Tracking would potentially make the control
more difficult, then just moving forward and keeping the load on top of the
shell.

• Fixing the problem for the linear quadratic integrator, the integral windup
problem. So that it may give its expected behavior of removing the steady
state error.

• Solving the problem of the optimal output selection feedback linearization.
Finding the small local stability region obtained by the optimal output selec-
tion. To observe how well the nonlinear control algorithms is compared to the
linear ones.

• A wider range of controllers would be of interest for the comparison. Such as
to add the PID to the comparison, and other controllers as LQGI, MPC, and
some more variation of nonlinear ones.

• Real application tests of the algorithms on a spherical robot with load plat-
form, would show how they perform than just simulation. Showing how accu-
rate the simulations is and in so the models.
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