
Thesis for the Degree of Master of Science

Department of Mathematical Sciences
Division of Algebra and Geometry

CHALMERS UNIVERSITY OF TECHNOLOGY
SE – 412 96 Gothenburg, Sweden

Gothenburg, October 2019

Quantum Information Theory for Machine Learning

Rikard Wadman

Quantum Information Theory for Machine Learning
Rikard Wadman
rikard.wadman@gmail.com

© Rikard Wadman, 2019.

Supervisor & Examiner: Daniel Persson, Department of Mathematical Sciences

Master’s Thesis 2019
Department of Mathematical Sciences
Division of Algebra and Geometry
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Stylized image of a tree tensor network contracted with a pure tensor, known from
quantum mechanics as a product state and from the machine learning context as a local
feature map.

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

iv

Quantum Information Theory for Machine Learning
A study of machine learning in vast product spaces using tensor networks
RIKARD WADMAN
Department of Mathematical Sciences
Chalmers University of Technology

Abstract

The remarkable successes of machine learning and of deep learning in particular during
the last decade have caused an explosive growth of interest in the field. Meanwhile, there
are still significant gaps in our understanding of the processes involved, making the area
a very promising topic for theoretical investigation. A particularly interesting idea that
has received a lot of attention recently is the claim that the successive transformations
performed by deep neural networks behave similarly to the renormalization group flows
of statistical mechanics. In the light of this it is natural also to consider numerical renor-
malization algorithms as interesting candidates for performing general machine learning.
It turns out that both the DMRG and the more recent Entanglement Renormalization
algorithm from numerical quantum mechanics are quite well suited for this purpose. Both
of these algorithms are most naturally described using the language of tensor networks,
which are graph based representations of multilinear tensors, typically used for the de-
scription of quantum states. This thesis discusses machine learning with tensor networks
from a holistic perspective and makes a review of some of the recent work on the subject.

Also of significant interest is the study of expressive power of neural networks. A
recent proposal suggests employing quantum entanglement entropy as a measure of a
models ability to represent complex correlations between input regions. We study the
interpretability and implications of such a measure as well as its relations to the quantum
version of the max-flow/min-cut theorem, which relates the entanglement entropy of a
tensor network state to the minimal cut in its graph. A generalization of said theorem is
found, leading us to alternate, and very simple, proofs of some already known scaling laws
of quantum entanglement in Boltzmann machines and convolutional arithmetic circuits,
which are derivative of standard convolutional neural networks.

Keywords: tensor networks, machine learning, quantum information, multilinear algebra,
network theory, Convolutional arithmetic circuits, Boltzmann machines, entanglement,
DMRG, MERA

v

Acknowledgements

As with most other things in life, this thesis could not have come together without the
help and encouragement of a significant number of people. First and foremost, I would
like to give my sincere gratitude to my supervisor Daniel Persson for great help and
many interesting discussions on everything from fundamental mathematics and statistical
mechanics to machine learning and life in general. I find your love of research, breadth of
interests and welcoming attitude highly encouraging.

Jimmy Aronsson and Olof Carlsson also deserves great thanks, Jimmy for being so
inviting at the start of my work and for helpful discussions, and Olof for providing such
an excellent opposition on this thesis, which in the end became quite lengthy. I hope it
was not too painful!

A special thanks goes to my fellow students Björn Eurenius, Michael Högberg and Daniel
Erkensten for having the patience to let me ramble at length trying to explain parts of
my thesis work. It has truly been a great help for my understanding. I am very sorry for
taking so much of your time, but at the same time very grateful for you letting me do so.

Thank you also to the rest of the students taking the quantum theoretical track at
Physics and Astronomy, for the almost too nice lunch breaks and for pulling me to campus,
and to the musicians in the bands KiRA and Olimpias Orkan for getting me away from
there from time to time. I am very grateful also to all my friends and family, who make
life enjoyable, and who have been so encouraging on this journey of mine. Not least to
Maria, my partner in life for the past six years for all your love, and for enduring all the
late nights and talk of theoretical physics and mathematics. I hope you will allow me to
continue boring you for many more years to come.

Finally, I would like to thank you, the reader, for deciding to pick up this work. I
sincerely hope you will find it an enjoyable read, and that you have oversight with its
inevitably numerous shortcomings.

Rikard Wadman, Göteborg, September 2019

vii

Contents

List of Figures xiii

Notation xv

Abbreviations xvii

1 Introduction 1

I Quantum theory & Mathematical foundations 3

2 Classical information theory 5
2.1 Shannon entropy . 5

2.1.1 Joint entropies . 7
2.1.2 Relative entropy/Kullback-Liebler divergence 8
2.1.3 Fisher information matrix . 8
2.1.4 Mutual information . 9

2.2 Rényi entropy . 9
2.2.1 Rényi divergence . 10
2.2.2 Rényi mutual information . 10

3 Quantum information theory 11
3.1 Quantum theory – the bare minimum . 11
3.2 Composite quantum mechanical systems . 12
3.3 Schmidt decomposition . 13
3.4 The density matrix . 13
3.5 Measures of entanglement . 15

3.5.1 Schmidt number . 15
3.5.2 von Neumann entropy . 15
3.5.3 Quantum Rényi entropy . 16
3.5.4 Equal entropy of subsystems . 17
3.5.5 Quantum mutual information . 17

4 Graph theory 19
4.1 Types of graphs . 19
4.2 Paths, cuts and cliques . 20
4.3 Max flow/min cut and Menger’s theorem 21
4.4 Vertex limited flows . 22

5 Tensor networks 25

ix

Contents

5.1 An introduction . 25

5.1.1 Merging edges . 26

5.1.2 Taking derivatives . 27

5.2 Entanglement in tensor networks . 28

5.2.1 Quantum max flow/min cut . 28

5.2.2 Quantum max flow/min cut with restricted tensors 31

5.2.3 Quantum max flow and entanglement entropy 34

5.3 Matrix product states . 35

5.3.1 Gauge symmetry . 35

5.3.2 Entanglement . 36

6 Numerical renormalization group methods in quantum mechanics 37

6.1 Numerical real-space renormalization group 37

6.2 Density matrix renormalization group . 38

6.2.1 Infinite lattice DMRG . 39

6.2.2 Finite lattice DMRG . 39

6.2.3 DMRG and MPS . 40

6.3 Entanglement renormalization . 41

II Machine learning 43

7 Machine learning 45

7.1 Statistical learning theory . 45

7.1.1 Supervised learning . 45

7.1.2 Unsupervised learning . 46

7.2 Artificial neural networks . 47

7.2.1 Feedforward neural networks . 47

7.3 Convolutional neural networks . 48

7.3.1 Convolutions . 49

7.3.2 The structure of a CNN . 49

7.4 Structured probabilistic models . 50

7.4.1 Bayesian networks . 50

7.4.2 Markov random field . 51

7.5 Boltzmann machines . 52

7.5.1 Restricted Boltzmann machines . 53

7.5.2 Deep belief networks . 53

7.5.3 Deep Boltzmann machines . 54

7.6 Kernel learning . 54

7.6.1 Support vector machines . 55

III Quantum theory for machine learning 59

8 Tensor network learning 61

8.1 Tensor product Hilbert spaces in machine learning 61

8.1.1 Square-integrable functions . 61

8.1.2 Local feature maps . 62

8.1.3 Connecting to tensor networks . 62

8.2 Variational tensor network learning . 63

x

Contents

8.2.1 Gradient descent . 64
8.2.2 Generalized DMRG . 64
8.2.3 Supervised learning with MPS . 64

8.3 Convolutional arithmetic circuits . 65
8.3.1 Tensor network formulation . 66
8.3.2 nCACs . 67

8.4 Unsupervised coarse graining . 68
8.4.1 The algorithm . 68
8.4.2 Projection error . 70

9 Quantum entanglement in machine learning 73
9.1 Rényi entropy of TNL models . 74
9.2 Boltzmann machines . 75

9.2.1 Mapping to tensor networks . 75
9.2.2 Boltzmann machines as MPS . 76
9.2.3 Area law of entanglement for local RBMs 77
9.2.4 Area law of entanglement for local DBMs 77
9.2.5 Volume law of entanglement for long range BMs and RBMs 78

9.3 Convolutional arithmetic circuits . 78
9.3.1 Depth efficiency . 78

10 Discussion 81
10.1 Numerical quantum mechanics for machine learning 81
10.2 Entanglement analysis of ML architectures 82
10.3 Quantum max-flow/min-cut . 83

Bibliography 85

xi

Contents

xii

List of Figures

4.1 Visual representations of closed and open graphs respectively. Each point
corresponds to a vertex and each line to an edge. 20

6.1 Illustration of the blocking procedure of the lattice in (a) infinite and (b)
finite DMRG. Each line is to be interpreted as a step in the algorithm,
which runs from top to bottom. 40

7.1 Graphical representations of feedforward neural networks. The graph of a
single neuron with three inputs is shown in (a), an example of an arbitrary
FNN is shown in (b) and (c) shows a layered FNN. 48

7.2 Shown in (a) is a Bayesian Network representing the probability distribution
p(x,y,z,w) = p(x)p(y|x)p(z|x,y)p(w|z). In (b) is a Markov random field
representing the probability distribution p(x,y,z,w) = 1

Z e
−E1(x,y,z)−E2(z,w). . 51

7.3 Panels (a), (b) and (c) shows graphical representations of a small dense
restricted Boltzmann machine, deep belief network and deep Boltzmann
machine respectively. The RBM and DBM are represented as Markov ran-
dom fields, while the DBN is represented as a Markov random field in the
two uppermost layers but a Bayesian network in all lower layers. 53

7.4 A map Φ(x) taking the input patterns xi ∈ X (left panel) with yi = 1 (filled
circles) or −1 (open circles) to an inner product space H (right panel) where
the classes are linearly separable.1 . 55

8.1 The tensor network representation of h(x) for a 1D convolutional arithmetic
circuit with four layers and S = K = 3. Here W 1, W 2, W 3 have the internal
structure shown in (8.30), while W 4 may be any matrix of appropriate
dimensionality. 67

9.1 The Boltzmann machine represented by the Markov random graph in (a)
models the same function as the tensor network in (b). The light grey dots
represent hidden units, the dark blue dots are visible units and the green
diamonds are the matrices M (ij). Hidden and visible units hi and vj in

the random graph are replaced by tensors Λ(i)
h and Λ(j)

v respectively in the
tensor network. 76

xiii

List of Figures

xiv

Notation

Sets

|A| The cardinality of the set A

[N] The set {1,2, . . . , N}
[A]k The set of unordered k-tuples in A, i.e. the set {{a1,...,ak}; ai ∈ A}
Morphisms

hom(V,W) A homomorphism, from V to W . In the thesis, V and W will almost
always be Hilbert spaces, in which case hom(V,W) is a linear map from
V to W .

end(V) An endomorphism on V . Equivalent to hom(V,V).
id(V) The identity map on V .

Dirac notation

|ψ〉 A vector in some Hilbert space H. Typically used for describing a quan-
tum state.

〈ψ| The dual of |ψ〉.
〈ϕ|O|ψ〉 An inner product between 〈ϕ| and O |ψ〉, with O being a linear operator

on H. Equivalent to 〈Oψ, ϕ〉
Graphs

G = (V,E) A graph with vertices V and edges E.

dv The set of edges connected to the vertex v ∈ V ,.

∂e The set of vertices connected to the edge e ∈ E.

Ē The set of internal edges (edges for which both ends connects to vertices)
in an open graph.

∂E The set of dangling edges (edges for which only one end connects to a
vertex) in an open graph. E = Ē ∪ ∂E.

Tensors

Ti1,...,in An n-mode tensor. In general T takes values in an n-fold tensor product
Hilbert space

⊗n
j=1Hj .

Diag(v) A diagonal tensor, equal to vi if all indices are equal to i, otherwize zero.

δi1,...,in The n-mode Kronecker delta. Equal to the n-mode Diag({1,1,1, . . .}).

xv

Notation

xvi

Abbreviations

ANN Artificial neural network

BM Boltzmann machine

CAC Convolutional arithmetic circuit

CNN Convolutional neural network

DBM Deep Boltzmann machine

DBM Deep belief network

DL Deep learning

DMRG Density matrix renormalization group

DNN Deep neural network

FNN Feedforward neural network

MERA Multiscale entanglement renormalization ansatz

ML Machine learning

MPS Matrix product state

nCAC Near/Non-convolutional arithmetic circuit

QM Quantum mechanics

PCA Principal component analysis

RBM Restricted Boltzmann machine

RG Renormalization group

SVD Singular value decomposition

SVM Support vector machine

TN Tensor network

TNL Tensor network learning

TTN Tree tensor network

xvii

Abbreviations

xviii

1
Introduction

Machine learning (ML) is a field of research that has seen an enormous rise of interest over
the last couple of years. Despite this, the field itself is hardly new; researchers have been
interested in creating computer programmes which learn from experience ever since the
birth of the computer in the mid 20th century, with notable examples being the invention
of artificial neural networks [1] and experiments on Hebbian learning [2, 3].

The successes were rather limited early on, since the amount of available data as well as
the computational resources at the time were far to small to allow for training of sufficiently
complex models. However, with the continuous exponential growth in computational
power, the introduction of the internet and the corresponding explosion of data, training
of increasingly multi-layered, or deep, neural networks have become possible, spawning
Deep learning (DL) as a new sub-field of ML and leading to unprecedented performance.

Particularly in the current decade, progress has been truly phenomenal – DL algorithms
are now nearing human performance at tasks such as image recognition [4], speech recog-
nition [5] and machine translation [6], and is being applied successfully to an increasing
range of other problems (see e.g. [7] for a quick overview of the state of the art in ML).

While many practitioners have a good theoretical understanding, there is also a large
degree of experimentation involved, and competing models are (and should be) judged
based on their empirical merits. This has lead to a an interaction between the theoretical
and experimental sides of ML much akin to that of particle physics in the mid 20th century,
with significant flux of ideas between the two. On the theoretical side, the understanding
of the processes involved is gradually unfolding, but the picture is still far from complete.

Machine learning has a long history of interdisciplinarity. While it is often seen as
a subject within computer science, it is tightly tied to the mathematical branches of
statistics, information theory and optimization, and many of the core ideas in the field,
such as neural networks and convolutional networks are heavily inspired by neurobiological
research. It comes as no surprise then that the ML community has also received significant
inspiration from various branches of physics, both in terms of tools for model building and
theoretical ideas which are applied to improve our understanding of the subject. One
example of the former is the Boltzmann machines used for unsupervised learning, which
model multivariate probability distributions identically to the Ising model of statistical
mechanics. Variations of these were amongst the first models to permit training of deep
architectures[8].

A significant example of ideas from physics being employed as analytical tools is the still
quite controversial[9–12] interpretation of the training of deep neural networks as equiva-
lent to finding a variational renormalization group (RG) transform, which was originally
suggested in 2014 by Mehta and Schwab[13]. In their paper they specialize to deep belief
networks, the hidden layers of which they argue behave equivalently to the coarse-graining
of an Ising model.

The next thing to do, once this connection has been made, is of course to ask oneself

1

1. Introduction

if this potential correspondence can be exploited, and in particular whether there are RG
procedures which can be directly employed for ML. This does indeed turn out to be the
case; especially the DMRG[14, 15] and entanglement renormalization (more known by
the related multiscale entanglement renormalization ansatz, or MERA)[16] procedures of
numerical condensed matter physics have been successfully employed for ML in different
contexts[17–23]. Understanding these two RG procedures and their applications is one of
the main goals of this thesis.

We are also taking a more general look at the applicability of quantum theory to machine
learning. A particularly interesting topic is the use of quantum entropy as a quantifier of
the expressivity of a neural network, suggested in this context by Levine et al[24].

As a finishing note, we remark that, although the focus in this thesis is on the appli-
cability of quantum theory to machine learning, there are significant efforts being made
both to apply ML to simulations of quantum systems, and to implement ML algorithms
on quantum computers. These subjects share a common theoretical framework, and are
heavily interrelated to the extent that single papers sometimes deal simultaneously with
several of them. It is hence likely that developments in one area are also relevant to the
other. In particular, a motivation for studying the quantum-inspired ML algorithms dis-
cussed above is that some of them may prove to be easier to implement on a quantum
computer than standard ML models.

The goal of this thesis is to understand, from a theoretical viewpoint, the applications
of quantum information theory and numerical renormalization group methods of quantum
many-body systems to machine learning. The first six chapters are devoted to a bottom-up
development of the underlying quantum theory and related mathematical constructions,
starting with information and quantum information theory (chapters 2 and 3), continuing
with a primer on graph theory (ch. 4) and an introduction to tensor networks (ch. 5),
which are essential to understand the numerical renormalization group methods (ch. 6).
The second part of the thesis is then a (relatively) quick walkthrough of relevant machine
learning theory (ch. 7). Most of what is covered in the introductory chapters is standard
material for the respective subjects, and the reader may hence wish to skip chapters with
which they are already familiar. We do, however, in chapter 4 make a non-standard (but
probably not original) extension of Menger’s theorem, which we then utilize to derive a
slight generalization of the quantum max-flow/min-cut theorem of [25] in chapter 5. This
generalization is to the best of our knowledge not previously proposed.

The third and main part of the thesis introduces the applications of quantum theory to
ML discussed above and is divided into two chapters.

Chapter 8 deals with ML models which are either directly constructed from or can
be interpreted as functions on the same form as quantum many-body wave functions.
A coherent theoretical framework is developed in terms of L2 functions and given an
alternate interpretation in the context of kernel learning. A selection of ML models are
then presented.

Chapter 9 deals with the usage of quantum entanglement entropy as a measure of the
expressivity of a network. It gives a detailed view of how and when it is relevant and
how it is to be interpreted. In addition, its original application to so-called convolutional
arithmetic circuits, as well as studies of the scaling of quantum entropy in Boltzmann
machines are explored.

The thesis concludes with a discussion of the developments in chapters 5, 8 and 9 and
of possible directions for future research.

2

Part I

Quantum theory & Mathematical
foundations

3

2
Classical information theory

Information theory is a mathematical theory invented in 1948 by Claude Shannon [26]
as a tool to optimise the encoding of information in messages. The tools of information
theory has subsequently found extensive use in both quantum physics and deep learning,
and is hence a good place to start our theoretical developments. Much of this material
can be found in any of [27–30], all of which are excellent materials to consult for a deeper
understanding of the subject.

2.1 Shannon entropy

Consider a random variable X taking values in the finite set X and following a distribution
pX(x). To quantify the surprise, or information of observing X = x, we may introduce a
measure as

i(x) ≡ − log pX(x). (2.1)

This has several properties that couples nicely to the intuitive concepts of information.
It is nonnegative, continuous and monotonic in pX , p(x) → 0 implies i(x) → ∞ and
conversely p(x) = 1 implies i(x) = 0. It is also additive; for two independently distributed
random variables X and Y ,

i(x, y) ≡ − log pX,Y (x,y) = − log pX(x)− log pY (y) = iX(x) + iY (y). (2.2)

While the existence of a well defined and intuitive measure of the information of indi-
vidual events is interesting in its own right, it is often much more useful to consider the
expected information, or uncertainty, in the random variable itself. This was first done
with this particular information measure by Shannon [26] who defined the entropy of a
random variable as the expected value of its information,

S(X) ≡ E[i(X)] = −
∑
x

p(x) log p(x), (2.3)

defining 0 log 0 = 0 for continuity of x log x at x ≥ 0.
This entity has been shown to be unique (up to normalization) by several authors

from slightly different sets of postulates [26, 31]. One particularly appealing postulization
which we will present with slight modification is due to Rényi [32] and uses the language
of generalized probability distributions. These he defines as probability distributions p(x)
which don’t necessarily sum to one; ∑

x

p(x) ≤ 1. (2.4)

Now, let ∆ be the family of all generalized finite probability distributions, i.e. the family
of all sets on the form {p1, . . . , pn} with pi ≥ 0 and

∑
i pi ≤ 1. Expressing the Shannon

entropy as a function
S : ∆→ R, (2.5)

5

2. Classical information theory

Rényi’s postulization for entropy in base k ∈ (1,∞) is:

1. S({p}) is a continuous function of p.

2. S({1/k}) = 1 (Originally, Rényi demanded k = 2, but we want to allow any k ∈
(1,∞) since this is just a normalization).

3. Let P,Q ∈ ∆, and define P×Q ≡ {p q; p ∈ P,q ∈ Q}. Then S(P×Q) = S(P)+S(Q).
4. If P,Q ∈ ∆ and W (P) + W (Q) ≤ 1, with W (P) ≡

∑
p∈P p being the weight of P,

then

S(P ∪Q) = W (P)S(P) +W (Q)S(Q)
W (P) +W (Q) . (2.6)

To prove that this leads to an uniquely determined entropy, we need the following lemma

Lemma 2.1. Let f be a (completely) additive arithmetic function, that is, a function
f : N→ C following f(mn) = f(m)+f(n)∀m,n ∈ N and for which f(n+1)−f(n) →

n→∞
0.

Then

f(n) = K logn,

for some K ∈ C.

Proof. See e.g. [32, 33].

Theorem 2.1. (Uniqueness of Shannon entropy) [32]
Let S : ∆→ R follow the above postulates. Then

S(P) = − 1
W (P)

∑
i

pi logk pi,

where k ∈ (1,∞). For ordinary distributions, this reduces to S = −
∑
i pi logk pi.

Proof. Let s(p) ≡ S({p}), for p ≤ 1. By postulate 3, we have s(pq) = s(p) + s(q). For
n,m ∈ N, this gives

s

(1
mn

)
= s

(1
m

)
+ s

(1
n

)
.

From postulate 1 we conclude also that

s

(1
n+ 1

)
− s

(1
n

)
→

n→∞
0,

so that lemma 2.1 applies to s(1/n) and hence

s(1/n) = K logn ∀ n ∈ N.

This can be extended to the rational numbers by the additivity of s. For m,n ∈ N, m < n
we have

s

(
m

n

)
= s

(
mn

mn2

)
− s

(
n

mn

)
= s

(1
n

)
− s

(1
m

)
= K logn−K logm = −K log m

n
.

Since the rationals are dense in R, the continuity of s(p) (postulate 1) immediately gives

s(p) = −K log p, ∀ p ∈ (0, 1].

Further, postulate 2 demands 1 = s(1/k) = K log k = K ′ logk k = K ′, giving s(p) =
− logk p.

6

2. Classical information theory

Finally, we may write any generalized probability distribution P = {p1,p2, . . . ,pn} as
P =

⋃n
i=1 Pi, with Pi = {pi}, and by induction on postulate 3 it is a simple matter to

conclude

S(P) = S

(
n⋃
i=1
Pi

)
=
∑
iW (Pi)S(Pi)∑

iW (Pi)
= − 1

W (P)
∑
i

pi logk pi,

which proves the theorem.

Different choices of k are related to each other by multiplication with a constant, so
that we may view choosing k as choosing units for S(X). Most common is to use k = 2,
in which case S is said to be measured in bits, or k = e, giving S in the units of nats.

The Shannon entropy has a set of properties which are easy to derive, but nevertheless
helpful to state:

• S(X) ≥ 0, following from that p(x) ∈ [0,1] ∀x, since this gives p(x) log p(x) ≤ 0.

• S(X) = 0 iff for some x′, p(x) = δx,x′ with δx,x′ being the Kronecker delta.

• S(X) ≤ log |X |, where |X | is the cardinality of X .

The third property can be shown by employing Lagrangian multipliers; introduce S(X,λ) ≡
S(X) + λ (

∑
x p(x)− 1) and set the derivative with respect to p(x) to zero. This gives

0 = ∂S(X,λ)
∂p(x) = − log p(x)− 1 + λ =⇒ p(x) = e1−λ, (2.7)

which, crucially, is independent of x. Solving the constraint then gives p(x) = 1/|X | and
hence S(X) = log |X | as our single local optimum, which is also quite easily seen to be
the global maximum.

2.1.1 Joint entropies

If we instead consider a pair of random variables X,Y with joint distribution p(x,y), their
joint entropy is naturally defined as

S(X,Y) ≡ E[i(X,Y)] = −
∑
x,y

p(x,y) log p(x,y), (2.8)

and we may also define the conditional entropy S(Y |X) as the expected information upon
observing Y after first observing X, or

S(Y |X) ≡ −
∑
x

p(x)
∑
y

p(y|x) log p(y|x) = −
∑
x,y

p(x,y) log p(y|x). (2.9)

Using the above definitions it is easy to see that

S(X,Y) = S(X) + S(Y |X) = S(X|Y) + S(Y). (2.10)

It is also evident that, if X and Y are independent, i.e. if p(x,y) = pX(x)pY (y), then
S(Y |X) = S(Y) and hence S(X,Y) = S(X) + S(Y). Both of these properties makes
intuitive sense; the expected information of observing Y should not be affected by first
observing X if they are independent, and the total information from independent events
should intuitively be the sum of the information from each event.

7

2. Classical information theory

2.1.2 Relative entropy/Kullback-Liebler divergence

Relative entropy, or Kullback-Liebler (KL) divergence, is a quantifier of the difference
between two probability distributions p(x) and q(x) and is defined as [34]

D(p ‖ q) ≡
∑
x

p(x) log p(x)
q(x) = Ep

[
log p(X)

q(X)

]
. (2.11)

Proposition 2.1. D(p ‖ q) ≥ 0, with equality only for p = q.

Proof. We begin by noting that log a ≤ a− 1 for all a ∈ R+, with equality only for a = 1.
This gives

D(p ‖ q) = −
∑
x

p(x) log q(x)
p(x) ≥ −

∑
x∈supp(p)

p(x)
(
q(x)
p(x) − 1

)
≥
∑
x

p(x)−
∑
x

q(x) = 0.

(2.12)
We may now note that if q 6= p there is some x where q(x)/p(x) 6= 1, making the left
inequality above strict and finishing the proof.

Due to the above inequality, the Kullback-Liebler divergence is often used similarly to a
metric on the space of probability distributions, but it is not a metric in the mathematical
sense since it both lacks the symmetry between p and q and does not fulfil the triangle
inequality.

2.1.3 Fisher information matrix

Although the Kullback-Liebler divergence is not a metric for arbitrary choices of p and q,
it approaches one as p and q becomes sufficiently close to each other. To see this, consider
a probability distribution pθ(x), parametrised by N parameters θµ. A series expansion of
the KL-divergence between pθ and a small deviation pθ+∆ becomes

D(pθ‖pθ+∆) = −∆µ
∑
x

pθ(x) ∂

∂θµ
log pθ(x)−∆µ∆ν

∑
x

pθ(x) ∂

∂θµ
∂

∂θν
log pθ(x) +O(∆3).

(2.13)
The term linear in ∆ is

∑
x

pθ(x) ∂

∂θµ
log pθ(x) = ∂

∂θµ

∑
x

pθ(x) = 0, (2.14)

where the last step follows from that pθ is a probability distribution.

We are hence left with

D(pθ‖pθ+∆) = gµν∆µ∆ν +O(∆3), (2.15)

where

gµν(pθ) = −
∑
x

pθ(x) ∂

∂θµ
∂

∂θν
log pθ(x). (2.16)

This gµν is known as the Fisher Information Matrix and can be shown to constitute a
metric for the parameter space, defining a Riemannian manifold on which distances are a
measure of distinguishability between probability distributions, given data generated from
them [35].

8

2. Classical information theory

2.1.4 Mutual information

The relative entropy may then be used to construct another entity of interest, namely
the mutual information between two random variables X and Y . It is a measure of the
correlation between the variables and is defined as the KL divergence between the joint
probability density pX,Y (x,y) and the product of the marginal distributions pX(x) and
pY (y);

I(X;Y) ≡ D
(
pX,Y ‖ pXpY

)
=
∑
x,y

pX,Y (x,y) log pX,Y (x,y)
pX(x)pY (y) . (2.17)

From the properties of the relative entropy, it is clear that I(X;Y) ≥ 0 with equality
only if X and Y are independent. One can also relate mutual information to the previous
entropic measures as

I(X;Y) = S(X) + S(Y)− S(X,Y)
= S(Y)− S(Y |X)
= S(X)− S(X|Y).

(2.18)

2.2 Rényi entropy

Since its introduction by Shannon, information theoretic entropy has been adapted and
generalized in several ways. One of the more notable developments was that by Alfred
Rényi[32], who considered the most important properties of a measure of entropy to be
the first three postulates of Shannon entropy, together with the additivity for independent
random variables. He found that these properties also held if the fourth postulate was
relaxed to

Sα(P ∪Q) = g−1
α

{
W (P)gα(S(P)) +W (Q)gα(S(Q))

W (P) +W (Q)

}
(2.19)

with gα(x) ≡ k(α−1)x and α ∈ [0,1)∪ (1,∞), and that the most general measure satisfying
the resulting postulates is the Rényi entropy

Sα ≡
1

1− α logk

(∑
i

pαi

)
. (2.20)

For α → 1 the Rényi entropy approaches the Shannon entropy, which is easily seen by
invoking l’Hopital’s rule;

lim
α→1

Sα = lim
α→1

1
1− α log

(∑
i

pαi

)
= lim

α→1

d
dα log (

∑
i p
α
i)

d
dα(1− α)

. (2.21)

Here the denominator is just −1, while the numerator is

d
dα log

(∑
i

pαi

)
= 1∑

i p
α
i

∑
i

d
dαe

α log pi = 1∑
i p
α
i

∑
i

pαi log pi →
α→1

∑
i

pi log pi, (2.22)

leaving us with the result

lim
α→1

Sα = −
∑
i

pi log pi, (2.23)

which is the definition of Shannon entropy.

9

2. Classical information theory

The Rényi entropy is also non-increasing in α, which we can show by differentiating.
Defining zi ≡ pαi /

∑
j p

α
j and noting that

∑
i zi = 1 we get

d
dαSα = 1

(1− α)2

(
log

∑
i

pαi + (1− α)
∑
i

zi log pi

)

= 1
(1− α)2

(
log

∑
i

pαi +
∑
i

zi log pi
zi
∑
j p

α
j

)

= − 1
(1− α)2

∑
i

zi log zi
pi

+
(∑

i

zi − 1
)

log
∑
j

pαj

= − 1

(1− α)2

∑
i

zi log zi
pi

= − 1
(1− α)2D(z ‖ p) ≤ 0,

(2.24)

since the relative entropy is positive semi-definite.
Some of the quantities related to the Shannon entropy which were introduced earlier

generalize to the Rényi entropy. Since these generalizations are quite non-trivial, and some
of the most useful relations between the quantities turn out to only hold for the Shannon
equivalents, it will be informative to also introduce them here.

2.2.1 Rényi divergence

The Rényi divergence generalizes the relative entropy, or KL divergence and is defined as

Dα(p‖q) ≡ 1
α− 1 log

∑
x

pα(x)q1−α(x). (2.25)

It can be shown[36] to fulfil Dα(p‖q) ≥ 0 and can hence similarly to the relative entropy be
used as an estimator of the difference between probability distributions. It is also the case
that limα→0Dα(p‖q) = D(p‖q), which establishes Dα as a generalization of the relative
entropy.

2.2.2 Rényi mutual information

Just as with the Shannon mutual information, the Rényi mutual information is best defined
as

Iα(X;Y) ≡ Dα(pX,Y ‖pXpY). (2.26)

An immediate consequence of the nonnegativity of Dα is that also Iα is nonnegative, and
it is also easily seen that limα→1 Iα(X;Y) = I(X;Y) and that Iα(X;Y) = 0 if X and Y
are statistically independent. We may hence interpret also the Rényi mutual information
as quantifying how much knowledge is gained about X by observing Y or vice versa.
However, unfortunately there is to the best of our knowledge no equivalent to the relations
of equation (2.18), and in particular Iα(X;Y) 6= Sα(X) + Sα(Y)− Sα(X,Y).

10

3
Quantum information theory

Many of the concepts of information theory have a natural generalisation to the study
of quantum many-body systems. In and of itself, this is not surprising since quantum
mechanics is fundamentally a probabilistic theory. However, as we will see in the sections
to come, quantum mechanics has the peculiarity that one can have full knowledge of the
state of a composite system without knowing the states of the parts; or rather, the full
system can be in a known state, while subsystems are in superpositions of known states,
inducing uncertainty in any measurement on the subsystems in question. In addition, we
may also have an uncertainty as to the full state of the system, which is akin to what one
expects of a classical description. These properties make the application of information
theory to quantum mechanics a very interesting endeavour, with quite a few unexpected
quirks along the way. Much of this chapter largely follows the developments of [29], which
I highly recommend for a further reading. Another, much more detailed, resource on the
subject is [30].

We will begin this chapter with a very brief introduction of the mathematical constructs
involved and the Dirac notation which is commonly used throughout the subject. A reader
who has come in contact with quantum mechanics before may well wish to skip the first
few sections.

3.1 Quantum theory – the bare minimum

The fundamental description of the state of a quantum mechanical system is in terms of
a vector in a Hilbert space H, often written on the form

|ψ〉 ∈ H. (3.1)

Elements of the dual spaceH† is written as 〈ϕ|, and the inner product 〈ϕ|ψ〉. Note that the
corresponding notation in the mathematics community would be 〈ψ,ϕ〉 with the vectors
written instead as ψ and ϕ. A quantum state has the interpretation of a probability
amplitude, and is hence most often normalized to 〈ψ|ψ〉 = 1.

We interact with a quantum state through making measurements of observables, both
of which we will now define.

An observable is a Hermitian operator O ∈ end(H). Owing to its Hermiticity, it has
n = dimH (possibly degenerate) real eigenvalues λi, i = 1, . . . , n with corresponding
eigenvectors |i〉. These eigenvectors can be constructed to form an orthonormal basis over
H, meaning that any state |ψ〉 can be written on the form

|ψ〉 =
∑
i

ci |i〉 ,
∑
i

|ci|2 = 1, (3.2)

with ci ∈ C.

11

3. Quantum information theory

A measurement1 of the non-degenerate observable O is then most easily thought of as
a random process, where one of the eigenvalues λi is measured with probability

p(O = λi) = | 〈i|ψ〉 |2 = |ci|2, (3.3)

and the state |ψ〉 is projected onto the corresponding eigenvector |i〉. The case of a
degenerate observable is similar, although the projection is then onto the entire eigenspace
of the eigenvalue.

We are often interested in the expectation value of an observable, which by the above
procedure may be expressed as

〈O〉 ≡ 〈ψ|O|ψ〉 =
∑
i

λi|ci|2. (3.4)

A particularly interesting measureable quantity is the energy E of a system. Its corre-
sponding observable is called the Hamilton operator H and governs the time development
of a state by the Schrödinger equation

i
∂

∂t
|ψ〉 = H |ψ〉 . (3.5)

There are remarkably few Hamiltonians for which the eigenspectrum can be found analyt-
ically, and finding the spectra for those that remain is a major issue in numerical quantum
mechanics, which we will deal with in more detail in chapter 6. This is especially the
case for systems of many particles, or many-body systems, since their state spaces have
an exponential dependence upon the number of particles.

3.2 Composite quantum mechanical systems

A central feature where quantum mechanics deviates significantly from our classical intu-
ition is description of composite systems. Classically we are used to being able to charac-
terise the state of all subsystems independently; You do not need to know the entire state
of the universe to know the position of your left hand. To put it more concretely, consider
a system of interest A (e.g. your left hand) and a system B containing all other things
of relevance (possibly the rest of the universe), and let the space of all possible states for
either system be A and B respectively. Then, classically (although this formalization is
rather unusual), one can think of the state space of the composite system as AB = A⊕B,
so that the full state can be specified by choosing an element in AB, which is the same as
independently choosing elements from A and B. Hence, no knowledge of B is needed to
fully characterise a state in A.

In the realm of quantum mechanics however, we lack the luxury of locality. Here, the
individual states of systems A and B, characterised as vectors |ϕA〉 and |ϕB〉 in Hilbert
spaces HA and HB, instead form a composite state space H = HA ⊗ HB and the full
description of the state is achieved by choosing a vector |ψ〉 ∈ H. Now, had |ψ〉 been on
the form |ψ〉 = |ϕA〉 ⊗ |ϕB〉, we would have our full description formed by independently
choosing states from A and B in line with our classical reasoning. However, not all vectors
in H can be put on this form. To see this, we introduce orthonormal bases |iA〉 and |iB〉

1This view of the measurement process is known as the Copenhagen interpretation, and is only one of
many ways of interpreting the seemingly stochastic nature of quantum mechanics. Other interpretations
include the many-worlds interpretation, pilot waves and qubism. Since they all lead to more or less the
same mathematics and the philosophical differences, while very interesting, are hardly relevant for this
text, we might as well choose the simplest one and proceed.

12

3. Quantum information theory

on HA and HB, where iX = 1, . . . ,dim(HX). The set of all products |iA〉⊗|jB〉 then forms
a basis on H, giving the description of a generic state in this space as

|ψ〉 =
∑
i,j

cij |iA〉 ⊗ |jB〉 , (3.6)

where the cij ∈ C are commonly normalised to
∑
i,j |cij |2 = 1. The state can be written

on the product form |ϕA〉 ⊗ |ϕB〉 iff there exists vectors (ϕA)i, (ϕB)j such that cij =
(ϕA)i(ϕB)j and is then called separable. Otherwise, the state is said to be entangled, and
the subsystems then cannot be fully described independently.

3.3 Schmidt decomposition

As with any matrix, we can make a singular value decomposition (SVD) of cij , as cij =∑
k,l Uikc

′
klVlj , where U and V are unitary operators on HA and HB respectively and

c′kl = λkδkl, with λk being the singular values, which can be chosen real and non-negative.
In fact, this amounts to a unitary change of basis,

|ψ〉 =
∑
i,j,k,l

c′klUikVlj |iA〉 ⊗ |jB〉 =
d∑
i=1

λi |i′A〉 ⊗ |i′B〉 (3.7)

where d ≤ min(|HA|, |HB|) is the number of non-zero eigenvalues, and |i′A〉 =
∑
j Uji |jA〉,

and |i′B〉 =
∑
j Vij |jB〉 form the new orthonormal bases for HA and HB respectively. We

may now interpret λ2
i =: pi as the probability of finding the system in state |i′Ai′B〉 =

|i′A〉 ⊗ |i′B〉, and write, dropping the primes for convenience,

|ψ〉 =
d∑
i=1

√
pi |iAiB〉 . (3.8)

This construction is called a Schmidt decomposition, while d is called the Schmidt number.
To interpret the Schmidt number we now consider the expectation value of any observable
O in system A. In the composite system we may write this as O ⊗ idB, giving the
expectation value as

〈O〉A ≡ 〈ψ|O ⊗ idB |ψ〉 =
∑
i,j

√
pipj 〈iA|O|jA〉 〈iB| idB |jB〉 =

d∑
i=1

pi 〈iA|O|iA〉 . (3.9)

From this we see that the number of terms in the sum is equal to the Schmidt number,
giving d as a crude measure of the uncertainty induced from the state being in a com-
posite Hilbert space, although this uncertainty would of course also be dependent on the
individual probabilities pi.

The common term for this “induced uncertainty” is entanglement between A and B, of
which, as noted, the Schmidt number is a crude estimator. As the title of this chapter
hints, we shall soon be able to introduce a few finer measures of entanglement, which are
more or less directly translated from information theory. First, however, we need a way
of describing entangled states without reference to the entire system.

3.4 The density matrix

Since we do not in general possess full knowledge of the state of the universe, it is desirable
to achieve a way of calculating expectation values without reference to the subsystem B.

13

3. Quantum information theory

Looking at (3.9) we see that

〈O〉A =
∑
i

pi 〈iA|O|iA〉 = trHA

[∑
i

〈iA|O pi|iA〉
]

= trHA

[
O
∑
i

pi |iA〉 〈iA|
]
, (3.10)

where we have used the linearity and the cyclicity of the trace as well as the linearity of
O. This allows us to introduce the the density matrix

ρA ≡
∑
i

pi |iA〉 〈iA| , (3.11)

giving the expectation value of O as

〈O〉A = tr
[
OρA

]
. (3.12)

which both is agnostic of B and basis invariant; under a unitary change of basis we find

tr
[
OρA

]
→ tr

[
U †OUU †ρAU

]
= tr

[
OρAUU

†] = tr
[
OρA

]
. (3.13)

We should also note that we may arrive at ρA from the full state |ψ〉 in a very simple
manner. Consider first the density matrix for the full system, which for a pure state is
defined as

ρ ≡ |ψ〉 〈ψ| , (3.14)

and in the basis of the Schmidt decomposition becomes

ρ =
∑
i,j

√
pipj |iAiB〉 〈jAjB| . (3.15)

Now, to retrieve the reduced density matrix ρA, we simply perform a partial trace over
HB;

trHB
ρ = trHB

∑
i,j

√
pipj |iAiB〉 〈jAjB| =

∑
i,j

√
pipj |iA〉 〈jA| trHB

[
|iB〉 〈jB|

]
=
∑
i

pi |iA〉 〈iA| = ρA.
(3.16)

Some properties that we may note from the form of the density matrix is that it is (i)
Hermitian, (ii) positive semi-definite and (iii) has trace one, trHA

ρA =
∑
i pi = 1.

In the above we have only considered a pure composite state where we know the Schmidt
decomposition, but it is a simple matter to extend this also to non-pure, or mixed states.
These are states where the composite system is in a mixture of several pure states |ψi〉 ∈
HA ⊗HB, each with weight λi > 0. We may then write the density matrix, which is still
Hermitian and positive semi-definite, as

ρ ≡
∑
i

λi |ψi〉 〈ψi| , (3.17)

with the λi normalized such that tr ρ = 1. In a generic orthonormal basis this becomes,
for some tensor cijkl,

ρ =
∑
i,j,k,l

cijkl |iAjB〉 〈kAlB| . (3.18)

The reduced density matrices are, just like before, retrieved by tracing out the other
system,

ρA = trHB
ρ =

∑
i,j,k

cikjk |iA〉 〈jA| , (3.19)

14

3. Quantum information theory

allowing single-system operators to be calculated without explicit knowledge of the other
system.

An interesting aside regarding density matrices is that of purification. Consider a generic
density matrix ρA ∈ hom(HA). Since it is Hermitian, we can always find an orthonormal
basis of HA where it is diagonal. In this basis,

ρA =
d∑
i=1

pi |iA〉 〈iA| , (3.20)

for some d ≤ dimHA, and pi ∈ R. Now introduce an artificial Hilbert space HB with
dimHB ≥ d and ON-basis |iB〉 and let

ρ ≡ |ψ〉 〈ψ| , |ψ〉 ≡
d∑
i=1

√
pi |iA〉 ⊗ |iB〉 . (3.21)

Then, as we have already seen, ρA = trHB
ρ. Since |ψ〉 is a pure state, we call it a

purification of ρA.

3.5 Measures of entanglement

Having properly introduced the relevant parts of the density matrix formalism we are now
ready to take a proper look at some different ways to quantify the uncertainty and/or
entanglement in a quantum many-body state. The measures we will consider are the
Schmidt number (which we have already introduced), the von Neumann entropy, which
is a generalization of the Shannon entropy, and the quantum Rényi entropy analogously
extended from the classical Rényi entropy.

3.5.1 Schmidt number

The simplest measure of entanglement is the Schmidt number, which we have already
defined in the context of pure states as the number of terms in the Schmidt decomposition.
To extend this to generic density matrices, we note that the number of terms in the
purification of a state (see eq. (3.21)) is equal to the number of non-zero eigenvalues of
the original density matrix ρ. But this is equal to the matrix rank of ρ, so that we may
write the Schmidt number as

rank ρ. (3.22)

As we expect for a measure of entanglement, this is minimal for a pure state, which has a
density matrix with a single non-zero eigenvalue, and maximal for a density matrix which
assigns non-zero probability to all states in its Hilbert space.

3.5.2 von Neumann entropy

As first noted by von Neumann, Shannon entropy (or equivalently, Gibbs entropy) may
be quite naturally extended to the domain of quantum statistical mechanics. Also here
we may interpret it as the uncertainty in the state, or the expected information retrieved
from making a measurement. Consider a density matrix ρ, which we may diagonalize as
ρ =

∑
i pi |ψi〉 〈ψi|, where the |ψi〉 are orthonormal. Since the pi are ≥ 0 and sum to one, a

natural interpretation is that, if we make a measurement whose operator is diagonal in the

15

3. Quantum information theory

same basis, we will find the system to be in state |ψi〉 with probability pi. The expected
uncertainty of this measurement is then the Shannon entropy

S(ρ) = −
∑
i

pi log pi, (3.23)

or, to put it in a slightly more invariant form,

S(ρ) ≡ − tr[ρ log ρ]. (3.24)

This is known as the von Neumann entropy of the density matrix ρ. From eq. (3.23) we
see that, as with Shannon entropy,

S(ρ) ≥ 0, (3.25)

with equality only for pure states, i.e. when pi = δij for some j.

3.5.3 Quantum Rényi entropy

The generalization of Shannon entropy to Rényi entropy carries over to the quantum case
in the simplest possible manner, namely

Sq(ρ) ≡ 1
1− q log tr(ρq). (3.26)

In fact, diagonalizing ρ, so that ρ = diag{p1,p2, . . .}, with pi being the eigenvalues of ρ
we see that this reduces to the classical definition, just as in the case of von Neumann
entropy, allowing us to conclude that

lim
q→1

Sq(ρ) = S(ρ), (3.27)

as well as
d
dqSq(ρ) ≤ 0 (3.28)

holds also in the quantum case.

One aspect of the Rényi entropy that is easily overlooked is its computational simplicity
– since the trace is taken before the logarithm, and integer powers of matrices can be
computed without series expansion or knowledge of the eigenvalues, Sq(ρ) becomes a
much simpler function of ρ for integer q 6= 1 than S(ρ). In particular, even if we are
only interested in von Neumann entropy, we can use the monotonicity of Rényi entropy
to bound it as

S2(ρ) ≤ S(ρ) ≤ S0(ρ). (3.29)

Here the zeroth Rényi entropy (also known as Hartley entropy) is particularly simple to
calculate; if we again consider a diagonalized density matrix ρ = diag{p1,p2, . . .} and define
00 ≡ 0 for convenience (and for continuity at q = 0), we find

S0(ρ) = log tr ρ0 = log tr
∑
i

p0
i |i〉 〈i| = log rank ρ, (3.30)

which we note is just the logarithm of the Schmidt number.

16

3. Quantum information theory

3.5.4 Equal entropy of subsystems

An interesting consequence of the Schmidt decomposition is that the entropies of the
subsystems of a pure bipartite state are equal. To see this, let |ψ〉 =

∑
i
√
pi |iAiB〉 ∈

HA ⊗HB be such a state, and let ρ = |ψ〉 〈ψ| be its density matrix. Then,

ρA = trHB
ρ =

∑
i

pi |iA〉 〈iA| , ρB = trHA
ρ =

∑
i

pi |iB〉 〈iB| , (3.31)

so that
Sq(A) = Sq({pi}) = Sq(B), (3.32)

where we have introduced Sq(X) ≡ Sq(ρX) to simplify notation.

3.5.5 Quantum mutual information

Not all of the entropy-related quantities introduced in the previous chapter generalize well
to the quantum entropies, but one that do is the mutual information. Consider a bipartite
quantum mechanical system AB with density matrix ρAB ∈ end(HA ⊗ HB). Then the
(quantum) mutual information between A and B is defined as

I(A : B) ≡ S(A) + S(B)− S(AB), (3.33)

where S(X) is the von Neumann entropy of system X. It is non-negative and may readily
be interpreted as the amount of information obtained about A by making a measurement
on B [29].

A useful property of this mutual information is that, for a pure state ρAB = |ψ〉 〈ψ|,
we know the joint entropy to be S(AB) = 0, while the reduced entropies are equal,
S(A) = S(B), giving

I(A : B)
∣∣∣∣
ρAB is pure

= 2S(A) = 2S(B), (3.34)

so that the entropy of either of the reduced regions itself in this case becomes a measure-
ment also of the mutual information, or correlation, between A and B.

17

3. Quantum information theory

18

4
Graph theory

Graph theory is a powerful tool both in the context of machine learning, where graphs are
often used to represent probability distributions with complex correlation structures (see
e.g. [37, ch.16]) and in quantum many-body theory where they form the basis of Tensor
Networks, which is a tool for describing quantum states with very general entanglement
properties [38]. Both of these uses will be relevant to our later developments, and it is
therefore helpful to go through some useful definitions and one or two results from the
subject.

4.1 Types of graphs

One of the standard definitions of a graph is the following:

Definition 4.1. (Graph) A graph G = (V,E) is an ordered pair of disjoint sets V and E,
where E ⊆ [V]2, with [V]2 being the set of unordered pairs {v,w} of elements v, w ∈ V .
The elements v ∈ V are called vertices or nodes and the elements e ∈ E edges.

As the name implies, graphs lend themselves well to visual representations. Typically
one draws each vertex as a dot and each edge as a line between the corresponding vertices,
as shown in fig 4.1a.

However, in the context of tensor networks, we will need to also allow for edges that are
not connected to two vertices. Such graphs, often called open or half-edge graphs seem to
rarely be formalised, perhaps since they are so easily translated to the standard, or closed
graphs. Nevertheless, inspired by the definition in [39] we define them as follows.

Definition 4.2. (Open Graph) An open graph G = (V, ε, E) is an ordered triplet of
disjoint sets V , ε and E, with E ⊆ [V ∪ ε]2 such that each element in ε is only contained
in one element of E. The elements x ∈ ε are called edge points, while, as before, elements
v ∈ V are called vertices and the elements e ∈ E edges.

We will often make ε implicit and refer also to open graphs as G = (V,E). In these
cases it should be clear from the context what is meant. A visual depiction of an open
graph is shown in fig. 4.1b.

There will sometimes be a need to distinguish internal edges e ∈ Ē ≡ E∩[V]2, which are
connected to two vertices, from dangling edges e ∈ ∂E ≡ E \ [V]2, which have one or both
ends “free”. For this we will use the above introduced notations Ē and ∂E. In addition,
we will often write the set of edges connected to a vertex v ∈ V as dv ≡ {e ∈ E; e 3 v},
and the set of vertices connected to an edge e ∈ E as ∂e ≡ V ∩ e.

There is a wealth of standard literature dealing with closed graphs. Since this is, to
the best of our knowledge, less true for open graphs it is helpful to be able to express an

19

4. Graph theory

(a) Closed graph (b) Open graph

Figure 4.1: Visual representations of closed and open graphs respectively. Each point
corresponds to a vertex and each line to an edge.

open graph in terms of a closed. This we can easily do by making the following definition,
inspired by [40].

Definition 4.3. The completion of the open graph G = (V, ε, E) is the closed graph
G = (V, E) where V = V ∪ ε and E = E.

When doing graph theory on open graphs in later chapters, we will almost exclusively
be formally dealing with the completion of the graph.

It will also be helpful to introduce the following definitions:

A multigraph is a graph G = (V,E) where we allow several edges between the same
set of vertices, i.e. for e1, e2 ∈ E we allow both e1 and e2 to correspond to the pair
{v, w} ∈ [V]2. Formally this can be achieved e.g. by constructing the correspondence
between E and [V]2 as an incidence function ψG : E → [V]2. However we will still, with
some slight notational abuse, refer to edges as e = {v, w}. An open multigraph is defined
analogously.

A directed graph is a graph G = (V,E) where the edges e ∈ E are ordered pairs of
vertices, e = (v,w), with v, w ∈ V . Visually, an edge e = (v,w) is represented as an arrow
from v to w.

A weighted graph is a graph G = (V,E) together with a weight function w : E → R+.

4.2 Paths, cuts and cliques

A trail is a finite alternating sequence of vertices and distinct edges v1e1,v2,e2, . . . such
that ei = (vi, vi + 1).

A path is a trail where also the vertices are distinct.

A circuit is a trail that starts and ends at the same vertex.

A graph is said to be connected if there is a path between any two vertices in the graph.

An edge cut set of a connected graph G = (V,E) is a set of edges C ⊆ E such that the
graph G′ = (V,E \ C) is disconnected. It is said to separate A ⊂ V from B ⊂ V if there
is no path between A and B in G′. The weight of a cut C is given by

|C| ≡
∑
e∈C

w(e), (4.1)

where w(e) is the weight function of the graph. For unweighted graphs one typically takes
w(e) ≡ 1, in which case |C| becomes the cardinality of C.

20

4. Graph theory

Definition 4.4. (Min cut)
Let C be the family of all edge cut sets in the graph G. The min cut of the graph is then
MC(G) ≡ minC∈C |C|.

Let C(A,B) be the family of all edge cut sets in the graph G separating A from B. The
min cut separating A from B is then MC(A,B)(G) ≡ minC∈C(A,B) |C|.

Definition 4.5. A clique is a subset of the vertices C ⊆ V such that (u,v) ∈ E for all
u, v ∈ C, or equivalently, such that the subgraph induced by C is complete.

It is maximal if it is not a proper subset of another clique.

4.3 Max flow/min cut and Menger’s theorem

One of the most interesting and widely applicable sub-areas of graph theory is that of
network theory, where one studies flows, which we may think of as consisting of e.g.
water, electric current or cars, through graphs which correspondingly may be thought of
as networks of water pipes, wires or roads. A central result from network theory, which we
will now proceed to discuss, is that the maximum flow through a network may be related
to a min cut in the graph. This is known as the max flow/min cut theorem.

Let G = (V,E, c) be a flow network, i.e. a directed, weighted graph with weight function
(capacity) c and let S, T ⊂ V be the set of sources (vertices with only outgoing edges) and
sinks (vertices with only incoming edges) respectively.

Each edge e ∈ E is also associated with a flow f : E → R+ which is capped by the
capacity, f(e) ≤ c(e), and conserved, meaning that for all v ∈ V∑

e∈dinv

f(e) =
∑

e∈doutv

f(e), (4.2)

where

dinv = {e ∈ E; e = (u, v), for some u ∈ V }, and

doutv = {e ∈ E; e = (v, u), for some u ∈ V }.

The network flow |f | is the total flow leaving the source (or, equivalently, entering the
sink), i.e. |f | ≡

∑
v∈S

∑
e∈doutv f(e). The max flow is defined as MF(G) ≡ maxf |f |.

Note that, for unweighted graphs upon setting c(e) = 1, MF(G) becomes the number of
edge-disjoint paths from S to T .

An S − T cut is as a set of edges C(S−T) ⊂ E such that the graph G′ = (V,E \C(S−T))
contains no paths from S to T . The min S−T cut weight is then defined as MC(S−T)(G) =
minC∈C(S−T) |C|, with C(S−T) being the family of all S − T cuts.

Theorem 4.1. [41, 42] (Max flow/min cut theorem)
Let G,S, T be as above. Then MF(G) = MC(S−T)(G).

Proof. See e.g. [25].

Theorem 4.2. (Menger’s Theorem) Let G = (V,E) be a directed, unweighted graph with
sources S and sinks T . Then the maximum number of edge-disjoint paths from S to T is
equal to the minimal S − T cut weight MC(S−T)(G).

Proof. Follows immediately from the Max flow/Min cut theorem after setting c(e) = 1∀e ∈
E and noting that the number of edge disjoint paths from S to T then becomes equal to
MF(G).

21

4. Graph theory

Theorem 4.3. [25] (Undirected Menger’s theorem)
Let G = (V,E) be an undirected (unweighted) graph, and (A,B) a partition of the vertices
with degree 1. Let MF(A,B)(G) be the maximum number of edge-disjoint paths between
A and B. Then MC(A,B)(G) = MF(A,B)(G).

Proof. Consider an edge cut set C separating A from B. By definition, any path from A
to B must then traverse an edge in C. Since the paths in MF(A,B)(G) are edge disjoint,
there can therefore be a maximum of |C| such paths, giving MF(A,B)(G) ≤ MC(A,B)(G).

Now, let G′ = (V,E′) be a directed graph with the same set of vertices as G, but where
each undirected edge (u, v) ∈ E is replaced with the two directed edges (u, v) and (v, u),
unless u ∈ A or v ∈ B, in which case (u,v) ∈ E′ while (v, u) /∈ E′, so that A is a source
and B a sink for G′. It is clear that MC(A−B)(G′) = MC(A,B)(G) since any cut set C ∈ E
can be made into a cut set C ′ ∈ E′ by for each edge e ∈ C picking a corresponding e′ ∈ C ′
between the same vertices, chosen in the appropriate direction. By the directed Menger’s
theorem we have that MC(A−B)(G′) = MF(A,B)(G′).

Given a set of MF(G′) edge-disjoint paths from A to B in G′, it is easily seen that it is
always possible to make them non-intersecting and acyclic without reducing the number
of paths by swapping edges between intersecting paths and removing the edges that form
cycles. Now, consider such a set of MF(G′) non-intersecting and acyclic paths from A to
B. It is clear that only one of the edges in G′ corresponding to a given edge in G can
be traversed by this set of paths, since the paths would have either cycles or intersections
otherwise. Hence this set of paths is also a valid set of edge-disjoint paths in G, showing
MF(A,B)(G) ≥ MF(G′) = MC(A,B)(G).

Since we have shown both ≤ and ≥, we are left with MF(A,B)(G) = MC(A,B)(G), which
is the statement of the theorem.

4.4 Vertex limited flows

A simple generalization of max flow/min cut, which we will be able to make good use of
in the next chapter, is to introduce capacities also to vertices. That is, we extend c to be
c : V ∪ E → R+ ∪∞ and demand in addition to before, that the flow

f(v) ≡
∑
e∈dinv

f(e) ≤ c(v). (4.3)

It will also be beneficial to introduce the notion of combined cuts.

Definition 4.6. A set C = CV ∪ CE , with CV ⊂ V and CE ⊂ E of a connected graph G
is a combined cut set if G′ = (V \ CV , E \ CE) is disconnected.

Cut weights and minimal cuts are defined analogously to the edge cut case, bearing in
mind that also vertex capacities are to be considered.

Now we will construct a similar series of max flow/min cut theorems for the vertex
limited flows, starting with general flows.

Theorem 4.4. (Vertex limited max flow/min cut theorem) Let G = (V,E) be a vertex-
limited flow network, with sources S, sinks T and capacities c. Then MF(G, c) = MC(G, c).

Proof. We may construct from G an ordinary flow network G′ = (V ′, E′) with capacity
function c′ : E′ → R+ ∪∞, by splitting each vertex v ∈ V into two vertices vin and vout

22

4. Graph theory

in V ′, which we connect by an edge (vin, vout) with capacity c(v). In addition, we connect
the edges dvin to vin and dvout to vout.

It is obvious that by this construction we have MF(G, c) = MF(G′, c′) and MC(G, c) =
MC(G′, c′), where the left MC is a minimal combined cut weight while the right MC is a
minimal edge cut weight. But by the min cut/max flow theorem, MC(G′, c′) = MF(G′, c′),
and the theorem follows.

The two above versions of Menger’s theorem are also easily adapted:

Theorem 4.5. (Vertex limited Menger’s theorem)
Let G = (V,E) be a directed, unweighted graph with sources S and sinks T . Then the
maximum number of edge-disjoint paths from S to T such that a maximum of nv ∈ Z+
paths passes through vertex v is equal to the minimal combined cut weight MC(G, c), with
capacity function

c(x) =
{
nx if x ∈ V,
1 if x ∈ E.

(4.4)

Proof. Follows with the above choice of c(x) immediately from the vertex limited max
flow/min cut theorem after noting that the number of vertex-limited edge disjoint paths
from S to T becomes equal to MF(G).

Theorem 4.6. (Vertex limited undirected Menger’s theorem)
Let G = (V,E) be an undirected, unweighted graph with sources S and sinks T . Then the
maximum number of edge-disjoint paths from S to T such that a maximum of nv ∈ Z+
paths passes through vertex v is equal to the minimal combined cut weight MC(G, c), with
capacity function

c(x) =
{
nx if x ∈ V,
1 if x ∈ E.

(4.5)

Proof. The proof is analogous to that of the ordinary undirected Menger’s theorem.

Of these three theorems, it is mainly the latter one that is of interest to us, as we will be
able to use it for studying ranks of matricizations of tensor networks in the next chapter.

23

4. Graph theory

24

5
Tensor networks

One of the biggest obstacles when performing numerical simulations of many-particle quan-
tum mechanical systems is the curse of dimensionality, stemming from that the number of
degrees of freedom of a generic many-body state is exponential in the number of particles.
However, it seems that physical systems rarely exploit the entire available state space, but
rather contain additional structure which allow them to be described with much fewer
variables (this phenomenon is also common to the context of ML where it is often referred
to as “the blessing of non-uniformity”).

One tool that has proven very useful in creating efficient descriptions of quantum states,
especially for condensed matter systems, but also, somewhat surprisingly, in the context of
the holographic principle from quantum gravity (see e.g. [43]), is that of Tensor Networks
(TN), where one represents a many-body quantum state as a high-dimensional tensor
which is decomposed into inner products between several lower dimensional tensors. These
inner products induce correlations between the subsystems involved and their structure
can easily be represented on a graph, giving an intuitive way to grasp the approximate
correlation structure of the state.

This section is an introduction on the subject and to a large degree a summary of [38].

5.1 An introduction

A tensor network is a graphical representation of a multilinear tensor T , which for our
purposes is best viewed as an element in some finite-dimensional Hilbert space H. The
tensor is represented on an open multigraph G = (V,E) by assigning to each edge e ∈ E
a finite-dimensional Hilbert space He and to each vertex v ∈ V a tensor

Tv ∈ Hv ≡
⊗
e∈dv
He. (5.1)

Note that the number of indices, or modes of Tv becomes equal to the degree |dv| of v.
Also, for convenience we will call the total set of tensors in the TN

T ≡
⋃
v∈V

Tv. (5.2)

The overall tensor T is then arrived at by for each doubly connected edge {u, v} ∈ Ē
taking the inner product between the corresponding modes in Tu and Tv. This results in
T being an element of

H =
⊗
e∈∂E

He, (5.3)

where ∂E is the set of dangling edges in G.

25

5. Tensor networks

The direction of the edges are sometimes (but not always) given special meaning. One
such scheme which we will make some use of is to divide the edges of a vertex into two
set; dv = dvin ∪ dvout, and view the corresponding tensor as a linear map

Tv ∈ hom(Hin,Hout),
{
Hin ≡

⊗
e∈dvin H

e

Hout ≡
⊗

e∈dvout H
e.

(5.4)

The edges in dvin are then drawn pointing downward and those in dvout pointing upward.
We will often use upper and lower indices of tensors correspondingly, meaning that the
tensor T i1,...,imj1,...,jn , with m = | dvout| and n = |dvin|, may be drawn as

T i1,...,imj1,...,jn = T

i1
i2 . . .

im

j1 j2
. . .

jn

. (5.5)

Note that by this prescription, the dual tensor T † ∈ hom(Hout,Hin) is to be vertically
flipped compared to T . As there is no conceptual difference between edges viewed as
inputs and edges viewed as outputs, this distinction is not always needed and we will
hence allow ourselves to raise and lower indices and change direction of edges freely. It
will often be convenient to draw edges horizontally to save space.

A very simple, yet instructive, example of a non-trivial TN is the matrix product

i

T

V

j

≡ T ikV k
j , (5.6)

where we have used the Einstein summation convention for the inner product between T ik
and V k

j . Two other examples which should be considered are the identity map and the
outer product,

id = , and u⊗ v =
vu
. (5.7)

5.1.1 Merging edges

Since G is a multigraph we may sometimes end up with multiple edges between the same
set of vertices, i.e. we may have part of the TN on the form

i1
i2
...

im

j1
j2

...

jn

T V

k1
k2
...

kr

= T i1,...,imk1,...,krV
k1,...,kr

j1,...,jn . (5.8)

26

5. Tensor networks

So long as the dimensionality of the modes are allowed to change, any TN on this form
can always be reduced to an equivalent TN with only one edge joining the two tensors;

i1
i2
...

im

j1
j2

...

jn

T V

k1
k2
...

kr

=

i1
i2
...

im

j1
j2

...

jn

T ′ V ′
K

, (5.9)

where T ′i1,...,imK ≡ T i1,...,imk1,...,kr and K ≡ ϕ(k1, . . . ,kr) with ϕ being any bijective map
between [d1]× [d2]× . . .× [dr] and [

∏
l dl]. Hence, the dimension of the merged subspace

is the product of the dimensions of the spaces being merged.
Evidently, the same procedure may be applied to the dangling edges from a vertex, so

that any TN has an equivalent description as a simple open graph. The TN of eq (5.9)
may for example be represented equally well as

I JT ′′ V ′′
K

, (5.10)

where indices I and J are mapped from {il}ml=1 and {jl}nl=1 in a identical manner to that
of K. In multilinear algebra, this operation of taking a multi-mode tensor T to a matrix
T ′′ is known as a matricization, or flattening of T .

If we consider the adjoint of a matrix to be equivalent to the matrix itself, the number
M of inequivalent matricizations of an n-mode tensor is equal to the number of ways to
form two non-empty partitions out of a set of n elements, i.e. M = 2n−1 − 1.

We will be interested in the ranks of these matrices, which for a given n-mode tensor
form an M -tuple of integers (r1, r2, . . . , rM). Failing to find a standard term, we will refer
to this M -tuple as the multi-rank of a tensor, as it is a slight expansion on the similar
multilinear rank.

5.1.2 Taking derivatives

Since a TN is linear in all its component tensors, taking partial derivatives with respect
to the tensors becomes quite straightforward. Given a TN where the tensor T occurs only
once, we may write its value as

Ψ = TΨT , (5.11)

where ΨT is the rest of the network, often referred to as the environment of T , and the
multiplication is inner products taken over all modes of T . The partial derivative hence
becomes simply

∂Ψ
∂T

= ΨT . (5.12)

As an illustrative example consider

Ψ =
T

, (5.13)

where the smaller dots are arbitrary tensors. The derivative of Ψ with respect to T is then

∂Ψ
∂T

= ΨT = . (5.14)

27

5. Tensor networks

Note especially that the dangling edge of T becomes an identity operator in the corre-
sponding mode of ΨT .

If T occurs n > 1 times in the TN, the situation becomes less trivial. In this case we
may express Ψ as

Ψ = T⊗nΨT⊗n . (5.15)

Since the environments of the T ’s at different sites are in general different, we introduce a
labelling of these, denoting the T at site i = 1, . . . ,n with Ti. Hence,

Ψ =
(

n⊗
i=1

Ti

)
ΨT⊗n . (5.16)

Leibniz’ rule then gives the sought derivative as

∂Ψ
∂T

=
n∑
i=1

⊗
j 6=i

Tj

ΨT⊗n =
n∑
i=1

ΨTi , (5.17)

where ΨTi ≡
(⊗

j 6=i Tj
)

ΨT⊗n is the environment of Ti.

5.2 Entanglement in tensor networks

We will now take a look at how we may estimate the entanglement entropy of a TN state.
To compute the exact Rényi entropies Sα with α > 0, we would of course need to know
the full set of tensors T , in which case the calculation is rather straight forward and not
that different from the generic case. What is interesting, however, is that it suffices to
know the dimensionalities of the modes of each tensor Tv ∈ T to be able to give an upper
bound on S0(A) and hence Sα(A) for any region A ⊆ ∂E.

We will also see that, for networks where all tensor mode dimensions are powers of the
same integer, this limit is also realized for all configurations of T except a set with Lebesgue
measure zero. Both of these results goes under the name of Quantum max flow/min cut
and are shown in [25], whose presentation we will summarise in this section.

5.2.1 Quantum max flow/min cut

Consider an open multigraph G = (V,ε, E), and partition the edge points ε into two
disjoint sets S, T , which we will refer to respectively as the sources and sinks of G. For
any u ∈ ε, denote the edge connected to u as e(u), and, for each edge e ∈ E, introduce
a Hilbert space He with dimension ce. Anticipating that ce will play a similar role to the
capacity (or weights) in the classical max flow/min cut theorem, we introduce the quantum
capacity as a function c : E → Z+, such that c(e) = ce.

From this setup, we may instantiate a TN by any assignment v 7→ Tv ∈ Hv ≡
⊗
e∈dvHe.

We denote the set of tensors from one such assignment by T ∈ I ≡
⋃
v∈V Hv. Commonly,

however, some or all the tensors will have additional constraints. In these cases we will
instead write T ∈ J ⊆ I.

In the context of our flow network, we may interpret the resulting TN from a particular
choice of T as a linear map β(T) from source to sink: Let

HS ≡
⊗
u∈S
He(u),

HT ≡
⊗
u∈T
He(u).

(5.18)

28

5. Tensor networks

Then β(T) ∈ hom(HS ,HT).
It will also be useful to more generally define, for any set of edges A ⊆ E and any set

of vertices B ⊆ V ,
HA ≡

⊗
e∈A
He,

HB ≡
⊗
v∈B
Hv.

(5.19)

Definition 5.1. The quantum max flow for a graph G with sources S, sinks T and
quantum capacity c as above is

QMF(G,c;J) ≡ max
T ∈J

rank β(T). (5.20)

We will further take QMF(G,c) to mean QMF(G,c; I), from which it follows trivially that
QMF(G, c;J) ≤ QMF(G, c).

Given an edge cut set C disconnecting S from T , we further define the quantum capacity
of C as

QC(C, c) ≡
∏
e∈C

ce, (5.21)

leading to the following definition:

Definition 5.2. The quantum min cut for a graph G with sources S, sinks T and quantum
capacity c as above is

QMC(G,c) ≡ min
C∈C

QC(C,c), (5.22)

where C is the set of edge cuts separating S from T .

As a quick aside, we may note that if we introduce a weight function w(e) ≡ log c(e),
the weight of a cut C is equal to the logarithm of the quantum cut

|C| = log QC(C), (5.23)

also giving
MC(G) = log QMC(G). (5.24)

Lemma 5.1. Let C be an edge cut in G, separating S from T , and define HC ≡
⊗

e∈C He.
Then

β(T) = β2β1, (5.25)

where β1 ∈ hom(HS ,HC) and β2 ∈ hom(HC ,HT).

Proof. Form a partition (S̄, T̄) of V̄ = V ∪ ε such that S ⊆ S̄ and T ⊆ T̄ , and C is set of
edges connecting S̄ with T̄ . Replace each edge (u,v) ∈ C, where u ∈ S̄ and v ∈ T̄ , with
two half-edges (u, εu) and (v, ε′u). Denoting the sets of thus introduced edge points as U
and U ′, we arrive at two separated subgraphs G1, G2 such that S̄ is contained within G1
and T̄ within G2.

Evidently, each Gi forms a TN in its own right, G1 with sources S and sinks U and
G2 with sources U ′ and sinks T . Their linear maps become β1(T1) ∈ hom(HS ,HC) and
β2(T2) ∈ hom(HC ,HT), where Ti is the restriction of T to Gi and we have used that
HC = HU = HU ′ .

The map β(T) of G is then simply the composition of β1(T1) and β2(T2), i.e. β(T) =
β2β1, proving the lemma.

29

5. Tensor networks

Corollary 5.1. QMF(G,c) ≤ QMC(G,c)

Proof. This follows immediately from the previous lemma. We can write β = β2β1 with
βi defined as above, for any T and cut C. Choose the decomposition corresponding to the
minimal cut Cmin w.r.t. c. Then

QMF(G,c) = max
T

rank β = max
T

rank(β2β1) ≤ max
T1

rank β1 ≤ dimHCmin
= QMC(G,c).

While the above result is well known, the lower bound on QMF is less studied. The
following theorem shows that QMC = QMF for special capacity functions.

Theorem 5.1. Quantum max-flow/min-cut theorem
If there is a positive integer d ∈ Z+ such that logd(ce) ∈ Z+ for all e ∈ E, then

QMC(G, c) = QMF(G, c) (5.26)

Proof. This can be proven by constructing an explicit instantiation of T which fulfils
rank β(T) = QMC(G,c), since the previous corollary shows QMF ≤ QMC. For details,
see [25].

This actually gives a lower bound on QMF for any TN, since we can choose T in such
a way that each c(e) is effectively reduced to be d taken to some integer power, for some
d ∈ Z+.

Corollary 5.2. If there is a positive integer d ∈ Z+ such that logd(ce) > me ∈ Z+ for all
e ∈ E, then

QMF(G,c) ≥ QMC(G, c′) (5.27)

where c′(e) ≡ dme .

Proof. Taking c → c′ demands us to make a corresponding transformation He → H′e of
the Hilbert spaces, since c(e) ≡ dimHe and c′(e) ≡ dimH′e. Choose H′e ⊆ He, which is
possible due to that c′(e) ≤ c(e) ∀ e.

Each tensor of the original TN is then an element Tv ∈ Hv =
⊗

e∈dvHe, while the
tensors of the reduced TN are T ′v ∈ H′v =

⊗
e∈dvH′e. Hence, H′v ⊆ Hv ∀ v ∈ V , from

which it follows directly that QMF(G,c) ≥ QMF(G,c′), and by theorem 5.1, QMF(G,c′) =
QMC(G,c′), which finishes the proof.

It is also possible to show that QMF = QMC for a slightly different special case of TN’s:

Proposition 5.1. Let G, c be as above and introduce a weight function w(e) ≡ logd c(e)
for some d > 1. Consider the classical max flow MF(G,w). If this flow is at each edge
logd of some integer and there is no closed loop in G in which all edges have non-zero flow,
then QMF(G, c) = QMC(G,c).

Proof. See [25]

While the above results are interesting in their own right, their usefulness is quite limited,
due to the fact that QMF is stated as a maximisation over T , but the more common case is
to have a fixed T . However, the following proposition asserts that the maximum quantum
flow is actually reached for almost all choices of T .

30

5. Tensor networks

Proposition 5.2. The set K of all tensors T ∈ I such that rank β(T) = QMF(G,c) is an
open, dense subset of I.

Proof. Let M ≡ QMF(G, c). We note that rank β(T) < M implies the vanishing of all
M×M minors to β. The minors are polynomials, meaning that K{ = {T ; rank β(T) < M}
is a proper affine variety. This tells us[25, 44] that K is an open, dense subset of I, which
is the statement of the proposition.

5.2.2 Quantum max flow/min cut with restricted tensors

It is a common case that one wishes to consider tensor networks where the tensors are
chosen from a smaller set than I. For this reason, we make some minor extensions to the
ideas of Cui et al[25] in this section, beginning with a slight generalization of the preceding
proposition.

Fix a basis {eei}
ce
i=1 for each edge space He with e ∈ E. This implies a basis {evi } for

each vertex space Hv, v ∈ V , in which we may expand each tensor Tv according to

Tv =
∑
i

T ive
v
i , T iv ∈ F (5.28)

where F is the field of the Hilbert space. Introduce an arbitrary ordering of these compo-
nents according to tϕ(v,i) ≡ T iv, where ϕ(v, i) is an arbitrary bijection mapping vertex-index

pairs onto [N] with N being the number of such pairs. We then have t ∈ FN .
Fix a subset of the components T iv, that is, partition t into t = (tfree, tfixed) such that

tfree ∈ Fn and tfixed = α for some constant α ∈ FN−n.
Now, let J ⊆ I be the space in which T now takes values, i.e. let

J ≡ {T ∈ I; tfree ∈ Fn, tfixed = α} ∼= Fn. (5.29)

Proposition 5.3. The set K of all tensors T ∈ J such that rank β(T) = QMF(G,c;J)
is an open, dense subset of J .

Proof. The proof is completely analogous to that of prop. 5.2, since all minors of β are
polynomials in the components of tfree.

A commonly occurring restriction is that one or more of the tensors are diagonal. If
these are adjacent to minimal cuts it will reduce the quantum max flow of the TN.

Proposition 5.4. Let J be a subset J ⊆ I such that Tv is restricted to be a diagonal
tensor for some vertex v ∈ V . For simplicity we demand in addition that all bond di-
mensions ce = dimHe for e ∈ dv are equal to d. Consider the cut set C of an arbitrary
quantum minimal cut QMC(G, c) and define m ≡ max{|C ∩ dv| − 1, 0}. Then

QMF(G, c;J) ≤ d−m QMC(G, c). (5.30)

Proof. We begin by noting that for m = 0, the statement is identical to the limit we have
already shown for QMF(G, c) with unrestricted tensors.

Consider instead the case m ≥ 1, and once again note that the cut set defines an
intermittent Hilbert spaceHC ≡

⊗
e∈C He, so that the map β(T) hence may be partitioned

into β = βTβS , with βS ∈ hom(HS ,HC) and βT ∈ hom(HC ,HT).
We may without loss of generality assume Tv to be a part of βT , which we may then

partition according to βT = βT ′βv, with βv = Tv ⊗ id(HC\dv) ∈ hom(HC ,HC\dv ∪ dv\C).
This gives β(T) = βT ′βvβS , and hence

rank β(T) ≤ rank βv = dimHC\dv rank Tv = d−m−1 QMC(G,c) rank Tv, (5.31)

31

5. Tensor networks

where we by rank Tv mean the matrix rank of the flattening of Tv implied by βv. However, it
is a simple result from multilinear algebra that the multi-rank of a diagonal dn-dimensional
tensor is (r,r, . . . , r), where r ≤ d is the number of non-zero elements of the diagonal vector.
We hence have rank Tv ≤ d, giving

rank β(T) ≤ d−m QMC(G, c). (5.32)

This holds for any assignment of tensors T ∈ J , which is precisely what is required by
the statement of the proposition.

Proposition 5.5. Let J be a subset J ⊆ I such that Tvi for i = 1, . . . ,n are restricted to
be diagonal tensors for some non-adjacent vertices vi ∈ V . We further demand that each
tensor Tvi have all bond dimensions ce for e ∈ dvi equal to di.

Consider the cut set C of an arbitrary quantum minimal cut QMC(G, c) and define
mi ≡ max{|C ∩ dvi| − 1, 0}. Then

QMF(G, c;J) ≤
n∏
i=1

d−mi
i QMC(G, c). (5.33)

Proof. The proof is analogous to the preceding proposition, but with βv replaced by β{vi} =
(
⊗
i Tvi)⊗ id(HC\∪i dvi

).

One thing to be noted about the latter proposition is that the demand of the vertices to
be non-adjacent is essential to ensure that β may indeed be written on the form βT ′β{vi}βS ,
with β{vi} as indicated. The non-adjacency demand should however never be any problem
in a practical situation, since the contraction of two adjacent diagonal tensors is itself a
diagonal tensor.

The above two propositions points us toward a modified notion of quantum capacity for
the cases where some tensors are restricted to be diagonal; especially the cumbersomeness
of having to restrict to non-adjacent diagonal tensors give us a clue that the more natural
notion of a cut is for this problem rather the combined cut discussed in section 4.4. We
will now proceed to introduce such a notion for TNs with diagonal tensors.

Consider now a TN on the network G = (V,E), which is restricted such that all the
tensors on the vertices U ⊂ V are diagonal and denote the restriction of I that this implies
with J . Further let dU be the set of edges connected to any vertex in U and with ∂C the
set of vertices connected to any edge in the set of edges C ⊆ E.

The capacity function is now taken to be c : V ∪ E → Z+ ∪∞, with c(e) ≡ dimHe for
all e ∈ E, as usual. For vertices v ∈ V on the other hand, we define

c(v) ≡
{

rank Tv if v ∈ U,
∞ otherwise.

(5.34)

Note that, for all v ∈ U , c(v) = rank Tv ≤ mine∈dv c(e), by virtue of Tv being diagonal.
We may now proceed to introduce our modified definitions of the quantum cuts.

Definition 5.3. Given a combined cut set C = CV ∪ CE , with CV ⊂ V and CE ⊂ E,
disconnecting S from T , we define the restricted quantum capacity

QC(C, c;U) ≡
∏
x∈C

c(x). (5.35)

We further define the restricted quantum minimal cut to be

QMC(G,c;U) ≡ min
C∈C

QC(C, c;U), (5.36)

where C is the set of all combined cut sets separating S from T .

32

5. Tensor networks

This allows us to introduce this slightly more general version of prop. 5.5:

Proposition 5.6. QMF(G, c;J) ≤ QMC(G, c;U).

Proof. Similar to that of prop. 5.5.

In fact, it turns out that with the above notion of quantum min cut, the quantum max
flow/min cut theorem holds also for our restricted TN case.

Theorem 5.2. (Restricted quantum max flow/min cut theorem)
If no two vertices u, v ∈ U are adjacent and there is a positive integer d such that logd c(x) ∈
Z+ for all x ∈ E ∪ U , then

QMF(G, c;J) = QMC(G,c;U). (5.37)

Proof. Since we already know QMF(G, c;J) ≤ QMC(G, c;U), it is sufficient to construct
an explicit map β(T) such that rank β(T) = QMC(G, c;U) and T ∈ J . To keep the con-
struction relatively sane we will restrict to the case of all diagonal tensors being Kronecker
deltas; that is, denoting the rank n Kronecker delta by

δn ≡ Diag{1,1, . . . ,1︸ ︷︷ ︸
n elements

}, (5.38)

leaving the number of modes implicit, we set Tv ≡ δc(v) ∀ v ∈ U . The generalization to
arbitrary diagonal tensors is conceptually no different.

We first note that we may without loss of generality truncate the Hilbert spaces of each
diagonal tensor to have the same dimension as the rank of the tensor; i.e. it suffices to
consider the case where for each v ∈ U , e ∈ dv we have c(e) = c(v) ≡ rank Tv.

The next step is then to construct an equivalent TN on a graph G′ = (V ′, E′) where
all edges have equal quantum capacity. If edge e = (u, v) has ce = dm this is achieved
by replacing e with m parallel edges {e1, . . . ,em} between u and v each with quantum
capacity d. Note that in particular, this turns the Kronecker delta tensor δdm into (δd)⊗m,
so that a vertex u ∈ U with tensor δdm maps into m vertices {ui}mi=1 in U ′, each fulfilling
dui = du and having the tensor δd.

Denoting the set of vertices with diagonal tensors in G′ with U ′, we thus arrive at the
following modified capacity function;

c′(x) ≡
{
d if x ∈ E′ ∪ U ′

∞ otherwise.
(5.39)

We will also for the sake of clarity introduce the unweighted capacity function

c′′(x) ≡
{

1 if x ∈ E′ ∪ U ′

∞ otherwise.
(5.40)

Since by construction QMC(G′,c′;U ′) = QMC(G, c;U), the unweighted min cut of the
equal-weight TN becomes MC(G′, c′′) = logd QMC(G, c;U). By theorem 4.6, we thus have
exactly p ≡ MC(G′, c′′) edge-disjoint paths from S to T such that the maximum number
of paths through v ∈ V ′ is c′′(v). Make a choice of p such paths P and assign the tensors
T ′v with v ∈ V ′ \ U in the following manner:

33

5. Tensor networks

Let Pv be the set of length 2 path segments (e1, e2) in the paths P such that e1, e2 ∈ dv,
and define for e ∈ dv

xe ≡
{

x0 ≡ (1, 0, . . . , 0) if e ∩ U = ∅
x1 ≡ (1,1, . . . , 1) otherwise.

(5.41)

Then T ′v is assigned the value

T ′v ≡

 ⊗
(e1,e2)∈Pv

δd(He1 ,He2)

 ⊗
e∈dv\P

xe

 . (5.42)

This construction can then be seen to put β on the form

β = α (δd)⊗p (x0)⊗n 6= 0, (5.43)

where α ∈ Z+ and n is such that the dimensionality of β agrees with the capacity function.
From this it is trivial to read out rank β = dp = QMC(G,c;U). Since any β which is
realizable on G′ with diagonal tensors on U ′, is also realizable on G with diagonal tensors
on U , this proves the theorem.

Once we have shown this, it is a trivial matter to show that the analogous statement to
corollary 5.2 also holds.

Corollary 5.3. If there is a positive integer d ∈ Z+ such that logd(c(x)) ≥ mx ∈ Z+ for
all x ∈ E ∪ U , then

QMF(G,c;J) ≥ QMC(G, c′;U) (5.44)

where c′(x) ≡ dmx .

Proof. Identical to that of corollary 5.2.

5.2.3 Quantum max flow and entanglement entropy

A large part of our interest in studying quantum max flow/min cut comes from the fact
that we can use it as a simple short cut to estimating the quantum entropy of a given TN
state.

First consider a mixed state described by the density matrix ρ ∈ end(H), for some
arbitrary Hilbert space H. Since ρ is a linear map, it is always expressible as a TN on
some graph G, with capacity function c and tensors T . It is easy to see that in this
description, β(T) = ρ, from which it follows that the zeroth Rényi entropy is

S0(ρ) = log rank ρ = log rank β(T) ≤ log QMF(G, c), (5.45)

and, since S0 is an upper bond on Sα for α ≥ 0, this gives

Sα(ρ) ≤ log QMF(G, c). (5.46)

We might instead consider describing the pure state |ψ〉 ∈ HA⊗HB by a tensor network
G, c, T . Letting A correspond to the sources and B to the sinks, this TN describes a map
β(T) ∈ hom(HA,HB). The density matrix is ρ ≡ |ψ〉 〈ψ| and the reduced density matrix
for system A may then be expressed as

ρA = trB ρ = β†β, (5.47)

34

5. Tensor networks

where β† ∈ hom(HB,HA) is the adjoint of β.
Calculating the zeroth Rényi entropy we once again arrive at

S0(A) = log rank ρ = log rank β†β ≤ log rank β ≤ log QMF(G,c), (5.48)

and hence
Sα(A) ≤ log QMF(G,c). (5.49)

5.3 Matrix product states

The simplest form of standard many-body states representable in TN form that is found
in the literature is that of matrix product states (MPS), where the state of an n-particle
system is decomposed into (mostly) 3-way tensors. An MPS description can be constructed
of a generic state as

|ψ〉 = R(1)

i1 i2
. . .

in

=
A(1) R(2)

i1
i2

. . .
in

= . . . =
A(1) A(2) A(n)

i1 i2

. . .

in

(5.50)

where the A(i) are found through successively performing SVDs. For k ∈ [n− 1],

R(k),j
ik,...,in =

dk∑
l=1

λlL
(k),j

iklR
(k+1),l

ik+1,...,in =
dk∑
l=1

A(k)
ik
j
lR

(k+1),l
ik+1,...,in , (5.51)

where L and R are the left and right unitaries, λl the singular values and dk the rank of the
SVD, R(n+1) ≡ 1 and d0 = dn = 1. The canonical definition of MPS however allows also
d0 = dn > 1, which is more natural in the common case of periodic boundary conditions,
and defines the state by tracing out the corresponding index,

|ψ〉 ≡
∑
{ik}

tr
[
A

(1)
i1
A

(2)
i2
. . . A

(n)
in

]
|i1 i2 . . . in〉 = A(1) A(2) A(n)

i1 i2

. . .

in

. (5.52)

Note that this construction is still capable of representing any possible state in the
original Hilbert space, meaning that we may still have a number of parameters that is
exponential in n. However, as shown by [45], by restricting the ranks of the SVDs the
parameter count can be reduced to polynomial in n while still forming good approximations
to ground states in 1-D systems with local interactions.

5.3.1 Gauge symmetry

The MPS description as presented above does not uniquely determine a quantum state.
In particular, the state |ψ〉 in eq. (5.52) has a gauge invariance on the virtual bonds which
most generally may be written

A
(j)
i → A

′(j)
i = M (j)A

(j)
i M (j+1)−1 (5.53)

where M (j) is any matrix with a left inverse M (j)−1.
It is often useful to introduce a partial gauge fixing to reduce the degrees of freedom

available to a numerical search. For this purpose, a number of canonical forms have been

35

5. Tensor networks

introduced, perhaps the most common of which is the left/right canonical or isometric
form. In left canonical form, with the right canonical defined similarly, each tensor Ai

j
k

is restricted to

A†ij
kAi

j
l = idk l, or simply

A

A†

= . (5.54)

This is easily seen to reduce the gauge freedom to M (j) ∈ U(dj) where dj is the dimension
of the left virtual bond of A(j).

5.3.2 Entanglement

For locally interacting spin systems in two dimensions or more, the MPS construction
with low bond dimensions generally stops being efficient. This is easily seen to be the
case by considering the entropy S(A) of some connected region A of the system. For
physical states this tends to scale as the area of the boundary of A, i.e. in D dimensions,
S(A) ∝ LD−1, where L is the length scale of A. On the other hand, for an MPS with bond
dimensions di ≤ d for all i, the quantum min cut/max flow theorem immediately gives

S(A) ≤ 2 log d, suggesting that the MPS description can only be accurate for d ∝ eL
D−1

,
which is problematic for all D > 1.

36

6
Numerical renormalization group
methods in quantum mechanics

The Renormalization group (RG) is a set of methods from theoretical physics dealing with
transformations between different length and/or energy scales. These transformations are
typically defined such that the theories become self-similar at different scales, but param-
eters of the theory are allowed to vary. This self-similarity often implies that information
is lost as as the length scale is increased, rendering the transformations non-invertible. Of
particular interest is the fixed points of the RG transformations, where the theory becomes
scale invariant.

While RG ideas are omnipresent throughout theoretical physics, we will in this thesis
mainly concern ourselves with the subset dealing with numerical simulations of quantum
many-body systems on lattices, most notably the Density Matrix Renormalization group
by White [14, 15] and the Entanglement Renormalization procedure by Vidal [16], which
is perhaps best recognized by the name of the related quantum state ansatz, MERA.

6.1 Numerical real-space renormalization group

A simple view of real-space RG which we will now present is done by Vidal [16], although
the basic ideas date back to Wilson [46] and White [14]. Consider a quantum mechanical
system on a D-dimensional lattice L, which is described by a state |ψ〉 in a Hilbert space

HL ≡
⊗
s∈L
Hs, (6.1)

where Hs is the finite-dimensional Hilbert space of site s ∈ L. It will also be useful to
define

HA ≡
⊗
s∈A
Hs (6.2)

for any set of sites A ⊂ L.

An elementary real-space RG transformation is then a transformation from the lattice L
to a smaller effective lattice L′, in which each site s′ ∈ L′ corresponds to a coarse-grained
version of a block B ⊂ L of neighbouring sites in L. This means that for a site s′ ∈ L′,
the corresponding Hilbert space is chosen as

H′s′ ≡ SB ⊆ HB, (6.3)

where the map between H′s′ and HB as well as the subspace SB is induced by means of
an isometry

w : H′s′ → HB. (6.4)

37

6. Numerical renormalization group methods in quantum mechanics

Note that this isometry implies w†w = id but that ww† 6= id unless w is also unitary,
which would imply SB = HB.

Since an isometry between Hilbert spaces is a linear map, we may express w as a tensor,
which for three-site blocks, B = {s1,s2,s3}, may be expressed in TN notation as

w =

s1 s2 s3

s′

, where w†w =
w

w†

= = id, (6.5)

with obvious generalizations to different block sizes.
The question that remains is now how to choose w and in particular SB in such a way

as to minimize the dimension m of H′s′ while keeping the relevant properties of |ψ〉 in the
renormalized state |ψ′〉 ∈ H′L′ .

As observed by [14], this is most clearly phrased in terms of the reduced density matrix
of the block B,

ρB ≡ trB{ |ψ〉 〈ψ| , (6.6)

in terms of which the renormalization step becomes

ρB → ρs′ = w†ρBw =

w

w†

ρB . (6.7)

We may then phrase the optimal choice of w as the one that minimizes m while projecting
out as little as possible of the probability density of ρB. In other words, for a tolerance of
ε, we choose the w which minimizes m while fulfilling

tr ρB − tr ρs′ ≤ ε (6.8)

This condition immediately leads to

SB = span{|p1〉 , |p2〉 , . . . , |pm〉}, (6.9)

where |pi〉 is the eigenvector corresponding to the ith largest eigenvalue pi of ρB and m is
chosen to be the smallest integer for which (6.8) holds.

6.2 Density matrix renormalization group

The density matrix renormalization group (DMRG) is an algorithm originally introduced
by White [14, 15] in the context of real-space RG, but in modern literature more often
interpreted as a variational approach for numerical optimization of many-particle quantum
states. It is arguably one of the most successful numerical methods within the field of

38

6. Numerical renormalization group methods in quantum mechanics

condensed matter, and have been applied with good results for a large range of problems,
especially in the context of strongly correlated systems on 1D lattices. We will make a
brief introduction of the method, following [47].

As in the previous section, we consider a system on a 1-dimensional lattice L, with
quantum mechanical state space HL ≡

⊗
s∈LHs. For concreteness we specialize to the

problem of finding the ground state of some local Hamiltonian H.

6.2.1 Infinite lattice DMRG

The infinite lattice DMRG starts by considering the system on a lattice of length small
enough that the ground state may be calculated exactly. Partition this smaller lattice into
a left block A and a right block B where A and B is of equal size, such that L = A B,
where we by A B simply mean the concatenation of A with B. Now enlarge the lattice
with two sites between the blocks, to

L′ ≡ A • •B. (6.10)

In this slightly larger lattice we may write an arbitrary state as

|ψ〉 =
∑

a,sA,sB ,b

ψa,sA,sB ,b |a〉A |s〉A |s〉B |b〉B (6.11)

where |a〉A forms a basis of of A, |b〉B forms one over B, and |s〉A and |s〉B are bases for
the left and right newly introduced site respectively.

Given that we chose our initial lattice sufficiently small, we may now find the ground
state of our Hamiltonian on L′, by finding the |ψ〉 that minimizes

E = 〈ψ|H|ψ〉
〈ψ|ψ〉

. (6.12)

Having done this, we now wish to increase the size of the lattice. To allow for that, however,
we need to make sure the Hilbert space dimension of the problem stays contractible.
DMRG deals with this by forming new blocks A• and •B which are coarse-grained to A′

and B′ precisely as in section 6.1, where the dimension of the thus coarse-grained Hilbert
space is selected either by some limit ε on the truncation error, or simply truncated to
some maximum m.

The thus found isometries may then be applied also to the Hamiltonian, giving a coarse-
grained approximation H ′ = w†Aw

†
BHwAwB. This completes one step of the algorithm,

which now can be rerun, introducing two new sites between A′ and B′, with corresponding
terms in the Hamiltonian. This process is illustrated in figure 6.1a and can of course be
repeated indefinitely, until a desired lattice size L is reached.

6.2.2 Finite lattice DMRG

While there are some cases where the solution that is arrived at by the infinite lattice
DMRG is sufficient, it does make the quite bold assumption that the ground states of
smaller lattices will be more or less identical to those of larger lattices. To alleviate this
assumption, one can run a few iterations of a variant on the above algorithm, known as
finite lattice DMRG, where the lattice size is kept constant.

Just as before, the lattice is partitioned into A••B, the ground state |ψ〉 of the approx-
imated Hamiltonian is found, and A• is coarse-grained to A′. The other block, however,
then has to shrink by one site in order to keep the lattice size for the next iteration. This

39

6. Numerical renormalization group methods in quantum mechanics

(a) Infinite lattice

A B

A B

A B

A B

A B

A B
...

(b) Finite lattice

A B

A B

A B

A B

A B

A B

A B

A B

A B

repeat

final state

Figure 6.1: Illustration of the blocking procedure of the lattice in (a) infinite and (b)
finite DMRG. Each line is to be interpreted as a step in the algorithm, which runs from
top to bottom.

is done by taking B′ to be the most recently calculated right-block of the desired size. The
algorithm can now be repeated, until B is reduced to having zero sites, after which one
switches to instead having B grow at the expense of A. Running the algorithm from small
A to large A and then back to small is known as a sweep, and one typically only have to
complete a few of them to get convergence. This procedure is illustrated in figure 6.1b.

6.2.3 DMRG and MPS

As originally found by [48, 49], both the infinite and finite DMRG may be expressed as
variational algorithms over MPS states. To see this, denote the effective basis for block A
with length l as |al〉, and for the site next to it by |sl〉. Let their respective Hilbert spaces
be HAl

and Hsl
. As noted before, when growing a block from length l − 1 to l, DMRG

finds an isometry w[l] that is then used to map HAl−1 ⊗Hsl
into HAl

as

|al〉 =
∑

al−1,sl

w[l]al
al−1,sl

|al−1〉 |sl〉 . (6.13)

Expanding this recursively leads immediately to the (partial) MPS

|al〉 =
∑
{si}

w[1]w[2] . . . w[l]al |s1〉 |s2〉 . . . |sl〉 =
s1 s2

. . .

sl

al
, (6.14)

and the isometry conditions on w[i] immediately gives that this MPS is on left canonical
form. Performing the same process for block B gives a corresponding MPS on right
canonical form, so that the full state on A • •B may be described as

|Ψ〉 =
, (6.15)

where

|ψ〉 = (6.16)

is the state of the reduced Hilbert space, i.e. the same as that in equation (6.11). The
optimization is then at each stage performed over |ψ〉. For the example problem of finding

40

6. Numerical renormalization group methods in quantum mechanics

the ground state of H which we considered above, the minimization to be performed is
once again

argmin
|ψ〉

〈ψ|H ′|ψ〉
〈ψ|ψ〉

= argmin
|ψ〉

〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 , (6.17)

where

〈Ψ|H|Ψ〉 =
. . .

. . .

. . .

. . .

H =: H ′ = 〈ψ|H ′|ψ〉 (6.18)

and

〈Ψ|Ψ〉 =
. . .

. . .

. . .

. . .

=
. . .

. . .

. . .

. . .

= . . . = = 〈ψ|ψ〉 ,
(6.19)

where we have used that the MPS tensors of block A (B) are in left (right) canonical form.

Again, once the optimal |ψ〉 is found, the Hilbert space is truncated to the m biggest
eigenvalues of ρA and ρB respectively. Since |ψ〉 is a pure state, this is equivalent to
truncating to the m singular values with highest absolute value of the SVD decomposition
of |ψ〉 into A• and •B, i.e. one takes

≈ , (6.20)

where the diamond is a diagonal matrix containing the non-truncated singular values and
the left and right dots are our sought isometries, i.e. MPS tensors on left and right
canonical form respectively.

For the infinite system DMRG, both isometries are kept and two new sites are introduced
between them in the lattice, after which the next step of the algorithm is run.

For the finite system, however, either the left or the right isometry is kept depending on
the direction of the sweep. If we are sweeping to the left, the right one is kept, while the
left now lives within the Hilbert space over which we are to optimize, and it may then be
used as part of an initial condition for this search. To be specific, a good ansatz for the
next |ψ〉 would then be to take

|ψ〉 = , (6.21)

where the diamond is the singular values above and the leftmost dot is the rightmost MPS
tensor of the A block in the previous step.

6.3 Entanglement renormalization

Although DMRG has been very successful for the solution of 1D problems, it does have
some significant limitations. The first stems from the fact that MPS are rather inefficient
at representing highly entangled states – as noted in a previous section the representational
power of MPS is insufficient for efficient simulation of area-law entangled systems in 2D
or more, as well as of critical systems in 1D. Another observation is that some aspects of
DMRG fits poorly into the conceptual picture of renormalization. Specifically, it does not

41

6. Numerical renormalization group methods in quantum mechanics

have scale invariant systems as fixed points. Instead, running DMRG on these systems
typically causes the state space to increase with each iteration until eventually running
out of memory. This was noted by Vidal, causing him to propose the Entanglement
Renormalization RG procedure[16].

A significant point that one may notice about the procedure of section 6.1 is that the
minimal choice of m is highly dependent on the amount of entanglement between B and
B{. A simple way to see this is to note that for ε = 0, m = rank ρB, which is simply the
Schmidt number of ρB. For non-zero ε, this is of course not an exact relation, but the
connection with entanglement entropy remains.

Based on this observation, Entanglement Renormalization is a method of reducing the
dimensionality of the renormalized Hilbert space while preserving the locality of operators
by performing unitary operations between boundary sites in B and adjacent sites in B{

so as to minimize short-range entanglement prior to coarse graining.
To formalize the procedure it is simplest to restrict ourselves to the case of three-site

blocks B = {s1,s2,s3} on a 1-D lattice, noting that the generalization to larger block sizes
will be conceptually no different. Let r1, r3 ∈ B{ be the nearest neighbours of s1 and s3
respectively and define A ≡ B ∪ {r1,r2}. We can then introduce two disentanglers u1 and
u3 as unitary operators on Hr1 ⊗ Hs1 and Hr3 ⊗ Hs3 respectively, chosen such that the
entanglement of

ρ̃B ≡ trr1,r3

[
(u1 ⊗ u3)†ρA(u1 ⊗ u3)

]
(6.22)

is smaller than or equal to that of ρB. Coarse graining with an isometry w as in the
previous section then gives a truncated Hilbert space H̃s̃ with dimension m̃ ≤ m, which
is of course desirable. We can express the full RG transformation of B as

r1 s1 s2 s3 r3

u1 u2

w

s̃

(6.23)

and performing the procedure recursively on the entire lattice leads to a transform on the
form

, (6.24)

where the individual tensors need not be identical.
This form of TN (and generalizations to higher dimensions) can also be utilized as an

ansatz for the quantum many-body state itself, and then goes under the name of Multiscale
Entanglement Renormalization Ansatz (MERA) [50].

42

Part II

Machine learning

43

7
Machine learning

Machine learning may in general terms be defined as the study of algorithms which learn
from data. This definition is of course quite vague, meaning that, to make any progress
at all we will need to introduce several assumptions on the nature of the data and of
the task, as well as a more stringent definition of what is meant by “learning”. One
formalisation of this, which we will use, is known as Statistical learning theory. A more
thorough presentation of the subject can be found in e.g. [51–53].

We will in this chapter introduce a multitude of different machine learning models,
focusing mainly on representational aspects, while largely ignoring the equally (if not
more) important issue of training. A good place to start if one desires a more covering
review of (relatively) current machine learning, and deep learning in particular is the book
by Goodfellow et al [37], or the somewhat more brief review article by Mehta et al [54].

7.1 Statistical learning theory

We may consider the problem of learning as the task of finding some optimal function
f : X → Y based on empirical data D. The starting point of statistical learning theory is
to let this data consist of samples (z1, z2, . . . ,zN) with zi ∈ Z ⊇ X , and to assume that
the zi are i.i.d. according to some distribution P (z) ∈ P(Z), where P(Z) is the set of
probability distributions over Z. Typically, the optimal f is considered to be that which
minimizes some risk functional R[f], often defined as some expected value of the error
made by the function for particular samples.

Machine learning problems where the algorithm is fed pre-existing datasets may be
broadly categorized into two classes, supervised and unsupervised learning. There is an-
other class of problems grouped under the term reinforcement learning, where there is no
pre-existing dataset and the algorithm thus has to learn by taking individual samples. We
will only consider supervised and unsupervised learning, however.

7.1.1 Supervised learning

In supervised learning, the dataset is labelled, meaning that Z = X ×Y, and the function
to learn is often taken as

f : X → Y. (7.1)

The xi ∈ X are generally referred to as patterns or inputs, while yi ∈ Y are labels or
outputs. The risk functional is then generally expressed as

R[f] ≡
∫
d(f(x), y) dP (x,y), (7.2)

where d : Y ×Y → R+ is some (quasi-)distance measure on Y. Note that this implies that
we may by appropriately choosing d(· , ·) arrive at an interpretation of the ideal f(x) as
the mode or mean of P (y|x), depending on whether Y is discrete.

45

7. Machine learning

Alternatively, we may want to find something like an estimate of the conditional distri-
bution P (y|x), in which case we let f : X → P(Y) and set the risk functional to e.g.

R[f] ≡
∫
d(f(x), P (· |x)) dP (x), (7.3)

where P (x) ∈ P(X) is the marginal distribution over x and d : P(Y)× P(Y)→ R+.
Common examples of supervised learning include image classification, speech recognition

and translation.

7.1.2 Unsupervised learning

In unsupervised learning, there is no division of the dataset into inputs and labels. Rather
the input space X is taken as X = Z, and the output space Y may be defined arbitrarily.

Generative models

The unsupervised learning problem which is most easily framed within the language of
statistical learning is that of generative modelling where we essentially try to find an
approximation Q(x) of the actual distribution P (x). In this case the risk is commonly
defined as the Kullback-Liebler divergence between P and Q,

R[Q] ≡
∫

log P (x)
Q(x) dP (x) = D(P‖Q). (7.4)

Other unsupervised problems include principal component analysis (PCA) and cluster-
ing.

Principal component analysis

Principal component analysis (PCA) is one of the most common methods of dimensional
reduction and works by projecting data of high dimension onto the directions of largest
variability, the idea being that these directions should also carry most of the relevant
information.

Following the presentation of [53] we begin by considering a dataset D = (x1, . . . ,xN)
where xi ∈ Hp for some Hilbert space H. We wish to make a dimensional reduction of D
by constructing a rank-q linear model

f(λ) ≡ µ+Wλ,

µ ∈ Hp

W ∈ U(Hq,Hp)
λ ∈ Hq

(7.5)

approximating the data.
Taking the distance function to be the L2 norm of the error we get the empirical risk

RN [f] = 1
2

N∑
i=1
‖xi − µ−Wλi‖2. (7.6)

One can show that this together with the condition
∑
iWλi = 0 leads to optimal choices

of µ and λi as {
µ̂ = x̄

λ̂i = W †(xi − x̄).
(7.7)

46

7. Machine learning

It remains to find W . For convenience, assume x̄ = 0. Then

RN [f] =
∑
i

x†ixi − 2x†iWW †xi + x†iWW †WW †xi

= trX†X − 2 trX†WW †X + trX†WW †WW †X

= trXX† − trXX†WW †

= trUDU † − trUDU †WW †,

(7.8)

where we have introduced the design matrix X ≡ (x1, . . . , xN) and made an eigendecom-
position of the covariance matrix ρ ≡ XX† into UDU †, where the diagonal matrix D is
ordered such that the largest eigenvalues appear first, i.e. |D11| ≥ |D22| ≥

Let Ũ and D̃ be the truncation of U and D containing the first q eigenvectors and
eigenvalues respectively. Then choosing W = Ũ gives

RN [f] = trD − tr D̃, (7.9)

which is clearly the optimal choice.
The components of λ̂i found by the projection λ̂i = Ũ †(xi−x̄) are known as the principal

components of xi. With a properly chosen rank q, these contain most of the variability
of the original dataset and may hence be used as a lower-dimensional substitute for xi as
input to e.g. a supervised learning model.

7.2 Artificial neural networks

Artificial neural networks (ANNs) is a class of machine learning models loosely based on
the functionality of biological brains, which have played a large part in the recent surge
of interest in ML. There are many different types of ANNs, but common to most is that
they represent some parametric function in a distributed manner by modelling interactions
between a set of neurons, some of which receive input while others produce output.

We will in this thesis consider ANNs which can be described in two main model frame-
works – feedforward neural networks (FNNs) which we will introduce presently and Boltz-
mann machines which are special cases of the Markov random fields to be discussed later
in this chapter.

7.2.1 Feedforward neural networks

The simplest, and by far the most popular, type of ANNs are feedforward neural networks.
These networks are built upon neurons each of which represent a scalar function a(x) of
some input vector x, in which each component is either taken as an external input, or as
the output value from another neuron.

The input-output structure of the network may be represented as an open acyclic,
directed graph G = (V,E) where each vertex v ∈ V correspond to a neuron and each edge
(u,v) ∈ E tells us that the output au of u is an input to v. An open incoming edge is taken
as an input to the network, while an open outgoing edge is an output, so that the network
as a whole describes some vector-valued function f(x). Figure 7.1a shows a single neuron
represented in this manner, while a full network may be displayed as in figure 7.1b.

The probably most common form of the neuron function a(x) is the McCullogh-Pitts
neuron[1] and was introduced already in 1949. It is on the form

a(x) = σ (w · x+ b) (7.10)

47

7. Machine learning

(a) Artificial Neuron

a(x)

x1 x2 x3

(b) FNN

x1

x2

x3

x4

f1(x)

f2(x)

f3(x)

(c) Layered FNN

x1

x2

x3

x4

f1(x)

f2(x)

f3(x)

Figure 7.1: Graphical representations of feedforward neural networks. The graph of a
single neuron with three inputs is shown in (a), an example of an arbitrary FNN is shown
in (b) and (c) shows a layered FNN.

where the weights w and the bias b are to be determined by the learning algorithm,
while the activation function σ : R→ R is usually taken to be some fixed monotonically
increasing function.

A common special case of FNNs is that of figure 7.1c when the neurons are organized in
successive layers, such that only the first layer receives external input, each following layer
takes the neurons from the directly preceding layer as input and the final layer is treated
as the output of the network. This gives a splitting of the f(x) thus described as

f(x) ≡ f (L) ◦ f (L−1) ◦ . . . ◦ f (1)(x), (7.11)

where

f (l)(x) =
⊕
i

a
(l)
i (x), (7.12)

with a
(l)
i (x) being the output of neuron i in layer l.

For McCulloch-Pitts neurons, this gives the functional form of f (l)(x) as

f (l)
i(x) = σ

∑
j

Wijxj + bi

 . (7.13)

7.3 Convolutional neural networks

One of the main lessons of theoretical physics is the power of symmetry in understanding
and finding efficient descriptions systems. Intuitively, this should carry over to the context
of machine learning as well: If the input data for a given machine learning task is known
on beforehand to possess some kind of symmetry, it is reasonable to assume that the
complexity of the task can be greatly reduced if one is able to hard code this symmetry
directly into the algorithm.

For the arguably very common tasks of image- and sound recognition, one such sym-
metry is translational invariance. One particular class of layered FNNs that have been
developed for tasks with translational symmetry is convolutional neural networks (CNNs),
which have given rise to some of the greatest successes in ML to date.

48

7. Machine learning

7.3.1 Convolutions

A convolution is in its most general form an operation between functions of a real parameter
defined as

(f ∗ g)(x) ≡
∫

dτ f(τ)g(x− τ). (7.14)

If g(x) is a probability distribution, one can think of (f ∗ g)(x) as a moving weighted
average of f(x). One usually refers to f as the input and g as a kernel [37].

Of more use in a machine learning setting is the discrete convolution which, similarly,
is defined as

(a ∗ b)n ≡
∞∑

m=−∞
ambn−m. (7.15)

Generalising to functions from NN to R we write

(a ∗ b)n ≡
∑

m∈NN

ambn−m, (7.16)

and note that in all the above cases, a ∗ b = b ∗ a.

Translational symmetry

Let T be a translation function, defined as T (an) ≡ an+t. Then it is easy to see that

(T (a) ∗ b)n =
∑
m

T (an−m)bm =
∑
m

an+t−mbm = T ((a ∗ b)n), (7.17)

i.e. the action of a translation commutes with the action of a convolution.

7.3.2 The structure of a CNN

A CNN is generally composed of a sequence of layers of different types; starting from an
input layer, it alternates between convolutional and feature map layers, interrupted by a
pooling layer every few iterations and often finishing with one or more layers of a fully
connected FNN [55]. Below we will provide a brief explanation of the layer types, taking
x as the input and f(x) as the output of each layer.

The input to a layer in a CNN is best described as living on a D-dimensional lattice
L. To be specific, it is given by at each site s ∈ L specifying C scalar values, all in all
giving a vector xcs ∈ RC×M1×...×MD , where Mi is the size of the lattice dimension i. We
will refer to C as the number of channels of the layer. For the case of RGB images, a
standard choice is to take a lattice with D = 2 where each site is a pixel, and C = 3 with
each channel corresponding to the amount of red, green or blue in each pixel.

Convolutional layer

The convolutional layer is the work horse of CNNs and is generally defined as a convolution
in the lattice dimensions and an arbitrary affine transformation in the channel dimension,
i.e.

f c
′
s(x) =

∑
c

(ωc′c ∗ xc)s + bc
′ =

∑
c,m

ωc
′
c,m xcs−m + bc

′
, (7.18)

where b is a bias term and ω is referred to as the kernel of the convolution, usually taken
to be non-zero only for a small hypercube of length K = 1,3,5,7,... in L centred around

49

7. Machine learning

m = 0. Note also that the number of channels in f(x) is in general different than that in
x.

Two subtleties which we should mention before moving on is that to prevent unintended
reduction of the lattice size, the input is sometimes padded with zeros before calculating
f(x), and that f(x) is not always calculated for every s, but rather for every Sth site
in each direction. The number S ∈ N is called stride and the function calculated by
a convolutional layer with stride S and kernel size K may (after some reindexing) be
expressed as

f c
′
s(x) =

∑
c

K∑
{mi}=1

W c′
c,mxS(s−1)+m (7.19)

Feature map layer

The feature map layers are generally taken as an element-wise application of a non-linear
activation function σ : R→ R, i.e. as functions of the form

f(x) ≡
⊕
i

σ(xi). (7.20)

The activation function is often chosen from the same family of functions as that of the
McCulloch-Pitts neuron.

Pooling layer

The pooling layers perform operations to reduce the lattice size in a manner not dissimilar
to the course-graining of physical systems in RG methods. Often this is done by parti-
tioning L into hypercubic blocks B and constructing a new lattice L′ where each site s′

corresponds to a block B ⊂ L. To put it concretely, the inputs for each block are passed
through a function g : R|B| → R as

f cs′(x) = g

(⊕
s∈B

xcs

)
. (7.21)

Common choices of g(x) include max pooling where g(x) = maxi xi, and average pooling
where g(x) ≡ 1

|B|
∑
i xi [54]. We will also be interested in product pooling, where g(x) =∏

i xi.

7.4 Structured probabilistic models

As with the high-dimensional tensors of the tensor networks, it is often helpful for the
intuition to represent probability distributions graphically. Models that are represented
in this manner are often called structured probabilistic models [37], and among these are
the Bayesian Networks and Markov Random Fields.

7.4.1 Bayesian networks

The first of the graphical models which we will discuss is the directed graphical model
or Bayesian network, which represents a probability distribution by factorizing it into
conditionals. We can motivate it as follows:

50

7. Machine learning

(a) Bayesian Network

x

y z

w

(b) Markov Random Field

x

y z

w

Figure 7.2: Shown in (a) is a Bayesian Network representing the probability distribution
p(x,y,z,w) = p(x)p(y|x)p(z|x,y)p(w|z). In (b) is a Markov random field representing the
probability distribution p(x,y,z,w) = 1

Z e
−E1(x,y,z)−E2(z,w).

Consider a distribution p(x) over random variables X = {X1,X2, . . . , XN}. The chain
rule of conditional probabilities gives a factorization of this as

p(x) = p(x1)
N∏
i=2

p(xi|x1, . . . , xi−1). (7.22)

To simplify the description of p(x) it is desirable to minimize the number of variables to
the right of the conditionals, leading us to the following definition:

Definition 7.1. (Markovian parents)
A set PAi ⊆ {X1, . . . , Xi−1} is called Markovian parents of Xi if

p(xi|x1, . . . , xi−1) = p(xi|pai) (7.23)

holds for PAi, but not for any proper subset of PAi. The lower case xi and pai are here
particular instantiations of the Xi and PAi.

If we find the Markovian parents of each of the random variables in X we may represent
the full distribution as

p(x) =
∏
i

p(xi|pai). (7.24)

This description is then easily represented by a directed acyclic graph G = (V, E) by letting
the vertices be V = X and letting the parent nodes of node Xi be PAi; i.e. (Xj , Xi) ∈ E
iff Xj ∈ PAi. A probability distribution represented in this manner is called a directed
graphical model, and a concrete example is given in figure 7.2a.

7.4.2 Markov random field

Let G = (V,E) be an undirected graph, associate with each vertex v ∈ V a random
variable Xv and define N(v) as the set of vertices adjacent to v. Let xv be a particular
configuration of Xv and, similarly, xA be a configuration of all Xv such that v ∈ A ⊆ V .
Let p(x), where x ≡ xV be the distribution over all random variables of the graph. Then
p(x) is said to be a Markov random field [56] if for all v ∈ V ,

p(xv|xV \{v}) = p(xv|xN(v)), (7.25)

that is, if all xv are only dependent on their neighbours.

51

7. Machine learning

As shown in e.g. [56], a Markov random field can always be expressed in the form of a
nearest neighbour Gibbs distribution

p(x) = 1
Z
e−E(x), (7.26)

where Z ≡
∑
x e
−E(x) is a normalizing factor known as a partition function and the

potential E(x) may be expanded as a sum of clique potentials EC(xC) on the form

E(x) =
∑
C∈C

EC(xC), (7.27)

with C being the set of cliques in G. Conversely, any nearest neighbour Gibbs distribution
is a Markov random field on the same graph.

An example of a Markov random field with nearest neighbour Gibbs distribution is
shown in figure 7.2b.

7.5 Boltzmann machines

A Boltzmann machine is a model for unsupervised learning of a true probability distribu-
tion pdata(v) over a binary vector v ∈ {0,1}n, called the visible variables of the model.

The probability distribution of the model p(v) is represented as a marginal distribution
of a Markov random field p(s), where s = (v, h) and h ∈ {0,1}m is a set of hidden variables
which are introduced to give p(s) higher representational power, and where the Gibbs
potential is on the form

E(s) = −〈Ws, s〉 − 〈s, a〉 . (7.28)

Here a ∈ Rn+m and W = W T is a linear map from Rn+m to itself which is zero on
the diagonal. The desired distribution over v is then arrived at by summing over all
configurations of the hidden variables, i.e.

p(v) =
∑
h

p(s). (7.29)

The graph representation of p(s) is easily seen to be G = (V,E) such that V = s and
(si, sj) ∈ E iff Wij 6= 0, since this gives non-zero terms in (7.28) only for cliques in G. As
an example, the Boltzmann machine corresponding to figure 7.2b has Wxy, Wxz, Wyz and
Wzw (and their transposes) as the only non-zero weights and if we consider x and y to be
the visible variables, the corresponding distribution is of course

p(x, y) =
∑
z,w

1
Z
e−E1(x,y,z)−E2(z,w) =

∑
z,w

1
Z
e2Wxyxy+2Wxzxz+2Wyzyz+2Wzwzw+〈s,a〉. (7.30)

The objective is then to find the weights W and biases a which minimizes the differ-
ence between the model distribution p(v) and the actual distribution pdata(v), e.g. by
minimizing the KL divergence D(pdata ‖ p). Doing this for a general Boltzmann machine
quickly becomes a very difficult task as one tries to increase the number of variables; the
probability space grows exponentially in the number of variables and sampling from the
resulting distributions is a research field in its own right. Because of this, one generally
constrains the connectivity of the network in some manner when doing ML with Boltz-
mann Machines. Some of the most common methods of doing so will be discussed in the
upcoming sections.

52

7. Machine learning

(a) RBM

h1 h2 h3

v1 v2 v3 v4

(b) DBN

h
(2)
1 h

(2)
2 h

(2)
3

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4

v1 v2 v3

(c) DBM

h
(2)
1 h

(2)
2 h

(2)
3

h
(1)
1 h

(1)
2 h

(1)
3 h

(1)
4

v1 v2 v3

Figure 7.3: Panels (a), (b) and (c) shows graphical representations of a small dense
restricted Boltzmann machine, deep belief network and deep Boltzmann machine respec-
tively. The RBM and DBM are represented as Markov random fields, while the DBN is
represented as a Markov random field in the two uppermost layers but a Bayesian network
in all lower layers.

7.5.1 Restricted Boltzmann machines

A Restricted Boltzmann machine (RBM) is a Boltzmann Machine with a set of visible
units v, and hidden units h where there is no intralayer connections in the corresponding
graph, i.e. the graph is on the form of figure 7.3a. This immediately gives that the
conditional probabilities follow

p(v|h) =
∏
i

p(vi|h), and p(h|v) =
∏
i

p(hi|v), (7.31)

and that the Gibbs energy may be written

E(v, h) = −〈Wv, h〉 − 〈v, a〉 − 〈b, h〉 , (7.32)

where W is a linear map from Rn to Rm, a ∈ Rn and b ∈ Rm.

The benefit of restricting the connectivity in this manner is that it renders both the
vi independent given h and the hi independent given v, which allows for highly efficient
block Gibbs Sampling.

We can also simplify the conditional distributions p(vi|h), using that vi ∈ {0,1}, and∑
vi
p(vi|h) = 1, giving

p(vi = 1|h) = 1
1 + e−

∑
k
hkWki−ai

= σ
(∑

k

hkWki + ai
)
, (7.33)

where σ(x) ≡ (1 + e−x)−1
is known as the sigmoid function, which incidentally is also one

of the most common choices of nonlinearity in FNNs. By symmetry for p(hi = 1|v) we get

p(hi = 1|v) = σ
(∑

k

Wikvk + bi
)
. (7.34)

7.5.2 Deep belief networks

Deep belief networks (DBN) are one of several methods of extending RBMs to deep ar-
chitectures. It was one of the first non-convolutional deep networks to be successfully

53

7. Machine learning

trained[8], but has since largely fallen out of favour[37]. They are nevertheless conceptu-
ally very interesting, particularly in that the weights learned by a DBN have been shown
to be very suitable as initial conditions for FNNs employed for classification[57].

A DBN with l hidden layers is in its simplest form a generative model which represents
a probability distribution over the visible variables vi ∈ {0,1} and hidden variables h(j)i ∈
{0,1} where j = 1, . . . ,l is the index of the layer. The probability distribution is represented
as a mixture between a directed and an undirected model, with

p(h(l), h(l−1)) ∝ e〈h(l),b(l)〉+〈h(l−1),b(l−1)〉+〈Wh(l),h(l−1)〉,

p(h(j)
i = 1|h(j+1)) = σ

(
b
(k)
i + (W (k+1)h(k+1))i

)
, j = 1, . . . ,l − 2

p(vi = 1|h(1)) = σ
(
ai + (W (1)h(1))i

)
,

(7.35)

where σ(x) ≡ (1 + e−x)−1 is the sigmoid function. An example of a small DBN with l = 1
is shown in figure 7.3b. Drawing a sample from a DBN is done by first drawing a sample
from the RBM defined by the top two layers, after which one can use ancestral sampling
to draw a sample for the rest of the variables.

The training of a DBN is typically done greedily by stacking RBMs; one starts by
training the RBM with variables v, h(1) and parameters a,W (1), b(1) to minimize the KL
divergence D(pdata‖p(1)) where p(1)(v) is the marginal distribution over v modelled by the
RBM. Once this training is done, one proceeds to the next layer by essentially defining a
“true” distribution over h(1) as

p
(1)
data(h(1)) ≡

∑
v

p(1)(h(1)|v)pdata(v) (7.36)

where p(1)(h(1)|v) is the conditional distribution defined by the RBM. The following layer
is then trained as an RBM with variables h(1), h(2) and parameters b(1),W (2), b(2) this time

minimizing the KL divergence D(p(1)
data‖p(2)(h(1))) where p(2) is the marginal distribution

over h(1) defined by the second RBM.
This process of stacking RBMs can be repeated indefinitely and is motivated by that each

step decreases the lower bound on D(pdata‖p) where p(v) here is the marginal distribution
over v of the full model.

7.5.3 Deep Boltzmann machines

Another extension of the RBM is the deep Boltzmann machine (DBM) [58], which is a
Boltzmann machine where the hidden variables are partitioned into l layers, h(1), h(2), . . . , h(l),
and the corresponding graph is restricted to only contain edges between neighbouring lay-
ers as shown for l = 2 in figure 7.3c. Defining h(0) ≡ v for convenience this puts the Gibbs
energy on the form of

E({h(j)}) = −
l∑

i=0

(
〈W (i+1)h(i), h(i+1)〉+ 〈h(i), b(i)〉

)
. (7.37)

This construction renders odd layers conditionally independent of even layers, which
allows for efficient block Gibbs sampling in much the same way as for RBMs.

7.6 Kernel learning

Kernel learning is an area of ML with roots in statistical learning theory, which may in
many cases be thought of as a method of increasing the expressive power of linear models

54

7. Machine learning

Φ

Figure 7.4: A map Φ(x) taking the input patterns xi ∈ X (left panel) with yi = 1 (filled
circles) or −1 (open circles) to an inner product space H (right panel) where the classes
are linearly separable.1

by first non-linearly mapping the data into a higher-dimensional inner product space H,
called a feature space, although the actual computations can often be carried out without
reference to this space owing to a neat construct called the kernel trick (hence the name
“kernel learning”). The theory of kernel learning is surprisingly elegant and diverse, and a
good review, from which much of the following material is picked, can be found in [59].

Although many algorithms making use of inner product spaces, such as PCA, can be
easily put into a kernel learning context, it is natural to give an introduction to the field
by first considering its most famous algorithm – the Support Vector Machine (SVM).

7.6.1 Support vector machines

We start from the supervised learning problem of constructing a classifier between two
categories. Consider a finite set of empirical labelled data D = {(xi, yi); i = 1,...,m},
with samples xi ∈ X and labels yi ∈ {−1,1}, which are iid and drawn from a distribution
P (x,y) and where X is an arbitrary set.

Our goal is to based on our empirical data find a function

f : X → {−1,1} (7.38)

which minimizes the risk

R[f] ≡ 1
2

∫
|f(x)− y|dP (x,y), (7.39)

here using the L1 norm as distance function.

The kernel learning approach to solving this problem is to introduce a so-called feature
map Φ : X → H to some inner product feature space H, the idea being that for a
sufficiently high dimension of H and appropriately chosen Φ, there will tend to exist a
hyperplane in H separating the classes, in which case the problem is said to be linearly
separable (see fig. 7.4).

Such a hyperplane P may be parametrized as

Pw,b ≡ {x ∈ H : 〈w,x〉+ b = 0}, (7.40)

1Image adapted from https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg

55

https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg

7. Machine learning

where w ∈ H is its normal and b ∈ R is its distance to the origin, and we may construct
a corresponding decision function as

f(x) ≡ sgn
(
〈w,Φ(x)〉+ b

)
. (7.41)

It turns out that there exists a unique optimal separating hyperplane, which maximizes
the distance to the closest data points, meaning that the corresponding w and b are
determined by

argmax
w,b

min
x∈Pw,b

i∈{1,...,m}

‖x− xi‖, (7.42)

where xi ≡ Φ(xi) are the feature vectors for the training data xi and ‖x‖ ≡
√
〈x,x〉.

Selecting the optimal hyperplane is expected to be beneficial to generalization, since we
expect new samples to likely be mapped to points close to existing samples in the same
class.

An essentially equivalent way of expressing the optimal hyperplane is as the pair w, b
which minimizes

1
2‖w‖

2, (7.43)

subject to the constraints

yi(〈w,xi〉+ b) ≥ 1 ∀ i ∈ {1,...,m}. (7.44)

Employing the Lagrangian multiplier method this can be expressed as finding the saddle
point of the Lagrangian

L(w, b, λ) = 1
2‖w‖

2 −
m∑
i=1

λi
(
yi 〈w,xi〉+ yib− 1

)
, (7.45)

which is a minimum in variables w and b but a maximum in the nonnegative Lagrangian
multipliers λi. At the saddle point, the partial derivatives with respect to b and w vanish,
giving in order

0 = ∂L

∂b
=

m∑
i=1

λiyi, (7.46)

0 = ∂L

∂w = w† −
m∑
i=1

λiyixi =⇒ w =
m∑
i=1

λiyix†i . (7.47)

For those (xi, yi) where (7.44) is not an equality, one can show2 that the corresponding
λi is necessarily zero, so that

λi
(
yi 〈w,xi〉+ yib− 1

)
= 0 ∀ i. (7.48)

This tells us that the optimal w is a linear combination of the feature space represen-
tations xi of the training samples with non-zero λi. These xi are called support vectors,
and correspond to the points that intersect the dashed lines in fig. 7.4. The non-zero λi
can now be determined by solving the dual optimization problem of maximizing∑

i

λi −
1
2
∑
i,j

λiλjyiyj 〈xi,xj〉 ; λi ≥ 0 (7.49)

2This is known from optimization theory as the Karush-Kuhn-Tucker complementarity conditions

56

7. Machine learning

which is arrived at by substitution of (7.46) and (7.47) into the original Lagrangian. After
the λi are found, b is easily determined from (7.48), and our objective function can be put
on the form

f(x) = sgn
(

m∑
i=1

λiyi 〈x,xi〉+ b

)
. (7.50)

There is an issue with this construction, however, in that the feature space for real
world applications often needs to be of sufficiently high dimension to make it impractical
to represent directly on a computer (although tensor network methods might be able to
increase the dimensions which are directly tractable significantly, as we will see in the next
chapter). Fortunately, this can be helped by means of the kernel trick, where one simply
substitutes the inner products with the corresponding kernel functions

k(x, x′) ≡ 〈Φ(x),Φ(x′)〉 . (7.51)

One should note that this is possible due to the fact that we were able to express w
entirely in terms of inner products between feature vectors of known input patterns. This
substitution gives

f(x) = sgn
(∑

i

λiyik(x, xi) + b

)
, (7.52)

with the λi determined as those that maximize∑
i

λi −
1
2
∑
i,j

λiλjyiyjk(xi, xj), (7.53)

under the constraints that all λi ≥ 0 and
∑
i λiyi = 0.

This model, which can be elaborated on to e.g. find optimal hyperplanes for problems
which are not quite linearly separable (which is perhaps a bit more realistic), or include
more categories into the classification, is what is known as an SVM. The method of map-
ping input patterns into high-dimensional inner product spaces and using the kernel trick
to make computations contractible is, however, much more general and forms the core of
the subject of kernel learning.

57

7. Machine learning

58

Part III

Quantum theory for machine
learning

59

8
Tensor network learning

Having gone through the theoretical foundations, we are now ready to start looking at
the main subject of the thesis, which is to study the applications of quantum many-body
theory to machine learning. We will go through a number of different approaches to this,
but common to all of them is that the training data is mapped to vectors in tensor product
Hilbert spaces, allowing the use of numerical and theoretical tools from QM to construct
and understand ML models.

Nearly all [17–22, 24, 60–62] of these may be expressed as linear maps acting on said
Hilbert spaces, making tensor networks an ubiquitous tool in the context. This in turn
warrants the use of Tensor Network Learning (TNL) as a term for the subject, for lack of
a better name.

8.1 Tensor product Hilbert spaces in machine learning

Consider the case of wanting to learn some function f(x) when the input x has a tuple
structure, i.e. when x ∈ XM , or equivalently x = (x1,...,xM) with xi ∈ X . As simple
examples we may consider x to be a time series of temperature readings, where each xi is
a temperature so that X = R, or it might be an RGB-image where each xi represents the
intensities of red, green and blue in a pixel in which case we could have X = [0, 1]3.

8.1.1 Square-integrable functions

To make progress, we will inevitably need to restrict the class of functions we are interested
in, and a good place to start is to restrict X to being a measurable space and consider
square-integrable functions from XM to some Hilbert space Hout, i.e. f ∈ L2(XM ;Hout).

If L2(X) is separable, it is a standard result that L2(XM) ∼= L2(X)⊗M . Hence, if {φi}i
is a basis for L2(X), the set of all products {

∏M
j=1 φij}{ik} forms a basis for H ≡ L2(XM)

and we may write an arbitrary element in H as

g(x) =
∑
{ik}

Ti1,i2,...,iMφi1(x1)φi2(x2) . . . φiM (xM) = T ·Φ(x), (8.1)

where

Φ(x) ≡
⊗
i

φ(xi). (8.2)

We may hence write our sought function f as

f(x) = W ·Φ(x), (8.3)

where W ∈ hom(H,Hout), and we may rephrase our learning problem as the problem of
finding the optimal W .

61

8. Tensor network learning

Of course, to perform actual ML, we will in practice need to represent W on a computer.
The extent to which this is possible will of course depend on the choice of X , and it is
hence interesting to consider two special cases.

The simplest of these is the case where X is a finite set, i.e. X = {x1, . . . , xn}. It is
easily seen that a basis over L2(X) is given by φi(x) = δxi,x, with δxi,x being the Kronecker
delta. This tells us that dimL2(X) = |X |, and hence dimH = |X |M , which is feasible to
handle numerically provided |X | and M are sufficiently small.

The other case we will consider is when the dimension of L2(X) is countably infinite, as
is the case when e.g. X is R, C or an interval in R. In this case, the dimension of H is of
course also countably infinite, making the full representation of arbitrary W impossible.
However we can still hope to capture a reasonably large class of functions by choosing an
appropriate basis {φi} for L2(X) and truncating it at i = d for some d < ∞. Repeating
the analysis above, this leads to a total dimension of dM for the resulting tensor product
Hilbert space.

8.1.2 Local feature maps

Another way of arriving at the above construction is to position ourselves in a kernel
learning context, in which case the starting point is to construct a feature map

Φ : XM → H, (8.4)

where H is some inner product space.
The most common choice for data with tuple-structure is to construct the feature space

map as the Mth-fold direct sum of local feature maps

φ : X → Hφ, (8.5)

where Hφ is some arbitrary inner product space. This gives the full feature map as

Φ(x) =
⊕
i

φ(xi), (8.6)

and hence H⊕ = HMφ .
There is another equally simple choice, however, which also preserves the tuple structure

but has the potential of creating a much more rich family of features. That is to instead
take the feature space map as the Mth-fold tensor product of the local feature maps, i.e.
let

Φ(x) =
⊗
i

φ(xi), (8.7)

giving H = H⊗Mφ .

8.1.3 Connecting to tensor networks

Employing tensor product Hilbert spaces in ML is interesting for a number of reasons.
First, the components of a vector in H are given by products of components of vectors in
Hφ, making it possible to have linear models which can respond very richly to correlations
in the data. Since linear algebra is well understood, models developed in this manner
have a good hope of being possible to fully understand, in contrast to the arguably more
mysterious deep neural networks.

Second, the tensor product structure of H puts Φ(x) on an identical form to the wave
function of an M -body quantum mechanical product state. It is therefore natural to

62

8. Tensor network learning

start searching the toolbox of quantum theory for methods to help us move forward. In
particular, it is interesting to see if there are tools that can make computations tractable
directly in feature space when dimH is finite.

For the case of models which are linear in feature space,

f(x) = W Φ(x), (8.8)

where W ∈ hom(H,Hout) is a linear map to some inner product space Hout, a particularly
appealing idea is to try and make use of some of the tensor network algorithms discussed
in chapter 5.

In TN notation, we may express our local feature map as simply

φ(x) = , (8.9)

and hence the full feature map can be written

Φ(x) = ...
, (8.10)

where the ith node from the left represents φ(xi). Without imposing further structure on
W we may thus write

f(x) =
...

W . (8.11)

However, if dimHφ = d and dimHout = dout, we would need dim hom(H,Hout) = dMdout

scalar values to represent an arbitrary map W . To see that this is drastically unfeasible
for most real-world tasks, consider the case of the MNIST dataset, where the input data
is 28× 28 pixel grayscale images of handwritten digits and the ML task is to, given such
an image, determine which digit is written in it. A natural choice is to let each xi be the
intensity of a given pixel, choose φ(x) to be a nonlinear map e.g. of dimension d = 2 and
take dout = 10 so that fi(x), i = 0,1,...,9 can be roughly interpreted as the unnormalized
probability that x is an image of the digit i. This leads to dimW = 10×2M = 10×228×28 ≈
10240, which is clearly beyond reach for representation on a computer.

Rather, we need to impose some additional structure on W , just as we did for the TN
algorithms in chapter 5. In fact, as we will see below it turns out that both DMRG and
Entanglement Renormalization are relatively easily adapted to an ML context.

8.2 Variational tensor network learning

One method of restricting the W in the linear model

f(x) = Wx, (8.12)

is to demand it to have the form of a TN of some particular architecture (e.g. MPS, TTN
or MERA), initialize each tensor in the TN randomly and then perform some variational
procedure to optimize the individual tensors.

Consider now the problem of learning f(x) as above based on training samples {xi}Ni=1
and some empirical risk function R(f(x1), f(x2), . . .), which we will with a bit of nota-
tional abuse refer to as R[f]. To introduce some common language before we move on to
particular algorithms we also let G = (V,E) be the graph structure that we impose on W ,
define Ē to be the set of doubly connected edges, and denote the tensor of vertex v ∈ V
by Tv.

63

8. Tensor network learning

8.2.1 Gradient descent

The simplest learning procedure to consider is that of gradient descent, where each tensor
Tv is updated in turn according to

Tv → Tv + ∆Tv, (8.13)

where

∆Tv ≡ −η
∂R[f]
∂Tv

= −η
∑
i

∂R[f]
∂f(xi)

∂f(xi)
∂Tv

= −η
∑
i

∂R[f]
∂f(xi)

WTvxi, (8.14)

with WTv ≡ ∂W/∂Tv being the environment of tensor Tv and η > 0 the step length. Given
that ∂R[f]/∂f(xi) is sufficiently simple, this should be a relatively contractible compu-
tation, and it would be interesting to see what could be achieved by applying gradient
descent, or any of its standard extensions to tensor network models.

8.2.2 Generalized DMRG

One extension of gradient descent which is special to tensor networks is that which is
commonly used within DMRG, where the gradient descent is performed with respect to
blocks of tensors. Generalizing to arbitrary TNs gives the following algorithm:

Each step of the procedure begins by selecting an edge (u,v) ∈ Ē. The goal of the step
is then to optimize the corresponding tensors Tu and Tv, which we do by first contracting
them along their shared edges, forming B ≡ TuTv. The second step is to perform gradient
descent as above with respect to B, i.e. let B → B + ∆B where

∆B = −η
∑
i

∂R[f]
∂f(xi)

WBxi, (8.15)

where WB is the environment of B.

Once an optimal B is found, we then retrieve updated tensors T ′u, T ′v by first performing
an SVD

B = U †DV ≈ Ũ †D̃Ṽ , (8.16)

truncating it to the m eigenvalues with biggest absolute values and then letting

T ′u ≡ Ũ †
√
D̃ and T ′v ≡

√
D̃ Ṽ , (8.17)

where D̃ may be distributed arbitrarily between the tensors. The number of kept eigen-
values m may be kept fixed or be selected such that the truncation error is less than some
tolerance ε. The second case is very interesting to consider, since m is the new bond
dimension between u and v, and allowing it to be dynamically updated essentially allows
the expressive power of f(x) to change dynamically in a controlled manner. This is a
quite rare feature among machine learning models and may be seen as one of the main
motivations for studying TNML.

8.2.3 Supervised learning with MPS

A concrete example of the DMRG algorithm being applied to classification was considered
by Stoudenmire & Schwab [17] and proceeds as follows. Consider the task of learning to
classify samples x ∈ H =

⊗
j Hj into d classes based on training data D = {(xi, yi)}Ni=1

where yi is the class of sample i. We take yi ∈ Rd to be encoded as a one-hot vector,

64

8. Tensor network learning

meaning that yi
l = δli

l, where li ∈ 1,2, . . . , d, and define our classifier as the f(x) of eq.
(8.12), with Hout = Rd, and W restricted to an extension of an MPS of the form

W l
s ∼

s1 s2 s3

l

s4 s5

. (8.18)

We can then perform the block-wise gradient descent of DMRG as discussed above, with
the empirical risk function e.g. chosen to be the quadratic cost

R[f] ≡ 1
2
∑
i

(f(xi)− yi)2, (8.19)

giving the gradient descent update as

∆B ≡ −η∂R[f]
∂B

= η
∑
i

(yi − f(xi))WBxi. (8.20)

Stoudenmire & Schwab applied this algorithm to the MNIST data set, consisting of
60000 labelled 28× 28 pixel (although they down-sample to 14× 14) grey-scale images of
handwritten digits, using the local feature map Φ(x) =

⊗
i φ(xi), where xi ∈ [0,1] is the

darkness of pixel i and

φ(x) =
(

cos
(
π
2x
)

sin
(
π
2x
)) . (8.21)

They run the algorithm with a cap on the MPS bond dimensions to less than m achieving
test error rates down to less than 1% for m = 120. This is a great proof of concept for
the method, but to get an appreciation of its performance compared to state-of-the-art
methods, it would be very interesting to apply it to more difficult datasets.

8.3 Convolutional arithmetic circuits

Convolutional Arithmetic Circuits (CACs) are a special and somewhat unusual class of
FNNs bearing significant resemblance to convolutional networks and introduced by Cohen
et al [63]. The model has the notable feature of only needing the mathematical operations
of products and sums in all but the first layer – hence the name Arithmetic Circuit. It is
also quite suitable for theoretical analysis, as they show e.g. by tying it to the hierarchical
Tucker decompositions to explain the depth efficiency of the model.

We are, however, for this thesis more interested in the connection made to tensor net-
works by Levine et al [24, 64], and the following analysis on quantum entropy as a measure
of which correlations can be modelled by the network.

Although the definition of what constitutes a CAC seems to have evolved and diverged
somewhat over time, they can (as far as we are able to tell) most often be seen as special
cases of networks on the following form, presented in [64].

A CAC calculates a function

h : HNin → Hout (8.22)

where Hin and Hout are Hilbert spaces of finite dimension, as a sequence of layers;

h(x) ≡ fL ◦ fL−1 ◦ . . . ◦ f1 ◦ f0(x). (8.23)

65

8. Tensor network learning

The first layer which takes x ∈ HNin as input, is a local feature map

φ : Hin → H, (8.24)

where H is a finite-dimensional Hilbert space with dimH = d. This φ acts on each
component xi ∈ Hin of x, giving the output of the layer as

f0(x) =
⊕
i

φ(xi). (8.25)

This initial layer is followed by a series of layers which may be thought of as mixtures
between convolutions and product pooling, and may be defined (omitting the layer index
for convenience) as

f cs(x) =
K∏
m=1

∑
c′

ωm
c
c′ xS(s−1)+m

c′ (8.26)

where S is the stride and K is the kernel size. Note also that if we take ω to be independent
of m, the above is equivalent to a convolution with a kernel of length 1 and stride 1 followed
by a product pooling with window size K and stride S. The number of outputs from a
layer of this form is (assuming no padding is used)

Nout =
⌊
N −K
S

+ 1
⌋
. (8.27)

Layers on this form are repeated until the lattice is reduced to a single site, after which
the final layer is taken as a linear function fL(x) = WL · x. It is of interest to count the
number of outputs of a given layer under this scheme. Denoting the kernel size, stride and
number of outputs of layer l with Kl, Sl and Nl respectively and defining N0 ≡ N , the
equation (8.28) defines the difference equation

Nl =
⌊
Nl−1 −Kl

Sl
+ 1

⌋
. (8.28)

The solution for the case Kl = Sl ∀ l becomes particularly simple, and assuming N is such
that no rounding is performed, we find

Nl

∣∣∣∣
Ki=Si ∀ i

= N
l−1∏
i=1

1
Ki
. (8.29)

8.3.1 Tensor network formulation

One of the central findings of [24, 64] is that the convolutional layers f cs(x) are equivalent
to a tensor contraction between the (K + 1)-mode tensor

W c
c′1,c
′
2,...,c

′
K
≡
∑
{ci}

δcc1,c2,...,cKω1
c1
c′1
ω2

c2
c′2
. . . ωK

cK
c′K

=
δ

c′1

ω1

c′2

ω2
. . .

c′K

ωK

c

= W

. . .
, (8.30)

with δcc1,...,cK being the Kronecker delta, and the K-fold tensor product

(xS(s−1)+1 ⊗ xS(s−1)+2 ⊗ . . .⊗ xS(s−1)+K)c′1,...,c′K . (8.31)

66

8. Tensor network learning

W 4

W 3

W 2 W 2 W 2

W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1 W 1

Φ(x)

W

Figure 8.1: The tensor network representation of h(x) for a 1D convolutional arithmetic
circuit with four layers and S = K = 3. Here W 1, W 2, W 3 have the internal structure
shown in (8.30), while W 4 may be any matrix of appropriate dimensionality.

Since this is true for each layer, we may ask ourselves if it is possible to express the entire
h(x) as tensor contractions. That is, can we put h(x) on the form of a tensor network? In
general this is not possible, since with K > S, we will end up with f cs(x) being dependent
on the same xs′ for several values of s, leading to terms proportional to x2

s′ in the following
layers, which is not possible to express with a TN acting on

⊗
s′ xs′ .

However, restricting to K = S, no such terms appear and we get an overall function

h(x) = W ·Φ(x), (8.32)

where

Φ(x) ≡
⊗
i

φ(xi) (8.33)

and

W = WL ·WL−1 · (WL−2)⊗NL−2 · . . . · (W 1)⊗N1 (8.34)

with each W l with l < L on the form of (8.30) and the final WL as an ordinary matrix
with appropriate dimensionality.

As an example, the resulting TN for a four-layer CAC with K = S = 3 is shown in
figure 8.1. Note especially that the overall function (8.32) together with the feature map
(8.33) puts this special case of the CAC model firmly within the framework of TNL.

8.3.2 nCACs

A significant note to make when discussing CACs is that some of the theoretical results
from e.g. [24] only hold in their strongest form if one removes the translational symmetry
in the convolutional layers, i.e. if (8.35) is altered to

f cs(x) =
K∏
m=1

∑
c′

ωm,s
c
c′ xS(s−1)+m

c′ . (8.35)

Note that the only difference is that we now allow different matrices ωto act on each input
xi, in effect taking W l →W l

s in figure 8.1. To avoid confusion, we will use the term nCAC
(for either near-convolutional arithmetic circuit or non-convolutional arithmetic circuit,
depending on the preferences of the reader) for this kind of relaxation of a CAC.

67

8. Tensor network learning

8.4 Unsupervised coarse graining

A very interesting algorithm in this context is the one named unsupervised coarse graining,
which was proposed by Stoudenmire[18]. It essentially performs a kernel PCA in the
feature space by using an adaptation of the entanglement renormalization procedure by
Vidal[16] to approximately diagonalize the feature space covariance matrix.

8.4.1 The algorithm

Start by considering a set of training patterns xi, i = 1,...,N , and denote their images in
feature space by xi, i.e. define

xis ≡ Φs(xi) = φs1(xi,1)φs2(xi,2) . . . φsM (xi,M) (8.36)

where xi,j is the jth component of xi and Φ(x) ≡
⊗
i φ(xi) is a local feature map. We

may represent this in TN notation as

xis =
s1 s2 s3

...
sM

=

s1 s2 s3
...

sM

i

, (8.37)

noting that including i as a tensor index removes the tensor product structure of the
vector.

The feature space covariance matrix is

ρ ≡ 1
N

∑
i

xix†i = 1
N

∑
i

... =
...

...
(8.38)

and the goal of Kernel PCA is then to find the eigenspace decomposition

ρ = U †ΛU, (8.39)

where U is a unitary map on H and Λ = diag{λ1,λ2, . . .} with λ1 ≥ λ2 ≥ . . . being the
eigenvalues of ρ. It is of course unfeasible to perform this computation exactly for almost
any realistic problem, but we may actually construct an algorithm which does this ap-
proximately by recursively finding a tree tensor network of isometries which approximates
U . This is done in an almost identical manner to that of section 6.1.

We start by associating the feature space H with a lattice L such that each site s ∈ L
corresponds to one of the subspaces Hφ ⊂ H. Denote the subspaces associated with site
s ∈ L and set of sites A ⊂ L as Hs and HA respectively. Now make a partition P of L
into disjoint blocks of neighbouring sites, and introduce a new lattice L′ in which each site
s′ corresponds to a block B ∈ P .

Just as before, we then wish to find a map between B and s′ in terms of an isometry

w : Hs′ → HB; w†w = id, (8.40)

and just as before, since we are most interested in preserving the dominating eigenvalues,
the optimal choice is that which minimizes dimHs′ while keeping

tr ρ− tr ρs′
tr ρ ≤ ε, (8.41)

68

8. Tensor network learning

where ε ≥ 0 is some selected tolerance and

ρs′ ≡ w†ρBw; ρB ≡ trB{ ρ. (8.42)

To find this optimal w, we first perform an eigenvalue decomposition of the reduced co-
variance matrix ρB,

ρB = uΛBu†; u†u = id, (8.43)

where ΛB = diag{λB,1,λB,2, . . .} and λB,1 ≥ λB,2 ≥ . . . are the eigenvalues of ρB in
descending order.

We now see that a particularly simple choice is to let Hs′ be the image of an orthogonal
projection p ∈ end(HB), and set w = up′ where p′ is the restriction of p to Hs′ . This leads
to

ρs′ = p′†u†uΛBu†up′ = p′†ΛBp′ (8.44)

and hence
tr ρs′ = tr[pΛB]. (8.45)

Knowing this, we may simply construct p so that it when acting on ΛB projects out all but
the m biggest eigenvalues, with m chosen as the smallest integer such that the condition
(8.41) holds.

As an example, for the case of B = {s1, s2}, the reduced covariance matrix is

ρ12 = tr12{ ρ =

s1

s′1

s2

s′2

...

...
= 1
N

∑
i

... = , (8.46)

with eigenvalue decomposition

ρ12 = Λ
u†

u

, (8.47)

and the isometry transformation becomes

ρ12 → ρ1′ = Λ
u†

u

w†

w

= Λ
u†

u

u†

u

p′

p′†

= Λ
p′

p′†
. (8.48)

Repeating the procedure for each block in L we arrive at a coarse-grained description
on the lattice L′. Since the map is linear, it may be performed on the individual feature
vectors directly, resulting in a new set of feature vectors

xi

(⊗
B∈P

wB

)
= ... = ... = x′i, (8.49)

69

8. Tensor network learning

from which we can repeat the procedure of constructing reduced covariance matrices and
finding optimal isometries.

Doing this recursively, we will eventually map the entire feature space to a single site,
e.g. as

x′ = xW = . (8.50)

To see that this W has approximations of the eigenvectors of ρ as columns, consider first
the case of ε = 0. Then each w truncates only the null-space of the corresponding reduced
covariance matrix and hence we get an exact diagonalization

ρ = WΛW † = . (8.51)

For ε > 0, this relation is of course no longer exact, but it is reasonable to assume that it
gives a good approximation for sufficiently small ε.

8.4.2 Projection error

To give an estimation of the total truncation error, we will now derive limits on tr[W †ρW].
This is simplest if we make a slight modification of the algorithm above. To this end we
introduce an ordering of the blocks at each coarse-graining step, letting L = B1 ∪ B2 ∪
. . . ∪Bn, and define the partially coarse-grained matrices

ρi ≡

⊗
j≤i

w†j

 ρ
⊗
k≤i

wk

 , (8.52)

where wi is the isometry acting on block Bi. We can then let the learning procedure for
finding wi be exactly as above, but with ρ everywhere replaced by ρi−1. Note that this
leads to ρ0 = ρ and ρi = ρs′ , giving the condition (8.41) as

tr ρi ≥ (1− ε) tr ρi−1, (8.53)

immediately giving a limit of the trace of the coarse-grained covariance matrix ρ′ as

tr ρ′ = tr ρn ≥ (1− ε)n tr ρ. (8.54)

70

8. Tensor network learning

Continuing this recursively, we see that the truncation error of the fully coarse-grained
system becomes as simple as

E ≡ 1− tr[W †ρW]
tr ρ ≤ 1− (1− ε)Niso = Nisoε+O(ε2) (8.55)

where Niso is the total number of isometries. Inverting this, we see that to guarantee a
given total error E we need to select

ε ≤ 1− (1− E)1/Niso . (8.56)

Now consider the case of having feature vectors with M sites, where logaM ∈ N for
some integer a. We can then construct a recursive coarse-graining scheme where each
block contains a sites, giving the number of isometries at level l as M/al, and hence

Niso =
loga M∑
l=1

M

al
= M

a

1− a− loga M

1− a−1 = M − 1
a− 1 . (8.57)

This truncation error estimation highlights the sensitivity in ε which was empirically
found by [18]; since M is for an image at least on the order of 103, while a needs to be
chosen to a small integer, Niso will often be on the same order of magnitude as M . By
(8.55) this gives a total truncation error which is very sensitive to the choice of ε.

71

8. Tensor network learning

72

9
Quantum entanglement in

machine learning

There has recently been much interest [24, 63–68] in comparing and evaluating different
representational structures for the functions used in ML. A particular concern is that of
expressivity, which loosely may be seen as evaluating the efficiency (typically per parame-
ter) of a given neural network in representing a wide class of functions. Although popular
as a research topic, there is as of now no consensus on how to quantify the expressivity of
a network, and it is also possible that different situations may call for different measures
of this quantity.

The properties to demand from such a measure are:

1. It should have a clear interpretation from the point of view of measure theory or
statistics, so as to allow informed reasoning on what to expect from a model with a
given expressivity.

2. It should be contractible, and ideally inferable directly from the structure of a model,
in order to be useful as a tool to instruct construction of new models.

If we consider generative models where the function to represent is simply the probability
distribution of the data itself, an obvious starting point is to simply consider which corre-
lations can be modelled between the input variables; e.g. given a partition of the variables
into X and Y , one might wish to give bounds on the mutual information I(X : Y).

Often, however, the probabilistic interpretation is lacking. We might instead wish to
consider the separation rank [63] between sets of variables. For a function f(X,Y) this is
given by the minimum number of terms r in the expansion

f(X,Y) =
r∑
i=1

aiψi(X)ϕi(Y), (9.1)

where ai ∈ C and ψi and ϕi may be chosen as (orthonormal) basis functions. Of course,
this assumes that such an expansion is possible at all, but this should be the case so long
as f is square-integrable.

Although the separation rank may be a little unclear interpretationally it is – as we
shall see – easily connected to the Schmidt number, or equivalently the zeroth quantum
Rényi entropy. If we further can express the function on the form of a nontrivial TN, as
with all the models considered in the previous chapter, the quantum max-flow/min-cut
theorem makes it a simple matter to infer upper, and in some cases also lower, limits on
the separation rank directly from the graph of the TN.

73

9. Quantum entanglement in machine learning

9.1 Rényi entropy of TNL models

To make things a bit more formal, we start by considering the setting in section 8.1 of
having multivariate models f(x) which can be expressed on the form

f(x) = W ·Φ(x), Φ(x) = φ(x1)⊗ φ(x2)⊗ . . .⊗ φ(xN), (9.2)

either due to f being square-integrable or to some explicit local feature map. Here φ ∈
Hφ, Φ ∈ H ≡ H⊗Nφ and W ∈ hom(H,Hout) with Hφ,H and Hout being (ideally finite-
dimensional) Hilbert spaces. For the sake of interpretability it is convenient to also demand
that {Φi1,i2,...,iN }{ik} forms an orthonormal basis over H.

As noted previously, f is now on a form which is similar to that of an unnormalized
quantum many-body wave function. Restricting to Hout = C or even Hout = R, the
situation is (more or less) identical and, encouraged by this similarity, we may form a
normalized density matrix for f through

ρ ≡ W †W

tr[W †W] = W † ⊗W
tr[W † ⊗W] . (9.3)

Note that both of the above expressions are also available for dimHout > 1, but they are
then inequivalent since we with W †W imply taking the inner product over Hout.

Naively continuing onward, we are now ready to consider the entanglement entropies of
ρ. First of all, when ρ ∝W †⊗W as is always the case for dimHout = 1, ρ is a pure state,
immediately giving Sα(ρ) = 0.

To look at correlations we partition the inputs into two sets A and B = A{ and define
ΦA(x) ≡

⊗
i∈A

φ(xi) ∈ HA

ΦB(x) ≡
⊗
i∈B

φ(xi) ∈ HB
(9.4)

so that Φ(x) = ΦA(x)⊗ ΦB(x) and H = HA ⊗HB.

Making a Schmidt decomposition of W with respect to the (A,B) partition gives

W = Λ(UA ⊗ UB), (9.5)

where Λij =
∑r
k=1 λkδ

k
ij , with λk being the singular values and r the rank of the de-

composition, and UA and UB are unitary operators in hom(HA,Cr) and hom(HB,Cr)
respectively. Noticing that this puts f(x) = W ·Φ(x) on the form of equation (9.1), this
shows that the Schmidt number r is the separation rank of f(x) w.r.t. (A,B).

Continuing toward the full quantum Rényi entropy, we introduce the reduced density
matrix

ρA ≡ trB ρ = U †AΛAUA
tr ΛA

, (9.6)

where ΛA ≡ diag{|λ1|2,|λ2|2, . . .}. This gives

Sα(ρA) = 1
1− α log tr(ραA) = 1

1− α log tr ΛαA
(tr ΛA)α = 1

1− α log
∑
i |λi|2α

(
∑
i |λi|2)α . (9.7)

It is also of interest to repeat the results that r = 1 gives Sα(ρA) = 0, that S0(ρA) = log r
and that Sα(ρA) = Sα(ρB).

74

9. Quantum entanglement in machine learning

This is of course identical to what we found already in the chapter on quantum infor-
mation, although the λi can no longer be interpreted as probability amplitudes. Rather,
the interpretation of Sα(ρA) is simply as a measure of how far f(x) is from being separa-
ble with respect to the partition (A,B). Here the parameter α decides how the singular
values are weighted, with α = 0 disregarding the sizes of the singular values completely
and α� 1 emphasizing the larger on expense of the smaller.

In the case of f(x) being a probability distribution, or a probability amplitude (i.e.
p(x) = |f(x)|2), separability implies statistical independence and we may hence in these
cases think of Sα(ρA) as a measure of correlation between A and B. As noted by [69], there
is some (superficial) similarity between the reduced quantum Rényi entropy considered
here and the Shannon mutual information I(A;B), although it is unclear whether this
similarity amounts to anything more than both being measures of correlation.

9.2 Boltzmann machines

A straightforward application of quantum entropy for analysis of machine learning archi-
tectures is on Boltzmann machines, as considered by [70, 71]. For consistency with these
two articles we will consider the RBM to model a probability amplitude ψ(v) over some
visible variables vi ∈ {0,1}, i = 1, . . . ,N , such that p(v) ≡ |ψ(v)|2 and

∑
v p(v) = |ψ|2 = 1.

This amplitude is then given by

ψ(v) =
∑
{hi}

1
Z
e−E(v,h), E(x) = −〈Wx, x〉 − 〈x, a〉 , (9.8)

where x = (v, h) and W is upper triangular such that Wij = 0 if i ≥ j.

9.2.1 Mapping to tensor networks

Since v ∈ {0,1}N , we have that ψ ∈ (C2)⊗N , i.e. ψ is a vector in a tensor product Hilbert
space. This makes it natural to try and express ψ on the form of a TN in order to find
limits on its entanglement entropy. In fact, this turns out to be possible by making slight
modifications on the graph of the BM [71]:

Keep all nodes in the network, but add a dangling edge to each visible node vi and let
the tensor corresponding to node xi be

Λ(i) ≡ Diag{1, eai}. (9.9)

For each non-zero Wij add a node on the edge connecting xi and xj , and let the corre-
sponding tensor be

M (ij) ≡
(

1 1
1 e−Wij

)
. (9.10)

It may then be seen that ψ is exactly given by

ψ(v1, . . . , vN) =

∏
i,j

M (ij)

(∏
k

Λ(k)
)

v1,...,vN

, (9.11)

where inner products are taken according to the graph and we have left out the scalar
factor of 1/Z for convenience. For a simple example, see figure 9.1.

If we are interested in using the QMF /QMC theorems of section 5.2 for inferring limits
on entanglement from the TN, we may safely ignore the M (ij) tensors, since they are

75

9. Quantum entanglement in machine learning

(a) Markov random graph

v1 v2 v3 v4 v5 v6

(b) Tensor network

v1 v2 v3 v4 v5 v6

Figure 9.1: The Boltzmann machine represented by the Markov random graph in (a)
models the same function as the tensor network in (b). The light grey dots represent
hidden units, the dark blue dots are visible units and the green diamonds are the matrices
M (ij). Hidden and visible units hi and vj in the random graph are replaced by tensors

Λ(i)
h and Λ(j)

v respectively in the tensor network.

full-rank matrices for all Wij 6= 0 and hence does not affect the connectivity of the graph.
We are hence left with a TN on the same graph as the BM, but with dangling edges on
the visible nodes. Letting QMCr(A) and QMFr(A) denote the restricted quantum min
cut and quantum max flow implied by restricting the Λ tensors to being diagonal and
interpreting the graph as a flow network from A to A{, with A∪A{ being the set of inputs
to the network.

By the restricted quantum max flow/min cut theorem,

Sα(A) ≤ log QMCr(A) = log 2MCr(A) = MCr(A) log 2, (9.12)

where we take MCr(A) to be the unweighted combined edge-vertex min cut separating A
from A{.

9.2.2 Boltzmann machines as MPS

It is an interesting problem to try and construct the optimal MPS for a given Boltzmann
machine. A constructive approach to this problem is to start from the TN above and
perform contractions and merge edges in an appropriate order until the TN is on the
structure of an MPS.

We may as a first step contract all the M (ij) arbitrarily, since this does not affect the
connectivity of the graph. Had we started from the BM in figure 9.1, this would leave us
with the TN

ψ =

v1 v2 v3 v4 v5 v6

. (9.13)

Next we find find successive min cuts Ci, i = 1, . . . ,N − 1 such that Ci is the smallest cut
separating the visible units {v1, . . . , vi} from {vi+1, . . . , vN}. These cuts partition the TN
into N TNs which are then separately contracted into the multimode tensors A(i), or in
our example

v1 v2 v3 v4 v5 v6
C1

C2

C3 C4

C5

=
A(1)

v1

A(2)

v2

A(3)

v3

A(4)

v4

A(5)

v5

A(6)

v6

, (9.14)

76

9. Quantum entanglement in machine learning

where

A(1) = , A(2) = , A(3) = ,

A(4) = , A(5) = , A(6) = .

(9.15)

The tensor A(i) now has one edge to vi but |Ci−1| and |Ci| edges to the neighbouring
tensors A(i−1) and A(i+1) respectively. The last step is to merge all parallel edges in the TN.
Since the unmerged edges all correspond to an inner product over 2-dimensional Hilbert
spaces, merging all |Ci| edges between tensors A(i) and A(i+1) gives an edge of dimension
2|Ci|. We are hence left with an MPS where the ith internal bond has dimension 2|Ci|.
Our example BM hence becomes

ψ =
v1 v2 v3 v4 v5 v6

, (9.16)

where the thin lines have dimension 2 and the thick lines dimension 4.
This contraction procedure creates an MPS which is smaller than or of equal size to

what can be reached with the similar procedure suggested for the special case of RBMs in
[71]. The same article do however derive a more intricate algorithm, which they claim to
find the optimal MPS for a given RBM and which does outperform the above procedure.

9.2.3 Area law of entanglement for local RBMs

Following [70] we will now show that the upper limit of entanglement entropy follows an
area law for local RBMs, which we will now define. Consider first an RBM on the form
above, where both the visible and the hidden units are placed on a d-dimensional lattice
L. Call these units vr ∈ {0,1} and hr ∈ {0,1} respectively, where r = (r1, . . . ,rd) ∈ L. A
local RBM of range R ≥ 0 is then an RBM where the weights Wr,r′ are only non-zero for
|r − r′| ≤ R. We are interested in the entanglement Sα(A) between the visible units of a
volume A ⊂ L and the visible units in A{.

We know from the previous sections that in the TN representation of a BM, Sα(A) ≤
MCr(A) log 2, where MCr(A) is the unweighted combined min cut separating A from A{.
In an R-range RBM, only hidden units within a distance of R from the surface ∂A of A
will have edges crossing the surface. Since removing a single node is equivalent to cutting
any number of edges connected to the node, the combined minimal cut is the same as the
number of vertices within this distance from ∂A, giving immediately

MC(A) ≤ 2RS(A), (9.17)

where S(A) is the area of ∂A. This then leads to

Sα(A) ≤ 2 log 2RS(A), (9.18)

showing that the entanglement entropy of a subsystem in a local RBMs is indeed bounded
by its area. This bond is identical to what was found with a different method by [70].

9.2.4 Area law of entanglement for local DBMs

We define a local deep Boltzmann machine of range R to be a DBM built by stacking local
RBMs of range R on top of each other; that is, we place all units vr and hlr, l = 1, . . . ,L
on a d-dimensional lattice L and let W l

r,r′ = 0 if |r − r′| > R.

77

9. Quantum entanglement in machine learning

Now it turns out that, to disconnect A from A{, you need to remove from every odd
hidden layer, the same number of nodes as we found for the single-layer RBM. This gives
our upper bond for the quantum Rényi entropy in the local DBM as

Sα(A) ≤ 2 log 2
⌈
L

2

⌉
RS(A), (9.19)

which, interestingly, is also an area law, confirming what was found with a different method
by the recent paper [72].

Note also that the entropy is linear both in L and R, while the number of parameters
scales like ∼ L and ∼ RD. It is hence cheaper to increase entanglement by adding layers
than by increasing range, giving an indication that DBMs possess depth efficiency.

9.2.5 Volume law of entanglement for long range BMs and RBMs

Clearly, if R is selected large enough that RS(A) ≥ vol(A), the minimal combined cut is
going to be that which removes all vertices corresponding to visible variables in A, and we
will have instead

Sα(A) ≤ log 2 vol(A). (9.20)

Note that this limit is just the maximum possible entanglement for any system of binary
variables.

9.3 Convolutional arithmetic circuits

The introduction of quantum entropy as a measure of expressivity in ML was originally
proposed in the context of convolutional arithmetic circuits by Levine et al[24]. We will in
this section make a brief review of their results and generalize them somewhat using the
machinery developed in the sections on quantum max flow/min cut (see 5.2.2).

We will however, for convenience, change the notation compared to section 5.2 some-
what. For an nCAC ψ with graph G, quantum capacity function c, and with A as a
subset of the dangling edges of G (or equivalently, inputs to ψ), we will let QMC(A,ψ) be
what we previously denoted by QMC(G, c) with G interpreted as a flow network from A
to A{. Similarly we will replace QMF(G, c) with QMF(A,ψ) and the restricted versions
QMC(G,c;U) and QMF(G,c;J) with QMCr(A,ψ) and QMFr(A,ψ). Here U is the set
of vertices for which tensors are restricted to be diagonal while J (ψ) is the allowed con-
figuration space for the tensors. For CACs and nCACs, it is evident that U is the set of
vertices with Kronecker delta tensors. Let JU be the largest configuration space for which
U are Kronecker deltas. Then, for an nCAC we have J (ψ) = JU , while for a CAC, J (ψ)
is a proper subset of JU .

It should be noted that much of the results in this section are developed for nCACs1.
They are still somewhat relevant also for CACs since they may be viewed as being re-
strictions of nCACs. An upper limit on quantum entanglement derived for an nCAC will
hence hold also for a regular CAC, although the same can of course not be said about the
lower limit.

9.3.1 Depth efficiency

The use of quantum entropy considered by [24] is mainly to explain the depth efficiency of
nCACs by comparing two non-overlapping nCACs acting on N features where log2N ∈ N;

1Near-/non-convolutional arithmetic circuits, see section 8.3.2.

78

9. Quantum entanglement in machine learning

a deep one with S = K = 2 and a shallow one with S = K = N . For convenience they
specialize to networks which give scalar outputs; i.e. such that f(x) = WΦ(x) ∈ R (or
some other field).

The analysis of the shallow model is very simple; having S = K = N reduces the model
to having a single layer, with the TN representation of W being on the form

W =
δ

. . .
. (9.21)

Let c be the number of channels after the first matrix product, or equivalently the quantum
capacity of the edges connected to the Kronecker delta. Since δr has all matricization ranks
equal to r, this gives the upper limit on any entanglement entropy in the shallow network
as Sα ≤ log r.

For the deep model Levine et al arrive at the following:

Lemma 9.1. Consider an nCAC ψp with kernel size and stride K = S = 2, such that
all bond dimensions are integer powers of p and consider a subset A of the inputs to the
network. Then S0(A) = log QMCr(A,ψ) for all assignments of the tensors in ψp, except
for a set with Lebesgue measure zero.

Proof. See [24].

This leads to the following statement for general bond dimensions.

Theorem 9.1. Consider an nCAC ψ with kernel size and stride K = S = 2, graph
G = (V,E) and bond dimensions c : E → N and define ψp with p ∈ N, to be an nCAC on
the same graph but with bond dimensions cp(e) ≡ pblogp c(e)c. Consider a subset A of the
inputs to the network. Then S0(A) ≥ log QMC(A,ψp) for all assignments of the tensors
in ψ, except for a set with Lebesgue measure zero.

Proof. See [24].

It is clear that, with appropriately chosen region A, this can give much larger values for
S0(A) in a deep nCAC than is possible with a shallow one. However, do note that the tree
structure of the graph also makes it possible to find arbitrarily large input regions which
may be disconnected from their complement by cutting a single bond.

By utilizing the toolbox on max flow/min cut developed in section 5.2.2 we may in fact
arrive at versions of the above statements which encompass all possible choices of S and
K with S = K.

Lemma 9.2. Consider an nCAC ψp with kernel size and stride K = S ≤ N , such that
all bond dimensions are integer powers of p and consider a subset A of the inputs to the
network. Then S0(A) = log QMCr(A,ψ) for all assignments of the tensors in ψp, except
for a set with Lebesgue measure zero.

Proof. It is an immediate consequence of theorem 5.2 that QMFr(A,ψp) = QMCr(A,ψp).
The statement of the theorem is then arrived at by employing proposition 5.3.

Theorem 9.2. Consider an nCAC ψ with kernel size and stride K = S ≤ N , graph
G = (V,E) and bond dimensions c : E → N and define ψp with p ∈ N, to be an nCAC on

79

9. Quantum entanglement in machine learning

the same graph but with bond dimensions cp(e) ≡ pblogp c(e)c. Consider a subset A of the
inputs to the network. Then S0(A) ≥ log QMCr(A,ψp) for all assignments of the tensors
in ψ, except for a set with Lebesgue measure zero.

Proof. The set of tensors realizable by ψp is clearly a subset of those realizable by ψ, giving
QMFr(A,ψ) ≥ QMFr(A,ψp). By the previous lemma, QMFr(A,ψp) = QMCr(A,ψp),
which leads us to QMFr(A,ψ) ≥ QMCr(A,ψp). By proposition 5.3, S0(A) = QMFr(A,ψ)
almost everywhere, finishing the proof.

It is clear that if A is a connected region in the input space, the minimal cut will consist
of at most S(A) vertices or edges at each level. Hence for the 1D non-overlapping nCAC
(as well as the CAC) with quantum capacity everywhere set to c(e) = r, we have

Sα(A) ≤ log r2 logK |A| = 2 log r
logK log |A|. (9.22)

Since depth increases as K decreases, this does indicate that deep networks are able to
model more intricate connections than shallow ones. To make this even more clear, we
note that the number of parameters in an nCAC with N = KL−1 inputs and all quantum
capacities equal to r is

(KL−1 +KL−2 + . . .+ 1)r2 = (KL − 1)r2 = O(NL/L−1) →
L�1
O(N). (9.23)

However, to reach the same Sα(A) for |A| = N/K with the shallow model, the quantum
capacities of the N + 1 tensors would need to be

r′ = r2(L−2) = K2(L−1) logK r

r2 = N2 logK r

r2 (9.24)

for a total of

(N + 1)N
4 logK r

r4 = O(N4 logK r+1) (9.25)

parameters.
For large N , this makes the deep model more parameter efficient (for certain choices of

A) when

r > K
1
4 . (9.26)

However, once again it should be noted that the tree structure of the model reduces the
minimal cut to one edge for arbitrarily sized special choices of A.

80

10
Discussion

We have in this thesis sought to answer two separate, but interrelated questions: “To what
extent can algorithms from numerical quantum mechanics be employed for general machine
learning?” and “To what extent can quantum information theory be used to explain and
understand different models in ML?”.

In order to answer the first question, a literature review of current QM-inspired methods
in ML was conducted in chapter 8, with the central finding that most of the work being
done in this direction employ the tensor networks introduced in chapter 5. The second
question was discussed in chapter 9 where we follow e.g. [24, 69] in evaluating quantum
entanglement as a measure of expressiveness in a neural network. This analysis also lead
to the discovery of a slight generalization of the quantum max flow/min cut theorem by
Cui et al[25], which is introduced in section 5.2.

Since the subjects of tensor network learning, quantum max-flow/min-cut and entan-
glement as a measure of expressiveness, while relevant for each other, are quite separate,
we have divided this chapter into three sections correspondingly.

10.1 Numerical quantum mechanics for machine learning

The idea to employ techniques from numerical quantum mechanics originates to large de-
gree from the notion that the learning processes of deep neural networks are similar to a
renormalization group flow [13]. It is hence no surprise that the numerical renormalization
procedures from quantum many-body theory plays a large part in this endeavour. Par-
ticularly models which utilize tensor networks to create (multi-)linear functions in high
dimensional vector spaces have become very popular; in addition to the models discussed
in this thesis, several models have been proposed, for both supervised and unsupervised
learning, most often building on tree tensor networks[23, 60] or MPS[61].

There is actually a quite interesting and somewhat plausible difference in interpretation
between the models discussed in this thesis and those of standard DNN. In standard DNN’s
every few layers contain a non-linearity which may be thought of as analogues to the local
feature maps of TNL. Since weights are updated both before and after each feature map,
the feature maps themselves change as the network learns, with the interpretation that it
learns the relevant features of the data it is fed.

In contrast, the TNL algorithms are fed an impossibly large number of features and
tasked with creating a linear model based on these. Since the linear model by necessity
have a much smaller output dimension than input, its output will be a linear combination
of a subset of the features. Hence we can think of the learning of these algorithms as
finding the relevant features of data amongst a pre-existing set.

This also highlights one of the possible drawbacks to this method; while the features of
DNNs are variable and may be adjusted continuously, the features of TNL are fixed and
thus need to be chosen appropriately from the start. Because of this, it would be very

81

10. Discussion

interesting to see what would be achievable by stacking several layers of linear models
in tensor product spaces on top of each other, with non-linearities between each one. In
particular the tree curtain model by [18] seems to be a good candidate to extend.

It is remarkable to note that, despite the recent hype around the MERA tensor network
in the physics community, there has been very few reported attempts to employ it for ML.
The one example we can find is [21], where a quite thinned down version of the MERA is
used in a similar manner to the unsupervised coarse graining of [18]. A probable reason
for the relative lack of MERA-based algorithms is that, in contrast to TTNs, a product
state in one layer is not mapped into a product state in the next, which makes calculating
the inner product between a MERA and a product state a computationally much more
expensive process. It is nevertheless a very interesting direction to consider for future
research, as the issue of entanglement being highly dependent on how the geometry of the
partition relates to the graph which is prevalent in TTNs is avoided in the MERA.

Another possible direction of future research is to take a more general look at which
graphs make for TNs which are good for ML. In particular, graphs with loops seem to
be generally avoided, which is sensible since loops increase the complexity of contraction.
However, loops also have an essential role in distributing entanglement and our intuition is
that there may be methods to introduce them without the network becoming intractable.
One idea in this direction would be to take inspiration of the TN representation of Boltz-
mann machines and generalize to arbitrary TNs on similar graphs, but keeping tensors
diagonal in the BM representation diagonal also in the generalized case.

10.2 Entanglement analysis of ML architectures

We have in this thesis studied the use of quantum entanglement entropy as a measure
of the expressivity of a neural network and found that it is indeed sensible when viewed
as measuring the distance from multiplicative separability with regards to partitions of
the inputs. It is, however, slightly difficult to interpret outside of the context of QM,
giving reason for some concern for its usefulness. Fortunately, much the analysis done
in chapter 9 is highly relevant also for the condensed matter community, where large
efforts (see [73] for an excellent review) are now being made to use machine learning
techniques to simulate highly correlated quantum systems. A major concern is then how
to choose the representation of the wave function in order to be able to reach sufficiently
entangled states, and in this context, the entanglement properties of particularly RBMs
and DBMs[70–72, 74, 75], but also other architectures[76] have been well studied.

Out of what is studied in chapter 9, particularly the area-law scaling of entanglement
in local RBMs[70] and DBMs[72], logarithmic breaking of the area law in non-overlapping
nCACs[24], and volume law in fully connected RBMs and DBMs become very relevant
(volume law scaling is shown also for overlapping nCACs in [64, 77]). In this context, we
produce no new results, but do however with the help of our developments on QMF/QMC
provide alternate, and in our opinion often simpler, proofs than the original sources. Hope-
fully, this together with the QMF /QMC results which we will bring up next, may lead to
further insights in the future.

We also wish to note that almost all of chapter 9 deals exclusively with the zeroth Rényi
entropy of different partitions, or equivalently the multi-rank of the tensor represented by
the TN. As measure of distance from separability, this is rather crude – if an expansion

f(x,y) =
r∑
i=1

aiψi(x)ϕi(y) (10.1)

82

10. Discussion

has nearly all of its weight in the first term, we would ideally consider f to be very close
to being separable. However, S0(X) = log r, independent of the assignments of ai. On
the one hand, this very independence is what makes it possible to estimate the zeroth
Rényi entropy without knowledge of the actual tensors, but on the other, the information
one can get from merely knowing S0 becomes quite limited. As such, it would be an
interesting endeavour to estimate other orders of the Rényi entropy from TNs, particularly
when viewing the tensors as randomly distributed. This has to some extent already been
studied for TNs with unitary tensors in the AdS/CFT community – see e.g. [43] who show
that the problem of finding the expected value of the second Rényi entropy in certain cases
can be reduced to that of minimizing the free energy of a Boltzmann machine on the same
graph. Nonetheless, it would be interesting to see what is achievable by taking a more
holistic view.

10.3 Quantum max-flow/min-cut

It is long known that the quantum entropy in TNs is related to minimal cuts in the
corresponding graphs, a fact which was elaborated on in the quantum max flow/min cut
theorem in [25], making the entanglement analysis of a model a simple matter once a map
to an equivalent TN can be found. We have studied the TNs of Boltzmann machines
as found by [71] and CACs as found by [24]. Common to these two is a prevalence of
diagonal tensors, which have the property that all their matricization ranks are equal,
making the cutting of an edge connected to the tensor essentially equivalent to removing
the vertex altogether. This was elaborated on in section 5.2.2 where a stronger quantum
max flow/min cut result was achieved for TNs with diagonal tensors, using the concept of
combined cuts introduced in section 4.4.

There is in fact a sense in which the more natural cut for a quantum max flow analysis is
a weighted vertex cut, where each vertex is given a variable weight chosen from its tensor’s
multi-rank according to which matricization is implied by the cut. Our hypothesis is that
QMFr = QMCr would hold to a similar extent also in this case, while allowing a more
fine-grained view of the entanglement features of a restricted TN. There is a cost to this
approach, however, in that it both requires more information of the tensors and that the
calculation of a minimal cut may become much more computationally expensive.

Another problem which we encountered in doing QMF /QMC analysis on CACs is that
it is presently not known whether some version of QMF = QMC holds for translationally
invariant networks, or more generally, networks where some tensors are restricted to be
equal to each other. It would be very interesting to see some analysis done on this problem,
since the case of having equal tensors is very common in the literature. In particular, the
scale invariance which makes MERA relevant from a conformal field theory (and hence
also quantum gravity) perspective hinges on the equality of tensors at different scales.

83

10. Discussion

84

Bibliography

[1] W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics 5(4), pp. 115–133 (1943).

[2] D. O. Hebb. The Organization of Behaviour. John Wiley and Sons, New York (1949).

[3] B. Farley and W. Clark. Simulation of self-organizing systems by digital computer.
Transactions of the IRE Professional Group on Information Theory 4(4), pp. 76–84
(1954).

[4] Y. Huang et al. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism (2018). arXiv:1811.06965.

[5] G. Saon et al. English Conversational Telephone Speech Recognition by Humans and
Machines (2017). arXiv:1703.02136.

[6] G. Lample et al. Phrase-Based & Neural Unsupervised Machine Translation (2018).
arXiv:1804.07755.

[7] Papers With Code : the latest in machine learning. https://paperswithcode.com/.
(visited 2019-05-14).

[8] G. E. Hinton, S. Osindero and Y. W. Teh. A fast learning algorithm for deep belief
nets. Neural Computation 18(7), pp. 1527–1554 (2006).

[9] H. W. Lin, M. Tegmark and D. Rolnick. Why Does Deep and Cheap Learning Work
So Well? Journal of Statistical Physics 168(6), pp. 1223–1247 (2017).

[10] D. J. Schwab and P. Mehta. Comment on ”Why does deep and cheap learning work
so well?” (2016). arXiv:1609.03541.

[11] S. Iso, S. Shiba and S. Yokoo. Scale-invariant feature extraction of neural net-
work and renormalization group flow. Physical Review E 97(5), pp. 1–32 (2018).
arXiv:1801.07172v1.

[12] M. Koch-Janusz and Z. Ringel. Mutual information, neural networks and the renor-
malization group. Nature Physics 14(6), pp. 578–582 (2018).

[13] P. Mehta and D. J. Schwab. An exact mapping between the Variational Renormal-
ization Group and Deep Learning (2014). arXiv:1410.3831.

[14] S. R. White. Density matrix formulation for quantum renormalization groups. Phys-
ical Review Letters 69(19), pp. 2863–2866 (1992).

[15] S. R. White. Density-matrix algorithms for quantum renormalization groups. Physical
Review B 48(14), p. 10345 (1993).

85

http://arxiv.org/abs/1811.06965
http://arxiv.org/abs/1703.02136
http://arxiv.org/abs/1804.07755
https://paperswithcode.com/
http://arxiv.org/abs/1609.03541
http://arxiv.org/abs/1801.07172v1
http://arxiv.org/abs/1410.3831

Bibliography

[16] G. Vidal. Entanglement renormalization. Physical review letters 99(22), p. 220405
(2007). arXiv:cond-mat/0512165.

[17] E. Stoudenmire and D. J. Schwab. Supervised learning with tensor net-
works. Advances in Neural Information Processing Systems, pp. 4799–4807 (2016).
arXiv:1605.05775.

[18] E. M. Stoudenmire. Learning relevant features of data with multi-scale
tensor networks. Quantum Science and Technology 3(3), pp. 1–12 (2018).
arXiv:1801.00315v1.

[19] Y. Liu, X. Zhang, M. Lewenstein and S.-J. Ran. Entanglement-guided architectures
of machine learning by quantum tensor network (2018). arXiv:1803.09111.

[20] Z.-Z. Sun et al. Generative Tensor Network Classification Model for Supervised Ma-
chine Learning (2019). arXiv:1903.10742.

[21] G. Evenbly. Number-State Preserving Tensor Networks as Classifiers for Supervised
Learning (2019). arXiv:1905.06352.

[22] S. Efthymiou, J. Hidary and S. Leichenauer. TensorNetwork for Machine Learning
(2019). arXiv:1906.06329.

[23] S. Cheng, L. Wang, T. Xiang and P. Zhang. Tree tensor networks for generative
modeling. Physical Review B 99(15), p. 155131 (2019). arXiv:1901.02217.

[24] Y. Levine, D. Yakira, N. Cohen and A. Shashua. Deep Learning and Quantum Entan-
glement: Fundamental Connections with Implications to Network Design. Interna-
tional Conference on Learning Representations (ICLR) (2018). arXiv:1704.01552.

[25] S. X. Cui et al. Quantum Max-flow/Min-cut. Journal of Mathematical Physics 57(6),
pp. 1–28 (2016). arXiv:1508.04644.

[26] C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical
Journal 27(3), pp. 379–423 (1948).

[27] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and
Sons. ISBN 9780471241959 (2005).

[28] M. Mézard and A. Montanari. Information, physics, and computation. Oxford grad-
uate texts. Oxford University Press, Oxford; New York. ISBN 0-19-857083-X (2009).

[29] E. Witten. A Mini-Introduction To Information Theory (2018). arXiv:1805.11965.

[30] M. Wilde. Quantum information theory. Cambridge University Press, second edn.
ISBN 978-1-107-17616-4 (2017).

[31] D. K. Fadeev. Zum Begriff der Entropie einer endlichen Wahrscheinlichkeitsschemas.
Arbeiten zur Informationstheorie I. Deutscher Verlag der Wissenschaften pp. 85–90
(1957).

[32] A. Renyi. On measures of entropy and information. Proc. Fourth Berkeley Symp. on
Math. Statist. and Prob. (1961).

[33] P. Erdos. On the distribution function of additive functions. Annals of Mathematics
47(1), pp. 1–20 (1946).

86

http://arxiv.org/abs/cond-mat/0512165
http://arxiv.org/abs/1605.05775
http://arxiv.org/abs/1801.00315v1
http://arxiv.org/abs/1803.09111
http://arxiv.org/abs/1903.10742
http://arxiv.org/abs/1905.06352
http://arxiv.org/abs/1906.06329
http://arxiv.org/abs/1901.02217
http://arxiv.org/abs/1704.01552
http://arxiv.org/abs/1508.04644
http://arxiv.org/abs/1805.11965

Bibliography

[34] S. Kullback and R. A. Leibler. On Information and Sufficiency. The Annals of
Mathematical Statistics 22(1), pp. 79–86 (1951).

[35] B. B. Machta, R. Chachra, M. K. Transtrum and J. P. Sethna. Parameter space
compression underlies emergent theories and predictive models. Science (New York,
N.Y.) 342(6158), pp. 604–7 (2013).

[36] D. Xu and D. Erdogmuns. Renyi’s Entropy, Divergence and Their Nonparametric
Estimators. J. C. Principe (ed.), Information Theoretic Learning, Information Science
and Statistics, chap. 2, pp. 47–102. Springer New York, New York, NY. ISBN 978-1-
4419-1570-2 (2010).

[37] I. Goodfellow, Y. Bengio and A. Courville. Deep Learning. MIT Press (2016).

[38] J. C. Bridgeman and C. T. Chubb. Hand-waving and interpretive dance: An introduc-
tory course on tensor networks. Journal of Physics A: Mathematical and Theoretical
50(22) (2017). arXiv:1603.03039.

[39] L. Dixon and A. Kissinger. Open Graphs and Monoidal Theories. Mathematical
Structures in Computer Science 23(2), pp. 308–359 (2010). arXiv:1011.4114.

[40] R. C. Avohou, J. B. Geloun and M. N. Hounkonnou. Embedding Half-Edge Graphs
in Punctured Surfaces (2017). arXiv:1708.08720.

[41] P. Elias, A. Feinstein and C. Shannon. A note on the maximum flow through a
network. IRE Transactions on Information Theory 2(4), pp. 117–119 (1956).

[42] L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network. Canadian
Journal of Mathematics 8, pp. 399–404 (1956).

[43] P. Hayden et al. Holographic duality from random tensor networks. Journal of High
Energy Physics 2016(11), p. 9 (2016). arXiv:1601.01694.

[44] R. Hartshorne. Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer
New York, New York, NY. ISBN 978-1-4419-2807-8 (1977).

[45] F. Verstraete and J. I. Cirac. Matrix product states represent ground states faithfully.
Physical Review B 73(9), p. 094423 (2006). arXiv:cond-mat/0505140.

[46] K. G. Wilson. The renormalization group: Critical phenomena and the Kondo prob-
lem. Reviews of Modern Physics 47(4), pp. 773–840 (1975).

[47] U. Schollwoeck. The density-matrix renormalization group in the age of matrix prod-
uct states. Annals of Physics 326(1), pp. 96–192 (2010). arXiv:1008.3477.

[48] S. Östlund and S. Rommer. Thermodynamic limit of density matrix renormalization.
Physical review letters 75(19), p. 3537 (1995).

[49] J. Dukelsky, M. A. Mart́ın-Delgado, T. Nishino and G. Sierra. Equivalence of the
variational matrix product method and the density matrix renormalization group
applied to spin chains. EPL (Europhysics Letters) 43(4), p. 457 (1998).

[50] G. Vidal. Class of Quantum Many-Body States That Can Be Efficiently Simulated.
Physical Review Letters 101(11), p. 110501 (2008). arXiv:quant-ph/0610099.

[51] O. Catoni. Statistical Learning Theory and Stochastic Optimization, Lecture Notes in
Mathematics, vol. 1851. Springer Berlin Heidelberg, Berlin, Heidelberg, 1 edn. ISBN
978-3-540-22572-0 (2004).

87

http://arxiv.org/abs/1603.03039
http://arxiv.org/abs/1011.4114
http://arxiv.org/abs/1708.08720
http://arxiv.org/abs/1601.01694
http://arxiv.org/abs/cond-mat/0505140
http://arxiv.org/abs/1008.3477
http://arxiv.org/abs/quant-ph/0610099

Bibliography

[52] O. Bousquet, S. Boucheron and G. Lugosi. Introduction to statistical learning theory.
Summer School on Machine Learning, pp. 169–207. Springer (2003).

[53] T. Hastie, R. Tibshirani and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York, New York, NY, second edn. ISBN
978-0-387-84857-0 (2009).

[54] P. Mehta et al. A high-bias, low-variance introduction to Machine Learning for physi-
cists. Physics Reports 810, pp. 1–124 (2019). arXiv:1803.08823.

[55] A. Karpathy. CS231n Convolutional Neural Networks for Visual Recognition. http:
//cs231n.github.io/convolutional-networks/. (visited 2019-07-02).

[56] R. Kindermann. Markov random fields and their applications. American mathemat-
ical society. ISBN 0-8218-5001-6 (1980).

[57] D. Erhan, A. Courville, Y. Bengio and P. Vincent. Why does unsupervised pre-
training help deep learning? Journal of Machine Learning Research 11(Feb), pp.
625–660 (2010).

[58] R. Salakhutdinov and G. Hinton. Deep Boltzmann machines. Artificial intelligence
and statistics, pp. 448–455 (2009).

[59] B. Schölkopf and A. J. Smola. Learning with Kernels : Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, US. ISBN
9780262256933 (2001).

[60] D. Liu et al. Machine learning by unitary tensor network of hierarchical tree structure.
New Journal of Physics 21(7), p. 073059 (2019). arXiv:1710.04833.

[61] Z.-Y. Han et al. Unsupervised Generative Modeling Using Matrix Product States.
Physical Review X 8(3), p. 031012 (2018). arXiv:1709.01662v3.

[62] I. Glasser, N. Pancotti and J. I. Cirac. Supervised learning with generalized tensor
networks pp. 1–14 (2018). arXiv:1806.05964.

[63] N. Cohen, O. Sharir and A. Shashua. On the Expressive Power of Deep Learning: A
Tensor Analysis. 29th Annual Conference on Learning Theory, pp. 698–728 (2015).
arXiv:1509.05009.

[64] Y. Levine, O. Sharir, N. Cohen and A. Shashua. Quantum Entanglement in
Deep Learning Architectures. Physical Review Letters 122(6), p. 065301 (2019).
arXiv:1803.09780.

[65] B. Poole et al. Exponential expressivity in deep neural networks through transient
chaos. Advances in neural information processing systems, pp. 3360–3368 (2016).
arXiv:1606.05340.

[66] M. Raghu et al. On the Expressive Power of Deep Neural Networks. Proceedings
of the 34th International Conference on Machine Learning, vol. 70, pp. 2847–2854.
JMLR. org (2016). arXiv:1606.05336.

[67] R. Eldan and O. Shamir. The Power of Depth for Feedforward Neural Networks.
Conference on learning theory, pp. 907–940 (2015). arXiv:1512.03965.

[68] Y. Bengio and O. Delalleau. On the expressive power of deep architectures. Interna-
tional Conference on Algorithmic Learning Theory, pp. 18–36. Springer (2011).

88

http://arxiv.org/abs/1803.08823
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
http://arxiv.org/abs/1710.04833
http://arxiv.org/abs/1709.01662v3
http://arxiv.org/abs/1806.05964
http://arxiv.org/abs/1509.05009
http://arxiv.org/abs/1803.09780
http://arxiv.org/abs/1606.05340
http://arxiv.org/abs/1606.05336
http://arxiv.org/abs/1512.03965

Bibliography

[69] S. Cheng, J. Chen and L. Wang. Information Perspective to Probabilistic Mod-
eling: Boltzmann Machines versus Born Machines. Entropy 20(8), p. 583 (2018).
arXiv:1712.04144.

[70] D.-L. Deng, X. Li and S. Das Sarma. Quantum Entanglement in Neural Network
States. Physical Review X 7(2), p. 021021 (2017). arXiv:1701.04844.

[71] J. Chen et al. Equivalence of restricted Boltzmann machines and tensor network
states. Physical Review B 97(8), pp. 1–18 (2018). arXiv:1701.04831.

[72] Z.-A. Jia et al. Entanglement Area Law for Shallow and Deep Quantum Neural
Network States (2019). arXiv:1907.11333.

[73] R. G. Melko, G. Carleo, J. Carrasquilla and J. I. Cirac. Restricted Boltzmann ma-
chines in quantum physics. Nature Physics 15(9), pp. 887–892 (2019).

[74] I. Glasser et al. Neural-Network Quantum States, String-Bond States, and Chiral
Topological States. Physical Review X 8(1), p. 011006 (2018). arXiv:1710.04045.

[75] S. R. Clark. Unifying neural-network quantum states and correlator product states
via tensor networks. Journal of Physics A: Mathematical and Theoretical 51(13), p.
135301 (2018). arXiv:1710.03545.

[76] O. Sharir et al. Deep autoregressive models for the efficient variational simulation of
many-body quantum systems (2019). arXiv:1902.04057.

[77] O. Sharir and A. Shashua. On the Expressive Power of Overlapping Architectures
of Deep Learning. International Conference on Learning Representations (2018).
arXiv:1703.02065.

89

http://arxiv.org/abs/1712.04144
http://arxiv.org/abs/1701.04844
http://arxiv.org/abs/1701.04831
http://arxiv.org/abs/1907.11333
http://arxiv.org/abs/1710.04045
http://arxiv.org/abs/1710.03545
http://arxiv.org/abs/1902.04057
http://arxiv.org/abs/1703.02065

Bibliography

90

	List of Figures
	Notation
	Abbreviations
	Introduction
	I Quantum theory & Mathematical foundations
	Classical information theory
	Shannon entropy
	Joint entropies
	Relative entropy/Kullback-Liebler divergence
	Fisher information matrix
	Mutual information

	Rényi entropy
	Rényi divergence
	Rényi mutual information

	Quantum information theory
	Quantum theory – the bare minimum
	Composite quantum mechanical systems
	Schmidt decomposition
	The density matrix
	Measures of entanglement
	Schmidt number
	von Neumann entropy
	Quantum Rényi entropy
	Equal entropy of subsystems
	Quantum mutual information

	Graph theory
	Types of graphs
	Paths, cuts and cliques
	Max flow/min cut and Menger's theorem
	Vertex limited flows

	Tensor networks
	An introduction
	Merging edges
	Taking derivatives

	Entanglement in tensor networks
	Quantum max flow/min cut
	Quantum max flow/min cut with restricted tensors
	Quantum max flow and entanglement entropy

	Matrix product states
	Gauge symmetry
	Entanglement

	Numerical renormalization group methods in quantum mechanics
	Numerical real-space renormalization group
	Density matrix renormalization group
	Infinite lattice DMRG
	Finite lattice DMRG
	DMRG and MPS

	Entanglement renormalization

	II Machine learning
	Machine learning
	Statistical learning theory
	Supervised learning
	Unsupervised learning

	Artificial neural networks
	Feedforward neural networks

	Convolutional neural networks
	Convolutions
	The structure of a CNN

	Structured probabilistic models
	Bayesian networks
	Markov random field

	Boltzmann machines
	Restricted Boltzmann machines
	Deep belief networks
	Deep Boltzmann machines

	Kernel learning
	Support vector machines

	III Quantum theory for machine learning
	Tensor network learning
	Tensor product Hilbert spaces in machine learning
	Square-integrable functions
	Local feature maps
	Connecting to tensor networks

	Variational tensor network learning
	Gradient descent
	Generalized DMRG
	Supervised learning with MPS

	Convolutional arithmetic circuits
	Tensor network formulation
	nCACs

	Unsupervised coarse graining
	The algorithm
	Projection error

	Quantum entanglement in machine learning
	Rényi entropy of TNL models
	Boltzmann machines
	Mapping to tensor networks
	Boltzmann machines as MPS
	Area law of entanglement for local RBMs
	Area law of entanglement for local DBMs
	Volume law of entanglement for long range BMs and RBMs

	Convolutional arithmetic circuits
	Depth efficiency

	Discussion
	Numerical quantum mechanics for machine learning
	Entanglement analysis of ML architectures
	Quantum max-flow/min-cut

	Bibliography

