
Predictive Caching
Predict the content a user is most likely to download using
mobile data so as to pre-fetch it when the user’s device is con-
nected to a high bandwidth network

Master’s thesis in Computer science and engineering

Nickey Lizbat Lawrence
Renjith Sebastian

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Predictive Caching

Predict the content a user is most likely to download using mobile
data so as to pre-fetch it when the user’s device is connected to a

high bandwidth network

Nickey Lizbat Lawrence
Renjith Sebastian

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Predictive Caching
Predict the content a user is most likely to download using mobile data so as to
pre-fetch it when the user’s device is connected to a high bandwidth network

© Nickey Lizbat Lawrence, Renjith Sebastian, 2019.

Supervisor: Moa Johansson, Department of Computer Science and Engineering
Advisors: Erik Carlsson, Emil Pedersen, Pierre Wessman, Company
Examiner: Carl-Johan Seger, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Generic music track image

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Predictive Caching
Predict the content a user is most likely to download using mobile data so as to
pre-fetch it when the user’s device is connected to a high bandwidth network

Nickey Lizbat Lawrence
Renjith Sebastian
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Though digitization has revolutionized the entertainment industry, streaming ser-
vices like Netflix, Spotify, etc. are the ones who made the content available to the
users through hand-held devices. These services require an active internet connec-
tion to deliver the requested content to the user device, consuming the expensive
mobile data subscriptions of the user. The aim of the thesis project is to optimize
the mobile data usage by predicting the content a user is most likely to download so
that it can be pre-fetched when the user’s device is connected to high bandwidth,
less-expensive network. Different use cases were considered to identify the potential
candidates that a user is most likely to download through mobile data subscription.
First, users are highly probable to download the personalized content recommended
by these services. Hence, the user behavior on personalized content was modeled
using a Logistic Regression algorithm as a generic baseline approach. Second, the
users tend to use multiple devices to stream content and it is very likely that they
play the same content from different devices. This has a strong pre-cache potential
in the context that contents viewed/listened to in one device could be used to pre-
dict the possible streaming behavior in the user’s other devices. Third, the users
prefer to play contents from different playlists provided by streaming services. The
third use case exploited the user behavior on playlists to predict the contents a user
is likely to download in future. We employed a Gradient Boosting algorithm to
model the device sync and playlist use cases. The results were evaluated using a
generic evaluation metric defined solely for the purpose, and different use cases were
compared. The device sync model predicted 15% of the potential savings that were
identified through data analysis, whereas the playlist model predicted 30%.

Keywords: Computer science, engineering, thesis, machine learning, predictive caching,
user behavior, xgboost, logistic regression.

v

Acknowledgements
We sincerely thank each of our company advisors, Erik Carlsson, Emil Pedersen,
and Pierre Wessman, for supporting, guiding and encouraging us to explore inde-
pendently. We would like to thank and express our gratitude to our supervisor
Moa Johansson at the Chalmers University of Technology, for the proper guidance
and help. Furthermore, we would like to thank the entire team at the company we
worked with, who have always been great to us.

Nickey Lizbat Lawrence, Renjith Sebastian, Gothenburg, June 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 2
1.2 Goals and Challenges . 2
1.3 Literature Survey . 3

2 Background 5
2.1 Machine Learning . 5

2.1.1 Supervised Learning . 5
2.1.2 Feature engineering . 5

2.2 Feature Selection . 6
2.2.1 Univariate Analysis . 6
2.2.2 Bivariate Analysis . 6
2.2.3 Recursive Feature Elimination and Cross Validation (RFECV) 6
2.2.4 Feature Scaling . 7

2.3 Logistic Regression . 7
2.4 Ensembles . 8

2.4.1 Gradient Boosting . 8
2.4.2 Feature Importance Scoring 8

2.5 Grid Search Algorithm . 8
2.6 Regularization . 9
2.7 Evaluation Metrics . 9

2.7.1 Accuracy, Precision and Recall 9
2.7.2 Receiver Operating Characteristic (ROC) curve 11

2.7.2.1 Area Under the Curve (AUC) 11

3 Exploratory Data Analysis 12
3.1 Device Sync . 12
3.2 Playlists . 14

3.2.1 User Consistency . 17

4 Methods 18
4.1 Generic Modeling Approach . 18
4.2 Baseline Target . 19

ix

Contents

4.2.1 Rule-Based Heuristic . 19
4.2.2 Machine Learning Model . 20

4.3 Use Cases . 21
4.4 Device Sync . 22

4.4.1 Dataset Preparation and Modeling 22
4.4.2 Feature Engineering . 24

4.5 Playlists . 25
4.5.1 Approaches . 25
4.5.2 Stage 1 : Playlist Prediction 25

4.5.2.1 Dataset Preparation and Modeling 26
4.5.2.2 Feature Engineering 27

4.5.3 Stage 2 : Content Prediction 27
4.5.3.1 Dataset Preparation and Modeling 27
4.5.3.2 Feature Engineering 28

5 Evaluation and Results 29
5.1 True Byte Rate (TBR) . 29
5.2 Baseline Model . 29

5.2.1 Rule-based Heuristic . 29
5.2.2 Machine Learning Model . 30
5.2.3 Threshold calibration . 31

5.3 Device Sync Model . 32
5.3.1 Approach 1: All devices . 32

5.3.1.1 Threshold calibration 33
5.3.1.2 Observations . 35

5.3.2 Approach 2: Fixed Devices . 35
5.3.2.1 Threshold calibration 36
5.3.2.2 Observations . 37

5.3.3 Summary . 37
5.4 Playlist Model . 37

5.4.1 Stage 1 : Playlist Prediction 38
5.4.2 Stage 2 : Content Prediction 39

5.4.2.1 Threshold calibration 40
5.4.2.2 Observations . 41

5.4.3 Summary . 42

6 Related Work 43

7 Conclusion 45
7.1 Conclusion . 45
7.2 Future Work . 45

Bibliography 47

x

List of Figures

2.1 Sigmoid function . 7
2.2 Accuracy, Precision and Recall . 10
2.3 Confusion Matrix . 10
2.4 ROC curve . 11

3.1 Potential savings using Sync Download compared to Total Download 13
3.2 Percentage saved using Sync Download compared to Total Download

(Weekly Analysis) . 13
3.3 Potential savings using Sync Download compared to Total Download 14
3.4 Percentage saved using Sync Download compared to Total Download 14
3.5 Absolute carrier downloads for top five playlists 15
3.6 Percentage of carrier downloads for top five playlists 15
3.7 Potential savings for top five playlists 16
3.8 Percentage of potential savings for top five playlists 17

4.1 Steps in Generic Modeling Approach 18
4.2 The average trend value for a period of four weeks was computed and

summed up with total number of plays in week 4 to compute the total
number of plays in week 5 . 20

4.3 Dataset Preparation for Baseline Machine Learning Model 20
4.4 Dataset Preparation - Weekly Target 22
4.5 Dataset Preparation - Monthly Target 23
4.6 Two-stage Prediction Model for Playlists Use Case 25
4.7 Dataset Preparation for Stage 1: Playlist Prediction 26

5.1 True Byte Rate . 30
5.2 Bytes saved Vs Bytes wasted . 30
5.3 Percentage of users who actually listened to the pre-fetched tracks . . 31
5.4 Total MB saved at TBR = 0.5 . 32
5.5 Approach 1 : True Byte Rate for Weekly Target 33
5.6 Approach 1 : True Byte Rate for Monthly Target 33
5.7 Approach 1 : Weekly Target - Precision Recall Curve for MB saved . 34
5.8 Approach 1 : Monthly Target - Precision Recall Curve for MB saved 34
5.9 Approach 2 : True Byte Rate for Weekly Target 35
5.10 Approach 2 : True Byte Rate for Monthly Target 36
5.11 Approach 2 : Weekly Target - Precision Recall Curve for MB saved . 36
5.12 Approach 2 : Monthly Target - Precision Recall Curve for MB saved 37

xi

List of Figures

5.13 Stage 1 : TBR for a prediction period of one week 38
5.14 Stage 1 : TBR for a prediction period of one month 39
5.15 Stage 2 : TBR for a prediction period of one week 39
5.16 Stage 2 : TBR for a prediction period of one month 40
5.17 Stage 2 : Weekly Prediction - Precision Recall Curve for MB saved . 41
5.18 Stage 2 : Monthly Prediction - Precision Recall Curve for MB saved . 41

xii

List of Tables

4.1 Features used in baseline machine learning models 21
4.2 Hyper-parameters for baseline LightGBM model 21
4.3 Hyper-parameters for baseline Logistic Regression model 21
4.4 Hyper-parameters for XGBoost model used for Device Sync use case . 24
4.5 Hyper-parameters for XGBoost model used for Playlists use case -

Stage 1 Playlist Prediction . 27
4.6 Hyper-Parameters for XGBoost model used for Playlists use case :

Stage 2 Content Prediction . 28

xiii

List of Tables

xiv

1
Introduction

The wave of Artificial Intelligence (AI) and Machine Learning (ML) have empowered
market leaders in diverse domains with innovative ways to attract and retain their
customers. Audio/video streaming services give access to millions of audio/video
content from artists all over the world. The “on-demand” download technique
adopted in these services enable users to view/listen to their favorites on their mo-
bile device online upon request. However, it requires an active internet connection
to download the content to the mobile device which consumes the expensive mobile
data subscriptions of the customer. As per the Ericsson Quarter 4 Mobility Report
1 in 2018, the number of mobile subscriptions grew at 2 percent year-on-year and is
nearly 7.9 billion. Additionally, the number of mobile broadband subscriptions grew
at 15 percent year-on-year and is nearly 5.7 billion. These figures clearly indicate
the magnitude of mobile subscribers and their potential usage of streaming services
through mobile data.

Machine learning models could be used to optimize the mobile data usage by pre-
dicting what a user will play in order to pre-fetch it on the device before he/she
actually hits play. For example, a user who has been consistently playing person-
alized content is highly likely to play more from these playlists. By exploiting the
historical user behavior on the personalized content, we can formulate a prediction
problem to maximize the model’s likelihood of predicting what the user actually
ended up playing. This thesis project used machine learning techniques to predict
the content a user is most likely to download, based on historical user behavior.
These predictions could then be used to pre-fetch the content when the user’s de-
vice is connected to high bandwidth and less expensive network. This will, in turn,
optimize mobile data usage and provide faster download, thus ensuring customer
satisfaction.

In Chapter 2, the theoretical background of the underlying machine learning con-
cepts that have been used throughout this project is presented. Exploratory Data
Analysis(EDA) that was performed for different use case scenarios to identify po-
tential pre-fetch candidates with maximum byte savings, with primary focus on use
case complexity versus potential impact is detailed in Chapter 3. In Chapter 4,
the different implementation steps performed are described in detail. Further, the
evaluation strategy and results obtained for the different use cases and approaches
are presented in Chapter 5. Moreover, previous work relevant to this field of study

1https://www.ericsson.com/assets/local/mobility-report/documents/2019/emr-q4-update-
2018.pdf

1

1. Introduction

is detailed in Chapter 6. We conclude by reflecting on the results obtained and
relevant discussion on future work through Chapter 7.

1.1 Context

User Modeling and User-Adapted Interaction2 is an interesting research field, related
to human-machine interaction, for customizing systems to the user-specific needs.
With the advent of machine learning, this has gained widespread attention leading
to the development of several sophisticated systems providing excellent customer
experience. These systems are personalizing our experience, telling us which prod-
ucts to buy (Amazon) [4], which movies to watch (Netflix) [1], which songs to listen
to (Spotify) [3] etc.

The popular audio/video streaming services have effective recommender systems
already in place, with suggestions tailored to the user’s interests. Though it is likely
that a user will select some content from the recommender system’s prediction, it is
quite unlikely that every user always does so. A naive approach would be to pre-fetch
the top-rated content from the existing recommender system’s output. This would
consume the device memory for users who are not actively using the recommender
system’s predictions. In this project, we attempted to develop machine learning
models by analyzing potential use cases. The hypothesis we put forth was that the
predictions made by our model can perform better than the naive approach. It will
add value to the business in the context that they could be used to optimize mobile
data usage and memory for the customers.

1.2 Goals and Challenges
The goal was to save at least 10% of the total mobile data downloads of a subset of
users by pre-fetching the model’s predictions. Empirically, we compared the predic-
tion results with the ground truth data and computed the total bytes from the carrier
a user would have saved by pre-fetch. We defined a generic evaluation metric called
‘True Byte Rate’ (TBR) as the mega bytes (MB) saved out of the total MB pre-
fetched from the model predictions, which was used to compare the different models.

The major challenges were as follows:
1. It was very unlikely that the model developed would have 100% precision and

was expected to predict a reasonable number of false positives. Under the
assumption that the model predictions would be pre-fetched to the user’s de-
vice without any heuristics, the bytes wastage induced by false positives would
consume the device storage unnecessarily. On the contrary, a minimum num-
ber of false positives would be required as eviction candidates when different
pre-fetch models are used simultaneously, so as to account for the reactive
caching policy, Least Recently Used (LRU) [20], used by these services.

2http://www.umuai.org

2

1. Introduction

2. Stochastic user behavior, meaning (a) not all users were using the personalized
content, and (b) not all users were consistently using the streaming service,
affected the generalization of the prediction model. This imposed the challenge
of collecting a good quality dataset. After collecting data, the appropriate
feature pre-processing steps were performed depending on the architecture of
the specific machine learning algorithm used.

3. The fact that one needs to consider ethics [17, 18] and risk questions [16,
19] contributes greatly to the difficulty of creating machine learning models.
While the system recommending a content the user might dislike would not
produce any devastating consequences, that’s not the case while pre-fetching
that content on to the user device. The risk and ethical questions that were
considered are as follows.
(a) Pre-fetching data on to the user’s device without his/her consent.
(b) Clogging the user’s device memory with downloaded content.
(c) Deciding a threshold on the error in predictions that is acceptable by the

business for this scenario.
(d) Influence of socially sensitive data (gender, age etc.) on the model’s

predictions.
4. The idea is to pre-cache contents when the user’s device is connected to a

high-bandwidth network. The term high-bandwidth could be deceiving from
a streaming service’s point of view in that, a user might be connected to a
mobile data hotspot even though the system interprets it as WiFi.

5. Seasonal data trends could affect the prediction power of the model. For
instance, users tend to listen to festive songs during Christmas.

1.3 Literature Survey

Creating highly personalised experience for each user is crucial to the success of all
audio/video streaming services. Most of the successful automated recommendation
systems[1, 3, 4] focus on both the creators and listeners, through the collaborative
filtering approach, to capture information based on the daily user-item activity data,
so as to recommend fresh content to the users. In 2018, the music-streaming com-
pany, Spotify, hosted the RecSys Challenge on Automatic Playlist Continuation[21],
together with researchers from JKU Linz and UMass Amherst, to predict content
that would complete a given playlist, which was again similar to recommendations.
Researches around personalizing Spotify’s home page, is ongoing so as to ensure each
user gets a targeted list of playlists. On the contrary, this project aimed to iden-
tify content that a user will download through mobile data rather than recommend
content that a user might like, and hence the primary focus was on pre-fetching
or caching the content that the user is most likely to download using mobile data.
To the best of our knowledge, no similar work that primarily focused on predic-
tive caching of audio/video content has been attempted earlier, even though there
have been studies related to webpage pre-caching and pre-fetching mechanisms for
I/O Storage Systems. Predictive pre-fetching mechanisms for the latter scenario
predict the application’s future I/O data accesses by building a history of the I/O

3

1. Introduction

requests wherein the goal is to make the data available in memory even before the re-
quest. This approach intends to boost the performance of read/write operations by
saving the instructions in faster cache memory compared to slower main memory.
Several predictive pre-fetching models and algorithms including machine learning
approaches, mostly neural networks, have been studied extensively. On the con-
trary, this projects aims to optimise the mobile data consumption rather than the
application performance.

4

2
Background

This chapter serves as a theoretical background for the chosen methods that have
proven to be suitable for the project under consideration. The various aspects of
system development based on machine learning include: getting the data set, clean-
ing the raw data, processing and selecting the right features, selecting and tuning a
machine learning model and then finally, evaluating the model’s performance. We
will present these topics briefly in the coming sections.

2.1 Machine Learning
Machine learning is a sub-field of artificial intelligence that enables a computer to
identify patterns in observed data(the training data) and use them to make pre-
dictions on unseen data(the test data) without being explicitly programmed. It
provides the machine with an ability to learn from historical data.

There are two main categories of machine learning depending on the type and
amount of supervision involved - supervised learning and unsupervised learning.
In supervised learning, the system is trained with labeled data or data with the
ground truth whereas in unsupervised, the system tries to find an underlying struc-
ture in the data without labels. Now we will briefly introduce supervised learning
and its types.

2.1.1 Supervised Learning
A majority of the practical machine learning problems rely on supervised learning,
which can be thought of as a teacher supervising the learning process. Given a set
of inputs and outputs, the goal of the supervised learning algorithm is to generalize
or learn a mapping from the inputs to the outputs, such that it can predict the
output for new unseen data. The output could be a class label (in classification)
or a real number (in regression), depending on the problem being solved. In the
former scenario, we need at least two classes for the classification task, in which case
it is called binary classification. Tasks with more than two output classes fall under
multi-class classification.

2.1.2 Feature engineering
A feature is an attribute, property or a measurable unit that acts as input to a
machine learning algorithm. Typically, there are two broad types of features - raw

5

2. Background

features and derived features. Features that are obtained directly from the raw data
set without any manipulation are termed raw features. Derived features are the
ones extracted or derived from the raw data set.

The process of using domain knowledge to extract meaningful information or features
from a raw data set is called feature engineering and is crucial to the success of any
machine learning model. More the features, better the chances of a good model.
Though it is highly important to create a lot of features, choosing the relevant
features is an art in applied machine learning. Even if some of the chosen features are
irrelevant, one cannot afford to miss the relevant ones as they are highly influential in
the prediction results. Various feature selection techniques could then be employed
to filter out useful features with respect to the problem domain.

2.2 Feature Selection
Feature selection is the process of finding right features, essentially aimed at im-
proving the prediction power of the model. In addition to developing an accurate
prediction model, feature selection plays a crucial role in reducing model complexity
and preventing over fitting of the model. Feature selection methods can be used to
identify and remove unneeded, irrelevant and redundant attributes from data that
do not contribute to the accuracy of a predictive model or may decrease the accuracy
of the model. Several feature selection techniques are prevalent in industry, where
three techniques used in the project are discussed in the below section.

2.2.1 Univariate Analysis
Univariate analysis is the simplest statistical test for analyzing data, used to select
the features that have the strongest relationship with the output target variable. It
deals with one variable, hence the name, and does not consider relationships between
variables.

2.2.2 Bivariate Analysis
Bivariate Analysis deals with two variables simultaneously unlike univariate anal-
ysis. The purpose is to analyze the relationship between two variables, whether
there exists an association and the strength of this association, or whether there are
differences and the importance of these differences.

2.2.3 Recursive Feature Elimination and Cross Validation
(RFECV)

Recursive Feature Elimination (RFE) is a feature selection technique by which fea-
tures are removed recursively by fitting a machine learning model. First, the model
is trained on the initial set of features and the importance of each feature is obtained.
Then, the least important features are pruned from current set of features based on
step size configured. This is recursively repeated on the remaining set until the

6

2. Background

optimal number of features to select is eventually reached. By recursively eliminat-
ing features in each loop, RFE attempts to eliminate dependencies and collinearity
existing in the model, if any. Moreover, a technique called cross-validation is used
to make a fixed number of data partitions and RFE is performed on each partition
to find the optimal number of features.

2.2.4 Feature Scaling
Feature Scaling is a data pre-processing technique which is generally used to improve
the performance of machine learning models. Different feature scaling techniques
available in scikit-learn are StandardScaler, MinMaxScaler, RobustScaler and Nor-
malizer. In this project, MinMaxScalar was used which transforms the given features
by scaling each feature value to a specified range, for example, between zero and
one. It works by subtracting the minimum value of the given feature and dividing
the same by the range, which is the difference between the maximum and minimum
values.

2.3 Logistic Regression
Linear classifiers select the outputs based on a scoring function, given by,

score = w ∗ x,

where w is the weight vector and x is the input feature. It is difficult to interpret the
confidence of such classifier models directly. Logistic Regression is a linear classifier
model for binary classification task that provides a probabilistic output. It closely
aligns with linear regression but differs in the sense that here the response variable
is categorical.

Figure 2.1: Sigmoid function

Logistic Regression predicts the probability of a class using the logistic or sigmoid
function, and hence the name. The sigmoid function is an S-shaped curve that can

7

2. Background

take any real-valued number and map it to a value between 0 and 1. If the curve
goes to positive infinity, the prediction value is 1, and if the curve goes to negative
infinity, the prediction will be 0, as could be seen in Figure 2.1.

Mathematically, the sigmoid function is given by,

P (x) = 1
1 + e−x

2.4 Ensembles
An ensemble is a collection of models that give a single final prediction. The intu-
ition behind using these models is that multiple predictors might give a better result
than a single predictor trying to predict the target.

Ensembles are of two types - bagging and boosting. Bagging is the technique
where many independent predictors are combined using model averaging techniques.
Boosting, on the other hand, is a technique where the models are combined sequen-
tially and the new predictors learn from the mistakes of the previous predictors.

2.4.1 Gradient Boosting
Gradient Boosting is an example of a boosting algorithm that produces a single
prediction model in the form of an ensemble of weak prediction models, typically
decision trees. The algorithm makes use of a concept called residual, which is the
difference between the current approximation and the known ground truth value.
A weak model is then trained to map the features to the residuals considering the
fact that adding such a residual on top of an existing model’s prediction will take it
closer to the ground truth value. The overall prediction is thus improved upon by
adding more such residuals from different sequential predictors. For our purpose,
LightGBM[23] and XGBoost[22] implementations were used.

2.4.2 Feature Importance Scoring
Feature importance provides a score indicating how useful each feature was in cre-
ating the specific model. Ensembles like gradient boosting can provide feature im-
portance estimates from a trained model. These scores, obtained from the ’fea-
ture_importances_’ variable of the trained model, are used for feature selection.

2.5 Grid Search Algorithm
A parameter whose value is set before the training process begins is termed a hy-
perparameter. The training algorithm learns the parameters from the data, given
these hyperparameters. Hence, a hyperparameter is considered an external char-
acteristic of the model whereas a parameter is its internal characteristic which can
be estimated from the dataset. Upon training multiple machine learning models on

8

2. Background

the training dataset, the one with the best performance needs to be selected. Per-
formance evaluation and model selection are crucial to building successful machine
learning models. Evaluating the performance of a model is affected by several fac-
tors, with the choice of hyperparameters being the most important one. Considering
the fact that one algorithm might perform better than the other with different sets
of hyperparameters, it is not wise to randomly select their values. The Grid Search
algorithm could be used to automatically select the optimal hyperparameters for a
machine learning algorithm which results in the most accurate predictions. Using
its scoring parameter, the metric to evaluate the model on, for example recall, could
be specified. The Grid Search algorithm generates a model for every possible com-
bination of the specified hyperparameters and evaluates each model based on the
scoring parameter provided.

2.6 Regularization
When a machine learning model learns the noise in the training data, it is said to
overfit the data and loses its generalization power. Regularization is a technique
used to solve this overfitting problem in machine learning models, whereby we pe-
nalize the loss function by adding a multiple of Lasso (L1) or Ridge (L2) norm to
the weight vector. On adding this penalty term, called the regularization term, the
model is simplified so that it doesn’t fit to the noise in the training data. L1 and
L2 are the most common regularization techniques. The general cost function now
takes the below form,

Cost function = Loss + Regularization term

LASSO (Least Absolute Shrinkage and Selection Operator) or L1 is a regularization
technique which could also be considered as a powerful feature selection technique.
This is because, in L1, we penalize the absolute value of the weights and these weights
may be reduced to zero. L2 regularization is also known as ridge regression(Tikhonov
regularization), which adds the sum of the squares of all the feature weights as the
penalty term. L2 is also known as weight decay since it drives the weight values
towards zero.

2.7 Evaluation Metrics
Choosing a meaningful evaluation protocol relevant to the problem domain is crucial
in machine learning projects since we need to measure the quality of our model’s
predictions and compare various alternatives. We present the generally applicable
evaluation metrics that are relevant for this thesis project.

2.7.1 Accuracy, Precision and Recall
In a binary classification task, we get four different outcomes, as listed below.

9

2. Background

1. True Positive
Data points predicted as positive that are actually positive

2. False Positive
Data points predicted as positive that are actually negative

3. True Negative
Data points predicted as negative that are actually negative

4. False Negative
Data points predicted as negative that are actually positive

The most common evaluation metric, accuracy given in Figure 2.2, is defined as
the percentage of total data points that are classified correctly. In a skewed data
set where the positives are greatly outnumbered by the negatives, accuracy is not
a good measure for evaluating the model’s performance. For example, consider a
model trained on a data set with 95 negatives and 5 positives. This model will have
a tendency to predict all the test case samples as negative, which is a terrible but
highly accurate model.

Figure 2.2: Accuracy, Precision and Re-
call

A confusion matrix, as represented in Figure 2.3, tells us the actual and predicted
labels from a classification problem, whose cell values could be used to compute
further meaningful metrics. Two of these that are relevant to our application are
Recall and Precision, listed in Figure 2.2. While Recall is the ability to find all
the relevant data points in a data set, Precision is the ability to identify only the
relevant data points.

Figure 2.3: Confusion Matrix

10

2. Background

2.7.2 Receiver Operating Characteristic (ROC) curve
ROC curve is a visualization technique which plots the True Positive Rate(TPR) or
Recall on the y-axis against the False Positive Rate(FPR) on the x-axis, as a func-
tion of the model’s threshold above which the data point is classified as positive.
FPR is the number of data points incorrectly classified as positive out of the total
true negatives.

Figure 2.4: ROC curve

A threshold of 1.0 would point to the lower left of the graph shown in Figure 2.41,
as there are no data points identified as positive at that threshold value. As the
threshold is decreased, true positives and false positives increase. At a threshold of
0.0, we have all the data points identified as positive and refers to the upper right
corner of the curve.

2.7.2.1 Area Under the Curve (AUC)

In order to quantify a model’s ROC curve, a new metric was introduced. It is the
total Area Under the Curve (AUC) with a value between 0 and 1. A random classifier
will have an AUC score of 0.5. Higher the AUC score, better the classification
performance. In the graph in Figure 2.4, the blue model with the highest AUC
score is better compared to the rest.

1https://www.sakai.unc.edu

11

3
Exploratory Data Analysis

Exploratory Data Analysis (EDA) was conducted on different use cases to identify
the potential scenarios that could bring maximum byte savings if modeled. The
study was focused on identifying the use case complexity versus potential impact in
order to prioritize the available opportunities.

User behavior on personalized playlists, the effect of cross-device syncing of contents
for users with multiple devices, and the impact on predictive caching for users fol-
lowing any particular artist were some of the use cases that were considered for the
purpose. The upper bound on potential mobile data savings were computed during
the data analysis and was used to rank the use cases accordingly.

3.1 Device Sync

It is very common for a user to possess and use multiple devices to stream au-
dio/video contents provided by services like YouTube, Spotify, etc. Cross-device
syncing is an important signal for a predictive caching model since it is highly likely
that the same content will be played on multiple devices of a user. The device sync
analysis was conducted to figure out the magnitude of mega bytes that could be
saved by taking this approach. The potential mobile data savings was evaluated by
computing the content size played in multiple devices. This analysis gave an insight
on the upper bound on the mobile data savings through this use case.

The contents played by a sample of users for four consecutive weeks were used for
the analysis. The total mobile data consumption and the mobile data consumption
for the content synced by the same sample of users in the upcoming week were
computed. From the Figure 3.1, it was observed that the device sync use case could
save a reasonable proportion of total download using mobile data. This approach
had a potential of approximately 13%, as shown in Figure 3.2 on a consistent basis
if modelled.

12

3. Exploratory Data Analysis

Figure 3.1: Potential savings using Sync
Download compared to Total Download

Figure 3.2: Percentage saved using Sync
Download compared to Total Download
(Weekly Analysis)

We extrapolated the analysis to a larger prediction period to analyze the long-term
impact of predictive caching using device sync. In the Figure 3.3, the prediction pe-
riod increased to one month and the analysis were conducted by computing the total
consumption using mobile data and the mobile data consumption for the content
synced for a period of one month. This approach also had a potential of approxi-
mately 13%, as shown in Figure 3.4 on a consistent basis if modelled.

13

3. Exploratory Data Analysis

Figure 3.3: Potential savings using Sync
Download compared to Total Download

Figure 3.4: Percentage saved using Sync
Download compared to Total Download

3.2 Playlists
Majority of the users prefer to play contents from any playlist provided by streaming
services. Predictive caching focused on the playlist was an attempt to exploit this
user behavior to predict the contents a user is likely to download in the future. The
term playlist used here is generic since it comprises of both user created playlist, rec-

14

3. Exploratory Data Analysis

ommended contents collection and user specific as well as non user specific playlist
generated by streaming services. The users are subjected to play any number of
playlists and a standardization on the number of playlists for all users was essential
for the effective modelling of playlist use case.

The first step in the analysis process was to rank top five playlist for a user based
on the magnitude of mobile data consumed for a period of one month. On analysis,
it was observed that approximately 35% of total carrier downloads are from the top
5 playlists of a user and approximately 82% of total playlist carrier downloads are
from the top 5 playlists of a user, details of which are shown in Figure 3.5. Since
top five playlists consume majority of the mobile data, it was reasonable to consider
only those playlists of a user for modelling.

Figure 3.5: Absolute carrier downloads
for top five playlists

Figure 3.6: Percentage of carrier down-
loads for top five playlists

15

3. Exploratory Data Analysis

The potential saving in the target week using only top five playlists of a user was
computed to figure out the upper bound on mobile data savings through this use
case. On analysing the target week savings, it was observed that approximately
30% of carrier downloads for playlists are from the top 5 playlists. Moreover, ap-
proximately 13% of the total carrier downloads considering all the tracks played via
search, playlist or tracks suggested from following artists or albums etc. are from
the top 5 playlists. These figures are represented in Figure 3.7. The analysis showed
a consistent savings of approximately 13% across different target weeks as shown
in Figure 3.8.

Figure 3.7: Potential savings for top five
playlists

16

3. Exploratory Data Analysis

Figure 3.8: Percentage of potential sav-
ings for top five playlists

3.2.1 User Consistency
On analysing the user consistency on top five playlists for the selected subset of
users, the following were observed, which further motivated the reason to model the
playlists for predictive caching.

1. Users with carrier downloads for same playlist for 2 weeks or more - 37%
2. Users with carrier downloads for same playlist for 3 weeks or more - 12.3%
3. Users with carrier downloads for same playlist for exactly 4 weeks - 4%

17

4
Methods

This chapter details the different implementation steps undertaken during the thesis
project. An initial target based on the usage of the personalized content, provided
by the streaming services, was defined as the baseline and two approaches were used
to model the specific problem at hand. The generic approach used for modeling
the different machine learning approaches is presented before proceeding on to the
different use cases and models.

4.1 Generic Modeling Approach
Five steps as shown in Figure 4.1 were performed across the different use cases, each
of which are detailed below.

Figure 4.1: Steps in Generic Modeling
Approach

1. Data Collection
Appropriate data sets, based on opinions from domain experts and intuitive
hypothesis for each use case under consideration, were generated, as detailed
in upcoming sections.

2. Feature Engineering
For each data point in the generated data set, a set of raw features were iden-
tified based on several hypothesis. Further, a set of derived features were
computed using these raw features. In order to identify the features that
could have an impact on the predictions, univariate and bivariate analysis as
described in Sections 2.2.1 and 2.2.2 were performed. Feature cross validation
as mentioned in Section 2.2.3 was conducted so as to eliminate collinear fea-
tures and appropriate feature scaling(Section 2.2.4) was done for the remaining
subset of features. Finally, the feature importance scores(Section 2.4.2) were
computed using the appropriate prediction model being used for the specific
use case.

18

4. Methods

3. Model Training
Different machine learning models were trained on the training data sets gen-
erated for the specific use cases, details of which are described in later sections.

4. Hypreparameter Tuning
Once the model was trained, hyper-parameters were tuned using the Grid
Search algorithm(Section 2.5) on validation set.

5. Evaluation on Test set
As the final step, evaluation was performed using the test set, details of which
are presented in Chapter 5.

4.2 Baseline Target

Considering the fact that users are more likely to use the personalized playlist, an
initial target was formulated as a binary classification problem to predict whether a
user will download it using mobile data or not. In the below two sections, we present
the rule-based heuristic and the machine learning models that were developed.

4.2.1 Rule-Based Heuristic

The rule-based heuristic was a naive attempt to mathematically model the trend in
the usage of personalized content of a user without the aid of any machine learning
techniques. In the rule-based heuristic, a subset of active users in the system who
had played the personalized playlist for a period of four weeks was chosen at random.
The trend across weeks was mathematically modeled to make predictions on whether
the user will play the same personalized content in the fifth week or not. The trend
value for each week is computed using the formula,

Trend value = Count of plays in current week − Count of plays in previous week

The trend value thus computed for each user was compared to a predefined threshold
value. The threshold was defined as half the total size of the personalized playlist
so as to have a probability of at least 50% for the content from the playlist to be
played. Users with a high positive trend value were tagged as positive and users
with a high negative trend value as negative. The remaining users in the selected
subset were categorized as positive if the total number of plays in the fourth week
was greater than the predefined threshold, otherwise negative.

19

4. Methods

Figure 4.2: The average trend value for
a period of four weeks was computed and
summed up with total number of plays in
week 4 to compute the total number of
plays in week 5

4.2.2 Machine Learning Model

Figure 4.3: Dataset Preparation for
Baseline Machine Learning Model

We formulated the binary classification problem as a supervised learning approach
where the target was defined as positive if the user did download any track in the
personalized playlist using mobile data, and negative, otherwise. Similar to the
rule-based heuristic, a subset of active users in the system who had played the

20

4. Methods

personalized playlist for a period of four consecutive weeks were chosen at random.
While preparing the data set for the model to be trained on, we considered four
sets of weeks to compute the usage of the personalized playlist as features(listed in
Table 4.1) and the fifth week as the target week, as shown in Figure 4.3. A balanced
data set was used for training and a validation set comprising 30% of the data was
used to evaluate the generalization power of the model and to prevent overfitting.
The model outputs the probability of the content to be considered as positive. The
supervised learning models, Logistic Regression and LightGBM [23], were trained
on the training dataset, and the results are presented in Chapter 5. The hyper
parameters of these models12 were tuned using the Grid Search method to find the
optimal values which are listed in Tables 4.2 and 4.3 respectively.

Table 4.1: Features used in baseline machine learning models

Primary Key Feature Names

User identifier

Total count in Week 1
Total count in Week 2
Total count in Week 3
Total count in Week 4

Table 4.2: Hyper-parameters for baseline LightGBM model

Parameter Name Parameter Value
Number of predictors 100
Boosting Type Gradient Boosting Decision Tree
Objective Binary
Number of leaves 64
Learning Rate 0.03
Colsample by Tree 0.8
Metric Binary logloss

Table 4.3: Hyper-parameters for baseline Logistic Regression model

Parameter Name Parameter Value
Number of epochs 100
Regularization L2

4.3 Use Cases
In the subsequent sections, we will describe the methods adopted for modeling the
different use cases discussed in Chapter 3 and the feature engineering techniques
applied to find the relevant and appropriate features to output best predictions.

1https://xgboost.readthedocs.io/en/latest/parameter.html
2http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

21

4. Methods

4.4 Device Sync
In this section, we describe the modeling approaches considered for device sync use
case.

4.4.1 Dataset Preparation and Modeling
For the purpose of an unambiguous explanation, we will be using the terms primary
device and secondary device throughout this section. The devices used by the user
to listen to some content in week one were termed as the primary device and the ones
that would be used by the user to download the same content in the upcoming week
were termed as secondary devices. Each data point for a device sync dataset can be
uniquely identified by the user identifier, the primary device used to play the content
in week one, the content identifier and the secondary device. For each data point,
we defined a feature week and target week, as shown in Figure 4.4, where the feature
week was used to select the user devices (both primary and secondary devices) and
the content for which we wanted to make predictions for. The target was defined
as positive (class 1) if the user did download the content listened to in the primary
device in the secondary device the upcoming week, called target week, using mobile
data, otherwise negative (class 0). All the devices used by the user in the feature
week are considered as primary device whereas only those devices with mobile data
downloads in the feature week are considered as a secondary device for the purpose
of predictive caching. Moreover, data points irrelevant for the device sync modeling,
for example, when the user had used both primary and secondary devices to stream
content in the feature week itself, were carefully removed to ensure data consistency.

Figure 4.4: Dataset Preparation -
Weekly Target

In order for the model to give better predictions, user behavior in the past weeks
had to be taken into account. For example, the proportion of content, played by
the user in week one (refer to Figure 4.4) in the primary device, downloaded in
the secondary device in the upcoming week could be indicative of how actively the
user uses the secondary device for downloading content through mobile data. User

22

4. Methods

behavior of the past three weeks was used to measure how consistent are they in
using multiple devices as well as to infer on cross-device syncing patterns exhibited
by that specific user.

While modeling the data, we implemented two approaches based on how the primary
device-secondary device combination was chosen.

1. All devices - All the different combinations of the user devices from the feature
week were considered, provided the primary and the secondary devices are not
the same and the latter had a mobile data download for some content.

2. Fixed devices - For fixing the devices, we took into account all the primary-
secondary device combinations for each user over a period of one month. Each
such combination was ranked based on how frequently content sync has hap-
pened between these devices. In order to fix the devices for modeling, for each
user, we used the top two from the ranked list, provided the secondary had a
mobile data download for some content.

Figure 4.5: Dataset Preparation -
Monthly Target

In order to compare the results of a weekly target with a longer target period and
verify if one week is too short a prediction window, we also modeled another dataset
with a monthly target, as shown in Figure 4.5.

The data for training, validation, and test, was collected for an active set of users
for different sets of weeks in December, January, and February. The data set thus
generated was highly imbalanced in terms of the number of negative and positive
samples. Hence, an unbalanced data set was used for training since it represents the
real data accurately. In addition, 30% of the training data was used as a validation
set. A Gradient Boosting algorithm called XGBoost classifier was used to train the
data set as ensemble techniques are known to perform better with skewed data set.
The classifier outputs a probability on whether a user has downloaded the content
on a secondary device or not. The results are presented in Chapter 5. The hyper
parameters of the XGBoost models were tuned using the Grid Search method to
find the optimal values which are listed in 4.4.

23

4. Methods

Table 4.4: Hyper-parameters for XGBoost model used for Device Sync use case

Parameter Name Parameter Values
All Devices Fixed Devices

number of predictors 100 100
booster Gradient Boosting

Decision Tree
Gradient Boosting
Decision Tree

objective Binary Binary
learning_rate 0.2 0.1
colsample_bytree 0.8 0.8
scale_pos_weight 53 27
max_depth 3 3
min_child_weight 5 5
subsample 0.8 0.8
reg_alpha (L1 regularization) 0.8 0.7
reg_lambda (L2 regularization) 0.8 0.7

4.4.2 Feature Engineering
For each data point, we identified sets of raw features and derived features from the
available data set based on hypothesis, as listed below.

1. Raw features
(a) User level

i. Countries where mobile connection is cheap, one might download
more from carrier

ii. Long-term users are highly likely to show a consistent behavior in
combination with other features

(b) Content level
i. Popular content are more prone to be played in multiple devices
ii. Content in multiple playlists are more prone to be played
iii. Newly released content has high pre-cache potential

(c) Device level
i. New devices have high pre-cache potential
ii. Device type, for example, if it is a desktop or mobile

2. Derived features
(a) User-Content level

i. User’s past content preferences
(b) User-Device level

i. User consistency in using multiple devices
ii. Time of the day when the user used the devices

(c) Content-Device level
i. Content in personalised playlist are more likely to be played in mul-

tiple devices
ii. Device similarity of the content

24

4. Methods

4.5 Playlists

In this section, we describe the modeling approaches considered for the playlist use
case.

4.5.1 Approaches

The two approaches that were considered are as follows.

1. Playlist Prediction - The sub-problem was formulated as a binary classification
problem to predict whether the user will download the content from a playlist
or not. Here, the idea was to download all the contents within the positively
predicted playlist.

2. Content Prediction - The sub-problem was designed to restrict the number
of contents that would be downloaded from a playlist. Here, the problem
was modeled as a two-stage prediction process as shown in Figure 4.6, with (i)
Stage 1 predicting the playlist and (ii) Stage 2 predicting the particular content
within the positively predicted playlist. This could be seen as a second content
prediction model appended to the initial playlist prediction model, both of
which are targeted as binary classification sub-problems.

Figure 4.6: Two-stage Prediction Model
for Playlists Use Case

4.5.2 Stage 1 : Playlist Prediction

This section details the dataset preparation steps, various modeling approaches and
the feature engineering performed for stage 1 predicting the playlist.

25

4. Methods

4.5.2.1 Dataset Preparation and Modeling

Figure 4.7: Dataset Preparation for
Stage 1: Playlist Prediction

Each data point for the playlist prediction model was uniquely identified by the
user identifier and the playlist identifier. For each data point, we defined a feature
period of one month and a target week, as shown in Figure 4.7. The number of
playlists played by each user was randomly varying which motivated the need to fix
the same. As mentioned in Section 3.2, the top five playlists of user accounts to 82%
of the downloads through a mobile carrier and hence we decided to fix the number
of playlists for any user to be at most five. The playlists were ranked based on the
total count of the playlist contents that were downloaded using mobile carrier by
that user for a month. For each such data point, the target was defined as positive
(class 1), if the user did download at least one track from the playlist in the next
two weeks, otherwise negative (class 0).

As explained in the device sync model in Section 4.4.1, it was important to capture
the user behavior in past weeks in order for the model to give better predictions.
For example, the number of weeks with carrier downloads in the feature period for
each playlist would give a measure of consistency over time, and is indicative of how
actively the playlist is hit by a download request. User behavior of past four weeks
from the target week was used to measure this user consistency patterns for each
data point.

The data for training, validation and test was collected for an active set of users for
different sets of weeks in January, February and March. The data set thus generated
was highly imbalanced in terms of the number of negative and positive samples. But
for the purpose of training, a balanced data set was carefully chosen. Both Logistic
Regression and XGBoost classifier were used separately to train the data set and the
results are presented in Chapter 5. The hyper-parameters for the XGBoost model
were tuned using the Grid Search Algorithm and are listed in Table 4.5.

26

4. Methods

Table 4.5: Hyper-parameters for XGBoost model used for Playlists use case - Stage
1 Playlist Prediction

Parameter Name Parameter Value
epochs 100
booster Gradient Boosting Decision Tree
objective Binary
learning_rate 0.09
colsample_bytree 0.8
scale_pos_weight 6
max_depth 3
subsample 0.9
min_child_weight 5
reg_lambda (L2 regularization) 1

4.5.2.2 Feature Engineering

For each data point in the stage 1 prediction model, we identified sets of raw features
and derived features from the available data set based on hypothesis, as listed below.

1. Raw features
(a) User level

i. Age group of the user
(b) Playlist level

i. Number of days since the playlist was last updated
ii. Playlist type, user-created or personalised
iii. Playlist age
iv. Popularity of the playlist

2. Derived features
(a) User Playlist level

i. Rank of the playlist
ii. Weeks with bytes from carrier is a measure of consistency over time
iii. Count of carrier downloads in previous weeks could indicate the user

consistency for the ranked playlists
iv. Sum of bytes from carrier for each week in the feature time

4.5.3 Stage 2 : Content Prediction
This section details the dataset prepration steps, various modeling approaches and
the feature engineering performed for stage 2.

4.5.3.1 Dataset Preparation and Modeling

Each data point for the content prediction model can be uniquely identified by the
user identifier, playlist identifier and the content identifier. In order to select these
data points, all the positively predicted playlists from stage 1 and all the current
contents within those playlists were considered. For this purpose, the latest playlist

27

4. Methods

data available as of the day before the target period were considered. The target
was defined as positive (class 1) if the user did download that content in the next
two weeks, irrespective of the playlist associated with it, otherwise negative (class 0).

The data for training, validation and test were created by running the stage 1 playlist
prediction model for an active set of users for different weeks in February, March and
April. The data set thus generated was highly imbalanced in terms of the number of
negative and positive samples. Hence, an unbalanced data set was used for training
since it represents the real data accurately. In addition, 30% of the training data
was used as a validation set. As in the device sync model, an XGBoost classifier was
used to train the data set as ensemble techniques are known to perform better with
skewed data set. The results are presented in Chapter 5. The hyper-parameters for
the XGBoost model were tuned using the Grid Search Algorithm and are listed in
Table 4.6.

Table 4.6: Hyper-Parameters for XGBoost model used for Playlists use case : Stage
2 Content Prediction

Parameter Name Parameter Value
epochs 100
booster Gradient Boosting Decision Tree
objective Binary
learning_rate 0.1
colsample_bytree 0.6
scale_pos_weight 26
max_depth 1
min_child_weight 5
subsample 0.4

4.5.3.2 Feature Engineering

For each data point in the stage 2 prediction model, we identified sets of raw features
and derived features from the available data set based on hypothesis, as listed below.

1. Raw features
(a) User level

i. Age group of the user
(b) Track level

i. Days since the track got added to the playlist
ii. Position of the track in the playlist
iii. Popularity of the track
iv. Number of followers for the track

2. Derived features
(a) User Track level

i. Whether this track is already cached by the user or not decides if it
should be pre-cached

28

5
Evaluation and Results

In this chapter, we present the evaluation strategy and the results obtained for the
different approaches described in 4.

5.1 True Byte Rate (TBR)

In order to evaluate the machine learning models being developed for predictive
caching and to determine the quality of their predictions, we devised a generic eval-
uation metric called ’True Byte Rate’ (TBR). It is used to compute the fraction of
mega bytes (MB) saved out of the MB pre-fetched from the model predictions. TBR
was effective in evaluating the business impact of using the model since it reflects
on how many MB could have been saved by pre-fetching the predicted content on
to the user’s device. This was performed by comparing the prediction results with
the ground truth data and computing the (i) bytes saved and (ii) bytes wasted.
Predicting a user as positive when he did not play the personalized content is worse
than predicting a user as negative when he did play it because we are unnecessar-
ily consuming the user device’s memory for false positives. Evaluation metrics like
Precision, Recall, and Area Under the Curve(AUC) score could be used to evaluate
a classification model, but they are not sufficient to assess the business value of the
model’s predictions. This necessitated the need for a generic evaluation metric for
predictive caching.

5.2 Baseline Model

5.2.1 Rule-based Heuristic

The rule-based heuristic calculated the user’s personalized content usage in the fifth
week based on their historical behavior for the past four weeks. It was evaluated
on a subset of one million users taken at random for a period of 29th October 2018
to 28th November 2018. The rule-based heuristic identified about 1% of users as
positive to download the personalized content using mobile data while the ground
truth was around 9%. Though the heuristic method was not sufficient enough to
predict the user behavior on the fifth week, it strongly indicated the significance of
considering historical user behavior for predicting the download pattern of a user
and hence was crucial for the later machine learning models.

29

5. Evaluation and Results

5.2.2 Machine Learning Model
In this section, we present the results obtained using the baseline model described
in Section 4.2.2.

We plotted the percentage of bytes saved (in MB) out of the total that was pre-
fetched, the True Byte Rate(TBR), on different thresholds as shown in Figure 5.1.
The threshold here defines the probability for a user to download the personalized
content given by the model predictions. For a threshold of 0.70, at least 50% MB
got saved out of the pre-fetched. The percentage of bytes getting saved was getting
decreased with the decrease in the threshold as seen from the figures. So, the bytes
saved vs bytes wasted was plotted as shown in Figure 5.2, and it was seen that the
bytes getting wasted were increasing with the decrease in threshold. This explained
the behavior of decrease in the percentage of bytes getting saved with the decrease
in threshold.

Figure 5.1: True Byte Rate

Figure 5.2: Bytes saved Vs Bytes wasted

30

5. Evaluation and Results

Further, on analyzing the usage distribution of all users on the personalized content,
it could be seen that the number of users playing the first few tracks in the playlist
is very high compared to the number of users playing the 30th track. The percentage
of users who actually listened to the pre-fetched tracks is shown in Figure 5.3. For
the first few tracks, there was a steady increase in the number of users and it got
flattened out towards the end as expected.

Figure 5.3: Percentage of users who ac-
tually listened to the pre-fetched tracks

5.2.3 Threshold calibration

Threshold calibration was an important step in model evaluation whereby an optimal
threshold to be used for the model was decided upon. It focused on how beneficial
the model would be in the sense that, what use of the model would potentially save
the most data. For this purpose, a minimum byte savings of 50% out of total pre-
fetched is fixed regardless of the threshold by setting the TBR as 0.5. It could be
seen from Figure 5.1 that the thresholds 0.5, 0.6 and 0.7 did attain a TBR of 0.5
if we pre-fetched 3, 15 and 27 contents respectively from the personalized playlist
under consideration. The total bytes saved on these specific points were computed
to identify the threshold with maximum savings. It could be seen from Figure 5.4
that by downloading approximately 30 tracks at threshold 0.7 the model attained
50% savings, which is possible either when half of the users downloaded all the 30
tracks or when all the users downloaded 15 tracks.

31

5. Evaluation and Results

Figure 5.4: Total MB saved at TBR =
0.5

5.3 Device Sync Model

From the initial EDA, it was observed that the device sync use case could save a max-
imum of 13% mega bytes from mobile data out of the total device sync downloads
for a period of one month. As described in Section 4.4.1, two different approaches
were considered for device sync - one by selecting all the primary-secondary device
combinations and another by fixing a set of specific primary-secondary device com-
binations for a user. The threshold calibration for device sync was performed to find
an optimal threshold that would provide maximum byte savings with minimum byte
wastage. This could be determined by plotting the Precision-Recall curve on mobile
data saved during the process. Here, we present the results obtained for these two
approaches using weekly and monthly targets in the below subsections.

5.3.1 Approach 1: All devices

This approach was tested on a data set containing 2000 users taken at random. The
TBR evaluation was conducted for weekly and monthly targets as could be seen from
Figures 5.5 and 5.6 respectively. It was observed that the byte savings increased
with the increase in threshold value until it attained a maximum and then dropped.
The drop in byte savings at a high threshold value was due to the fact that the ratio
of false positives to true positives was substantially high, that is, effectively the byte
wastage was high. For a weekly target objective, the TBR ranged from 8% to 27%
whereas, for a monthly target objective, the TBR ranged from 22% to 62%. This
was as expected, since the probability for a user to sync the contents to a secondary
device in the week immediately following the feature week was less compared to the
probability to sync in the month immediately after the feature week. The longer the
prediction period, the more the chances of device sync by a user. Though, a target
period of one month was an over-estimate from the business point of view.

32

5. Evaluation and Results

Figure 5.5: Approach 1 : True Byte
Rate for Weekly Target

Figure 5.6: Approach 1 : True Byte
Rate for Monthly Target

5.3.1.1 Threshold calibration

In order to find an optimal threshold with maximum savings and minimum wastage
for weekly and monthly targets, we computed the Precision and Recall values with

33

5. Evaluation and Results

respect to the total mega bytes (MB) saved from model predictions, as shown in
Figures 5.7 and 5.8 respectively. On this front, Precision is the total MB saved out
of the total pre-fetched, which is exactly the TBR that has been defined for the
evaluation metric. Recall is the total MB from carrier saved out of the total MB
that was actually downloaded using mobile data, in the context of device sync.

Figure 5.7: Approach 1 : Weekly Target
- Precision Recall Curve for MB saved

Figure 5.8: Approach 1 : Monthly Tar-
get - Precision Recall Curve for MB saved

The observations are consolidated in the section below.

34

5. Evaluation and Results

5.3.1.2 Observations

1. Weekly Target
(a) True Byte Rate (TBR) ranged from 8 to 50%
(b) Optimal Threshold ranged between 0.7 & 0.75 with,

i. 11-12% TBR
ii. 380-530 users, out of which 140-210 actually downloaded
iii. True Positives : False Positives ratio was 1 : 6

2. Monthly Target
(a) True Byte Rate (TBR) ranged from 22 to 62%
(b) Optimal Threshold ranged between 0.7 & 0.75 with,

i. 28-30% TBR
ii. 430-630 users, out of which 280-420 actually downloaded
iii. True Positives : False Positives ratio was 1 : 2

5.3.2 Approach 2: Fixed Devices

This approach was tested on a data set containing 1000 users taken at random. The
TBR evaluation was conducted for weekly and monthly targets as could be seen
from Figures 5.9 and 5.10 respectively. On comparison with All-Devices approach
described in Section 5.3.1, the TBR values were high in Fixed-Devices approach for
both weekly and monthly targets. The TBR value ranged from 13% to 38% for the
weekly target objective and 28% to 48% for the monthly target. This was clearly
higher compared to the values obtained in Approach 1.

Figure 5.9: Approach 2 : True Byte
Rate for Weekly Target

35

5. Evaluation and Results

Figure 5.10: Approach 2 : True Byte
Rate for Monthly Target

5.3.2.1 Threshold calibration

The same approach as described in Section 5.3.1.1 was used, and the results for
weekly and monthly targets are plotted in Figures 5.11 and 5.12 respectively. The
observations are consolidated in the section below.

Figure 5.11: Approach 2 : Weekly Tar-
get - Precision Recall Curve for MB saved

36

5. Evaluation and Results

Figure 5.12: Approach 2 : Monthly Tar-
get - Precision Recall Curve for MB saved

5.3.2.2 Observations

1. Weekly Target
(a) True Byte Rate (TBR) ranged from 13-38%
(b) Optimal Threshold ranged between 0.65 & 0.70 with,

i. 19-21% TBR
ii. 370-500 users, out of which 180-280 actually downloaded
iii. True Positives : False Positives ratio was 1 : 4

2. Monthly Target
(a) True Byte Rate (TBR) ranged from 28 to 48%
(b) Optimal Threshold ranged between 0.6 & 0.7 with,

i. 33-38% TBR
ii. 470-670 users, out of which 350-530 actually downloaded
iii. True Positives : False Positives ratio was 1 : 1.5

5.3.3 Summary
It was observed that the device sync model with fixed-device approach for monthly
target could save approximately 2% out of the potential 13% savings discovered
during the Exploratory Data Analysis.

5.4 Playlist Model
From the initial EDA, it was observed that 82% of the total playlist carrier down-
loads in a month were from the top five playlists of a user and 13% of the total
carrier downloads were from the top 5 playlists in a week. As described in 4.5.1,

37

5. Evaluation and Results

two different approaches were considered for playlists use case - one by predicting
whether the user will download the whole playlist or not, and another by appending
a content prediction stage, which determines the exact content to be pre-fetched.
The TBR evaluation was conducted for weekly and monthly targets on single stage
playlist prediction model as well as two-stage content prediction model.

5.4.1 Stage 1 : Playlist Prediction

This approach was tested on a data set containing 2500 users taken at random. The
TBR evaluation was conducted for weekly and monthly targets as could be seen
from Figures 5.13 and 5.14 respectively.

Figure 5.13: Stage 1 : TBR for a pre-
diction period of one week

In weekly prediction, the TBR value ranged from 13% to 25%. It was observed to
have 20% savings out of the total pre-fetched, on an average, and approximately 80%
attributed to the total wastage. This motivated the need to expand the prediction
window to a period of one month. For monthly prediction, the TBR value ranged
from 25% to 49%. Compared to weekly prediction, the TBR value increased from
approximately 25% to 49% at the highest possible model threshold of 0.8. Though
an increase in the prediction period to one month effectively doubled the TBR
range compared to the weekly prediction, the byte wastage was significantly high
on an average. Moreover, the approach to pre-fetch all the tracks in the positively
predicted playlist seemed to unnecessarily use up the device storage. Thus, threshold
calibration was not performed for stage 1.

38

5. Evaluation and Results

Figure 5.14: Stage 1 : TBR for a pre-
diction period of one month

5.4.2 Stage 2 : Content Prediction
This approach was tested on a data set containing 2500 users taken at random. The
TBR evaluation was conducted for weekly and monthly targets as could be seen
from Figures 5.15 and 5.16 respectively.

Figure 5.15: Stage 2 : TBR for a pre-
diction period of one week

In weekly prediction, the TBR value ranged from 26% to 70%. In comparison with
the stage 1 model for weekly prediction, the stage 2 model attained a TBR of 26%

39

5. Evaluation and Results

at a threshold of 0.5 whereas the stage 1 had a TBR of 26% only at threshold 0.8.
It was observed to have 50% savings out of the total pre-fetched, on an average, and
approximately 50% attributed to the total wastage. For completeness to compare
with the stage 1 model, TBR evaluation was performed for monthly prediction win-
dow as well and the value ranged from 47% to 89%. Compared to weekly prediction,
the TBR value increased from approximately 70% to 89% at the highest possible
model threshold of 0.8. It was observed that the TBR value showed a steady increase
with the increase in threshold for both weekly and monthly targets.

Figure 5.16: Stage 2 : TBR for a pre-
diction period of one month

5.4.2.1 Threshold calibration

The same approach as described in Section 5.3.1.1 was used, and the results for
weekly and monthly targets are plotted in Figures 5.17 and 5.18 respectively. The
observations are consolidated in the section below.

40

5. Evaluation and Results

Figure 5.17: Stage 2 : Weekly Predic-
tion - Precision Recall Curve for MB saved

Figure 5.18: Stage 2 : Monthly Predic-
tion - Precision Recall Curve for MB saved

5.4.2.2 Observations

1. Evaluation on Weekly Prediction
(a) True Byte Rate (TBR) ranged from 26% to 70%
(b) Optimal Threshold ranged between 0.60 & 0.65 with,

i. 36%-40% TBR
ii. 1720-2070 users, out of which 1100-1300 actually downloaded

41

5. Evaluation and Results

iii. True Positives : False Positives ratio was 1 : 1.5
2. Evaluation on Monthly Prediction

(a) True Byte Rate (TBR) ranged from 47% to 89%
(b) Optimal Threshold ranged between 0.55 & 0.60 with,

i. 53%-59% TBR
ii. 2070-2347 users, out of which 1636-1867 actually downloaded
iii. True Positives : False Positives ratio was 1 : 0.8

5.4.3 Summary
It was observed that the stage 2 model for weekly target could save approximately 4%
out of the potential 13% savings discovered during the Exploratory Data Analysis.

42

6
Related Work

In this section, we present the previous research which are relevant in the area
of predictive caching. However, to the best of our knowledge, no work related to
predicting the content a user is most likely to download, based on their streaming
pattern, using mobile data has been attempted earlier.

Manxing Du Maria Kihl et. al. considered request patterns for TV programs from a
popular Swedish TV service provider over 11 weeks to propose a pre-fetching scheme
at the user end to pre-load videos before user requests [11]. The idea was to explore
the potential of reducing the start-up latency of streaming media services. They
demonstrated that the cache hit ratio was significantly improved by the new scheme
and customizing it for different video categories could further improve the perfor-
mance. The proposed system had two components - prefetching engine to foresee
what users would watch next before they request the content and the prediction
engine to store the video prefix to the local cache. They proposed that in order
to implement pre-fetching, the prediction engine needs to determine what content
should be pre-loaded based on a user’s viewing history of the same TV series. The
scheme suggested by the authors examined the user’s request patterns of episodes
in the series to pre-fetch N adjacent episodes for each viewed episode because they
claimed that a TV series consists of a series of episodes which will be released reg-
ularly and have high consistency and similarity in content. They considered two
extreme cases as baselines for evaluating the pre-fetching performance - pre-fetch
all the available episodes in a series to the end user as long as a user watched an
episode in that series, or passively cache all user demands without pre-loading prior
to user requests. They concluded that 69% of all the requested videos can be cor-
rectly predicted using the proposed pre-fetching strategy.

Koch et. al. proposed a proactive caching strategy MIRA(Music Video Information
Retrieval for cAching) for music video content [12], which leverages music content
features and popularity characteristics. It had two main modules : (i) Music Feature
Extractor and (ii) Popularity Predictor. In the first module, a Convolutional Neural
Network (ConvNet/CNN) was used to derive music features so as to train a genre
and a mood classifier. This classification was then used as an input for two proac-
tive caching policies used to identify content that is likely to be popular next. The
second module estimated the future popularity of music videos based on the number
of past views. On evaluating, the genre proactive caching policy showed the highest
gain measured by the cache hit rate (CHR) with 4.5%. S. Dernbach et. al. explored
an approach to determine whether or not a Video Service Provider (VSP) should

43

6. Related Work

use a cache filling policy based solely upon global popularity or consider regional
tastes as well [15]. They proposed three metrics for VSPs which could be used to
quantify the extent to which regional tastes are present. Their model captured the
overlap between inter-regional and intra-regional preferences of movie content.

Koch et. al. presented the significance of new methods to decrease the expensive
mobile network challenges [8]. Their work focused on the potential of proactive
caching content from the YouTube music categories. A set of user behavior and
music specific features were identified from over 4 million music video user sessions
for designing new music specific in-network caching policies and a new evaluation
strategy for evaluating these new policies were proposed. Different cache size con-
figurations were used for the evaluation purpose. As per their findings, proactive
caching is beneficial for large-sized caches with many users and smaller caches. On
the other hand, medium-sized caches did not show a positive effect with proactive
caching. The paper also investigated the cache performance with varying frequency
of proactive caching and amount of input data.

Koch et. al. considered the performance of existing caching strategies with respect
to the cache hit rate [9]. They designed a content category-aware caching strategy
termed ACDC (Adaptive Content-Aware Designed Cache) where the workload con-
sisted of different categories such as news, comedy and music. They demonstrated
that ACDC increased the cache hit rate up to 18.39% and decreased transmission
latency up to 12%.

In [13], S. Dutta et. al. proposed a Video-on-Demand(VoD) system, for wireless
mobile devices, based on a new caching algorithm called Intelligent Network Caching
Algorithm (INCA) which made use of analytics-driven look ahead scheme for both
pre-fetch and replacement policies. Hu et. al. formulated the content pre-fetching
problem as a Markov Decision Process (MDP), which considered both the server
load and users’ behavior on TV series watching patterns using real-traces into ac-
count, to solve the problem in the online manner [14]. Their proposed reinforcement
learning-based algorithm achieved a better precision and hit ratio (e.g., 80%) with
about 70% (resp. 50%) cost saving compared to the random (resp. heuristic) al-
gorithm. M. Sun et. al. presented the Predict-then-Prefetch caching strategy in
5G networks whereby the base station capacity is partitioned into a proactive cache
and a reactive cache [10]. The former is used to pre-fetch popular content for a sum
total maximum of popularity, and the latter to cache content which is unpopular.
This strategy improved the hit ratio by 30% and reduced latency by 50% in the
architecture of 200M small base stations, thus enhancing the quality of experience.

44

7
Conclusion

This chapter reflects on the results obtained, discusses the relevance and suggests
future course of action.

7.1 Conclusion
This thesis project focused on using machine learning techniques to optimize the
mobile data usage by predicting what a user would download in order to pre-fetch
it on the device before he actually hits play. The goal was to save 10% of the mobile
data downloads for a subset of active users. Through Exploratory Data Analysis
(EDA), different use cases were considered to identify the potential candidates that
a user is most likely to download through mobile data subscription, and a range of
different machine learning models were developed for the potential use cases in this
setting. The predictions made by the different models were evaluated and shown
to perform better than pre-fetching the top-rated content from the existing recom-
mender system’s output, which was the initial hypothesis.

Out of the four scenarios considered for device sync, fixed-devices approach with
monthly target was observed to save approximately 2% mobile data downloads out
of a total of 13% for the subset of users considered. From the study, the initial use
case does seem to be of significant advantage from the business perspective, with the
caveat that the target duration of one month must be restricted further, possibly to
two weeks. Further, the playlist use case was evaluated for a target of one week and
was shown to save approximately 4% mobile data downloads out of a total of 13%
for the subset of users considered. These findings show that predictive caching by
analyzing user behavior on multiple use cases has the potential of optimizing mobile
data usage considerably.

7.2 Future Work
In a wider perspective, predictive caching is an interesting problem where more
potential use cases could be targeted through EDA as a possible future work. One
such scenario that was identified during the EDA was the user behavior on the
contents from the artists they follow. For the use cases that were targeted for this
project, we restricted the feature period to a maximum of one month. It would be
interesting to use a larger period to train the model on. Further, all these use cases

45

7. Conclusion

exhibited a temporal characteristic which could be modeled as a time-series problem
using recurrent neural networks.

46

Bibliography

[1] Carlos A. Gomez-Uribe and Neil Hunt. The Netflix recommender system: Al-
gorithms, business value, and innovation. ACM Transactions on Management
Information Systems (TMIS), Volume 6 Issue 4, ACM New York, NY, USA,
January 2016.

[2] Jin Huang and Charles X. Ling. Using AUC and accuracy in evaluating learning
algorithms. IEEE Trans. on Knowl. and Data Eng., 17(3):299– 310, March 2005.

[3] Kurt Jacobson, Vidhya Murali, Edward Newett, Brian Whitman, and Ro- main
Yon. Music personalization at Spotify. RecSys ’16 Proceedings of the 10th ACM
Conference on Recommender Systems, ACM New York, NY, USA, September
2016.

[4] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, Volume 7 Is-
sue 1, 76-80, IEEE Educational Activities Department Piscataway, NJ, USA,
January 2003.

[5] Qi Meng. LightGBM: A highly efficient gradient boosting decision tree. 04 2018.
[6] Joanne Peng, Kuk Lida Lee, and Gary M. Ingersoll. An introduction to Logistic

Regression Analysis and Reporting. Journal of Educational Research - J EDUC
RES, 96:3–14, 09 2002.

[7] David Powers and Ailab . Evaluation: From Precision, Recall and F-measure
to ROC, Informedness, Markedness correlation. volume 2, pages 2229–3981.
Journal of Machine Learning Technologies, January 2011.

[8] Christian Koch, Ganna Krupii and David Hausheer. Proactive Caching of Music
Videos based on Audio Features, Mood, and Genre. In Proceedings of ACM
Multimedia Systems (MMSys), 2017

[9] Christian Koch, Johannes Pfannmüller, Amr Rizk, David Hausheer, Ralf Stein-
metz, "Category-aware Hierarchical Caching for Video-on-Demand Content on
YouTube", In Proc. of ACM Multimedia Systems (MMSys), 2018, pages 89-100

[10] M. Sun, H. Chen and B. Shu, "Predict-then-Prefetch Caching Strategy to En-
hance QoE in 5G Networks," 2018 IEEE World Congress on Services (SER-
VICES), San Francisco, CA, 2018, pp. 67-68.

[11] Manxing Du Maria Kihl, Åke Arvidsson, Christina Lagerstedt, Anders Gavler,
"Analysis of Prefetching Schemes for TV-on-Demand Service", 2015 10th Inter-
national Conference on Digital Telecommunications, Department of Electrical
and Information Technology, ELLIIT: the Linköping-Lund initiative on IT and
mobile communication, 2015

[12] C. Koch, S. Werner, A. Rizk and R. Steinmetz, "MIRA: Proactive Music Video
Caching Using ConvNet-Based Classification and Multivariate Popularity Pre-

47

Bibliography

diction," 2018 IEEE 26th International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), Mil-
waukee, WI, 2018, pp. 109-115.

[13] S. Dutta, A. Narang, S. Bhattacherjee, A. S. Das and D. Krishnaswamy, "Pre-
dictive Caching Framework for Mobile Wireless Networks," 2015 16th IEEE
International Conference on Mobile Data Management, Pittsburgh, PA, 2015,
pp. 179-184.

[14] Hu, Wen et al. “Towards Wi-Fi AP-Assisted Content Prefetching for
On-Demand TV Series: A Reinforcement Learning Approach.” CoRR
abs/1703.03530 (2017): n. pag.

[15] S. Dernbach, N. Taft, J. Kurose, U. Weinsberg, C. Diot and A. Ashkan, "Cache
content-selection policies for streaming video services," IEEE INFOCOM 2016
- The 35th Annual IEEE International Conference on Computer Communica-
tions, San Francisco, CA, 2016, pp. 1-9.

[16] Aziz, S. and M. Dowling (2019). “Machine Learning and AI for Risk Manage-
ment”, in T. Lynn, G. Mooney, P. Rosati, and M. Cummins (eds.), Disrupting
Finance: FinTech and Strategy in the 21st Century, Palgrave, pp 33-50.

[17] Yapo, Adrienne and Joseph Weiss. “Ethical Implications of Bias in Machine
Learning.” HICSS (2018).

[18] Malhotra, Charm Kotwaf, Vinod Dalai, Surahhi. (2018). Ethical Framework
for Machine Learning 1-8. 10.23919/ITU-WT.2018.8597767.

[19] Kalayci, Sacide et al. “Credit risk analysis using machine learning algorithms.”
2018 26th Signal Processing and Communications Applications Conference
(SIU) (2018): 1-4.

[20] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K
page replacement algorithm for database disk buffering. In Proceedings of the
1993 ACM SIGMOD international conference on Management of data (SIG-
MOD ’93), Peter Buneman and Sushil Jajodia (Eds.). ACM, New York, NY,
USA, 297-306.

[21] Schedl, Markus Zamani, Hamed Chen, Ching-Wei Deldjoo, Yashar Elahi,
Mehdi. (2017). RecSys Challenge 2018: Automatic Playlist Continuation. The
International Journal of Multimedia Information Retrieval (IJMIR).

[22] Chen, Tianqi Guestrin, Carlos. (2016). XGBoost: A Scalable Tree Boosting
System. 785-794. 10.1145/2939672.2939785.

[23] Ke, Guolin et al. “LightGBM: A Highly Efficient Gradient Boosting Decision
Tree.” NIPS (2017).

48

	List of Figures
	List of Tables
	Introduction
	Context
	Goals and Challenges
	Literature Survey

	Background
	Machine Learning
	Supervised Learning
	Feature engineering

	Feature Selection
	Univariate Analysis
	Bivariate Analysis
	Recursive Feature Elimination and Cross Validation (RFECV)
	Feature Scaling

	Logistic Regression
	Ensembles
	Gradient Boosting
	Feature Importance Scoring

	Grid Search Algorithm
	Regularization
	Evaluation Metrics
	Accuracy, Precision and Recall
	 Receiver Operating Characteristic (ROC) curve
	Area Under the Curve (AUC)

	Exploratory Data Analysis
	Device Sync
	Playlists
	User Consistency

	Methods
	Generic Modeling Approach
	Baseline Target
	Rule-Based Heuristic
	Machine Learning Model

	Use Cases
	Device Sync
	Dataset Preparation and Modeling
	Feature Engineering

	Playlists
	Approaches
	Stage 1 : Playlist Prediction
	Dataset Preparation and Modeling
	Feature Engineering

	Stage 2 : Content Prediction
	Dataset Preparation and Modeling
	Feature Engineering

	Evaluation and Results
	True Byte Rate (TBR)
	Baseline Model
	Rule-based Heuristic
	Machine Learning Model
	Threshold calibration

	Device Sync Model
	Approach 1: All devices
	Threshold calibration
	Observations

	Approach 2: Fixed Devices
	Threshold calibration
	Observations

	Summary

	Playlist Model
	Stage 1 : Playlist Prediction
	Stage 2 : Content Prediction
	Threshold calibration
	Observations

	Summary

	Related Work
	Conclusion
	Conclusion
	Future Work

	Bibliography

