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Abstract

The tire/road friction is an important factor for the overall vehicle performance and stability, and is thus an
area of interest for both vehicle and tire manufacturers. Furthermore, accurate road friction estimation (RFE)
algorithms could become even more important in the future when autonomous driving systems become more
common.

The most common limitation of the current RFE models is that they often require very specific testing
conditions and tend to struggle when these are not met, which is an issue when trying to generalise the
performance for the every-day vehicle usage.

One of the most important factors in tire/road friction is the road surface conditions, which in turn is
heavily influenced by the current and past weather. This thesis studies what added value knowledge of the
road weather can have on a road friction estimation algorithm, using a simple neural network. We do this by
setting up an experiment where we train two models; one that is trained only with data from the in-vehicle
sensors, and one that is trained with in-vehicle sensor data and weather data combined.

Ultimately, the added weather data is able to improve the best performance of our model by 3.76 percentage
points from 45.27% to 49.03% (8.3% improvement in terms of the number of correctly classified samples) when
modelled as a 6-class classification problem. When modelled as a binary classification task ([0 - 0.5) and [0.5+])
our model’s performance improves by 21.5 percentage points from 54.47% to 75.97% (39.5% improvement in
terms of number of correctly classified samples).

Finally, we conclude that the added road weather data has a positive influence in distinguishing high from
low friction values, while struggling with distinguishing the low friction nuances.
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Nomenclature

• CNN - Convolutional Neural Network

• DL - Deep Learning

• LSTM - Long Short-Term Memory

• ML - Machine Learning

• RF - Road Friction

• RFE - Road Friction Estimation

• RMSE - Root Mean Square Error

• RNN - Recurrent Neural Network

• RWIS - Road Weather Information Systems

• SMHI - Swedish Meteorological and Hydrological Institute

• VCC - Volvo Cars Corporation
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1 Introduction

The tire/road friction is an important factor for the overall vehicle performance and stability, and is thus an
area of interest for both vehicle and tire manufacturers [1]. A vehicle would be unable to move without the
force of friction and only by understanding this force can one aim to wield a precise control of a vehicle’s
motion. This holds true not only for human drivers, but also for autonomous driving (AD) systems. As such,
road friction estimation (RFE) algorithms play an important role as a part of AD systems.

The most common limitation of the current RFE models, is their narrow scope. They often require very
specific testing conditions and tend to struggle when these are not met. One such example is the reliance on
the tire to have high excitation, like when you brake or accelerate [2]. They are simply not able to estimate the
road friction under a constant vehicle speed. Naturally, there have been several studies looking into alleviating
this, with varying results [3].

Ghandour et al. (2010) [4] claim that the biggest factor in tire/road friction is the road surface conditions
(dry, wet, snow, ice). Knowledge of the road surface conditions can thus be used to estimate the road friction,
which is also shown in an example by Roychowdhury et al. (2018) [5]. However, estimating the road surface
conditions and thereafter the road friction is not an easy thing to do with only the sensor data that a vehicle
can collect by itself. Fortunately, there are other sources of data that are more useful for this specific task.

Weather stations can be found all across the country in Sweden, collecting data such as temperature, humidity,
wind and precipitation. Weather stations in Sweden are not only deployed by the Swedish Meteorological
Institute (SMHI), but also by the Swedish Transport Administration (Trafikverket). The latter uses its weather
stations to monitor the weather conditions on the roads. This can then be used to warn drivers of unexpected
weather phenomena, or to better plan the winter maintenance of the Swedish roads. Data from these weather
stations are made open and accessible to the general public. With the increased connectivity of today’s vehicles,
we can thus make use of this information to better predict the road surface conditions and thus the tire/road
friction.

Andersson et al. (2010) [6] categorise road friction applications into two main groups depending on their
purpose; information applications and vehicle integrated applications. They can each be grouped further into
subcategories, as can be seen in figure 1.1.

Information applications are further divided into two groups based on the recipient of the information; (1)
the driver themselves, or (2) others in the form of fellow drivers or infrastructure. The information to the driver
can be either in its raw form, or in a more user-friendly format, for example a visual/auditory/haptic warning
when the road friction hints about slippery road conditions. Likewise, the information can also be passed on to
a central server infrastructure. From there one could give the same information or warnings to other drivers on
the road. It could also be used for example to utilise the collected data to improve road maintenance.

The other major group, vehicle integrated applications, is divided into (1) driver aids and (2) vehicle
functions. This division is made based on who controls the activation of the functionality. Driver aids, such
as for example adaptive cruise control (ACC) or danger ahead cruise control (DACC), are turned on and off
by the driver. Vehicle functions, in which the driver does not have the direct control, includes, among other
things, stability control functions (SCS) and autonomous collision mitigation (ACM). The performance of such
systems can be improved with a more accurate knowledge of the road friction.

1.1 Purpose

The main research question of the thesis is:
What is the added value, for a road friction estimation algorithm, of fusing road weather information from
external services with data from in-vehicle sensors?

The novelty in this approach lies mainly in the use of external information to improve the estimation
performance. Until now, the focus in the field has been on utilising only the easily available in-vehicle sensor
data. However, that is not always enough to properly assess the road friction, which is heavily influenced by
the current and recent weather conditions. Using external weather data is thus a promising step to further help
improve the road friction estimation capabilities of vehicles.

If successful, the approach could be applied to improve the RFE performance in the vehicles so that the
vehicles can issue more accurate warnings to the driver before and under slippery road conditions. This in
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Figure 1.1: Application areas for which knowledge of the road friction can be used. [6]

turn would ideally enhance the driver’s preparedness and increase their control of the vehicle, thus helping to
prevent crashes.

1.2 Scope

The main research question is about the added value that the road weather information can provide. The
secondary objective is to have the model perform as good as possible.

The external road weather information that is considered in this project is the data that the Swedish
Meteorological and Hydrological Institute (SMHI) and Swedish Transport Administration (Trafikverket) are
collecting and providing through their weather stations. Although other sources of road weather information
were considered, they were not used and tried in this thesis. In particular, we initially planned on using a data
provider who could give us estimates on the road surface conditions (classified into 11 different classes, eg hard
snow, icy etc). This did not go as planned, as their estimations for the location and time of the expedition
always estimated the same type of surface condition, which made their data useless in our context. A brief
overview of these alternative sources of data can be found in Chapter 2.

The task of estimating the road friction coefficient is treated as a supervised classification problem. It’s
supervised because the data from Volvo contains the real road friction coefficient values, as measured during
their expedition. As a classification problem, the target feature, which is a continuous variable, is also binned.

An interesting aspect of the problem at hand is how big the potential safety benefits of an improved
road friction coefficient estimator can be. Improved accuracy does, after all, not mean much if the improved
performance does not translate into any specific or concrete added value in terms of reduced fatality rates
and/or crashes. Doing this would, at the very least, require cross-referencing with road accident data collected
by the Swedish Transport Agency. However, this is deemed outside the scope of this project.

1.3 Thesis Outline

Following the introduction, Chapter 2 will elaborate on the current State-of-the-Art in the field of RFE. It is
followed by a theory chapter (Chapter 3) on some machine learning principles that are needed to understand
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the developed model. This chapter can also be skipped for those that already are comfortable with these
principles. Chapter 4 details the setup and methodology used in this thesis. The datasets that were used are
also described here. In Chapter 5 we first present an analysis of the weather features and how the weather
features were selected, followed by the actual results that were achieved during the project. Finally, this is
followed up by some discussion and conclusion in Chapter 6.
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2 State of the Art

This chapter contains a summary of the state of the art in the domain of road friction estimation. We start by
explaining the various categorisation systems that have been proposed to explain the different methodologies.
After that we give a brief overview of some of the more recent research in the field. Finally, we talk about the
limitations that current methods are facing, and we go over some possible alternative data sources that can be
used to enrich vehicle sensor data.

2.1 Categorisation Systems

There are many different approaches to doing RFE, and consequently some of the authors surveying the field
have attempted to categorise the used methodologies in order to structure them in a logical manner. In this
report, we present three different models of doing the categorisation. In a way, they showcase three different
points of views one can have when thinking about road friction estimation.

2.1.1 Effect- and Cause-based

Müller et al. (2003) [7] suggested to categorise it into effect-based and cause-based approaches, a division that
is also followed by Acosta et al. (2017) [3]. As their names suggest, effect-based approaches measure the effects
that changes in friction have on various sensor data, while the cause-based approaches attempt to measure
things that could cause the friction changes, and from there infer the road friction. Each category is then
further divided into subcategories based on what is being measured.

Müller et al. (2003) [7] divides the effect-based methodologies into subcategories based on Tire Tread
Sensors, Acoustics and Slip. According to Acosta et al. [3], it is precisely these effect-based methods that
receive the most development. The cause-based methods, which are often trickier to measure with the vehicle
sensors, are divided into subcategories based on roughness and lubricants. An overview of this categorisation
system can be seen in Figure 2.1.

Figure 2.1: Categorisation suggested by Müller et al. (2003) [7] and Acosta et al. (2017) [3]. Figure adapted
from [7].
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2.1.2 Direct and Indirect

A similar categorisation model is presented by Andersson et al. (2010) [6], who categorise the methods into
direct and indirect approaches. Direct approaches aim to utilise vehicle sensor data, such as for example tire
forces or slip, to directly estimate the road friction. On the other hand, indirect approaches first aim to estimate
other features in order to use them for the road friction estimation. An example of this could be using an
optical camera system that first tries to identify the road surface condition before using this new information
to attempt estimating the road friction [5]. No further subcategorisation is suggested.

The proposed categorisation system by Andersson et al. [6] uses a different split-criteria than the effect-
and cause-based division by Müller et al. [7]. Although many of the effect-based methods could be said to be
using a direct approach, it would be a gross oversimplification to argue that this always holds true.

2.1.3 Model- and Experiment-based

Yet another categorisation model is presented by Khalegian et al. (2017) [1], who divides the methods into
model-based and experiment-based approaches. The former attempts to develop a mathematical model to first
estimate certain unknown states, and use these to estimate the road friction. The latter involves making use of
the various sensor data collected by the vehicle, such as for example acoustic sensors and temperature sensors,
to infer the state of friction-related parameters.

The categorisation system further divides the model- and experiment-based methods into subcategories
based on what features they use to make their estimations. This follows the same logic which Müller et al. [7]
and Acosta et al. [3] suggested. Model-based methods are divided into (1) slip-slope based methods, (2), tire
model-based methods and (3) vehicle dynamic based methods. Meanwhile, the experiment-based methods are
divided into ones based on (1) optical sensors & camera, (2) acoustic sensors and (3) tire tread sensors. An
overview of this categorisation system can be found in Figure 2.2.

The model-based approach does have a large overlap with the indirect methods, and so does the experiment-
based and direct ones. One could argue that there are certain methodologies here that fall in some sort of
grey-zone in between, but in general it does match very well.

On a first glance, there also exists some overlaps when comparing this system to the effect- and cause-based
division suggested by Müller et al. [7] and Acosta et al. [3].

Figure 2.2: Model- and Experiment-based categorisation system.

2.2 RFE approaches in Research

The need for more accurate RFE has continuously motivated the research community to improve on its earlier
models. However, the underlying mathematical and physical concepts of road friction are still the same today
as 20 years ago. As such, we can see that the core ideas of many approaches to RFE in research today do not
deviate that much from what was done back then. Improvements have mainly come from a better understanding
of the underlying concepts, better algorithms, and improvements in how we measure relevant data. Examples of
what specific things some researchers have tried to improve in RFE approaches can be seen in Table 2.3. The
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table provides a summary of the selected papers’ key ideas and performances. The table is a non-exhaustive
list, and there are naturally a lot more research papers on this exact topic.

While there are certainly more improvements to be made with these ”traditional” models, we can also see a
range of research being done today using more ”modern” approaches; (1) using data-driven machine learning
models and (2) using a connected fleet of vehicles. Some examples of these ”new” type of approaches can be
found in Table 2.2.

The data-driven Machine Learning (ML) models don’t fit very well into any of the system categorisations
mentioned in the previous section. Rather they can be seen to partially fit several of the subcategories in the
various categorisation systems. Seeing it as a combination of approaches might thus make more sense. While
small and very specific ML models can be created to fit into these structures, one of the strengths of ML is
that it can make use of a larger variety of data to semi-automatically infer the important features of it. This
data-driven approach is thus quite different to the traditional way of doing RFE. That doesn’t mean that it’s
something that is completely new, though.

Data driven machine learning models using the vehicle sensor data have been used for RFE since a long
time. One such example is Pasterkamp and Pacejka [14] who used a simple Neural Network for the task as far
back as 1997. However, it’s only during recent years that these methods have been widely adopted (not only
within RFE research), as the computing power and data quantity of that time can’t be compared to what we
have available today. In certain vehicles we even have access to completely new streams of data, such as for
example a video feed of a camera pointing at the road through the front-view window of a vehicle [5], that can
be used to better assess the road friction.

Devices and tools across all fields of industry have seen increased connectivity over the last years. This is
also being referred to as the ”fourth industrial revolution”, or just ”Industry 4.0”. This trend also encompasses
vehicles, which nowadays often come equipped with 3G/4G functionality. This opens up the possibility for
vehicles to communicate and collaborate with each other for a range of tasks. In a paper by Panahandeh et al.
[17], they make use of the connectivity to form a connected fleet of vehicles, which utilises the collected data of
a vehicle to warn other drivers of potentially slippery roads. Another paper [13] used the shared data from
vehicles to build a high-resolution road condition map, that could similarly warn other drivers of slippery roads
once they had been encountered.

The proper use of machine learning models and connected vehicles is something that was not feasible 20
years ago, but it’s up and coming and could turn out to be a huge boost for the RFE capabilities in today’s
vehicles. It also brings a more ”modern” touch to the discipline.

2.3 Performance

If it was possible to take every result presented by the authors of research papers by face value, it would be
fairly trivial to compare them and their performances. However, the fact is that it’s almost impossible to
compare the results from different papers in a meaningful way. There are a couple of different reasons for that.

Firstly, they almost always use their own custom problem settings. Whether they use a computer simulation,
or real data to test their algorithm’s/model’s performance, it is often done with a setting that is unique to
them. Unless tested in the same environments, a comparison thus doesn’t make much sense. Furthermore, the
research papers which use data collected from real vehicles driving on the road do not typically share these,
and the datasets are treated as confidential and proprietary information. As the datasets are also collected
independently of others, they are also collected under their own specific set of circumstances, and even the
features that are collected might vary depending on the exact source of the data.

Secondly, papers use different target values. The friction values they are estimating are, most of the time,
ranging from 0 to 1. However, if they are modelling it as a classification problem, rather than a regression
problem, they also need to bin the values into X number of classes. Sometimes it’s split into low/high friction,
sometimes low/medium/high, and sometimes they use the same classes, but with a different range for the
classes. Comparing results from these cases is thus quite hard as well.

Ultimately, the only feasible way of comparing the performance of models/algorithms developed in the
various research papers is to actually test them manually on the same dataset, using the same target values.
In practice, this turns out to be not that feasible either. The end result is that it’s hard to accurately decide
which methods are actually the best unless we try them all ourselves.
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2.4 Limitations

Neither of the approaches are perfect, and they all tend to struggle when the testing conditions change. The
most common limitation of the proposed RFE methodologies mentioned in the literature, is their narrow scope.
They often require very specific testing conditions and tend to struggle when these are not met. One such
example is the reliance on the tire having high excitation, like when you brake or accelerate [3]. Many methods
are simply not able to estimate the road friction under a constant vehicle speed. Naturally, there have been
several studies looking into alleviating this, with varying results [2].

RFE, and other vehicle safety functions, have always needed quality data to verify their accuracy, but the
data-driven approaches of ”modern” RFE solutions have also put an increasing requirement on the quantity
and coverage of the data. In fact, the lack of data can be seen in a lot of the RFE research that has been done,
as many of them barely have any real data to work with. Instead they often have to rely on simulation engines
to verify their research (e.g. [16]), which can be a bit problematic since those simulations are human-created
approximations of the real world.

How much data an ML model needs is dependent on many different factors, such as for example the
complexity and dimensionality of the data. However, while not all Machine Learning approaches need huge
datasets to perform well, there is a subset of these approaches, called Deep Learning, which seemingly can
never get enough data [21]. This can also be seen in Figure 2.5, by [22]. Since collecting data has a cost, one
will usually not collect data indefinitely. However, even if the quantity of the data initially seems to be enough,
the limiting factor will more likely be the coverage of the data [20]. A machine learning model will usually
only learn to predict what it has seen before, and a lack of coverage thus creates blind spots in the model’s
predictive capabilities.

Figure 2.5: Deep Learning model performance based on data size, compared to traditional Machine Learning
approaches. Reproduced with permission.1

Vehicles today are equipped with sensors that collect a lot of data. However, they are by default not
equipped to collect the high-quality road friction data that we want for this research. To do that, the vehicles
need to be equipped with certain extra fixings, e.g. a trailer. The more accurate measurement devices are also
very expensive and automatic collection of big amounts of friction data from consumers is thus not possible.
Instead, one can organise expeditions to collect the road friction data that one needs, which is what the Volvo
Cars Corporation did in northern Sweden in March, 2019. The data that was gathered there was then used in

1Reprinted from Expert Systems with Applications, Volume 141, Alyafeai, Z. and Ghouti, L., 2020. A fully-automated deep
learning pipeline for cervical cancer classification, Copyright 2020, with permission from Elsevier.
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this thesis.

2.5 Alternative Data Sources

It is obvious that researchers need to get their hands on some vehicle sensor data to achieve their goals, but it
often stops there. However, there are also other sources of data from third parties that could possibly enrich the
information that the vehicle sensor data provides. Many countries utilise so called Road Weather Information
Systems (RWIS), that collect various types of information about the roads and the environmental conditions
surrounding them. The Swedish Transport Administration (Trafikverket) is for example the institute who is
in charge of that in Sweden. Another source of data are Meteorological Services that can provide auxiliary
information in the form of general weather status and weather forecasts. One such provider in Sweden is the
Swedish Meteorological and Hydrological Institute (SMHI). Yet another possible data source, are third parties
that further process the data provided by the aforementioned sources. One such provider is a company called
V-Traffic, who based on the information provided by other actors and services, creates an estimate for the
current road conditions (e.g. snowy or icy roads).

Another, different data source that can be utilised are other cars. As has been mentioned earlier in this
section, there are already research papers that have utilised this in order to get a better grasp of the current
road conditions (e.g. [13]), and whether it’s slippery or not.

Using these alternative data sources puts some additional requirements on a practical prototype of a solution
utilising them, since the data is not originally accessible from within the vehicle. For the prototype to access
the information, it might for example require 4G connectivity. This is something that was not easily available
10 and 20 years ago, but which is far more reliable using today’s infrastructure.
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3 Theory

This chapter goes through some of the theoretical backgrounds that can be useful to understand the technical side
of the method that was used and the model that was developed in this thesis. Readers who are knowledgeable
about machine learning, in particular neural networks and machine learning in general, may skip this section.

3.1 Modelling a Machine Learning Problem

Machine Learning is largely a data-driven process. Rather than having the user figure things out, we want
to let the data teach the machine how to do things. However, there are some things we need to take into
consideration when we are doing this. It starts with the framing of our problem, and continues with how we
prepare the data so that the machine can make sense of it. This section will cover some of these steps.

3.1.1 Classification vs Regression Problems

Classification problems, in the context of machine learning, is when we try to predict the target class that a
certain input data belongs to. In these cases we have a predetermined and finite set of classes and the goal of
our ML model is to predict the correct class. Our target feature here is of the categorical type. In regression
problems, we try to predict the exact numerical value of the target. We don’t have a predetermined range of
values, so the target feature is a continuous value.

When the target feature is continuous it might feel natural to model the task as a regression problem.
However, regression problems are usually seen as a harder task than classification. To make it easier we can
thus, if it makes sense and can still help us answer the question we want answered with our model, bin the
continuous target feature into classes. Our simplified model can then be used to classify the target feature into
a smaller range of numerical values.

3.1.2 Supervised vs Unsupervised Learning

There are different ways how a machine learning algorithm can learn, but the most common ones are supervised
and unsupervised learning.

In supervised learning we train our algorithm with labeled data. That means that each data sample is
tagged with what it should be classified as, and that our algorithm can use this information to improve. This is
the most common type of machine learning, and the type that is applicable in this thesis.

In unsupervised learning we train our algorithm with unlabeled data. This means that our algorithm does
not know what is ”right” or ”wrong”, and has to figure this out all by itself. This type of learning can be quite
complex, but is often used for pattern recognition problems or when big amounts of labeled data is hard to
acquire.

3.1.3 Data

An ML model can only become as good as the data we input to it. The more data we have, the better, but
simply having a lot of data is not enough for an ML model to excel at its task. We need both a sufficient
quantity and quality of the data. We not only need our data to be accurate, but also that it should cover as
many of the possible real-world scenarios that our model might encounter in the future. Although the goal of
an ML model is to learn the underlying representation of the data so that it can generalise this to previously
unseen data, this is not an easy task. If the data it has to deal with is very different from the one it was trained
with, the model will have problems to accurately do the predictions. It is thus of very high interest to have a
dataset with good data coverage.

3.1.4 Formatting Data

For a Machine Learning model to make sense of the data, it first needs to convert every data feature into a
format that it can handle - numbers. Not all types of numbers are equally useful, and it is also dependent
on the context and range of each feature. Most sensor data that we handle is already in numerical format.
Non-numerical data is usually categorical, i.e. it has a finite set of values, and we need to transform it to
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make it easier to handle. One way of transforming the categorical data is to replace each possible value with a
number. However, categorical data does usually not have an ordinal relation between all of its possible values,
so we would introduce a misleading bias into the feature by doing so. In ML, what we usually want to do
instead is to one-hot encode the feature.

One-hot encoding a feature means that every possible value of that feature becomes a feature in itself,
which can only take on two different values; 0 or 1, i.e. not present or present. Thus, a feature X that has four
possible values would turn into four binary features, each taking on the value 0 or 1.

Scaling Data

Machine Learning algorithms sometimes have problems dealing with data whose feature ranges operate on
different orders of magnitude. To combat this we need to normalise the values to a common range of values.
This not only helps the performance of the algorithms, but also helps speed up the time it takes to train our
network [23]. There are multiple ways how to do this. Some of the common ones are min-max normalisation
(Equation 3.1) and Z-score normalisation/standardisation (Equation 3.2).

x′ =
x−min(x)

max(x)−min(x)
(3.1)

x′ =
x− x
σ

(3.2)

In the previously mentioned equations (Equation 3.1 and Equation 3.2), x is the feature value, x′ is the
new, scaled value, x is the average and σ is the standard deviation.

In min-max normalisation (Equation 3.1) we scale the values to the range [0, 1] (or a range of our choice, if
we can modify the equation slightly). This keeps the relative distance between values intact, i.e. the scale is
unchanged.

In Z-score standardisation (Equation 3.2), we change the mean to 0 and the standard deviation to 1. This
can change the relative distance between values, but is better at handling outliers.

3.1.5 Performance Metrics

In order to properly evaluate how well an ML model performs compared to others, we must put a numeric
value on its performance based on a common, standardised metric. There are many different metrics one can
use, and choosing the appropriate metric is not always an easy task. Each metric has its own strengths and
weaknesses at highlighting different aspects of the performance of a model, and the choice of metric is thus
heavily influenced by what aspect one finds to be the most important. This might also be influenced by the
dataset that is used to train and evaluate the model; an imbalanced dataset, where some types of classes or
values are over-represented, might produce drastically different results based on some metrics, compared to a
well-balanced dataset.

Depending on if the task at hand is a classification or regression problem, we have to use different metrics
to measure the performance of our model. Since this thesis treats the task as a classification problem, an
explanation of the different ways of evaluating these can be found below. Regression performance metrics are
thus not covered in this report. The metrics are also slightly different depending on if the task is a binary
classification problem, or a multi-class classification problem. Both of these are detailed below.

For Binary Classification

Perhaps the easiest way to quickly get a visual overview of the performance of a classification model, is to
create a so-called confusion matrix. A confusion matrix is a type of contingency table, where each variable
is a combination of the class the model predicted for a data sample, and the data sample’s actual class. An
example of how this looks like in the case of a binary classification task, can be seen in Table 3.1.

Based on this visualisation, it’s then easier to explain the various evaluation metrics used for classification
tasks. Some of the most commonly used metrics for classification problems are accuracy, recall, precision and
F1-score. Assuming that one is dealing with a binary classification task, they can formally be described as:

Accuracy =
TP + TN

TP + FP + FN + TN
(3.3)
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Table 3.1: Binary Confusion Matrix.
True Class

Positive Negative
Predicted

Class
Positive True Positive (TP) False Positive (FP)
Negative False Negative (FN) True Negative (TN)

Precision =
TP

TP + FP
(3.4)

Recall =
TP

TP + FN
(3.5)

F1 =
2 · precision · recall
precision+ recall

(3.6)

For Multi-Class Classification

For multi-class classification we can similarly build a confusion matrix as before in Table 3.1 for the binary
classification. However, here it is a bit harder to precisely define what True/False Positives/Negatives are, as
these would change depending on the class one is considering to be positive.

Accuracy is the perhaps most straightforward metric for multi-class classification. One simply has to divide
the number of correct predictions with the total number of predictions made. On the other hand, precision,
recall and F1-score become slightly more complex to compute.

To compute the precision, recall and F1-score for a multi-class classification problem, we start by computing
the respective metrics for each class, one at a time, using the same equations as before (see Equations 3.4, 3.5
and 3.6). An example of what can be considered True/False Positives/Negatives in the case of viewing class 2
as the ”positive” class, can be seen in Table 3.2. Once we have computed the metrics for each individual class,
we have to aggregate them somehow to get an overall metric score. This is usually done in one of two different
ways: by either taking an unweighted or weighted average.

Table 3.2: Simplified Confusion Matrix when using multiple classes, as seen from the perspective when class 2
is the ”positive” class. Fields that are irrelevant to the precision, recall and F1-score of class 2 are left out of
the matrix.

True Class
Class 1 Class 2 Class 3 Class 4

Predicted
Class

Class 1 True Negative (TN) False Negative (FN) True Negative (TN) True Negative (TN)
Class 2 False Positive (FP) True Positive (TP) False Positive (FP) False Positive (FP)
Class 3 True Negative (TN) False Negative (FN) True Negative (TN) True Negative (TN)
Class 4 True Negative (TN) False Negative (FN) True Negative (TN) True Negative (TN)

An unweighted (macro) average is very straightforward to compute. We simply aggregate the metrics for

the individual classes and divide it by the number of classes (e.g.
∑

precision of every class
# of classes ). However, in cases

where one deals with an imbalanced dataset (i.e. where some classes are a lot more frequent than others), it
might make more sense to look at a weighted average. Here we multiply each metric with the support (i.e.
the total number of occurrences of a class in the test set), aggregate it, and divide it by the total number of

samples in the dataset (e.g.
∑

precision of every class∗support∑
support ).

3.2 Neural Networks (NN)

A Neural Network (NN) is a machine learning algorithm that is inspired by how the human brain works and
learns new information. It consists of a set of interconnected nodes, so-called neurons, with the ability to pass
on information, or a signal, between each other. When a neuron receives a signal from another neuron, it will
process the content and (potentially) pass it on to some of the other neurons that it is connected to. While
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doing so, it may also change the signal. From a simplified point of view, learning happens when the network of
neurons starts to learn how to correlate the input signals with the respective output signals.

3.2.1 Basic building blocks

The neuron is the core unit of a NN (see Figure 3.1). It receives a number of input signals, signified by edges in
the figure, and transforms these signals before passing on a signal of its own to other connected neurons. Each
input signal has a weight attached to it, which influences what the neuron will pass on. In ML, these signals
are usually all numbers, and the neuron transforms these numbers with a non-linear function of its choice, a
so-called activation function (a(y)). Some common activation functions are sigmoid, rectified linear units and
tanh. A single neuron learns by altering the weights attached to its input signals.

Figure 3.1: A neuron in a neural network.

The most common and simple way of modelling a NN, is to model it as a feed-forward Neural Network.
This is a special type of network in which the signals only move in one direction, forward, so that the nodes do
not contain a cycle. This lets us model the network in layers (see Figure 3.2).

Figure 3.2: Example of layers in a neural network.

14



Each feed-forward NN consists of at least one input layer, and one output layer. In between these there can
be a variable amount of hidden layers. Per definition, a NN with at least two hidden layers is also known as a
deep NN. This is not a very deep NN in practice, and there exist models that use dozens, or even hundreds, of
hidden layers. These type of networks are also known as multi-layer perceptrons (MLP).

3.2.2 How a NN learns

The core principle for how a NN learns is by trying to minimise a loss function. When training our network, we
pass a data sample through our network and receive an output in our output layer. We then compare this
output to what we wanted our network to produce to find our model’s error (also known as the loss). By
stepping backwards through our network from here, we can calculate the derivative of the error (the gradient)
in respect to every weight in our network. This is done with a method called backpropagation, which is an
effective system for how to calculate gradients in directed graphs. By doing so, we can adjust the weights by a
small margin multiplied by a learning rate, to reduce the error/loss for next time. Doing this once for every
data sample is called an epoch.

When training a NN, we want to keep training until a satisfactory performance has been achieved. Because
of that we do not usually stop training after 1 epoch has ended, but rather when the performance of our model
is going down. After every epoch we test our model on a validation set, and if we see that the performance is
going down compared to previous epochs, we might want to stop our training.

3.2.3 Hyperparameters

A NN has many parameters that will influence how well it performs. It is important to differentiate between
normal parameters and hyperparameters. Hyperparameters are settings that we adjust before we train our
model, such as for example the number of neurons and layers our model will have, while the ”normal” parameters
are things like our model’s weight, which will be tuned during training. What we can do to help our model
improve is thus how to tune the hyperparameters.

Number of Layers & Neurons

The most obvious thing we can tune is directly related to the architecture of our NN, and more specifically, our
hidden layers. The number of neurons in the input layer is fixed to the number of features of our input data,
and the number of neurons in the output layer is also fixed, depending on the nature of our model. However,
we can adjust the number of hidden layers and neurons in them freely. Ideally, we want enough hidden layers
and neurons so that our network can learn the underlying representation of the data, but not too many so that
we lose our ability to generalise our performance to other datasets.

Learning Rate

The learning rate adjusts by how much we will update our weights each time. A larger learning rate thus means
bigger changes to the model at each step. The learning rate should be neither too big, nor too small. Having
a learning rate that is too large will need less training epochs, but it might also cause the network to find a
suboptimal local minima very fast. On the other hand, a learning rate that is too small will take a long time to
converge and will need more training epochs, but it might also get stuck in local optimas where it can’t get out.

Activation Function

As mentioned before, there exist multiple activation functions such as for example sigmoid, rectified linear units
(ReLU) and leaky ReLU. They are defined as follows:

sigmoid −→ f(x) = σ(x) =
1

1 + e−x
(3.7)

ReLU −→ f(x) =

{
0 for x ≤ 0
x for x > 0

(3.8)

Leaky ReLU −→ f(x) =

{
αx for x < 0
x for x ≥ 0

(3.9)
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Another activation function that is of interest in this thesis is the softmax activation function (see Equation
3.10). It is often used as the activation function in the output layer when dealing with a classification problem.
It essentially takes the output values of the output layer and transforms them into a probability value for each
class, so that the probabilities all add up to 1.

softmax −→ f(x) = S(x)j =
ezj∑K
k=1 e

zk
(3.10)

Dropout

Dropout is a technique where we, during training, randomly drop a number of neurons from our network. This
regularisation method has shown to be very successful at reducing overfitting; a common problem in machine
learning tasks. We can tweak the effect of this method by altering the dropout value ([0-1]), which signifies
what percentage of neurons we want to drop in a layer. More information about Dropout can be found in the
original paper by Srivastava et al. [24].

Epochs

The number of epochs signifies how many times we pass our training data through our network for training.

Batch Size

When we are updating our model’s weights after every data sample that we show it during training, it is called
stochastic gradient descent. However, we don’t have to update the model weights that often. We can also wait
with updating the model weights until a certain amount of data samples (a batch) have been passed through
our network. Then we calculate the loss over the entire batch, and adjust the weights accordingly. When
the batch is as big as the entire training set, we call it batch gradient descent. If it is smaller, then we call
it mini-batch gradient descent. Batch gradient descent is computationally more efficient, but is also slower,
especially for big datasets. It is thus more common to use mini-batch gradient descent as a middle-ground
between the other two.

3.2.4 Practical considerations

When training our NN, there are a few practical things we need to take into consideration. They relate to the
training/validation/test-sets and how to search for the best hyperparameters.

Train/Validation/Test-split

When training a NN we split the dataset into three distinct sets; a training set, a validation set and a test set.

The training set is the data we feed to our model so that it can learn the underlying representation of the
data. In other words, the training set is used to fine-tune the weights of our network. This is usually the
biggest set.

The validation set is used to prevent our model from overfitting. After each training run, we validate our
model against the validation set to verify that our model’s performance is going in the right direction. If our
model starts doing worse on the validation set than before, we have most likely overfit on our training data.
This means that our model has learned more of the peculiarities of the training data, rather than the true
underlying representation that we want to model.

The test set is the data we evaluate our model on, and it consists of data that the model has not been
trained on, just like the validation set. For each sample in the test set, we let our model make a prediction,
and then we evaluate how that went.

Rather than having one specific training and validation set (which might have some bias), it is also possible
to utilise a process called k -fold cross-validation (see Figure 3.3). In cross-validation we start by creating a
slightly bigger training set, which we then separate into k (equally big) parts, so-called ’folds’. In each training
run, one fold is withheld and used as a validation set, while the remaining folds are used for training the model.
Afterwards, the performance is evaluated on the test set. This process is repeated k times, upon which the
average performance across the k folds is calculated.
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Figure 3.3: Visualisation of k-fold cross-validation. Adapted from a Figure by Ethen Liu [25].

Searching for the best Hyperparameters

Every Neural Network is different, and the underlying data that it is trying to represent is always unique for
different problem settings. Hyperparameters that work well for one specific type of problem and/or dataset is
not guaranteed to also perform well on others. There simply does not exist one unique set of hyperparameters
that will always perform best. It is thus of importance to always tweak the hyperparameters of the NN for the
specific problem one is trying to solve. It is possible to somewhat use ones intuition to estimate the range of
certain hyperparameters, but not even experienced NN users are able to determine exactly the right settings
beforehand.

Tweaking the hyperparameters of a neural network thus means that we train and evaluate a model using
many different combinations of hyperparameter values, to find which combination works best. There are
different methods of how to search for the best hyperparameters, but two common ones are grid search and
random search.

In grid search we specify for each hyperparameter which exact values we want to test. We then train a
model with every possible combination of hyperparameters. The number of simulations we have to do with
grid search thus increases exponentially with the number of hyperparameters we want to test.

In random search, we can also specify for each hyperparameter which exact values we want to try with it.
However, we can also specify a range of values. When running a simulation, our model will then randomly
sample a hyperparameter value from the given range, using a specified distribution, e.g. uniform distribution if
every value in the range should be equally likely. This allows us to test a wider variety of unique hyperparameter
values, in fewer simulations. In cases where we want to test a wider range of hyperparameter combinations, it
might thus be better to use random search when searching for the best set of hyperparameters.
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4 Method

This chapter begins by detailing the datasets that were used in this thesis and how they were processed.
Afterwards, an analysis of the data is presented, and the chapter concludes by detailing how the model was
trained, tweaked and evaluated.

4.1 Data

The data used in this thesis were taken from three sources; Volvo Cars Corporation (VCC), the Swedish
Meteorological and Hydrologist Institute (SMHI) and the Swedish Transport Administration (Trafikverket).
The core data from VCC contained vehicle sensor data, while the data from SMHI and Trafikverket was treated
as auxiliary road weather information.

4.1.1 Data from VCC

The data by VCC used in this thesis was collected during an expedition in northern Sweden, between the 11th
and 14th of March, 2019. Data was collected during four days, but due to some complications, the data from
the first day could not be used for this project. Data was collected both from private and public roads. Data
was collected for roughly 8 hours each day, except for the 4th (and last) day where data was collected during
less than 3 hours. Thus there are far fewer data samples from this day, which can also be seen in Table 4.1.
The data from VCC consists of 90 features, which can all be seen in Appendix A.

Table 4.1: The VCC dataset used in this thesis. Each sample consists of measurements from 90 different
features, such as for example Steering wheel angle, wheel speed, lateral and longitudinal forces on the wheels
etc. Full list in Appendix A.

Day Data Samples
2 2.1M
3 1.8M
4 0.6M

Total 4.5M

The main feature of interest in this thesis is naturally the measured road friction. The dataset provided
by VCC contains two measured friction values, ’Friction 1’ and ’Friction 2’, measured on the left and right
side of the vehicle. Either one can be used as the target feature, or as a combination of some sorts (e.g.
min/max/average), but in this thesis, we have opted to focus on ’Friction 1’. Henceforth, when we are referring
to the friction value, we are thus referring to ’Friction 1’.

4.1.2 Weather Data from SMHI

SMHI stands for Sveriges meteorologiska och hydrologiska institut, and it is a public Swedish agency collecting
weather-related data and doing weather forecasts, among other things. SMHI has weather stations all around
the country, collecting data such as Air Temperature, Air Humidity, Air Pressure, Precipitation, Wind and Sun
Hours (see Appendix B). Through their API, it was possible to fetch the historical weather observations that
were collected during the time of the expedition from nearby weather stations (see Figure 4.2).

The data from SMHI was supposedly collected once per hour for the most relevant features. However, there
were some anomalies and several gaps in the data of many stations. In those cases, the missing data points were
filled using the latest known values from the respective stations. This also aligns with what we would have to
do if our system was already live and working, and a weather station stopped sending new measurement data.

4.1.3 Road Weather Data from Trafikverket

Trafikverket is the Swedish Transport Administration. Trafikverket’s responsibilities lie, among other things, in
”building, operating and maintaining public roads and railways”, and all procedures related to driving licenses
(in Sweden). As a part of that duty, they collect road weather data from their own weather stations all around
the country. They enable access to this data through a service called VVIS (Vägväderinformationssystem).
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Figure 4.1: Map of where the data was collected. Red = Day 2, Green = Day 3, Yellow = Day 4.

Some of the data that is collected by Trafikverket is similar to the one provided by SMHI, but it also provides
access to some more exclusive features, such as the road surface temperature (measured 2 mm above the road
surface). The data from VVIS was acquired by an email request to Trafikverket. The stations that are closest
to where the expedition took place can be seen in Figure 4.3. The measurements from Trafikverket’s weather
stations are logged once every 30 minutes, and the full set of features can be seen in Appendix C.

4.2 Data Analysis and Processing

In this section, we show how the data we had available looked like, and what steps we took to process them.

4.2.1 Data Distribution Analysis

In Figure 4.4 we can see how the friction value changes over small periods of time, and in Figure 4.5 we can
see the friction distribution of the data at large. We can easily notice several things. Although the range of
the friction value would normally go from 0 to 1, we can observe that the VCC data does not contain many
measurements of road friction values higher than 0.5. This is because the measurement method that was used
to collect the data was limited to friction values of at most 0.5, so a value of 0.5 could, in theory, represent any
value in the range [0.5 - 1]. There are some outliers where higher friction values were recorded, but these were
corrected to 0.5 for the sake of consistency during the latter parts of the project.

We can observe that there exist times when the friction is stable at 0.5, but that the measured friction
values oscillate a lot. From Figure 4.5, we can also see that there is a huge spike at around the 0.5-mark,
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Figure 4.2: Map of SMHI weather stations in the vicinity of where the expedition took place.

Figure 4.3: Map of Trafikverket’s road sensor stations in the vicinity of where the expedition took place.

signifying that these higher values are a lot more common in our dataset than low friction values. This becomes
a lot more obvious once we look at Figure 4.6, which showcases the same friction distribution, but with the
friction binned into 6 classes; [0.0 - 0.1), [0.1 - 0.2) .. [0.4 - 0.5) and [0.5+]. Overall, slightly more than 67% of
all samples show a friction value of 0.5. It is worth noting though that this differs between the days. This
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Figure 4.4: Friction distribution of the data over small periods of time. The red line showcases the average
friction over the time periods.

Figure 4.5: Friction distribution of the data.

fraction is over 80% for day 3, and only 41% on the last day, which, as we previously mentioned, also has the
least amount of data samples. We will thus assume that the road conditions on the last day were significantly
different from the other two days. This is also further supported by the weather data (see Appendix G), from
which we can see that day 2 and 3 did not have snow, but that day 4 did.

In Appendix F and G we can find box plots with the distributions of all the VCC and weather features.
We can observe that there are many features that only take on a single value. Similarly, there are also several
binary features that almost exhibit the same characteristics, as one of the values appears in more than 99% of
the cases. These are features that are very unlikely to help our model improve its performance significantly.

Feature Correlation Analysis

A simple Pearson correlation analysis of the VCC features can be seen in Figure H.1 in Appendix H. We can
see several clusters in the figure with intense colours, signifying groups of features with a stronger correlation.
In some cases, the correlations are fairly logical, for example when certain features are being measured at each
one of the vehicle’s wheels.
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Figure 4.6: Friction distribution of the data, modelled as a classification problem and divided into 6 classes;
[0.0 - 0.1), [0.1 - 0.2) .. [0.4 - 0.5) and [0.5+].

4.2.2 Feature Selection

A previous thesis by Chen [18] used a similar dataset from VCC as in this thesis. They selected a set of features
based on the features’ correlation and based on expert knowledge from the field of vehicle dynamics. After
performing a correlation analysis on the dataset used in this thesis (see Section 4.2.1), as well as on the features
used by Chen (see Figure H.2 in Appendix H), we decided to use the same in-vehicle features as proposed by
Chen. The reasoning was two-fold: (1) it would be easier to compare the models in the future and (2) the
selected features had comparably low correlations between each other.

The selection of weather-related features was made in a similar manner (based on a correlation analysis),
and the outcomes of this are shown in Section 5.1. We settled on this specific way of selecting the features
due to its simplicity, but there certainly exist more sophisticated methods. One such example would be to
perform a Fast Correlation Based Feature Selection (FCBF), like Chen [18]. Another alternative is to perform a
principal component analysis (PCA) to project the features into a lower-dimensional system. The drawback of
the latter, however, is that the resulting projection is hard to interpret for a human, so we ultimately decided
against doing so.

4.3 Experimental Setup

The core idea to assess whether road weather information has any added value for our RFE model, is to train
three identical NN models that each make use of a different set of features: (1) one that is only using VCC
features, (2) one that is only using road weather features, and (3) one that uses both VCC and road weather
features combined. We also try this with many different hyperparameter settings, making sure that each NN
model has a chance to find a suitable setting of hyperparameters that makes comparison fair. In order to do
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this, we also first select a subset of weather-related features, as explained in Section 4.2.2.

Originally the plan was to test different model architectures on this task, such as a Random Forest, Neural
Network and Long Short-Term Memory (LSTM) Network. However, our initial tests on the matter indicated
that the proposed Neural Network slightly outperformed the other two, so we chose to focus on using a Neural
Network in this project. The Neural Network architecture is furthermore a choice that several other research
papers in the domain also decided upon (eg [14][15][16][26][17]). Although we made this decision, further
investigating the usage of an LSTM network could be promising. On the other hand, the Random Forest
performed quite bad in our initial test, to the extent that we concluded it unnecessary to further investigate
the usage of it in this thesis.

4.3.1 Model Selection and Hyperparameter Optimisation

We used a simple, fully-connected NN with 3-4 hidden layers and an optional Dropout layer. An example of
this architecture can be seen in Figure 4.7. The input layer represents the input features, and the number of
neurons in this layer thus varies depending on the number of input features that were used. Likewise, the
hidden layers all consist of n neurons, depending on the current hyperparameter settings. Before being sent to
the input layer, the input features were also scaled with Z-score standardisation (see Equation 3.2 on page 12).
Lastly, the output layer consists of 6 neurons with a softmax activation function, one for every class of the
binned target feature. Dropout may be applied, depending on the current hyperparameter setting, between the
2nd and 3rd hidden layer.

Figure 4.7: Model architecture. The input layer consists of as many neurons as there are input features, while
the hidden layers have a different number of neurons, depending on the hyperparameter settings. The final
output layer uses a softmax activation function.

The range of hyperparameters that were tested can be seen in Table 4.3.1. We followed a random search
pattern, so not all possible hyperparameter combinations were tested. This would simply be too time-consuming.
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Table 4.2: The range of tested hyperparameters, using a random search pattern.
Hyperparameter Values Sampling Distribution
Neurons [32 - 512] Uniform (Integer)
Number of Hidden Layers [3, 4] -
Number of Layers with Dropout [0, 1] -
Dropout value [0.0 - 0.5] Uniform
Activation Function [’sigmoid’, ’relu’, ’leaky relu’] -
Leaky ReLu alpha [0.0 - 0.5] Uniform
Learning Rate [0.0008 - 0.01] Uniform
Epochs [6, 8, 10, 12] -
Batch Size [1024, 2048, 4096] -

4.3.2 Train/Validation/Test-split

The data from day 2 and day 3 was used for the training set, while the data from day 4 was used for testing. A
4-fold cross-validation split was used to withhold a portion of the training set when training the model.

4.3.3 Evaluation

The classification models were mainly evaluated and optimized using the accuracy over all classes (see Equation
3.3 on Page 12) However, precision, recall and f1-scores were also logged, and were all used to better understand
the real-world performance of the models. In particular, we paid attention to the classification report our model
generated to see which classes it was able to predict well, and which ones it did not.
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5 Results & Discussion

This chapter consists of two parts. First, we explain how we selected the most relevant weather features. We
then present the results related to the question of what added value the road weather information brings, and
how well our model performs.

5.1 Relevant road weather information features

We started by training both an RF and NN model on the dataset, utilising the previously selected features of
the VCC dataset, as well as all 15 of the weather-related features. We trained these two models with a basic
set of hyperparameters, but even after tweaking these hyperparameters for a bit, we were only able to beat
the baseline performance by less than a single percentage point. Figuring that there was something wrong
with some of the weather features, we proceeded to take a closer look and to make an attempt at reducing the
dimensionality, i.e. by only keeping the relevant weather features.

Figure 5.1 shows the correlation between all weather features and the road friction in descending order,
with the features that have the highest correlation with the road friction first. The feature with the highest
linear correlation was ”Vindmax m/s”, with a Pearson coefficient of 0.26, and the feature with the least linear
correlation was ”TYta ◦C” (Ground Temperature, measured 2mm above the surface) with a Pearson coefficient
of -0.00059. This contradicts one of our initial intuitions that the ground temperature would have a high
correlation with the road friction.

Following this, we manually selected a set of the weather features, while trying to avoid redundant ones,
i.e. features that are highly correlated with each other. Doing this we selected ”Vindmax m/s”, ”TYta ◦C”,
”TLuft ◦C”, ”Snö mm” and ”Global Irradians (svenska stationer)” as our initial weather features and tried to
repeat the experiment from before. Doing so, we were now not even able to beat the baseline performance of
41.8% accuracy. Despite further switching one or two weather features, the performance barely improved, only
sometimes beating the baseline, and only by a fraction of a percentage point (<1%).

We then proceeded with a slightly more practical and hands-on approach of testing a much wider variety of
weather features - by simply testing many different weather feature combinations. Doing a full, exhaustive
search with all possible weather feature combinations is not feasible, but the underlying idea is that even just
trying a subset of combinations could give us better clues as to which weather features are of importance,
and which ones are not. We thus repeated the experiments from before, this time using only the NN, and
selecting a different combination of weather features each time, as well as a different number of them. In total,
we performed 716 simulations with these settings.

By analysing the weather features that were part of the models that performed the best with this approach,
we were able to select a more promising set of features, consisting of ”Lufttemperatur”, ”Byvind”, ”TYta - Daggp
◦C”, ”Lufu %”, ”Solskenstid”, ”Daggpunktstemperatur” and ”Relativ Luftfuktighet”. What’s noteworthy with
this set of features is that many of them had a high correlation between each other, as can be seen in Figure
5.2. Although this set of features showed promising results for the dataset used in this thesis, it is uncertain
how the same features would fare when using a completely different dataset. It is not that unlikely to imagine
that a slightly different set of features might perform better when used with a different dataset. An overview of
each weather features’ impact on the model’s performance can be seen in Figure D.1 in Appendix D.

5.2 Added value of road weather information

Given the settings proposed in Chapter 4, a neural network with a fixed architecture was trained on the given
data with the selected features. The model was tested using many different combinations of hyperparameters,
and every combination of hyperparameters was tested for each of the three feature sets; once using only the
features from VCC, once using only the features from the weather, and once using all the features (VCC and
weather combined). The results of those tests can be seen in Figure 5.3.

As can be seen in Table 5.1, the best performing model used the combined features from VCC and the
weather. Its accuracy of 49.03% was 3.76 percentage points better than the best performing model when
just using the VCC features. This represents an 8.3% improvement in terms of correctly classified samples.
When taking all the 108 hyperparameter combinations into account, the average performance was significantly
lower (4.93 percentage points) than our best performing set of hyperparameters. This shows that the right
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Figure 5.1: Correlation Matrix of the road weather features and the road friction variables, using the Pearson
correlation coefficient. A value of 1 (blue) means a completely positive linear relationship between two features,
while -1 (red) indicates a completely negative linear relationship. A value of 0 (white) signifies that no linear
relationship exists at all.

hyperparameters also have a significant impact on the final result of the trained model. The hyperparameters
of the best performing model can be found in Table 5.2.

Table 5.1: The model performance, using 108 different combinations of hyperparameters. The baseline is the
performance we would get if we would always predict the majority-class on the specific dataset.

All features Only VCC features Only weather features Baseline
Best accuracy 49.03% 45.27% 41.82% 41.82%

Average accuracy 44.10% 42.82% 41.77% -
Average accuracy st dev 1.65% 0.87% 0.60% -

Validation set accuracy
of best-performing model

81.6% 76.4% 73.7% 71.5%

As can be seen in Table 5.3, the best performing model was fairly good at estimating the road friction
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Figure 5.2: Correlation Matrix of the selected road weather features and the road friction variables, using the
Pearson correlation coefficient. A value of 1 (blue) means a completely positive linear relationship between two
features, while -1 (red) indicates a completely negative linear relationship. A value of 0 (white) signifies that
no linear relationship exists at all.

when the road friction was 0.500 and between 0.200 - 0.299. This can also be seen from the model’s confusion
matrix, which can be found in Appendix E. However, it’s important to note that the model often predicted a
friction value of 0.500, which can be understood based on the high recall for that class. This can also easily
be explained by the fact that friction values of 0.500 made up over 67% of the training data. Meanwhile, the
performance for lower friction bins was a lot worse and it is clear that the model’s estimation capabilities in
the lower friction ranges still could improve a lot.

5.2.1 Limitations

It was already pointed out in the previous section that our best performing model predicted the friction class
of 0.500 in many cases when it should not, and that it did improve the performance. However, this gives rise to
the question of where the model’s improved performance due to the added weather data is actually coming
from. We can get a glimpse of this by looking at the classification report of the best performing model that
was using only the VCC features in Table 5.4. While the precision values are roughly on similar levels, it’s
evident that the recall values are lower across the board, apart from the 0.500 class that went from 0.958 to
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Figure 5.3: Results from the the initial tests, showcasing: (a) the accuracy distribution; (b) the F1-score
distribution; and, (c) how accuracy compares to F1-score;

0.99. This means that we correctly predict 99% of all the friction values that were supposed to be in the 0.500
class. Thus, it looks as if we can draw the conclusion that the added weather features help our model to better
generalise by not predicting a friction class of 0.500 as often.

However, to further investigate where the added value really comes in, we chose to also test our model’s
predictive capabilities when dealing with binary target values, as well as target values when not taking the
friction class of 0.500 into consideration.

Binary classification

The results of the same test being done as a binary classification task can be seen in Figure 5.4. As can be seen
in Table 5.5, the best performing model here also used the combined features from VCC and the weather data.
Its accuracy of 75.97% was 21.5 percentage points better than the best performing model when just using the
VCC features. This represents a 39.5% improvement in terms of correctly classified samples. However, it’s
worth noting here that the majority class of the test-set when modelling as a binary classification problem
is not 0.500 anymore (but still is in the training set). By always predicting that the friction is not 0.500 one
should thus be able to achieve a 58.8% accuracy. That the model using only VCC features is not able to beat
this performance, while using all features can, further proves that the added weather features are indeed useful
to better predict the friction in the lower ranges.

As can be seen in Table 5.6, the best performing model was fairly good at estimating the road friction
when the road friction was divided into only two classes. Comparing this to the classification report of the
best performing model using only the VCC features in Table 5.7, we can based on the recall values again see
that our model without the added weather tries to predict a friction value of 0.500 way more often than it
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Table 5.2: The hyperparameters of the best performing model.
Hyperparameter Values
Neurons 128
Number of Hidden Layers 4
Number of Layers with Dropout 0
Dropout value Not applicable.
Activation Function Leaky ReLU
Leaky ReLu alpha 0.4
Learning Rate 0.002
Epochs 10
Batch Size 4096

Table 5.3: Classification report of the best performing model. An alternative representation of this data can be
found in the form of a confusion matrix in Appendix E.

precision recall F1-score support
[0.0 - 0.1) 0.000 0.000 0.000 48
[0.1 - 0.2) 0.360 0.105 0.145 8,056
[0.2 - 0.3) 0.538 0.190 0.258 55,597
[0.3 - 0.4) 0.390 0.167 0.165 29,919
[0.4 - 0.5) 0.048 0.003 0.005 11,718

[0.5+] 0.525 0.958 0.675 75,729

accuracy 0.49 181,067
macro avg 0.31 0.24 0.21 181,067

weighted avg 0.08 0.08 0.07 181,067

Table 5.4: Classification report of the best performing model, using only the VCC features.
precision recall F1-score support

[0.0 - 0.1) 0.00 0.00 0.00 48
[0.1 - 0.2) 0.29 0.08 0.12 8,056
[0.2 - 0.3) 0.53 0.10 0.16 55,597
[0.3 - 0.4) 0.39 0.02 0.04 29,919
[0.4 - 0.5) 0.05 0.01 0.02 11,718

[0.5+] 0.45 0.99 0.63 75,729

accuracy 0.45 181,067
macro avg 0.28 0.20 0.16 181,067

weighted avg 0.07 0.08 0.05 181,067

Table 5.5: The model performance for binary classification, using 99 different combinations of hyperparameters.
The baseline is the performance we would get if we would always predict the majority-class on the specific
dataset.

All features Only VCC features Only weather features Baseline
Best accuracy 75.97% 54.47% 44.77% 58.2%

Average accuracy 55.77% 50.09% 41.80% -
Average accuracy st dev 7.26% 1.51% 0.62% -

Validation set accuracy
of best-performing model

88.8% 83.4% 83.9% 71.5%

should. This again proves that the added weather features provide us with a significant added value in terms of
differentiating low from high friction values.
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Figure 5.4: Results from the test on binary classification, showcasing: (a) the accuracy distribution; (b) the
F1-score distribution; and, (c) how accuracy compares to F1-score;

Table 5.6: Classification report of the best performing binary classification model. An alternative representation
of this data can be found in the form of a confusion matrix in Appendix E.

precision recall F1-score support
[0.0 - 0.5) 0.83 0.75 0.78 105,338

[0.5+] 0.70 0.78 0.73 75,729

accuracy 0.76 181,067
macro avg 0.76 0.76 0.75 181,067

weighted avg 0.39 0.38 0.38 181,067

Table 5.7: Classification report of the best performing binary classification model, when only using VCC
features.

precision recall F1-score support
[0.0 - 0.5) 0.95 0.26 0.37 105,338

[0.5+] 0.49 0.97 0.65 75,729

accuracy 0.56 181,067
macro avg 0.72 0.61 0.51 181,067

weighted avg 0.38 0.28 0.24 181,067
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Using only low friction values

Replicating the same experiments, but using only friction values below 0.500 (and above 0.100, as values below
0.100 almost do not appear at all) gives the results as shown in Figure 5.5. As can be seen in Table 5.8, the
best performing model here actually only used the weather features. What’s additionally noteworthy is that
the hyperparameter combination that produced this result is the only one among 514 that barely managed to
beat the baseline performance of always predicting the [0.2 - 0.3) class, which would result in a 52.8% overall
accuracy. So while this was indeed the model with the highest performance in terms of accuracy, it can be
argued that the model didn’t actually learn much as it always predicted the same value (see Table 5.9). At the
same time, the best model using VCC features had a significantly lower accuracy (46.74%), but a slightly higher
F1-score (see Table 5.10), signifying that its performance is slightly better as an average across the board.

Table 5.8: The model performance when not using friction values of 0.500, using 514 different combinations of
hyperparameters. The baseline is the performance we would get if we would always predict the majority-class
on the specific dataset.

All features Only VCC features Only weather features Baseline
Best accuracy 52.73% 46.74% 52.89% 52.8%

Average accuracy 26.31% 40.80% 25.43% -
Average accuracy st dev 10.08% 1.95% 12.04% -

Validation set accuracy
of best-performing model

63.8% 57.9% 56.1% 46.1%

Table 5.9: Classification report of the best performing model, when not using friction values of 0.500.
precision recall F1-score support

[0.1 - 0.2) 0.04 0.00 0.00 8,040
[0.2 - 0.3) 0.53 0.99 0.69 55,597
[0.3 - 0.4) 0.51 0.01 0.01 29,919
[0.4 - 0.5) 0.09 0.00 0.00 11,718

accuracy 0.53 105,274
macro avg 0.27 0.25 0.18 105,274

weighted avg 0.11 0.13 0.09 105,274

Table 5.10: Classification report of the best performing model, when not using friction values of 0.500 and
using only the VCC features.

precision recall F1-score support
[0.1 - 0.2) 0.09 0.10 0.06 8,040
[0.2 - 0.3) 0.52 0.83 0.64 55,597
[0.3 - 0.4) 0.47 0.05 0.09 29,919
[0.4 - 0.5) 0.06 0.04 0.05 11,718

accuracy 0.47 105,274
macro avg 0.28 0.26 0.21 105,274

weighted avg 0.11 0.12 0.09 105,274

5.2.2 Discussion

When comparing the performance of our model against that of other research papers’ (see Table 2.3 and 2.2
in Chapter 2, pages 7 and 8), it is apparent that our final performance is slightly unsatisfactory. Most other
papers report performances of above 80%, whereas ours was only able to achieve 76% in the binary classification
case (the <50% performance of our initial model is harder to compare with, since we chose to bin our target
feature into six classes, rather than two or three like most other papers). This lack of performance can likely be
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Figure 5.5: Results from the test on classification, excluding friction values of 0.5, showcasing: (a) the accuracy
distribution; (b) the F1-score distribution; and, (c) how accuracy compares to F1-score;

associated with our specific dataset, and how we split it up into a training and test set.
Looking back at Tables 5.1, 5.5 and 5.8, we can observe that our models’ accuracies on the validating sets

are all much higher than on our test sets. Although this is expected due to their different distributions (the
test set had a baseline of 41.8%, compared to 71.5% on the validation set), it is clear that choosing a different
split would have produced a model with a much higher performance on paper. Doing so would allow us to
properly compete with the performances of others. However, this would not be a true sign of a better model, as
it would be unlikely for our model to have better learnt to generalise this performance unto completely new
data. Rather, it would have only learnt to better predict the data that was used in this thesis. As the ultimate
goal of our RFE model is to be able to estimate the road friction on the roads in real-life, it would thus be
misleading to change the training and test set splits in order to reach a better performance (on paper). It is
obvious that the mismatch in distributions between the training and validation set, compared to the test set, is
one of many potential sources for the lacking performance. It would perhaps have been possible to explore
certain strategies to deal with this, such as over- or under-sampling certain classes, but this is not something
that was properly addressed in this thesis. Hence, this could be something that is worth addressing in the
future.

The volatility of the friction data is another potential source for the lacking performance. As can be seen in
Figure 4.4 (page 21 in Chapter 4), the recorded friction values jump a lot between higher and lower friction
values, appearing to be fairly random. Although the friction measurements are deemed to be very accurate, it
would be interesting to smoothen the measured friction values, for example, by passing them through a Kalman
filter.

32



6 Conclusion and Future Work

This chapter highlights the main conclusions, some ethical considerations and gives some insights into what
could be interesting to investigate in the future.

6.1 Conclusion

It is shown that adding road weather information can indeed have a positive influence on the road friction
estimation. When modelled as supervised classification problem with 6 classes ([0.0 - 0.1), [0.1 - 0.2) .. [0.5+]),
training a model using the selected VCC features together with 7 of the weather features, compared to only
training the model with the selected VCC features, resulted in an average improvement per model/set of
hyperparameters of 1.28 percentage points (or 3.0% improvement in terms of correctly classified samples). The
best performing model using the specific model configuration used in this thesis was even 3.76 percentage
points better than the best performing model that only used VCC features (49.03% compared to 45.27% - an
8.3% improvement in terms of correctly classified samples).

When modelling the problem as a binary classification task ([0 - 0.5) and [0.5+]), we are able to achieve
even bigger improvements when using the same setup. Here, the added weather features are able to improve
our model’s performance from 54.47% to 75.97% - a 21.5 percentage points increase (or 39.5% improvement in
terms of correctly classified samples).

Taking into account our results from testing different binning configurations, we can thus show that the
road weather information mainly helps to distinguish high from low friction, and vice-versa. However, it did
not help the model very much to distinguish between different levels of low friction values.

We also conclude that the chosen training and test split used in this thesis results in a lower final performance
compared to what other research papers achieved. While choosing a different split could help improve our
performance on paper, it is unknown whether this would actually result in an improved real-life performance
on the road.

6.2 Ethical considerations

There are no obvious ethical dilemmas with the simple act of trying to improve the road friction estimation
performance of vehicles. In the ideal case, it should help the driver to be more careful in slippery road conditions
and improve the vehicle’s stability and overall performance under these circumstances. However, depending on
how one implements it, there are certain caveats.

While one might want to believe that an ML-powered solution will perform better, which it often does,
it also comes at a price. Usually, this is shown in cases where the model encounters something it has not
seen before and thus hasn’t had the opportunity to learn about. Unlike pure mathematical models, or other
rule-based methods, an ML model’s performance can be quite unpredictable under these circumstances. They
also can’t be ”fixed” as easily, by manually adding a rule to the algorithm. The consequences that a bad
estimation can have in such a situation depends mostly on how the model’s estimations are used in the vehicle.

Let us assume the road friction estimations are used to give the driver a warning when they encounter
slippery road conditions. If the estimations are often wrong, it will decrease the trust the driver has in the
system, thus making it more likely for them to turn off the feature (if possible), or to simply disregard the
warnings. Although one could argue that we’re then back in the same situation as before we started giving
out warnings, this interaction with the system could potentially have a slight influence on the driver’s state of
mind, as we tend to get irritated when something does not work as intended. It’s also possible that the driver’s
trust in other safety functions of the vehicle decreases. As such, vehicle manufacturers should make sure that
they are confident in their predictions, before passing on the information to the driver.

If the estimations are instead used in some of the security-critical AD components, it could arguably be
even more important that we are confident in our road friction estimations. Otherwise, we might end up in
situations where the RFE algorithm worsens the stability and performance of the vehicle. Of course, what type
of effect this will have on the final outcome (e.g. if the vehicle will have a crash) is almost impossible to predict.

Finally, a potential security concern is what could happen if the system got hacked. A potential outcome in
such a case could be that the system consistently gives (confident) road friction estimations that are wrong.
The effects of that could be the same as mentioned above. However, it is our opinion that interfering with a
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vehicle’s RFE algorithm in this way is quite unlikely. If someone wanted to do harm and they were able to
hack the system, there are other vehicle functions such as steering and braking that could have a far more
devastating impact.

6.3 Future Work

The perhaps most promising thing that should be done for future tests is to gather a more varied dataset.
Although the data from VCC contained many data samples, it was gathered during only three consecutive days
so that the road and weather conditions were fairly consistent. To fully capitalise on the gains that the added
road weather information could have, we would need to train a model with data that covers a wider range of
existing road and weather conditions. This means that the data collection period would need to happen during
a longer period of time, for example by collecting data during 100 consecutive days or more (but it should be
sufficient to collect data from <1h of driving from each of these days).

When working with the data, it would also be worth investigating if smoothening the measured friction
values could improve the performance. In the dataset that was used in this thesis, the measurements appeared
to be fairly volatile. Applying a Kalman filter or similar could perhaps help in this aspect. Similarly, it could
be worth investigating if over- or under-sampling could be used to deal with the friction class imbalance.

For research purposes, it would also be of interest to establish an open-source dataset that researchers can use
to benchmark their algorithms and models. It is currently very hard, or near impossible, to properly compare
the performances of different research papers, as they all use different datasets with different features. However,
we are also aware that most of the existing datasets are proprietary and potentially contain information (such
as features) that could be seen as confidential in some sort of way. We are thus not able to assess how willing
the owners of these datasets are to openly share them. Ideally, one would also need to jointly agree on what
error metric is the most important, although it would also be possible to skip this step by simply having all
models report on a wide variety of error metrics. An idea could be to create something similar to ImageNet
[27], but for road friction estimation (for more information about ImageNet, see the cited paper).

Architecture-wise, it would be very interesting to properly examine the performance of LSTM networks.
This holds especially true when modelling the data as a time-series, where each data sample that the model is
trained with also contains information from some of the previous measurements. Additionally, vehicle sensor
data is prone to being noisy, and modelling the data as a time-series ought to help deal with some of that noise.

Slightly altering how the problem is framed, would also be something worth investigating. For example,
rather than having the model estimate the friction, one could have it estimate the change in friction from one
time-step to another. This is something that is often being done in stock price forecasting examples. Another
example of re-framing the problem could be to have the model estimate the road friction further ahead in time,
similar to what Panahandeh et al. did [17], or just a few hundred meters further ahead on the road. This could
potentially allow the vehicle to warn the drivers earlier about potentially slippery road conditions. Finally, one
could also model the task as a regression problem, i.e. estimating the exact road friction value rather than
estimating that the road friction belongs to a specific class such as, e.g. [0.1-0.2).
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A VCC Features

Table A.1: Data collected by VCC’s vehicle sensors.

Variable Description
1 VehMInit -
2 AbsMode B 1 Anti-Brake system control is active or not for front left wheel
3 AbsMode B 2 Anti-Brake system control is active or not for front right wheel
4 AbsMode B 3 Anti-Brake system control is active or not for rear left wheel
5 AbsMode B 4 Anti-Brake system control is active or not for rear right wheel
6 AccPedlRat P Acceleration pedal ratio
7 BrkPedlRat P Break pedal ratio
8 CltchPedlRat P Clutch pedal ratio
9 Ax mps2 Longitudinal acceleration [m/s2]
10 Ay mps2 Lateral acceleration [m/s2]
11 Az mps2 Vertical acceleration [m/s2]
12 BrkTqWhl Nm 1 Break torque for front left wheel
13 BrkTqWhl Nm 2 Break torque for front right wheel
14 BrkTqWhl Nm 3 Break torque for rear left wheel
15 BrkTqWhl Nm 4 Break torque for rear right wheel
16 DoorIsOpen B Door or trunk is open
17 PtTqWhl Nm 1 Powertrain torque for front axle
18 PtTqWhl Nm 2 Powertrain torque for rear axle
19 LongCltTq Nm Longitudinal clutch status
20 LongCltSt M Longitudinal clutch status
21 DtSts M 1 Front axle is engaged in drive train
22 DtSts M 2 Rear axle is engaged in drive train
23 StabBrkMode B 1 ABS/ESC/RSC intervention for front left wheel
24 StabBrkMode B 2 ABS/ESC/RSC intervention for front right wheel
25 StabBrkMode B 3 ABS/ESC/RSC intervention for rear left wheel
26 StabBrkMode B 4 ABS/ESC/RSC intervention for rear right wheel
27 StabPtMaxMode B 1 Engine traction control for front left wheel is at maximum
28 StabPtMaxMode B 2 Engine traction control for front right wheel is at maximum
29 StabPtMinMode B 1 Engine traction control for rear left wheel is at maximum
30 StabPtMinMode B 2 Engine traction control for rear right wheel is at maximum
31 WhlAng r Steering wheel angle
32 TrlSt B -
33 WhlSpd mps 1 Wheel speed for front left wheel
34 WhlSpd mps 2 Wheel speed for front right wheel
35 WhlSpd mps 3 Wheel speed for rear left wheel
36 WhlSpd mps 4 Wheel speed for rear right wheel
37 Wx rps Roll rate
38 Wz rps Yaw rate
39 TsaMode B -
40 FrackFr N Rack force in steering column
41 TrsmParkLockd B Transmission park is active
42 EpbSts M Electric Parking brake status
43 WhlSpdDir M 1 Wheel speed direction of rear left wheel
44 WhlSpdDir M 2 Wheel speed direction of rear right wheel
45 AmbTemp deg Ambinent temperature in Celsius
46 Gear Current active gear
47 EngN rpm Engine rotational speed [rpm]
48 TorsBarTq Nm Steering wheel torque
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49 VertWhlDsp m 1 -
50 VertWhlDsp m 2 -
51 VertWhlDsp m 3 -
52 VertWhlDsp m 4 -
53 GpsSpd mps 1 GPS longitude change rate
54 GpsSpd mps 2 GPS longitude change rate
55 GpsSpd mps 3 GPS longitude change rate
56 GpsPos 1 Longitude position
57 GpsPos 2 Latitude position
58 GpsPos 3 Altitude position
59 GpsDir r GPS heading [rad]
60 GpsDOP 1 GPS horizontal dilution of precision
61 GpsDOP 2 GPS vertical dilution of precision
62 GpsDOP 3 GPS position dilution of precision
63 GpsDOP 4 GPS time dilution of precision
64 GpsNofS Number of GPS satellites
65 WhlCogCnt 1 Wheel cog counters for front left wheel
66 WhlCogCnt 2 Wheel cog counters for front right wheel
67 WhlCogCnt 3 Wheel cog counters for rear left wheel
68 WhlCogCnt 4 Wheel cog counters for rear right wheel
69 Fx N 1 Longitudinal force of front left wheel
70 Fx N 2 Longitudinal force of front right wheel
71 Fx N 3 Longitudinal force of rear left wheel
72 Fx N 4 Longitudinal force of rear right wheel
73 Fy N 1 Lateral force of front left wheel
74 Fy N 2 Lateral force of front right wheel
75 Fy N 3 Lateral force of rear left wheel
76 Fy N 4 Lateral force of rear right wheel
77 Fz N 1 Vertical force of front left wheel
78 Fz N 2 Vertical force of front right wheel
79 Fz N 3 Vertical force of rear left wheel
80 Fz N 4 Vertical force of rear right wheel
81 EulerVxMode M -
82 WhlSlip 1 Slip rate of front left wheel
83 WhlSlip 2 Slip rate of front right wheel
84 WhlSlip 3 Slip rate of rear left wheel
85 WhlSlip 4 Slip rate of rear right wheel
86 Vx mps Longitudinal velocity at center of gravity
87 WhlBpNrj Bandpass-filtered energy in suspension mode
88 Friction 1 Friction on left wheel
89 Friction 2 Friction on right wheel
90 Qly -
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B SMHI’s road weather features

Table B.1: Data collected by SMHI’s weather stations.
Feature Description

1 Lufttemperatur (h) Air Temperature, measured every hour
2 Lufttemperatur (dygn) Average Air Temperature over a day
3 Lufttemperatur (m̊anad) Average Air Temperature over a month
4 Lufttemperatur, min och max

(12h)
Min & Max Air Temperature, over a 12h period

5 Lufttemperatur, min och max
(dygn)

Min & Max Air Temperature, over a day

6 Daggpunktstemperatur (h) Dew Point Temperature, measured every hour
7 Nederbördsmängd (15 min) Amount of precipitation over a 15 min period
8 Nederbördsmängd (h) Amount of precipitation over a 1 hour period
9 Nederbördsmängd (dygn) Amount of precipitation over a 1 day period
10 Nederbördsmängd (m̊anad) Amount of precipitation over a 1 month period
11 Nederbördsintensitet (15 min) Maximum precipitation intensity measured over a 15 min

period
12 Nederbördstyp (12h) Observed precipitation types over a 12 hour period
13 Nederbördstyp (dygn) Observed precipitation types over a 24 hour period
14 Snödjup (dygn) Snow depth, measured once per day
15 Relativ luftfuktighet (h) Relative Air Humidity, measured every hour
16 Vindriktning och vindhastighet

(h)
Wind direction and wind speed. Average over a 10 min
period, once every hour.

17 Vindhastighet, max av medel (h) Maximum of the average wind speed (10 min) over the past
3 hours.

18 Byvind, max (h) Maximum wind speed measured over 2 seconds, during a
period of 1 hour

19 Total molnmängd (h) Total amount of clouds, measured once every hour
20 Signifikanta moln (h) Air Temperature, measured every hour
21 Lägsta molnbas (h) Distance from the ground to the ”lowest” cloud, measured

once every hour.
22 Lägsta molnbas, min (15 min) Shortest distance from the ground to the ”lowest” cloud,

during a 15 min period.
23 Solskenstid (h) Amount of sun hours accumulated during a period of 1 hour
24 Globalstr̊alning (h) Average natural radiation, measured over a period of 1 hour.
25 L̊angvägsstr̊alning (h) Average long-wave radiation, measured over a period of 1

hour
26 Lufttryck (h) Air Pressure compared to sea-level, measured every hour
27 Sikt (h) Sight / Viewing distance, measured every hour
28 R̊adande väder (h) Current weather, measured every hour
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C Trafikverket’s road weather features

Table C.1: Data collected by Trafikverket’s road sensor stations.
Feature Description

1 TLuft ◦C Air Temperature
2 Daggp ◦C Dew Point Temperature
3 TYta ◦C Ground Temperature, measured 2mm above the surface.
4 TYta - Daggp ◦C Dew Point Ground Temperature, measured 2mm above the surface.
5 Snö mm Snow Volume
6 Regn mm Rain Volume
7 Smält mm Melted snow volume
8 Lufu % Humidity
9 Vind m/s Average Wind Speed over the last 30 min
10 Vindmax m/s Maximum Wind Speed during the last 30 min
11 Virik ◦ Current Wind Direction
12 Nedbtyp Precipitation type
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D Weather Feature Selection - the impact of individual

weather features on the model performance

Figure D.1: Boxplots showing the accuracy distribution of our model (y-axis) depending on the presence (1) or
non-presence (0) of the various weather features (x-axis). Above each boxplot is a number representing the
amount of tests that were performed with each specific setting. This was part of the final process for selecting
the most suitable weather features.
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Figure D.2: Boxplots showing the accuracy distribution of our model (y-axis) depending on the presence (1) or
non-presence (0) of the various weather features (x-axis). Above each boxplot is a number representing the
amount of tests that were performed with each specific setting. This was part of the final process for selecting
the most suitable weather features.
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E Confusion Matrix Results

Figure E.1: Confusion Matrix of the binary classification task, showing a model’s predictions compared to the
true underlying labels.

Figure E.2: Confusion Matrix of the binary classification task, showing a model’s normalised predictions
compared to the true underlying labels.
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Figure E.3: Confusion Matrix of the 6-class classification task, showing a model’s predictions compared to the
true underlying labels.

Figure E.4: Confusion Matrix of the 6-class classification task, showing a model’s normalised predictions
compared to the true underlying labels.
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F VCC Data Distribution

Figure F.1: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure F.2: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure F.3: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure F.4: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).

48



Figure F.5: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure F.6: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure F.7: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).

51



Figure F.8: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure F.9: VCC Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every VCC
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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G Weather Data Distribution

Figure G.1: Weather Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every weather
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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Figure G.2: Weather Data Feature Distributions, modelled as a boxplot. There are 4 boxplots for every weather
feature; the first one (orange) is the aggregated distribution over all days, the second one (red) is for the data
from day 2, the third one (green) is for the data from day 3 and the fourth one (blue) is for the data from day
4 (the test set).
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H Data Feature Correlation Analysis

Figure H.1: Correlation analysis of all VCC features, minus the features that have been deemed unlikely to
contribute to our model in a meaningful way. A cell with bigger and deeper blue color signifies a stronger
positive relation, while a cell with bigger and deeper red color signifies a stronger negative relation.
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Figure H.2: Correlation analysis of the VCC features suggested by Chen [18]. A cell with bigger and deeper
blue color signifies a stronger positive relation, while a cell with bigger and deeper red color signifies a stronger
negative relation.
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