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Speech Categorization with Prosodic Features and Deep Learning

DANIEL DAVALLIUS, MARKUS INGVARSSON, JULIA ORTHEDEN, MARKUS
PETTERSSON
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
The purpose of this thesis is to investigate whether it is possible to perform three
separate categorizations of speech based only on pitch and intensity. By using these
pitch and intensity curves, the goal is to be able to distinguish between the spoken
languages Swedish, Spanish, English, German, French, and Chinese, as well as de-
termining the sex and age group of the speaker, with the use of neural networks.

The pitch and the intensity were extracted from thousands of hours of audio files
collected from the Swedish Riksdag and a website with audiobooks in the public
domain called LibriVox. When categorizing the age group and the sex, only the
audio files from the Swedish Riksdag were used, since they were the only audio files
with labels of the sex and the birth year.

The categorization was performed using two different methods. The first was to ex-
tract several language characteristic features from the pitch and intensity to use as
input data, training multiple feedforward neural networks using the FFNN model,
one or more for each categorization. The other method was to use the pitch and
the intensity directly as input data to multiple recurrent neural networks using the
LFLB-LSTM model, again one or more network for each categorization.

The conclusion is that the LFLB-LSTM model can distinguish between the six
languages as well as the sexes and the age groups solely using the pitch and intensity
extracted from the audio files. The FFNN model performed significantly worse than
the LFLB-LSTM model but still better than pure probability, potentially because
of a lack of understanding about what it was in the data that differentiated the
categories from one another. Further, it was concluded that it is essential to have
sufficient variance in the audio data both within the groups and between the groups.
To capture this successfully it is advisable to use sources of audio with a high variance
of genders, ages, audio quality, and dialects, preferably by a large number of diverse
speakers in each group.

Sammanfattning
Syftet med detta arbete är att undersöka om det är möjligt att utföra tre olika
kategoriseringar av mänskligt tal baserat på enbart tonhöjd och intensitet: Utefter
språk, utefter kön och utefter åldersgrupp. Inom språk innebär detta att kunna
kategorisera mellan sex olika språk: Svenska, engelska, tyska, spanska, franska och
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kinesiska, såväl som att separat kunna kategorisera talare enligt kön och enligt ålder-
sgrupp enbart baserat på de prosodiska egenskaperna tonhöjd och intensitet.

Tonhöjden och intensiteten extraherades från tusentals timmar av inspelat mate-
rial som samlades in från Sveriges Riksdag och LibriVox, en hemsida som samlar
upphovsrättsfria ljudböcker. Vid kategorisering av kön och ålder användes endast de
svenska ljudfilerna från riksdagen eftersom de är de enda som tillhandahåller meta-
data om detta. Kategoriseringen genomfördes med hjälp av två olika metoder: Den
första gick ut på att från tonhöjden och intensiteten ta fram ett antal språkkarakter-
istiska egenskaper som sedan används som indata, i träningen av flera feedforward
neural networks med en så kallad FFNN-modell. Ett eller fler nätverk användes
per kategorisering. Den andra metoden gick ut på att använda tonhöjden och in-
tensiteten direkt som indata till flera recurrent neural networks med en så kallad
LFLB-LSTM modell. Även här användes ett eller flera nätverk per kategorisering.

Slutsatsen är att LFLB-LSTM-modellen kan skilja på de sex språken, könen och
åldersgrupperna baserat enbart på tonhöjden och intensiteten som extraherades från
ljudfilerna. FFNN-modellen presterade signifikant sämre än LFLB-LSTM-modellen,
men fortfarande bättre än ren slump. Potentiellt beror detta på en brist på förståelse
angående vad i datan det var som skilde kategorierna åt. Vidare så drogs slutsatsen
att det är viktigt att ha tillräcklig varians av ljudfiler både inom grupperna och
mellan grupperna. För att uppnå detta så är en normal distribution inom datan i
form av kön, ålder, inspelningsutrustning och dialekter av hög prioritet, inspelad av
en representativ grupp människor.

Keywords: Deep Learning, Prosodic Features, Spoken language recognition, LSTM,
CNN, Local Feature Learning Batches
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1
Introduction

Even when disregarding the specific words, languages can vary significantly from one
another and can tell quite a lot about a person. Some languages are known for being
melodic while others are known for their rapid pace or their sharp sounds. To make
it even more complicated, the way of speech can vary by accents or speaker-specific
features as well, possibly due to the sex or the age of the speaker. As the voice
changes with human age, it should be possible to extinguish things like changes in
the pace of the speech and the loudness of the speech due to hearing problems. There
are also studies that claim that the male pitch rises, and the female pitch slightly
decreases with age (Butler, Lind, & Weelden, 2013). Further, since the fundamental
frequency generally differs between male and female speakers, the sex should also
be recognizable.

The ability to categorize speech, for instance between languages, can be useful for
many applications such as multilingual speech recognition, translation, call center
optimization, and automatic data labeling (Pi school, 2017). Categorization is a
practice that has been around for a long time. Even Aristotle wrote about it in
his text Categories in the collection Organon. A lot has happened during the last
two millennia when it comes to creating models for categorization. Different strate-
gies exist for classification, where the use of artificial neural networks (ANN) has
grown in popularity the recent years. The overall idea of an ANN is to create a
synthesized model of the brain, where similarly to the brain, the model is created
by training the network that a particular input should map to a specific output. A
robust architecture is required when one builds an ANN, which has to support large
amounts of data, and potentially other features as well. Synthetic memory would be
such a feature, which works well with sequential streams of data over time, such as
when one is looking at audio files. Neural networks are useful in pattern recognition,
where it has shown to be useful in interpreting speech (Graves, rahman Mohamed,
& Hinton, 2013).

1.1 Purpose
The project aims to make use of the prosodic features pitch and intensity, extracted
from audio files, to perform various categorizations of human speech with the help
of neural networks. By using data of the pitch and intensity values over time, the
goal is to be able to recognize the following different characteristics of the speaker:
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1. Introduction

• Determining what language is being spoken, choosing from English, French,
Spanish, German, Chinese or Swedish.

• Determining the sex of the speaker, choosing from male and female.
• Determining the age group of the speaker, choosing from speakers born before

1955 and speakers born after 1975.
Two different models of neural networks are implemented and evaluated. The first
model extracts specific features from the pitch and intensity of the audio files and
uses this as input data to train a feedforward neural network (FFNN). The second
method uses the unmodified data of pitch and intensity when training a local feature
learning block - long short term memory (LFLB-LSTM) network. In both methods,
the models are created per category of prediction and are compared to one another.

The purpose is to investigate whether it is possible to identify the mentioned cat-
egories of a speaker solely based on these prosodic features and what conclusions
can be drawn from categorizing these attributes through the neural networks. Iden-
tifying is in this case defined as the probability of success of the predictions being
higher than if done at random.

1.2 Scope
The project focuses on the prosody of the human voice. Word interpretation is en-
tirely excluded, as are other ways of understanding intent such as body language,
facial expressions, or context. Within the field of prosody, the focus is solely on
certain features, namely pitch and intensity. The focus is on categorization between
groups, meaning the ability to distinguish between groups speaking the languages
German, English, Spanish, French, Swedish and Chinese, as well as between groups
divided by their sex or their age.

The neural networks are trained with labeled data, and the network is implemented
through a preexisting Python library called Keras. The audio data is gathered from
a public domain audiobook website called LibriVox, and via an external API for the
Swedish Riksdag, where interpellations have been used.

2



2
Theory

Speech categorization has been of interest for many years (Vicsi & Szaszák, 2010),
and researchers have tried to learn more about prosody to improve automatic speech
recognition. Artificial neural networks have shown to be useful in categorizing speech
(Graves et al., 2013), where hidden Markov Models or k-nearest neighbor algorithms
(de Bruin & du Preez, 1993) has done the job in the past. In this section, the basics
of prosody, along with background information about artificial neural networks and
related research, will be presented.

2.1 Prosody

Prosody is the study of how the meaning of speech is affected by its tune and rhythm
over time (Manell, 2008a). Prosodic information plays a vital role in human speech
communication. The information can change the meaning behind a phrase due to
vocal changes, where a few examples are irony, sarcasm, or statements vs. questions.
Prosody at an acoustic level is primarily characterized by the vocal pitch, loudness,
and rhythm.

2.1.1 Pitch
Pitch is closely related to the frequency of vibration of the vocal cords, and it varies
from person to person (Vajda, 2001). The pitch can be higher or lower, depending
on the speaker’s age, sex, or language. The variation of pitch is called intonation.
The pitch variation helps to characterize the prosody and is a variable that is used
to understand the meaning of the words for some languages, such as Mandarin and
Cantonese (Oxenham, 2012). Pitch is also something that helps a listener to isolate
a speaker when multiple conversations are happening in parallel. A common way to
recall a pitch in speech is through a complex harmonic tone, which is analogous to
the fundamental frequency, measured in Hertz (Hz).

2.1.2 Sound intensity and rhythm
Sound intensity can be described as sound pressure. It is the measure of changes
in air pressure that one experience as sound, measured in decibels (dB). A way to
represent this is by using a two-dimensional waveform, which presents the time do-
main representations of the intensity variation over time (Manell, 2008b). Intensity
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2. Theory

is the physical variation of sound pressure, while loudness is a perceptual construct.

Through a waveform representation, one is also able to view the rhythm of the
sound, which in this case is the alternations of the intensity over time (Gibbon,
2017). Rhythm is something that varies from language to language due to different
styles of syllable use and phrase structure.

2.1.3 Stress-timed and syllable-timed languages

The term rhythm can be divided into subcategories. By comparing multiple lan-
guages, one can see distinctions between the rhythm, where some languages are
syllable-timed, and some are so-called stress-timed languages (Conlen, 2016). A syl-
lable is a single unit of speech, often containing a vowel, and stress is the emphasize
of a syllable. The first person who developed these two subcategories of rhythm
was Lloyd James, an Australian linguist who compared the rhythm of Spanish with
the sound of a machine gun. Spanish is said to be a syllable-timed language, while
English is a stress-timed language, which James thought had similarities with Morse
code.

In Spanish, the syllables last the same amount of time and are not dependent on
whether the syllable is stressed or not. In English, however, many syllables get
shortened depending on where the stress lays in the sentence. An example is the
word "America," where the emphasis of the second syllable makes it sound longer
compared to the rest of the syllables. Other syllable-timed languages are Italian,
French, and Chinese (Mok, 2009), while stressed-timed languages also include Ger-
man (British Council, n.d.), Swedish (Frankfurt International School, n.d.), Dutch
(Collins & Mees, 1984). Portuguese belongs to both categories, where Brazilian
Portuguese is classified as syllable-timed and European Portuguese as stress-timed
(School, n.d.).

2.2 Physical properties of prosody

Not all properties of prosody are objective physical properties (Hartmann, 1997).
Some are also considered to be psycho-acoustical attributes of sound. They are
perceived differently depending on the percipient. This fact can complicate things
when one is analyzing and studying prosody for apparent reasons. The question
arises whether a difference between sounds contains any actual physical differences
or if it is just a change one’s experience of the sound.

Intensity is a physical property that is measured by the power carried by sound
waves, divided by the area. Its perceptual representation mostly corresponds to
loudness, see figure 2.1 (Wolfe, 2019).
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2. Theory

Figure 2.1: An illustration of how the physical properties of fundamental frequency
and intensity are correlated with the perceptual properties pitch and loudness. The
pitch correlates mainly with the fundamental frequency, but also slightly with the
intensity. Loudness correlates mainly with the intensity, but also slightly with the
fundamental frequency.

One of the physical attributes of sound that gets produced when a person is speaking
is the frequency of the vocal cords, also referred to as the fundamental frequency
(Li & Jain, 2009). Pitch is usually referred to as how one perceives the fundamental
frequency (Wolfe, 2019). Pitch correlates with frequency, and by doubling the fre-
quency, the pitch will increase by an octave. Other factors come into account when
looking at the pitch variance, but the frequency is a good indicator of whether the
pitch will rise or fall. See figure 2.1.

2.3 Artificial neural networks

Artificial neural networks (ANNs) are a form of self-learning algorithms used in ma-
chines to imitate the workings of an anatomical brain (Mehlig, 2019). They are made
up of artificial neurons, which are greatly simplified versions of biological neurons.
An artificial neuron takes an input, multiplies it with a weight and yields an output
through an activation function (see figure 2.2). The network consists of layers of
these neurons. The first one is called the input layer, after that comes one or more
hidden layers and lastly the output layer. Adding layers makes the network deeper
and allows the network to recognize more complex patterns.

5



2. Theory

Figure 2.2: Illustration of an artificial neuron with three inputs. Each input, xn,
has a corresponding weight, wn, with which it will be multiplied. The products
from these operations will be summed up and the threshold t will be subtracted.
It is these variables, wn and t, that are updated during the learning process. The
resulting value will be passed through a simple activation function f , such as tanh or
the sigmoid function. The output of the neuron will therefore be equal to f(w1x1 +
w2x2 + w3x3 − t)

Artificial Neural networks can learn to recognize structures and patterns in a dataset
by updating the weights of its neurons (Mehlig, 2019). This training process is
executed by inputting data, for which the target output is already known, into the
ANN and updating its structure until its output is satisfactory. The network can
then apply this knowledge to make estimations for new input data, where the target
values are not known beforehand. Neural networks have a broad scope of use cases
in both business and academia, where the aim is to find non-obvious correlations
for a set of data.

2.3.1 Feedforward neural networks
One of the implementations of an ANN is the Feedforward neural network (FFNN).
The design is a rather straightforward implementation, without any of the more
intricate features of more advanced architectures (Mehlig, 2019). It merely consists
of layers with regular neurons where all neurons in one layer have a connection to
all of the neurons in the next one (see figure 2.3). Hence, these layers are said to be
a fully connected layer.

Figure 2.3: Illustration of a simple, deep FFNN. Two inputs, X1 and X2, result
in an output Y after being passed through and processed by the neurons in the two
hidden layers.
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2. Theory

2.3.2 Recurrent Neural Networks
The distinguishing feature of a Recurrent Neural Network (RNN) is the fact that
it preserves information about earlier inputs (Sherstinsky, 2018). A recurrent node
will have its output as an input, which means that the information calculated from
the previous input will be taken into account when making the next calculation.
This feature is useful when the incoming data is structured in a sequence where the
context of the input is significant for its meaning. An obvious example would be
sentences, where a word can mean different things depending on the other words
surrounding it. It is often easier to visualize an RNN as "unfolded", where each time
step is presented as a separate layer (see figure 2.4). In the last few years, there
have been plenty of successful implementations based on these kinds of networks
(Graves et al., 2009; Li & Wu, 2014). In its purest form, an RNN struggles to pick
up on long-term dependencies since events that occurred a long time ago are quickly
forgotten. More advanced versions of the RNN architecture have been developed to
address these issues (Hochreiter & Schmidhuber, 1997).

Figure 2.4: Illustration of a simple RNN. The model consists of a single hidden
layer with a single recurrent neuron. To the right is a representation of the same
network unfolded. If the input X is a sentence each step would represent processing
a new word (X1, X2, ..., Xn). A new output (Y1, Y2, ..., Yn) is also given at every
step. The output could for example be the estimated mood of the writer.

Long Short-Term Memory networks

The Long Short-Term Memory (LSTM) network is one of the most commonly used
versions of the RNN architecture. It has provided excellent results for many differ-
ent applications, such as speech recognition and intent analysis (Graves, Mohamed,
& Hinton, 2013; Zyner, Worrall, Ward, & Nebot, 2017). The main advantage of
LSTM architecture is its ability to learn long-term dependencies very well. This
trait is achieved by using a so-called cell state, which is a connection that runs along
the entire unfolded chain of time nodes (Hochreiter & Schmidhuber, 1997). The cell
state retrieves the output from each time node in a way that makes it very easy
for information to flow unaltered down along the unfolded chain (see figure 2.5).
This way allows for the network to "remember" things in a way which is practically
impossible for a regular RNN.

As an example, it is possible to train an RNN to fill in the blanks in a sentence like
"The capital of Italy is ___." It would, however, be impossible to do the same for
a sentence like "We arrived in Italy by ferry and had to rent a car in order to drive

7



2. Theory

to the country’s capital, ___". This result is due to the long distance between the
blank space and the critical word, "Italy." An LSTM network would be able to learn
both.

Figure 2.5: Illustration of an LSTM network. The main difference compared to an
RNN is the addition of a cell state, represented with a yellow arrow. This cell state
runs along the entirety of the unfolded model and allows the network to remember
events that occurred much earlier in the chain.

2.3.3 Convolutional Neural Networks
Convolutional Neural Networks are a category of Neural Networks that have been
successfully used mostly in image recognition and classification. Convolutional Neu-
ral Networks are made up of neurons that each have learnable weights and biases.
Each neuron receives an input, performs a dot multiplication, and optionally follows
it with a non-linear computation. The significant difference compared to regular
FFNNs is the increased efficiency in the forward function and the reduced amount
of parameters due to the assumption that an image is used as input data.

A convolutional neural network consists of four building blocks: A convolutional
layer, a non-linearity layer, a pooling layer, and a fully-connected layer (Albawi,
Mohammed, & Al-Zawi, 2017).

Figure 2.6: An illustration of the flow of a common CNN. (Aphex34, 2015).

Convolution is the process in which smaller regions of the input image are processed
to learn image-specific features, as Albawi, Mohammed, and Al-Zawi explain it.
These features are learned by using different filters, which are methods of computa-
tions when processing the image regions in order to generate a feature map of the
whole image. In order to map these regions, a so-called kernel is used, with the same
dimensions as the regions that should be mapped. This kernel will iterate over the
entire input with a fixed step size denominated as its stride (see figure 2.7 for an
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2. Theory

example).

An advantage of using ANN compared to linear functions is the level of complexity
that can be described. The most common way to ensure this non-linearity is to use
an activation function called the rectified linear unit (ReLU) (Yamashita, Nishio,
Do, & Togashi, 2018). ReLU is computed element-wise to replace the negative values
with zero and introduce non-linearity in the feature map. On the processed feature
map, a pooling method enables a reduction of the complexity by calculating a value
that is representative of the region of the image. One example is Max Pooling, in
which the most significant element of each region is extracted to form a new output.
The output is then classified between several categories using the last building block,
the classification.

Figure 2.7: A visualization of the feature mapping in a 2D convolutional layer.
The kernel has a size of 3×3, a horizontal stride of 1 and a vertical stride of 2. Note
that the feature map for b and d are given the exact same input and will therefore
be recognised as equal.

Although most commonly used for working with two-dimensional image data, CNN’s
have also been successfully deployed on one-dimensional time series, such as ECG
for heart monitoring (Kiranyaz, Ince, Hamila, & Gabbouj, 2015) and vibration data
to predict structural damage on buildings (Abdeljaber, Avci, Kiranyaz, Gabbouj, &
Inman, 2017). These work just like the more conventional 2D CNN’s, with the only
difference being the dimensionality of the input.

2.3.4 Local Feature Learning Blocks

The Local Feature Learning Block (LFLB) is a standalone collection of ANN layers
(see figure 2.8) directly derived from the CNN architecture (Zhao, Mao, & Chen,
2019). It consists of a convolutional layer, a batch normalization layer, an exponen-
tial linear unit, and a max pooling layer. The convolutional layer, the linear unit,
and the pooling layer work in the same way as in a CNN. The batch normalization
layer is added to increase the rate at which the network learns (Ioffe & Szegedy,
2015).
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Figure 2.8: The internal architecture of a Local Feature Learning Block (LFLB).

The purpose of this block is to recognize local features in either a 2D matrix, like
a spectrogram, or a 1D array, like a velocity vs. time graph. The blocks can be
stacked on top of one another to recognize more complex and abstract features.

An LFLB has the following parameters:

• Filters: The number of different features that should be mapped in the con-
volutional layer. Adding too many filters may lead to over-fitting, but too few
will result in the block oversimplifying crucial information.

• Kernel size: The dimensions of the features that should be mapped in the
convolutional layer. See figure 2.7 for an example.

• Padding: In order to ensure that the output from the convolutional layer has
a specific dimension, some form off padding might be added to the input. Often
the output should have the same shape as the input, which can be achieved
by adding padding of half the kernel size around the input. See figure 2.9 for
an example.

• Strides: The step size between each feature map. See figure 2.7 for an exam-
ple.

• Pool size: An LFLB only returns the highest scoring feature map within a
region as its output, just like in the pooling layer of a CNN. This value is
obtained through the max pooling process. Pool size determines how large
these regions should be, in other words, how much smaller the LFLBs output
should be than the input.
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Figure 2.9: The first two feature maps for a 7 × 7 figure with and without same
padding (kernel size 3 × 3, horizontal stride (1, 1)). The output shape without any
padding will be 5 × 5. With padding the output shape will be 7 × 7, the same as
the input.

2.3.5 Training aspects
The training of the artificial neural network is an essential part of the implementation
with several terms and techniques involved. This section will explain the critical
concepts of how to train the models.

Hyperparameters

In ANN, not all parameters can be learned. Some have to be set and tweaked man-
ually, usually before the training begins. These parameters express the higher-level
properties of the model, such as its complexity. There is often no right or wrong
answer regarding how to set these hyperparameters. Instead, the optimal values are
found by testing different values and different models. It can often be useful to look
at similar projects and the architecture they have implemented.

Deciding the number of neurons in the hidden layers is an essential part of deciding
the architecture of the ANN (Smith, 2018). If this number is too low, it results in
something called underfitting. Underfitting occurs when there are too few neurons
in the hidden layers to adequately detect the signals in a complicated dataset.

Using too many neurons is equally problematic since it can cause overfitting, which
means that the neural network through its higher complexity memorizes not only
the relevant properties but also the unrelated properties of the dataset such as ir-
relevant noise (Yamashita et al., 2018). This structure can create a model that is
very suited to fit the dataset it was trained to fit and will consequently struggle to
categorize new data. Therefore, finding a balance in the number of neurons of the
hidden layers is time-consuming but crucial.

It is essential to have qualitative data to learn from to achieve a good result, and it
is equally essential to have a validation set to analyze the performance of the net-
work frequently. The validation set has to be completely separate from the training
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dataset to detect any overfitting in the training set.

The number of epochs is a hyperparameter that defines the number of times that the
learning algorithm will work through the entire training dataset. Each epoch gives
the network a chance to tune the parameters according to the data. Normalization
is performed on the data before using it for training, to ensure that each feature is
of equal importance. Commonly, values between zero and one are used for all the
training data. One way to do this is to subtract the average and then divide by the
range for all the training data. The batch size is the number of samples processed
before the parameters of the model are updated. The predictions are compared at
the end of the batch to the expected output variables, and an error is calculated.
From this error, the update algorithm is used to improve the model, e.g., move down
along the error gradient.

Another hyperparameter to consider is the kind of activation function to use when
training an ANN. The activation function is uniquely specified for each layer, so this
consideration will have to be made for each one of them. There are two different
types of activation functions, linear and non-linear. The choice of activation function
depends on the problem at hand and to some part, personal preferences (Konstantin-
Klemens, 2018). Konstantin-Klemens continues to explain that when determining
the update of the weights, the gradients of the activation function for each node
in the network is computed. The choice of the activation function is essential for
each hidden layer not to compute too small or too large gradients, which would
prevent the neural network from improving. Some examples of standard non-linear
activation functions are ReLu, Softmax, and Sigmoid.

Regularization

The process of reducing over-fitting while maintaining the size of the network is
called regularization. Regularization reduces over-fitting by adding a penalty to
the loss function. This penalty ensures that the network does not learn individual
features from the dataset. The two main regularization techniques used in this
project will be explained in the following section.

Dropout is an approach that minimizes the interdependent learning among the neu-
rons and therefore, forces the network to learn more robust features instead. To
do this, it randomly drops some output nodes, which makes the layers behave like
they have different numbers of nodes (Srivastava, Hinton, Krizhevsky, Sutskever, &
Salakhutdinov, 2014).

Early stopping is another alternative to reduce the risk of over-fitting by establishing
a limit for the number of times the network can run without improvement. If the
network exceeds this limit, it stops the training since continuing would likely result
in a bias to the training set.
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2.4 Related research
Language recognition through the use of prosody has been studied before, one study,
in particular, was found to be similar to the aim of this project. In 1993, a group
of researchers at the University of Stellenbosch, South Africa who were working on
signal processing, attempted to classify speech in the three languages Afrikaans,
English, and Xhosa (de Bruin & du Preez, 1993).

In the study, they extracted certain features from a "pitch contour," which they gen-
erated from the speech. They then looked at these features and tried to distinguish
between the languages. They discovered that not all languages were equally recog-
nizable. Although the researchers of Stellenbosch could easily classify Xhosa and
Afrikaans with 89% accuracy, they were not as successful when processing English.
Furthermore, the findings suggest that the mother-tongue of a speaker influences
their prosody when speaking another language. The result may have been affected
by the fact that non-native speakers may have recorded a significant amount of
English recording. In the study, they also remark: "Results indicated an excellent
distinction between a tone and a stress language, Xhosa and Afrikaans." This out-
come may indicate that it would be easier to tell two languages apart in this manner
if they have distinctive linguistic characteristics.

Researchers have made progress when it comes to speech in artificial neural net-
works. In 2013 a group of researchers from the department of computer science of
the University of Toronto trained a recurrent neural network in speech recognition.
(Graves et al., 2013). The traditional way to create the network was to combine
it with other models, such as the commonly used hidden Markov model. (Kamble,
2016).

In the study at the University of Toronto however, the network was trained by using
end-to-end training, where the network picks up how to map straight from acoustic
to phonetic sequences, and a Long Short-Term Memory architecture. They achieved
a test set error of 17.7%, a quite satisfactory result.

The idea to use a recurrent neural network for speech recognition is not a new one,
however. In the University of Cambridge T. L. Burrows and M. Niranjan wrote in
a paper, back in 1994, about the different areas of use with RNNs for classification,
where speech recognition was specifically mentioned (Burrows & Niranjan, 1994).
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Method

This section describes how the project was structured and how the two different
models were created: the LFLB-LSTM model and the FFNN model. First, there
will be an introduction to how the data was collected and preprocessed, followed by
a description of the neural networks and how they were optimized and evaluated.
Finally, there will be an overview of the tools used in this project.

3.1 Data collection

Several hundred hours of audio files were needed to train the models and generate
satisfying results. Since no readily labeled dataset that met the requirements for
the project was found, data collection and correct labeling became a crucial part of
the project.

3.1.1 Requirements on audio

Certain desirable features were decided upon to ensure the quality of the collected
audio data:

• In order to notice differences between various speakers, files with only one
speaker each was set up as a requirement.

• In order to be able to train a neural network to recognize differences between
languages, audio files containing more than one language were avoided.

• In order to have the neural networks pick up the prosody of the speaker,
background noise was preferred to be kept to a minimum.

• In order to enable the extraction of prosodic features, the audio files needed
to be at least a couple of sentences each.

• In order to draw any conclusions about our given categorizes, a sufficient
amount of data was required. This goal was set to at least a hundred hours of
audio per category.

The copyright needed to be considered even with a source of audio files that fulfilled
all the requirements stated above. Copyright infringement can be avoided by only
using public domain sources or by getting permission to use a particular dataset.
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3.1.2 LibriVox
LibriVox is a public domain online depository which hosts audiobooks, where volun-
teers upload recordings of works in the public domain (LibriVox , n.d.). The majority
of books are recorded in English, but several other languages are available as well.
The site offers an open API for downloading audio files as well as metadata. A
script was created to allow filtering recordings by language, which found the desired
audiobooks and downloaded the mp3 audio files and related metadata.

3.1.3 The Swedish Riksdag
The Swedish Riksdag has made a public API available for accessing resources con-
cerning members of the Riksdag, voting records, and plenary sessions (Dokumentation
- Riksdagens öppna data, n.d.). Among these resources are audio recordings for all
speeches made in the Riksdag since 2001 as well as time stamps for when a given
speaker was speaking.

The Riksdag also has an API for fetching information about the speakers themselves.
Out of a platitude of available information, sex, year of birth, and year of recording
were stored alongside the prosodic information for each speech. A script was created
for downloading the audio files alongside the metadata, processing them to extract
pitch and intensity before uploading the information to a database. There ended
up being 23403 such recordings in the database by 425 different speakers from 2540
Riksdag interpellations.

3.2 Audio preprocessing
The neural network required a consistent shape of the data for every source file. The
data that was extracted from each audio file was one array of pitch representing the
value of the fundamental frequency over time and one array of intensity representing
the value of the amplitude over time.

The functions "to_pitch" and "to_intensity" of the Python library Parselmouth were
used, which returned the pitch and intensity objects containing the desired arrays.
See section 3.7.3 for further details. These arrays were then ready to be used as
input data for the neural networks.

3.3 LFLB-LSTM model
Unlike the FFNN method, the only preprocessing necessary for this method was
to extract the speaker information, the pitch array, and the intensity array. An
architecture inspired by the one presented in the paper Speech emotion recognition
using deep 1D & 2D CNN LSTM networks was used as the basis for this model
(Zhao et al., 2019). Zhao, Mao, and Zhen implemented an ANN that categorized
an unprocessed audio signal based on the speaker’s emotional state.
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The inner workings of deep neural networks are notoriously difficult to understand
(Lipton, 2016), but some speculative motives for why this architecture has been
used will be provided alongside the description of the model. Whether the model
behaves as intended or if it finds its unique way to solve the problem is unknown.
That being said, the model consists of three sequential parts which each have distinct
responsibilities, presented in the rest of this section.

3.3.1 Local feature component

The first part was responsible for finding spatial features in the input signal. The
idea was that this part of the network would learn to recognize slopes, peaks, and
other local characteristics of the pitch and intensity curves. The input signals would
then be partitioned into smaller parts, which would each be categorized as the
closest matching local feature. On a higher level, this would equate to recognizing
local prosodic features such as intonation, stress, and pauses (Vaissière, 1983). Much
of the complexity was removed from the unprocessed pitch and intensity curves by
simplifying the two signals to an idealized sequence of categories, which should be
easier to classify for the neural network.. This architecture was achieved with four
local feature learning blocks (LFLBs), which specialized in finding and classifying
these local correlations (Zhao et al., 2019).

Figure 3.1: A toy example of the output from the first LFLB. Each time span
(∆t) has been assigned one out of a fixed set of categories correlating to the shape
of the pitch and intensity curves. Each category is represented with a color. In
this example, ∆tn+1 and ∆tn+4 belong to the same category, since they both have
a falling pitch and a falling intensity. ∆tn+2 and ∆tn+5 are also grouped since they
both contain peaks. There are no guarantees that the trained model makes these
classifications
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3.3.2 Global feature component
An LSTM layer was appended to the model to discover long-term dependencies in
this sequence of local features. This layer specializes in extracting information from
time series and have in the past shown great results for finding correlations between
different parts of an input signal which are far apart (Hochreiter & Schmidhuber,
1997). The intention was that the network would pick up on what aspects of these
local feature series distinguished each category.

3.3.3 Fully connected layer
A fully connected layer was added at the end of the model to get the output in a
way that was suitable for categorization. This layer outputted a vector with a score
for each of the categories. The higher the score, the more certain the network was
that the current sample belonged to that specific category.

The pitch sequence and the intonation sequence that was being generated from the
script to convert the audio files were what was being used as input data in this
implementation. The language, transformed into a one-importance matrix was the
output data.
Figure 3.2 shows the final architecture of the LFLB-LSTM model.

Figure 3.2: The final architecture of the LFLB-LSTM model, each LFLB layer
consists of first a batch normalization, thereafter an ELU operation and lastly a
Max Pooling1D layer with pool size 4 and strides 4.
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3.4 Feedforward neural network model

This model was inspired by the feature extraction used in the South African study
"Automatic Language Recognition based on Discriminating Features in Pitch Con-
tours" (de Bruin & du Preez, 1993). In the study, prosodic features distinguishable
from the pitch contours were extracted from three different categories: intonation,
tone, and duration. The features in the intonation and duration categories were
calculated on full sentences while the ones in the tone category only handled word
specific calculations.

Only the features concerning intonation were extracted in this project. Additional
features concerning the average and the variance of the intensity were added later
since similar patterns could be seen in the intensity plots as in the pitch plots. In
addition to the intonation features described above, the choice was made to add four
features concerning the pauses, stated in table 3.1. The extraction of the features was
then implemented in a Python script through which the audio files were processed
one by one after being divided into 16-second clips. The rest of this section describes
in more detail the features extracted in the respective category.

Table 3.1: Features capturing the duration of speech/silences in the pitch and
intensity sequences.

Feature description capturing the duration of speech/ silence
Average length of speech
Average length of silence

Variance of length of speech
Variance of length of silence

3.4.1 Features Concerning Intonation

Both the rate of the speech and the duration of the speech are considered to pro-
vide language-specific features concerning the intonation. In the study "Automatic
Language Recognition based on Discriminating Features in Pitch Contours", they
illustrate this by an example: "if the speech rate is very slow, the number of fluc-
tuations (that is, the total number of positive and negative slopes) in the sentence
may not be typical of the language". They continue by stating that to ensure it is
as language specific as possible, it is not enough to treat different aspects from each
category. One also needs a large set of speakers. Therefore the dataset consists of
1191 unique speakers in total.

All intonation features used are listed in table 3.2 and are extracted from the 16-
second audio clips.
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Table 3.2: Features capturing the intonation that were extracted from the pitch
contour and intensity contour.

Feature description capturing intonation in a sentence
Variance of pitch

Average gradient of positive pitch slopes
Average gradient of negative pitch slopes
Total number of positive pitch slopes
Total number of negative pitch slopes
Average length of positive pitch slopes
Average length of negative pitch slopes

Average of intensity
Variance of intensity

3.4.2 Implementation of feedforward neural network model

The 14 language characteristic features extracted from the audio files (2 for intensity
and 12 for pitch) were used as input training data and were later fed into the network
in batches of 128. The loss was calculated for each batch and the network parameters
updated. The architecture of the resulting network was determined by comparing
three architectures used for a similar purpose and choosing the highest performing
one (Mary & Yegnanarayana, 2008; Leena, Srinivasa Rao, & Yegnanarayana, 2005;
Mary & Yegnanarayana, 2008). The resulting architecture is shown in figure 3.3.
The first layer uses ReLu as activation function, and the rest use the activation
function Softmax. All layers are fully connected layers. The data is shuffled, and
then divided into a training set, validation set, and test set. The training set consists
of 80% of the total amount of data, the validation and the test set contains 10%
each. The training data is randomly initialized for each training of a neural network.
It is guaranteed that the same speaker cannot appear in all of the three sets. The
language, transformed into a one-importance matrix is the output data.
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Figure 3.3: An illustration of the final architecture of the feature model. The first
layer uses relu as activation function and the other layers use softmax. The input
consists of language specific features extracted from the intensity and pitch array.

3.5 Optimization
From the start, the simplest forms of architecture for both models were implemented,
with only a single hidden layer. The models were later optimized as the number of
categories to predict was increased.

Due to time limitations, only a few tests were done to compare different architec-
tures for the models. The architectures tested were based on reports with similar
objectives. After that, the number of hidden layers, as well as the number of neu-
rons, were tweaked. The architectures that achieved the best results were then used
to generate the results of the two models.

3.6 Evaluation
The training data was divided into a training set, a validation set, and a test set each
time a new model was trained. The validation set was used for regular evaluation
and to tune the hyperparameters after each epoch. The purpose of the test set was
to evaluate the final model after the training was completed. The test set consisted
of entirely new audio files that have not been used during training to ensure an
unbiased final evaluation of the model.

Confusion matrices were being used to evaluate the performance of the models fur-
ther. A confusion matrix shows the number of false predictions as well as the number
of true predictions for each category. This matrix, in combination with the total
accuracy of the model and the behavior of the loss function of the model, provided
a basis to determine how well the model was performing.
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Another evaluation method was to insert files that were not used when training
the model or were not retrieved from LibriVox or the Swedish Riksdag to see how
well the model performed. Further, audio files from other languages (Dutch, Italian,
Japanese, and Portuguese) were inserted into the neural network to analyze the out-
put. Other metrics that were considered were the number of categories/languages
being classified and the number of features the different models could label.

3.7 Tools
The most important tools used in the project are described more thoroughly in this
section.

3.7.1 Python
All parts of the program were implemented in Python, which is a high-level, general-
purpose programming language that is commonly used in Machine Learning projects
(The Python Programming Language, n.d.). This choice was based on the many
libraries available, which ease the computations and enable integration with the
other tools mentioned above.

3.7.2 Keras
Keras is a high-level neural network API, written in Python. It was developed
with a focus on enabling fast experimentation (Chollet et al., 2015). In Keras,
models are used to organize the different layers of the neural networks. Changing
between various architectures and tweaking hyperparameters is very easily done. In
this project, Keras was used for the implementation of the various neural networks,
primarily because the group had previous knowledge of the program but also because
of advice from Morteza Haghir Chehreghani, associate professor at Chalmers.

3.7.3 Parselmouth
In order to extract the information that was desired from audio files (the pitch and
the intensity), the python library Parselmouth was used. It implements functions
found in the audio engineering application Praat (Jadoul, Thompson, & de Boer,
2018; Parselmouth – Praat in Python, the Pythonic way, n.d.). It has the capability
of reading audio files, and manipulating the read contents, for example by extracting
the fundamental frequency as a function of time, or the intensity of the sound as a
function of time.

In order to extract the pitch, more specifically the fundamental frequency, Parsel-
mouth uses an algorithm which "performs an acoustic periodicity detection on the
basis of an accurate autocorrelation method" (Praat - Sound: To Pitch (ac)..., n.d.;
Boersma, 1993). The resulting "pitch object" contains an array with the desired
frequencies over time.
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In order to get the intensity, another algorithm was utilized, where the value of each
sound frame is squared. Afterward, a Gaussian analysis window is used to convolve
the result (Praat - Sound: To Intensity..., n.d.). This process returns an "intensity
object", which contains the array of intensity values over time.

The two functions used to extract pitch and intensity can be configured using input
parameters. For this project, the time between measurements (the "time step") was
set to 0.01s for both functions, while the other parameters were left at their default
values.
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4
Results

Several different tests have been performed to collect the results. In this section,
the results and significant figures will be presented. The findings from the tests
concerning the amount of data are what was being used when training the networks
to predict categories.

4.1 Amount of data

Several tests have been run to explore the impact of the amount of data on the result
of the four different languages: English, Spanish, German, and French. The results
can be found in Figure 4.1, which shows an increase in accuracy in connection with
an increase in the number of files used. The same tests have been executed after
adding Swedish as well. Those results can be seen in Figure 4.2.

Figure 4.1: A graph showing how the accuracy increases with an increase in the
amount of data used. A steady rise is visible up to 1000 files, thereafter the increase
is significantly smaller. The tests are run for German, English, Spanish and French
which all show the same trend.

25



4. Results

Figure 4.2: A graph showing how the accuracy increases with an increase in the
amount of data used. The tests are run for Swedish, German, English, Spanish and
French. Swedish can clearly be distinguished from the other languages with a much
higher accuracy throughout the whole graph.

4.2 Language Categorization

The languages used when training the models were Swedish, German, French, Chi-
nese, Spanish, and English. The Swedish audio data was only collected from the
Riksdag while data in the other languages came from the audiobooks from LibriVox.
In the following tables, the most predicted group for each actual group is marked
with bold text. The different results produced are presented below.

4.2.1 LFLB-LSTM model

A network was trained on six languages and tested with all ten languages for the
LFLB-LSTM model. A shown in table 4.1. Then, because of the deviation of
Swedish and Chinese from the other languages, another network was trained on the
remaining four languages and again tested with all ten.
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Table 4.1: The confusion matrix of the LFLB-LSTM model trained and tested on
six different languages: German, English, Spanish, French, Swedish, and Chinese.
In total, 2538 16-second samples (11 hours and 17 minutes of audio) from each
language were used during training. The model showed the most confidence when
predicting Swedish and Chinese, both with an accuracy above 90 %. The model has
an average accuracy of 80.35 %.

Table 4.1 shows the confusion matrix for the LFLB-LSTM model trained with six
different languages: German, English, Spanish, French, Swedish, and Chinese. The
model has an average accuracy of 80.35 %. The model is most confident when
predicting Swedish, where the recordings come from interpellations of the Riksdag.
The model is also confident when predicting Chinese. Both Swedish and Chinese
have an average accuracy above 90%.

Table 4.2: The confusion matrix of the LFLB-LSTM model trained with six dif-
ferent languages and tested with several languages not used during training. The
Swedish used for testing the network comes from audiobooks from LibriVox. The
model is generally somewhat uncertain in the predictions and tends to predict En-
glish in 39.47 % of the times.
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Table 4.2 show the results of what the same neural network predicted when pre-
sented with other languages which it was not trained to recognize, namely Dutch,
Portuguese, Italian, and Japanese. For these languages, the network could still only
choose between the original six languages. These results were collected in order
to see which languages it would pick and to try to understand what the network
recognizes in the different categories. The model is generally somewhat uncertain
in the predictions and tends to predict English in 39.47 % of the times.

Table 4.3: The confusion matrix of the LFLB-LSTM model trained with four
different languages: German, English, Spanish, and French. In total, 49,500 16-
second samples (220 hours of audio) from each language were used during training.
The model generates high accuracies for all languages, with an average accuracy of
92.67 %.

The results of a test with the four different languages: German, English, Spanish,
and French are shown in table 4.3. The model has high results for all languages and
an average accuracy of 92.67 %. In total, 49,500 16-second samples (220 hours of
audio) from each language were used during training.
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Table 4.4: The confusion matrix of the LFLB-LSTM model trained with four
different languages and evaluated by inserting seven languages that had not been
used for training. The first row of Swedish is parliamentary interpellations from the
Swedish Riksdag and the second row of Swedish is audiobooks from LibriVox. The
model is generally uncertain in the predictions and predicts English 63.08 % of the
times. Some tendencies to language relationships between Germanic and Romance
languages can also be seen.

Table 4.4 shows the results of the same neural network presented with languages
which it was not trained to recognize, namely Dutch, Portuguese, Swedish from
the Riksdag, Swedish from the LibriVox, Italian, Chinese and Japanese. For these
languages, the network could still only choose between the original four languages.
The results were collected in order to see which languages it would pick and to un-
derstand what the network recognizes between the different categories. The model
is generally uncertain in the predictions and predicts English 63.08 % of the times.
Some tendencies to language relationships between Germanic and Romance lan-
guages can also be seen by looking at Dutch or Swedish, that predicts English or
German most often.

4.2.2 FFNN model

Solely one test was run for the FFNN model, due to the poor performance of the
model it was not explored further.
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Table 4.5: The confusion matrix of the FFNN model trained with four different
languages: German, English, Spanish, and French. In total, 13 518 16-second sam-
ples (60 hours and 5 minutes of audio) from each language were used during training.
The model solely predicts only two languages and reaches an average accuracy of
31.84 %.

The confusion matrix for the FFNN model trained with 1502 samples of German,
English, Spanish, and French are shown in table 4.5. The average accuracy is 31.84%.
As shown in table 4.5, the model only guesses between Spanish and English. Spanish
is guessed 66.96% of the times and English 32.94% of the times.

4.3 Sex categorization

The sex models are trained solely with Swedish data gathered from the Riksdag
since the other data source does not have a label for the sex of the speaker. The
categories are male and female. The results are shown in table 4.6 and table 4.7.

Table 4.6: The confusion matrix of the LFLB-LSTM model trained with audio
files from male and female speakers. In total, 33 678 16-second samples (218 hours
and 34 minutes of audio) from each language were used during training. The model
shows extremely high accuracy when separating the two sexes.

Table 4.6 shows that the LFLB-LSTM network can clearly distinguish between sexes,
with an average accuracy of 96.63% with a total of 9206 test samples. The network
shows no tendencies to predict one sex more frequently than the other.
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Table 4.7: The confusion matrix of the FFNN model trained audio files with an
equal amount of male and female speakers. In total, 8316 16-second samples (36
hours and 58 minutes of audio) from each sex were used during training. The model
can distinguish between male and female speakers but shows significantly higher
probability to predict female speakers.

Table 4.7 shows that the FFNN model can distinguish between sexes, with an ac-
curacy of 65.60% with a total of 1848 samples, 924 of each sex. The network shows
tendencies to predict female speakers more often than male speakers.

4.4 Age Categorization

The age models are trained solely with Swedish data gathered from the Riksdag
since the other data source does not have a label for the birth year. Two age groups
were chosen to be used in the classification: a younger one, where the population is
born after 1975 and an older one, where everyone is born before 1955. The results
are shown in table 4.8 and table 4.9.

Table 4.8: The confusion matrix of the LFLB-LSTM model trained with two
different age spans: born before 1955 and born after 1975. When training 642
samples have been used for each age span. The model has a higher accuracy for
the older age span, which correlates with a higher probability to predict an elderly
speaker.

Table 4.8 shows that the LFLB-LSTM model tends to predict elderly persons more
often and therefore, also gets a higher accuracy on elderly persons. The average
accuracy is 85,32%.
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Table 4.9: The confusion matrix of the FFNN model trained with two different age
spans: speakers born before 1955 and speakers born after 1975. When training 1976
samples have been used. The model has a higher accuracy for the younger age span,
which correlates with a higher probability to predict a young speaker. The model
can distinguish between the age spans and has an average accuracy of 63.24%.

Table 4.9 shows that the FFNN model tends to predict younger speakers more often
and therefore, also gets a higher accuracy on younger persons. The model can
distinguish between the two age groups and has an average accuracy of 63.24%.
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The results of the implementation of the two different models will be discussed in
this section. Further, the choice of data collection, method, and the tools used in
the project will be addressed. After that follows a view of the ethical aspects and
the possible impact the product could have on the society and ideas regarding future
work within the subject.

5.1 Amount of data
The tests show that accuracy is correlated with the amount of data. A greater
amount of data generates a higher accuracy. The best results for the LFLB-LSTM
model with four languages was achieved when training on 4000 files per language,
but it is also clear that the relationship is not linear (see figure 4.1). A thousand
files gave an almost identical accuracy score, which seems to indicate that it would
not be necessary to gather as much data if another language were to be included in
a model. However, the nature of the language would also affect how much data were
to be needed. The LFLB-LSTM model with six languages returned good results for
Chinese although there were only 235 such files available. Presumably, this is due
to the fact that it differs so much from the other languages, which were all European.

Another remarkable aspect of these tests is the fact that Swedish achieved such high
accuracy after very little training. A model trained on German, English, Spanish,
French and Swedish with just 50 files per language achieved an accuracy of 90.91%
for Swedish, much higher than for any of the others (see figure 4.2). This result
suggests that the Swedish dataset differs significantly from the others in some way,
which will be discussed further in section 5.2.

5.2 Language categorization
There could be multiple reasons behind the less optimal result of the feature model.
The dataset in this study was more substantial compared to the study from J.C
de Bruin and J.A du Preez, but they had a greater insight into their dataset. It is
vital that the data is preprocessed in a way that makes it suitable for feature selec-
tion. Intensity features were added, and the tone features were excluded, and this
could potentially have made the subtle differences between the languages less visible.

33



5. Discussion

J.C. de Bruin and J.A. du Preez stated in their paper when explaining their poor
English results that a reason for the outcome could have been the lack of native
speakers, which might confuse the model. There has been no way to guarantee that
the speakers are native speakers in any of the audio data used when training the
models in this project, which could pose as a significant source of error.

Not a number (NaN) values were present in the pitch and intensity array of the
datasets as well at times. The audio sample was omitted when this occurred. If
this was a case of data missing at random (MAR), which means that the data is
missing due to one of its properties, this could potentially introduce bias to the
dataset. This approach would cause it to struggle to classify other data than it has
seen before. A solution to this is to investigate the data and impute the missing
value with a suitable imputation method.

A further problem with the language categorization is that the audiobooks from
LibriVox do not have a label for the sex or birth year of the speaker, which means
there is no guarantee that the sexes and ages are balanced among the different lan-
guages. This scenario could result in a neural network relating the sex or age of a
speaker to a particular language, instead of focusing on the language itself.

Another thing that is worth noting is that the Swedish audio files are collected from
the Swedish Riksdag while the other languages are all recorded audiobooks by in-
dividual volunteers. The differences in audio quality, as well as the differences in
the type of speech, could explain why Swedish is so easily distinguished compared
to the other languages. Since all Swedish audio files were recorded in the same en-
vironment and probably with the same equipment, the training data may contain
less variation in Swedish than in other languages which in turn makes the networks
worse at recognizing Swedish outside of the Riksdag. The model tends to predict
French or English when presented with Swedish audio files from LibriVox or other
sources than the Swedish Riksdag, which is a further indicator of the importance of
variation within the data set.

A method used for analyzing the LFLB-LSTM models was to test the model with
languages it had never seen before, such as Portuguese, Italian, Dutch, and Japanese.
The models expressed a greater uncertainty than otherwise, but the predicted re-
sults were somewhat expected considering the relationship between the languages.
A reason to why Dutch was recognized as English could be since they are both
Germanic stress-timed languages. German also fits this description, but since the
model has earlier showed tendencies to predict English if it is uncertain, a language
that is related to both English and German are likely to be predicted as English
more often. The reason for this may stem from the fact that there were a higher
number of unique speakers represented in the English dataset and therefore a higher
degree of variance. This situation may have resulted in the network learning what
the three other languages sounded like and then merely classifying everything else
as English. This potential scenario would explain the high confidence when testing
for Japanese since the language is very different from the others. It is neither stress-
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timed nor syllable-timed (Mok, 2009), and it does not share any relationships with
the other languages in terms of language-families. More testing would have to be
conducted in order to confirm such a hypothesis. For the romance languages Italian
and Portuguese, the model ordinarily predicted the Romance languages but also
showed rather high results for English, again possibly due to the reasons mentioned
above.

5.3 Sex categorization

The LFLB-LSTM model and the Feature model indicate that categorizing based on
sex is possible. An explanation to the higher performance of the LFLB-LSTM net-
work compared to the FFNN network, apart from the more advanced architecture,
is that the pitch and intensity sequences are left unmodified.

Another thing to have in mind is that the idea was to extract prosodic features and
try to categorize different categories based on prosody. Since the pitch is equivalent
to the fundamental frequency in the project, and males’ and females’ vocal cords
often differ due to physical differences between the sexes (Eulenberg & Farhad, 2011),
it is possible to believe that the ANN chose to separate the sexes based on their
physical differences rather than the different intonation between men and women.

5.4 Age categorization

The LFLB-LSTM model and the FFNN model indicate that categorizing based on
two age categories, separated by 20 years, is possible. The differentiation is only
done on two age spans, speakers born before 1955 and speakers born after 1975.
The reason for this is limited access to speakers of different ages from the Swedish
Riksdag, which is used as training data for the age models. Speakers born between
these years were omitted to create some distance between the groups so the neural
network can recognize them more reliably.

In figure 5.1 the distribution of the birth years of the speakers of the Riksdag inter-
pellations is shown, along with the years at which the groups were separated. As
can be seen, most audio clips which were used have speakers born soon before 1955
or soon after 1975.
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Figure 5.1: The distribution of the birth years of the speakers of Riksdag inter-
pellations shown along with the years at which we separate the groups.

5.5 Datasets
The available datasets for this project were limited. The hope early on was to find
one or more readily labeled datasets, which could be used out of the box to train
a neural network. As no such satisfactory dataset was discovered, other methods
were pursued, eventually leading to the use of the Swedish Riksdag and LibriVox as
sources.

Gathering data from two such different sources as Riksdag speeches and audiobook
recordings could pose a problem. Primarily due to the difference in audio quality
and the difference in speaking style when reading an audiobook or discussing politics
in front of a room full of people.

5.5.1 LibriVox
The LibriVox dataset, although very valuable as a large source of open data, still
has its shortcomings. Since much of the information about the speakers is entirely
unknown, it is difficult to know how the speakers vary in terms of age, gender, and
dialects. If there were to be a very skewed sex balance that differs between lan-
guages, it is likely that the network would attribute male and female speakers to
different languages. A reliable dataset should accurately reflect the population it is
trying to represent.

Another problem with this dataset is that it contains a lot of different genres, among
them music, language learning, and poetry. This fact might be very troublesome,
but since these categories constitute such a small cut of the dataset, especially in the
languages that concerned this project, and demanded much work to be removed, this
was not prioritized. This flaw is something that definitely should be improved if one
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poses to do similar work. Further, since individual volunteers record the audiobooks
with their equipment, the audio quality could be inferior.

5.5.2 The Swedish Riksdag

The API of the Swedish Riksdag was easily accessible and well structured. The
recorded audio files also provided an advantage of being recorded by the same mi-
crophone and holding equally high audio quality.

The main issue with this dataset is the type of audio files being used. Only Riksdag
speeches are used as training data since this could guarantee that only one person
spoke at a time, which ensured that the language-specific prosodic features were not
confused with multiple speakers. The data recordings are only available from 2011
though, which results in several unique speakers that are limited by the number of
members of the Riksdag since 2011.

Another problem with the dataset is that after a question to the minister, there
is a pause while they change places so that the minister can answer the question.
These pauses are not very long but quite frequent and might pose a problem to
the categorization partly because of the silence and partly because of the possible
background noises. The style of speech does not vary very much in parliament,
which also be should be taken into account.

5.6 Real world experiments

The models have not been thoroughly tested with data from other sources than
LibriVox and the Swedish Riksdag due to a lack of time. Early spot-checks indicate
that samples from radio shows, interviews, and recordings return worse results than
returned by the test data. This fact is not unexpected since a neural network only
learns to navigate in situations that it has encountered before. Since it has only
been trained on audiobook recordings and parliamentary interpellations those are
the circumstances under which the best results were achieved. More tests are needed
to verify this.

During the exhibition, the model that was trained on 220 hours of audio in each of
the four languages: English, Spanish, French, and German, was tested with several
speakers reading a text in an optional language in 16 seconds. The model generally
predicted English, no matter which language was being spoken, unless the speaker
was a native speaker. Five unique native speakers tried the demo, one speaker from
each language and the last with origins in South America. The model managed to
categorize four out of these five speakers correctly, with the Argentinian being the
exception.
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5.7 Audio preprocessing
Amethod, by which to extract that data from an audio file and save it, was necessary,
preferably one which could be automated to avoid time-consuming and repetitive
work. After having tried out various audio software tools such as Audacity and Sonic
visualizer, the audio engineering tool Praat was found to be useful for the purposes
of this project (Praat: doing Phonetics by Computer , n.d.). One method which was
explored involved taking the source audio file, passing it to Praat, and using the
built-in features of that program to extract a "pitch object", and converting it to a
"pitchtier object", which was then exported to a text file. After that, the contents
of the text file were converted into an array through a python script using a parser,
which was purpose-built for the way these text files were laid out.

This process required every audio file to be individually and manually passed through
"Praat," which did not satisfy the desired autonomy of the process. Therefore an-
other method was devised which made use of an existing python library known as
Parselmouth, which aims to make the functions of the program Praat available in a
python setting (Jadoul et al., 2018). This tool enabled the process to be automated
entirely, by use of the functions "to_pitch" and "to_intensity" as explained in section
3.7.3. By taking out the correct data from the results of these functions, arrays of
pitch and intensity of the audio over time can be created. These arrays were then
ready to be used as input data for a neural network.

5.8 Recreation of prosody
The extraction of the prosody was done with the help of algorithms that could be
set up using some different parameters. Here different parameters were not tested.
Instead, the default values were used for most of them (except the time between
measurements, 0.01 s). Using different values may have led to a better result.

For the prosody extraction in this project, pitch and intensity were extracted. There
may be other exciting metrics that could be used alongside those which may be able
to improve the results further. There are also additional aspects of prosody which
would have been interesting to utilize, such as stress and length of vowels. They
were not used as no reliable way of automatically retrieving those aspects on large
amounts of data were found.

5.9 Poor results of FFNN model
The tests with the FFNN model rendered worse results than with the LFLB-LSTM
model, in some cases even accuracies beneath 50%. A possible reason for this poor
result is that the selected features did not vary between groups as much as expected.
To view an example, see figure 5.2, which shows that there are no dramatic differ-
ences between the groups along with the metric of the average gradient of positive
slopes.
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Figure 5.2: Boxplots of the distribution of the average gradient of positive slopes
(Hz/s) for each group.

The groups of people present here are speakers of the languages Swedish, English,
German, Spanish, French, and Chinese, along with men, women, young people (born
after 1975) and old people (born before 1955) from the Riksdag. Boxplots of the
distributions of more features for these groups of people can be found in appendix
A. Another possibility is that these features were not appropriately extracted and
that some of them, therefore, had invalid values which negatively affected the result.

5.10 Social and Ethical Aspects
A lot of ethical aspects have required our attention during this project. Even though
all the data that has been used is publicly available, aspects regarding what is eth-
ically correct to save and use when training our networks have been a subject of
discussions. For example, when saving the personal information from the Swedish
Riksdag, the political opinion of each speaker was accessible, as well as a full record
of education and the employment of the respective parents. We did not feel comfort-
able saving this rather sensitive information or using when predicting our categories
since it could easily be misused for other purposes.

A concern with the final program could be if it were used in a manner that would
treat people differently depending on the language they spoke or what sex they are.
The issue with categorizing any trait is that it could be used in a discriminating
way, which is something that further segregates society. Can a machine with the
capability of treating people differently depending on their background be consid-
ered ethical? Perhaps insurance companies could use this information to determine
the rates based on a person’s speech? It might even be possible for authoritarian
governments to locate and harass ethnic minorities by monitoring how people speak
when they are using their phones.
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5.11 Future work
An interesting subject for the future would be to further look more into detail of
the categorization based on prosody, and work with the essential details of prosody
together with carefully selected data. By looking at shorter audio sequences, one
could try to manipulate the sound and see how the neural network adapts and cat-
egorizes the new corrupted files. These tests could increase one’s knowledge of how
the network is processing the audio files, which later could improve one’s ability
to create more powerful models as well as learning about significant features that
humans potentially overlook.

Other categories that were discussed during this project were accents, a natural
category to branch to after looking at languages. Emotional state and intent was
also brought up as an interesting subject to look into, which could be used by smart
agents to improve the user experience of the interaction.

To categorize questions vs. statements was also discussed as potential future work.
One of the issues with categorizing questions vs. statements is that the prosody
commonly varies from languages to languages and accents to accents, such as how
a question or statement is pronounced (Nordquist, 2018). In English, it is common
that the pitch decreases at the end of a statement and increases at the end of a
question. Australian English, however, uses high rising terminals, which means that
the pitch often rises at the end of a statement. This style of speaking is also typical
in California, where it has come to be known as valley girl speech.
This problem could potentially be solved by adding a pipeline of models that first
categories the language and regional accent, followed by a model that classifies the
sentence as a question or statement. This obstacle would also be an exciting project
to look into one day, where many different models of classification could be added,
returning some status of a person based on their prosody.
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Conclusion

Based on the research and experiments done in this project it is possible for the
LFLB-LSTM model to distinguish

• Swedish, English, Spanish, French, German, and Chinese from one another.
• the sexes male and female from one another.
• the age groups born after 1975 and born before 1955 from one another.

Based on the research and experiments done in this project it is possible for the
FFNN model to distinguish

• the sexes male and female from one another.
• the age groups born after 1975 and born before 1955 from one another.

The network draws these conclusions based solely on the pitch and the intensity of
the audio files.

The language model is introduced to a few new languages, and it returns a relatively
expected result. Germanic languages are a vast majority of the times classified as
Germanic languages English and German, while Romance languages are recognized
as the Romance languages French or Spanish. If the model is uncertain, such as
the case with Japanese, it classifies the language as English which could be due
to the large number unique speakers in the English data set that was used when
training the LFLB-LSTM model. These results support the idea that the prosody
could be taken into account. Prosody as a whole might make these predictions in
the language model, but this can not be guaranteed.

The feature model performed significantly worse than the LFLB-LSTM model, but
potentially not just because of its architecture, but rather a lack of understanding
of what it was in the data that set the groups apart from one another, an important
criterion when creating a suitable model for a dataset.

Since the data from the Swedish Riksdag generated a network that was not able
to categorize other Swedish speech, it highlights the importance to get a sufficient
variance in the data within groups to avoid mistakes of selecting unrelated properties
from the data. The neural network will less frequently categorize based on unrelated
properties when the audio has a higher variance, in terms of audio quality, type of
reading, emotional state, and other similar characteristics.
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A
Boxplots of prosodic features

Presented in this appendix are boxplots of the distributions gathered for each group
for the 14 calculated prosodic features. For each group, 1000 values were used for
every feature, except for Chinese, which had only 235 values for every feature.

Figure A.1: Boxplots of the distribution of the average pitch (Hz) for each group.

Figure A.2: Boxplots of the distribution of the pitch variance (Hz2) for each group.
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A. Boxplots of prosodic features

Figure A.3: Boxplots of the distribution of the average length of voiced speech (s)
for each group.

Figure A.4: Boxplots of the distribution of the variance of length of voiced speech
(s2) for each group.
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A. Boxplots of prosodic features

Figure A.5: Boxplots of the distribution of the average length of unvoiced speech
(s) for each group.

Figure A.6: Boxplots of the distribution of the variance of length of voiced speech
(s2) for each group.
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A. Boxplots of prosodic features

Figure A.7: Boxplots of the distribution of the average length of positive slopes
(s) for each group.

Figure A.8: Boxplots of the distribution of the average length of negative slopes
(s) for each group.
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A. Boxplots of prosodic features

Figure A.9: Boxplots of the distribution of the total number of positive slopes for
each group.

Figure A.10: Boxplots of the distribution of the total number of negative slopes
for each group.
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A. Boxplots of prosodic features

Figure A.11: Boxplots of the distribution of the average gradient of positive slopes
(Hz/s) for each group.

Figure A.12: Boxplots of the distribution of the average gradient of negative slopes
(Hz/s) for each group.
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A. Boxplots of prosodic features

Figure A.13: Boxplots of the distribution of the average intensity (dB) for each
group.

Figure A.14: Boxplots of the distribution of the intensity variance (dB2) for each
group.
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