
Machine Learning in StarCraft II
Lowering the Difficulty Threshold of Starting From Scratch

Bachelor’s thesis in Computer Science and Engineering

SVANTE BENNHAGE, ERIC GULDBRAND,
OMAR OUEIDAT, MATTIAS TORSTENSSON,
SILAS ULANDER, ERIK WALLHEDE

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Bachelor of Science Thesis

Machine Learning in StarCraft II

Lowering the Difficulty Threshold of Starting From Scratch

SVANTE BENNHAGE
ERIC GULDBRAND
OMAR OUEIDAT

MATTIAS TORSTENSSON
SILAS ULANDER
ERIK WALLHEDE

Department of Computer Science and Engineering
Chalmers University of Technology

Gothenburg, Sweden 2019

Machine Learning in StarCraft II
Lowering the Difficulty Threshold of Starting From Scratch
SVANTE BENNHAGE, ERIC GULDBRAND, OMAROUEIDAT, MATTIAS TORSTENS-
SON, SILAS ULANDER, ERIK WALLHEDE

© SVANTE BENNHAGE, ERIC GULDBRAND, OMAR OUEIDAT, MATTIAS
TORSTENSSON, SILAS ULANDER, ERIK WALLHEDE, 2019.

Supervisor: Jonas Duregård, Department of Computer Science and Engineering
Examiner: Wolfgang Ahrendt, Morten Fjeld, Sven Knutsson, Department of Com-
puter Science and Engineering

Bachelor’s Thesis
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An Orbital Command, a Terran building in StarCraft II.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Acknowledgements

Special thanks to our supervisor Jonas Duregård for providing us with assistance
and valuable feedback throughout the project. We also thank the DATX02-19-
81 group for bringing to our attention and helping us with the Sc2Reaper tool.
Our gratitude also to the Division for Language and Communication for their help
with the writing process as well as to the Department of Computer Science and
Engineering for making this project possible.

v

Machine Learning in StarCraft II
Lowering the Difficulty Threshold of Starting From Scratch
SVANTE BENNHAGE
ERIC GULDBRAND
OMAR OUEIDAT
MATTIAS TORSTENSSON
SILAS ULANDER
ERIK WALLHEDE
Department of Computer Science and Engineering
Chalmers University of Technology

vii

Abstract
Artificial intelligence research is currently a hot topic within many industries. In
terms of research, games such as StarCraft II provide a good testing ground due to
its accessibility. However, getting started can still be more difficult than it should
be.
This paper aims to facilitate the development of a machine learning agent for

StarCraft II by designing tools for data collection, making a simple API built on
top of PySC2 to facilitate interaction with the game and by analyzing a few different
types of artificial neural networks with respect to StarCraft II.
It is concluded that defining reward functions for reinforcement learning can give

rise to unexpected behaviors. A further conclusion is that convolutional neural
networks tend to be more resource intensive than non-convolutional networks and
that they are thus less suited for anyone without access to large computational
power. Lastly, a network is trained on collected data to continuously predict the
win chance for players in a StarCraft II match. Unfortunately the network does not
become successful in its task, likely in part due to the simplicity of the network.

Keywords: Artificial Neural Networks, Machine Learning, StarCraft II, Reinforce-
ment learning, Supervised learning

viii

Sammandrag
Artificiell intelligens är ett högaktuellt område inommånga forskningsfält. I forsknin-
gen är spel som StarCraft II en utmärkt utgångspunkt på grund av sin tillgänglighet
och sina tydliga avgränsningar. Tyvärr kan det för nybörjaren ändå vara svårare
att komma igång än det borde vara.
Denna rapport syftar till att underlätta uppstarten av maskininlärning genom att

utveckla verktyg för datainsamling, bygga en API ovanpå PySC2 som underlättar
interaktion med spelet och genom att analysera några olika typer av artificiella
neurala nätverk med hänsyn till StarCraft II.
Slutsatsen som dras är att många definitioner av belöningsfunktionen (eng: “re-

ward function”) kan ge upphov till oförväntade beteenden. Vidare dras slutsatsen
att konvolutionella neurala nätverk tenderar att vara mer datorkraftsintensiva än
icke-konvolutionella och är därmed mindre lämpliga för den med tillgång till mindre
kraftfull hårdvara.
Slutligen tränas ett nätverk på insamlad data för att kontinuerligt förutspå vin-

stchansen för spelarna i en StarCraft II match. Däremot lyckas nätverket inte ge
några användbara resultat, troligtvis på grund av nätverkets alltför enkla struktur.

x

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Problem description . 2
1.3 Limitations . 2
1.4 Social and Ethical Aspects . 3

2 Background 5
2.1 StarCraft II . 5
2.2 Artificial intelligence and machine learning 6
2.3 Artificial Neural Networks . 6
2.4 Supervised learning . 13
2.5 Reinforcement learning . 14
2.6 Deep Q-Learning . 15
2.7 Tools . 16

3 Method 17
3.1 Creating artificial neural networks . 17
3.2 Reinforcement Learning . 17
3.3 Supervised Learning . 19

4 Results 23
4.1 A simplified API for PySC2 . 23
4.2 PySC2 data extraction from replays 23
4.3 Supervised Learning . 24
4.4 Reinforcement Learning . 24

5 Discussion 31
5.1 Replay data extraction issues . 31
5.2 Supervised Victory Prediction Network 32
5.3 Reinforcement agent . 32
5.4 Future Work . 34

6 Conclusion 37

Bibliography 39

xi

Contents

xii

1
Introduction

Recent years have seen much development within the field of artificial intelligence
(AI) [1]–[3], with a long-term goal of developing artificial general intelligence (AGI)
[4]. AI is a popular field of research within a multitude of industries, some examples
being autonomous driving, camera technology and medicine.
A common concept within the field of AI is agents. An agent is an autonomous

component which reacts to inputs received from the surrounding environment, whether
it is the real world, a game, or some other simulation [5]. The output is decided
by some sort of scripted logic or an Artificial Neural Network (ANN), which is a
computational learning system inspired by human biology [6]. ANNs are commonly
trained with methods such as reinforcement learning or supervised learning. The
response from an agent should be the next action to take. For example, an agent
designed to play chess would look at the current state of the board in order to
contemplate its next move. An agent designed for autonomous driving could use
sensory data to build an understanding of the car’s surroundings, thus being able
to decide if it could or should switch lanes.
In AI research, games are seen as one of the most prominent challenges, as well

as an excellent environment to train ANNs in [7]. Computer games have also been
referred to as the best platform to use in order to reach the long-term goal of
creating an AGI [7]. As recent as 2017, an agent created by DeepMind was able to
convincingly beat the world champion program in traditional board games such as
Chess, Shogi, and Go [8], paving way to further research in other genres of games.
Despite this breakthrough, there is still a relatively large area unexplored in gam-

ing. Shogi, Go, and Chess all have a smaller action space compared to genres such
as Real Time Strategy (RTS) games, which makes it harder to create agents for,
requiring higher amount of computing power and more efficient algorithms.
A popular game within the RTS genre is StarCraft II (SC2), which also is a

primary candidate for research in AI using games. SC2 is a game that revolves
around gathering resources, managing one’s economy and building an own army
with the end goal of destroying the opponent’s base. There are many reasons why
SC2 poses a major challenge for AI, one of them being the aspect of imperfect
information. A player can only see what is happening in areas where friendly units
or buildings are located, meaning that information about the enemy’s movements
and advancements has to be acquired by the player’s own accord. SC2 has been the
focus of research for some time and this year (2019), an agent, created by DeepMind,
was able to beat two professional SC2 players ten times while only losing once [9].

1

1. Introduction

1.1 Purpose
This paper aims to lower the difficulty threshold of starting out with machine learn-
ing in StarCraft II. It analyzes different artificial neural networks and provides un-
derstanding of several tools associated with creating an agent that can learn and
play StarCraft II.

1.2 Problem description
Creating an able machine learning agent for StarCraft II requires several types of
networks in order to incorporate different types of data. This paper aims to alleviate
the difficulty of creating such an agent by a few key steps.
First, two kinds of reinforcement agent are evaluated on StarCraft II in terms of

their received score, training time and behavior. This is to gain a basic understand-
ing of reinforcement agents in a complex game environment.
Secondly, a path is staked for training SC2 agents on replays by modifying and

combining existing libraries for replay collection, sorting and parsing. This is a
necessity for the supervised agent, since no ready solution seems to already exist.
An easy-to-use API for any type of SC2 machine learning is also developed so that it
will be easier for others to get started with SC2 machine learning. The hope is that
this API, its documentation and this report can serve as a stepping stone for anyone
who is starting out with AI development so that they can quickly learn and build
more advanced agents without spending too much time on researching the basics
themselves.
Finally, an ANN is trained with supervised learning to predict the current chance

a player has to win by looking at replays of human games. This is relevant since a
previous study by DeepMind [10] indicates that it is difficult for an SC2 reinforce-
ment agent to learn without knowing if its actions improve or deteriorate its chances
of winning.

1.3 Limitations
Result analysis is limited to only a subset of StarCraft II, namely by restricting play
and replay analysis to a single of the game’s three races (terran) on SC2 version
4.8.3.
Furthermore, reinforcement agents are only evaluated on a mini-game representing

a sub-problem of SC2 (collecting minerals) and have their action space restricted.
This includes grouping multi-step actions or actions with positional arguments into
single-stage actions with no arguments. This limitation is motivated by DeepMind’s
results [10] on how reinforcement agents perform poorly on SC2’s large action space.
Networks are only given cursory analysis of how well they utilize computational

resources and are not optimized to take advantage of all available hardware during
training. A proper analysis of these aspects would require more in-depth knowledge
regarding tools and libraries used for training, and optimization has not been a
priority due to the relatively small benefit of being able to utilize the resources
available.

2

1. Introduction

1.4 Social and Ethical Aspects
The research and development of AI has both pros and cons: the technology has
been used to help diagnose diseases [11] while having the potential to be used for
mass surveillance [12]. It could be used to help automate jobs or be used in self
driving cars, while at the same time it could be used in unmanned combat or to
help oppressive governments. This makes AI the topic of ethical debates as well as
the subject of potential new laws.
This thesis only explores creating a basic agent for a game, which is a small

sub-problem of creating AGI. This would therefore not have any large-scale ethical
consequences in real life. However, there is the possibility that AI would affect the
game in a negative way. When AI was introduced to Chess, with the ability to
beat the world champion, there was no direct negative impact. Creating an agent
for this thesis will therefore probably not affect the game negatively, but rather
perhaps introduce a nuanced way of playing the game which has not been thought
of before.

3

1. Introduction

4

2
Background

This chapter intends to make it easier for the reader to understand all the different
concepts regarding how to create an agent for SC2 using artificial neural networks.
It includes describing the different tools used, previous work done on the subject,
as well as the general topic of machine learning and AI.

2.1 StarCraft II

StarCraft II is a mostly deterministic [10] RTS game. Players can choose to play as
one of three races: terran, protoss or zerg. Each race has access to different units
and buildings which leads to different strategies being popular for each race. There
are multiple game modes, the most common one involves two players competing
against each other in a one-on-one duel. Players start with a single base building
and have to collect resources, construct buildings, create an army and destroy all the
opponent’s buildings. Games often last anywhere from 5 to 40 minutes depending
on the strategies employed.
The SC2 action space is vast, since a player can at any moment select any number

of their buildings and units, and then issue commands that build something, attack,
or move them to any point on the map. In addition some unit types are able to use
abilities which can cause drastic changes to the game’s state. An example would
be teleporting in order to bypass obstacles or by calling down a nuclear strike,
destroying most units in the area.
Blizzard Entertainment, the company behind SC2, recently created a public API

for interacting with the game [13]. This allows for easier development of agents that
can play the game. Along with this, DeepMind created the StarCraft II Learning
Environment [10] PySC2. PySC2 maps the Blizzard API for the Python [14] pro-
gramming language which makes it easier to integrate with tools like TensorFlow
[15].
Games like SC2 provide opportunities to explore the behaviour of machine learn-

ing and artificial intelligence in a setting where every piece of crucial information is
not continually available, and has to be acquired by choices and actions made by
the network it concerns [9], compared to games like Go and Chess where this is not
the case.
Actions in Go and Chess always lead to exactly the same result given the state

of the game, while this is mostly true for SC2 there are some caveats. First is the
asymmetry of information, players do not always have access to the entire state of
the game but instead see a subset of it at any one time, thus, the perceived state

5

2. Background

of the game could differ drastically from the actual state. Second, there are some
minor aspects of the game, such as the unit update order, which are random [10].
Last is the real-time component of the game, while it is possible to execute the same
actions at the same time it becomes highly unlikely as a match continues. However,
if both players act identically to a previous match, at the same point in the match,
the outcome will be the same assuming the random seed is the same.

2.2 Artificial intelligence and machine learning

To quote George F Luger [16], “Artificial intelligence (AI) may be defined as the
branch of computer science that is concerned with the automation of intelligent
behavior”. In later years, this concern has found application and a useful testing
ground with computer games [17].
Machine learning is a sub-field of artificial intelligence where a computer follows a

data parsing algorithm that allows it to learn how to solve a problem related to the
parsed data, rather than by following an algorithm incorporating domain specific
knowledge to solve a problem directly [18]. The study of machine learning is defined
by Tom M. Mitchel in his 1997 book “Machine Learning“ [19] as “A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P, improves
with experience E”. For instance, the chess engine Deep Blue was developed using
a more classical approach to artificial intelligence and uses an evaluation function
that could not have been created without previous knowledge of chess [20]. Classical
machine learning like the Viola-Jones 2001 face-detection algorithm [21] however,
does not add any domain knowledge specifically, but leaves it to the computer to
figure out what features are important for distinguishing faces.

2.3 Artificial Neural Networks
Modern machine learning research is to a great deal based on artificial neural net-
works (ANN) which are constructed using layers of artificial neurons connected by
weighted edges [6]. Figure 2.1 shows a fully connected neural network (each node
in one layer is connected to each node in the next) with one hidden layer. This is
a typical look of a neural network although the number of neurons(nodes) in each
layer can vary greatly. The number of hidden layers can also vary, with any network
using multiple layers being classified as a deep network [22].
The simplest form of artificial neuron is the McCulloch-Pitts [23] neuron, which

only has two states, either it is active or inactive [6]. It calculates a weighted sum
of its input values and if that weighted sum is greater than the neuron’s threshold
(also called bias), it will activate. A single neuron is described by

H(
∑
j

wjxj − θ), (2.1)

where wj represents the weight for the input xj, θ is the threshold of the neuron

6

2. Background

Input Layer Hidden layer Output layer

Figure 2.1: A fully connected (dense) neural network with one hidden layer.

Neuron

Figure 2.2: The representation of a McCulloch-Pitts neuron. The two left arrows
is the input and the output is the arrow to the right.

7

2. Background

and H is the Heaviside step function

H(x) =
{

1 x ≥ 0
0 x < 0

. (2.2)

The Heaviside function is the neuron’s activation function and modern, more ad-
vanced neurons have continuous output values. These are facilitated by other acti-
vation functions such as ReLU(see section 2.3.2).

x1

x2

w = (1
1)

Figure 2.3: A decision boundary representing a neuron with two inputs with both
weights set to one and the threshold set to zero. The dotted line is the boundary
classifying two different kinds of data, represented by green squares and red circles.
The blue arrow is the representation of the weights of the neurons in vector format.

In the case of a single neuron with two continuous inputs and a binary activation
function as shown in Figure 2.2, one can interpret the neuron geometrically as a line
going through the input plane, separating points on either side to one of the possible
outputs [24]. This is shown in Figure 2.3, which shows the decision boundary of a
neuron with two inputs, both with weights w1 = w2 = 1, and threshold θ = 0. It
can be seen that with both weights equal to 1 the weighted sum would be 0 when
x1 + x2 = 0, on the line perpendicular to the weight vector. In other words the
direction of the vector made up by the weights of each input to a neuron decides
what angle the decision boundary has. Similarly the value of the threshold shifts
the position of the line. Single neurons with N inputs can be interpreted similarly
but instead of a line separating the space there is instead a (N − 1)-dimensional
hyperplane [24].
Since a neuron separates the input space with a single hyperplane, a single neuron

can only classify inputs correctly if they are linearly separable. For instance, the
XOR function

XOR(x, y) =
{

0 x = y

1 x 6= y
(2.3)

can not be classified by single neuron, as demonstrated in Figure 2.4a.

8

2. Background

x

y

0

1

0 1
1

1

1

0

(a) Incorrect XOR
function classifica-
tion

x

y

0

1

0 1
0

1

1

0

(b) Correct XOR
function classifica-
tion

Figure 2.4: Figure 2.4a shows an unsuccessful classification of the XOR function
because of only using one neuron. The Figure 2.4b shows a successful classification
of the XOR function thanks to using more than one neuron.

Input Layer Hidden layer Output layer

Figure 2.5: Network of neurons used for successfully classifying XOR. Weights and
biases of links are not shown in this figure.

To successfully classify complex input, more neurons need to be introduced. Fig-
ure 2.5 shows a layered feed-forward structure that can do classify XOR correctly.
Here, each neuron receives input from the previous and then feeds its output forward
to the next. For such networks, the first two neurons can create decision boundaries
as seen in Figure 2.4b, each activating and outputting the value 1 for three of the
points. The last neuron can then have its weights and thresholds set up so that it
activates if both of the previous neurons are active, thus making the final output
only activate for the points between the decision boundaries, successfully classifying
the XOR function.
With more layers and more neurons in each layer, the network will be able to

correctly classify data that has more complex boundaries. However, if the network
becomes too complex it can lose its ability to generalize in favor of memorizing. This
is called overfitting [25, p. 93].

2.3.1 Optimization Algorithms

In machine learning, the optimization algorithm is how the program can learn by
itself. For an ANN, learning is based around updating the weights and biases be-
tween neurons. The performance of an ANN is determined by the loss function, a
measure of how close the actual output of the ANN is to the target output.

9

2. Background

One loss function is the squared error

E[w] = 1
2

∑
iµ

(tµi −O
µ
i)2. (2.4)

where Oµ
i is the output from output neuron i for pattern (input) µ and tµi is the

expected output of that neuron for pattern µ, its label. This sum generally has
a positive value, but if the network labels input correctly it approaches zero [24].
Since Oµ

i is a neuron it is defined similarly to (2.1), but with a different activation
function and an extra index to specify which neuron in the layer the weights and
threshold are connected to. It is described by

g(
∑
ij

wijxj − θi). (2.5)

The loss function has a global minimum when all patterns are correctly classified.
Since it is a function of the threshold and weights for each neuron inside the network,
the performance of the network can be improved by changing the weights according
to

∆wij = −n dE
dwij

. (2.6)

That is, the change in each weight, ∆wij, is proportional to the gradient of E [24,
p. 104]. The threshold for each node in the network should also be updated, this
can be done similarly to how the weights were updated, but through derivation with
respect to the threshold instead.
By repeatedly feeding input through the network and updating the weights and

thresholds, the network should converge towards a local minimum, however by
adding some randomness to how patterns are fed one hopes it converges towards
a global minimum where it can correctly classify all input patterns. This is called
stochastic gradient descent.
Ideally, the network can also generalize to successfully classify patterns that it

has not seen before. Whether this happens or not in practice depends on many
factors, such as if the learning rate n is properly set or if the network structure is
appropriate for the problem. The learning rate is the factor of which the network
updates its weights and thresholds. There are a lot of different techniques that can
be used in order to potentially improve the network’s learning ability, for example
by lowering the learning rate over time.
An extension to stochastic gradient descent is the optimization algorithm called

Adam[26], which has its roots in two other algorithms, RMSProp and AdaGrad [27].
The principle behind AdaGrad is to give parameters which receive big updates a

smaller effective learning rate while the effective learning rate is increased for the
parameters which received a smaller update [28].
RMSProp is described by Dahal, P [28] to offer a solution to the problem related

to the monotonically increasing part of AdaGrad where the learning rate is steadily
decreasing and can thus approach a point where it stops learning altogether.
Adam is the combination of adaptive learning and momentum learning with an

additional bias term, which is explained by Dahal, P [28].

10

2. Background

2.3.2 Activation functions
In artificial neural networks all nodes use an activation function. Commonly used
functions are Sigmoid, Tanh, and different types of ReLU. The purpose of the acti-
vation function is to modify the output of each neuron to follow a certain behavior.
An example of one such behaviour is using the sigmoid function as an output of a
neural network since it can be interpreted as a probability.

x

y

1

(a) Sigmoid

x

y

1

(b) ReLU

Figure 2.6: Graphical visualization of the Sigmoid and the ReLU funtion. The blue
curve is the ordinary function, f(x), and the orange is the derived function, f ′(x).

Sigmoid and Tanh are used when the desired output of the neurons are values
between zero and one, respectively one and negative one. A common problem asso-
ciated with both the sigmoid (Figure 2.6a) and the tanh as an activation function
is the vanishing gradient problem (see section 2.3.3).
ReLU stands for rectified linear unit. The derivative of the ReLU (Figure 2.6b)

functions is constant, namely 1 and 0. This reduces the risk of the vanishing gradient
problem, at the cost of not having a upper bound of the output values of the neurons.

2.3.3 Vanishing Gradient Problem
Often, it is not a good idea to create too deep networks due to the vanishing gradient
problem. This problem often occurs when a network becomes too deep. A vanishing
gradient refers to an exponential decrease of the size of the gradient, thus diminishing
the effects of the neurons in the layers [25] and slowing down the learning process.
A proposed solution to the problem is Long Short Term Memory networks [29].
The ReLU function (see section 2.3.2) is believed to partially negate the vanishing
gradient problem since it does not saturate (approach a limit) as its input grows
[25].

2.3.4 Long Short Term Memory Network
A Long Short Term Memory network (LSTM) is a variant of RNN that is designed to
solve the issue of preserving long term dependencies that appears in ordinary RNNs
[30]. LSTMs contain a memory cell that stores and updates a state of information
[31], [32] that the network itself deems to be relevant to the context of what it is
currently trying to predict. For each step in time, the LSTM forwards the current

11

2. Background

state of its cell to the next iteration or step in time, allowing it to to take previous
data into consideration when making decisions.
The state of a cell is managed through three different structures called gates, each

with their own purpose [30]. There is the forget gate, the input gate, and the output
gate. The forget gate learns to decide which data in the cell state is not necessary to
store anymore. The input gate decides on which values in the cell state to update,
as well as which new values should be entered. Lastly, the output gate learns to
determine which part of the cell state we want to output.
The LSTM architecture is designed specifically to solve the vanishing gradient

problem [33]. As mentioned in the previous section, this issue arises when a value
that is meant to alter the importance of an event from a previous state of time is
multiplied over and over with each other. LSTM networks monitor this issue with its
gates, and the flow of information in and out of the hidden state is guarded by these
gates [29]. Because of the gates ability to continuously update the gradients value,
or even shut the gate off by setting the gradient to 0, thus allowing no new data to
enter or to be removed from the hidden state, they make sure that the importance
of the the hidden state does not end up as undervalued.

2.3.5 Convolutional Neural Networks
Humans can quickly identify an object in a picture after having learned what the
object looks like, even if the picture overall is drastically different from previous
instances that the object has been seen in. For computers this is difficult, since
a picture is nothing but a matrix with values representing each pixel rather than
observable objects with context. Teaching machines to identify objects quickly and
accurately takes a lot of computing power given a densely pixelated picture. To solve
this problem a neural network that uses convolution was created by Yann LeCun
and his team in 1994 [34].
Convolutional Neural Networks (CNN) are networks that are built hierarchically

with convolution layers and pooling layers that are altered as seen in Figure 2.7.
Convolutional Layers take an image as input, and outputs a set of feature maps.

The image input can be perceived as a 3-dimensional matrix or a set of 2-dimensional
matrices, where each set represents a channel in the image (e.g 1 channel for grayscale
images, 3 for RGB etc). Similarly, the feature maps are multidimensional as well,
with each index being the output of a single neuron from the layer. In contrast
to fully connected layers, convolutional layers are not fully connected, instead each
neuron is only connect to a small square section of the input layer. The weights of
the neurons are different as well, with a convolutional layer’s neurons sharing their
weights with each other. This allows the network to detect features in the image
without being influenced by the coordinates that the feature has [35]. One can
interpret the convolutional layer as a square, called a filter, moving across the input
and doing calculations with the data inside of the square. Parameters for the layer
change the square’s behaviour, for example stride changes how many pixels it moves
at a time. An example of how the input is mapped to the output of a convolutional
layer can be seen in Figure 2.8, where a small 4x4 image with only one channel is
connected to a convolutional layer using a 2x2 filter. For more complex convolutional

12

2. Background

input image

layer l = 0

convolutional layer

layer l = 1

pooling layer

layer l = 2

convolutional layer

layer l = 3

pooling layer

layer l = 4

fully connected layer

layer l = 5

fully connected layer

output layer l = 6

Figure 2.7: The architecture of the original convolutional neural network, as intro-
duced by LeCun et al. (1994). Each layer of pooling reduces the size of the feature
maps by filtering out only the spatial information. The feature maps of the final
pooling layer are then fed into the actual classifier consisting of an arbitrary number
of fully connected layers.

layers each channel of input has its own set of weights. Furthermore it is possible
to have multiple filters and feature maps, effectively connecting the input to an
additional convolutional layer. For further reading, see [35].
Pooling layers are layers that run through the feature maps produced by a

convolution layer. The pooling layer merges the semantically similar features in the
feature map [36]. This layer is often placed after a convolution layer.
The pooling layer usually used is max-pooling, which also uses the same principle

as the convolution layers of having a window that run through the feature maps, but
instead of performing discrete convolution it takes the maximum value of each of the
filters. The output is then a densely computed layer which density is determined by
the filter size and the stride length.

2.4 Supervised learning

Supervised learning is when a machine learns from already labeled data by trying to
classify it with the same labels [37], [38]. Models trained with supervised learning
are typically used for classification or regression [37], [38]. Classification being when
data points are classified as one of several groups, such as when recognizing images
of different kinds of fruit, and regression being when a value from a continuous scale
is estimated, such as estimating the value of a house given its floor plan.
In comparison to reinforcement learning, a drawback with supervised learning is

the need for large amounts of labeled data. Labeling data is usually very labor
intensive which creates a bottleneck for the development process. The quality and
variety of the data itself is also critical.

13

2. Background

Figure 2.8: Example of how a convolutional layer maps input (left) to output
(right). The size of the filter changes the size of the blue square in the input, while
the stride changes how it moves. This example uses a stride of 2, this maps the
other quadrants of the input to their respective output quadrants. Using a stride of
1 would result in shifting the square one step at a time, increasing the output size to
3x3.

Agent

Environment

Reward State Action

Figure 2.9: An agent using reinforcement learning, having reward and state as
inputs from the environment and action as an output to the environment.

2.5 Reinforcement learning
Reinforcement learning (RL) is the process where an agent optimizes its decision-
making by maximizing a reward through trial and error [39], rather than being told
what to do. This is complicated by the fact that the greatest rewards often are
hidden behind stretches of low or no reward. As such, the agent must learn to take
certain actions even when the reward is delayed. In the book Reinforcement Learning
[39] trial and error, and delayed reward are recognized as “the most important
distinguishing features of reinforcement learning”.
As visualized in Figure 2.9, a reinforcement learning agent is a function that

takes two inputs: the reward, and the current state of the environment. It will then
produce some output action that in turn affects the environment state.
RL has been proficient in areas like games when there is a distinct reward system

for each action executed [40]. There are also different kinds of reward systems one
can implement into the learning phase. An example would be Super Mario where
the goal could be to reach the finish line, of which the reinforcement algorithm

14

2. Background

will give positive rewards when Mario goes forward and negative when he moves
backwards. Another reward system for the same game could be how many points
you can achieve, of which the positive rewards increases every time Mario collects
coins.

2.6 Deep Q-Learning
Deep Q-Learning (DQL) [40] is a reinforcement learning algorithm derived from a
simpler model called Q-learning. Q-learning is a way to provide the agent with the
ability to learn to act optimally in a Markov chain, this is done by experiencing the
consequences without building a complete map of the domain and could be viewed
as asynchronous dynamic programming [41].

Algorithm 1 Deep Q-Learning with experience replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode= 1,M do
Initialize sequence s1 = x1 and pre-processed sequenced φ1 = φ(s1)
for t=1, T do
With probability ε select random action at
otherwise select at = maxaQ

∗(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1
Set st+1 = st,at,xt+1 and pre-process φt+1 = φ(st + 1)
Store transition (φt,at,rt, φt+1) in D
Sample random minibatches of transitions (φj,aj,rj, φj+1)

Set yj =

rj, for terminal φj + 1
rj + γmaxaQ

∗(φ(st+1), a′; θ) for non terminal φj+1

Perform a gradient descent step on (yj −Q(φj, aj; θ))2 according to an equa-
tion

end for
end for

Figure 2.10: Algorithm for Deep Q-Learning with experience replay as described by
DeepMind in their 2013 paper [40]. This algorithm is used the reinforcement agent
in this paper.

In DQL one trains an artificial neural network to approximate the reward, r,
that an agent would get for performing an action, plus a factor of the maximum
future reward if the agent plays optimally according to the network. In normal
Q-learning this is achieved by constructing a table of every single state as well as
what cumulative reward the agent would get for taking every possible action in those
states, rather than using a network [41].
DQL utilizes experience replay, a form of data that saves the agent’s experiences

15

2. Background

at each time step into a replay memory. This memory is used during training so
that the agent utilizes previous experiences in its training [40].
A Deep Q Network (DQN) is a network that uses DQL for learning. DQN can

have different policies, the paper however focuses on the ε-greedy policy. This policy
integrates exploitation and exploration decision-making, which helps with the train-
ing of the agent. Exploration is the probability that the agent chooses a random
action in order to explore different areas. Exploitation makes the agent perform the
action that it currently believes is the best. A typical DQN uses a degrading explo-
ration rate to make sure that the agent tries many random choices in the beginning,
gradually optimizing the decision-making with the help of exploitation.
The main algorithm in Figure 2.10 was used for Deep Q-learning by DeepMind

in their 2013 paper “Playing Atari with Deep Reinforcement Learning” [40] and is
also used for the reinforcement agent in this paper.

2.7 Tools
TensorFlow [15] and Keras [42] are APIs initially written for Python that allows
for easy creation of different neural network models. Both APIs use modular com-
ponents to allow for fast experimentation. This means its possible to create high
performing neural networks with a few lines of code.
PySC2 is a tool which implements the Blizzard API to make it easy to create

and train agents with the functionality it includes out of the box. One of its most
prominent features is the multiple image layers (called feature layers) with different
game information that one can extract, these range from which units occupy certain
pixels on the screen to which parts of the map that are visible. One can use these
images as inputs to an agent, which makes it easier for the agent to interpret the
game as it is an abstraction of it. Another feature that PySC2 provides is the ability
to send actions to the game client, allowing agents to act.
Sc2reaper [43] is a tool for extracting game data from replays. With the agents

using the game’s state as input, and replays only containing a list of actions per-
formed in a match, this program allows one to convert the game’s replays into game
states. The data is stored inside of a database using MongoDB.
MongoDB [44] is a relatively new type of database, NoSQL, that has removed the

concept of table, rows, SQL, and schemas. In contrast to older types of databases,
such as MySQL and PostgreSQL, MongoDB has no transactions, foreign keys and
other typical features. MongoDB is a document-oriented database [45]. MongoDB
stores its data in flexible BSON documents, which are Binary JSON documents [44].
This means that fields can contain other documents as well as data structures that
can change over time. BSON is efficient both in storage and scan-speed [46].

16

3
Method

During the project several agents were created. First a scripted agent to test the
functionality of the API was created and then an agent made for gathering minerals
was created and trained using reinforcement learning. Finally an agent was created
for predicting the chance of winning a game in any given time. This was all done
on hardware heavily limited in power, generally using normal consumer laptops or
desktops instead of servers or processing units made for the task. The hardware
used for training the networks included an Nvidia GTX1070, Nvidia GTX1080, an
Intel Core i5-6440HQ CPU with 3.5GHz, an HDD, and an SSD.

3.1 Creating artificial neural networks
Input data from the game came in two different formats: layer data such as screen
data and minimap data, and numerical values such as the player’s amount of gas or
mineral. The input motivated using a model that could receive both numeric values
and layer data. A combination of a dense network and convolution network would
solve this problem, thus this structure was chosen for any network that also receives
images as input. All the models provided in this project were created using Keras.

3.2 Reinforcement Learning
Several different reinforcement agents were created. Initially a scripted bot was
created to test the newly created simplification of the PySC2 API, and to serve as
a reference for how well the trained agents should perform. The testing was done
on a mineral collecting mini-game, which is a single player game mode with the
goal of collecting as many minerals as possible. In SC2, minerals are one of two
resources for creating units, but in this mini-game, they are mainly used as score.
The possible actions used by the agents were: No operation (Do nothing), build SCV
(worker unit), build supply depot (increases the amount of workers the agent can
have in total) and send a single worker to harvest minerals. These four actions were
continuously used throughout the reinforcement learning process. During training,
a game from start to finish is referred to as an episode.

17

3. Method

The scripted bot followed a very simple set of rules:

i f ju s tSe l ec tWorker :
harve s tMinera l s

e l s e i f areWorkersFree :
se lectWorker

e l s e i f SupplyFree < 3 and Minera l s > 100 :
bui ldSupply

e l s e :
buildSCV

This made the bot immediately send any free workers to harvest minerals while
always producing new workers, with the exception of a small gap near the start of
each episode as the first supply depot is being built.
With the given action space the scripted bot’s actions should be close to the

optimal strategy, which should be to always build workers while making all of them
work as quickly as possible.

3.2.1 The first agent
Following the scripted bot, a simple Deep Q-network was used with an ε-greedy
policy. The initial exploration rate used was 1, this was then multiplied by 0.9999
each frame, with a minimum exploration rate of 0.05.
This agent had a simple reward function that gained a positive reward when

selecting a worker-unit, and a negative reward when performing any other action.
It was made with the purpose of learning to only select different workers, ensuring
that the constructed neural network, in conjunction with the DQL algorithm, was
actually working.

3.2.2 A smarter agent
The agent was further developed by repurposing it to play the CollectMinera-
lAndGas mini-game, where the objective is to collect as much minerals and gas
as possible within the time frame. However, because the production of terran units
within our scope did not require any gas, we opted to have the agent exclusively
gather minerals.
This agent used a fully connected dense network with a DQL algorithm for train-

ing. Its reward function was

R = |WF (i−1) −WFi| ∗ (0.5 +Wi/50), (3.1)

where WFi is the number of free workers at step i and Wi is the total number of
workers at step i. It calculates the absolute difference between the amount of idle
(free) workers on the previous frame and current amount of idle workers, meaning
that the network gets a reward whenever a worker starts a task, finishes a task or
is created. This is then multiplied by a value based on the amount of workers that
the agent has in order to further incentivize creating workers.

18

3. Method

Table 3.1: The data used for supervised learning. Screen and minimap data is
collected from the PySC2 graphical feature layers. Numeric data is collected from
the PySC2 structured data.

Screen Data Minimap Data Numeric Data
Factions Factions Frame Number
Units Selected Minerals
Health Vision Vespene Gas
Selected Supply Total
Height Supply Used
Vision Supply Army

Supply Workers

3.2.3 Extending the agent
Extending the agent for more complex tasks, the dense network was replaced with
a CNN in order to take advantage of the layer data that PySC2 provides, which
hopefully allows for more nuanced decision-making. The CNN was initialized with
nine channels, presented in the Screen Data and the Minimap Data coloumns in
Table 3.1. This input was retrieved using the simplified API created in the earlier
stages. When initializing the network the size of the frames from PySC2 was chosen
to 64x64, which makes the layer sizes individually 64x64 as well.

3.3 Supervised Learning
To supplement the DQN, another network was built with the purpose of determining
the probability of a player winning when given that player’s perceived game state.
With its output serving as a clear indicator if a given state is beneficial or not the
network would then be utilized as the reward function for a neural network using
reinforcement learning.
In order to train the network, a large amount of training data was required. The

intuitive course of action was to make use of prerecorded replays since they should
provide a wide variety of different game states for the network to practice evaluation
on.
Since StarCraft II stores replays of games as the sequence of the actions the

players executed, it is impossible to directly extract a game state from the replay
file without first simulating the match up to that point. In addition, simply running
the replay directly with StarCraft II does not make the data available in the format
PySC2 uses. Instead, a tool to extract and format the data was required.
Sc2reaper was used to extract individual frames of a match store it in a MongoDB

database. However, due to the default version of Sc2reaper not storing data in the
same format that PySC2 wants, Sc2reaper was modified in order to make a version

19

3. Method

Convolutional

Dense

Dense

Output

Numerical

Graphical

Figure 3.1: An overview of the convolutional network model used for reinforcement
and supervised learning. The convolutional part has a graphical input from SC2,
while the first dense network takes numerical data (number of minerals etc.). The
second dense network merges the two previous mentioned networks to create one
single large network.

which does use the correct format. In addition, functionality to parse an entire
folder of replays was added to reduce manual labor.
To acquire the training data, SC2 replays of game version 4.8.3 were scraped from

Spawningtool [47], a website where users submit their own replays. Due to a small
fraction of replays actually being version 4.8.3 from Spawningtool even though they
were tagged as such, we had to scrape more replays, this time from GGGReplays
[48]. This yielded just over 1000 usable replays in total, with the total number
scraped being 10 000. The modified version of Sc2reaper was then used to parse the
replays, sequentially adding each one to the database.
After parsing about 240 replays, gathering the data seen in Table 3.1, a patch for

StarCraft II was released. This automatically updated the game on the computer
building the database which made all subsequent replays crash upon being parsed
preventing the remainders from being used. Due to time constraints, this version
incompatibility problem was not fixed.
Training was done on a subset of the replays that were put on an SSD. This

was approximately six times faster than a normal HDD where they were otherwise
stored. Due to space limitations approximately half of the matches were used as
training data on the SSD, while the other half was left to use as validation data.
A network was then created, which had a convolutional part handling the image

data from the screen and minimap as well as a dense part handling the numeric data,
shown in Figure 3.1. Both parts were then connected to a final dense part before
the output layer. Different versions of this network with varying hyperparameters
were then trained on the dataset. Each new version of this network had its hyper-
paramters changed in an attempt to reduce the complexity of the network, generally

20

3. Method

neuron count in the dense layers was reduced as well as reductions to the amount
of feature maps used by the covolutional layers. The output from the network was
one node using the sigmoid activation function to get values between zero and one
as the probability of victory.

21

3. Method

22

4
Results

This chapter presents performance metrics of a few agents based on different ANNs
and describes the function of the created PySC2 wrapper API. All relevant code is
available on our GitHub repository1.

4.1 A simplified API for PySC2
A wrapper for PySC2 has been created to handle both getting data from the game
and sending player actions to it. Specifically, functions have been created that
return select data from the PySC2 observation object. This removes the need to
dig through PySC2 code to figure out how to get data that can now be accessed via
the simple API. If PySC2 data is required that can not be accessed via the simple
API, looking at the API code and documentation can help with understanding how
to write the PySC2 query for that data too.
Common terran actions are exposed as functions by the simple API to make it

easier to use them with correct parameters. This was done since those parameters
are often poorly documented in PySC2 and require a deeper understanding of SC2
and PySC2 than should be necessary for most cases.
In order to prevent crashes, the previously mentioned functions check if each

action is available and legal. For example making sure any units exist before issuing
a select all command to the game. If the action is not available, no operation is
performed instead. This may not always be optimal, but it is a reasonable default
behavior when starting out with AI development in SC2.
Finally there is a framework for defining composite actions that consist of multiple

PySC2 actions. This makes it possible to expose the agent to actions on a higher
level of abstraction, such as defining one “build unit” action rather than requiring
the network to learn that it can build a unit by taking several specific actions after
one another.

4.2 PySC2 data extraction from replays
A web scraper to collect replays and a tool for sorting replays by matchup (such
as terran vs terran) and game version has been created to make it easier to gather
replays from an up-to-date SC2 version.
A modified version of Sc2reaper has been created so that it is now trivial to extract
1https://github.com/ecen/starcraft2-ai

23

https://github.com/ecen/starcraft2-ai

4. Results

and save game states in a format that PySC2 can read. In addition, functionality has
been added to automatically run Sc2reaper on multiple replays in sequence so that
the database can be filled with minimal user effort. Finally, there is documentation
on the parts that have been edited, how to edit them further in order to customize
what data is stored, and on how to solve or circumvent issues that we encountered
when trying to parse replays.

4.3 Supervised Learning
The victory prediction network that was supposed to determine if a player is winning
when given a state from the game, has not shown much success. While the network’s
loss function, mean absolute error, has gone as low as 0.14 on the training set before
training was terminated, there has been no significant improvement on the validation
set for any version of the network.
As expected, running the network on a live match of StarCraft II yields some

weird results. In general the network predicts a win chance very close to either 0 or
1, with values closer to 0.5 being rare. No clear pattern has been found regarding the
network’s output relative to its input either. Instead the network acts in seemingly
unpredictable albeit often humorous ways.
One such behaviour includes predicting with a certainty of 1 that the player will

win while looking at their base containing an army of a dozen marines. Slightly
later into the match when the opposing player’s army arrived, the network still had
a firm belief that the first player was guaranteed to win the game. A few seconds
later, when the first player’s army had been decimated and every building except
one had been destroyed, the network still had full faith in the player’s ability to
recover and win an easy victory.
Another example of the network’s behaviour is the network fully believing that the

player would win upon seeing a battle which had just started, only to suddenly flip
the prediction to a guaranteed loss when the same player obliterated the opposing
army.

4.4 Reinforcement Learning
Reinforcement agents showed a clear increase in performance compared to random
action selection in a time-limited mineral collection mini-game. Figure 4.1 shows
the score achieved in the mini-game in each episode of training for the best network.
The score is equal to the total number of minerals collected in one episode. When
selecting random actions at every step, the agent received scores of 1000 to 3000. In
comparison, after training for 300 episodes using reward function (3.1), the network
scored between 3000 and 5000. This is a clear increase in performance for the trained
network. As can be seen in the same figure (Figure 4.1), the trained network’s max
value is very similar to that of a good scripted agent, but its minimum value is lower.
Reward function (3.1) was continuous, that is, it was applied after each step,

rather than sparse and applied only at the end of each episode. Its performance can
be compared to those of a sparse reward function, R, where R is the total minerals

24

4. Results

0 100 200 300 400 500 600 700
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Random

Scripted

Trained

Figure 4.1: Score versus number of episodes trained on the mineral collection mini-
game for two networks and one scripted agent. The first network always performs
random actions, the scripted agent acts in a way that should be close to optimal,
and the second network is trained with a reward function (3.1). This shows an
improvement for the trained network over selecting random actions but with more
spread downwards than the scripted agent.

25

4. Results

0 20 40 60 80 100 120
0

500

1000

1500

2000

2500

3000

3500

Sparse total mineral reward

Continous total mineral reward

Figure 4.2: Score versus number of episodes trained for a short time on the mineral
collection mini-game for two networks using different reward functions. Both reward
functions set R to the total number of minerals collected so far during the episode but
the first is sparse (awarded at end of episode) and the second is continuous (awarded
at end of each step). Both these reward functions seem to perform worse than that
in equation (3.1). Compare with Figure 4.1.

collected during the episode, and a continuous reward function were R is the total
minerals collected so far, see Figure 4.2. Note that these networks were trained using
a steeper exploration rate decay per step (a factor 0.99990 instead of 0.99999).
A more in-depth representation of the trained network from Figure 4.1 is shown

in Figure 4.3, but trained for more episodes. Data points in the figure are colored
to show how many workers have been built by the end of each episode. The solid
line and the right y-axis shows how large the exploration rate is. The dashed line
highlights where exploration rate reaches its minimum of 5%. The figure only shows
the first 1500 episodes of training, but this network was trained for a bit more than
3000 episodes. The performance is very similar for all episodes from episode 1000
and onward.
A small cluster of episodes where the network only uses 15 workers appear around

episode 200. In these episodes, the network is not building any supply depots,
seemingly using all workers for mining rather than building supply depots at the
cost of mining slower for a while. This behavior appeared in all networks trained
using reward function (3.1) but it manifested itself in several different ways.
A notable behavior of the network in Figure 4.3 is the sudden change in perfor-

mance once the network hits its minimum exploration rate of 5%, signified by a
dashed line. This did not happen in the same way for other networks, not even
for networks with identical hyperparameters. Figure 4.4 shows 1500 episodes of a

26

4. Results

0 300 600 900 1200 1500
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

15

20

25

30

35

w
o
rk

e
rs

Network score

Exploration min

Exploration rate

Figure 4.3: The trained agent from Figure 4.1 but each data point is colored to
visualize how many workers are available at the end of each episode. The line and the
right y-axis shows the exploration rate at each episode. The small data point cluster
to the left with very few workers was prevalent in many versions of the network with
the reward function in (3.1) and represents the usage of as many workers as possible
without building any supply depots. This behavior disappears but returns abruptly
just as the exploration rate reaches its minimum value. The performance remains
very similar from episode 1000 to at least 3000, after which the training was stopped.

27

4. Results

0 300 600 900 1200 1500
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

15

20

25

30

35

w
o

rk
e
rs

Network score

Exploration rate = 5%

Exploration rate

Figure 4.4: A repeat training of the network from Figure 4.3. Even though all the
hyper parameters are the same, this network performs very differently.

network trained with the exact same parameters as Figure 4.3, and Figure 4.5 shows
3000 episodes of a network trained with the same parameters again but using a min-
imum exploration rate of 0%. The difference in episode count is due to the training
process crashing before planned training time was over.
Considering the first 1500 episodes, Figure 4.5 is quite similar to Figure 4.4 since

both have a band of episodes with 15 worker units quite early on. However, Figure
4.5 has a less prominent dip after the 5% exploration rate line. Both behave dif-
ferently from Figure 4.3 which only has a small cluster of episodes with 15 worker
units early, and then starts using a low worker amount after the 5% line. In addi-
tion, Figure 4.5 has a large dip around episode 1800 that was not present for the
network in Figure 4.3. Figure 4.5 also shows a lower performance minimum after
being trained than the other networks, including a worker minimum of 12, whereas
other networks build at least 15.
Moving on to the convolutional agent described by Figure 3.1, this agent provided

fewer results compared to the non-convolutional agent in previous figures that used
only numeric data. Figure 4.6 shows the longest run of the convolutional agent. At
the end of this figure, training terminated due to insufficient memory. Compared to
the non-convolutional agent every episode took longer to train: 80 seconds instead
of 20 on the same hardware (an Intel Core i5-6440HQ CPU with 3.5GHz). The
non-convolutional agent consumed 35% of the CPUs capacity on average, while the
convolutional agent consumed 60% on average. Running the convolutional agent
on a GPU (GTX1080) yielded no improvement in speed on this simple network.
However, initial testing showed that convolutional networks with more keras filters
also took 80 seconds per episode on the GPU, but 220 seconds on the CPU.

28

4. Results

0 500 1000 1500 2000 2500 3000
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

12

14

16

18

20

22

24

26

28

30

32

34

w
o

rk
e

rs

Network score

Exploration rate = 5%

Exploration rate

Figure 4.5: A repeat training of the network from Figure 4.3 but with a minimum
exploration rate of 0%. Even though all hyperparameters but the minimum explo-
ration rate are the same, this network performs very differently from both Figure 4.3
and 4.4. Note that this figure shows 3000 episodes, not 1500. Note also that this
network has a few episodes where it uses only 12 worker units. Previous networks
used a minimum of 15.

29

4. Results

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

14

15

16

17

18

19

20

21

22

23

w
o
rk

e
rs

Network score

Exploration rate

Figure 4.6: Score and worker unit count at the end of each episode on the mineral
collection mini-game for a reinforcement agent built with the convolutional network.
This network was trained for fewer episodes than other networks since it ran out of
memory after this point. It shows no improvement but might have done if it had
trained for longer.

30

5
Discussion

This chapter provides an analysis of the achieved results, clarifies the thought process
behind certain decisions and discusses some problems that arose during development.
Furthermore, improvements and suggestions for future research and development are
given.

5.1 Replay data extraction issues

Significant time was invested into solving issues regarding replay collection and
parsing. Sc2reaper allowed reading replay data, but extracting that data in a format
that could be used to train an agent was more difficult.
One of the larger issues with Sc2reaper was that it failed upon trying to parse

a replay from a version of SC2 that differs from the live version. This drastically
reduced the amount of replays available since it would only be possible to use replays
from the last two months, in contrast to potentially using replays from several
years back. If multiple game versions had been used, balance changes to the game
would probably affect prediction accuracy to some extent, but it seems reasonable
to assume that the overall prediction would not be too far off. A network should
still be able to predict who is winning a battle if one side has a large advantage.
After parsing approximately a quarter of the acquired replays, StarCraft II up-

dated to version 4.8.4. Even though this patch contained no significant changes to
the game, it immediately invalidated all remaining replays because Sc2reaper started
throwing exceptions. Since it was a new patch there were not any replays available
to download yet, restricting the training of the prediction agent to the 247 replays
that had already been parsed for the rest of the project. This also locked in the
types of data that was parsed since it was no longer possible to change what data
was to be saved and then re-parse a replay.
Furthermore, the parser that was being used was not the intended final version,

but rather an unfinished version where there was no support for a validation set yet.
As a side effect of this there is not a validation set being used during training to
identify overfitting and give a better overview of the network’s ability to generalize.
Instead what we have done is train on part of this database and then manually run
the network on the other part to see if the loss value was significantly lower than
the expected untrained value of approximately 0.5.

31

5. Discussion

5.2 Supervised Victory Prediction Network
The supervised network saw neither an improvement in its validation loss function
nor on manual test runs on live matches, while the training loss did decrease. This
generally indicates that the network is overfitting the training data and failing at
generalizing [25, p. 94].
The reason behind the overfitting is currently unknown and there are multiple

possible reasons and solutions, including but not necessarily limited to having too
few replays and data points, biased replays, the network structure, or lack of regu-
larization and bad input.
It is worth mentioning that beyond filtering the replays to only include matches

between two terran players, no further investigation was done into what the replays
actually look like. Therefore, while somewhat unlikely, there is the possibility that
the replays used contained matches which were biased in some way. A recurring
pattern with the trained networks is that they tend to predict a high win chance
when looking at the base on the right side of the Automaton map. This could
indicate that most replays on that map happened to have the player that spawned
on the right side as the winner, and since players spend a lot of time looking at their
own base that area could then have been recognized as something that causes the
player to win, even though the maps are symmetrical.
This could potentially have been mitigated by flipping the image data sent to

the network depending on the player’s spawn location, exploiting the symmetry to
effectively make the input data always have the players base in the same spot.
Regularization was not used during the training but has been shown to help avoid

overfitting [25]. It is also possible that the network itself could be the issue, the
network’s overall structure as well as its hyperparameters such as neuron and layer
count could simply be the primary cause for the overfitting.
While training the different iterations of the network, different attempts have

been made to solve the issue of overfitting, primarily by changing the parameters
of the convolutional layers and the amount of neurons in the dense layers, each
new iteration trying to make the network less complex than before. However, as a
side effect of training around 48 hours per iteration, so that there is a wide range
of versions to validate, there have only been around 15 iterations of the network
in total. In contrast to the amount of possible choices that exist, with regards to
neuron and layer count, very few options have been tried.

5.3 Reinforcement agent

The reward function (3.1) turned out to be effective. A few other functions were
tested, but with little to no success. The two variants in Figure 4.2 represent two
naive implementations of reward function that show no improvement for short train-
ing times. However, it is possible that at least the sparse reward of total minerals
collected could yield a performance increase if trained for a longer time and with a
slower exploration rate decay.
The network’s tendency to sometimes use only 15 worker units was a surprising

behavior, since it is far from the maximum amount of workers that can gather

32

5. Discussion

resources at the same time. Figures 4.3, 4.4 and 4.5 demonstrates this behavior
with clear dark blue bands representing episodes were only 15 worker units were
created. In almost all cases this is likely to mean that no supply depots were built
since the network is very likely to build worker units if there is free supply and it is
exploring. Interestingly, Figure 4.5 shows that in a few episodes, the network with
a minimum exploration rate of 0% built no worker units at all, choosing to remain
with 12.
A network’s tendency to not use supply depots often had a sudden start or end,

and it did not seem to be gradually affected by training time or exploration rate
with the exception for at the very start. With an initially high exploration rate, not
building supply depots or worker units is very unlikely, despite the fact that episodes
using 34 worker units almost always outperform episodes using fewer workers.
When an agent runs out of supply, there is no dramatic difference between states

where it has built supply depots and where it has not. This is believed to be the
reason for why the agent is inconsistent with building these structures. With the
input to the agent consisting of the amount of minerals, free workers, free supply and
if it selected a worker on the previous frame, an agent which uses all of its workers
will have the variables for free workers and free supply stuck at 0 when all supply is
used. Similarly, if the network selects a worker in this state the select-worker input
changes to 1. If this does not cause the network to build a supply depot then three
of the inputs effectively deadlock, with the only input still able to change being the
amount of collected minerals. The input becoming mostly static makes it potentially
impossible for the game to reach a state where the network decides to build a supply
depot.
It is worth noting that in some cases it is possible for a smaller set of workers to

outperform a large set by chance, a side effect of how the harvest minerals action
was implemented. The map has two mineral lines with different distance from the
main base, making it inefficient to use the far mineral line until the one close by
is fully saturated by workers. However, when the network orders a worker unit to
harvest minerals it will be sent to a random mineral node. This explains some of
the variance between episodes, in particular that of the scripted agent which always
performs actions in the same order.
However, this source of randomness does not explain all variance for the reinforce-

ment agent. Figure 4.1 shows that the reinforcement agent has a larger variance than
the scripted, but with similar max value.
Interestingly however, the network in 4.5 shows two differences to other networks.

The first is that it sometimes does not build any workers, but remain with using 12.
This is only possible when the exploration rate is very low. It is not clear why the
network would do this since it performs worse in comparison to strategies that do
build workers, and should have no negative effects or costs compared to not building
them.
The second interesting phenomenon is that after the downward spike around

episode 1800, the network starts performing quite well using somewhere around 25
worker units. The convolutional reinforcement agent required much longer training
time than its non-convolutional counterpart due to the increased computational re-
quirements, and might have required the slower exploration rate decay that most of

33

5. Discussion

the non-convolutional networks used. Unfortunately, this could not be tested further
due to difficulties with restricting how much memory was needed for training.
For experience replay, the state of the last million game frames and the resulting

state after an action was performed is stored. This worked without issues while
running the non-convolutional agents which only used four decimal values as input.
In comparison, convolutional network’s state contains multiple 64 by 64 matrices
of data. Their size was not directly measured, but equivalent data stored in the
database used for the supervised network had an average size of 150KB (although
this might include some overhead). With the memory storing two of these per game
frame, 300KB, trying to store a significant amount of states so that the network
has access to a large pool of data to draw from in this fashion is not viable. As a
reference point the laptop that ran the network had 8 GB of RAM, while a million of
these states, assuming they share the same size as the database version, would take
up 300GB. Therefore either a revision of how the memory is handled, or a massive
RAM upgrade is required.

5.4 Future Work
This section is dedicated to discussing tracks that could be of interest for future
work within the scope of this paper.

5.4.1 An SC2 Agent with a contextual network
A further improvement that can be done for the product is the ability to consider
previous states of the game when deciding its next choice of action. A human player
is expected to remember previous events and information in an ongoing match,
because of how important it is to consider the opponents game plan when making
your own decisions. For example, if the enemy’s army is not currently visible, but
a moment earlier it was seen entering a hidden area between the two bases, that is
likely to be indicative of an upcoming attack.
This could be possible by integrating some variant of a LSTM. As explained in

section 2.3.4, LSTM is a variant of RNN designed to solve long term dependencies.
One popular variant of LSTM networks is the General Recurrent Unit (GRU), which
has a slightly less complicated model [30]. The proposed idea was to have one of these
network variants be responsible for decision making. The network would receive its
input from a CNN which was used to compress the image layers from PySC2. From
the information that was gathered, we were under the impression of that the output
would be one of two cases. The first case would be a representation of how the next
desirable state would look like. In this case there would have to be some separate
implementation of a tool or network that could interpret this representation and
execute the action that leads to this next state. The second case would be that the
network’s output would be the the action itself, without any extra implementation
required.
In either case, the general consensus was that information related to previous

states of the game is a necessity to process in order for an agent to learn to adapt to
many different scenarios. This also lead us to believe that it would be worthwhile

34

5. Discussion

to test if a LSTM network could be used for win prediction.

5.4.2 An SC2 agent which plays the real game
The end goal that one would strive to accomplish using our groundwork would be
to create an agent that would be able to play the game as good, or better, than an
average player.
One step towards that end goal is to teach an agent to play the game using

supervised learning. This might be especially useful to create a base agent that
can then learn further using reinforcement learning. By “pre-learning” from human
play the agent can hopefully be put on the right path, rather than blindly exploring
SC2’s large action space.
Another step would be to use the victory prediction network as the reward func-

tion for a reinforcement agent. This seems like one of few viable approaches for
reinforcement learning due to the difficulty of building good reward function as dis-
cussed in section 5.3 and concluded in the PySC2 release paper [10]. Before this
approach can be taken however, more work is required on the victory prediction
network, also discussed in 5.3, since it does not yet provide any useful data.
The final training stage for the agent that we strove to build was supposed to

be reinforcement learning in a specially designed tournament environment, similar
to how DeepMind trained the AlphaStar agent. The idea is to have many different
iterations of the same base agent compete and learn from each other [9]. The winning
agents would move forward in the tournament while learning from previous matches,
and losing agents would sometimes be reintroduced to prevent the more successful
agents from forgetting how to deal with less optimal strategies.
DeepMind proved without a doubt that a tournament system is a successful ap-

proach for simultaneous training of several agents with reinforcement learning. How-
ever, our initial purpose was to do research on how well you could train an agent
with a limited resource of computing power. Given that DeepMind used 16 Tensor
Proccessing Units (TPU) [9] per agent, where each TPU corresponds to roughly 15
GPUs, such resource restraints were not taken into consideration by them.
It is debatable whether or not this approach would prove to be useful in our par-

ticular case. Considering that training a single convolutional agent on a GTX1080
GPU utilized 30% of its total capacity, it would only support so many different pro-
cesses. This seems to indicate other bottlenecks: CPU, memory speed, or something
else. Similarly, training a non-convolutional agent on a 3.5 GHz 4-core processor
consumed about 35% processing power, suggesting a bottleneck for this agent that
is not the CPU. As such, a tournament system would only really be useful if more
hardware was available. Ideally complemented by optimizations to the training
process.
As a response to this limitation, a side track that would have been both interesting

and useful to explore is the possibilities of optimizing the training process. For
example, simple things such as preloading the upcoming batch of training data in
parallel with the actual training itself could speed up the process. If the process of
a single agents training can be sped up by a significant rate, the prospect of having
an agent perform at a decent level does not seem too far fetched.

35

5. Discussion

36

6
Conclusion

Our work has made it easier to get started for someone interested in starting out
with machine learning in StarCraft II, but the results of the analyzed networks were
worse than expected.
The non-convolutional reinforcement agent clearly outperformed random and was

on par with the scripted agent, although with some odd behaviors that meant it
did not receive top score as consistently as would have been preferred. We believe
that these behaviors are related to unforeseen aspects of the reward function or side-
effects of the design of the agent’s action space. Others are encouraged to explore
other designs.
In contrast to the non-convolutional agent, convolutional agents do not seem to be

an ideal choice for anyone new to the field or using poor computational power and
storage space. They need to be run on one or several GPUs if training time is not to
become unreasonable, which in turn requires more optimization and consideration
of potential bottlenecks. Due to the size of image data, limited storage space may
also restrict how much data can be used for training, likely decreasing how much
the network can learn.
The victory prediction network, also using the convolutional network model,

proved to be ineffective as well. While its training loss was improved, its per-
formance on data that was not from the training set did not. This could be due to
biased or too little training data, network structure or one of many other reasons.
This agent would need to be tested and possibly developed further to be of any use.
Fortunately, the replay tools did work quite well, as did the simple API and both

are ready to be used more in the future. The only known remaining issue is that
the toolkit is unable to parse replays that are not of the latest SC2 version. This
means that replays have to be collected and parsed within a reasonable amount of
time to minimize the risk of an SC2 update halting progress. It seems reasonable
that a solution to this problem can be found in the future.

37

6. Conclusion

38

Bibliography

[1] S. J. Russell and P. Norvig,Artificial intelligence: a modern approach. Malaysia;
Pearson Education Limited, 2016.

[2] D. Balduzzi, M. Garnelo, Y. Bachrach, W. M. Czarnecki, J. Pérolat, M. Jader-
berg, and T. Graepel, “Open-ended learning in symmetric zero-sum games”,
CoRR, vol. abs/1901.08106, 2019. arXiv: 1901 . 08106. [Online]. Available:
http://arxiv.org/abs/1901.08106.

[3] J. H. Holland et al., Adaptation in natural and artificial systems: an introduc-
tory analysis with applications to biology, control, and artificial intelligence.
MIT press, 1992.

[4] P. Wang and B. Goertzel, “Introduction: Aspects of artificial general intelli-
gence”, in Proceedings of the 2007 conference on Advances in Artificial General
Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI
Workshop 2006, IOS Press, 2007, pp. 1–16.

[5] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxon-
omy for autonomous agents”, in International Workshop on Agent Theories,
Architectures, and Languages, Springer, 1996, pp. 21–35.

[6] DeepAI. (). Neural network, [Online]. Available: https://deepai.org/machi
ne-learning-glossary-and-terms/neural-network.

[7] J. T. Georgios N. Yannakakis, Artificial Intelligence and Games. Springer,
2018.

[8] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi
by self-play with a general reinforcement learning algorithm”, arXiv preprint
arXiv:1712.01815, 2017.

[9] Team AlphaStar. (2019). Alphastar: Mastering the real-time strategy game
StarCraft II, [Online]. Available: https://deepmind.com/blog/alphastar-
mastering-real-time-strategy-game-starcraft-ii/ (visited on 2019-
05-16).

[10] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo,
A. Makhzani, H. Küttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney,
S. Petersen, K. Simonyan, T. Schaul, H. van Hasselt, D. Silver, T. Lillicrap,
K. Calderone, P. Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and
R. Tsing, “StarCraft II: A new challenge for reinforcement learning”, 2017.
eprint: arXiv:1708.04782.

[11] F. Amato, A. López, E. M. Peña-Méndez, P. Vaňhara, A. Hampl, and J. Havel,
Artificial neural networks in medical diagnosis, 2013.

39

http://arxiv.org/abs/1901.08106
http://arxiv.org/abs/1901.08106
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepai.org/machine-learning-glossary-and-terms/neural-network
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
arXiv:1708.04782

Bibliography

[12] S. Hoffman, “Managing the state: Social credit, surveillance and ccp’s plan for
china”, vol. 17, 11 Aug. 17, 2017. [Online]. Available: https://jamestown.
org/program/managing-the-state-social-credit-surveillance-and-
the-ccps-plan-for-china/ (visited on 2019-02-13).

[13] Blizzard. (2017). S2client-proto, [Online]. Available: https://github.com/
Blizzard/s2client-proto (visited on 2019-04-15).

[14] Python Software Foundation. (2019). Python language reference, version 3.7,
[Online]. Available: http://www.python.org (visited on 2019-04-01).

[15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng, Tensorflow: Large-scale machine learning on heteroge-
neous systems, Software available from tensorflow.org, 2015. [Online]. Avail-
able: https://www.tensorflow.org/.

[16] G. F. Luger, Artificial intelligence: structures and strategies for complex prob-
lem solving. Pearson education, 2005.

[17] J. Laird and M. VanLent, “Human-level ai’s killer application: Interactive
computer games”, AI magazine, vol. 22, no. 2, p. 15, 2001.

[18] D. Fagella. (2019). What is machine learning?, [Online]. Available: https:
//emerj.com/ai-glossary-terms/what-is-machine-learning/ (visited
on 2019-05-16).

[19] T. M. Mitchell, Machine learning. McGraw Hill, 1997.
[20] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep blue”, Artificial intelli-

gence, vol. 134, no. 1-2, pp. 57–83, 2002.
[21] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of

simple features”, IEEE, 2001, p. 511.
[22] L. Deng, D. Yu, et al., “Deep learning: Methods and applications”, Foundations

and Trends® in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.
[23] A. C. Lagandula. (2018). Mcculloch-pitts neuron — mankind’s first math-

ematical model of a biological neuron, [Online]. Available: https://towar
dsdatascience.com/mcculloch- pitts- model- 5fdf65ac5dd1 (visited on
2019-05-16).

[24] J. A. Hertz, Introduction to the theory of neural computation. CRC Press,
2018.

[25] B. Mehlig, “Artificial neural networks”, arXiv preprint arXiv:1901.05639, pp. 100–
122, Feb. 2019.

[26] J. Brownlee. (Jul. 2017). Gentle introduction to the adam optimization algo-
rithm for deep learning, [Online]. Available: https://machinelearningmast
ery.com/adam-optimization-algorithm-for-deep-learning/ (visited on
2019-05-16).

40

https://jamestown.org/program/managing-the-state-social-credit-surveillance-and-the-ccps-plan-for-china/
https://jamestown.org/program/managing-the-state-social-credit-surveillance-and-the-ccps-plan-for-china/
https://jamestown.org/program/managing-the-state-social-credit-surveillance-and-the-ccps-plan-for-china/
https://github.com/Blizzard/s2client-proto
https://github.com/Blizzard/s2client-proto
http://www.python.org
https://www.tensorflow.org/
https://emerj.com/ai-glossary-terms/what-is-machine-learning/
https://emerj.com/ai-glossary-terms/what-is-machine-learning/
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/
https://machinelearningmastery.com/adam-optimization-algorithm-for-deep-learning/

Bibliography

[27] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
arXiv e-prints, arXiv:1412.6980, Dec. 2014.

[28] P. Dahal. (2017). Solving the model - sgd, momentum and adaptive learning
rate, [Online]. Available: https://deepnotes.io/sgd-momentum-adaptive
(visited on 2019-05-16).

[29] M. B̃. Pascalu, “On the difficulty of training recurrent neural networks”, pp. 1–
9, 2013.

[30] C. Olah. (Aug. 2015). Understanding lstm networks, [Online]. Available: http:
//colah.github.io/posts/2015-08-Understanding-LSTMs/ (visited on
2019-03-29).

[31] Greff, Srivastava, Koutník, Steunebrink, and Schmidhuber, “LSTM: A search
space odyssey”, 2017.

[32] H. Sak, A. Senior, and F. Beaufays, Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition, 2014.
[Online]. Available: https://arxiv.org/abs/1402.1128.

[33] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural com-
putation, vol. 9, no. 8, pp. 1735–1780, 1997.

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”, 1998.

[35] C. Asawa. (2015). Cs231n convolutional neural networks for visual recognition,
[Online]. Available: http://cs231n.github.io/convolutional-networks/
(visited on 2019-05-14).

[36] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning”, Nature, vol. 521,
no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539.

[37] D. Soni. (2018). Supervised vs unsupervised learning, [Online]. Available: http
s://towardsdatascience.com/supervised-vs-unsupervised-learning-
14f68e32ea8d (visited on 2019-05-16).

[38] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning”, Syn-
thesis lectures on artificial intelligence and machine learning, vol. 3, no. 1,
pp. 1–130, 2009.

[39] R. S. Sutton and A. G. Barto, Reinforcement learning, 2nd ed. The MIT Press,
2017.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. Riedmiller, “Playing atari with deep reinforcement learning”, arXiv
preprint arXiv:1312.5602, 2013.

[41] C. J. Watkins and P. Dayan, “Q-learning”, Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[42] 2019. [Online]. Available: https://keras.io/.
[43] M. G. Duque. (2019). Sc2reaper, [Online]. Available: https://github.com/

miguelgondu/sc2reaper (visited on 2019-04-01).
[44] 2019. [Online]. Available: https://www.mongodb.com/what- is- mongodb

(visited on 2019-05-16).
[45] E. Plugge, P. Membrey, and T. Hawkins, The definitive guide to MongoDB.

Apress, 2010.
[46] [Online]. Available: http://bsonspec.org/ (visited on 2019-05-16).

41

https://deepnotes.io/sgd-momentum-adaptive
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1402.1128
http://cs231n.github.io/convolutional-networks/
https://doi.org/10.1038/nature14539
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://towardsdatascience.com/supervised-vs-unsupervised-learning-14f68e32ea8d
https://keras.io/
https://github.com/miguelgondu/sc2reaper
https://github.com/miguelgondu/sc2reaper
https://www.mongodb.com/what-is-mongodb
http://bsonspec.org/

Bibliography

[47] K. Leung and D. Paskert. (2013). Spawning tool, [Online]. Available: https:
//lotv.spawningtool.com/ (visited on 2019-04-24).

[48] GGGReplays. (2016). Gggreplays, [Online]. Available: https://gggreplays.
com/ (visited on 2019-04-24).

42

https://lotv.spawningtool.com/
https://lotv.spawningtool.com/
https://gggreplays.com/
https://gggreplays.com/

	Introduction
	Purpose
	Problem description
	Limitations
	Social and Ethical Aspects

	Background
	StarCraft II
	Artificial intelligence and machine learning
	Artificial Neural Networks
	Supervised learning
	Reinforcement learning
	Deep Q-Learning
	Tools

	Method
	Creating artificial neural networks
	Reinforcement Learning
	Supervised Learning

	Results
	A simplified API for PySC2
	PySC2 data extraction from replays
	Supervised Learning
	Reinforcement Learning

	Discussion
	Replay data extraction issues
	Supervised Victory Prediction Network
	Reinforcement agent
	Future Work

	Conclusion
	Bibliography

