
Classifying Short Clinical Notes:
An Unsupervised Approach

Master’s thesis in Computer Science – algorithms, languages and logic

KEVIN CHEN TRIEU & LONG NGUYEN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020:NN

Classifying Short Clinical Notes:

An Unsupervised Approach

KEVIN CHEN TRIEU & LONG NGUYEN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Classifying Short Clinical Notes:
An Unsupervised Approach
KEVIN CHEN TRIEU & LONG NGUYEN

© KEVIN CHEN TRIEU & LONG NGUYEN, 2020.

Supervisor : Jacobo Rouces Gonzalez, Språkbanken, University of Gothenburg
Advisor : Thony Price, Appva AB
Examiner: Carl-Johan Seger , Department of Computer Science and Engineering

Master’s Thesis 2020:NN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Classifying Short Clinical Notes:
An Unsupervised Approach
Kevin Chen Trieu & Long Nguyen
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
A mandatory task in Sweden is the reporting of clinical procedures with a specially
assigned code based on the procedure. It is both time-consuming and troublesome
for medical personnel since more than 10,000 codes exist. By automating this task,
it is possible to both save time of the personnel and money within the healthcare
industry.

This master thesis explores an alternative way of classifying short clinical notes
through unsupervised methods when quality labelled data is not available. By com-
bining advances within NLP, utilising word embeddings and incorporating additional
knowledge into the data, a classifier which do not rely on labelled data is presented.

Instead of learning by examples as supervised methods, the classifier manages to
find semantic similarities between clinical notes and the description of the different
codes, making it intuitively similar to how we humans would classify a code.

Keywords: Natural language processing, text classification, unsupervised learning,
word embedding, short text, self-supervised, information-retrieval, clinical text

v

Acknowledgements
First and foremost, we would like to thank our supervisor, Jacobo Rouces Gonzalez,
for his guidance and expertise which were highly valuable and appreciated. We would
also like to thank the team at Appva AB for providing the necessary resources as
well as support, especially our advisor Thony Price. Finally, we would also like to
thank our examiner Carl-Johan Seger for his insightful feedback during the progress
of the thesis.

Kevin Chen Trieu & Long Nguyen, Gothenburg, June 2020

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Purpose . 2
1.2 Limitations . 2
1.3 Outline . 2

2 Theory 3
2.1 Machine Learning . 3

2.1.1 Supervised Learning . 3
2.1.2 Unsupervised Learning . 3
2.1.3 Semi-supervised Learning . 4

2.2 Artificial Neural Networks . 4
2.2.1 Training of a Neural Network 5
2.2.2 Optimising an Artificial Neural Network 6

2.3 Natural Language Processing . 6
2.3.1 Document Classification . 7
2.3.2 Information Retrieval . 7

2.4 Bag of Words . 7
2.5 Word Embeddings . 8

2.5.1 Continuous Bag of Words and Skip-gram 8
2.5.2 Word2vec . 9
2.5.3 Fasttext . 10
2.5.4 Creation of Sentence Embedding 11
2.5.5 SIF-embedding . 11

2.6 Measuring Text Similarity . 11
2.6.1 Levenshtein Distance . 11
2.6.2 Cosine Similarity . 11
2.6.3 Word Mover Distance . 12

2.7 Inter-Annotator Agreement Scores . 12
2.8 Related Work . 12

2.8.1 Classification of Text . 13
2.8.2 Alternative Word Representations 13
2.8.3 Sentence Similarity Based on Semantic Nets 14

ix

Contents

2.8.4 Meta-Embedding . 14
2.8.5 Dimension Reduction of Word Embeddings 15

3 Method 17
3.1 Data Analysis . 17

3.1.1 The Validation Set . 18
3.1.2 The Test Set . 18
3.1.3 KVÅ Data Set . 19
3.1.4 Self-labelling of Data . 19

3.2 Text Pre-processing . 20
3.3 Training of Word Embeddings . 21
3.4 Pre-filtering . 21
3.5 Enriching the Data . 22

3.5.1 Enriching with BabelNet . 22
3.5.2 Enriching With Expertise . 22

3.6 Enhancing the Word Vectors . 23
3.7 KVÅ-code Classification . 23
3.8 Evaluation Metrics . 24

3.8.1 Accuracy . 24
3.8.2 Precision . 24
3.8.3 Recall . 24
3.8.4 F1 Score . 25

3.9 A Baseline Classifier . 25
3.10 Proposed Classifier Architecture . 25

3.10.1 First Iteration . 25
3.10.2 Second iteration . 26

3.11 Classification of a Clinical Note . 27
3.12 Ethical considerations . 28

4 Evaluation and Results 31
4.1 Self-labelling of Data . 31
4.2 Evaluation of Base-line Classifier . 31
4.3 Evaluation of Word Embedding . 32

4.3.1 Comparison of Measurements 32
4.3.2 Comparison of Word2Vec and Fasttext 32
4.3.3 Comparison of Input Data . 32
4.3.4 Pre-trained Word Embedding 33
4.3.5 Comparison of training data 33
4.3.6 Comparison of Dimension Size 33
4.3.7 Evaluation of training epochs 34
4.3.8 Results From Enhancing of Word Embedding 34

4.4 Evaluation of Pre-filtering . 34
4.5 Evaluation of Enriching . 35
4.6 Final evaluation . 36

4.6.1 Evaluation of Common and Infrequent KVÅ-codes 36
4.6.2 Evaluation of the Highest Scored KVÅ-codes 38

4.7 Experimenting With the Field List 38

x

Contents

4.8 Proposed Classifier Architecture . 39

5 Discussion 41
5.1 The Base-line Classifier . 41
5.2 Self-labelling and the Resulting Questionnaire 42
5.3 Pre-Filter . 42
5.4 Enriching . 42
5.5 Word Embedding . 43

5.5.1 Pre-trained Fasttext . 43
5.6 Enhancing of Word Embedding . 43
5.7 Building Sentence Embeddings . 44
5.8 Label or Description . 44
5.9 Experimenting on the Field List . 44
5.10 The Final Evaluation . 45
5.11 Evaluation Metrics . 45
5.12 Future Work . 46

6 Conclusion 47

Bibliography 49

A Complete Heat Map I

xi

Contents

xii

List of Figures

2.1 A neural network with one hidden layer. 5
2.2 The difference between an underfitted, optimal and overfitted model

in a binary classification problem. 6
2.3 CBOW takes surrounding words as input and outputs a word 9
2.4 Skip-gram takes a word as input and outputs its surrounding words . 10
2.5 The architecture of an Autoencoder with three hidden layers. 14

3.1 The distribution of all 29 KVÅ-codes in validation set. 18
3.2 The distribution of the 49 most common codes in the test set 19
3.3 Entity relation diagram of a medicine and a KVÅ-code 21
3.4 The first iteration of the classifier architecture including implemented

methods on each part . 26
3.5 The second iteration of the classifier architecture including imple-

mented methods on each part . 27
3.6 An example of how a clinical note gets classified. 28

4.1 Confusion matrix on top 20 most common codes 37
4.2 Confusion matrix on the 20 least common codes. 37
4.3 The proposed classifier architecture with chosen method in each part 39

A.1 The complete heatmap . II

xiii

List of Figures

xiv

List of Tables

4.1 Result of evaluating pre-filtering with and without spellcheck 31
4.2 Performance of the base-line classifier. 31
4.3 Comparison of cosine similarity and word mover’s distance. 32
4.4 Comparison of Word2vec and fasttext. 32
4.5 Comparison of using label and description as input data 33
4.6 Pre-trained Fasttext model. 33
4.7 Comparison of the data used to train Fasttext. 33
4.8 Comparison of word embedding of various dimensions. 34
4.9 Word embedding trained with different epochs. 34
4.10 Results of post processing the embedding with SIF and Meta 34
4.11 Result of evaluating pre-filtering with and without spellcheck 35
4.12 Enriching using Medicine List . 35
4.13 Enriching using BabelNet . 36
4.15 The results of the 20 most common and uncommon KVÅ-codes . . . 36
4.16 Results from evaluating the highest scored KVÅ-codes. 38
4.17 Result from using different components 38
4.14 Result from using different components 40

xv

List of Tables

xvi

1
Introduction

Since 2007, it is mandatory for licensed personnel such as doctors and nurses to
report clinical procedures involving patients in the form of short notes and a cor-
responding care-procedure code (KVÅ-codes) to the Swedish National Board of
Health [1]. An extension introduced in 2019 included all medical personnel and so-
cial workers in both private organisations and municipalities [2]. This task requires
manual labour and is massively time-consuming due to the number of daily executed
procedures and the large number of KVÅ-codes available. Since there are more than
10 000 different KVÅ-codes divided into nine categories and 123 sub-categories, it
is next to impossible for the personnel to memorise [3]. The classification of KVÅ-
codes has turned into an exciting and unique challenge on how to automatically
assign a KVÅ-code given a short and unstructured clinical note in Swedish written
by the personnel. This is in its essence a problem of text classification and informa-
tion retrieval [4][5].

Text classification is a field within the Natural Language Processing (NLP) domain
that has garnered attraction in recent years. The purpose of text classification is
the process of categorising text into a set of predefined categories. Despite its com-
plexity, recent advances through machine learning are producing results capable of
beating humans without requiring a large amount of manual labour.

Today, state-of-the-art solutions within text classification are majorly represented
by supervised methods [6][7] utilising advanced neural networks architectures. De-
spite their excellent results, supervised methods require a large amount of labelled
data which is hard to acquire when in reality the norm consists of an abundance of
unstructured text such as emails, chat conversations and social media. Thus alter-
native approaches are sought after.

Alternative approaches include semi-supervised and unsupervised methods where
the goal is to combat the problem with scarcely labelled data [8][9]. Unfortunately,
due to their often poor results compared to supervised methods, they are overlooked
and less studied. However, recent advances show promise utilising semi-supervised
approaches where data with few labelled samples can match supervised methods.
Unsupervised methods, on the other hand, are still rarely used for direct text classi-
fication and are instead, mainly used for feature learning or clustering of unlabelled
data. Recently published papers where unsupervised methods can beat baseline
models shows promise for this approach but indicates that there is still much to be
investigated.

1

1. Introduction

1.1 Purpose
The purpose of this thesis is to investigate whether an unsupervised approach is
sufficient for classification of very short unstructured text to a large number of pre-
defined categories (108 categories). Since descriptions of the labels exists and the
task are to find the most relevant KVÅ-code, it falls between the areas of traditional
text classification and information retrieval systems. By leveraging recent success
from unsupervised learning and ideas from information retrieval, a new classifier
for text classification is proposed. Methods and approaches from related works are
explored to propose a suitable classifier for the domain.

1.2 Limitations
In this work, the focus is circumscribed to the medical domain. More specifically,
the classification of short clinical notes in Swedish to their corresponding care pro-
cedure code. Since the data retrieved from customers of Appva consist mainly of
elderly care organisations and municipalities, the data is in its nature limited.

The data is limited to 108 actual unique care procedure codes in use. Therefore,
the classifier will be limited to the classification of 108 different categories in its
current state. The reason is that executed care procedures are often monotonous
where the procedures are often similar. Thus, different areas within healthcare use a
certain number of specific KVÅ-codes. Furthermore, since the data is limited to the
customers of Appva, it will not be representative of the complete healthcare given
in Sweden.

Lastly, the work will solely focus on unsupervised methods, although other options
exist such as supervised systems which are proven to work well on text classification.
This is due to the limitation of the data provided, which only has a small subset of
labelled data. Thus, building a supervised system is not feasible.

1.3 Outline
Chapter 2, Theory, summarises the necessary theory behind the methods which are
required to understand this thesis..
Chapter 3, Methods, describes how the work has been made from data analysis to
the complete classifier.
Chapter 4, Evaluation and Results, presents the results of the classifier and the
evaluation of it.
Chapter 5, Discussion, analysis of the methods, results of this thesis and work which
should be done in the future.
Chapter 6, Conclusion, summarises the project.

2

2
Theory

This chapter introduces the reader to the theory behind the methods used in this
paper. A short introduction to machine learning and artificial neural networks are
given. After that, Natural Language Processing is introduced, followed by different
methods to model text in vector form and how they can be measured. The chapter
concludes by presenting related works where inspiration have been taken.

2.1 Machine Learning
Machine Learning is the science of automated learning for computer systems. In
short, machine learning allows computers to learn and improve from experience.
Machine learning has currently broad applications within image processing, speech
recognition and text analysis. Various machine learning models exist, from support
vector machines to traditional Bayesian networks with the prevalent one today being
artificial neural networks. While Machine Learning has a common purpose as a
whole, it is typically divided into two kinds, supervised and unsupervised learning
[10].

2.1.1 Supervised Learning
Supervised learning is the learning of a system using data with known outcomes,
also known as labelled data. Each example consists of an input x and a known
outcome y. Together, the examples make up the data set of input/output pairs (x,
y). By feeding the examples to a machine learning model, it learns a mapping f :
X → Y where f is dependent on a set of parameters, w [10]. Supervised learning has
shown considerable success with state-of-the-art results within classification tasks,
such as image recognition and sentiment analysis. However, it is held back by the
requirement of a large amount of labelled data.

2.1.2 Unsupervised Learning
Unsupervised learning is the learning of a system by using data where the outcomes
are not known. Compared to supervised methods which predict y given x, unsuper-
vised systems aim to learn the underlying features of the data consisting of x ∈ X
without the knowledge of y ∈ Y . This makes unsupervised methods a practical
approach compared to supervised methods which require labelled data. However,
unsupervised methods are often great for tasks such as clustering and alternative

3

2. Theory

representations of data while it lacks in tasks where supervised methods excel.

Self-supervised learning is a method considered a sub-area within unsupervised learn-
ing that is gaining traction. Compared to the traditional unsupervised method,
self-supervised learning is similar to supervised in the sense that there are known
outcomes. The difference is that the outcomes are directly derived from the data
itself. This means that it can benefit from the advantages of supervised learning
while avoiding the obstacles of labelled data.

2.1.3 Semi-supervised Learning
A hybrid solution which tries to minimise the weakness of both supervised and
unsupervised methods is semi-supervised learning. Although it still relies on labelled
data, the requirements are lower where the majority of the data is unlabelled with
a few amount that is labelled. This gives considerable improvements compared to
unsupervised learning while matching the performance of supervised methods in
some cases.

2.2 Artificial Neural Networks
An artificial neural network (ANN) is a computational model loosely inspired by
the biological neural networks that make up the human brain. It consists of a group
of interconnected neurons, where each neuron serves a purpose which is to calculate
the output based on its internal state and the received input. By interconnecting
the neurons, they form a directed graph known as a neural network that is capa-
ble of learning complex tasks which can solve different classification and regression
problems [11].

The perceptron introduced in 1958 by Rosenblatt is widely considered the first
modern neural network [12]. It serves the purpose of a binary classifier which given
multiple inputs produces a single binary output. Weights were introduced, which
expressed the importance of each respective input and a bias b. The output of the
neuron, a binary number was calculated by the weighted sum of the input values
with their respective weights. The output was dependent on the threshold which
returned 1 when the weighted sum was larger than the threshold and otherwise 0.

From perceptrons, new neurons were born. Instead of being limited to binary inputs
and outputs based on the step function, modern neurons utilise a wide variety of
different functions known as activation functions. By interconnecting the neurons
together, complex networks are built making them capable of solving a wide variety
of problems.

A neural network consists of an input layer with an arbitrary number of inputs
Xn and an output layer with an arbitrary number of neurons with outputs Yn.
Multi-layer networks are constructed by introducing an arbitrary amount of hidden
layers with an arbitrary number of neurons. As noticed, neural networks can be

4

2. Theory

constructed in arbitrary size and form adjusted for each specific task. In Figure
2.1, a neural network with an arbitrary number of inputs, one hidden layer and two
outputs is shown.

Figure 2.1: A neural network with one hidden layer.

2.2.1 Training of a Neural Network
The weights and biases of a neural network when constructed, is often initialised
randomly. A newly constructed ANN with randomly initialised weights cannot make
sensible predictions. Instead, the ANN learns from the data that is fed to it, which
are divided into batches of size b. For every batch, the examples are fed through
the ANN, which is known as the forward propagation. After that, the error is cal-
culated, and the weights are fine-tuned through the backward propagation.

Forward propagation refers to the process of propagating the input values forward
in the neural network until its resulting output in the output layer. The calculations
are identical to the perceptrons, except that the outputs are propagated into the
neurons in the next layer until it reaches the output layer. The weighted sum is
calculated as seen in equation 2.1 which is then fed into the activation function in
2.2 resulting in the output y.

z =
n∑

i=1
XiWi (2.1)

y = f(z) (2.2)
The resulting output from the neural network is known as the prediction. The Loss
function is the function used to evaluate how close the prediction is to the desired

5

2. Theory

outcome. A high loss score indicates that the prediction is far from the expected
outcome, while a low score indicates the opposite. Stochastic gradient descent is
used to minimise the loss function. The algorithm used to calculate the gradients is
backward propagation. It calculates the gradient of the loss function with respect
to the weights of the neural network.

2.2.2 Optimising an Artificial Neural Network
The training of a neural network needs to be optimised for it to reach its optimal
performance. In order to do this, it is important that over and underfitting of
the data is avoided. By overfitting, it means that the model has learnt the given
training data too well, where it negatively impacts performance on new unseen data.
Underfitting, on the other hand, refers to when the model has not learnt enough
from the data. Thus it is not able to predict correctly and will generalise terribly
to new data. In Figure 2.2 the over and underfitting is visualised.

Figure 2.2: The difference between an underfitted, optimal and overfitted model
in a binary classification problem.

An artificial neural network contains many parameters which can be tuned in or-
der to improve the performance and get an optimal fitted network. From adjusting
the architecture by the number of neurons and layers to tuning the hyperparameters.

Typical hyperparameters include learning rate which dictates how fast the network
learns, the epochs which is the number of iteration the whole training data is fed
to the network for training and the batch size which is the number of samples
given to the network before the weights in the network is tuned though backward
propagation.

2.3 Natural Language Processing
Natural language processing (NLP) is the area within linguistics and computer sci-
ence that focuses on how computers can learn to analyse, understand and generate

6

2. Theory

human language. NLP has led to the development of many useful applications, in-
cluding virtual assistants and chatbots.

Human language is complex, making NLP one of the most challenging research
areas. Abstract notions within semantics and pragmatics, such as polysemy and
sarcasm, are difficult for a computer to understand. In fact even humans can have
a difficult time understanding sarcasm.

Research within NLP focuses on utilising rule-based algorithms to convert human
language into a suitable format which computers can understand. Traditionally,
the focus has been on syntax [13][14], where identifying the structure of texts and
building collection of them were the main focus. Today, many excellent algorithms
exist to solve these problems making it a trivial task for the computer.

Instead, the success of machine learning has made a shift within NLP towards au-
tomated learning. Large amounts of data are used to learn complex structures
which were previously made manually. It has propelled a new way of understand-
ing languages where semantics between sentences are captured, often with the help
of neural networks without any additional domain knowledge than the data itself.
This has opened up lots of opportunities, leading to an increased interest in word
representation such as bag-of-words and word embeddings.

2.3.1 Document Classification
The availability of text data is rapidly growing [15], and text is often organised
in documents of some sort. Document classification is the problem of assigning a
document such as text to one or more pre-defined categories. Traditionally this
has been done manually by humans, but it is highly time-consuming, so automatic
classification has become a highly relevant task.

2.3.2 Information Retrieval
Information retrieval (IR) is the task of obtaining information resources relevant to
a specific query from a collection of resources, often a database or storage [5]. The
query may consist of a text string or a set of keywords. Typical applications of IR
are search engines and databases. In general, IR works by finding similarities or
relationships between the query and the documents, and a simple method would be
to see how many terms are similar in the query and the corpus of documents.

2.4 Bag of Words
Bag-of-words (BOW) is a simplified representation of a text document in vector
form. Using, BOW a text is modelled as a vector of length v, where v is the vocab-
ulary size of the corpus. Every element in the vector represents a specific word in
the vocabulary, and the value of this element determines if the word exists in the
text or not. BOW is commonly used in classification tasks due to its simplicity and

7

2. Theory

good results but has its drawbacks.

Term frequency-inverse document frequency (TF-IDF) is a statistical method for
calculating the importance of a word in a document or corpus. The weight is cal-
culated by taking both the frequency of a word in the document (term frequency)
and the inverse of the number of documents that a particular word appears. This
approach results in reduced weight for common words and highlights the less fre-
quent words in the corpus. The essential idea behind this approach is that the less
frequent words usually have a crucial roll in determining the difference in semantic
between documents.

In BOW, the simplified representation results in loss of information. Sentence struc-
ture is lost since word order is not taken into account. The vector length, which is
directly proportional to the vocabulary results in a high dimensional vector.

2.5 Word Embeddings
Word embeddings is a self-supervised method for learning representations of words.
Words are mapped from their text form to a numerical representation in the form
of a vector of fixed length (embedded vector). Words that have similar semantic
meaning will have similar embedded vectors and therefore be closely located in the
vector space.

Word embedding models commonly used today are Word2Vec and Fasttext. Both
are unsupervised methods using self-supervision to learn the semantic meaning of
words using the corpus of texts. Compared to Word2Vec, Fasttext is capable of
handling both infrequent and out-of-vocabulary words by dividing words into sub-
words (n-grams).

The neural network architecture behind both Word2Vec and Fasttext are based
on Continuous Bag-of-Words (CBOW) and Continuous Skip-gram (skip-gram) [16].
The essential idea behind both of the architectures is that a word is characterised
by its surrounding words.

2.5.1 Continuous Bag of Words and Skip-gram
In both ANN architectures, CBOW and skip-gram, labelled data is generated by
separating a word and its surrounding words. The CBOW architecture takes a word
as the label data and learns to predict this word using its surrounding words as the
input. The illustrations of CBOW architecture can be seen in Figure 2.3.

This leads to a potential weakness of representing less frequent words using the
CBOW architecture and can be tackled by switching to skip-gram architecture.
The opposite approach, skip-gram architecture learns to predict the surrounding
words using the word itself as the input. The illustrations of skip-gram architecture

8

2. Theory

Figure 2.3: CBOW takes surrounding words as input and outputs a word

can be seen in Figure 2.4.

In both figures, C is the number of surrounding words taken into consideration, V
is the size of the BOW vector. N is the dimension size of the word embedding. The
input and output following an example corpus below:

• The dog sat in house.
• The cat sat on a bench.
• The cat sat behind the wall.

As mentioned, the CBOW architecture learns to predict the word by the surrounding
words. In other words, it is maximising the probability of predicting the most
frequent word given the surrounding words. This becomes a potential weakness as
the rare words will get much less attention by the model as it is built to predict
the most frequent words having the same surrounding words. Take the surrounding
words "The ... sat" from the above example corpus, CBOW architecture learns to
predict the word "cat", and the word "dog" gets less attention since it is less frequent.
In the skip-gram model, the word "dog" is treated equally as the word "cat" since
the pair "The ... sat" and "dog" will be considered as a new piece of information.
Therefore, the skip-gram also generates more pairs of input and output to train on
than the CBOW.

2.5.2 Word2vec
Word2Vec, published by Google in 2013, is a feed-forward neural network with two
layers for word embedding [17]. Word2Vec is capable of utilising both CBOW and
skip-gram architectures to produce an embedded vector representation of a word. In
Word2vec, the first step is to prune the vocabulary by ignoring the words that appear

9

2. Theory

Figure 2.4: Skip-gram takes a word as input and outputs its surrounding words

less than min_count times (default value is 5) as they are considered to be typos or
"noises". Furthermore, as they appear too infrequently, there are not enough data
to train on. Therefore, the biggest drawback of Word2vec is that out-of-vocabulary
and rare words cannot be represented as an embedded vector.

2.5.3 Fasttext

Fasttext was created by Facebook’s AI Research lab as an extension to Word2Vec
[18]. Instead of maintaining complete words as input, Fasttext divides a word into
several sub-words of length n (n-gram). For example, the 4-gram of word league
is ’< lea’, ’leag’, ’eagu’, ’ague’ and ’gue >’ while the 4-gram of word ’hi’ is only
’< hi >’. The symbols ’<’ and ’>’ are special symbols which represent the start
and end of a word. The embedding vector of a word is the sum of the vectors of
all the n-grams. In Fasttext, the parameters min_n and max_n determine the
maximum and minimum size of an n-gram. For rare and out-of-vocabulary words
where the trained Fasttext embedding has embedded vectors of all its n-grams,
Fasttext generate their embedded vectors through the same approach. However, for
words that the trained Fasttext embedding does not have an embedded vector of
each n-gram, they are divided into smaller n-grams of a minimum length of ≥ minn.
However, a smaller n-gram leads to a less accurate representation as there are more
words in the vocabulary sharing this n-gram. Thus its embedded vector is more
generalised. Through this approach, the trained Word Embedding is, therefore,
capable of handling out-of-vocabulary and rare words.

10

2. Theory

2.5.4 Creation of Sentence Embedding
Many tasks deal with sentences rather than single words. Being able to repre-
sent sentences in the shape of vectors are, therefore, of importance. Word vectors
which are great for capturing semantic similarity are extended to represent sentences
through various methods such as Doc2Vec [19] which is an extension of Word2vec.

2.5.5 SIF-embedding
Another approach for creating sentence embedding which has shown excellent results
and is commonly used is the averaging of words vectors. Smooth Inverse Frequency
Embedding (SIF) [20] takes this a step further. Instead of a simple average of the
word vectors, a weighted average with respect to the term frequency is used, as
shown in equation 2.3. This method has shown to beat sophisticated supervised
methods.

a

a + p(w) (2.3)

where: a: Hyperparameter, usually set to 0.0001
p(w): The term frequency of a word w

2.6 Measuring Text Similarity
Text similarity is the measurement of determining how similar two pieces of text are.
It is critical for the performance of several applications from information retrieval
systems to text classification. The similarity is typically measured in two ways, either
by semantic or lexical relevance. Semantic similarity is the similarity between words,
sentences, or documents where they are conceptually similar, while lexicographical
similarity refers to how similar they are in their form [21].

2.6.1 Levenshtein Distance
Levenshtein distance, also known as edit distance, is a measurement of the difference
between two sequences of text. The distance is calculated as the minimum number
of basic operations required to transform one sequence to the other. The available
basic operations are character insertion, deletion and substitution. For example, the
distance between the two words three and tree is one since the deletion of h from
the first sequence would make them identical.

2.6.2 Cosine Similarity
Cosine similarity is the measurement of similarity between two non-zero vectors,
namely the cosine of the angle between the two vectors. The cosine similarity score
varies between minus one and one where two identical vectors would have the score

11

2. Theory

of one. The advantage of cosine similarity is due to its low complexity and can
handle sparse-vectors well due to the non zero dimensions being ignored.

cos(x, y) = xy
‖x‖‖y‖

=
∑n

i=1 xiyi√∑n
i=1 (xi)2

√∑n
i=1 (yi)2

(2.4)

The formula of cosine similarity is shown in equation 2.4. x and y are the two input
vectors. The numerator is the dot product of the two vectors, and the denominator
is the product of the magnitude of each vector.

2.6.3 Word Mover Distance
With the rise of word embedding, traditional similarity measures that had been
effective and efficient seemed too simple to capture the information in embedded
word vectors. Word mover distance [22] proposes a measurement which suggests
that the distance between words in the vector space are semantically meaningful.
The distance between two documents is calculated by the minimum cumulative
distance required for document A to match the text of document B.

2.7 Inter-Annotator Agreement Scores
Since linguistically related problems are partly determined by human judgement, the
correctness of the labelled data cannot be measured directly. On the other hand,
validity and reliability can be measured by comparing decisions made by different
annotators on the same data set. This process is known as the Inter-Annotator
Agreement [23]. Through the Inter-Annotator Agreement, the reliability of deci-
sions made by an annotator is determined by similarity compared to decisions made
by other annotators.

As one of the existing reliability measures, Cohen’s Kappa score measures the simi-
larity (agreement) between decisions made by two annotators [24]. However, Cohen’s
Kappa score also takes the probability of the occurrence of an agreement. Therefore,
a category with more entries classified to it is equally important as a category with
a lesser number of entries classified to it. This is important as the problem pre-
sented in this paper is a multi-label and classification problem with a non-uniform
distributed data set.

Based on various papers [25] [26], Cohen’s Kappa score can be interpreted differently
based on the specific task. However, most of the papers agree on a threshold of 0.8
for an annotation to be considered reliable.

2.8 Related Work
This section presents different works with the same aim of solving text classifica-
tion and information retrieval problems. Other methods which improve upon the
presented solutions are also presented.

12

2. Theory

2.8.1 Classification of Text
Text classification is a widely researched domain with many practical applications,
as mentioned previously. Many of these applications use neural networks, which
usually outperform most other approaches today. Readily available plug-and-play
services exist where classifiers can be built within minutes when labelled data are
provided.

More domain-specific and advanced classifiers are also built. Hughes et al. [27]
propose a supervised classifier for medical text classification. By using Word2vec to
transform the text into a word vector which was then fed into a neural network, an
accuracy of 68% has been achieved, beating many prior biomedical classifiers.

On the other spectrum of machine learning, a paper published in 2019 [9], proposes
an unsupervised method for text classification on documents written in English.
Instead of relying on labelled data, they decided to enrich the label of every cat-
egory with the help of humans, dictionaries, and word embeddings by including
relevant words. An example is that documents about sports should be assigned
to the category Sports which has been enriched by including the words Football
and Basketball. After that, they matched the documents to the enriched categories
by comparing their similarities with Latent Semantic Analysis. This managed to
achieve an F1-Score of 55.7 on the Yahoo-Answers data set, which consists of ten
different categories making it on par with simple supervised approaches.

2.8.2 Alternative Word Representations
An autoencoder is an ANN architecture that uses a self-supervised approach, which
can be divided into two parts, encoder and decoder. The text input is first trans-
formed into a vector representation using an approach such as BOW. After that, the
vector representation is encoded by the encoder to a denser representation by reduc-
ing the number of dimensions. The decoder is used to reconstruct the corresponding
vector representation from the encoded representation. The encoder becomes better
at extracting essential features and the decoder at expanding these features to its
original input through extensive training on data. After the training phase, the en-
coder can be used to create a low dimensional vector representation of a text where
only essential features are kept.

The latent space vector can be retrieved from the encoded representation, as shown
in 2.5. This vector can be used as a word representation in the same way word em-
bedding is used. Advanced autoencoders have shown to perform on par with word
embedding, albeit being more complex [28].

The rise of popularity in word embedding has led to a trend of pre-trained word
vectors. Some of this is due to the large amount of data required to build useful,
versatile word embeddings. In 2018 google published a universal sentence encoder
[29] to make universal embeddings that could be used for many downstream tasks.
The initial support for English was quickly extended to 20 different languages due

13

2. Theory

Figure 2.5: The architecture of an Autoencoder with three hidden layers.

to the popularity.

2.8.3 Sentence Similarity Based on Semantic Nets
In 2006, Li [30] observed the increasingly important role of sentence similarity in a
wide variety of applications from text mining to information retrieval systems. Tra-
ditionally these systems are considered inefficient and require human input while
being terrible at generalising. Thus Li proposed a model which is capable of mea-
suring the similarity between short texts based on semantic and word order. The
semantic of the text is obtained by combining lexical knowledge about each word
from lexical databases. At the same time, the model proposed by Li measures the
similarity in word order by the number of different words as well as the number of
word pairs in different orders.

2.8.4 Meta-Embedding
Every word embedding trained with its method and resources yields a unique word
representation varying in quality and characteristics. Yin and Schutze proposed to
combine different pre-trained embeddings with the aim of learning meta-embeddings.
The idea behind this is that by combining the embeddings, the unique Meta-
embedding would make for a richer representation with the strengths of each distinct

14

2. Theory

embedding. By employing a linear neural network, which learns to project the Meta-
embedding of a word into the source embeddings using their respective projection
matrices [31].

An unsupervised approach is proposed and proven to be outperforming other ap-
proaches such as concatenation or single-value-decomposition based Meta-Embedding
in short-text classification[32]. The proposed model consists of two parts, reconstruc-
tion and projection. First, for each word in the vocabulary, its embedded vector is
reconstructed using the embedded vectors of the most similar words from every
Word Embeddings. Thereafter, the Meta-Embedding is generated through project-
ing the reconstructed vectors to the vector space.

In 2018, Coates and Bollegala introduced a much simpler model that was compa-
rable or better than more complex meta-embedding methods. Instead of relying
on neural networks, they used simple arithmetic by averaging word embeddings to-
gether [33].

2.8.5 Dimension Reduction of Word Embeddings
Word embedding trained on large corpora of texts is widely used in many applica-
tions within natural language processing. Often as a way to format input ready to
be used in downstream tasks such as text classification or semantic similarity. Due
to the large dimensions of word embeddings, they are prone to memory constraints.
Therefore, multiple post-processing approaches have been proposed to reduce the
dimensions, effectively increasing the efficiency of the embedding.

Mu and Viswanath [34] observed that the word vectors share a common mean vec-
tor, which strongly influences the word vectors. By removing the non-zero mean
vector from the word vectors, they managed to obtain word vectors, which better
captured the meaning of words. This effectively reduces the dimension and results
shows that they managed to increase on average 1.7% on word similarity tasks.

15

2. Theory

16

3
Method

This chapter details step by step how the classifier has been built. First, useful
information is extracted, and decisions are made based on data analysis. After
that, every step in building and evaluating the classifier is explained. Lastly, the
architecture of the classifier is shown.

3.1 Data Analysis

Appva provided the data used to train the word embedding which was used for the
classifier. The data set consists of clinical reports handwritten by licensed medi-
cal personnel and was collected from both private organisations and municipalities
within the Swedish healthcare through Appva’s medication and care support system.

Analysis of the data was performed to discover useful features while also obtaining
better knowledge and understanding of the domain. This helped in the process of
designing the classifier. In summary, the data set contains 620,028 entries with 108
unique KVÅ-codes. The average length of an entry is 11 words. The format of the
data entry is given below.

• List : Category defined by an organisation (hospital or elderly home).
• Label : Short description of the clinical note written by personnel.
• Description : The clinical note.
• KVÅ-Code : KVÅ-code assigned by their current solution.
• Human-assigned : Whether the code has been manually corrected by the

user.
Except for the Human-assigned field, all the fields are in the form of text. The
Human-assigned field has a value of 1 if the entry has been double-checked and
assigned a new KVÅ-code by licensed personnel and 0 otherwise. An example of
data entry is given below, which have been translated to English.

• List : Narcotics.
• Label : Morphine patch.
• Description : Rotate clockwise when changing.
• KVÅ-Code : DT017.
• Human-assigned : 1.

17

3. Method

3.1.1 The Validation Set
The validation set was used to evaluate the different parts which constitute the clas-
sifier. The results from the evaluation were used to tune parameters of the word
embedding, pre-filter and enriching. The validation set contains 4872 entries and
covers 29 KVÅ-codes out of 108 total. This data set has previously been manually
reviewed by Appva but may still contain errors since the process has been by person-
nel without expert knowledge within the medical domain. However, the personnel
has received assistance for classification of entries in the form of keywords to KVÅ-
code suggested by licensed medical personnel. The figure 3.1 shows the distribution
of KVÅ-codes in the validation set.

Figure 3.1: The distribution of all 29 KVÅ-codes in validation set.

3.1.2 The Test Set
The test set was used to perform the final evaluation of the classifier. It consists of
2521 labelled data entries, which cover 102 out of 108 total KVÅ-codes in use. The
distribution of the codes in the test set is skewed. Many codes are occurring once
while code such as DT019 is covering 25% of the entries.

Each entry in the test set has been manually classified by licensed personnel. The
entries were first wrongly assigned by the current classifier at Appva and after that
changed by licensed personnel. The test set may, therefore, not represent the actual
distribution of codes, as there may be a bias towards misclassified KVÅ-codes. The
test data shows an approximate Pareto distribution where 83.18% of the entries are
assigned to 20% of the KVÅ-codes in use as can be seen in Figure 3.2.

18

3. Method

Figure 3.2: The distribution of the 49 most common codes in the test set

3.1.3 KVÅ Data Set

From Socialstyrelsen, a complete set of KVÅ-codes was obtained. In total, the data
set contains 10553 unique KVÅ-codes. Each data entry consists of a KVÅ-code and
a description of the code written in Swedish. However, there are only 108 KVÅ-
codes in use based on the KVÅ-codes in the test and validation set. An example of
a data entry translated into English is shown below:

• Code: DT019
• Description: Medicine prescription oral.
• Additional information: Medicine can be indicated by the ATC-code.

3.1.4 Self-labelling of Data

Due to the skewed distribution of labelled data where many KVÅ-codes occur rarely,
self-labelling has been performed to try and alleviate the issues. The inter-annotator
agreement is measured to evaluate the correctness of the newly labelled data as pre-
sented in 2.7.

19

3. Method

First, a subset of data with known labels is manually annotated by new annotators,
and Cohen’s Kappa Score is calculated to measure the reliability of the manual
annotation. Usually, the subset is sampled using a random sampling technique.
However, due to the KVÅ-code’s skewed distribution, a simple random sampling
technique might result in a subset consists of only most frequent KVÅ-codes while
least frequent KVÅ-codes are ignored. Thus, the stratified sampling technique is
used. The stratified sampling technique is capable of providing a similar or better
efficient statistical estimate [35]. The result is a subset where each KVÅ-code has at
least one entry and a maximum of 5 entries. The subset is then manually annotated
separately by two annotators. The score is calculated by crosschecking the labelling
of each annotator against the known labels.

3.2 Text Pre-processing

Text pre-processing is an essential step for tasks within the classification of text.
The purpose is to convert the data into a generalised format that is comprehensible
by the machine while removing redundancies. The data was pre-processed in the
following order:

1. Removal of redundant terms
2. Removal of stop words
3. Convert abbreviations to full form
4. Tokenisation of words
5. Lemmatisation of words

First, the redundant terms such as punctuation and additional white spaces were
removed. Then, stop words ,which are words that do not contain meaningful infor-
mation such as articles and pronouns, are removed [36]. After that, by utilising dic-
tionaries with standard Swedish abbreviation and acronyms taken from Wikipedia,
abbreviations and acronyms were transformed to their full form. The words were
then tokenised and transformed to their base form through lemmatisation.

For lemmatisation, two different tools were implemented and tested separately; Spar-
ven and Svensktext [37][38]. Sparven is an annotation tool provided by Gothenburg
University’s language bank and is capable of performing advanced analysis for both
short text and corpus. For each word in a text, Sparven provides information such
as the word’s base form (lemmatisation), part-of-speech, dependency to other words
and base words if the input word is a compound. Svensktext is a simple mapping
tool using a static dictionary to perform lemmatisation. Svensktext is also capable
of recognising some named entities that exist in the static dictionary.

An Example of pre-processing:
Input: "Two pills are given to the patient against pain"
Result: [pill, give, patient, pain"]

20

3. Method

3.3 Training of Word Embeddings
Word embedding based on Word2vec and Fasttext were evaluated to determine the
best suitable one. Different models by trying variations of vector sizes and the num-
ber of epochs were tried to train the word embedding.

Two sources of information were used to train the word embedding, the data set pro-
vided by Appva and the KVÅ codes with their corresponding description retrieved
from Socialstyrelsen. Before training, the data entries corresponding to the test and
validation set were removed in order to prevent the risk of bias since they are used
to evaluate the classifier.

A pre-trained Fasttext model using Wikipedia data in Swedish was also evaluated
and re-trained with the data set using incremental training. This model had been
trained in Swedish, using CBOW with dimension size of 300, n-grams of length 5
and window size of 5 (number of surround words taken into training for a word) [39].
Incremental training is done using the same data set with the number of epochs of
5.

3.4 Pre-filtering
Some care procedures are more straightforward to classify than others. More specif-
ically, the ones related to medicine intake (route of administration) are among the
easiest since its code is directly related to its intake method.

The pre-filter was implemented using a medical list containing medicine names and
other information such as dosage and form, which was retrieved from Läkemedelsver-
ket [40]. Furthermore, 1177, a health service provided by the Swedish government,
has a guide on how to determine the route of administration of medicine based on
its form [41]. This guide was used to help create a relation between a medicine,
its route of administration and the corresponding KVÅ-code. This relation is illus-
trated in Figure 3.3.

Figure 3.3: Entity relation diagram of a medicine and a KVÅ-code

A medicine might have different forms and therefore, different routes of administra-
tion. However, this can be narrowed down with additional information such as the
dosage of the medicine. A medicine usually exists in several dosages and medicine
in a specific dosage has a specific form. Furthermore, since a form only leads to a
route of administration and there is only a corresponding KVÅ-code for each route
of administration, it is significantly easier to classify these entries than other entries.

21

3. Method

Therefore, the implementation of a pre-filter is used to reduce error and improve ef-
ficiency.

However, due to limited knowledge within the medical field, all medicine intake in
the form of injection will be treated as subcutaneous (under skin) except for infu-
sion which is intraperitoneal (injection into the peritoneum). For entries related to
medical injection, the pre-filter will assign a KVÅ-code according to this limitation.

If the input contains a medicine name in the list, the pre-filter analyses the input
and suggests a suitable KVÅ-code. Due to the occurrence of misspellings or abbre-
viations, by utilising Levenshtein distance and a spelling ratio, the pre-filter is also
capable of handling misspellings of medicine names.

SpellingRatio = NumberOfMatchingCharacters

NumberOfTotalCharacters
(3.1)

3.5 Enriching the Data
The data entries contain eleven words on average (label and description), making
it short compared to commonly used data sets where corpora of well-structured
documents with long text are used, such as Reuters and OHSUMED. The data set
was incorporated with external knowledge through enriching to overcome the short-
ness of the text. More specifically, the clinical notes were enriched with synonyms,
definitions and medical information.

3.5.1 Enriching with BabelNet
BabelNet is a multilingual encyclopedic dictionary and a semantic-based network
which covers hundreds of languages. Information such as grammatical categories,
definitions and synonyms of a word can be retrieved from BabelNet. For each word,
Babelnet defines its senses and glosses.

• Senses - a set of synonyms for a word
• Glosses - a set of definitions for a word

The knowledge retrieved from BabelNet were used to enrich the clinical notes and
the KVÅ-descriptions in multiple ways. From enriching with the senses and glosses
individually to combining them. After that, they were evaluated to see which option
improved the overall text the best.

3.5.2 Enriching With Expertise
The information obtained from Läkemedelsverket was used to enrich the clinical
notes [40]. Each entry that had a medicine name was identified and enriched
with additional information of each medicine. Two approaches were tested. The
first approach enriched the entries directly with the information obtained from
Läkemedelsverket. The second approach utilised the relation between a medicine
and a KVÅ-code created through a guide from 1177 [41]. Two examples are given
below for each of the methods:

22

3. Method

• Enriching with the form of the medicine obtained from the medicine list. E.g.
"Alvedon" becomes "Alvedon Pill" after enriching.

• Enriching with the route of administration obtained through the guide pro-
vided by 1177. E.g. "Alvedon" becomes "Alvedon Oral."

3.6 Enhancing the Word Vectors

The word vectors obtained from a word embedding can be improved further through
enhancing. In the proposed classifier, the word vectors were enhanced by meta-
embedding and SIF-embedding to improve the representation further.

Meta-Embedding was implemented to combine the strengths and reduce the weak-
ness of both Word2vec and Fasttext. Since Fasttext is based on character-level
n-grams instead of complete words, there is a potential weakness in which semanti-
cally different words with a similar structure may be closely related. For example,
the 4-gram ’eage’ exists in ’lineage’ and ’eager’, this 4-gram’s embedded vector
will be adjusted to fit both of these words. On the opposite, Word2vec does not
divide the word into n-grams and compute the word vector for a whole word. The
meta-embedding combined word vectors retrieved from Word2vec and Fasttext by
averaging them into one single vector.

Word Embedding does not consider word importance. While the majority of stop
words were removed through pre-processing, some words still contain more infor-
mation than others. SIF-embedding was implemented to take the word importance
into account.

3.7 KVÅ-code Classification

The classification of the data entries was based on the similarity measure. In some
sense, this is similar to how we humans would handle the issue. First, comparing the
clinical note to the definitions of the KVÅ-codes and after that, choosing the KVÅ-
code with the best matching definition. Each clinical note was compared against the
description of the 108 KVÅ-codes in use. The KVå-code with the highest similarity
score was chosen as the correct answer.

Two similarity measurements were compared as they have their own advantages and
disadvantages in different domains [42]. The implemented similarity measurements
consist of:

• Cosine Similarity
• Word Mover’s Distance

23

3. Method

3.8 Evaluation Metrics

The task of classifying KVÅ-codes is a multi-category problem since it consists of
more than two categories. Measuring the performance of a multi-category problem
is not straightforward.

The classifier was evaluated using multiple measurements to give a fair picture of
how well the classifier performs. Due to the skewed distribution and the high num-
ber of categories, basing the results purely on accuracy would not give a fair picture.
Instead, the classifier was measured with accuracy, precision, recall and F1-score to
give a fair picture of its performance.

In order to account for the category imbalance, the weighted average of the measure-
ments Precision, Recall and F1-score were performed. Each measure was multiplied
by the number of samples in their respective category and divided by the total num-
ber of samples. A side effect of this is that recall becomes identical to accuracy.

TP = True Positives
TN = True Negatives
FP = False Positives
FN = False Negatives

3.8.1 Accuracy
Accuracy is a commonly used measurement and presents the fraction of correct an-
swers. Accuracy is commonly used but may be misleading, especially in imbalanced
data. E.g., a set with 99 negatives and one positive sample. If all the samples were
classified as negative, the accuracy would be 99% accuracy when, in reality, positive
samples are classified wrongly.

accuracy = TP + TN

TP + TN + FP + FN
(3.2)

3.8.2 Precision
Precision for a category is the number of data entries correctly classified to this
category divided by the number of data entries classified to this category.

precision = TP

TP + FP
(3.3)

3.8.3 Recall
Recall for a category is the number of data entries correctly classified to this category
divided by the number of data entries belonging to this category.

recall = TP

TP + FN
(3.4)

24

3. Method

3.8.4 F1 Score

F1-score is the weighted harmonic mean of precision and recall [43], so it takes into
consideration both false positives and false negatives. It is often more useful in
imbalanced data.

F1score = 2 · precision · recall

precision + recall
(3.5)

3.9 A Baseline Classifier

In text classification tasks, a common method is to transform the text into a numer-
ical vector to represent various linguistic properties. One of the most common ap-
proaches for textual features extraction is the Bag-of-Words (BOW) model. Firstly,
the description of each KVÅ-code will be transformed into a BOW vector repre-
sentation as well as the input. Thereafter, the BOW vector of the input will be
compared to the BOW vector of each KVÅ-code using cosine similarity to find the
most suitable KVÅ-code.

3.10 Proposed Classifier Architecture

Two significant iterations of the classifier were performed. The chosen implementa-
tion methods in each part of the classifier are presented to provide a proper overview
of the classifier.

3.10.1 First Iteration

The first version of the classifier consists of five parts; pre-processing, pre-filtering,
word embedding, sentence embedding and comparison. First, an input is pre-processed
to a general form. Thereafter, the input is sent into the pre-filter, which classifies
the simpler entries. In case the entry cannot be pre-filtered as it does not contain
a medicine name, each word in the input is transformed into an embedded vector
through the Word Embedding. Then a sentence vector is created by averaging the
word vectors. In the final step, the sentence embedding is compared against all
sentence embeddings of KVÅ-codes using cosine similarity. The most similar one,
which has the highest cosine score, is chosen. An illustration of the first iteration is
shown in Figure 3.4.

25

3. Method

Figure 3.4: The first iteration of the classifier architecture including implemented
methods on each part

3.10.2 Second iteration

Understanding the weakness of the pre-filter and having only a word embedding, the
second version has been built to tackle this issue and explore other possible methods
for each part.

In the second version, the pre-filter has been removed, and medical expert knowledge
from the medicine list used by the pre-filter is transferred to the enricher. Each word
in the enriched input text is then transformed into an embedded vector as in the
first version. Here, a new part has been added to strengthen the embedded word
vectors by utilising Meta-Embedding. Finally, the comparison is made as in the first
version to find the most suitable KVÅ-code. The classifier’s second iteration has an
architecture as in Figure 3.5.

26

3. Method

Figure 3.5: The second iteration of the classifier architecture including imple-
mented methods on each part

3.11 Classification of a Clinical Note

A clinical note is classified by first preprocessing the note which is then enriched with
external knowledge and then turned into a word embedding. The word embedding
is processed, averaged and then compared against the KVÅ-code descriptions. The
example in Figure 3.6 show how a clinical note gets processed before finally being
classified to a corresponding KVÅ-code.

27

3. Method

Figure 3.6: An example of how a clinical note gets classified.

3.12 Ethical considerations

The emergence of Artificial Intelligence and Machine Learning has led to numerous
debates regarding its effect on our society. Due to the nature of this work, it is evi-
dent that it may affect the users and patients the proposed classifier were built for.
Thus, the process of designing and implementing the solution had to be carefully
thought out.

In this thesis, the data provided by Appva had been made anonymous by removing
all personal information from the patients. Although the data has been rendered
anonymous and ruled to not be in breach of privacy within the GDPR laws, it is still
vital to ensure it is not used carelessly. There have been cases where cross-checking
data has been successfully used to identify specific individuals.

The reason for building this classifier was to help licensed personnel correctly identify
care procedure codes. The prediction made by the classifier would have a significant
impact on what is reported. Ensuring that the wrong code is not reported is of

28

3. Method

a serious matter. To ensure that the user does not entirely rely on the classifier,
the user must know its error rate. Otherwise, identifying wrong codes could have
negative consequences since the KVÅ-codes can and is used for statistics which
assists the government in getting a better understanding of care procedures. This,
in turn, dictates where and how research and funds are invested.

29

3. Method

30

4
Evaluation and Results

This section provides the result of the implemented methods evaluated individually
and collectively. Section 4.3, 4.4 and 4.5 presents the performance of different word
embedding models, different types of pre-filter and enricher evaluated on the val-
idation set. The testing on the validation set provided result to determine which
method should be included and tested on the test set for final evaluation.

4.1 Self-labelling of Data
Based on the consensus on how to interpret the Cohen’s Kappa score, the reliability
of the manual annotation is considered moderate and therefore not good enough to
be trustworthy [24]. Thus, no self-labelling was included in the dataset. Instead,
new characteristics of the data were found which were later confirmed through a
questionnaire sent to medical experts.

Table 4.1: Result of evaluating pre-filtering with and without spellcheck

Annotators Cohen’s Kappa Score
Annotator 1 vs licensed personnel 0.4
Annotator 2 vs licensed personnel 0.4
Annotator 1 vs annotator 2 0.6

4.2 Evaluation of Base-line Classifier
As mentioned, a heuristic base-line classifier was created based on knowledge within
NLP and intuitive thought. This classifier generates a vocabulary of size 57,434
from the data set. Thereafter, an entry is transformed into a vector representation
of size 57,434. Classification of an entry is done by finding the KVÅ-code with the
highest cosine similarity. The result of the test set is shown in table 4.2

Table 4.2: Performance of the base-line classifier.

Base-line classifier Accuracy Precision Recall F1-score
BoW + cosine similarity 02.10 58.86 02.10 02.38

31

4. Evaluation and Results

4.3 Evaluation of Word Embedding
This section presents the different methods used to implement and evaluate the word
vectors. First, the two architectures, Word2vec and Fasttext, were implemented
and compared. After that, the training utilising different combinations of data and
hyperparameters were evaluated. Lastly, the evaluation of enhancing of word vectors
through SIF and Meta-embedding.

4.3.1 Comparison of Measurements
The evaluation of measurements was on the comparison between the data entries
and KVÅ-code from the sentence embedding obtained by averaging the word vectors
from the Fasttext model. The results in 4.3 indicates that cosine similarity performs
better than word mover’s distance. Cosine similarity was chosen as the measurement
to use in the rest of this thesis.

Table 4.3: Comparison of cosine similarity and word mover’s distance.

Model Measurement Accuracy Precision Recall F1-Score
Fasttext Cosine Similarity 43.220 77.042 43.220 43.346
Fasttext Word Mover’s Distance 31.097 88.419 31.097 34.177
Word2Vec Cosine Similarity 28.108 76.817 28.108 30.875
Word2Vec Word Mover’s Distance 28.559 90.744 28.559 27.918

4.3.2 Comparison of Word2Vec and Fasttext
Word2vec and FastText were trained from scratch. The word embedding models
were trained on their standard parameters without any modification to ensure a
fair comparison. The evaluation was performed on the validation set using cosine
similarity as measurement. The results in 4.4 show that Fasttext performed better
than word2vec. Furthermore, Fasttext is capable of handling out-of-vocabulary and
is better at representing less frequent words. Fasttext was therefore chosen as the
Word Embedding of choice and used in further evaluations.

Table 4.4: Comparison of Word2vec and fasttext.

Word Embedding Accuracy Precision Recall F1-score
Word2Vec 28.108 76.817 28.108 30.875
Fasttext 43.220 77.042 43.220 43.346

4.3.3 Comparison of Input Data
Every clinical note contains a mandatory label and an optional description. There-
fore, the input data can be the label itself or a combination of both the label and
the description. The results show that the addition of description drastically worsen
the results as seen in Table 4.5.

32

4. Evaluation and Results

Table 4.5: Comparison of using label and description as input data

Input Data Accuracy Precision Recall F1-score
Label 43.220 77.042 43.220 43.346
Label + Description 31.632 77.225 31.632 29.065

4.3.4 Pre-trained Word Embedding
Pre-trained Fasttext models are provided by the Fasttext authors which were trained
on data crawled from Wikipedia. The pre-trained model has been evaluated as well
as the incremental trained version of this model using the data set. Compared to the
result from different self-trained models, the performance of the pre-trained as well
as incremental trained models is significantly worse and therefore, will be excluded.

Table 4.6: Pre-trained Fasttext model.

Fasttext model Accuracy Precision Recall F1-Score
Pre-trained FastText 18.80 36.46 18.80 14.31
Incremental trained 12.69 24.76 12.69 11.12

4.3.5 Comparison of training data
Various combinations of the data were trained on Fasttext to make the best word
embedding possible for the domain. As mentioned, the clinical note contains a
mandatory label and an optional description. The training always used the KVÅ-
descriptions and either the label data or combining it with the description data.
The evaluation with cosine similarity shown in 4.7 indicates that the performance
increased when utilising all data available to train the embedding.

Table 4.7: Comparison of the data used to train Fasttext.

Dataset Accuracy Precision Recall F1-score
Label + KVÅ 41.331 76.898 41.331 39.489
Label + Description + KVÅ 43.220 77.042 43.220 43.346

4.3.6 Comparison of Dimension Size
Different dimensionalities for the space of word vectors were compared. Four differ-
ent configurations of Fasttext with different dimensionality were implemented within
the range recommended by the Fasttext authors. The results indicate that the di-
mension changes did not affect the results significantly but increased the memory
required by the embeddings. Therefore a dimensionality of 100 was chosen to reduce
memory requirements. See Section 4.8.

33

4. Evaluation and Results

Table 4.8: Comparison of word embedding of various dimensions.

Dimension Accuracy Precision Recall F1-Score Disk Size (GB)
FastText 100 42.036 77.499 42.036 44.166 0.794
FastText 200 41.725 76.183 41.725 42.948 1.59
FastText 300 42.120 76.415 42.120 43.186 2.38
FastText 400 41.782 76.127 41.782 42.863 3.18
FastText 500 42.036 76.152 42.036 43.110 3.97

4.3.7 Evaluation of training epochs
The epoch parameter decides how many times the network is optimised on the
given data during training. Large epoch value results in a better representation
of the training data. The risk is that it may become overfitted on the provided
data. As seen in 4.9, training on one epoch leads to underfitting of the data while
training it too much instead overfits, leading to a worse result. Therefore something
in between should be used, and epoch two was chosen as the optimal choice.

Table 4.9: Word embedding trained with different epochs.

Epoch Accuracy Precision Recall F1-Score
1 40.006 71.905 40.006 39.353
2 45.954 71.763 45.954 44.517
3 44.263 75.107 44.263 44.148
4 43.755 75.398 43.755 44.360
5 41.162 75.335 41.162 43.326

4.3.8 Results From Enhancing of Word Embedding
The enhancing of word embedding were made with SIF and Meta-embedding, see
4.10 for the results. SIF-embedding resulted in worse performance than expected
since it has in previous research been proven to be quite successful. Meta-embedding
also decreased the performance but not drastically in comparison to the SIF-embedding.

Table 4.10: Results of post processing the embedding with SIF and Meta

Embedding Type Accuracy Precision Recall F1-Score
Standard Embedding 43.220 77.042 43.220 43.346
SIF Embedding 32.685 52.810 32.685 31.775
Meta Embedding 42.825 77.421 42.825 41.865

4.4 Evaluation of Pre-filtering
As expected, many of the entries that contain a medicine can be directly assigned
a KVÅ-code. The percentage of data entries containing a medicine name and the

34

4. Evaluation and Results

accuracy indicates the benefit of implementing a pre-filter.

Table 4.11: Result of evaluating pre-filtering with and without spellcheck

Dataset N.o input Accuracy
Matching + Spelling ratio = 0.8 1650 65.15
Matching + Spelling ratio = 0.7 1720 63.13
Matching + Spelling ratio = 0.6 2454 49.84

The pre-filter was evaluated on the Danderyd data set. In table 4.11, N.o input
represents the number of entries found with a medicine name. Matching represents
the pre-filter model where the only word fully matched with a medicine name is
accepted and Misspelling ratio represents a model that accepts misspelt medicine
name within the limit.
In case the pre-filter suggests a KVÅ-code, the classifier will skip over the other
parts. Therefore, in case the pre-filter causes an error, the other parts will not have
the opportunity to correct it. Therefore, in the second iteration, the information in
use of pre-filter was instead applied to the enricher. The pre-filter was also removed
to eliminate the potential flaw of pre-filter. The trade-off can be seen in the section
4.6 where both pre-filer and enriching are evaluated and compared.

4.5 Evaluation of Enriching

The knowledge used to enrich the data entries came from two sources. Läkemedelsver-
ket and 1177 where a medicine list with additional information about medicine was
obtained. BabelNet, where synonyms and definition of words were retrieved. The
results enriched using the medicine list proved to be useful and increased the results
significantly, as seen in 4.12.

Table 4.12: Enriching using Medicine List

Enriching Source Accuracy Precision Recall F1-Score
No enriching 43.220 77.042 43.220 43.346
Medicine1 (Route of 58.726 80.567 58.726 56.752
Administration)
Medicine2 (Original Form) 46.687 78.087 46.687 45.709

Enriching with BabelNet, on the other hand, proved to be detrimental to the clas-
sification as seen in 4.13.

35

4. Evaluation and Results

Table 4.13: Enriching using BabelNet

Enriching Source Accuracy Precision Recall F1-Score
No enriching 43.220 77.042 43.220 43.346
BabelNet Senses 28.644 65.423 28.644 22.463
BabelNet Glosses 30.364 72.352 30.364 25.741
BabelNet Senses + Glosses 26.840 63.419 26.840 19.366

4.6 Final evaluation
The final classifier was evaluated on the test set consisting of 102 unique kvå-codes
and 2521 entries. Since the clsasifier is built from self-contained parts, the classifier
was evaluated from the parts themselves to the complete classifier. Table 4.14 shows
that the best performing classifier was the combination of the embedding with pre-
filter and the list which obtained the highest score overall in every measurement.

4.6.1 Evaluation of Common and Infrequent KVÅ-codes

Since the frequency of the KVÅ-codes in the test set is imbalanced, an overall mea-
surement by itself, cannot provide a proper indication of the performance. The
classifier was evaluated using the entries belonging to the 20 most frequent and 20
least frequent KVÅ-codes. This provides insights into how well the classifier gener-
alise. See 4.15 for the results.

Table 4.15: The results of the 20 most common and uncommon KVÅ-codes

Dataset Accuracy Precision Recall F1-Score
KVÅ-code (20 most common) 61.993 73.442 61.993 57.137
KVÅ-code (20 least common) 30 95 30 30

The Figure 4.1 shows the confusion matrix for the 20 most common KVÅ-codes.
Every square with coordinate X and Y and a number P represents the proportion
P of entries belong to KVÅ-code Y but assigned to KVÅ-code X. The diagonal line
represents the entries that are correctly assigned by the proposed classifier. The
squares that are not on the diagonal line are assigned wrong KVÅ-code. From this
matrix, it shows that the classifier performs quite well on average. It is also possible
to identify a couple of frequent codes which seem always to be classified wrongly,
AF015, AU116 and QA009.

The Figure 4.2 plots the results of the 20 least common KVÅ-codes. It seems that
the classifier has a problem with infrequent codes, which was expected. However, it
still manages to classify some of them correctly.

36

4. Evaluation and Results

Figure 4.1: Confusion matrix on top 20 most common codes

Figure 4.2: Confusion matrix on the 20 least common codes.

37

4. Evaluation and Results

4.6.2 Evaluation of the Highest Scored KVÅ-codes

Instead of only allowing the classifier to suggest one KVÅ-code, an experiment was
done where the classifier is allowed to suggest 3 and 5 KVÅ-codes for each clinical
note. The result of this experiment can be seen in Table 4.16. As expected, the
accuracy improves when the number of compared KVÅ-codes increases. However,
comparing the top 3 KVÅ-codes increased the accuracy by 13.804% while top 5 has
further increased it by 5.514%. This indicates that often in cases where the classifier
has assigned a wrong KVÅ-code, the correct KVÅ-code is within the highest scored
KVÅ-codes and most likely within the top 3.

Table 4.16: Results from evaluating the highest scored KVÅ-codes.

Recommendations Accuracy
Top 5 KVÅ-codes 78.937
Top 3 KVÅ-codes 73.423

4.7 Experimenting With the Field List
KVÅ-code is not the only category that an entry can be assigned to. Each entry
also has a list assigned to it by the organization where the licensed personnel work.
By analysing the codes in each list, it was possible to determine which code were
frequent in the different lists. By limiting the KVÅ-codes a data entry is compared
with by its assigned list, the accuracy increased as seen in 4.17.

To ensure fairness and prevent bias, the test set was divided into two sets with a
ratio of 80/20. 80% were used to identify the frequency of the KVÅ-codes while
the 20% were used to evaluate the performance of using list. Each version has been
tested 5 times to reduce the effect of randomness in dividing the test set.

Table 4.17: Result from using different components

Model Accuracy Precision Recall F1-Score
Standard Embedding + Prefilter 61.069 70.809 61.069 60.123
SIF-embedding + Prefilter 58.812 73.748 58.812 57.683
Meta-embedding + Prefilter 61.426 70.865 61.426 60.084
Standard embedding + Enriching 60.911 70.507 60.911 59.633
(Medicine1)
SIF-embedding + Enriching 50.337 66.664 50.337 48.021
(Medicine1)
Meta-embedding + Enriching 60.832 70.883 60.832 59.547
(Medicine1)

38

4. Evaluation and Results

4.8 Proposed Classifier Architecture
The proposed classifier with the chosen method based on the overall performance
can be seen in Figure 4.3.

Figure 4.3: The proposed classifier architecture with chosen method in each part

39

4. Evaluation and Results

Table 4.14: Result from using different components

Model Accuracy Precision Recall F1-Score
Base-line classifier 02.10 58.86 02.10 02.38
Standard embedding 44.506 57.179 44.506 41.106
SIF-embedding 41.333 54.695 41.333 37.841
Meta-embedding 43.911 56.207 43.911 40.457
Standard Embedding + Prefilter 59.342 66.775 59.342 58.878
SIF-embedding + Prefilter 57.993 66.328 57.993 58.222
Meta-embedding + Prefilter 59.619 66.553 59.619 59.043
Standard embedding + Enriching 58.231 65.403 58.231 57.780
(Medicine1)
SIF-embedding + Enriching 51.051 61.108 51.051 50.312
(Medicine1)
Meta-embedding + Enriching 58.390 65.235 58.390 57.863
(Medicine1)
Standard embedding + Enriching 37.604 48.529 37.604 33.863
(BabelNet glosses)
SIF-embedding + Enriching 40.500 48.153 40.500 35.444
(BabelNet glosses)
Meta-embedding + Enriching 35.462 49.563 35.462 32.243
(BabelNet glosses)
Standard Embedding + Prefilter + 56.090 61.410 56.089 54.603
Enriching (BabelNet glosses)
SIF-embedding + Prefilter + 58.033 64.811 58.033 57.826
Enriching (BabelNet glosses)
Meta-embedding + Prefilter + 56.208 62.013 56.208 54.977
Enriching (BabelNet glosses)
Standard Embedding + Enriching 43.832 44.207 43.832 38.177
(Medicine1 + BabelNet glosses)
SIF-embedding + Enriching 49.186 54.604 49.186 46.323
(Medicine1 + BabelNet glosses)
Meta-embedding + Enriching 44.427 45.911 44.427 39.342
(Medicine1 + BabelNet glosses)

40

5
Discussion

This chapter reflects and discuss the purpose of this paper, the methods used and
the results obtained.

5.1 The Base-line Classifier

Choosing a base-line classifier to compare the classifier against was not straight-
forward. Supervised-methods were not feasible as there is a lack of labelled data.
Instead, the choice fell upon a classifier which utilises bag-of-words and cosine sim-
ilarity since they are the building blocks of the purposed classifier and have shown
to work well in downstream supervised tasks.

By analysing the results of the base-line classifier, a discovery was made. The main
reason for the poor result of the base-line classifier is that it is trying to find match-
ing words between the clinical note and the KVÅ-descriptions. As mentioned, the
size of the resulting BOW vectors is 57,434. Since the text is short, with an average
of 11 words, the resulting vector representation is sparse as it is filled with zeros
and only 11 ones. After that, the similarity is measured using cosine similarity, as
shown in equation 2.4.

The numerator in the cosine formula is simply the number of matching words be-
tween the input text and a KVÅ-code description. Since the dimension of a vector
representation is enormous compared to the average number of words per text, the
probability that a pair of input text and KVÅ-code description has matching words
is low. Thus the majority of comparisons will result in a cosine score of zero, making
the comparison useless. Due to this, 1247 out of 2521 entries were not assigned a
KVÅ-code. Thus, rendering the base-line useless on around 50% of the clinical notes.

Furthermore, the denominator is the square root of the number of unique words in
the vectors. A KVÅ-code with a shorter description will, therefore, have a higher
similarity even if multiple KVÅ-codes have the same number of matching words.
Finally, the matching words are not always the keywords. An example is the word
"sond" which is a tube used to deliver food and medicine into the body. Since this
word only exists in the KVÅ-code DJ010, the entries containing "sond" were assigned
to DJ010 when only two of them should have been assigned to it.

41

5. Discussion

5.2 Self-labelling and the Resulting Questionnaire
The self-labelling did not work as we expected because it is hard to label correctly
without the medical expertise required. However, the characteristics of the data that
were found during the self-labelling process were confirmed by medical personnel in
the questionnaire that was sent. Based on their answers, the assumptions were
confirmed, which made it possible to draw the following conclusions:

• An entry may have more than one correct KVÅ-code.
• There are clinical notes with wrongly assigned KVÅ-code.
• The assigned KVÅ-code on some entries are unusual and not correct based on

the clinical note.
The new conclusions led to consequences which could not have been foreseen. Be-
cause an entry may have more than one correct KVÅ-code, the problem is not only
a multi-category problem but also a multi-label problem. Since the test and valida-
tion set only contain one assigned KVÅ-code per entry it did no longer give a fair
representation since an assigned KVÅ-code by the classifier could now be correct
but wrong when compared to the assigned KVÅ-code. The wrongly assigned en-
tries would also lead to false negatives, and the unusual assigned KVÅ-codes would
be impossible to classify correctly. Thus, the results obtained may be better than
presented in the results.

5.3 Pre-Filter
The observation that some entries are more straightforward to classify than others
led to the addition of a pre-filter module. Utilising this knowledge made it possible
to improve the classifier through the extension of a pre-filter that covered medicine
intake. While it proved to help in the overall accuracy, there were cases where it
introduced errors in otherwise correct predictions. As mentioned, in cases where the
medical prescription is not the central part of the described medical procedure, the
pre-filter will assign an inaccurate KVÅ-code. This issue leads to a restriction in the
pre-filter due to the loss of generalisation.

5.4 Enriching
The medicine list obtained from Läkemedelsverket for enriching proved to be ef-
fective in improving the classification. Instead of assigning a KVÅ-code based on
keywords as in the pre-filter, the enriching assists the classification by adding useful
information while letting the classifier determine the suitable KVÅ-code. Since it
performed almost on par with the pre-filter while being less restricted compared to
the pre-filter, it may be the better alternative.

Surprisingly, enriching with BabelNet made the proposed classifier worse with a
significant loss of accuracy. The addition of synonyms and descriptors seemed to
introduce more noise than it helped. In some ways, this makes sense since synonyms
are relatively close in the vector space making the addition of them redundant. After

42

5. Discussion

analysing, it shows that some words were enriched with out-of-domain knowledge
which introduced undesired noise. Furthermore, BabelNet is quite limited when it
comes to Swedish since it was not able to provide synonyms and definitions for the
majority of the vocabulary. This leads to a problem of disproportionate enriching
where not all words become enriched. The obtained sentence vector may therefore
have had its weight shifted towards words that had synonyms and descriptions.

5.5 Word Embedding
The choice of using word embedding was due to how well it is able to capture
semantics between words. Since the classification is based on comparing the KVÅ-
descriptions with clinical notes, the semantics between words were necessary. After
comparing, Fasttext proved to perform better than Word2Vec. This may be due to
how Fasttext considers words in the form of n-grams, making it better on morpholog-
ically abundant languages. While Swedish may not be considered a morphologically
rich language, the data set contains clinical notes which are rarely well structured.
The notes often have misspellings which can be seen as a morphology of the cor-
rected spelt word. Thus, Fasttext can find the similarity between the correct word
and misspellings while Word2Vec would consider them to be unique.

5.5.1 Pre-trained Fasttext
The Word Embedding was trained from scratch to represent the medical domain
of the data in its best form. This proved to be correct since pre-trained Fasttext
performed significantly worse. Furthermore, incremental learning did not improve
the performance of the pre-trained model. The reason seems to be the difference
in features between the data used to train the pre-trained Fasttext and the data in
use:

• Structured and unstructured text. The corpus from Wikipedia is considered
structured text as it follows syntactic rules of a language. Oppositely, the text
in the data set consist mainly of keywords and does not follow the rules as the
individual writing them are trying to make them short.

• Difference in the domain. Since the corpus from Wikipedia is from all possible
domains, words that have several meanings will be located differently in the
vector space to justify the contexts.

5.6 Enhancing of Word Embedding
Both methods used for enhancing of the vectors, SIF- and meta-embedding showed
worse performance on the validation set. However, evaluation of the test set shows a
difference in the performance of SIF- and meta-embedding on different combinations
of implemented parts. Compared to standard Fasttext embedding, SIF improves the
performance of the classifier significantly when enriching with BabelNet’s glosses is
in use. However, when enriching with BabelNet’s glosses is not part of the classifier,
the performance of SIF-embedding decreases significantly. As mentioned, enriching

43

5. Discussion

using BabelNet is not substantial as there are words without glosses or senses. Fur-
thermore, since many of them are out-of-domain, thus rare words, SIF-embedding
gives the enriched words a lower weight. Therefore, SIF-embedding is actually not
improving the performance of a classifier with BabelNet based enricher but reduce
the error introduced which the standard embedding cannot handle.

Meta-embedding on the other hand, performs better when the pre-filter or enrich-
ing with medicine list is used. The question is if the performance gain is due to
randomness and the error of margin or if it helped the classifier. However, it is an
exciting result and indicates that meta-embedding should not be ignored.

5.7 Building Sentence Embeddings
The decision to average word vectors proved to be useful and shows that it is an
effective way of concentrating the sentence information while keeping the dimension
size the same as a single word vector. The side effect of this is the inherent simpli-
fication of the representation. For example, word order was no longer considered,
meaning that two sentences with identical words in a different order would have the
same score. Thus, the structure of the sentence is lost which is not ideal.

5.8 Label or Description
Since the data entries were short, it seemed that utilising all possible information
would be beneficial. Instead, the results became worse when combining the label
and description into one input data. The label itself may, therefore, contain enough
information to be classified correctly. This indicates that including more informa-
tion may not always be the better option and that trying to concentrate on the
keywords may work.

Something to note is that some entries contained labels which did not indicate
anything. For example, there were notes where the label was "other", and the
description contained the majority of information. Thus, by using the label as
input, these entries would never be classified correctly with the proposed classifier.
A similar outcome is found in section 5.4 where enriching with glosses and senses
from BabelNet has worsen the performance. Thus the quality of the text is more
important than the quantity even in cases where the input text is concise.

5.9 Experimenting on the Field List
The usage of the List field improved the performance of the classifier. One problem
with this approach is that each respective organisation customises their list cate-
gories. Thus there is no logical coherence, where many of the lists overlap but were
considered different. Since this is just an experiment to determine the possibility of

44

5. Discussion

improvement using the list field, no efforts were put on trying to figure out which
list were distinct.

5.10 The Final Evaluation
The final evaluation showed that the classifier managed to achieve an accuracy
of 59.619%. The result may look below average for a classifier in general, but
when compared to other solutions to classify KVÅ-codes, the achieved results are
considered good. The question remains if relying on this classifier is acceptable,
which only the healthcare industry can answer. From evaluating the highest scored
KVÅ-codes, a considerable improvement in accuracy was achieved. This indicates
that the classifier can be utilised as a recommendation system which would be able
to guide and simplify the classification of KVÅ-codes.

5.11 Evaluation Metrics
In addition to accuracy, other metrics are used to ensure the quality of the evaluation.
One thing noticed is that when measuring the performance of different methods is
that accuracy and recall is always the same. Since the weighted average is used
to generate an overall evaluation score from the score of each category, the overall
recall score is computed as bellow:

weighted_average_recall =
k∑

n=1
recalln ∗Wn (5.1)

=
k∑

n=1
recalln ∗

TPn + FNn

N
(5.2)

=
∑k

n=1 recalln ∗ (TPn + FNn)
N

(5.3)

=
∑k

n=1
T Pn

T Pn+F Nn
∗ (TPn + FNn)

N
(5.4)

=
∑k

n=1 TPn

N
(5.5)

Here k is the number of categories,N is the number of data entries and Wn is the
weight of n-th category. Since the overall accuracy is simple the number of correct
classified entries divided by the number of data entries, overall recall and overall
accuracy is the same.
Another detail is that F1 score is sometimes lower than both precision and recall,
despite it is the harmonic mean of them. The reason is that the weighted average is
used to compute the overall score, thus categorises that covering many entries with
lower scores will make the final overall F1-score lower. Lastly, precision is always
higher than other metrics. While accuracy and other metrics are considerable lower,
the high precision score indicates a stable classification. Among all entries classified
to a KVÅ-code, precision is the percentage of entries that are correctly classified.

45

5. Discussion

5.12 Future Work
The proposed classifier shows promising results, but some things can still be im-
proved. Below we expose some ideas that could be beneficial from further research.

• A wide variety of word representation methods exist, and the ones employed
here were strong candidates. However, there exist other options which have
shown excellent results within the English domain and in downstream super-
vised tasks. Utilising those advanced architectures such as BERT and Uni-
versal Sentence Encoder would be of interest and could be beneficial to the
classifier. They also allow for a more advanced sentence representation which
can take word order into account.

• Post-processing of embedding has shown success in removing noise. Since
enriching seemed to introduce noise, investigating post-processing could be
beneficial.

• Investigate ways to solve the skewed data with many infrequent categories.
While this paper focused on making a general classifier which can classify all
categories, focusing on the rare cases and finding out what could improve these
are of great importance and need to be researched further.

• Look for more relevant data to train the embeddings. As shown in the results,
utilising more in-domain data proved to be efficient while the pre-trained out
of domain models were too general to generate good results. Thus, finding
domain-specific data in Swedish would benefit the classifier.

• Investigate alternative Meta-Embeddings such has Locally Linear Meta-Embedding
since the results show that it may be beneficial.

46

6
Conclusion

This thesis aimed to research and identify how an unsupervised method could be
used for the classification of very short clinical notes in Swedish. An unsupervised
classifier for the classification of short clinical notes has been implemented based
on previous research and related work. The model was evaluated on the test data
provided by Appva on 108 different KVÅ-codes.

Two major iterations were made where one classifier utilised a pre-filter which man-
aged to classify simpler entries directly. The second classifier utilised an enricher
by incorporating additional knowledge from other sources. Although the pre-filter
based classifier performs better than the one using enriching, it is much more re-
stricted due to how the pre-filter works. Thus the final proposed classifier uses
enriching since the small improvement of pre-filter does not outweigh the loss of
generalisation.

The proposed classifier manages to find relations between a clinical note and a
KVÅ-description in a similar way a human would approach the problem. This is an
interesting distinction from supervised-methods where mapping would be learned
directly from a clinical note rather than looking for semantic similarity.

From the results obtained, it can also be concluded that the quality of the text to
be classified is significantly more important than the quantity of data. This applies
to both texts used in training and evaluating the proposed classifier and enriched
text.

47

6. Conclusion

48

Bibliography

[1] Socialstyrelsen. “Klassificering och koder”. In: Social Styrelsen (2019-08).
[2] Chefsjurist Pär Ödman. “Gemensamma författningssamlingen avseende hälso-

och sjukvård, socialtjänst, läkemedel, folkhälsa m.m.” In: Social Styrelsen
(2017-12).

[3] Socialstyrelsen. “Klassifikation av medicinska åtgärder 2020”. In: Social Styrelsen
(2020-01).

[4] Fabrizio Sebastiani. “Machine Learning in Automated Text Categorization”.
In: ACM Comput. Surv. 34.1 (2002-03), pp. 1–47. issn: 0360-0300. doi: 10.
1145/505282.505283. url: https://doi.org/10.1145/505282.505283.

[5] B. J. Jansen and S. Rieh. “The Seventeen Theoretical Constructs of Infor-
mation Searching and Information Retrieval”. In: the American Society for
Information Sciences and Technology (2010), pp. 1517–1534.

[6] Mita K Dalal and Mukesh A Zaveri. “Automatic text classification: a techni-
cal review”. In: International Journal of Computer Applications 28.2 (2011),
pp. 37–40.

[7] W. Weng et al. “Medical subdomain classification of clinicalnotes using a ma-
chine learning-basednatural language processing approach”. In: (2017). url:
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/
s12911-017-0556-8.

[8] Weidi Xu and Haoze Sun. “Semi-supervised Variational Autoencoders for Se-
quence Classification”. In: ArXiv abs/1603.02514 (2016).

[9] Zied Haj-Yahia, Adrien Sieg, and Léa A. Deleris. “Towards Unsupervised Text
Classification Leveraging Experts and Word Embeddings”. In: Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics. Flo-
rence, Italy: Association for Computational Linguistics, 2019-07, pp. 371–379.
doi: 10.18653/v1/P19-1036. url: https://www.aclweb.org/anthology/
P19-1036.

[10] Ponti M.A Fernandes R. “Machine Learning - A Practical Approach on the
Statistical Learning Theory”. In: (2018).

[11] Xin Yao. “Evolving artificial neural networks”. In: Proceedings of the IEEE
87.9 (1999), pp. 1423–1447.

[12] Frank Rosenblatt. “The perceptron: a probabilistic model for information stor-
age and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[13] Eric Brill. “A simple rule-based part of speech tagger”. In: Proceedings of
the third conference on Applied natural language processing. Association for
Computational Linguistics. 1992, pp. 152–155.

[14] George A Miller. WordNet: An electronic lexical database. MIT press, 1998.

49

https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/505282.505283
https://doi.org/10.1145/505282.505283
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0556-8
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-017-0556-8
https://doi.org/10.18653/v1/P19-1036
https://www.aclweb.org/anthology/P19-1036
https://www.aclweb.org/anthology/P19-1036

Bibliography

[15] Min Chen, Shiwen Mao, and Yunhao Liu. “Big data: A survey”. In: Mobile
networks and applications 19.2 (2014), pp. 171–209.

[16] Tomas; et al. Mikolov. “Distributed representations of words and phrases and
their compositionality”. In: (2013).

[17] Tomas Mikolov et al. “Efficient estimation of word representations in vector
space”. In: arXiv preprint arXiv:1301.3781 (2013).

[18] Armand Joulin et al. “Bag of tricks for efficient text classification”. In: arXiv
preprint arXiv:1607.01759 (2016).

[19] Quoc Le and Tomas Mikolov. “Distributed representations of sentences and
documents”. In: International conference on machine learning. 2014, pp. 1188–
1196.

[20] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. “A simple but tough-to-beat
baseline for sentence embeddings”. In: (2016).

[21] Wael Gomaa and Aly Fahmy. “A Survey of Text Similarity Approaches”. In:
international journal of Computer Applications 68 (2013-04). doi: 10.5120/
11638-7118.

[22] Matt Kusner et al. “From word embeddings to document distances”. In: In-
ternational conference on machine learning. 2015, pp. 957–966.

[23] McHugh ML. “Interrater reliability: the kappa statistic”. In: Biochemia medica
(2012), pp. 276–282.

[24] J. Richard Landis and Gary G. Koch. “The Measurement of Observer Agree-
ment for Categorical Data”. In: Biometrics 33 (1977). issn: 0006341X, 15410420.
url: http://www.jstor.org/stable/2529310.

[25] J. Richard Landis and Gary G. Koch. “The Measurement of Observer Agree-
ment for Categorical Data”. In: Biometrics 33.1 (1977), pp. 159–174. issn:
0006341X, 15410420. url: http://www.jstor.org/stable/2529310.

[26] K. Krippendorff. “Validity in content analysis”. In: Computer Strategien für die
kommunikationsanalyse 33.1 (1980), pp. 69–112. url: http://repository.
upenn.edu/asc_papers/291.

[27] Mark Hughes et al. “Medical text classification using convolutional neural
networks”. In: Stud Health Technol Inform 235 (2017), pp. 246–50.

[28] Yu Chen and Mohammed J. Zaki.KATE: K-Competitive Autoencoder for Text.
2017. arXiv: 1705.02033 [stat.ML].

[29] Daniel Cer et al. “Universal sentence encoder”. In: arXiv preprint arXiv:1803.11175
(2018).

[30] Yuhua Li et al. “Sentence Similarity Based on Semantic Nets and Corpus
Statistics”. In: IEEE Transactions on Knowledge and Data Engineering 18
(2006-09), pp. 1138–1150. doi: 10.1109/TKDE.2006.130.

[31] Wenpeng Yin and Hinrich Schütze. “Learning Word Meta-Embeddings”. In:
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Berlin, Germany: Association for Com-
putational Linguistics, 2016-08, pp. 1351–1360. doi: 10.18653/v1/P16-1128.
url: https://www.aclweb.org/anthology/P16-1128.

[32] Danushka Bollegala, Kohei Hayashi, and Ken-ichi Kawarabayashi. “Think
Globally, Embed Locally - Locally Linear Meta-embedding of Words”. In:

50

https://doi.org/10.5120/11638-7118
https://doi.org/10.5120/11638-7118
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
http://repository.upenn.edu/asc_papers/291
http://repository.upenn.edu/asc_papers/291
https://arxiv.org/abs/1705.02033
https://doi.org/10.1109/TKDE.2006.130
https://doi.org/10.18653/v1/P16-1128
https://www.aclweb.org/anthology/P16-1128

Bibliography

CoRR abs/1709.06671 (2017). arXiv: 1709.06671. url: http://arxiv.org/
abs/1709.06671.

[33] Joshua Coates and Danushka Bollegala. “Frustratingly Easy Meta-Embedding
– Computing Meta-Embeddings by Averaging Source Word Embeddings”. In:
Proceedings of the 2018 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers). New Orleans, Louisiana: Association for Computational
Linguistics, 2018-06, pp. 194–198. doi: 10.18653/v1/N18-2031. url: https:
//www.aclweb.org/anthology/N18-2031.

[34] Jiaqi Mu, Suma Bhat, and Pramod Viswanath. “All-but-the-Top: Simple and
Effective Postprocessing for Word Representations”. In: CoRR abs/1702.01417
(2017). arXiv: 1702.01417. url: http://arxiv.org/abs/1702.01417.

[35] Shahrokh et la. “Effect of separate sampling on classification accuracy”. In:
Bioinformatics (1977), pp. 242–250. doi: doi:10.1093/bioinformatics/
btt662.

[36] Jeffrey David Ullman Anand Rajaraman. “Data Mining”. In: (2011), pp. 1–17.
doi: 10.1017/CBO9781139058452.002.

[37] Lars Borin et al. “Sparv: Språkbanken’s corpus annotation pipeline infrastruc-
ture”. In: SLTC 2016. The Sixth Swedish Language Technology Conference,
Umeå University, 17-18 November, 2016. 2016.

[38] Peter M. Dahlgren. Svensk text. Svenska. https://github.com/peterdalle/svensktext.
2018-12. url: https://snd.gu.se/sv/catalogue/study/ext0278 (visited
on 2018-12-20).

[39] Mikolov et la. “Advances in Pre-Training Distributed Word Representations”.
In: Proceedings of the International Conference on Language Resources and
Evaluation (LREC 2018). 2018.

[40] Läkemedelsverket. “Om Läkemedelsfakta”. In: (2020). url: https://www.
lakemedelsverket.se/sv/om-lakemedelsfakta#hmainbody1.

[41] 1177. “Olika sätt att ta läkemedel”. In: (). url: https://www.1177.se/
behandling--hjalpmedel/behandling-med-lakemedel/olika-satt-att-
ta-lakemedel.

[42] Kavitha A, Mintu Philip, and K Lubna. “Comparative analysis of similarity
measures in document clustering”. In: (2013-12), pp. 857–860. doi: 10.1109/
ICGCE.2013.6823554.

[43] Yutaka Sasaki et la. “The truth of the F-measure”. In: (2007).

51

https://arxiv.org/abs/1709.06671
http://arxiv.org/abs/1709.06671
http://arxiv.org/abs/1709.06671
https://doi.org/10.18653/v1/N18-2031
https://www.aclweb.org/anthology/N18-2031
https://www.aclweb.org/anthology/N18-2031
https://arxiv.org/abs/1702.01417
http://arxiv.org/abs/1702.01417
https://doi.org/doi:10.1093/bioinformatics/btt662
https://doi.org/doi:10.1093/bioinformatics/btt662
https://doi.org/10.1017/CBO9781139058452.002
https://snd.gu.se/sv/catalogue/study/ext0278
https://www.lakemedelsverket.se/sv/om-lakemedelsfakta#hmainbody1
https://www.lakemedelsverket.se/sv/om-lakemedelsfakta#hmainbody1
https://www.1177.se/behandling--hjalpmedel/behandling-med-lakemedel/olika-satt-att-ta-lakemedel
https://www.1177.se/behandling--hjalpmedel/behandling-med-lakemedel/olika-satt-att-ta-lakemedel
https://www.1177.se/behandling--hjalpmedel/behandling-med-lakemedel/olika-satt-att-ta-lakemedel
https://doi.org/10.1109/ICGCE.2013.6823554
https://doi.org/10.1109/ICGCE.2013.6823554

Bibliography

52

A
Complete Heat Map

I

A. Complete Heat Map

Figure A.1: The complete heatmap

II

	List of Figures
	List of Tables
	Introduction
	Purpose
	Limitations
	Outline

	Theory
	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Semi-supervised Learning

	Artificial Neural Networks
	Training of a Neural Network
	Optimising an Artificial Neural Network

	Natural Language Processing
	Document Classification
	Information Retrieval

	Bag of Words
	Word Embeddings
	Continuous Bag of Words and Skip-gram
	Word2vec
	Fasttext
	Creation of Sentence Embedding
	SIF-embedding

	Measuring Text Similarity
	Levenshtein Distance
	Cosine Similarity
	Word Mover Distance

	Inter-Annotator Agreement Scores
	Related Work
	Classification of Text
	Alternative Word Representations
	Sentence Similarity Based on Semantic Nets
	Meta-Embedding
	Dimension Reduction of Word Embeddings

	Method
	Data Analysis
	The Validation Set
	The Test Set
	KVÅ Data Set
	Self-labelling of Data

	Text Pre-processing
	Training of Word Embeddings
	Pre-filtering
	Enriching the Data
	Enriching with BabelNet
	Enriching With Expertise

	Enhancing the Word Vectors
	KVÅ-code Classification
	Evaluation Metrics
	Accuracy
	Precision
	Recall
	F1 Score

	A Baseline Classifier
	Proposed Classifier Architecture
	First Iteration
	Second iteration

	Classification of a Clinical Note
	Ethical considerations

	Evaluation and Results
	Self-labelling of Data
	Evaluation of Base-line Classifier
	Evaluation of Word Embedding
	Comparison of Measurements
	Comparison of Word2Vec and Fasttext
	Comparison of Input Data
	Pre-trained Word Embedding
	Comparison of training data
	Comparison of Dimension Size
	Evaluation of training epochs
	Results From Enhancing of Word Embedding

	Evaluation of Pre-filtering
	Evaluation of Enriching
	Final evaluation
	Evaluation of Common and Infrequent KVÅ-codes
	Evaluation of the Highest Scored KVÅ-codes

	Experimenting With the Field List
	Proposed Classifier Architecture

	Discussion
	The Base-line Classifier
	Self-labelling and the Resulting Questionnaire
	Pre-Filter
	Enriching
	Word Embedding
	Pre-trained Fasttext

	Enhancing of Word Embedding
	Building Sentence Embeddings
	Label or Description
	Experimenting on the Field List
	The Final Evaluation
	Evaluation Metrics
	Future Work

	Conclusion
	Bibliography
	Complete Heat Map

