
Individual game development with open-
source software
A case study with guidelines for programmers and game designers
Master’s Thesis in Computer Science and Engineering

Axel Ljungdahl

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2020

Master’s thesis 2020

Individual game development with open-source
software

A case study with guidelines for programmers and game designers

Axel Ljungdahl

Department of Computer Science and Engineering
Division of Interaction Design

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2020

ii

Individual game development with open-source software
A case study with guidelines for programmers and game designers
Axel Ljungdahl

© Axel Ljungdahl, 2020.

Supervisor: Michael Heron, Department of Computer Science and Engineering
Examiner: Staffan Björk, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Division of Interaction Design
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

iii

Individual game development with open-source software
A case study with guidelines for programmers and game designers
Axel Ljungdahl
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The focus of this project is individual (i.e., single-person) game development using
open-source tools; specifically, the development of a side-scrolling, 2D platform game
with a focus on players’ enjoyment, and the creation of this thesis, which is intended
to serve as a case study of individual, open-source game development and a limited
guide for future developers, especially those working alone.

This report describes the development process for the aforementioned game (titled
CheckerSphere), which includes both single-person game development and devel-
opment using strictly open-source tools (aside from low-level proprietary software
such as drivers for the graphics card used during development as well as proprietary
hardware). Additionally, as a guide, this thesis contains items such as a list of
personally recommended study material, mostly consisting of recorded lectures and
video essays; a brief analysis of the movement systems of three 2D platformers;
information regarding how to legally use existing assets and where to find them; in
what ways CheckerSphere is designed for accessibility; and several lists of open-source
tools that may be of use for a game developer.
Open-source distribution of games may not always be considered feasible, but it

brings new possibilities, such as potentially causing volunteers to contribute to the
game for free, encouraging players to create problem descriptions when they find
apparent bugs, allowing those who are unwilling to install closed-source software
on their computers to play the game, increasing the amount of trust and good will
towards the developers, and helping future game development projects by contributing
to the open-source community. Additionally, using only open-source tools brings
benefits such as being able to trust software to not infringe on one’s privacy or be
otherwise malicious; being able to suggest, or personally implement, desired changes
in a piece of software; being able to remove undesired parts of software; and having
access to all software without payment, facilitating lower-budget development.
This project has personally strengthened the view that open-source game devel-

opment is entirely feasible when extreme graphical fidelity is not required, both in
terms of using only open-source tools and in terms of distributing the game under
an open-source license; the latter does not prevent the developer from releasing the
game commercially, since non-code assets may remain proprietary.

Keywords: interaction design, video game design, independent video game develop-
ment, open-source software

iv

Acknowledgements
I would like to thank my supervisor, Michael Heron, for his support throughout this
project; my examiner, Staffan Björk; the three individuals who helped improve the
game by testing it at various stages of development; the opponent for my thesis; and
everyone who downloaded the game from itch.io and provided feedback.

Axel Ljungdahl, Gothenburg, June 2020

v

vi

Contents

List of Figures xi

1 Introduction 1
1.1 Background . 1

1.1.1 Video games . 1
1.1.2 Platform games . 1
1.1.3 Game development . 3
1.1.4 Individual game development 3
1.1.5 Open-source development . 5

1.2 Thesis . 5
1.2.1 Premise . 5
1.2.2 Goals . 6
1.2.3 Limitations . 6

2 Theory 9
2.1 Game development . 9

2.1.1 Individual game development 9
2.1.2 Open-source game development 10
2.1.3 Accessibility . 11

2.2 Open-source tools . 12
2.2.1 Operating systems . 13
2.2.2 Game engines, frameworks and libraries 13
2.2.3 Tools for creating and editing visuals 14
2.2.4 Tools for creating and editing audio 14
2.2.5 Coding tools . 14
2.2.6 Level editors . 15

3 Methodology 17
3.1 Software development . 17
3.2 General interaction design . 17
3.3 Game development . 19

4 Planning 21
4.1 Concept . 21
4.2 Software development methodology 23
4.3 Interaction design methodology . 26
4.4 Tools . 27

vii

Contents

4.5 Time plan . 28
4.6 Success criteria . 29

5 Execution and Process 33
5.1 General process . 33
5.2 Game design . 33
5.3 Programming . 34
5.4 Creating visuals . 34
5.5 Creating audio . 35
5.6 Testing . 35

6 Results 39
6.1 The game . 39

6.1.1 Accessibility . 43
6.2 Guidelines . 44

6.2.1 Overcoming individual difficulties 45
6.2.2 Analyzing existing games . 45
6.2.3 Using open-source code and other free assets 46
6.2.4 Direct or indirect use of 3D models 47
6.2.5 Visual effects and sound effects 48

7 Discussion 49
7.1 Process . 49

7.1.1 Goals . 49
7.1.2 Methodology . 49
7.1.3 Design . 50

7.2 Open-source development . 51
7.2.1 This project . 51
7.2.2 General open-source game development 52

7.3 Ethical issues . 53
7.3.1 Accessibility . 53
7.3.2 Privacy . 54
7.3.3 Digital rights management 55
7.3.4 Availability of source code 55
7.3.5 Miscellaneous . 55

8 Conclusion 57
8.1 The game . 57
8.2 Research questions . 58
8.3 Contribution of knowledge . 58

Bibliography 61

A Resources I
A.1 Study material . I
A.2 Free assets . III

B Notes from the game analyses V

viii

Contents

B.1 Mega Man X . V
B.2 Super Meat Boy . V
B.3 New Super Mario Bros. 2 . VI

ix

Contents

x

List of Figures

4.1 A state machine diagram describing the PCC’s intended main actions,
without accounting for dashing, power-ups or the direction in which
the PCC is facing. 24

4.2 A state machine diagram describing the PCC’s intended main actions,
accounting for dashing but not for power-ups or the direction in
which the PCC is facing. As shown, adding just four states causes a
significant increase in complexity, as would adding a single power-up;
each power-up would cause the size of the state machine to expand
greatly, especially if multiple power-ups can be active at once. 25

4.3 The intended core gameplay loop for an experienced player, based on
short levels and fast reactions to obstacles. 26

4.4 A diagram summarizing the time plan, excluding the work which will
be done continuously during the project. 30

5.1 The initial frames of the two portals used in the game – the left is
used as each level’s goal, and the right is used as an emitter of moving
sawblades. Each contains a particle system which causes a circular
pattern to form within it. 36

5.2 A side view (left) and front view (right) of the central obstacle in the
sixth level. Its model was created entirely in Blender. 36

6.1 A state machine diagram describing the PCC’s main actions. Unlike
in the plans, dashing is handled by separate code (equivalent to a
two-state FSM) and power-ups are handled by another FSM; the three
systems communicate through a central Player class; this class is
also used to store variables such as the direction in which the PCC is
facing. A version without labeled edges can be seen in figure 6.2. . . . 41

6.2 A version of figure 6.1 without labeled edges. 42

xi

List of Figures

xii

1
Introduction

1.1 Background

1.1.1 Video games

Video games1, also known as electronic games and computer games, are interactive
games operated by computer circuitry. The first video game, Spacewar!, was created
in 1962 at the Massachusetts Institute of Technology; since then, video games have
become a part of mainstream culture and commerce. [1]

Unlike film and literature, which are organized into genres based on their subject
matter, genres for games are determined by gameplay – e.g., sports games, shooter
games, racing games and role-playing games. Genres such as these can be further
divided by subtype – e.g., sports games can be further divided into categories based
on the type of sport being represented. However, an arbitrarily selected game cannot
necessarily fit into a single game genre – for example, modern role-playing games
tend to include challenges that test physical coordination, which was not initially a
common aspect of the genre. [2]
Another type of genre is the platform game (or platformer), which consists of

games for which gameplay is highly based on players controlling a character who
can manually move and jump between platforms [3]. This project involves the
development of such a game.

1.1.2 Platform games
Depending on the definition, the first platform game was either Space Panic, released
in 1980, or Donkey Kong, released in 1981; the latter was the game which introduced
a button dedicated to jumping, which would become a staple of the genre. Super
Mario Bros., released in 1985, is a platformer game which became highly influential
for later platformers. The genre suffered a drop in popularity starting in the late
1990s, but has since grown. [3]

Two-dimensional2 platformers (i.e., platformers in which movement is limited
to a two-dimensional axis, but where visuals may be rendered as projections of
three-dimensional objects) can be divided into different types based on a variety of
criteria. For example, the following criteria significantly impact gameplay and their

1Video game is abbreviated to game in the remaining paragraphs.
2Abbreviated to 2D in the remaining paragraphs; similarly, three-dimensional is abbreviated to

3D.

1

1. Introduction

implementation may therefore be subjectively experienced as positive or negative
depending on the individual:

• The movement of the camera (i.e., the region of the game’s world which is
visible to the player, projected to two dimensions). For example, Donkey
Kong1 uses a static camera; Elevator Action2 uses a camera which only moves
vertically; Super Mario Bros.3 uses a camera which predominantly moves
horizontally; and Sonic the Hedgehog4 uses a camera which frequently moves
both vertically and horizontally.

• The perspective of the camera. Some games, such as Super Mario Bros., position
the camera so that the player and other entities are shown approximately in
profile; others, such as Kirby 64: The Crystal Shards5 use a slightly rotated
perspective; and yet others, such as Sonic 3D Blast6 use an isometric or
otherwise pseudo-3D perspective without letting the player manually rotate the
camera. This attribute does not necessarily determine whether the rendering
is based on 2D images or 3D models – Sonic 3D Blast is a pseudo-3D game
with 2D artwork, but Kirby 64: The Crystal Shards is a side-scrolling game
which uses 3D models.

• The movement system. For example, Super Mario Bros. uses slight acceleration
and deceleration when moving, responds almost immediately to the player’s
movement and allows them to adjust jump height and change direction while
in the air, whereas Castlevania7 has constant velocity and a fixed jump arc
which cannot be adjusted or interrupted in any way aside from collision with
another entity.

3D platformers can be divided differently (e.g., some use a first-person camera while
others show the player’s character from a third-person perspective). Additionally,
some platformers use primarily 2D movement but also allow some movement along a
third axis, such as Mutant Mudds Deluxe8; depending on the exact definition of the
term, these may also be considered 2D platformers, despite not having strictly 2D
movement.
Examples of 2D platform games released between 2017 and 2019 include Super

Mario Maker 2 9, Sonic Mania10, Shovel Knight: Specter of Torment11, Celeste 12

and Cuphead 13.

1https://nintendo.com/games/detail/arcade-archives-donkey-kong-switch/
2https://arcade-museum.com/game_detail.php?game_id=7700
3https://nintendo.com/games/detail/super-mario-bros-3ds/
4https://sega.com/games/sonic-hedgehog
5https://nintendo.com/games/detail/kirby-64-the-crystal-shards-wii-u/
6https://store.steampowered.com/app/34278/Sonic_3D_Blast/
7https://nintendo.com/games/detail/castlevania-3ds/
8https://store.steampowered.com/app/247370/Mutant_Mudds_Deluxe/
9https://nintendo.com/games/detail/super-mario-maker-2-switch/

10https://sega.com/games/sonicmania
11https://yachtclubgames.com/shovel-knight/
12http://celestegame.com/
13https://store.steampowered.com/app/268910/Cuphead

2

https://nintendo.com/games/detail/arcade-archives-donkey-kong-switch/
https://arcade-museum.com/game_detail.php?game_id=7700
https://nintendo.com/games/detail/super-mario-bros-3ds/
https://sega.com/games/sonic-hedgehog
https://nintendo.com/games/detail/kirby-64-the-crystal-shards-wii-u/
https://store.steampowered.com/app/34278/Sonic_3D_Blast/
https://nintendo.com/games/detail/castlevania-3ds/
https://store.steampowered.com/app/247370/Mutant_Mudds_Deluxe/
https://nintendo.com/games/detail/super-mario-maker-2-switch/
https://sega.com/games/sonicmania
https://yachtclubgames.com/shovel-knight/
http://celestegame.com/
https://store.steampowered.com/app/268910/Cuphead

1. Introduction

1.1.3 Game development
Game development is unlike many other types of software engineering due to its
focus on player engagement over code quality and stability – e.g., constant stability
is not necessarily important as long as no significant amount of the player’s progress
is lost when an error occurs. Certain software bugs may even be remembered fondly
– for example, a bug present in Super Mario Bros. which leads the player to a
level unofficially called the Minus World1 – and, occasionally, games such as Goat
Simulator2 attempt to recreate such experiences as a core aspect of their gameplay.

The creation of a game requires that several different roles are filled. Every
aspect of a game (e.g., how the player can manipulate the game and how the game
presents itself to the player) must be designed, regardless of whether a rigorous
design document is followed, design is based on rapid iteration, or some other method
is used. A game must be implemented and, generally, visuals and audio must be
created and/or acquired. Finally, the game must be distributed, and, if the game
is sold, various business-related problems (e.g., marketing, securing a channel for
distribution and handling taxes) must be dealt with.
The barrier to entry for game development is continuously lowering due to the

continued creation and refinement of general-purpose and genre-focused game engines,
which results in several tasks which were previously required now being optional in
certain cases – for example, by using a genre-focused game engine, depending on the
game being developed, developers may be able to completely avoid programming
or exchange traditional programming for simple text-based or visual scripting), and
online stores such as Steam3 and itch.io4 can handle distribution, keeping records of
transactions and other business-related issues. However, design of games remains
highly necessary; while some aspects are more difficult (e.g., previously impressive
technology may no longer be enough to convince people to play a game with mediocre
design), others are less so (e.g., the number of freely available resources, ranging
from vague guidelines to well-defined design templates, are continuously increasing
and can be acquired through the Internet).

1.1.4 Individual game development
The larger and more complex a game is, the more people and types of skill are needed
in its development team. The capacity for game development is proportional to these
two factors, which means that smaller teams may be unable to create what larger
teams can, due to a need for additional team members (or more time than what can
feasibly be allocated), a need for particular skills or some other requirement.
However, smaller teams have certain advantages. Due to the number of different

roles involved in a large project, in order to prevent inaccurate representation of
one’s thoughts – or misunderstanding of another’s – clear communication between
group members is required. For example, game designers’ tasks are intertwined
with each of the other roles – they must understand the limitations of programmers

1An unofficial description of the glitch is available at https://mariowiki.com/Minus_World.
2http://goat-simulator.com/
3https://store.steampowered.com/
4https://itch.io/

3

https://mariowiki.com/Minus_World
http://goat-simulator.com/
https://store.steampowered.com/
https://itch.io/

1. Introduction

and the programming environment in order to design a game which can be feasibly
implemented, they must ensure that the visuals and audio created for a game fits with
its gameplay and narrative, they should consider any business-related information
that may be relevant to the project (e.g., which features appeal to the project’s
demographic), and they must communicate with any other game designers working
on related issues. These problems also exist in teams of a few people, but the risk
increases with the number of people and the number of different roles.
Individual game development (i.e., development performed by a single person)

leads to a unique situation in which the game designer, programmer, graphical artist,
composer, etc. are the same person, which means that problems with communication
cease to exist; additionally, a single person can be more willing to take financial
risks since failure only affects them and anyone who depends on them. However, it
also requires that the single person in charge possesses each of the skills required
to create a complete game and that this individual is able to remain motivated
enough to finish the project since, unlike in a team setting, if the sole developer loses
motivation, there are no coworkers who can motivate them to continue. As a result
of this, the choice of budget and team size is strongly dependent on the scope and
risk factor of the game, and there are advantages and disadvantages inherent to each
type of development.

An individual developer with few skills relevant to game development other than
design and programming may be tempted to gather freely available assets and use
them to create a game. However, using nothing but existing assets, whether they
are freely usable or must be purchased, may cause a game to be seen as an asset flip
– a game created through its developers acquiring assets and packaging them as a
new game, after which the game is sold for a low price in order for the developers
to be able to recover their costs through a small number of sales [4]. As shown by
the accusations of being an asset flip made against PlayerUnknown’s Battlegrounds,
despite its creative director claiming that most of the game’s assets were created by
its developers [5], developers who intend to sell their games may need to be careful
when selecting where to use existing assets in their games. Due to these potential
problems, single-person game development for commercial purposes may seem to be
a very difficult challenge if the goal is to produce a game of high quality in terms of
design, implementation and aesthetics, unless the developer in question is a person
who can not only design and program games, but is also able to create aesthetically
pleasing graphics and audio.

Despite these difficulties, examples of commercially released games developed by a
single person do exist, such as the following:

• Axiom Verge, a 2D game inspired by games such as Metroid. [6][7]
• The first commercially released version of Stardew Valley, a 2D role-playing

game based on farming. [8]
• The first commercially released version of Minecraft, a 3D game involving

“placing blocks and going on adventures”. [9][10]

4

1. Introduction

1.1.5 Open-source development
The Open Source Initiative defines open-source licenses as licenses which “allow
software to be freely used, modified, and shared” [11]1.
Open-source licenses are primarily of two different types – copyleft or permissive.

The former require that all derivative works are released under the same license as
the original work; an example of such a license is the GNU General Public License
3.0 2. The latter is any license which is not copyleft – i.e., derivative works may be
released under any license, even a proprietary one, potentially with non-restrictive
requirements such as attribution. [12]
Some open-source games also release their assets for free, such as 0 A.D.3, The

Battle for Wesnoth4, NetHack5, SuperTuxKart6 and Xonotic7. Others use proprietary
assets, or assets available under non-commercial licenses, but release the code under
an open-source license, such as Angband8, Frogatto & Friends9, OpenTTD10, osu!11,
Tales of Maj’Eyal12, Warsow13. Some games were originally released as proprietary,
commercial games but were eventually released under an open-source license, with
or without proprietary assets, such as Doom14, the Marathon trilogy15, Star Wars:
Jedi Knight - Jedi Academy16 and Quake17.

1.2 Thesis

1.2.1 Premise
The focus of this project is individual (i.e., single-person) game development using
open-source tools; specifically, the development of CheckerSphere, a side-scrolling, 2D
platform game with a focus on players’ enjoyment (rather than an engaging narrative,
educating players or some alternative goal). The result of the project was intended
to be the developed game (in the form of a short prototype of subjectively high
quality) as well as this thesis, which is intended to serve as a case study of individual,
open-source game development as well as a limited guide for future developers,
especially those working alone. As a guide, this thesis was intended to contain items

1A more detailed definition is available at https://opensource.org/osd.
2https://gnu.org/licenses/gpl-3.0.html
3https://play0ad.com/
4https://wesnoth.org/
5https://nethack.org/
6https://supertuxkart.net/Main_Page
7https://xonotic.org/
8https://rephial.org/
9https://frogatto.com/

10https://openttd.org/
11https://osu.ppy.sh/home
12https://te4.org/
13Available at https://warsow.net/. Warsow also has a completely non-proprietary fork called

Warfork (https://warfork.com/).
14https://github.com/id-Software/DOOM
15https://alephone.lhowon.org/
16https://github.com/grayj/Jedi-Academy
17https://github.com/id-Software/Quake

5

https://opensource.org/osd
https://gnu.org/licenses/gpl-3.0.html
https://play0ad.com/
https://wesnoth.org/
https://nethack.org/
https://supertuxkart.net/Main_Page
https://xonotic.org/
https://rephial.org/
https://frogatto.com/
https://openttd.org/
https://osu.ppy.sh/home
https://te4.org/
https://warsow.net/
https://warfork.com/
https://github.com/id-Software/DOOM
https://alephone.lhowon.org/
https://github.com/grayj/Jedi-Academy
https://github.com/id-Software/Quake

1. Introduction

such as examples of advice from previous game developers and personal experience;
examples of open-source tools and how they can be utilized to create games without
a budget; examples of ways to acquire free assets for game development; and reasons
to use open-source tools and release one’s code under an open-source license.
The research questions associated with the project are the following:

As an individual developer using strictly open-source tools1, what problems may
appear – particularly in terms of game design, implementation, creation of visuals
and creation of audio – during development of a side-scrolling, 2D platform game,

and how can these problems be solved?

While these questions are limited to a specific type of game, their answers are
intended to be potentially useful to those interested in developing other types of
games.
The demographic of the produced game, to which all testers would belong, was

intended to consist of those who have some interest in playing games, allowing for
varying preference with regard to difficulty; this demographic is wide, so the game
must be simple to understand for people with little experience with games, but
those who have never played a game and those who are disinterested in games are
excluded, since the former are unlikely to choose a small independent game as their
first experience with the medium and the latter seem unlikely to want to play any
game whatsoever.

1.2.2 Goals
This project has three goals – two personal goals for the prototype, and one goal
for the thesis. The personal goals include creating a short, high-quality game to
serve as a demonstration of the skills acquired during prior studies, and showing
general self-improvement in terms of game design and programming. The goal for
the thesis is to create a set of guidelines for future developers working with an
open-source toolset, focusing on those working individually, by providing a summary
of the knowledge gained during the project; this may include examples of open-source
tools, ways to create a visually appealing game with minimal artistic skills, game
design techniques, reflections on how to improve a development process, etc.

1.2.3 Limitations
Limitations for the thesis include the following:

• A large percentage of the time was spent on development rather than research;
a more comprehensive thesis could have been produced by a mainly research-
focused project.

• The focus was mainly placed on tools and techniques; issues such as mental
health, marketing and distribution were only briefly mentioned.

• Only one game engine was tested due to the amount of time seemingly required
1Some exceptions may need to be made to software which may be classified as tools but for

which no feasible alternatives exist, such as drivers or firmware.

6

1. Introduction

to learn and prototype using a new one and the lack of an obvious reason, in
terms of providing value for this thesis, to do so.

Limitations for the prototype include the following:
• An existing game engine was used in order to avoid the time needed to create

a custom engine (which is not directly related to the purpose of this project).
• The game’s demographic excludes those who have never played a game or are

not interested in playing games which are focused on providing enjoyment, in
order to save the time required to accommodate such people.

• The support for non-keyboard controllers is very basic in order to avoid spending
time on implementing prompts for the buttons on all major types of controller.

• Freely available graphical assets were used in parts of the game in place of
graphics made specifically for the game; the same applies to sound effects.

• Freely available music was used; creation of custom music was planned, but
higher priority was placed on visual fidelity and sound effects.

• The movement system and the level design were prioritized over visuals and
audio, and the prototype can be finished in approximately one minute by
an experienced player; the game was never intended to be appropriate for
commercial release.

• Even if the code is deterministic, automated testing was not implemented.

7

1. Introduction

8

2
Theory

2.1 Game development
To study general game design, a variety of material is available, such as lectures,
interviews with developers, video essays, articles and developers’ logs, but most
appears to be gray literature – “research that is either unpublished or has been
published in some non-commercial form” [13]. This is a result of factors such as the
partially subjective nature of game design – an attribute which is present in anything
that relies on a person’s subjective interpretation of a creation – and the fact that
the profession of game designer is relatively recent when compared to those present
in other types of media (e.g., film).
Printed books which focus on game design do exist, such as Steve Swink’s Game

Feel: A Game Designer’s Guide to Virtual Sensation1, but the high-level research used
to gather sources for this project – which generally consisted of web searches using
appropriate search terms, including names of individual developers and keywords such
as game design and game development – suggests that the majority of material is gray
literature; however, disproving the existence of large amounts of non-gray literature
within this area is outside of the scope of this project. Major primary sources of
material related to game development include the Game Developers Conference2,
Gamasutra3 and others; secondary sources include community-driven repositories of
knowledge such as the gamedev community on Reddit4.

With regards to implementation and asset creation, resources such as tools’ docu-
mentation, tutorials and existing algorithms can be used. For information regarding
other aspects of game development, such as dealing with mental health problems
and how to start working as an independent game developer, lectures from the
aforementioned Game Developers Conference may be helpful (e.g., Mental Health
and Making It: Succeeding Through the Struggles5) but, as previously mentioned,
subjects such as these are beyond the scope of this project.

2.1.1 Individual game development
Research on the differences between individual game development and game develop-
ment in small teams is apparently lacking; the bulk of the knowledge seems to be

1http://game-feel.com/
2https://gdconf.com/
3https://gamasutra.com/
4https://reddit.com/r/gamedev/
5https://gdcvault.com/play/1024979/Mental-Health-and-Making-It

9

http://game-feel.com/
https://gdconf.com/
https://gamasutra.com/
https://reddit.com/r/gamedev/
https://gdcvault.com/play/1024979/Mental-Health-and-Making-It

2. Theory

available through informal sources such as logs, lectures and the like from developers.
Using search terms such as solo game development, individual game development

and one-person game development results in lists of commercially successful games
developed by individuals; using such developers’ names as search terms provides
some sources of information specific to individual game development (e.g., in an
interview, one developer revealed that he temporarily avoided loss of motivation by
switching between different roles [14]), but most of the information appears to also
apply to smaller teams (e.g., advice regarding how to effectively market a game with
a minuscule budget).

Easily accessible sources (at least those found during this project) such as lectures
and developers’ YouTube channels do not seem to frequently discuss the differences
between one- and two-person development – a counterexample is the lecture No Time,
No Budget, No Problem: Finishing ‘The First Tree’1 by developer David Wehle, and
various videos by game developer Thomas Brush2. Developers’ text-based logs are
potential sources of such information, but the logs found were highly unstructured –
for example, mixing thoughts about everyday life with press releases and occasional
mentions of their development process, as with the logs for Axiom Verge3. It is
entirely possible that some potentially useful lectures, excerpts of developers’ logs
or the like have been missed due to faulty assumptions and poor decisions during
the research for this project, but finding these hypothetical sources would require a
project with a greater scope or different goals.
Auteur theory, in filmmaking, refers to the notion that a film’s director is a major

creative force [15], but a similar idea is also present in the video game industry.
Examples of auteurs may include people such as Hideo Kojima, who worked on
the Metal Gear Solid franchise, and Hidetaka Miyazaki, who is part of the team of
developers responsible for the Souls franchise; however, it is not always apparent if
these individuals truly have the highest position of creative input in their respective
teams, or if the team simply produce games that are similar to their previous titles
to improve the odds of success [16]. The structure of a development team determines
how ideas are presented – any team of at least two people cannot have an auteur
if the potential auteur is not able to relay their ideas. Depending on the definition
of the term “auteur theory”, a developer working alone will either be the auteur
of their project regardless of their intention, or cannot be an auteur because they
have no team members who can implement their creative vision – regardless, their
games may share elements in terms of gameplay and/or aesthetics because they were
wholly designed and implemented by the same individual. An example of research
into auteur theory for games is [17].

2.1.2 Open-source game development
As mentioned in chapter 1, open-source software is licensed under conditions which
allow the software to be “freely used, modified, and shared”, according to the Open

1https://youtube.com/watch?v=g5f7yixtQPc
2https://youtube.com/user/thomasmbrush
3The blog in question is available at https://axiomverge.com/blog, and information about

Axiom Verge is available on the same website.

10

https://youtube.com/watch?v=g5f7yixtQPc
https://youtube.com/user/thomasmbrush
https://axiomverge.com/blog

2. Theory

Source Initiative [11]. A list of various open-source licenses can be found on their
website.
Source-available is a term which refers to any code for which source code is

publicly available, including open-source software, but the term may also include
software which imposes restrictions which conflict with the above definition of open-
source software, such as prohibiting commercial use or prohibiting any redistribution
whatsoever. As an example of source-available licensing, the Commons Clause is
a legal clause which can be appended to a permissive open-source license in order
to restrict commercial use without substantial addition to the original work [18].
Examples of non-open-source, source-available games include Airline Tycoon Deluxe1,
Aliens versus Predator Gold2, Anodyne3 and Receiver4.

Assets which are not code, such as 3D models and music, generally do not use the
same licenses as those used by code. Examples of licenses for such assets include
the Creative Commons5 licenses for general assets, the SIL Open Font License6

for fonts and the GNU Free Documentation License7 for documentation. As with
open-source licenses, these licenses may be permissive (e.g., CC BY 4.0 8) or copyleft
(e.g., CC BY-SA 4.0 9), and they may have additional restrictions such as prohibiting
commercial use (e.g., CC BY-NC 4.0 10).
When accepting third-party contributions to an open-source project, in order

to prevent issues with the intellectual property rights of individual contributors, a
Contributor License Agreement (CLA) – a legal agreement which states that the
contributor gives the project’s maintainers an irrevocable license to distribute the
contributed work as part of the project, or that the contributor completely assigns
the copyright of the contributed work to the project’s owner – may be of use. A
CLA must be clear with regard to what rights are granted – for example, whether
the project’s license can be changed without the consent of contributors. [19] An
example of a CLA is Apache’s Individual Contributor License Agreement11.

Examples of existing research into open-source game development include [20] and
[21].

2.1.3 Accessibility
In order to accommodate potential players with disabilities, it may be in a developer’s
best interest to attempt to add certain accessibility-related features, especially those
which can be implemented relatively easily and quickly, such as those listed in the
basic set of guidelines from http://gameaccessibilityguidelines.com/. These

1https://gog.com/game/airline_tycoon_deluxe
2https://gamefront.com/games/aliens-vs-predator-3/file/

avp-gold-complete-source-code
3https://github.com/analgesicproductions/Anodyne-1-Repo
4https://github.com/David20321/7dfps
5https://creativecommons.org/
6https://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL%2F
7https://gnu.org/licenses/fdl-1.3.en.html
8https://creativecommons.org/licenses/by/4.0/
9https://creativecommons.org/licenses/by-sa/4.0/

10https://creativecommons.org/licenses/by-nc/4.0/
11https://apache.org/licenses/icla.pdf

11

http://gameaccessibilityguidelines.com/
https://gog.com/game/airline_tycoon_deluxe
https://gamefront.com/games/aliens-vs-predator-3/file/avp-gold-complete-source-code
https://gamefront.com/games/aliens-vs-predator-3/file/avp-gold-complete-source-code
https://github.com/analgesicproductions/Anodyne-1-Repo
https://github.com/David20321/7dfps
https://creativecommons.org/
https://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=OFL%2F
https://gnu.org/licenses/fdl-1.3.en.html
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://apache.org/licenses/icla.pdf

2. Theory

basic guidelines include, among others, allowing remapping of controls; having a
clearly readable user interface with large fonts; using clearly contrasting colors
for separate entities; not including flickering images or repetitive patterns; having
modifiable audio volume; displaying subtitles for all important speech; and providing
multiple levels of difficulty [22].
Depending on the demographic and the available resources, it may be financially

beneficial to implement items from the intermediate list – e.g., supporting multiple in-
put devices, allowing customization of interfaces, allowing players to skip nonessential
parts of the game and allowing players to adjust the field of view in a 3D game [23] –
and/or from the advanced list – e.g., providing a control scheme which is compatible
with assistive devices such as eye tracking, allowing all instructions and narrative to
be replayed, allowing font size to be adjusted, and including every relevant category
of functional impairment during playtests [24]. While some instructions on each
list are likely irrelevant for certain types of games (e.g., there’s no need to provide
subtitles for a game without speech or any other essential sounds), they nevertheless
contain generally useful advice for development teams of any size.

2.2 Open-source tools

There exist many open-source tools which can be used for game development as
feasible alternatives to closed-source tools. These tools enable the creation of video
games while using a minimal amount of proprietary software; however, depending on
the hardware required to develop the game, closed-source firmware or drivers may be
required (e.g., in order to use a graphics card to its full potential), and closed-source
websites are difficult to avoid when marketing and/or distributing a game.

As mentioned previously, some may choose to use strictly open-source software,
or possibly any source-available software whose license has restrictions which are
acceptable to the user. Reasons for using open-source software may include being able
to trust software to not infringe on one’s privacy or be otherwise malicious; having
software repositories, such as those for the operating systems Debian GNU/Linux1

or Arch Linux2, which is only legal since the code within can be freely redistributed;
being able to suggest, or personally implement, desired changes in a piece of software;
being able to remove undesired parts of software through recompilation (and possibly
without changing the source code, if the software in question is designed to be able
to be compiled without particular features); having access to all software without
payment (although donations may be requested by a developer in order for them
to be able to continue supporting a project); being able to select an operating
system that can run on old hardware with low specifications; and not being forced to
read (or ignore) proprietary usage agreements which may contain hidden, undesired
restrictions or requirements in countries where doing so is legally valid.

1https://debian.org/distrib/packages
2https://archlinux.org/packages/

12

https://debian.org/distrib/packages
https://archlinux.org/packages/

2. Theory

2.2.1 Operating systems

There appear to be two groups of open-source operating systems with which mod-
ern games can be efficiently developed and played. The first group consists of the
open-source operating systems based on the Linux kernel1, also known as Linux distri-
butions [25]. The second group consists of the open-source derivatives of the Berkeley
Software Distribution, an operating system released in 1978 [26], which includes,
among others, FreeBSD2 and DragonflyBSD3. These groups seem to encompass the
most capable open-source operating systems with regard to drivers for graphics
cards and software for interacting with graphics cards (e.g., Mesa 3D4), which is
essential for performance-heavy games. All of the software listed above can be run
using Linux distributions, and some can run using BSD derivatives. Additionally,
Wine – a compatibility layer used to run Windows applications on, among other
operating systems, Linux distributions and BSD derivatives [27] – allows consumers
who typically play games on closed-source operating systems such as Windows 10 5 to
gradually switch to open-source platforms; the software which requires Wine to run
may generally be closed-source, since it could otherwise have been ported to avoid
the use of Wine (although some exceptions exist for which ports do not yet exist due
to, for example, a lack of resources), but Wine reduces the amount of closed-source
software which has to be used to play many commercially available games.
ReactOS6 is an open-source, Windows-like operating system which is designed to

be able to run Windows software, but it is still in an early stage (version 0.4.12 [28])
and is currently “mostly intended for programmers to expand and improve on” [29].

2.2.2 Game engines, frameworks and libraries

Development frameworks include general-purpose engines such as Godot7 and LÖVE8;
genre-specific engines such as Ren’Py9 and Adventure Game Studio10; and lower-
level development libraries such as SDL11 and SFML12. Game engines may have
corresponding tools meant to be used specifically with that engine, as is the case
with Godot, which includes a code editor, a level editor (i.e., an editor used to create
and modify in-game levels), an animation editor, and various other features [30].

1https://github.com/torvalds/linux
2https://freebsd.org/
3https://dragonflybsd.org/
4https://mesa3d.org/
5https://microsoft.com/en-us/windows/get-windows-10
6https://reactos.org/
7https://godotengine.org/
8https://love2d.org/
9https://renpy.org/

10https://adventuregamestudio.co.uk/
11https://libsdl.org/
12https://sfml-dev.org/

13

https://github.com/torvalds/linux
https://freebsd.org/
https://dragonflybsd.org/
https://mesa3d.org/
https://microsoft.com/en-us/windows/get-windows-10
https://reactos.org/
https://godotengine.org/
https://love2d.org/
https://renpy.org/
https://adventuregamestudio.co.uk/
https://libsdl.org/
https://sfml-dev.org/

2. Theory

2.2.3 Tools for creating and editing visuals
2D graphics can be created directly as raster graphics, storing image data as a grid
of rectangular pixels [31]; as vector graphics, storing image data as mathematical
formulae which can be scaled without losing detail [32]; or as 3D models which can
be used to generate raster graphics.
Examples of tools include Krita1 and the GNU Image Manipulation Program2

(GIMP) for raster graphics; Inkscape3, LibreOffice Draw4 and, to a lesser extent,
GIMP, for vector graphics; and Blender5, Dust3D6 and FreeCAD7 for 3D modelling.

2.2.4 Tools for creating and editing audio
Examples of tools to create music include LMMS8, Ardour9, Radium10, MusE11,
Qtractor12, Bosca Ceoil13, SoundTracker14 and OpenMPT 15. These tools vary with
regard to features but can all be used to create music; Audacity16 is an example of a
tool which is focused on editing audio rather than creating it, but it is technically
able to create new audio by manipulating existing data.
Bfxr is a tool which can be used to rapidly create sound effects for computer games.

However, it appears to be unable to run without either the closed-source Adobe Flash
Player17 or a closed-source operating system. [33] To circumvent this, Jfxr18, which
was inspired by Bfxr [34], can be used as a replacement. Other alternatives include
the browser-based tool BeepBox19 and the aforementioned Audacity, as well as more
specialized tools such as Power Station Industrializer20 and Explodomatica21.

2.2.5 Coding tools
Integrated development environments – tools which, in addition to allowing users to
edit code, typically integrate features such as debugging, file browsing and version

1https://krita.org/
2https://gimp.org/
3https://inkscape.org/
4https://libreoffice.org/discover/draw/
5https://blender.org
6https://dust3d.org/
7https://freecadweb.org/
8https://lmms.io/
9https://ardour.org/

10https://users.notam02.no/~kjetism/radium/
11https://muse-sequencer.github.io/
12http://qtractor.org/
13Available at https://boscaceoil.net. It is open-source, but it requires the Adobe Integrated

Runtime (https://get.adobe.com/air/), which is not open-source.
14http://soundtracker.org/
15Available at https://github.com/OpenMPT/openmpt. It needs Wine to run without Windows.
16https://audacityteam.org/
17https://get.adobe.com/flashplayer/
18https://jfxr.frozenfractal.com/
19https://github.com/johnnesky/beepbox
20https://sourceforge.net/projects/industrializer/
21https://github.com/smcameron/explodomatica

14

https://krita.org/
https://gimp.org/
https://inkscape.org/
https://libreoffice.org/discover/draw/
https://blender.org
https://dust3d.org/
https://freecadweb.org/
https://lmms.io/
https://ardour.org/
https://users.notam02.no/~kjetism/radium/
https://muse-sequencer.github.io/
http://qtractor.org/
https://boscaceoil.net
https://get.adobe.com/air/
http://soundtracker.org/
https://github.com/OpenMPT/openmpt
https://audacityteam.org/
https://get.adobe.com/flashplayer/
https://jfxr.frozenfractal.com/
https://github.com/johnnesky/beepbox
https://sourceforge.net/projects/industrializer/
https://github.com/smcameron/explodomatica

2. Theory

control [35] – include those created for use with a specific game engine (e.g., the
editor included with the Godot engine1), Eclipse2, NetBeans3, Code::Blocks4 and
others.

Examples of less feature-packed code editors, which may be able to be extended to
gain the functionality of an integrated development environment, include, among
others, Visual Studio Code5, Atom6, Brackets7, Vim8 and Emacs9.

2.2.6 Level editors
As mentioned above, level editors may be included in a game engine, but there exist
external tools for 2D – e.g., Tiled10 and Ogmo Editor 3 11 – and 3D – e.g., GtkRadi-
ant12, TrenchBroom13, the ATF LevelEditor14 and the aforementioned Blender.

1https://godotengine.org/features
2https://eclipse.org/
3https://netbeans.org/
4https://codeblocks.org/
5https://code.visualstudio.com/
6https://atom.io/
7http://brackets.io/
8https://vim.org/
9https://gnu.org/software/emacs/

10https://github.com/bjorn/tiled/
11https://github.com/ogmo-editor-3
12https://github.com/TTimo/GtkRadiant
13https://github.com/kduske/TrenchBroom/
14https://github.com/SonyWWS/LevelEditor

15

https://godotengine.org/features
https://eclipse.org/
https://netbeans.org/
https://codeblocks.org/
https://code.visualstudio.com/
https://atom.io/
http://brackets.io/
https://vim.org/
https://gnu.org/software/emacs/
https://github.com/bjorn/tiled/
https://github.com/ogmo-editor-3
https://github.com/TTimo/GtkRadiant
https://github.com/kduske/TrenchBroom/
https://github.com/SonyWWS/LevelEditor

2. Theory

16

3
Methodology

3.1 Software development
Due to the user-dependent nature of game design, some models of software develop-
ment are less feasible than they may be for other types of software (e.g., productivity
tools). For example, the waterfall model consists of a linear sequence of steps
(requirements, design, implementation, verification and maintenance) carried out
in a single iteration [36]; as a result, if a flaw is found late enough in the process,
it cannot necessarily be resolved without deviating from the model. On the other
hand, iterative models consists of several iterations, where each iteration adds new
functionality [36]; this results in the ability to solve problems that appear in one iter-
ation during the subsequent iteration. Additionally, iterative models allow frequent
testing with potential users to be integrated into the development process.

The agile methods of development consist of a subset of the iterative methods. An
example of an agile method is Scrum, which is based on a series of short iterations
(generally between one and six weeks) called sprints, each of which is executed based
on a sprint backlog (a list of tasks meant to be finished within the sprint) with the
goal of producing a deliverable piece of software; at the end of each sprint, feedback
is gathered from stakeholders in order to determine how the product can be improved
during the next sprint. [36]

3.2 General interaction design
A/B testing involves comparison between “two versions of the same design” to see
which performs better, statistically, with a random group of participants [37].
Competitive testing involves analyzing competitors’ product(s) from the point

of view of a user, and using the gathered information to evaluate one’s own prod-
uct(s) [37].
The Critical Incident Technique consists of finding critical incidents – important

moments where a choice is made while using a product, leading to a positive or
negative outcome – by retroactively asking test participants to describe a situation
that ended well or poorly. This method is intended to provide quantitative data and
therefore needs a significant number of participants (e.g., fifty to one hundred). [37]
Crowdsourcing occurs when a large group of people help with a project by com-

pleting various tasks voluntarily in exchange for some form of compensation [37].
Evaluative research, also known as user testing or product testing, is a method in

which a prototype is tested by real users in an attempt to gauge expectations against

17

3. Methodology

the prototype being tested. Ideally, the process is iterative, with each iteration being
based on the tests performed on the previous iteration; exclusively evaluating very
late in the design process, where changes may be complicated and expensive, does
not fit with this method. [37]
Experiments are used to measure the effect of an action by showing a causal

relationship between the action and an event, or by clearly demonstrating that
the action directly resulted in a particular event [37]. When testing video games,
experiments can be performed in order to determine what caused, for example, a
loss of interest in a particular section of a game or a sudden spike in difficulty.
There are multiple types of observation which can be used during tests. For

example, they may or may not involve communication with a participant; may be
one-time occurrences or occur repeatedly (regularly or irregularly); and may be
formal or informal. [37]
Participatory design involves active engagement from users and potential stake-

holders throughout the research and design processes, including co-design activities
which are ideally performed face-to-face [37].

Prototyping consists of creating versions of a product with varying levels of fidelity
– for example, for a software interface design, an low-fidelity prototype may be a
paper prototype, with pages representing different screens, whereas a high-fidelity
prototype may be a digital, interactive version of the intended interface. Experience
prototyping, unlike passive viewing of static prototypes, is based on active interaction
with a low-fidelity prototype, either internally or with potential users. [37]

Rapid Iterative Testing and Evaluation (RITE) is a method used early in a design
process to evaluate and identify problems with an interface, rapidly resolve them
and then empirically verify effectiveness of the solution, using a rapid sequence
of testing and fixing. This method allows designers to quickly explore a space of
design solutions and prevents focusing on large issues in the beginning of a design
process. [37]
Role-playing involves acting in the role of a user in an attempt to find problems that

would pertain to such a user without performing tests with external participants. This
method is particularly useful when direct observation is not feasible or ethical. [37]
Secondary research is a method of research in which information is collected and

organized from existing data, as opposed to obtaining first-hand research material [37].
Surveys are used to collect self-reported personal information from participants.

Questionnaires and interviews are the two dominant types of survey. [37]
A think-aloud protocol involves test participants verbalizing their thoughts and

actions while completing a task in order to reveal positive and negative aspects of
an interface [37].
User-centered design is an iterative design process during which focus is placed

on the potential users by involving them during the different stages of the process.
Designers use generative methods (e.g., brainstorming) and investigative methods
(e.g., interviews) in order to better understand users’ needs. The process can typically
be divided into four stages: define and context in which the prospective users may use
the system; specify the users’ requirements; design solutions based on the previous
stages; and evaluate the created solutions against the outcomes from the first two
stages. If the results are unsatisfactory after the fourth stage, return to one of the

18

3. Methodology

previous stages. [38]

3.3 Game development
The MDA (Mechanics, Dynamics, and Aesthetics) framework is a formal method-
ology which attempts to “bridge the gap between game design and development,
game criticism and technical game research” [39]. Within the framework, the term
mechanics refers to the components of game game at the level of algorithms and
data representation; dynamics refers to the behavior of the mechanics as they act on
players’ input and the input from other mechanics while the game is running; and
aesthetics refers to the emotional responses which the developer desires to evoke in
players while playing the game. Aesthetics may include, among others, sensation
(sensory pleasure), fantasy, narrative, challenge, fellowship, discovery, expression and
submission (playing a game to pass time); for example, the physical game of charades
may embody fellowship, expression and challenge to varying degrees. A game’s
desired aesthetics can be used to guide the selection of dynamics and mechanics –
for example, challenge can be created through time pressure and opposing players;
fellowship can be encouraged by sharing information with team members or using
winning conditions that promote or require collaboration; and expression can result
from letting players leave marks on the game (e.g., by allow them to design and
construct parts of their environment). [39]

Another framework, described in the book Game Research Methods, uses primitives
(the basic building blocks of games) and their relations to analyze games. The
primitives include components – entities which can be manipulated by the player or
the game system; various types of actions, including player actions (initiated by the
player), component actions (perceived by the player to be initiated by components)
and system actions (not perceived to originate from the player or components);
the goals within the game system (not personal goals outside of the game, such
as enjoyment); and rewards, which are granted by achieving goals. Different levels
of analysis require different levels of description: describing primitives and their
relations, describing the principles of design, and describing the role of the primitives
and principles of design. The third description depends on the second, and the
second depends on the first. [40]

19

3. Methodology

20

4
Planning

Due to describing plans made before and during the first four weeks of the project,
this section is written in the future tense.

4.1 Concept
The game is intended to be a side-scrolling platform game with 2D movement and a
focus on highly responsive controls and level design which facilitates moving at high
speeds. Describing the game in terms of the MDA framework, the primary intended
aesthetics are sensation (in that the movement system is intended to be enjoyable to
use) and challenge (in that the game is focused on continuous high-speed movement,
depending on reflexes and awareness of each entity’s movement speed and patterns).
The main inspirations for the game include other high-speed platformers such

as Mega Man X 1, Super Meat Boy2 and, both directly and indirectly, many of the
games in the Mario3 franchise. In order to better understand why these games are
as engaging as they are, a basic analysis of the movement system of each game – in
the case of the Mario franchise, a single entry, New Super Mario Bros. 2 4 – will be
created and used as a partial guide during development of the prototype. The goal
of these analyses is to find unique or otherwise interesting elements of the games’
movement systems which may be used as inspiration for this project. The analyses
will be performed by playing through approximately a third of each of the games and
testing the movement systems in various different situations, noting aspects such as
the size of the player-controlled character relative to the size of the camera, the speed
of the player-controlled character, the use of horizontal and vertical movement, and
any abilities which are useful for increasing the overall speed of the player-controlled
character. The analyses are not intended to yield purely quantifiable data; rather,
the games’ movement systems will be subjectively examined in order to, hopefully,
find some ideas which are not immediately obvious yet may be used as guidelines
when create an engaging movement system in this project and in future projects.

The following list details all intended possible interactions involving the player-
controlled character (PCC). Actions are denoted by italic text and buttons are
denoted by bold text. This convention will be used for the rest of the report,
although italic text is also used for general emphasis. Figures 4.1 and 4.2 show two

1https://nintendo.com/games/detail/mega-man-x-wii-u/
2https://store.steampowered.com/app/40800/Super_Meat_Boy/
3https://mario.nintendo.com/history/
4https://nintendo.com/games/detail/new-super-mario-bros-2-3ds/

21

https://nintendo.com/games/detail/mega-man-x-wii-u/
https://store.steampowered.com/app/40800/Super_Meat_Boy/
https://mario.nintendo.com/history/
https://nintendo.com/games/detail/new-super-mario-bros-2-3ds/

4. Planning

state machines of varying complexity which describe part of the player’s movement.
• Run left by holding left, and run right by holding right. After releasing either

button, the PCC stops immediately (unless in a state where movement cannot
be stopped in this manner) – i.e., the velocity is constant – and remains facing
in the corresponding direction.

• Temporarily dash – which approximately doubles the movement speed while
forcing the player to run regardless of whether or not they are holding left
or right when initiating the dash – left or right for a fixed period of time by
pressing dash while facing the corresponding direction. Dashing can only be
initiated while the PCC is grounded, and can only be deliberately interrupted
by colliding with a wall. If dashing is performed while the PCC is grounded
but not running, the PCC will start running in the direction in which they are
facing. The velocity while dashing is constant. This action is heavily inspired
by the dashing in Mega Man X ; the main difference between the two systems
is that the latter does not have a fixed duration.

• Jump a fixed distance upwards, by pressing jump. The PCC’s horizontal
movement speed can be adjusted, by holding left and/or right, any number
of times while airborne. If jumping while dashing, the dash is extended until
the PCC lands.

• Fall downward, after a jump ends or by moving the PCC off a ledge.
• Slide in the current direction by pressing slide; this causes the PCC’s sprite

and collision shape to shrink vertically, letting the PCC move underneath
vertically narrow spaces. Like dashing, a slide has a fixed duration and can
only be initiated when the PCC is grounded. Moving off a ledge, hitting a wall
or jumping causes a slide to be canceled.

• Crouch after a slide by remaining under a vertically narrow space within which
the PCC cannot fit at normal size. This will happen whenever such a situation
occurs, unaffected by the player’s input, and cannot be interrupted without
moving out of the space.

• Perform wall sliding by colliding with a wall and holding left or right (cor-
responding to the direction from the PCC to the wall). Wall sliding causes
the gravity affecting the PCC gravity to decrease in strength, which means
that the PCC can slide upwards for a short time if jumping immediately before
wall sliding, and that sliding down occurs with a downward velocity lower than
when falling.

• Perform a wall jump by jumping while wall sliding, either back toward the wall
(potentially scaling the wall) or away from the wall. A wall jump is oriented in
the direction opposite to the wall but ends after a few hundred milliseconds,
after which the player is able to reverse direction or continue moving along the
direction of the jump. This system is inspired by the systems of both Mega
Man X and Super Meat Boy, mainly with regard to the ability to scale any
wall due to the short amount of time elapsed between the initiation of a wall
jump and when the player regains control.

• Jump when slightly off a ledge, in order to prevent the player from feeling as if
their jump did not register despite them believing that it should have.

• Touching any damaging obstacle will cause the level to be restarted; the PCC

22

4. Planning

cannot remove any entities from a level.
These mechanics were chosen based on the games analyzed, primarily Mega Man

X (from which the dashing system was greatly inspired), and personal preference.
For a somewhat experienced player, the core gameplay loop is intended to be as

described in figure 4.3. Graphical assets will be created with the 3D modelling tool
Blender1, due to experience with the tool but a lack of skill with regard to directly
creating 2D art (whether raster-based on vector-based); since Blender supports both
animation and rendering [41], it can be used to generate both static and animated
2D graphical assets without requiring specific knowledge needed to create detailed
2D artwork, such as shadows and perspective.

4.2 Software development methodology

In order to ensure that feedback from potential players can be accounted for during
development, and to allow the design to be updated as new ideas appear, an iterative
method of development (as described in chapter 3) will be used, loosely inspired by
the Scrum method – sprints will be used to maintain focus and sprint backlogs will
be used to track what has been done and what remains to be done in a particular
sprint, sorting features based on priority (which will be set based on the goals of the
project, criticism from testers and observations from tests); while agile frameworks
are typically intended for multiple-person teams, some of their concepts can be
adapted for individuals, an example of which can be seen in [36]. Since a single
developer cannot work on multiple parts of a project simultaneously, and frequently
switching roles to create a game, as with a larger team of developers, is not feasible
due to the test-driven nature of the development process (since a longer time would
be required between tests to ensure that the prototypes are different enough to
warrant testing), each sprint will focus on a particular set of features; this is intended
to result in a prototype which is significantly different from the previous sprint’s and
which can be used during user tests.

The first sprint will focus on the game’s movement system, emphasizing the
sensation aesthetic; the second will focus on level design, emphasizing the challenge
aesthetic; the third will focus on visual and auditory polish, further enhancing
the sensation aesthetic; and the fourth will be used to resolve the most important
remaining issues, prioritized based on the amount of time left. The order of these
sprints was chosen based on the idea that creating visuals and audio without having a
player seemed likely to force abandonment of some art for the sake of better gameplay,
or vice versa; and creating levels before having a movement system would force the
movement system to be designed around the levels rather than being designed to be
enjoyable to use on its own, or to change the levels significantly after creating the
movement system.

1https://blender.org/

23

https://blender.org/

4. Planning

Falling

W
all

Sliding

W
all

Jum
ping

Press J

Press L/R
(aw

ay from
 w

all)

Idle

H
it ground

Jum
ping

W
ait

H
old L/R

(tow
ard w

all)

Land

R
unning

Press J w
ithin

tim
e lim

it
H

old L/R

Sliding

Press S

Press J

M
ove off ledge

R
elease L/R

Press S
Press J

M
ove off ledge

W
ait / hit w

all

Press J

C
rouching

R
em

ain under
narrow

 space
after slide

H
old L/R

(tow
ard w

all)

D
ow

nw
ard velocity

M
ove out from

narrow
 space

F
igure

4.1:
A

state
m
achine

diagram
describing

the
PCC’sintended

m
ain

actions,withoutaccounting
fordashing,power-upsorthe

direction
in

w
hich

the
PC

C
is

facing.

24

4. Planning

Fa
lli

ng

W
al

l
Sl

id
in

g

W
al

l
Ju

m
pi

ng
Pr

es
s J

Pr
es

s L
/R

(a
w

ay
 fr

om
 w

al
l)

Id
le

H
it

 g
ro

un
d

W
al

l
Ju

m
pi

ng
(D

as
h)

Pr
es

s J

Ju
m

pi
ng

W
ai

t

H
ol

d
L/

R
(t

ow
ar

d
w

al
l)

La
nd

Pr
es

s J
 w

it
hi

n
ti

m
e

lim
it

R
un

ni
ng

H
ol

d
L/

R

Sl
id

in
g

Pr
es

s S

Pr
es

s J

M
ov

e
of

f l
ed

ge

R
el

ea
se

 L
/R

Pr
es

s S

Pr
es

s J

R
un

ni
ng

(D
as

h)
Pr

es
s D

Ju
m

pi
ng

(D
as

h)

Pr
es

s D
 a

nd
 J

M
ov

e
of

f l
ed

ge
W

ai
t /

 h
it

 w
al

l

Pr
es

s J

C
ro

uc
hi

ng
R

em
ai

n
un

de
r

na
rr

ow
 sp

ac
e

af
te

r s
lid

e

H
ol

d
L/

R
(t

ow
ar

d
w

al
l)

D
ow

nw
ar

d
ve

lo
ci

ty

M
ov

e
ou

t f
ro

m
na

rr
ow

 sp
ac

e

W
ai

t

Fa
lli

ng
(D

as
h)

D
ow

nw
ar

d
ve

lo
ci

ty

La
nd

Pr
es

s J
 w

it
hi

n
ti

m
e

lim
it

W
ai

t

F
ig
ur
e
4.
2:

A
st
at
e
m
ac
hi
ne

di
ag
ra
m

de
sc
rib

in
g
th
e
PC

C’
s
in
te
nd

ed
m
ai
n
ac
tio

ns
,a

cc
ou

nt
in
g
fo
r
da
sh
in
g
bu

t
no

t
fo
r
po

we
r-u

ps
or

th
e
di
re
ct
io
n
in

w
hi
ch

th
e
PC

C
is

fa
ci
ng

.
A
s
sh
ow

n,
ad

di
ng

ju
st

fo
ur

st
at
es

ca
us
es

a
sig

ni
fic
an

t
in
cr
ea
se

in
co
m
pl
ex
ity

,a
s
wo

ul
d

ad
di
ng

a
sin

gl
e
po

we
r-u

p;
ea
ch

po
we

r-u
p
wo

ul
d
ca
us
e
th
e
siz

e
of

th
e
st
at
e
m
ac
hi
ne

to
ex
pa

nd
gr
ea
tly

,e
sp
ec
ia
lly

if
m
ul
tip

le
po

we
r-u

ps
ca
n
be

ac
tiv

e
at

on
ce
.

25

4. Planning

Observe surroundings
with paused timer

Dash

React to and
bypass obstacles

by jumping and/or sliding

Finish level
Short break

(change level)

Figure 4.3: The intended core gameplay loop for an experienced player, based on
short levels and fast reactions to obstacles.

4.3 Interaction design methodology

The design process will be based around rapid prototyping (specifically, prototyping
in which goals are divided into smaller features which can be implemented in, ideally,
at most a few hours of work), in order to be able to quickly perform subjective tests
of what aspects of gameplay are enjoyable and dismiss or set aside any additions
or changes that do not seem to clearly improve the game; additionally, such a
methodology is well-suited for an agile type of software development. Dedicating
long periods of time to a single feature may makes it mentally difficult to abandon
it, regardless of its quality, which may negatively impact a game’s design and
wastes development time which could have been spent on prototyping multiple
smaller features; in a worst-case scenario, an entire game may need to be abandoned
(temporarily or permanently) because of unmaintainable code, poor design and/or a
lack of money to continue development, as occurred after four years of development
for developer Adrián Novell and his team [42]. While adding major features may be
unavoidable, the development process can be optimized by testing lesser versions
of these features in order to partially understand whether the complete change will
be worth the estimated time required to implement it. Additionally, forcing oneself
to have regular deliverable prototypes to be tested may facilitate the limitation of
features, keeping the developer focused on a relatively clear goal.

For each of the three first sprints, three personal user tests will be conducted, with
the focus of each test being on the prototype created during that sprint. Additionally,
attempts to collect additional feedback by distributing each prototype on game-
focused online forums will be made before the first tests on the prototype in question.
Both methods are intended to generate purely qualitative feedback, since the former
cannot provide enough data to be statistically significant and the same is expected
to apply for the latter; additionally, this qualitative data will not necessarily be
indicative of the types of people who tend to find and play independent platform
games, it will be highly limited by the small number of tests and participants, and
personal connections with the testers may cause conscious or unconscious bias. The
tests will mainly consist of observation, with the player being asked to reveal any
thoughts they want to convey beforehand; if the player becomes unable to proceed,
their movements will be observed more closely and they will be asked to describe
their actions in order to locate potential issues. After each test, a short interview
will be performed, during which the player will be asked questions formulated prior

26

4. Planning

to the test as well as any questions which may appear during the test. For the first
tests, these questions will include the player’s opinion on the order of priority for the
first three sprints.
Very simple variations of various methodologies (i.e., new methodologies using

some of the core principles of existing methodologies) will be used:
• Competitive testing will be used, in a sense, through the analyses of games

which will be performed during the first month of the project – in the broad
sense of the word, these games are competitors, as any product is, although
their existence only very slightly affects the chance of an individual playing the
game produced by this project.

• A variation of the Critical Incident Technique and experiments will be used
when participants appear to have difficulty advancing from a specific spot; in
such a situation, the participant will be asked to describe their actions and,
if the test is conducted with physical proximity, their interaction with the
keyboard will be observed.

• Very simple role-playing will be used when playing the game in order to find
in what way each level can be modified so that the level is enjoyable to play
through regardless of the proficiency of the player.

• Secondary research will be used throughout the project as an alternative to
first-hand research, since the latter would require more participants and time
than this project can afford.

• The process will use elements of participatory design – by inviting testers to
provide their own insight into the design of the prototype being tested – and
user-centered design – by testing the results of each sprint with three people,
at least once per person and sprint.

A/B testing and crowdsourcing will not be used because they would require far more
participants than was can be feasibly expected to be available for this project. RITE
will not be used because it is based on empirical verification of solutions, which
will not be practically possible in this project. Surveys will not be used because,
without access to a large number of participants, they appear to have very little
use; experience from a previous course revealed that almost nothing valuable was
obtained from approximately twenty survey participants. A think-aloud protocol will
not be used because it interrupts any potential feeling of flow that a tester might
experience and thereby prevents observation of where and when such moments may
occur.

4.4 Tools
As the operating system, a Linux distribution will be used. Various BSD operating
systems may be usable for developing games and using the remaining tools; however,
due to a lack of experience with any BSD operating system and significant experience
with Linux distributions, the former were dismissed.

As the game engine, text editor, level editor, etc., Godot – an open-source game
engine available for Linux, Windows, macOS and other platforms [30] – will be used.
The reasons for choosing this engine include prior experience with it; its support for
development on Linux [30]; its ability to export to Linux, Windows, macOS, Android

27

4. Planning

and other platforms [30]; and its general-purpose functionality [30].
As mentioned previously, Blender will be used to create visual assets. If the

game will use 2D graphics, The GNU Image Manipulation Program1 may be used to
perform various graphics-related modifications.
To create music, a tool such as Bosca Ceoil2 or LMMS3 will be used. For sound

effects, Bfxr4, or a program with similar functionality, will be used.
Finally, the versioning system Git5 will be used to track different versions of the

game for the sake of testing, to keep a record of the changes made and to allow
inspection of previous versions in order to facilitate finding the sources of software
bugs.

4.5 Time plan
Weeks 1-4:

• Create a basic analysis of the movement system and level design of three
existing successful platformers – Mega Man X, Super Meat Boy and New Super
Mario Bros. 2. These platformers were chosen because they embody qualities
which were personally wanted for the game developed during this project,
including high-speed movement and highly responsive controls. New Super
Mario Bros. 2 was selected as a representative of the Mario franchise because
it possesses, subjectively speaking, one of the most engaging movement systems
of the 2D games in the series.

• Perform basic research on game development processes as described by experi-
enced game developers, focusing on those who worked individually.

• Create the planning report.
• Perform basic research on accessibility problems in order to find out what can

be implemented relatively easily.
• Create a basic prototype in Godot that showcases the movement system of the

game.
Weeks 5-8:

• Perform user tests using the prototype generated by the previous sprint.
• When distributing the first and second prototypes online, the focus of the

prototype will be clearly stated to prevent wasting testers’ time on providing
feedback which would not be useful (e.g., feedback on the visuals while using
temporary art).

• Create a preliminary non-playable design for two short, linear levels. This
design will be limited to focus on content in terms of gameplay (e.g., power-ups,
terrain layout and obstacles) rather than appearance; the latter aspect of the
level design will be added later during the process in order to limit the initial
focus.

• Implement the designed level in Godot.
1https://gimp.org/
2https://boscaceoil.net/
3https://lmms.io/
4https://bfxr.net/
5https://git-scm.com/

28

https://gimp.org/
https://boscaceoil.net/
https://lmms.io/
https://bfxr.net/
https://git-scm.com/

4. Planning

Weeks 9-13:
• Perform another set of user tests, and then update the design document and

the prototype accordingly.
• Create simple graphics for the player, enemies and some environmental objects

(e.g., platforms), and add them to the prototype. Using unique graphics for
the game’s essential visuals ensures that the game is differentiated from other
games with very low budgets.

• Gather graphical assets for less important elements, such as terrain and trees,
which are available under a license that allows commercial use (e.g., CC BY
4.0 [43]), and add them to the prototype.

• Create and/or gather sound effects for relevant events in the game, and add
them to the prototype.

• Create a single piece of music to play during the level(s) using a composition
program which does not require advanced knowledge of musical theory (e.g.,
the aforementioned Bosca Ceoil), and add it to the prototype. As with models,
creating unique music helps make the game unique.

Weeks 14-16:
• Perform another set of user tests, and then update the design document and

the prototype accordingly.
• Resolve as many of the remaining issues as possible (e.g., bugs and design

problems).
• If a significant amount of time is left when the above tasks have been completed,

increase the amount of content without making significant changes to the basic
design or existing levels.

Weeks 17-20:
• Finalize the report.
• Prepare for and perform the presentation and the oppositions.

Throughout the project, the report will be updated; additionally, study material
from various sources, especially from successful independent video game developers,
will be regularly studied (i.e., read, listened to or watched) in order to improve the
quality of the product and the effectiveness of the development process.
Figure 4.4 summarizes the time plan, excluding the aforementioned continuously

occurring tasks.

4.6 Success criteria
The first goal – creating a high-quality game to serve as a demonstration of the skills
acquired during prior studies – is highly subjective, so it will be considered successful
based on personal opinion and the opinions of testers. Testers’ opinions will be based
on the final prototype tested – they will be asked whether they enjoyed the prototype,
and their reactions will be observed throughout the tests in order to determine
whether they enjoyed the game before asking the question, in order to reduce the
possibility of a positively biased answer resulting from personal connections.

The second goal – to show general self-improvement in terms of game design and
programming – is less subjective. Quantitative criteria based on surveys are not
particularly indicative of success (e.g., measuring average playtime or the amount of

29

4. Planning

Start of sprint 1
(Weeks 1-4)

Perform analyses
Research

development
processes

Make planning report Research accessibility Make prototype
for movement

Start of sprint 2
(Weeks 5-8)

User tests Online distribution

Implement two
short levels,

without focus
on visuals,
in Godot

Start of sprint 3
(Weeks 9-13)

User tests Create and gather
visual assets

Create and/or gather
sound effects Create music

Start of sprint 4
(Weeks 13-16)

User tests Resolve issues Potentially add
more content

End of development

Finalize report Presentation Opposition

End of project

Figure 4.4: A diagram summarizing the time plan, excluding the work which will
be done continuously during the project.

30

4. Planning

people who claimed that they enjoyed the game), and the same applies to objective
criteria (e.g., the combined size of the levels). As a result, the success criteria for this
goal will be based on improvement shown in logs of design, programming and the
general development process; if clear improvement is shown in all three areas, this
goal will be considered reached. As an example of using reflective logs, in the article
Writing a research paper: reflections on a reflective log, the author describes his use
of logging in order to describe the method by which he formulated a philosophical
paper, claiming that it resulted in a personal increase of confidence in his process and
that it revealed certain components of the process which may be useful for future
work [44].

The third goal – to create a set of guidelines for future developers working with
an open-source toolset, focusing on those working individually – will be informally
determined by publishing them online and gathering any provided feedback.

31

4. Planning

32

5
Execution and Process

Unless otherwise mentioned, the plan listed in chapter 4 was followed.

5.1 General process
No formal design document was used, mainly because there was no need to commu-
nicate ideas to another team member, the game did not have a particular intended
style with regard to visuals and audio, and there was no story to consider – the
only important part during early development was to create a game with enjoyable
mechanics and engaging level design. Instead, plans and ideas were written down as
informal notes and lists of tasks, many of which were part of the sprint backlogs.
The feasibility of creating graphics using Blender was tested during the first and

second prototypes to ensure that another method would not need to be found. The
second prototype introduced some higher-fidelity art to attract more feedback online,
but the majority of the work on visuals would be done in the third prototype.

The movement system was reworked in sprint 2 and slightly in sprint 3. Because
of this, and due to an unexpected amount of time needed for work on this thesis, the
third sprint was extended by one week.

5.2 Game design
Slight acceleration and deceleration was added to the player-controlled character’s
movement due to personal testing showing that the addition would lead to less
precise input being required from the player when the player-controlled character
was airborne and attempting to land – with the new system, holding a button for a
short time causes smaller, more precise movements than with constant horizontal
velocity, which facilitates landing within a specific area.
Dashing was changed from discrete to continuous dashing, because the former

would force players aiming for consistent high-speed movement to press dash every
second; this issue was revealed through both personal tests and user tests.
Sliding was changed so that, instead of having constant horizontal velocity, it

decelerates from dashing speed to standing still, and it can be interrupted by releasing
slide, which rewards players who stop sliding according to their location in the level
but does not force them to exit the state by jumping, colliding with a wall or falling
off a ledge. Based on personal testing, the old system significantly lowered the overall
speed of the game in stages where sliding was necessary, which conflicted with the
goal of consistently high-speed movement.

33

5. Execution and Process

Wall jumping was made more accessible – the player-controlled character can wall
jump without the player holding a directional button (in the direction of the wall in
question) as long as they are airborne while dashing towards the wall; alternatively,
the player can press the directional button which would move their character away
from the wall slightly after jumping and still be able to wall jump, rather than falling
off the wall, as in the initial system. This change was largely based on feedback from
tests, which showed some participants experiencing difficulty with a level focused on
wall jumping.

The player is able to press jump slightly before their character lands and still
jump when the player touches the ground; this was implemented in order to prevent
players from feeling that their input was not correctly registered.

5.3 Programming
Nearly all problems related to programming were caused by difficult-to-find bugs
as well as the implementation of the initial code for the player (during the first
sprint) – in order to make maintainable code for the player, a finite state machine
(FSM) structure was used for the player’s different states, but a single FSM wasn’t
necessarily enough, because some concurrency was needed in order to easily implement
powered-up states (e.g., being able to double jump after grabbing a specific power-up).
Initially, each state in which dashing could occur was duplicated (i.e., one without
dashing and one with), which lead to the code being difficult to maintain and expand
upon – power-ups were not included in the initial state machine diagram, and adding
more than one would have been a lengthy and error-prone process. An attempt was
made to transition the existing code to a pushdown automaton instead, but this did
not help, and the concept was abandoned. Eventually, a simpler FSM was used,
separate code was used to handle dashing, and another finite state machine was
used to handle power-ups, with the three systems communicating through a central
Player class.
Some minor difficulties occurred, usually due to trying to implement too much

in a single commit to the Git repository, but these were eventually solved, and no
apparent bugs remain.

5.4 Creating visuals
The models used were mostly generated procedurally with basic shapes – the player
character is a sphere with a procedural texture; the sawblades were freely available
online and were given two procedural textures; the portals which move the player
to another level were made using Blender’s displace1 modifier, as were the portals
which emit sawblades (both of which can be seen in figure 5.1); and the tiles (i.e.,
ground, walls and roofs) are boxes with textures (procedural for the brown tiles, and
a freely available metallic texture for the white tiles). The entity which required

1https://docs.blender.org/manual/en/latest/modeling/modifiers/deform/displace.
html

34

https://docs.blender.org/manual/en/latest/modeling/modifiers/deform/displace.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/deform/displace.html

5. Execution and Process

significantly more time to create was the central obstacle of the sixth level, which
can be seen in figure 5.2 and was created using the following techniques:

• The skin modifier1 allows the creation of a character and armature (essentially,
the skeleton of the character which can be used to position limbs and other
parts of the body) by placing the points of the armature and adjusting the
width and thickness of the regions between each pair of points. This was used
in addition to the subdivision surface modifier2 to create rounded shapes for
the limbs of the entity.

• Inverse kinematics (which, for a non-advanced user of Blender, is simply a
way to create animations such as for walking without manually positioning the
relevant bones in the armature) was used to create the entity’s animation for
walking.

• A procedural, checkerboard-like texture was used to cover the outer surface of
the entity.

Additionally, the solidify modifier3 was used to create outlines for all entities but the
tiles, and a custom cartoon-inspired shader was used to create simple shading for
the generated raster graphics.

5.5 Creating audio
Bosca Ceoil, the tool intended to be used to create music for the game, was found to
be dependent on the Adobe Integrated Runtime4, which is not open-source and does
not seem to have an open-source alternative. No equivalent tool which was both
seemingly easy-to-use and open-source was found during brief research; additionally,
features related to visuals and sound effects had been assigned higher priority,
which lead to the creation of music being postponed and eventually abandoned. As
replacement, three freely available pieces of music were gathered – one for the title
screen, and two as alternatives for the music playing during gameplay.

A similar problem occurred for Bfxr earlier in the project – as mentioned in chapter
2, it appears to require either the proprietary Adobe Flash Player5 or a closed-source
operating system [33] – but a browser-based derivative, Jfxr, was quickly found and
used as a replacement to create each of the sound effects used in the game.

5.6 Testing
The following is a summary of the feedback received from the tests performed
throughout this project.

1https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/skin.
html

2https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/
subdivision_surface.html

3https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/
solidify.html

4https://get.adobe.com/air/
5https://get.adobe.com/flashplayer/

35

https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/skin.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/skin.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/subdivision_surface.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/subdivision_surface.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/solidify.html
https://docs.blender.org/manual/en/latest/modeling/modifiers/generate/solidify.html
https://get.adobe.com/air/
https://get.adobe.com/flashplayer/

5. Execution and Process

Figure 5.1: The initial frames of the two portals used in the game – the left is used
as each level’s goal, and the right is used as an emitter of moving sawblades. Each

contains a particle system which causes a circular pattern to form within it.

Figure 5.2: A side view (left) and front view (right) of the central obstacle in the
sixth level. Its model was created entirely in Blender.

36

5. Execution and Process

• Participant A claimed they enjoyed the game but believed that it may have
been more enjoyable with the ability to perform a jump while airborne. (Tested
using a very early version, before they were numbered.)

• (v0.1.0) Participant A claimed that they would prefer being able to continu-
ously run over the current dashing system; preferred the visuals without the
pseudo-3D effect; wanted dynamic jump heights (i.e., jumping whose height
depends on how long jump is held), or at least a short jump and a long one;
wanted to be able to scale walls more quickly; wanted greater jump speed;
and found some instructions in the tutorial unclear. Each of these issues were
resolved in later versions.

• (v0.1.2) Participant B preferred dynamic jumping or the current jumping
system over a system with two jump heights. Additionally, they found part of
the tutorial difficult to understand – the same part for which problems occurred
in the previous test.

• (v0.1.2) Online feedback revealed, again, that the aforementioned part of
the tutorial was difficult to understand. Additionally, one person suggested
that transitions between the colors of the player should be gradual rather
than immediate. Other positive reaction to the use of colors to indicate state
resulted in this aspect remaining in later versions.

• (v0.1.13) Participant C provided no negative feedback.
• (v0.2.0) Participants A and B provided no negative feedback.
• (v0.2.3) Importantly, this prototype added acceleration and deceleration

to movement. Participant A was unsure as to whether they preferred the
movement system with or without acceleration and deceleration – it varied
depending on the stage, as some parts were easier without the changes – but
they did not want the acceleration and deceleration to be significantly lower
(i.e., they did not want the time needed to turn around to increase).

• (v0.2.0)1 Online feedback revealed some issues with regard to leniency for
those who used unexpected sequences of button presses when attempting to
perform a wall jump while dashing; as a result, the wall jumping system was
modified to be less strict without simplifying the game for existing styles of
play. Additionally, concern over the high pitch of the sound effect played when
the player-controlled character jumps was raised; to accommodate this, the
default pitch was slightly lowered and the ability to adjust the volumes of
individual sound effects was added.

• (v0.2.58) Participant C provided some criticism regarding the positional
sound effects on level 6 (specifically, that the volumes did not lower enough
in volume when the entities creating them were no longer visible); this was
adjusted in a later version. In general, the participant claimed that they
enjoyed the game, and observation of their behavior seemed to agree with this
opinion.

• (v0.2.58) No substantial feedback was received in response to online distribu-
tion of the prototype.

• (v0.2.65) Participant B found nothing to criticize and claimed that they

1Some of this feedback was given for a later version, before v0.2.58, but the exact version
number was not recorded.

37

5. Execution and Process

enjoyed the game; again, this seemed to fit with their observed behavior.
• (v0.2.65) Participant A criticized the color of the white tiles in comparison

to the brown tiles and wanted an option to skip the transitional screen shown
after clearing a level; they claimed that they (and seemed to have) generally
enjoyed the game, although they did not notice many of the changes made
since the prototype they tested previously (v0.2.3).

A detailed list of the prominent changes for each version can be found as part of the
project’s Git repository1.

1https://gitlab.com/ael-dev/mtgame

38

https://gitlab.com/ael-dev/mtgame

6
Results

6.1 The game

The game, CheckerSphere1 is a 2D side-scrolling platformer with a focus on high
movement speed, and contains, among others, the following significant features:

• Pre-rendered 2D visuals generated by Blender, and procedural visual effects
generated in Godot.

• Seven short levels. The game can be cleared within a minute, but tests have
shown that it typically requires at least ten minutes on the first attempt.

• Dynamic difficulty – many levels have paths of varying difficulty, rewarding
more skilled players with a lower level completion time.

• An optional pseudo-3D effect gives the illusion of three-dimensional rendering
of tiles.

• A visually bland yet extensive settings menu which provides many accessibility-
related options.

• Music for the title screen, and a choice between two pieces of music to play
during gameplay; custom music was deprioritized, so all music was made prior
to this project by unrelated musicians.

• Sound effects for the majority of the entities’ actions. The sound effect played
when the player-controlled character jumps uses random changes in pitch in
order to reduce repetition.

• Very short loading times, partially due to asynchronous loading of levels on
the title screen.

• The player can temporarily slow down gameplay in exchange for the level’s
timer counting real time; using this feature therefore allows players to more
easily pass parts which may otherwise be very difficult for them, at the price
of a worse level completion time.

• Visual effects, including particle systems, screen shake (randomly moving
and/or rotating the camera’s position during a short period of time) and visual
trails placed after the player-controlled character when moving at high speeds.

The following list details all possible interactions involving the player-controlled
character (PCC). As mentioned in chapter 4, actions are denoted by italic text and
buttons are denoted by bold text. Figure 6.1 shows the states present in the finite
state machine used for the character’s actions.

• Run left by holding left, and run right by holding right. Horizontal movement

1The game is available in executable form at https://ael-dev.itch.io/platformer and as
a Godot project, including source code, at https://gitlab.com/ael-dev/mtgame.

39

https://ael-dev.itch.io/platformer
https://gitlab.com/ael-dev/mtgame

6. Results

has very slight acceleration and deceleration to facilitate maneuvering while
airborne.

• Temporarily dash – which approximately doubles the movement speed while
forcing the player to run regardless of whether or not they are holding left or
right when initiating the dash – left or right while dash is held. Dashing can
only be initiated while the PCC is grounded, and can be deliberately inter-
rupted by releasing dash while grounded, reversing direction while grounded
or colliding with a wall. If dashing is performed while the PCC is grounded
but not running, the PCC will start running in the direction in which they are
facing.

• Jump with jump, with the height depending on how long jump is held.
• Fall downward, after a jump ends or by moving the PCC off a ledge.
• Slide in the current direction by pressing slide; this causes the PCC’s sprite and

collision shape to shrink vertically, letting the PCC move underneath vertically
narrow spaces. A slide occurs until slide is released or after approximately
one second has passed.

• Crouch and wall slide, as described in chapter 4.
• Perform a wall jump by jumping while wall sliding, either back toward the wall

(potentially scaling the wall) or away from the wall. A wall jump is oriented in
the direction opposite to the wall but ends after a few hundred milliseconds,
after which the player is able to reverse direction or continue moving along the
direction of the jump. This system is inspired by the systems of both Mega
Man X and Super Meat Boy, mainly with regard to the ability to scale any
wall due to the short amount of time elapsed between the initiation of a wall
jump and when the player regains control.

• Jump when slightly off a ledge or slightly before landing, in order to prevent
the player from feeling as if their jump did not register despite them believing
that it should have.

• Touching any damaging obstacle will cause the level to be restarted; the PCC
cannot remove any entities from a level.

The game contains the following damaging obstacles:
• Sawblades, which are of various sizes and do not move.
• Sawblades moving along a fixed path.
• Sawblade portals, which emit moving sawblades that are destroyed upon contact

with a wall. The portals themselves, like other obstacles, harm the player upon
contact, as do the sawblades emitted by them.

• The entities shown in figure 5.2, each of which walks at a constant velocity
until it comes close enough to a wall or damaging obstacle, at which point it
reverses its horizontal direction and then resumes movement.

Each obstacle which changes position starts moving only when the player first moves
to within a fixed distance to the obstacle, in order to ensure that the player can
predict the starting position of each obstacle without needing to be mindful of the
amount of time spent to reach it.
The game contains a single power-up – the air jump, which allows the player to

perform a jump while airborne, losing the ability after its first use, when touching a
wall or when landing.

40

6. Results

Fa
lli

ng

N
or

m
al

Ju
m

p
St

ar
t

Ju
m

p
C

on
ti

nu
e

R
el

ea
se

 J,
w

ai
t o

r
ch

an
ge

 d
ir

ec
ti

on

W
al

l
Sl

id
in

g

H
ol

d
L/

R
(t

ow
ar

d
w

al
l)

W
al

l J
um

p
St

ar
t (

1)

By
pa

ss
 w

al
l s

lid
in

g
by

 p
re

ss
in

g
J

on
 sa

m
e

fr
am

e

A
ir

 ju
m

p

H
ol

d
L/

R
(t

ow
ar

d
w

al
l)

By
pa

ss
 w

al
l s

lid
in

g
by

 p
re

ss
in

g
J

on
 sa

m
e

fr
am

e

D
ow

nw
ar

d
ve

lo
ci

ty

Pr
es

s J

R
ev

er
se

 d
ir

ec
ti

on
w

it
ho

ut
 p

re
ss

in
g

J s
ho

rt
ly

 a
ft

er
,

or
 st

op
 c

ol
lid

in
g

w
it

h
no

n-
gr

ou
nd

ed
 w

al
l

Id
le

La
nd

W
al

l J
um

p
St

ar
t (

2)

W
ai

t

W
ai

t

Pr
es

s J
 w

it
hi

n
ti

m
e

lim
it

(a
ft

er
 ju

m
pi

ng
 o

r
be

fo
re

 la
nd

in
g)

 o
r w

it
h

th
e

ai
r j

um
p

po
w

er
-u

p

H
ol

d
L/

R
(t

ow
ar

d
w

al
l)

By
pa

ss
 w

al
l s

lid
in

g
by

 p
re

ss
in

g
J

on
 sa

m
e

fr
am

e

La
nd

C
ro

uc
hi

ng

R
un

ni
ng

M
ov

e
ou

t f
ro

m
na

rr
ow

 sp
ac

e

Pr
es

s J

M
ov

e
of

f l
ed

ge

R
el

ea
se

 L
/R

Sl
id

in
g

Pr
es

s S

Pr
es

s J

Pr
es

s L
/R

Pr
es

s S

Pr
es

s J
 w

hi
le

 n
ot

un
de

r n
ar

ro
w

 sp
ac

e

Fa
ll

of
f l

ed
ge

En
d

sli
di

ng
w

hi
le

 u
nd

er
na

rr
ow

 sp
ac

e
(b

y
w

ai
ti

ng
 o

r
re

le
as

in
g

S)

En
d

sli
di

ng
w

hi
le

 n
ot

un
de

r n
ar

ro
w

 sp
ac

e
(b

y
w

ai
ti

ng
 o

r
re

le
as

in
g

S)

F
ig
ur
e
6.
1:

A
st
at
e
m
ac
hi
ne

di
ag

ra
m

de
sc
rib

in
g
th
e
PC

C
’s

m
ai
n
ac
tio

ns
.
U
nl
ik
e
in

th
e
pl
an

s,
da
sh
in
g
is

ha
nd

le
d
by

se
pa

ra
te

co
de

(e
qu

iv
al
en
t
to

a
tw

o-
st
at
e
FS

M
)
an

d
po

we
r-
up

s
ar
e
ha

nd
le
d
by

an
ot
he
r
FS

M
;t
he

th
re
e
sy
st
em

s
co
m
m
un

ic
at
e
th
ro
ug

h
a
ce
nt
ra
l

Pl
ay

er
cl
as
s;

th
is

cl
as
s
is

al
so

us
ed

to
st
or
e
va
ria

bl
es

su
ch

as
th
e
di
re
ct
io
n
in

w
hi
ch

th
e
PC

C
is

fa
ci
ng

.
A

ve
rs
io
n
w
ith

ou
t
la
be

le
d

ed
ge
s
ca
n
be

se
en

in
fig

ur
e
6.
2.

41

6. Results

Falling

N
orm

al
Jum

p
Start

Jum
p

C
ontinue

W
all

Sliding

W
all Jum

p
Start (1)

Idle

W
all Jum

p
Start (2)

C
rouching

R
unning

Sliding

F
igure

6.2:
A

version
offigure

6.1
w
ithout

labeled
edges.

42

6. Results

6.1.1 Accessibility
Accessibility is not inherently related to open-source and/or individual game devel-
opment; however, improving the accessibility of a game can lead to an increase in
the number of players (and therefore greater revenue in the case of a commercial
release), and can solve some arguably ethical issues by accounting for potential
players with disabilities. Many changes that improve accessibility are relatively easily
implemented, such as allowing players to choose which buttons activate particular
actions; even without considering ethics, since more players causes greater revenue for
commercial releases (with exception for potential illegal downloads), implementing
simple accessibility-improving features seems to be largely beneficial to developers.
The following is a list of accessibility-related features present in CheckerSphere.

The items are highly based on the game accessibility guidelines1 mentioned in chapter
2, especially the basic set of guidelines. Therefore, each feature will be followed by
a reference to the relevant guideline in the order list, section, item number. If a
guideline occurs twice, only the first occurrence (from basic to advanced and from
top to bottom) will be referenced.
The following accessibility-related options can be modified within the game’s

settings menu:
• Every in-game action can be remapped. (Basic, Motor, 1)
• The master volume for music, and the individual volume of each track, can be

set to between 0 and 500%, in increments of 10%. (Basic, Hearing, 2)
• The master volume for sound effects, and the individual volume of each of

the three effects caused by the player, can be set to between 0 and 500%, in
increments of 10%. (Basic, Hearing, 2)

• The base time scale can be set to between 100% and 50%, in increments of
10%; additionally, the temporary slow-down feature can be set to between 10%
to 90%, in increments of 10%. The player can also choose whether to have
slow-down be toggled when a button is pressed or enabled while a button is
held. (Intermediate, Motor, 5)

• All particle effects can be disabled.
• The pseudo-3D factor, which causes the tiles to be repeated twice in the

background and twice in the foreground for a 3D-like effect, can be increased,
decreased or removed entirely.

• Any shaking of the camera can be disabled.
• The smoothing of the camera can be disabled, or its speed can be adjusted.

Additionally, the following accessibility-improving features were integrated into the
core design of the game:

• Controls are very simple, requiring only five buttons; the game can be played
with one hand if the actions are remapped appropriately. (Basic, Motor, 4)

• The game can be started without the need to navigate through multiple levels
of menus – the player only needs to press a single button to start. (Basic,
Cognitive, 1)

• An easily readable default font size is used. (Basic, Cognitive, 2)
• Simple, clear language and text formatting is used. (Basic, Cognitive, 3-4)

1https://gameaccessibilityguidelines.com/

43

https://gameaccessibilityguidelines.com/

6. Results

• Interactive tutorials are included. (Basic, Cognitive, 5)
• Flickering images are avoided. (Basic, Cognitive, 7)
• Clear contrast between text/UI and background is provided. (Basic, Vision, 6)
• Color is not essential, and the game has been thoroughly tested with filters used

to simulate four types of colorblindness (protanopia, deuteranopia, tritanopia
and achromatopsia). These particular types of colorblindness were tested due
to being part of a plugin for Godot1. (Basic, Vision, 1)

• Audio is not essential, and the game has been thoroughly tested with all audio
muted. (Basic, Hearing, 3)

• Speech input is not required. (Basic, Speech, 1)
• Visuals in the foreground and the background are clearly distinguishable; this

was tested with the different colorblindness filters.
• Reading is not strictly required, if the player is willing to experiment with the

different possible buttons. (Intermediate, Cognitive, 7)
• A wide choice of difficulty levels is offered dynamically, by allowing players to

take different paths through each level as well as to slow down time if a section
is found to be too difficult. (Basic/Intermediate, General, 1)

• All interactive elements in the user interface are stationary. (Intermediate,
Motor, 2)

• Button mashing (i.e., high-frequency input) is never encouraged or required.
(Intermediate, Motor, 6)

• Windowed mode is supported and the game can be resized, with black bars
appearing when the intended aspect ratio must be enforced. (Intermediate,
Motor, 7)

• Reminders of controls can be found in the settings menu. (Intermediate,
Cognitive, 3)

• A buffer of approximately 100 milliseconds is used for jumping, both before
landing and after moving off a ledge or wall. A similar buffer is used for dashing,
both before landing and after jumping.

• The player does not need to use a computer mouse at any point other than in
the settings menu, and this is only a requirement because creating a keyboard-
driven settings menu was expected to take a significant amount of time. (Basic,
Motor, 2)

6.2 Guidelines

This section presents a list of guidelines and related information, specifically focusing
on open-source and/or individual game development, largely based on personal
experience from this project. In addition, a list of potentially useful material which
was studied during this project can be found in appendix A.

The primary guidelines in this section are denoted by bold text.

1https://github.com/paulloz/godot-colorblindness

44

https://github.com/paulloz/godot-colorblindness

6. Results

6.2.1 Overcoming individual difficulties
If you experience great difficulty with some aspect of game development,
try to find an alternative approach.
As an individual developer, a particular part of game development may seem

far more difficult than the rest – for example, during this project, drawing two-
dimensional art for the game did not seem to be an option due to a lack of experience
and an apparent lack of time to learn. To solve such a problem, unless the problem
in question is one which cannot be avoided (e.g., general game design or some form
of scripting or programming, whether visual or text-based), an alternative may be
found:

• For CheckerSphere, 3D modelling was used in place of 2D raster graphics or
vector graphics; another alternative may be to use a very simple art style (e.g.,
small sprites with few colors) that does not rely on correct perspective, shading
or any other seemingly difficult aspect of drawing1.

• Depending on the type of game, level design can be partially avoided by using
procedural generation; for platformers specifically, this can be seen in research
such as [45], [46] and [47], and has been showcased in games such as Cloudberry
Kingdom2.

• Creation of music can be avoided by using freely available music or creating a
game which uses only ambient background noise.

6.2.2 Analyzing existing games
Analyze successful games in your chosen genre to find guidelines and
inspiration for design.
The following personal guidelines were gained from the analyses with regard to

development of high-speed 2D platform games; they are not necessarily applicable to
all such games, but they were helpful in this project.

• Allow people to recover from small mistakes in some way (e.g., by allowing the
player-controlled character to jump back up from a wall, as in all three of the
tested games).

• Have the field of view be wide enough, relative to the player-controlled character,
to allow the player to react properly. (This was occasionally an issue in Mega
Man X, but never in New Super Mario Bros. 2 or Super Meat Boy.)

• Make harmful entities stand out from the non-harmful ones. (This was also a
slight problem in some areas of Mega Man X.)

• When introducing some new concept, do so in a way which allows the player
to test the concept without losing significant progress if they make a mistake.

• Sound effects and visuals are very important for conveying movement; movement
is not as satisfying if the player-controlled character seems to be stationary.

• Allow the player to move at different speeds (e.g., through a running mechanic)
and allow those who prefer to move slowly do so (for the most part).

1An example of such art can be viewed at https://0x72.itch.io/
16x16-industrial-tileset.

2https://ubisoft.com/en-us/game/cloudberry-kingdom/

45

https://0x72.itch.io/16x16-industrial-tileset
https://0x72.itch.io/16x16-industrial-tileset
https://ubisoft.com/en-us/game/cloudberry-kingdom/

6. Results

Additionally, a potentially important mechanic which was missed in the analyses is
the use of slight acceleration and deceleration to increase the precision of airborne
movement; this was eventually implemented, but if this had been realized earlier, it
may have had a greater impact on the quality of the movement system and the level
design.
Informal notes made as part of the analyses can be found in appendix B.

6.2.3 Using open-source code and other free assets
When using freely available assets (e.g., code, visuals and audio), the following
guidelines may be of use:

• Ensure that each of the assets used has a clear and legally valid
license that was issued by the asset’s creator.
If an asset is released under an obscure or home-made license, unless it is very
short and clear, it may be safer to find a similar asset released under a more
well-known license. For code, a list of many open-source licenses can be found
at the website of the Open Source Initiative1; for other types of assets, the
Creative Commons2 licenses may be used.

• Ensure that each asset’s license fits with the purpose of the project.
If the game is to be released commercially, avoid any license which prohibits
commercial use, such as Creative Commons BY-NC 4.0 3 unless it is possible
to distribute assets separately from the game and to market the game with
screenshots showing used assets without conflicting with the non-commercial
restrictions. The same applies to code available under copyleft licenses – in
some cases, such as with the GNU General Public License, the license may
force derivative projects to be licensed under the same license [48], which
may not be feasible depending on potential contractual obligations (e.g., with
publishers) or other code used in the project whose licenses are incompatible
with a particular copyleft license.

• Be careful when selecting freely available visuals and audio to use.
If a resource is frequently found in a variety of other games, if a player recognizes
it, the perceived uniqueness of the game may be lessened, or they may otherwise
lose interest – in the worst case, the game may be seen as an asset flip (which,
as mentioned in chapter 1, is a low-budget game which consists mostly of freely
available or paid-for assets and is sold at a low price to gain profit), even if
every other aspect of the game was created during development. However,
using existing assets may be the only feasible way to complete an otherwise
ambitious project, and some parts of a game may even use such assets without
most players noticing, such as a generic chair placed in a larger scene – as
stated by Peter O’Reilly, the global head of the Unity Asset Store4, “Even a
chair can take a really good, talented artist three to four days to do well” [49].

• Modify existing visuals and audio to make them less recognizable.

1https://opensource.org/
2https://creativecommons.org/
3https://creativecommons.org/licenses/by-nc/4.0/
4https://assetstore.unity.com/

46

https://opensource.org/
https://creativecommons.org/
https://creativecommons.org/licenses/by-nc/4.0/
https://assetstore.unity.com/

6. Results

As a partial countermeasure against being perceived as an asset flip, personal
modifications may be made to downloaded assets – for example, 3D models
can be changed through the use of rendering shaders and/or custom textures.

• Ensure that all visuals and audio fit the style of the game.
If an asset seems out of place in the surrounding environment or the game as a
whole, a player’s level of immersion may decrease.

A list of resources used or found during this project can be found in appendix A.

6.2.4 Direct or indirect use of 3D models
The use of 3D models, or rendered 2D versions of such models, is relevant
for both 3D and 2D games, and repositories of freely available 3D models
should not be discounted as sources of visual assets for 2D games.

An example of a commercially released game which uses animated sprites generated
from 3D models is Dead Cells. Thomas Vasseur, one of the two artists who created
visual assets for Dead Cells, revealed that using 3D models saved significant amounts
of time when animations needed to be changed with regard to timing – unlike
animations originally created as raster graphics, the keyframes of 3D animations can
simply be adjusted to solve such issues – and allowed easy reuse of animations or
other parts from older models. [50] An animated example of a model and its raster
graphics counterpart in Dead Cells can be seen in [50].

As mentioned previously, due to a personal lack of skill in terms of directly creating
two-dimensional art, a similar method was used in this project, albeit with different
software (i.e., Blender); this provided many benefits, including the following:

• It allows visual assets to be created without requiring the creator to be capable
of drawing with correct perspective or shading.

• Compared to using 3D models in the engine, 2D art may significantly improve
performance and allows the use of features of a modelling tool which cannot be
exported to a model or is not supported by the game engine being used (e.g.,
Blender’s simulations of physics).

• It enables the creation of non-trivial animations (e.g., an animation representing
walking for the obstacle shown in figure 5.2) relatively quickly.

• Procedural modifications to meshes can be used to generate models without,
or in addition to, manual changes in topology.

• Procedural textures and freely available image textures can be used to create
textured surfaces.

• Add-ons, or external tools that export to a format usable by the 3D modelling
program being used, can facilitate the creation of specific types of models – e.g.,
to create a model of a human, the tool MakeHuman1 can be used to export a
model compatible with Blender.

• Freely available 3D assets can be found and modified to suit a game’s art style
(e.g., by using a custom shader in the modelling software) before using them
to generate 2D art; this may also serve to make some who would otherwise
remember a particular model from another work not recognize it, which partially
alleviates the problem of being perceived as an asset flip. This can also be

1https://github.com/makehumancommunity/makehuman

47

https://github.com/makehumancommunity/makehuman

6. Results

done with raster graphics, but the set of possible changes that can be applied
to 3D models is significantly greater – e.g., applying textures is easy for 3D
models but cannot be done for raster graphics without manual reconstruction
of each frame.

6.2.5 Visual effects and sound effects
Development of this project has shown that, despite having no effect whatsoever on a
game’s mechanics, visual effects can positively affect the enjoyment experienced when
playing a game, and removing them from an existing game can result in the game
being less enjoyable to play; this effect can be seen by configuring CheckerSphere to
disable all particle effects. This resulted in the following guidelines regarding the use
of visual effects and sound effects:

• Try adding particle effects where appropriate.
Experiment with appearance and duration until a suitable effect is found,
assuming that the engine being used has a visual editor for particles or some
external editor can be used to generate code for a shader usable in the engine.

• Use tests to determine if certain visual effects overwhelm players.
An overuse of visual effects may be distracting or otherwise annoying to certain
players.

• Do not overuse particle effects.
In addition to overwhelming the player, particle effects can serve as a bottleneck
for a player’s graphics card; countermeasures for performance-related issues
may include using larger but fewer particles, using additively or subtractively
blended particles to reduce the need for sorting, and generating particles on
the graphics card where possible [51]. In some cases, particle effects may
be partially or entirely replaced with pre-rendered raster graphics without
significant loss in visual fidelity or apparent variety of particles (e.g., a 2D fire
may use raster graphics for the flame and particle effects for sparks).

• Instead of playing the exact same sound repeatedly, shift the pitch
randomly within an appropriate range before playing it.
This may reduce perceived issues with repetition, which is especially important
for frequently played sound effects.

• Consider providing alternative versions for extremely frequent sounds.
In such a case, the game may benefit from alternative versions instead of, or
in addition to, pitch changes – an example of the latter can be seen in The
Witness, which is focused on walking and therefore includes over a thousand
alternative sound effects for footsteps [52].

• Use tests to determine if certain players perceive specific sound ef-
fects to be unpleasant.
Some sound effects (e.g., high-pitched sounds) may cause players to become
irritated or unwilling to continue playing.

48

7
Discussion

7.1 Process

7.1.1 Goals
The first goal was fulfilled due to testers appearing to, and claiming to, enjoy the
final tested prototype.
Subjectively speaking, the second goal was reached – personal improvement has

undoubtedly occurred in terms of design, programming and the general development
process, as evidenced by an increased knowledge of game design, especially with regard
to creating an enjoyable movement system; programming, especially using state
machines and various features of Godot (e.g., particle effects and tweening); using
Blender, especially with regard to the use of procedural generation to make simple
models more appealing; and working with an adaptation of an agile methodology
for a single person. However, excluding the logs for changes made to the game
during development (which are detailed and available as part of the project’s Git
repository1), the logs which were intended to be kept rigorously were often lacking in
entries due to a general lack of interesting decisions or quandaries – as a result, it is
more difficult to prove that the second goal has been reached. The lack of thorough
logging was a significant regret – since logs were only written when they seemed
subjectively worthy of being written, interesting points which may have appeared if
daily logs had been made may have been lost. The logs which do exist have been
integrated into chapters 5 and 6.

The third goal was fulfilled due to a set of guidelines having been created; whether
these will be useful to other game developers remains to be seen, but they will be
published online for the scrutiny of interested parties.

7.1.2 Methodology
If this project were to be restarted, further focus would have been placed on the
movement system before beginning to work on level design. Due to the development
of the first prototype sharing time with several other tasks, mainly the writing of
the planning report, the first sprint was significantly shorter than the subsequent
ones and therefore encroached on the subsequent prototype, and there were some
subjectively unsatisfying parts remaining even after the second sprint, which were
mostly resolved in the beginning of the third sprint. Additionally, further research

1https://gitlab.com/ael-dev/mtgame

49

https://gitlab.com/ael-dev/mtgame

7. Discussion

regarding different types of movement systems and how to implement them well
would have been performed, rather than trying to implement one from scratch, since
this would have saved time and may have further improved the movement system,
especially in its initial stages.
The choice of order for prototypes seemed fitting at the start, and it appears

to have been a good choice based on feedback from testers – some claimed that
all alternatives were inferior, and others mentioned that an alternative may have
been to swap or combine the first two sprints. As mentioned, these sprints were
not strictly limited to their intended scopes since the movement system needed to
be modified in the second and third sprints based on personal and external testing,
and some visual polish was added during the second prototype in order to increase
the number of people willing to test it through online distribution, but any other
exceptions to the plan were minor. Dedicating the third sprint to visuals prevented
having to abandon art that was no longer relevant (or using worse alternative level
design and/or mechanics to keep old art). Personally, the only feasible alternative to
this order would have been to merge the first and second sprints into one so that
the movement system and levels could be designed simultaneously, which may have
resulted in either of the two being better than they currently are – for example, the
levels may have been improved if they were designed around the latest version of the
movement system, including features such as different jumping heights and easier
aerial maneuvering.
Even with a relatively small project like this, temporary lack of motivation was

experienced several times, and this issue could only partially be circumvented by
switching between roles; an example of such an occasion was when the movement
system was found to be partially lacking and needed to be greatly redesigned to reach
the intended level of quality – at this time, it seemed that the only solution was to
completely rewrite the code for the movement system, but, after calming down and
reconsidering, a compromise was found which only required modifying parts of the
code rather than abandoning everything and starting anew. For a developer wanting
to release a commercial game, a potential solution to this problem would be to push
past the motivational barrier until the next fully playable prototype and decide
whether to continue at that point, but this will only be feasible in some situations
(e.g., if relatively little time has been spent on the project at that point and if the
developer can afford to abandon or halt the project); if the issue with the project is
that the developer does not think it will result in a satisfactory product, the best
solution may involve a significant redesign or completely abandoning a project.

7.1.3 Design
Few interesting decisions were made during the development of CheckerSphere;
rather, almost every decision was small in scope and based on testing. A feature
was quickly implemented and tested, and it was kept only if it improved the game
or could do so with further changes; doing so appeared to be a more effective
approach than attempting to theorize as to whether the addition of a feature would
be beneficial to the game. However, some changes, such as the following, warranted
more consideration.

50

7. Discussion

The initial implementation of the sliding action was going to be removed due to
personal tests revealing that it hindered the overall speed of the game, but it was
reworked into its current system rather than being removed; this was partially due
to the movement system seeming too simplistic without it, and because a level had
been designed around the mechanic. In the final prototype, the mechanic is required
in all levels but one after its introduction.

The modification of the movement system to include acceleration and deceleration
required some deliberation in order to justify whether the changes would make
a significant enough addition, since the implementation was expected to take a
significant amount of time; eventually, attempting to maneuver the player-controlled
character to land on a single tile during personal tests revealed that that the current
system made any attempts at only slightly adjusting the direction highly difficult, so
the feature was implemented and adjusted until the airborne movement was more
manageable.

7.2 Open-source development
Aside from the use of a proprietary graphics driver, proprietary hardware and likely
websites running closed-source software, using strictly open-source tools caused very
few problems in this project.

7.2.1 This project
Godot, the engine used to create the game, was generally easy-to-use; personal
experience with the Unity1 engine was also mostly positive, but Godot personally
provided a better experience as a result of features such as its easy-to-use messaging
system and the ease of writing decoupled code (i.e., where code does not depend on
code from other files unless it is necessary).
Some issues were experienced when creating levels – the state of the 2D scene

editor in Godot is not ideal with regard to tile-based levels due to lacking features
such as moving groups of tiles. The external level editor Tiled2 was tested along with
an extension which allowed importing the files exported from Tiled into Godot, but
this process did not work immediately and was postponed indefinitely; however, if
further levels were to be added into the game, integration between Tiled and Godot
would be of high priority.

Comparing Blender to other 3D modelling tools is not currently possible due to
a lack of experience with anything else, aside from tests of smaller tools such as
Dust3D. Blender is a powerful tool capable of complex animation and modelling, but
only a small subset of its features were used in this project, as mentioned previously.
Blender is capable of generating animation which would be extremely time-consuming
to draw manually – a basic example is rotation around the vertical axis, which cannot
be done by rotating a two-dimensional image.
The creation of music was the only area of development during which the use

1https://unity.com/
2https://mapeditor.org/

51

https://unity.com/
https://mapeditor.org/

7. Discussion

of strictly open-source tools was somewhat unfortunate – as mentioned in chapter
5, Bosca Ceoil could not be used to create music for the game as it was reliant on
closed-source software, which partially caused the creation of custom music to be
postponed until all higher-priority features had been implemented.

7.2.2 General open-source game development
For game developers who intend on publishing their game commercially, the notion
of publishing the source code for free may seem to be a poor choice, but open-
source games do not need to distribute non-code assets for free; for example, a
game can be sold in its compiled form with the assets separate from the executable
(possibly in addition to those same assets bundled within the executable, depending
on the functionality of the tool used to generate the executable) and those who
have purchased the game may choose to compile the game themselves using the
open-source code and the proprietary assets. Of course, this may prevent developers
from hiding content in their games (e.g., secrets and/or details related to narrative);
prevents any form of piracy prevention from being implemented, since dedicated
employers of piracy may be able to modify the source code to remove them; allows
others to clone one’s game and release new assets; and lets malicious individuals in
countries with loose copyright laws (or in any country other than the developer’s if the
developer does not have enough money to sue them) and illegally publish the game
without changes. If any of these points is a serious worry for a developer, open-source
or otherwise source-available software may not be appropriate, although the second
scenario can be removed as a potential risk through the use of a non-commercial,
source-available license. Similar issues may occur even if only the concept for a
game is publicly announced, or a prototype is released, especially if the game in
question is relatively simple – this happened for game development studio Vlambeer ’s
Ridiculous Fishing – but releasing source code, especially under an open-source
license, undoubtedly facilitates cloning.
However, open-source game development does not only cause problems – it also

brings new possibilities, such as potentially causing volunteers to contribute to the
game for free, encouraging players to create problem descriptions (e.g., issues in a
GitHub repository1) when they find apparent bugs, allowing those who are unwilling
to install closed-source software on their computers to play the game, increasing
the amount of trust and good will towards the developers, and helping future game
development projects by contributing to the open-source community. A non-open-
source, source-available license may also bring these benefits provided that the game’s
potential community is willing to accept the license’s restrictions. These positive and
negative aspects cause the perceived feasibility of releasing software as open-source
or otherwise source-available to vary between projects and individuals.

In the case of a non-commercial game such as CheckerSphere, releasing the source
code under an open-source license has no apparent negative consequences unless the
developer simply does not want to let others see or use their source code (in which
case no source-available license will fit). An alternative business model for those who
wish to create open-source or source-available games but still earn money through

1https://guides.github.com/features/issues/

52

https://guides.github.com/features/issues/

7. Discussion

them is to request donations.
For expensive games created by large teams, the feasibility of using purely open-

source tools and/or distributing one’s game under an open-source license will vary
depending on the project’s requirements. For example, the latest technology with
regard to drivers and algorithms for highly demanding visuals may be closed-source
and/or require closed-source drivers; in such a case, using only open-source tools
may not be an option. As another example, a large publisher may not be willing
to let its developers release code under an open-source license, or require that they
sacrifice something significant (e.g., part of their salary) in order to do so, in which
case open-source distribution may not be considered feasible. However, in many
other cases, open-source alternatives exist – as shown in chapter 2, 3D game engines,
modelling tools, audio workstations and other types of software are available under
open-source licenses, and this project has shown that it is undoubtedly feasible to,
at the very least, create a 2D platformer without using closed-source tools (with the
possible exception of drivers and hardware, depending on the hardware used), and
the feasibility of distributing code under an open-source license simply depends on
the openness or fears of the individuals in charge of such matters.

7.3 Ethical issues

7.3.1 Accessibility
When developing any video game, issues of accessibility become apparent. Some
are typically relatively easy to solve (e.g., color blindness, problems with hearing or
missing fingers) unless the game’s design principles require that such problems are not
present (e.g., a stealth-focused game which relies on hearing footsteps may require
clear visual hints in order to allow those who cannot hear them to play the game
effectively). Others may require more attention or physical solutions, such as dyslexia,
problems with memory or severe motor impairments. In this project, disabilities
which were relatively easy to account for were considered, whereas problems which
would be difficult to solve were disregarded in the interest of time; if the prototype
resulting from this project were to be developed into a commercially released game,
more time would have been spent on accessibility and, for problems where no software-
based solution could be feasibly implemented by a single person, alternative solutions
such as the Xbox Adaptive Controller1, would be explicitly recommended for potential
players. Ideally, players with disabilities should be involved in testing in order to
ensure that one’s implementation is actually good enough for such players.
Whether disregarding a subset of one’s potential players due to disabilities is

considered unethical or not is arguable, and it may not be reasonable to expect
developers, especially individual developers, to be able to cater to every type of
disability; however, from a commercial viewpoint, it can certainly be beneficial to
implement solutions to the most common accessibility-related problems in order to
increase the number of sales and garner support from those who may have been

1https://microsoft.com/en-us/p/xbox-adaptive-controller/8nsdbhz1n3d8?
activetab=pivot%3aoverviewtab

53

https://microsoft.com/en-us/p/xbox-adaptive-controller/8nsdbhz1n3d8?activetab=pivot%3aoverviewtab
https://microsoft.com/en-us/p/xbox-adaptive-controller/8nsdbhz1n3d8?activetab=pivot%3aoverviewtab

7. Discussion

unable to play the game without these solutions.

7.3.2 Privacy

If a game uses network communication for any purpose, players should be allowed to
know what the game is sending and the game should not send any information which
could compromise players’ privacy unless they give explicit permission through an
in-game interface while being fully aware of the information being sent. This includes
personally identifying information such as locale settings and the name of the user
as entered into the operating system, and it also includes information such as a
name and score uploaded to an online scoreboard – even if it appears to be obvious
that such information would be sent, the user should be made concretely aware of
everything that is sent in order for the game to be completely ethical in terms of
privacy. Additionally, due to the European General Data Protection Regulation1 of
2016, privacy is now also a legal requirement when handling the data of any person
within the European Economic Area [53].

Source-available software can still have issues with privacy, both unintentional (i.e.,
bugs) and intentional; for example, a source-available communication client can claim
to be encrypted without having end-to-end encryption (i.e., being encrypted by the
sender and only being decrypted by the receiver), and those who do not contribute
to the project may never find out about this security flaw. However, source-available
software enables independent auditing of the code and allows users to remove any
parts of the software which they consider to infringe on their privacy; additionally,
if the code is also open-source and encourages contributions, otherwise unrelated
individuals may contribute to the project, which increases the chance of security
flaws being discovered – the more contributors and fewer lines of code a project has,
the easier it is, generally speaking, to examine whether specific features work as
intended or expected.

Similarly, telemetry is impossible to hide from a dedicated user in a source-available
project, but developers who want to include telemetry as part of their software may
need to consider various points, such as the following from the article Six questions
to answer before implementing a telemetry feature [54]:

• Why is the data being collected, and is it necessary to collect it?
• What kind of data is being collected, and will the data provided by the collection

process justify its intrusiveness in the eyes of the users?
• Is the data collected truly anonymous?
• How will the data be collected (or, if a third party’s telemetry service is used,

where will they handle the data)?
• Is the data open? If not, who has access to it?
• Is telemetry opt-in or opt-out? Opt-in is more privacy-friendly but may result

in significantly less data than opt-out.
• When will data be deleted after becoming less relevant?

1https://gdpr-info.eu/

54

https://gdpr-info.eu/

7. Discussion

7.3.3 Digital rights management
Digital rights management (DRM) is the “protection of copyrighted works by various
means meant to control or prevent digital copies from being shared over computer
networks or telecommunications networks” [55]. For video games, this may consist
of requiring players to connect to the Internet to verify their purchase whenever they
want to play a particular game. This is arguably a question of ethics, especially if it
punishes legitimate customers while rewarding illegitimate ones who bypass it, legally
or illegally. A severe example of DRM is the type which requires a constant or near-
constant Internet connection – this may be effective in terms of preventing piracy,
but it punishes those who have connection problems, have limited bandwidth or live
without consistent Internet access. DRM is not possible to enforce in source-available
software since users are free to remove unwanted pieces of code.

7.3.4 Availability of source code
The availability of the source code of any piece of software is partially a question of
ethics due to factors such as the relative ease of hiding malicious instructions in a
closed-source program (as opposed to an open-source or source-available program).
Other aspects of open-source code which involve ethics include the denial of code
reuse inherent to closed-source software, which forces other developers to spend time
solving problems which have already been solved; large companies using permissively
licensed code and not providing any contributions to the open-source community in
return (which can be avoided by using copyleft licenses such as the GNU General
Public License [48]); and using open-source code for malicious purposes (e.g., when
the United States’ Immigration and Customs Enforcement used open-source code as
part of operations involving separating children from their parents by the country’s
border [56]).

7.3.5 Miscellaneous
Other issues which are arguably related to ethics include not spreading misinformation
or hate speech – unless it is part of a game’s narrative – and ensuring that the player
is aware of content which may be considered inappropriate for children. Additionally,
political and religious propaganda are perhaps best not included in a game, although
this may be a question of alienating users as opposed to being ethically problematic.

55

7. Discussion

56

8
Conclusion

8.1 The game

This project involved the creation 2D side-scrolling platformer titled Checker-
Sphere. The game places great focus on high-speed movement and implements
many accessibility-improving features, including configurable input, the ability to
adjust the volume of individual pieces of music or sound effects, and the ability to
slow down time. The game contains four types of obstacles, one power-up and seven
short levels with slightly branching paths. The level of difficulty can be adjusted dy-
namically by slowing down time, moving less quickly or taking easier routes through
the levels. The game was developed using an iterative development process with
nine primary user tests (spread evenly among three participants) and two smaller
tests; additionally, various prototypes were distributed online in order to gain further
feedback.

The game was developed using only open-source tools – primarily, the Godot engine
and the 3D modelling tool Blender. Discussions on open-source game development,
and lists of relevant tools and resources, can be primarily found in chapter 2 and 7.
The movement systems of three different games (Mega Man X, Super Meat Boy

and New Super Mario Bros. 2) were analyzed; the results of the analyses can be
seen in chapter 6 and appendix B. In addition, several lists of guidelines for future
independent game developers were created, as shown in chapter 6.
Future work for the game may include the following:
• Adding further content.
• Updating the visuals to be more appealing.
• Adding at least one piece of music created specifically for the game.
• Implementing non-abrupt transitions in terms of both visuals and audio between

different screens.
• Adding online leaderboards; this was not implemented partially due to potential

issues with the GDPR which needed to be researched, and partially because it
appeared to require significant time to implement.

• Adding further accessibility settings, such as being able to change the player’s
sound effects.

• Adding a level editor.
• Optimizing unnecessarily performance-heavy code.
• Refactoring some of the less well-written parts of the code.
• Adding support for non-keyboard controllers, with icons representing the

buttons of different types of controller.

57

8. Conclusion

• Reworking the wall jumping and wall sliding systems.
• Adjusting the normal jumping system to allow for greater control with regard

to the height of a jump.

8.2 Research questions
The project’s research questions were the following:

As an individual developer using strictly open-source tools, what problems may
appear – particularly in terms of game design, implementation, creation of visuals
and creation of audio – during development of a side-scrolling, 2D platform game,

and how can these problems be solved?

Both questions are somewhat vague due to the use of the words “may” and “can”,
and there is no pretense that all problems and potential solutions will be presented;
therefore, the length of the answers can vary from extremely short (e.g., “an example
of a problem is finding music for a game, and a possible solution is to use repositories
of freely available music such as freesound.org”) to an entire report such as this
one (or one of greater scope). This report presents problems that occurred during the
development of CheckerSphere and how they were solved, as well as issues that may
occur in other problems and potential solutions; therefore, while there is certainly
room for improvement and expansion, this project has undoubtedly answered the
research questions, albeit in a manner limited to a project of relatively small scope.

8.3 Contribution of knowledge
This thesis is largely a case study of individual, open-source game development,
primarily presented in chapters 4 to 6; due to the lack of rigorous logging, the
thesis is not as granular as may be desired, but it nevertheless provides information
regarding the development process for CheckerSphere, which may be of use for future
developers with similar circumstances.
Chapter 6 also contains a set of guidelines, briefly summarized below:
• If you have a particular shortcoming, try to find an alternative approach – for

example, if you lack the skills to draw detailed two-dimensional art and do
not believe you can learn to do so within a reasonable amount of time, try 3D
modelling or using a very simple visual style.

• Analyze successful games in your chosen genre to find guidelines and inspiration
for design.

• Ensure that you understand the license of every asset you use, including code,
and that the license’s restrictions are acceptable for your project’s purpose.

• Be careful when using existing non-code assets in order to prevent your game
from being regarded as an asset flip. This does not mean that a large amount
of such assets cannot be present in your game; however, you may need to apply
creative modifications to those assets (e.g., rendering shaders and textures) in
order to make them fit with your game’s visual style and seem less generic.

58

8. Conclusion

• The use of 3D models, or rendered 2D versions of such models, is relevant for
both 3D and 2D games, and repositories of freely available 3D models should
not be discounted as sources of visual assets for 2D games.

• Changes in terms of visuals and/or audio, even seemingly minor ones, can have
surprising impact on the enjoyment experienced by players.

• When using visual effects, be careful not to overwhelm the player or create a
bottleneck with regard to performance.

• When creating or finding sound effects to use in your game, be considerate
to the users – for example, rapidly repeating a single sound effect without
changes in pitch may be obnoxious, and high-pitched sounds may disturb
certain players.

Finally, chapters 1 and 2 provide an introduction to the topic of the thesis, and
chapter 7 contains discussions of various issues related to individual, open-source
game development.
This project has personally strengthened the view that individual, open-source

game development is entirely feasible when extreme graphical fidelity is not required,
both in terms of using only open-source tools and in terms of distributing the game
under an open-source license; the latter does not prevent the developer from releasing
the game commercially, since non-code assets may remain proprietary. Whether
this applies to very expensive games made by enormous game development studios
remains to be seen; however, at the very least, this project has shown that it is
entirely feasible for a simple 2D platformer.

59

8. Conclusion

60

Bibliography

[1] H. E. Lowood. (Mar. 1, 2019). “Electronic game,” [Online]. Available: https:
//www.britannica.com/topic/electronic-game (visited on 03/24/2020).

[2] E. Adams. (Jul. 9, 2009). “The Designer’s Notebook: Sorting Out the Genre
Muddle,” [Online]. Available: https://www.gamasutra.com/view/featur
e/132463/the_designers_notebook_sorting_.php?page=2 (visited on
04/09/2020).

[3] K. T. Jensen. (Oct. 25, 2018). “Run, Jump, and Climb: The Complete History
of Platform Games,” [Online]. Available: https://www.geek.com/games/run-
jump-and-climb-the-complete-history-of-platform-games-1748896/
(visited on 12/02/2019).

[4] J. Bailey. (Nov. 9, 2017). “Asset Flipping: The Ethics of Reuse in Video Games,”
[Online]. Available: https://www.plagiarismtoday.com/2017/11/09/asset-
flipping-ethics-reuse-video-games/ (visited on 02/13/2020).

[5] M. Handrahan. (Jun. 18, 2018). “PUBG Corp. defends the use of asset stores
as the only way to "work smart",” [Online]. Available: https://www.games
industry.biz/articles/2018-06-18-pubg-corp-defends-the-use-of-
asset-stores-as-the-only-way-to-work-smart (visited on 02/13/2020).

[6] Thomas Happ Games LLC. (Mar. 14, 2016). “Award-winning Axiom Verge
Announced for Xbox One and Wii U,” [Online]. Available: https://www.
axiomverge.com/press-releases (visited on 11/23/2019).

[7] ——, “Developer – Axiom Verge,” [Online]. Available: https://www.axiomve
rge.com/author (visited on 11/23/2019).

[8] ConcernedApe LLC. “Stardew Valley - FAQ,” [Online]. Available: https:
//www.stardewvalley.net/faq/ (visited on 11/23/2019).

[9] Mojang. “What is Minecraft?” [Online]. Available: https://www.minecraft.
net/en-us/what-is-minecraft/ (visited on 11/23/2019).

[10] Markus Persson. (Jul. 31, 2012). “I am Markus Persson aka Notch, Creator
of Minecraft - Ask me Anything!” [Online]. Available: https://www.reddit.
com/r/Minecraft/comments/xfzdg/i_am_markus_persson_aka_notch_
creator_of/ (visited on 11/23/2019).

[11] The Open Source Initiative. “Licenses & Standards,” [Online]. Available: https:
//opensource.org/licenses (visited on 03/25/2020).

[12] ——, “Frequently Answered Questions,” [Online]. Available: https://openso
urce.org/faq (visited on 04/28/2020).

[13] University of New England. “Grey literature,” [Online]. Available: https:
//www.une.edu.au/library/support/eskills-plus/research-skills/
grey-literature (visited on 03/25/2020).

61

https://www.britannica.com/topic/electronic-game
https://www.britannica.com/topic/electronic-game
https://www.gamasutra.com/view/feature/132463/the_designers_notebook_sorting_.php?page=2
https://www.gamasutra.com/view/feature/132463/the_designers_notebook_sorting_.php?page=2
https://www.geek.com/games/run-jump-and-climb-the-complete-history-of-platform-games-1748896/
https://www.geek.com/games/run-jump-and-climb-the-complete-history-of-platform-games-1748896/
https://www.plagiarismtoday.com/2017/11/09/asset-flipping-ethics-reuse-video-games/
https://www.plagiarismtoday.com/2017/11/09/asset-flipping-ethics-reuse-video-games/
https://www.gamesindustry.biz/articles/2018-06-18-pubg-corp-defends-the-use-of-asset-stores-as-the-only-way-to-work-smart
https://www.gamesindustry.biz/articles/2018-06-18-pubg-corp-defends-the-use-of-asset-stores-as-the-only-way-to-work-smart
https://www.gamesindustry.biz/articles/2018-06-18-pubg-corp-defends-the-use-of-asset-stores-as-the-only-way-to-work-smart
https://www.axiomverge.com/press-releases
https://www.axiomverge.com/press-releases
https://www.axiomverge.com/author
https://www.axiomverge.com/author
https://www.stardewvalley.net/faq/
https://www.stardewvalley.net/faq/
https://www.minecraft.net/en-us/what-is-minecraft/
https://www.minecraft.net/en-us/what-is-minecraft/
https://www.reddit.com/r/Minecraft/comments/xfzdg/i_am_markus_persson_aka_notch_creator_of/
https://www.reddit.com/r/Minecraft/comments/xfzdg/i_am_markus_persson_aka_notch_creator_of/
https://www.reddit.com/r/Minecraft/comments/xfzdg/i_am_markus_persson_aka_notch_creator_of/
https://opensource.org/licenses
https://opensource.org/licenses
https://opensource.org/faq
https://opensource.org/faq
https://www.une.edu.au/library/support/eskills-plus/research-skills/grey-literature
https://www.une.edu.au/library/support/eskills-plus/research-skills/grey-literature
https://www.une.edu.au/library/support/eskills-plus/research-skills/grey-literature

Bibliography

[14] Academy of Interactive Arts & Sciences. (Dec. 17, 2019). “Lucas Pope’s Return
of the Obra Dinn - The AIAS Game Maker’s Notebook,” [Online]. Available:
https://youtube.com/watch?v=quNbkpzhx1E (visited on 02/10/2020).

[15] The Editors of Encyclopaedia Britannica. (Dec. 27, 2017). “Auteur theory,”
[Online]. Available: https://www.britannica.com/technology/raster-
graphics (visited on 04/29/2020).

[16] M. Hetfeld. (Aug. 20, 2018). “Auteur Theory and Games,” [Online]. Available:
https : / / unwinnable . com / 2018 / 08 / 20 / auteur - theory - and - games/
(visited on 04/29/2020).

[17] A. Donnelly, “Auteur theory in video games: recognizing Hideo Kojima and
Thatgamecompany as auteurs in the video game medium,” Ball State University,
Jul. 21, 2018.

[18] FOSSA. “The Commons Clause,” [Online]. Available: https://commonsclause.
com/ (visited on 04/29/2020).

[19] R. Gardler and R. Wilson. (Aug. 2, 2012). “Contributor Licence Agreements,”
[Online]. Available: http://oss-watch.ac.uk/resources/cla (visited on
05/11/2020).

[20] W. Scacchi, “Free and Open Source Development Practices in the Game
Community,” IEEE Software, vol. 21, issue 1, Jan. 2004. doi: 10.1109/MS.
2004.1259221.

[21] “How Is Video Game Development Different from Software Development in
Open Source?” In Mining Software Repositories, (Gothenburg, Sweden), May
2018. doi: 10.1145/3196398.3196418.

[22] Game accessibility guidelines. “Basic,” [Online]. Available: http://gameacces
sibilityguidelines.com/basic/ (visited on 04/01/2020).

[23] ——, “Intermediate,” [Online]. Available: http://gameaccessibilityguidel
ines.com/intermediate/ (visited on 04/01/2020).

[24] ——, “Advanced,” [Online]. Available: http://gameaccessibilityguidelin
es.com/advanced/ (visited on 04/01/2020).

[25] The Linux Foundation. “What Is Linux?” [Online]. Available: https://www.
linux.com/what-is-linux/ (visited on 04/01/2020).

[26] P. H. Salus, The Daemon, the Gnu, and the Penguin. May 5, 2005, ch. 7.
[Online]. Available: http : / / www . groklaw . net / article . php ? story =
20050505095249230 (visited on 04/01/2020).

[27] “What is Wine?” [Online]. Available: https://www.winehq.org/ (visited on
04/01/2020).

[28] ReactOS Team & Contributors. “Front Page | ReactOS Project,” [Online].
Available: https://reactos.org/ (visited on 04/03/2020).

[29] “ReactOS,” [Online]. Available: https://reactos.org/wiki/ReactOS (visited
on 04/03/2020).

[30] J. Linietsky, A. Manzur, and contributors. “Godot Engine - Features,” [Online].
Available: https://godotengine.org/features (visited on 04/01/2020).

[31] The Editors of Encyclopaedia Britannica. (Jan. 28, 2020). “Raster graphics,”
[Online]. Available: https://www.britannica.com/technology/raster-
graphics (visited on 04/01/2020).

62

https://youtube.com/watch?v=quNbkpzhx1E
https://www.britannica.com/technology/raster-graphics
https://www.britannica.com/technology/raster-graphics
https://unwinnable.com/2018/08/20/auteur-theory-and-games/
https://commonsclause.com/
https://commonsclause.com/
http://oss-watch.ac.uk/resources/cla
https://doi.org/10.1109/MS.2004.1259221
https://doi.org/10.1109/MS.2004.1259221
https://doi.org/10.1145/3196398.3196418
http://gameaccessibilityguidelines.com/basic/
http://gameaccessibilityguidelines.com/basic/
http://gameaccessibilityguidelines.com/intermediate/
http://gameaccessibilityguidelines.com/intermediate/
http://gameaccessibilityguidelines.com/advanced/
http://gameaccessibilityguidelines.com/advanced/
https://www.linux.com/what-is-linux/
https://www.linux.com/what-is-linux/
http://www.groklaw.net/article.php?story=20050505095249230
http://www.groklaw.net/article.php?story=20050505095249230
https://www.winehq.org/
https://reactos.org/
https://reactos.org/wiki/ReactOS
https://godotengine.org/features
https://www.britannica.com/technology/raster-graphics
https://www.britannica.com/technology/raster-graphics

Bibliography

[32] ——, (Feb. 21, 2019). “Vector graphics,” [Online]. Available: https://www.
britannica.com/technology/vector-graphics (visited on 04/01/2020).

[33] increpare. “Bfxr. Make sound effects for your games.,” [Online]. Available:
https://www.bfxr.net/ (visited on 04/09/2020).

[34] ttencate. “jfxr,” [Online]. Available: https://github.com/ttencate/jfxr
(visited on 04/09/2020).

[35] (Jan. 11, 2017). “Integrated Development Environment (IDE),” [Online]. Avail-
able: https : / / www . techopedia . com / definition / 26860 / integrated -
development-environment-ide (visited on 04/09/2020).

[36] A. Nyström, “Agile Solo – Defining and Evaluating an Agile Software De-
velopment Process for a Single Software Developer,” Chalmers University of
Technology, Jun. 2011.

[37] B. Martin and B. Hanington, Universal Methods of Design: 100 Ways to
Research Complex Problems, Develop Innovative Ideas, and Design Effective
Solutions. Quarto Publishing Group USA, Feb. 1, 2012, isbn: 9781610581998.

[38] The Interaction Design Foundation. “What is User Centered Design?” [Online].
Available: https://www.interaction-design.org/literature/topics/
user-centered-design (visited on 03/31/2020).

[39] R. Hunicke, M. LeBlanc, and R. Zubek, “MDA: A Formal Approach to Game
Design and Game Research,” Jan. 2004.

[40] P. Lankoski, S. Björk, et al., Game Research Methods. ETC Press, 2015, pp. 25–
26, isbn: 9781312884731.

[41] The Blender Foundation. “About,” [Online]. Available: https://www.blender.
org/about/ (visited on 04/20/2020).

[42] A. Novell. (Feb. 6, 2020). “I Had to Abandon My Game After 4 Years And It
Nearly Broke Me,” [Online]. Available: https://me.ign.com/en/pc/170093/
feature/what-it-feels-like-to-abandon-your-game-after-4-years-
of-hard-work (visited on 04/30/2019).

[43] Creative Commons. “Attribution 4.0 International (CC BY 4.0),” [Online].
Available: https://creativecommons.org/licenses/by/4.0/ (visited on
12/01/2019).

[44] D. Bridges, “Writing a research paper: reflections on a reflective log,” Edu-
cational Action Research, vol. 7, issue 2, pp. 221–234, 1999. doi: 10.1080/
09650799900200084.

[45] K. Compton and M. Mateas, “Procedural Level Design for Platform Games,”
in The Second Artificial Intelligence and Interactive Digital Entertainment
Conference, (Marina del Rey, CA, USA, Jun. 20–23, 2006), pp. 109–111, isbn:
978-1-57735-235-8.

[46] M. Cook, S. Colton, and A. Pease, “Aesthetic Considerations for Automated
Platformer Design,” in The Eighth AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, (Stanford, CA, USA, Oct. 8–12, 2012),
pp. 124–129.

[47] G. Smith, M. Treanor, J. Whitehead, and M. Mateas, “Rhythm-Based Level
Generation for 2D Platformers,” in The 4th International Conference on Foun-
dations of Digital Games, (Orlando, FL, USA, Apr. 26–30, 2009), pp. 175–182.
doi: 10.1145/1536513.1536548.

63

https://www.britannica.com/technology/vector-graphics
https://www.britannica.com/technology/vector-graphics
https://www.bfxr.net/
https://github.com/ttencate/jfxr
https://www.techopedia.com/definition/26860/integrated-development-environment-ide
https://www.techopedia.com/definition/26860/integrated-development-environment-ide
https://www.interaction-design.org/literature/topics/user-centered-design
https://www.interaction-design.org/literature/topics/user-centered-design
https://www.blender.org/about/
https://www.blender.org/about/
https://me.ign.com/en/pc/170093/feature/what-it-feels-like-to-abandon-your-game-after-4-years-of-hard-work
https://me.ign.com/en/pc/170093/feature/what-it-feels-like-to-abandon-your-game-after-4-years-of-hard-work
https://me.ign.com/en/pc/170093/feature/what-it-feels-like-to-abandon-your-game-after-4-years-of-hard-work
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/09650799900200084
https://doi.org/10.1080/09650799900200084
https://doi.org/10.1145/1536513.1536548

Bibliography

[48] The Free Software Foundation. (Jun. 29, 2007). “GNU General Public License,”
[Online]. Available: https://www.gnu.org/licenses/gpl-3.0.en.html
(visited on 02/13/2020).

[49] R. Valentine. (Jul. 19, 2018). “Unity: "Games wouldn’t see the light of day"
without asset stores,” [Online]. Available: https://www.gamesindustry.biz/
articles/2018-07-19-well-88-percent-of-what-asks-unitys-global-
head-of-asset-store (visited on 05/05/2020).

[50] T. Vasseur. (Jan. 25, 2018). “Art Design Deep Dive: Using a 3D pipeline for
2D animation in Dead Cells,” [Online]. Available: https://www.gamasutra.
com/view/news/313026/Art_Design_Deep_Dive_Using_a_3D_pipeline_
for_2D_animation_in_Dead_Cells.php (visited on 05/04/2020).

[51] C. Ericson. (Jan. 2, 2009). “Optimizing the rendering of a particle system,”
[Online]. Available: https://realtimecollisiondetection.net/blog/?p=
91 (visited on 05/04/2020).

[52] M. McWhertor. (Nov. 30, 2012). “The Witness includes more than 1,100
footstep sound effects,” [Online]. Available: https://www.polygon.com/
2012/11/30/3712542/the-witness-includes-more-than-1100-footstep-
sound-effects (visited on 05/04/2020).

[53] J. Uzan-Naulin. (Nov. 28, 2019). “The (Extra) Territorial Scope of the GDPR:
The Right to Be Forgotten,” [Online]. Available: https://www.fasken.com/
en/knowledge/2019/11/the-extra-territorial-scope-of-the-gdpr/
(visited on 03/28/2020).

[54] C. Stransky. (Apr. 14, 2020). “Six questions to answer before implementing
a telemetry feature,” [Online]. Available: https://dev.to/meeshkan/six-
questions - to - answer - before- implementing - a - telemetry - feature -
1c5i (visited on 05/04/2020).

[55] The Editors of Encyclopaedia Britannica. (Jan. 24, 2020). “Digital rights
management,” [Online]. Available: https://www.britannica.com/topic/
digital-rights-management (visited on 03/28/2020).

[56] J. Cox. (Sep. 20, 2019). “’Everyone Should Have a Moral Code’ Says Developer
Who Deleted Code Sold to ICE,” [Online]. Available: https://www.vice.com/
en_us/article/mbm3xn/chef-sugar-author-deletes-code-sold-to-ice-
immigration-customs-enforcement (visited on 02/13/2020).

64

https://www.gnu.org/licenses/gpl-3.0.en.html
https://www.gamesindustry.biz/articles/2018-07-19-well-88-percent-of-what-asks-unitys-global-head-of-asset-store
https://www.gamesindustry.biz/articles/2018-07-19-well-88-percent-of-what-asks-unitys-global-head-of-asset-store
https://www.gamesindustry.biz/articles/2018-07-19-well-88-percent-of-what-asks-unitys-global-head-of-asset-store
https://www.gamasutra.com/view/news/313026/Art_Design_Deep_Dive_Using_a_3D_pipeline_for_2D_animation_in_Dead_Cells.php
https://www.gamasutra.com/view/news/313026/Art_Design_Deep_Dive_Using_a_3D_pipeline_for_2D_animation_in_Dead_Cells.php
https://www.gamasutra.com/view/news/313026/Art_Design_Deep_Dive_Using_a_3D_pipeline_for_2D_animation_in_Dead_Cells.php
https://realtimecollisiondetection.net/blog/?p=91
https://realtimecollisiondetection.net/blog/?p=91
https://www.polygon.com/2012/11/30/3712542/the-witness-includes-more-than-1100-footstep-sound-effects
https://www.polygon.com/2012/11/30/3712542/the-witness-includes-more-than-1100-footstep-sound-effects
https://www.polygon.com/2012/11/30/3712542/the-witness-includes-more-than-1100-footstep-sound-effects
https://www.fasken.com/en/knowledge/2019/11/the-extra-territorial-scope-of-the-gdpr/
https://www.fasken.com/en/knowledge/2019/11/the-extra-territorial-scope-of-the-gdpr/
https://dev.to/meeshkan/six-questions-to-answer-before-implementing-a-telemetry-feature-1c5i
https://dev.to/meeshkan/six-questions-to-answer-before-implementing-a-telemetry-feature-1c5i
https://dev.to/meeshkan/six-questions-to-answer-before-implementing-a-telemetry-feature-1c5i
https://www.britannica.com/topic/digital-rights-management
https://www.britannica.com/topic/digital-rights-management
https://www.vice.com/en_us/article/mbm3xn/chef-sugar-author-deletes-code-sold-to-ice-immigration-customs-enforcement
https://www.vice.com/en_us/article/mbm3xn/chef-sugar-author-deletes-code-sold-to-ice-immigration-customs-enforcement
https://www.vice.com/en_us/article/mbm3xn/chef-sugar-author-deletes-code-sold-to-ice-immigration-customs-enforcement

A
Resources

A.1 Study material

The following lists contain references to study material which was of use during this
project (or was of limited use in this case, but may be useful for others).

The book Game Feel: A Game Designer’s Guide to Virtual Sensation1, by Steve
Swink, semi-formally discusses how to make a game enjoyable; or, as a free alternative,
the article Game Feel: The Secret Ingredient2, on which the book is based.
The following video sources discuss gameplay design and/or level design:
• Boss Up - Boss Battle Design Fundamentals and Retrospective3, by Itay Keren.
• Empowering the Player - Level Design in N++4, by Mare Sheppard and Raigan

Burns.
• Game Feel - Measuring the Influence of Acceleration and Deceleration5, by

Gustav Dahl.
• Level Design in a Day: Decisions That Matter - Meaningful Choice in Game

and Level Design6, by Matthias Worch.
• Level Design Workshop - Designing Celeste7, by Matt Thorson.
• The Marriage of Level Design and Controls8, by Tommy Refenes.
• Ten Principles for Good Level Design9, by Dan Taylor.
• The LevelHead series on the YouTube channel Sunder10.
• How Mega Man 11’s Levels Do More With Less11, Super Mario 3D World’s 4

Step Level Design12, The Secret of Mario’s Jump (and other Versatile Verbs)13,
Why Does Celeste Feel So Good to Play?14 and various other video essays by
Mark Brown15.

1http://game-feel.com/
2https://gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php
3https://gdcvault.com/play/1024921/Boss-Up-Boss-Battle-Design
4https://gdcvault.com/play/1023282/Empowering-the-Player-Level-Design
5https://youtube.com/watch?v=S-EmAitPYg8
6https://gdcvault.com/play/1020570/Level-Design-in-a-Day
7https://gdcvault.com/play/1024307/Level-Design-Workshop-Designing-Celeste
8https://youtube.com/watch?v=O4TmH8WG7_M
9https://gdcvault.com/play/1017803/Ten-Principles-for-Good-Level

10https://youtube.com/channel/UCYwIcyCwXZ--FR0iZ593uBA
11https://youtube.com/watch?v=nYxHMZX6lN8
12https://youtube.com/watch?v=dBmIkEvEBtA
13https://youtube.com/watch?v=7daTGyVZ60I
14https://youtube.com/watch?v=yorTG9at90g
15https://youtube.com/user/McBacon1337

I

http://game-feel.com/
https://gamasutra.com/view/feature/130734/game_feel_the_secret_ingredient.php
https://gdcvault.com/play/1024921/Boss-Up-Boss-Battle-Design
https://gdcvault.com/play/1023282/Empowering-the-Player-Level-Design
https://youtube.com/watch?v=S-EmAitPYg8
https://gdcvault.com/play/1020570/Level-Design-in-a-Day
https://gdcvault.com/play/1024307/Level-Design-Workshop-Designing-Celeste
https://youtube.com/watch?v=O4TmH8WG7_M
https://gdcvault.com/play/1017803/Ten-Principles-for-Good-Level
https://youtube.com/channel/UCYwIcyCwXZ--FR0iZ593uBA
https://youtube.com/watch?v=nYxHMZX6lN8
https://youtube.com/watch?v=dBmIkEvEBtA
https://youtube.com/watch?v=7daTGyVZ60I
https://youtube.com/watch?v=yorTG9at90g
https://youtube.com/user/McBacon1337

A. Resources

The following video sources demonstrate how to add polish to a game:
• The art of screenshake1, by Jan Willem Nijman.
• Juice it or lose it2, by Martin Jonasson and Petri Purho.
• Game Feel: Why Your Death Animation Sucks3, by Nicolae Berbece.
• Oh My! That Sound Made the Game Feel Better!4, by Joonas Turner.

The following video sources discuss animation:
• Animation Bootcamp: An Indie Approach to Procedural Animation5, by David

Rosen.
• Animation Bootcamp: ’Rainworld’ Animation Process6, by Joar Jakobsson and

James Therrien.
• IK Rig - Procedural Pose Animation7, by Alexander Bereznyak.
The following video sources discuss the use of mathematics in games:
• Math for Game Programmers: Building A Better Jump8, by Kyle Pittman.
• Math for Game Programmers: Fast and Funky 1D Nonlinear Transformations9

and Math for Game Programmers: Juicing Your Cameras With Math10, by
Brian “Squirrel” Eiserloh.

Finally, the following video sources discuss miscellaneous subjects:
• Automated Testing and Instant Replays in Retro City Rampage11, by Brian

Provinciano.
• Crafting A Tiny Open World: ’A Short Hike’ Postmortem12, by Adam Robinson-

Yu.
• How Cameras in Side-Scrollers Work13, by Itay Keren.
• Lessons Learned Making Gunpoint Quickly Without Going Mad14, by Tom

Francis.
• Making ’Night in the Woods’ Better with Open Source15, by Jon Manning.
• No More Excuses, Your Guide to Accessible Design16, by Tara Voelker.
• No Time, No Budget, No Problem: Finishing The First Tree17, by David

Wehle.
• GuiltyGearXrd’s Art Style : The X Factor Between 2D and 3D18, by Junya

Christopher Motomura.

1https://youtube.com/watch?v=AJdEqssNZ-U
2https://youtube.com/watch?v=Fy0aCDmgnxg
3https://gdcvault.com/play/1022759/Game-Feel-Why-Your-Death
4https://gdcvault.com/play/1022808/Oh-My-That-Sound-Made
5https://gdcvault.com/play/1020583/Animation-Bootcamp-An-Indie-Approach
6https://gdcvault.com/play/1023475/Animation-Bootcamp-Rainworld-Animation
7https://gdcvault.com/play/1023279/IK-Rig-Procedural-Pose
8https://gdcvault.com/play/1023559/Math-for-Game-Programmers-Building
9https://gdcvault.com/play/1022142/Math-for-Game-Programmers-Fast

10https://gdcvault.com/play/1023557/Math-for-Game-Programmers-Juicing
11https://gdcvault.com/play/1021825/Automated-Testing-and-Instant-Replays
12https://gdcvault.com/play/1026613/Independent-Games-Summit-Crafting-A
13https://youtube.com/watch?v=pdvCO97jOQk
14https://youtube.com/watch?v=aXTOUnzNo64
15https://gdcvault.com/play/1024197/Making-Night-in-the-Woods
16https://gdcvault.com/play/1022172/No-More-Excuses-Your-Guide
17https://youtube.com/watch?v=g5f7yixtQPc
18https://gdcvault.com/play/1022031/GuiltyGearXrd-s-Art-Style-The

II

https://youtube.com/watch?v=AJdEqssNZ-U
https://youtube.com/watch?v=Fy0aCDmgnxg
https://gdcvault.com/play/1022759/Game-Feel-Why-Your-Death
https://gdcvault.com/play/1022808/Oh-My-That-Sound-Made
https://gdcvault.com/play/1020583/Animation-Bootcamp-An-Indie-Approach
https://gdcvault.com/play/1023475/Animation-Bootcamp-Rainworld-Animation
https://gdcvault.com/play/1023279/IK-Rig-Procedural-Pose
https://gdcvault.com/play/1023559/Math-for-Game-Programmers-Building
https://gdcvault.com/play/1022142/Math-for-Game-Programmers-Fast
https://gdcvault.com/play/1023557/Math-for-Game-Programmers-Juicing
https://gdcvault.com/play/1021825/Automated-Testing-and-Instant-Replays
https://gdcvault.com/play/1026613/Independent-Games-Summit-Crafting-A
https://youtube.com/watch?v=pdvCO97jOQk
https://youtube.com/watch?v=aXTOUnzNo64
https://gdcvault.com/play/1024197/Making-Night-in-the-Woods
https://gdcvault.com/play/1022172/No-More-Excuses-Your-Guide
https://youtube.com/watch?v=g5f7yixtQPc
https://gdcvault.com/play/1022031/GuiltyGearXrd-s-Art-Style-The

A. Resources

• This is a Talk About Tutorials, Press “A” to Skip1, by Nicolae Berbece.
• Thriving in Steam Early Access: Turning 20XX’s Slow Launch into Success2,

by Chris King.
• Throwing Out the Dopamine Shots: Reward Psychology Without the Neuro-

trash3, by Ben Lewis-Evans.

A.2 Free assets
• 3D models: SketchFab, BlendSwap, TurboSquid and 3D Model Haven.
• Textures: CC0 Textures.
• Sound effects: freesound and kenney.nl.
• Music: freesound and incompetech (Kevin MacLeod).
• Various: OpenGameArt and itch.io.
Additionally, various lists of assets and other resources for game development can

be found in various Git repositories, such as magictools4 and awesome-gamedev5.

1https://gdcvault.com/play/1023845/This-is-a-Talk-About
2https://gdcvault.com/play/1025693/Thriving-in-Steam-Early-Access
3https://gdcvault.com/play/1024181/Throwing-Out-the-Dopamine-Shots
4https://github.com/ellisonleao/magictools
5https://github.com/Calinou/awesome-gamedev

III

https://gdcvault.com/play/1023845/This-is-a-Talk-About
https://gdcvault.com/play/1025693/Thriving-in-Steam-Early-Access
https://gdcvault.com/play/1024181/Throwing-Out-the-Dopamine-Shots
https://github.com/ellisonleao/magictools
https://github.com/Calinou/awesome-gamedev

A. Resources

IV

B
Notes from the game analyses

B.1 Mega Man X
• The jumping height depends on how long the jump button is held.
• Dashing and dash jumping is very satisfying; it gives a lot of freedom of

movement to the player and lets them set their own pace. You don’t get the
dash before playing through Chill Penguin’s stage, and the game feels very slow
without it, to the point that Chill Penguin becomes the obvious first choice for
a stage.

• You don’t lose your dash ability when entering one of the “robots” (e.g., the
ones in Chill Penguin’s stage), which shows how integral it is to the gameplay –
if dashing was disabled, I wouldn’t want to enter the robot.

• A small number of stages with many different new enemies in each. Many
enemies are unique to each stage (or reused in one of the final stages).

• Secrets increase replayability.
• Large levels with an increased focus on verticality.
• Uses an enemy or obstacle for a while and then moves on to something new to

avoid unenjoyable repetition.
• Dashing kicks up dust and plays a sound effect.
• Dashing time depends on the amount of time the dash button is held.
• If dash jumping, the dashing velocity stays until the player lands.
• The speed when walking, dashing and airborne (normally or dashing) is constant.

You can turn around immediately on the ground and in the air and keep the
same speed, even when dashing in the air. You can immediately cancel a dash
on the ground by turning around. (Dashing remains in the air, even when
turning around.)

• A level usually has some reoccurring concept, like the lights turning on and off
in Spark Mandrill’s stage.

• The ability to scale any wall by repeated wall jumps gives the player the
freedom to be reckless without severe punishment.

• Levels are both vertical and horizontal (but mostly horizontal).

B.2 Super Meat Boy
• The player (as Meat Boy) covers about 1/34 of the screen horizontally, and

1/20 vertically. (This may vary depending on the resolution used.)
• The jumping height depends on how long the jump button is held.

V

B. Notes from the game analyses

• You stop almost instantly, but it takes a while to turn around while running,
so it’s faster to let go of left/right and then hold right/left immediately than
to go directly from left/right to right/left.

• The running speed is very fast.
• You can scale any wall by wall jumping (like in MMX).
• Moving leaves “meat trails”; running leaves more. Touching any surface usually

leaves trails. Trails stay after death (and death leaves more trails).
• Satisfying sound effects when moving (walking/running) and jumping.
• Only four keys used for gameplay: left, right, jump and run.
• Beating a level shows all attempts, which is satisfying for a platformer where

later levels are likely to cause many deaths.
• Only platforming; you can’t defeat any enemies, unlike in NSMB2 or MMX.
• Level design is heavily focused on fast movement and wall jumping.
• Getting A+ on a level (at least the ones I played) never felt too difficult.
• The really frustrating parts of a level were always limited to the bandages

(entirely optional collectibles that unlock new characters), at least in the first
few worlds.

• You can skip a few levels in every world if you find them too difficult.
• The Dark World is a great way to reuse the basic existing level designs but

make them more difficult.
• Gradually introduces new mechanics and reuses old mechanics. Many obstacles

are reused in similar or different situations in other levels. (Cost-effective for
independent developers.)

• Always starts at the same point in a level when respawning, to preserve the
flow through the level (unlike VVVVVV, for example).

• Levels are both vertical and horizontal (but mostly horizontal).

B.3 New Super Mario Bros. 2
• Mario is reasonably small: he covers about 0.5cm out of 8.5cm of the screen

horizontally (5%), and about 0.5cm out of 5cm vertically (10%) in his “short
form”. (This varies slightly with different 3DS models.)

• The jumping height depends on how long the jump button is held. This
introduces some more flexibility but is not ideal for people with certain motor
problems (e.g., those who can’t release their finger quickly enough to perform
each of the different levels of jump).

• There does not appear to be any analog movement; this is good for accessibility.
• The player has two main states of movement: walking and running. The latter

requires that the run button is held.
• The movement system only requires the four directional buttons (although

usually only the left and right buttons are used), a jump button and a run
button. Unfortunately, the game cannot be played effectively with one hand
on the 3DS due to the inability to remap buttons, but it could have been (e.g.,
by using the left shoulder button to jump and allow toggling running rather
than having to hold the run button).

• When running, the player’s running speed accelerates for approximately one

VI

B. Notes from the game analyses

second. (This also applies to the walking speed, but the difference in speed
and the time to maximum speed is very short.) Running at maximum speed
causes a clear change in animation.

• Moving on the ground causes dust (or something similar) to appear, which
serves as a visual enhancement for movement.

• The controls are typically very responsive; on a few occasions, I felt as though
the game did not register my press of the jump button, but this may, at least
partially, be an issue with hardware. Turning left and right is very quick on
the ground.

• Changing direction while moving (on the ground or in the air) is possible but
takes a little while depending on the player’s velocity. On the ground, if you
want to change direction, it can take approximately two seconds at top running
speed (depending on the terrain); it’s faster and more reliable to jump and
change direction in the air, which encourages jumping. The fastest way to stop
and change direction is to hit a wall, either on the ground (which allows you
to turn around immediately) or in the air (which allows you to wall jump), but
this is not reliable.

• Wall sliding and wall jumping makes the game very easy on most levels if you
move slowly enough; the real challenge comes from trying to beat a level as
quickly as possible and finding all collectibles.

• Running is quick and levels are generally designed to let you run through them
without stopping if you’re good enough. However, there are some moments
that force you to stop and turn back or wait, like the beginning of level 1-2.

• Level design is generally quite basic compared to many other Mario games,
but the ability to speedrun, the three collectible coins in every level and the
movement system make it enjoyable nonetheless.

• Camera: aside from at the beginning and end of an area (an entire level or a
part of a level which is separate from the rest of the level), the camera moves
as the player does and is always horizontally centered on the player, without
appearing to lag behind or in front. Vertically, the camera changes, depending
on the height of the area, when the player gains or loses a certain amount of
elevation; I did not notice any obvious patterns for how the camera changed
aside from making sure that it didn’t show anything outside of the limits of
the area and that Mario was always clearly visible with some room in every
direction.

• Every level (at least in the first three worlds, possibly excluding the hidden
levels) introduces something new (e.g., an enemy) but doesn’t necessarily focus
on it.

• Levels are both vertical and horizontal (but mostly horizontal).

VII

	List of Figures
	 Introduction
	 Background
	 Video games
	 Platform games
	 Game development
	 Individual game development
	 Open-source development

	 Thesis
	 Premise
	 Goals
	 Limitations

	 Theory
	 Game development
	 Individual game development
	 Open-source game development
	 Accessibility

	 Open-source tools
	 Operating systems
	 Game engines, frameworks and libraries
	 Tools for creating and editing visuals
	 Tools for creating and editing audio
	 Coding tools
	 Level editors

	 Methodology
	 Software development
	 General interaction design
	 Game development

	 Planning
	 Concept
	 Software development methodology
	 Interaction design methodology
	 Tools
	 Time plan
	 Success criteria

	 Execution and Process
	 General process
	 Game design
	 Programming
	 Creating visuals
	 Creating audio
	 Testing

	 Results
	 The game
	 Accessibility

	 Guidelines
	 Overcoming individual difficulties
	 Analyzing existing games
	 Using open-source code and other free assets
	 Direct or indirect use of 3D models
	 Visual effects and sound effects

	 Discussion
	 Process
	 Goals
	 Methodology
	 Design

	 Open-source development
	 This project
	 General open-source game development

	 Ethical issues
	 Accessibility
	 Privacy
	 Digital rights management
	 Availability of source code
	 Miscellaneous

	 Conclusion
	 The game
	 Research questions
	 Contribution of knowledge

	Bibliography
	 Resources
	 Study material
	 Free assets

	 Notes from the game analyses
	 Mega Man X
	 Super Meat Boy
	 New Super Mario Bros. 2

