
Computing persistent homology in
parallel with a functional language
Master’s thesis in Engineering Mathematics and Computational Science

ERIK VON BRÖMSSEN

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Computing persistent homology in
parallel with a functional language

Erik von Brömssen

Department of Mathematical Sciences
Chalmers University of Technology

Gothenburg, Sweden 2021

Computing persistent homology in parallel with a functional language
Erik von Brömssen

© Erik von Brömssen, 2021.

Supervisor: John Hughes, Mary Sheeran, Department of Computer Science and
Engineering
Examiner: Martin Raum, Department of Mathematical Sciences

Master’s Thesis 2021
Department of Mathematical Sciences
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone: +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

Computing persistent homology in parallel with a functional language
Erik von Brömssen
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Persistent homology, first developed at the beginning of the millennium, is a tool
within the field of topological data analysis. It is an extension of simplicial homol-
ogy to filtrations of simplicial complexes, which allows one to, in a sense, compute
topological features of finite sets of points in a metric space at a variety of scales.
More precisely, persistent homology is concerned with sequences of homomorphisms
between homology groups induced by inclusions on the underlying groups of cy-
cles. Persistent homology is well suited for data analysis since it can be efficiently
computed via a certain matrix reduction.

Graphics processing units (GPUs), originally designed for tasks such as image ren-
dering, have recently become an integral part of high performance computing due
to their massively parallel design. Futhark is a statically typed purely functional
language that compiles to efficient code for GPUs. The goal of Futhark is to sim-
plify the implementation of algorithms for GPUs, by giving a high-level functional
perspective and hiding low-level concepts from the programmer.

In this thesis we present a massively parallel algorithm for computing persistent
homology on GPUs, and we describe an implementation in Futhark. Our algorithm
is conceptually simple, and its main parts are all entirely massively parallel. Our
implementation utilises a sparse matrix data structure and exemplifies that non-
trivial sparse matrix computations can be efficiently implemented in Futhark. We
compare the performance of our algorithm to that of OpenPH, an existing GPU-
based persistent homology algorithm, and achieve speedups of 2.3 to 5. Lastly, we
briefly investigate the potential to use our algorithm for approximating persistent
homology via early stopping.

Keywords: Persistent homology, functional programming, GPU, Futhark, sparse
matrix.

iii

Acknowledgements
I would like to thank my supervisors Mary Sheeran and John Hughes, as well as my
examiner Martin Raum, for their collective help and guidance in the writing of this
thesis. I especially extend my thanks to Mary for her help with writing the paper
submitted to FHPNC that thesis is largely an extension of.

I would further like to thank Troels Henriksen for his comments and suggestions
regarding the writing of the Futhark code presented in this thesis.

Lastly, I would like to thank all the friends who have made life during the current
pandemic easier to endure. Of these I particularly thank David Elinder with whom
I have had many discussions about the experience of writing a thesis in this period
of remote work and social distancing.

Erik von Brömssen, Gothenburg, June 2021

v

Table of Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Outline . 2

2 Futhark 3
2.1 The basics . 3

2.1.1 Primitives and function definitions 3
2.1.2 Records . 4
2.1.3 Lambda expressions . 5

2.2 Polymorphism . 5
2.3 Pattern matching . 5
2.4 Loops and branching . 6

2.4.1 Uniqueness types . 7
2.5 Arrays and second-order array combinators 7

2.5.1 Map and tabulate . 8
2.5.2 Reduce and scan . 9
2.5.3 Filter and partition . 9
2.5.4 Expand . 10
2.5.5 Scatter . 10

2.6 Application operators . 10
2.7 Size parameters . 11

3 Theory 13
3.1 Topology . 13
3.2 Simplicial complexes . 14
3.3 Simplicial homology . 16
3.4 Persistent homology . 20

4 Computing persistent homology 27
4.1 Previous work . 29

5 A parallel algorithm 31
5.1 Adding columns in parallel . 31
5.2 Incorporating the clearing lemma . 32
5.3 A functional perspective . 34
5.4 Implementation . 35

5.4.1 Matrix data structure . 35
5.4.2 Clearing . 37

vii

Table of Contents

5.4.3 Identifying pairs of columns to add 37
5.4.4 Pairwise column additions . 38

5.4.4.1 Initialising the new matrix 39
5.4.4.2 Copying the leftmost columns 40
5.4.4.3 Adding columns . 41

5.4.5 Checking for convergence . 45

6 Experiments 47
6.1 Early stopping . 49

7 Discussion 51
7.1 Our experiments . 51
7.2 Futher work . 51
7.3 Using Futhark . 52

References 53

viii

1. Introduction

1.1 Background
A topological perspective on data can expose interesting qualitative features that
can be used in analysis. Many topological spaces can be distinguished by counting
the number of holes they have. For instance, a circle has one hole while a disk has
none, and a torus has (with a suitable definition of hole) more holes than a sphere.

There’s more than one way to define holes, but one which lends itself to efficient
computations is the theory of homology in algebraic topology. Homology can be de-
fined on simplicial complexes — roughly speaking, a space built from n-dimensional
triangles — where the boundary maps of the complex give rise to its homology
groups. The generators of these groups then correspond to holes in the complex.
In the last two decades, the field of topological data analysis has seen the rise of
the theory of persistent homology [1] — a theory of holes in pointclouds. In this
field, one constructs a filtered simplicial complex from a pointcloud, and then tracks
how the homology groups change under the inclusion maps of the filtration. With
a suitable filtration, this gives a tool to study holes at many scales simultaneously,
and importantly, how these holes are born and killed as the scale changes. This
analysis results in a set of persistence intervals, called a persistence diagram or a
barcode, which can then be used as a statistic of the pointcloud to be used in further
analysis, depending on the problem at hand.

Persistent homology has been applied in a wide range of sciences. Li et al. used it
to identify morphological variation in plants, by applying it to processed greyscale
images of leaves and roots [2]. Musa et al. used the persistent homology of the phase
space of a water level time series to develop a flood early warning system [3]. In
varying degrees of complexity, it has also been used in fields like quantum physics
[4], brain morphometry [5], and tourism [6].

1.2 Purpose
Graphics processing units, with typically thousands of cores on a single card, can
be used for massively parallel computations. Due to the hardware architecture of
GPUs, they are poorly suited for task parallelism, i.e. performing different kinds of
tasks in parallel, but are well suited for data parallelism, i.e. doing the same compu-
tation in parallel on different data. GPUs are typically programmed using the C-like
languages in frameworks such as CUDA and OpenCL. These languages are low-level
and require the programmer to reason about things such as individual threads or

1

1. Introduction

groups of threads (work-items and work-groups in OpenCL), synchronisation, and
memory layout. Algorithms also have to be designed in a low-level fashion, sim-
ilarly to writing code in C. In contrast, Futhark is a high-level purely functional
language that can be compiled to CUDA or OpenCL. This allows a programmer to
design algorithms with a high-level perspective, without having to consider threads
or memory layout of data.

Persistent homology is computed by reducing a certain matrix representing the
boundary maps of a filtered complex, and speeding up this reduction is currently
the focus of much research [7]. These matrices are sparse and can quickly become
large, so more sophisticated methods than using a dense matrix data structure is
needed in practically useful algorithms. Many authors have parallelised the re-
duction algorithm in various ways, and most algorithms have been designed and
implemented for CPUs and distributed systems. A notable exception is the algo-
rithm constructed by Mendoza-Smith and Tanner [8], which has been successfully
implemented for GPUs in CUDA by the same authors.

The purpose of this thesis is twofold: firstly, we further investigate whether it is
possible to design a massively data-parallel algorithm for computing persistent ho-
mology that can be implemented for GPU hardware; and secondly, we investigate
whether Futhark is a suitable language to use for sparse matrix algorithms of this
nature.

1.3 Outline
In chapter 2 we give a self-contained description of Futhark. We do not describe the
entire language, but enough for any reader to understand the code presented in this
thesis. For a full description of Futhark, see e.g. the book Parallel Programming in
Futhark [9]. Chapter 3 presents the necessary mathematical background of homol-
ogy, chapter 4 describes how one can compute persistent homology, while our main
contribution, a new parallel algorithm, is presented in 5. We present benchmarks
and compare with OpenPH in chapter 6, and finally a discussion about our work
can be found in chapter 7.

2

2. Futhark

Graphics processing units (GPUs), originally developed for computations in com-
puter graphics, have during the last two decades been used for other applications.
Computer graphics involves processing a large number of pixels and other data inde-
pendently, and so GPUs generally have a large number of cores, typically thousands,
in contrast to CPUs that typically have a number of cores on the order of 1 or 10.
GPUs are poorly suited for task-parallel algorithms, where many different tasks have
to be performed in parallel, but are well suited for data-parallel algorithms, where
the same task has to be performed on many points of data in parallel.

GPUs are often programmed using the frameworks OpenCL [10] or CUDA [11].
While CUDA is developed by NVidia and only available on their hardware, OpenCL
is a specification implemented on both NVidia and AMD graphics cards. These
frameworks both utilise low-level C-like languages to write the programs that run
on GPUs, generally requiring the programmer to consider the memory layout of data,
access patterns and cache use, synchronisation, and dividing work across threads. In
contrast, Futhark is a hardware-agnostic “statically typed, data-parallel and purely
functional array language” with a heavily optimising compiler that can currently
compile to OpenCL, CUDA, or multithreaded C code [12]. Being purely functional
and high-level, Futhark does not expose such low-level concepts to the programmer;
instead, programs are written in terms of operations on entire arrays. The syntax of
Futhark is similar to languages like ML and Haskell, although it is far less general.
Notably, it does not support recursion, and its type system is less expressive [9]. In
the remainder of this chapter, we give an overview of Futhark, covering enough to
enable the reader to understand all code presented in this thesis.

2.1 The basics

2.1.1 Primitives and function definitions
The type system in Futhark has a number of primitive types: signed integers i8,
i16, i32, i64, unsigned integers u8, u16, u32, u64, floating-point numbers f32, f64,
and booleans bool. The boolean values are true and false. The number suffixed
to each numerical type denotes the number of bits in its representation. A number of
functions exist for converting between primitive types, such as the function i64.i32
that converts a 32-bit integer to a 64-bit integer. Other conversion functions follow
the same naming pattern.

Types can be combined to make tuple types, e.g. (i32, i32) and (bool, (u8, f32));
values of these types include (0,−5) and (false, (1, 2.56)). We extract elements

3

2. Futhark

from tuples using dot notation: The expression (1.3, 5.6).0 will have the value 1.3
and (1.3, 5.6).1 the value 5.6. As an example, we may represent complex numbers
using 2-tuples where the first component is the real part and the second component
is the imaginary part. Then we can define complex multiplication with the following
function definition:
l et cmul (z : (f32 , f32)) (w: (f32 , f32)) : (f32 , f32) =

l et re = z . 0 ∗ w.0 − z . 1 ∗ w.1
l et im = z . 0 ∗ w.1 + z . 1 ∗ w.0
in (re , im)

The first line defines the function cmul and gives its type signature: it takes two
arguments, z and w, both of type (f32, f32), and it evaluates to a value also of type
(f32, f32). After the equals sign follows the function’s body, that defines its value.
Here we bind two local variables with the let keyword, re and im corresponding to
the real and imaginary parts of the product of z and w. The body ends with the in
keyword, defining the final value of the function application.

In general, a function f of type t1 → t2 → · · · → tn → t taking n arguments can be
defined with syntax of the following form:
l et f (x1 : t1) (x2 : t2) . . . (xn : tn) : t = body

In the above, body is an expression of type t defining the return value of the function.

To make the definition of cmul slightly more readable, we may define a type abbre-
viation for complex numbers:
type complex = (f32 , f32)

Then the type signature of cmul can instead be written as:
l et cmul (z : complex) (w: complex) : complex =

. . .

The body of cmul will be the same as before.

Functions can be partially applied to only some of their arguments. If f is a function
of type a→ b→ c, and x a value of type a, the expression f x has type b→ c. For
instance, partially applying cmul to a single complex number as cmul (1, 2), we get
a function of type complex → complex that multiplies any complex number with
1 + 2i. Specifically, we can define such a function as follows:
l et cmul_with_1_2 : complex → complex = cmul (1 , 2)

We can also partially apply infix operators; for instance, a function half that divides
a float by two can be defined as such:
l et h a l f : f 32 → f 32 = (/ 2 . 0)

When partially applying infix operators, we need parentheses as above.

2.1.2 Records
Instead of representing complex numbers as 2-tuples, we can use a record type:

4

2.2. Polymorphism

type complex ’ = { re : f32 , im : f32 }

Expressions of type complex’ then contain two fields, called re and im, which are
values of type f32. For instance, 1 + 2i can be written as {re = 1, im = 2}. The
fields of a record are accessed using dot notation:
l et cmul ’ (z : complex ’) (w: complex ’) : complex ’ =

l et rea l_part = z . re ∗ w. re − z . im ∗ w. im
l et imag_part = z . re ∗ w. im + z . im ∗ w. re
in { re = real_part , im = imag_part}

The field names of a record are part of the type, so {a : i32} and {b : i32} are
considered distinct types.

2.1.3 Lambda expressions
Like many other languages, Futhark supports lambda expressions. If e is an expres-
sion of type t possibly containing the variables x1, . . . xn of types t1, . . . , tn respec-
tively, then λx1 . . . xn → e is an expression of type t1 → · · · → tn → t. For instance,
the code below shows three equivalent ways of defining f(x) = 2x:
l et f x = 2 ∗ x
l et f = (2 ∗)
l et f = λx → 2 ∗ x

Note that we have omitted the type signatures in the definitions above. In this case,
the types will be inferred by the compiler, and since integer literals default to the
type i32, the type of both f and f’ will be i32 → i32. Lambda expressions are
especially useful in higher-order functions, see section 2.5.

2.2 Polymorphism
A type signature does not need to mention a specific type, but can also contain type
variables. For instance, we can define a function first of type (a, b) → a where a
and b are type variables as follows:
l et f i r s t ’a ’b (pa i r : (a ,b)) : a = pa i r . 0

In the type signature of first, the single quotes indicate that a and b are type
variables rather than specific types. This makes first a polymorphic function; it
can be applied to any 2-tuple, regardless of the types of its elements, and the return
type will depend on the type of the tuple. So, for instance, first (1, 2) equals 1
and has type i32, while first (true, 2) equals true and has type bool. While this
example is not very interesting, polymorphism plays a crucial role in section 2.5.

2.3 Pattern matching
Consider a simple definition:
l et x = foo

5

2. Futhark

On the left-hand side of this definition, x is a variable name that will take the value
of foo. This definition is always possible, regardless of the type of foo. We may
consider the name x to be a pattern that matches any value regardless of its type. In
Futhark definitions, we can also use more refined patterns, such as the pair pattern
(x, y) where x and y are two different variable names. This pattern can only match
values whose type is (t1, t2) for some types t1 and t2. When a pattern is matched,
the variables x and y will be bound to the corresponding values that were matched.
For instance, if the expression foo evaluates to the value (v1, v2) of type (t1, t2), we
can define
l et (x ,y) = foo

after which x will equal v1 with type t1 and similarly for y. If the type of foo is not
a pair type, the above definition is a type error.

Pattern matching can also occur in type signatures, so for instance, the first
function from above can be defined as follows:
l et f i r s t ’a ’b ((x ,y) : (a ,b)) : a = x

We can also pattern match in lambda expressions, so we can also define first as
such:
l et f i r s t ’a ’b : ((a ,b) → a) = λ(x ,y) → x

Patterns can also be records or nested combinations of records and tuples, although
we will only use tuple pattern matching in the code in this thesis.

2.4 Loops and branching
Futhark does not support recursion, but does have a number of loop constructs,
that are all executed entirely sequentially. One type of loop expression is
loop pattern = i n i t i a l for i < bound do body

where pattern = initial is a pattern matching expression, binding the values in
initial to the names in pattern. This construct first binds the value of initial
to pattern, and then as long as i is less than bound, it evaluates body and binds
the resulting value to pattern, and increments i by one. As an example, we can
sum the ten first even non-negative numbers as follows:
l et sum_of_evens = loop x = 0 for i < 10 do x + 2 ∗ i

Another type of loop expression is the while loop construct:
loop pattern = i n i t i a l while b do body

where b is an expression of type bool that depends on the names in pattern. As an
example, consider function search below, that performs a sequential binary search
in a sorted array of 64-bit integers (note that the loop only halts if the wanted
integer is actually in the array):
l et search [n] (xs : [n] i 64) (x : i 64) : i 64 =

(loop (l ,r ,m) = (0 ,n , 0) while xs [m] != x do
let m = (l + r) / 2

6

2.5. Arrays and second-order array combinators

in i f xs [m] < x then (m+1,r ,m) else (l ,m−1,m)
) . 2

Branching in Futhark is done with the if-then-else construct: if e1 and e2 are
expressions of type t and b is an expression of type bool, then
i f b then e1 else e2

is an expression of type t.

2.4.1 Uniqueness types
To allow for in-place updates while keeping the language pure and free from side
effects, Futhark uses the concept of uniqueness types. A uniqueness type is a modi-
fication of a normal type, indicated with an asterisk before the normal type name;
if t is a type, then *t is a uniqueness variant of the same type. Whenever a value
is given as a uniqueness typed argument to another function, neither that value nor
any other value aliasing it can be used later in the same scope. For instance, if foo
has type *t→ t, bar has type t→ t, and x has type t, then
l et y = x
l et z = foo x
in bar y

is illegal, since y aliases x and cannot be used after the call to foo. Further, if
the returned value of a function has a uniqueness type, then it cannot share mem-
ory space with any of the non-unique arguments passed to the same function; the
returned value cannot alias anything non-unique. Uniqueness types are described
more in detail in the book Parallel Programming in Futhark [9].

The polymorphic function copy of type a → *a makes a copy of its argument in
memory, and returns the new copy, with a uniqueness type. Thus, while the above
code example is not valid, the following is:
l et y = x
l et z = foo (copy x)
in bar y

2.5 Arrays and second-order array combinators
An essential type in Futhark is the array type []t denoting arrays whose elements
have type t. Array types can also have a size, so [n]t is the type of arrays of
length n whose elements have type t. Arrays can be multidimensional but must be
regular, i.e. all inner arrays must have the same size: [[1, 2], [3, 4], [5, 6]] is a valid
array and has type [3][2]i32 while [[1, 2], [3, 4, 5]] is not a valid array. Futhark
uses zero-based indexing, which is done into arrays using square braces; if the array
xs = [4, 5, 6], the expression xs[0] equals 4. We can concatenate arrays with the ++
operator, so [1] ++ [4, 5] = [1, 4, 5]. Two common functions on arrays are head, that
returns the first element in an array, and init, that returns all but the last element.

The most useful functions in Futhark are the so-called array combinators. These

7

2. Futhark

are builtin functions that act on arrays that can be efficiently executed in parallel;
they are the basic building blocks with which we build parallel programs. An often
used array combinator is the polymorphic function zip, of type

[n]a→ [n]b→ [n](a, b).

As the type suggests, zip combines two arrays of equal length into a single array of
pairs. For instance,

zip [1, 2, 3] [true, false, true]

evaluates to
[(1, true), (2, false), (3, true)].

Related to zip is unzip, of type

[n](a, b)→ ([n]a, [n]b),

turning an array of pairs into a pair of arrays. Continuing the previous example,

unzip [(1, true), (2, false), (3, true)]

evaluates to
([1, 2, 3], [true, false, true]).

Other common combinators are the second order array combinators, or SOACs.
Among these are map, reduce and filter, which should be recognisable to any reader
familiar with functional languages. These are polymorphic functions that take a
function as an argument and operate on arrays. We describe those that we use in
our work below.

2.5.1 Map and tabulate
The SOAC map has type

(a→ b)→ [n]a→ [n]b.

It applies its first argument to each element in the second argument.

Recall the simple function f(x) = 2x from before. The application map f [1, 2, 3]
will then evaluate to [2, 4, 6]. We can also avoid having to name the function f by
using a lambda, and instead write map (λx→ 2x) [1, 2, 3].

A special case of map is the tabulate function, of type

(n : i64)→ (i64→ a)→ [n]a.

The expression tabulate n f is defined as equal to map f (iota n), where iota n =
[0, 1, . . . , n − 1]. As an example, we can get all even numbers between 0 and 10
(exclusive) with the expression tabulate 5 (∗2).

8

2.5. Arrays and second-order array combinators

2.5.2 Reduce and scan
While map operates on elements individually, reduce and scan combine the elements
of an array. The type of reduce is

(a→ a→ a)→ a→ [n]a→ a.

If f has type a → a → a, is associative, and has neutral element e, then the
expression reduce f e [x1, x2, . . . , xn] equals f x1 (f x2 (. . . (f xn e))). As an
example, reduce (+) 0 is a function that sums each element in a list.

We can, for instance, combine zip, map, and reduce to compute the dot product of
two arrays:
l et dotprod (xs : [] i 32) (ys : [] i 32) : i 32 =

l et products = map (λ(x , y) → x ∗ y) (z ip xs ys)
in reduce (+) 0 products

In our work we use a variant of reduce called reduce_by_index, which has the type

*[m]a→ (a→ a→ a)→ a→ [n]i64→ [n]a→ *[m]a.

Conceptually, the application reduce_by_index dest f e is as creates index-value-
pairs (i, v) ∈ zip is as, and for each i, reduces the corresponding values into dest
at index i — reduction is performed using f , which must be associative and have
neutral element e. Conceptually, reduce_by_index is described by the following
imperative pseudocode:

Algorithm 1: Reduce by index
1 for (i, v) ∈ zip is as do
2 dest[i]← f dest[i] v
3 end for

For instance, reduce_by_index [0, 0] (+) 0 [0, 1, 0, 0, 1] [1, 2, 3, 4, 5] evaluates to
[8, 7], since the values [1, 3, 4] are added into index 0 of dest := [0, 0] while the
values [2, 5] are added into index 1.

We also use the scan function, also known as a prefix sum. This function is similar
to reduce, but results in an array instead of a single value. It has the type (a →
a → a) → a → [n]a → [n]a, and it computes the reduction of every prefix of
the given array. In other words, scan f e [x1, x2, . . . , xn] is the same as the array
[reduce f e [x1], reduce f e [x1, x2], . . . , reduce f e [x1, x2, . . . , xn]]. For instance,
scan (+) 0 [1, 2, 3] evaluates to [1, 3, 6].

2.5.3 Filter and partition
The filter SOAC has type

(a→ bool)→ []a→ []a.

9

2. Futhark

filter p xs returns an array containing only those elements x ∈ xs for which p x
is true. The type of partition is similar:

(a→ bool)→ []a→ ([]a, []a).

It returns both an array containing all elements for which the predicate holds, and
an array with all elements for which it does not hold. As an example, if p = λx→
x%2 == 0, then filter p (iota 5) equals [0, 2, 4] while partition p (iota 5) equals
([0, 2, 4], [1, 3]).

2.5.4 Expand
The expand function is not part of the base Futhark language, but was defined by
Elsman et al. [13] and is available via the external segmented library. It has type

(a→ i64)→ (a→ i64→ b)→ []a→ []b.

The function application expand sz get xs expands each x ∈ xs into sz x elements
of type b, such that the ith element in the expansion of x equals get x i. In other
words, it is the concatenation of tabulate (sz x) (get x) for all x ∈ xs. For instance,
expand (λx→ x) (λx i→ x+ 2 ∗ i) [2, 3, 4] evaluates to [2, 4, 3, 5, 7, 4, 6, 8, 10].

2.5.5 Scatter
scatter is a first order array combinator that performs in-place updates in an array
using uniqueness types. The type of scatter is

*[m]a→ [n]i64→ [n]a→ *[m]a.

The application scatter dest is as returns dest but with the element at index
i equal to v for all (i, v) ∈ zip is as. We say that the last two arguments are
zipped to form index-value-pairs, a concept we will often refer to. For instance,
scatter [1, 2, 3, 4] [0, 3] [5, 1] evaluates to [5, 2, 3, 1]. This function ignores any index-
value-pairs whose index is out-of-bounds.

2.6 Application operators
The infix operators |> and <| are two useful higher-order functions that are common
in many languages in various forms. <| has type (a → b) → a → b and is the
application operator that simply applies a function to an argument; it holds that
f <| x = f x. Its use comes from the fact that it has low precedence and is right-
associative, so expressions such as f (g (h x)) can be written as f <| g <| h x,
allowing us to omit parentheses. |> is the same function but with its arguments
flipped, so it has type a → (a → b) → b. That is, f x = x |> f . This function
is useful for expressing computation “pipelines”; the expression f (g (h x)) can be
written as x |> h |> g |> f . This pattern is common throughout chapter 5.

10

2.7. Size parameters

2.7 Size parameters
A function definition may place constraints on the size of its inputs and output.
Consider the dotprod function from before. We can further refine its type signature
by requiring that the two input arrays have equal length:
l et dotprod [n] (xs : [n] i 32) (ys : [n] i 32) : i 32 =
. . .

Here, [n] denotes a size parameter. We do not explicitly give this argument when
calling the function — we still apply it to just two arrays — but wherever we use
dotprod, the Futhark compiler must be able to guarantee that the two arrays are
of equal length.

Type abbreviations can also be given size parameters. We can, for instance, define
a record type that stores two arrays of equal length as follows:
type two_arrays [n] = {array_a : [n] i32 , array_b : [n] i 32 }

11

2. Futhark

12

3. Theory

3.1 Topology
We start this chapter by defining some basic topological concepts. Topology is a
field of its own, but here we only aim to give the definitions required for the rest of
this chapter.

Definition 3.1.1 (Topological space). A topological space is a pair (X, τ) where X
is a set and τ ⊆ P(X) and P(X) is the powerset of X, such that

1. ∅ ∈ τ and X ∈ τ ,

2. τ is closed under arbitrary unions, and

3. τ is closed under finite intersections.

τ is called a topology on X. The elements of τ are called open sets. If the specific
topology is not important, or understood from context, we will call X a topological
space.

On Rn, the standard topology can be constructed by starting with the set of all open
balls, and then including all unions and all finite intersections as open sets. Every
subset of a topological space is also a topological space, inheriting the subspace
topology. If (X, τ) is a topological space and Y ⊆ X, the subspace topology on Y is
τY = {Y ∩ U | U ∈ τ}.

Maps between topological spaces admit a notion of continuity, which we now define.

Definition 3.1.2 (Continuous function). A function f : X → Y between two
topological spaces X and Y is continuous iff the preimage of every open set is an
open set.

A specific type of continuous function is homeomorphisms.

Definition 3.1.3 (Homeomorphism). A homeomorphim is a continuous function
between topological spaces with a continuous inverse. Two spaces with a homeo-
morphism between them are said to be homeomorphic.

As a concrete example, a square without its interior is homeomorphic with a circle,
while a circle and an annulus are not.

13

3. Theory

Definition 3.1.4 (Homotopy). Let X and Y be topological spaces, and let f, g :
X → Y be continuous functions. Then f and g are homotopic iff there exists a
continuous map

H : X × [0, 1]→ Y

such that H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X, and H is a homotopy
between f and g.

We can consider H(·, t) as a function of t that “continuously deforms” the function
f into g.

Definition 3.1.5 (Homotopy equivalence). Let X and Y be topological spaces,
and let f : X → Y and g : Y → X be continuous functions. Then X and Y are
homotopy equivalent iff g ◦ f is homotopic to idX and f ◦ g is homotopic to idY .

Homotopy equivalence is a weaker condition than being homeomorphic; all homeo-
morphic spaces are homotopy equivalent. To exemplify the difference, consider the
map f : Rn → {0} for n > 0 projecting a Euclidean space onto a single point.
Clearly, if n > 0, there is no bijection between Rn and {0}, so Rn is not homeomor-
phic with a single point. The spaces are however homotopy equivalent. Take any
map g : {0} → Rn. Then clearly f ◦ g = id{0}, and further, g ◦ f is homotopic to
idRn via the homotopy H : Rn× [0, 1]→ Rn such that H(x, t) = (1− t)g(f(x)) + tx.
Likewise, while a circle and an annulus are not homeomorphic, they are homotopy
equivalent, and they are also homotopy equivalent with R2 \ {0}.

A basic intuitive understanding of these concepts is helpful but not required to
understand homology as presented in the remainder of this chapter.

3.2 Simplicial complexes
There are many different homology theories, but the one used to define persistent
homology is the theory of simplicial homology. To this end, we need to define
simplices and simplicial complexes.

Definition 3.2.1 (Simplex). An n-simplex σ, where n ≥ 0, is the convex hull of
n + 1 affinely independent points in Euclidean space, and these points are called
the vertices of the simplex. We call n the dimension of σ and write dim(σ) = n.
An m-simplex, with m < n, whose vertices are all vertices of σ is called a face of
σ. If v0, . . . , vn are the vertices of σ, we write σ = [v0, . . . , vn]. For the purposes
of homology, we also equip simplices with an ordering of their vertices, so that
[v0, . . . , vn] denotes an ordered set.

We often call 0-simplices vertices, 1-simplices edges, 2-simplices triangles and 3-
simplices tetrahedra. Thus, simplices are a sort of generalisation of triangles. We can
use these to construct simplicial complexes, a certain kind of set with an underlying
topological space.

14

3.2. Simplicial complexes

(a) A set of simplices that is a sim-
plicial complex.

(b) A set of simplices that is not a
simplicial complex. The intersection
of the lines to the left is a point which
is not a face (i.e. endpoint) of any of
the lines. The intersection of the tri-
angles to the right is a line segment
which is not a face (i.e. edge) of any
of the triangles.

Figure 3.1: Examples of valid and invalid simplicial complexes.

Definition 3.2.2 (Simplicial complex). A simplicial complex is a set K of simplices
such that

1. if σ ∈ K, then every face of sigma is also in K, and

2. for any σ1, σ2 ∈ K, σ1 ∩ σ2 is either empty or is a simplex in K.

We define the dimension of K to be dim(K) := maxσ∈K dim(σ). Further, we write
|K| := ⋃

σ∈K σ, which we call the underlying space of K.

Simplicial complexes are particularly well-suited for practical computations, since
they can easily be represented e.g. by listing their vertices, edges, triangles, etc.
Note that the underlying space of a simplicial complex is a subset of Rn, and so is
a topological space. Many topological spaces are homeomorphic to the underlying
space of a simplicial complex, so we may be able to compute properties of a space by
computing it on such a complex. Such a homeomorphism is called a triangulation.

Definition 3.2.3 (Triangulation). A triangulation of a topological space X is a
simplicial complex K, with a homeomorphism |K| → X. If such a triangulation
exists, X is said to be triangulable, and we say that K triangulates X.

The concept of triangulations will help motivate the use of simplicial homology, and
indeed of persistent homology.

While we will define homology using simplicial complexes, in order to exemplify how
data analysis is often done we need the concept of an abstract simplicial complex.

Definition 3.2.4 (Abstract simplicial complex). An abstract simplicial complex is
a family of finite sets ∆ such that if σ ∈ ∆ and τ ⊆ σ, then τ ∈ ∆. An element
σ ∈ ∆ with cardinality n is an abstract (n − 1)-simplex, and its elements are the
vertices of σ. The dimension of σ is dim(σ) = n − 1. Further, the dimension of ∆
is dim(∆) := maxσ∈∆ dim(σ).

15

3. Theory

Every abstract simplicial complex can realised as a simplicial complex, by suitably
mapping every abstract simplex to a simplex in Rn for n sufficiently large.

Definition 3.2.5 (Geometric realisation). Let ∆ be an abstract simplicial complex.
A geometric realisation of ∆ is a simplicial complex K such that there exists a
bijection f : ∆→ K ∪ {∅} that

1. preserves intersections, i.e. f(τ ∩ σ) = f(τ) ∩ f(σ), and

2. preserves dimensions of simplices, i.e. dim(σ) = dim(f(σ)) for all σ ∈ ∆ \ {∅}.

In particular, every abstract simplicial complex of dimension d can be realised as
a complex with simplices in R2d+1, see e.g. the Geometric Realisation Theorem in
Computational Topology: An Introduction [1].

For the purpose of relating to data analysis, we use terminology from persistent
homology literature and talk of pointclouds.

Definition 3.2.6 (Pointcloud). A pointcloud is a finite subset of a metric space.

We now give two examples of abstract simplicial complexes that can be generated
from pointclouds that are especially useful in data analysis.

Definition 3.2.7 (Čech complex). Let X be a pointcloud in a metric space with
metric d. The Čech complex on X with radius ε is the abstract simplicial complex

Čε(X) :=

σ ⊆ X |
⋂
x∈σ

Bε(x) 6= ∅

 , (3.1)

where Bε(x) is the closed ball of radius ε centered at x.

A similar complex that is more often used in practice [7] is the Vietoris-Rips complex.

Definition 3.2.8 (Vietoris-Rips complex). Let X be a pointcloud. The Vietoris-
Rips complex on X with radius ε is the abstract simplicial complex

Vε(X) :=
{
σ ⊆ X | d(x, y) ≤ 2ε ∀x, y ∈ σ

}
. (3.2)

Note that for ε ≤ ε′ we have Čε(X) ⊆ Čε′(X) and Vε(X) ⊆ Vε′(X), a property we
will use further in section 3.4. For now, we go on to define homology using simplicial
complexes.

3.3 Simplicial homology

16

3.3. Simplicial homology

Definition 3.3.1 (Chains). Let K be a simplicial complex. A p-chain is a formal
linear combination ∑

i

aiσi

of p-simplices σi ∈ K with coefficients ai in some ring. We define addition of p-chains
component-wise, i.e. ∑

i

aiσi +
∑
i

biσi =
∑
i

(ai + bi)σi.

Since the coefficients form an additive group, this gives us the group of p-chains
Cp = Cp(K).

The specific ring of coefficients should be clear from context, and in persistent ho-
mology, it is often the two-element field F2.

Next, we define the notion of the boundary of a simplex, and, by extension, the
boundary of a chain.

Definition 3.3.2 (Boundary map). Given a p-simplex σ = [v0, . . . , vp], we define
its boundary to be the (p− 1)-chain

∂pσ :=
p∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vp]

where the ith vertex has been removed from the ith term. We extend this linearly
and define the boundary of a p-chain c = ∑

i aiσi to be

∂pc :=
∑
i

ai∂pσi.

This gives us the group homomorphisms ∂p : Cp → Cp−1, which we call boundary
maps.

An important property of boundary maps is that the boundary of a boundary is
always zero:

Theorem 3.3.1. Let σ be a (p+ 1)-simplex. Then ∂p∂p+1σ = 0.

Proof. Note that every term in the p−1-chain ∂p∂p+1σ is of the form (−1)kσ̂, where
σ̂ is σ but with exactly two vertices removed, since first ∂p+1 removes one vertex,
after which ∂p removes a second. For such a σ̂, let the indices of the two removed
vertices be α and β, and assume α < β. Then, in ∂p∂p+1σ, there will be exactly
two terms containing σ̂: one where vα is removed before vβ, and one where vβ is
removed before vα. In the first case, the term must be (−1)β−1(−1)ασ̂, while in the
other case it must be (−1)α(−1)βσ̂. These cancel out, and this holds for all such σ̂.
Thus ∂p∂p+1σ = 0.

We give an example of boundaries below.

17

3. Theory

Example 3.3.1. Take the ring of coefficients to be Z and consider the simplicial
complex with three vertices v0, v1, v2 and two edges e0 = [v0, v1], e1 = [v1, v2].
Then we have ∂1e0 = [v1] − [v0] and ∂1e1 = [v2] − [v1]. Thus, the boundary of
the chain e0 + e1 is [v2] − [v0]. Similarly, if we have a complex with two triangles
t0 = [v0, v1, v2] and t1 = [v1, v3, v2], we see that the boundary ∂2(t0+t1) is the 1-chain
[v0, v1] + [v1, v3] + [v3, v2]− [v0, v2], as in figure 3.2. Note that the contribution of the
edge [v1, v2] in the boundaries of t0 and t1 cancels in ∂2(t0 + t1) due to their opposite
sign. This reflects the intuitive notion that [v1, v2] is not part of the boundary of
the triangulation that t0 and t1 form together. The orientation, i.e., the ordering of
vertices in t0 and t1, is crucial for this to work out correctly.

v0

v1

v2
v3

t0
t1

v0

v1

v2
v3

∂2

Figure 3.2: Example of the boundary map on a 2-chain. Left: the 2-chain
t0 + t1 = [v0, v1, v2] + [v1, v3, v2]. Right: the 1-chain ∂2(t1 + t2) = [v0, v1] +
[v1, v3] + [v3, v2]− [v0, v2].

We now define two special cases of chains, that we will then use to define homology.

Definition 3.3.3 (Cycles). A p-cycle is a p-chain whose boundary is zero. The
group of p-cycles is Zp = Zp(K) := ker ∂p.

As shown in example 3.3.1, if v0, v1, v2 are distinct, the boundary of c := [v0, v1] +
[v1, v2] is not 0, thus c not a cycle. However, the boundary of d := [v0, v1] + [v1, v2] +
[v2, v0] is 0, and so d is a cycle. Compare this to the fact that the underlying set
[v0, v1]∪ [v1, v2] is a non-closed curve, while [v0, v1]∪ [v1, v2]∪ [v2, v0] is closed. In the
two dimensional case, [v0, v1, v2] + [v1, v3, v2] is not a cycle, but any 2-chain whose
underlying set is homeomorphic to the 2-sphere is a 2-cycle, and similarly in higher
dimensions.

Definition 3.3.4 (Boundaries). A p-boundary is a p-chain that is the boundary of
some (p+ 1)-chain, i.e. σ ∈ K is a p-boundary if and only if there exists a simplex
τ such that ∂p+1τ = σ. The group of p-boundaries is Bp = Bp(K) := im ∂p+1.

Note that all p-boundaries are p-cycles because of theorem 3.3.1, so Bp is a subgroup
of Zp. Below follows an example of a cycle that is not a boundary.

Example 3.3.2. LetK have three vertices v0, v1, v2, three edges [v0, v1], [v0, v2], [v1, v2],
and one triangle [v0, v1, v2]. Then the 2-chain [v0, v1]+ [v1, v2]− [v0, v2] is a cycle and
also a boundary (of the triangle). Now consider the same complex but without the
triangle; in this case, the above 2-chain is a cycle, but it is not a boundary.

18

3.3. Simplicial homology

c0

t0 t1

(a) A 1-cycle that is not the
boundary of any 2-chain.

c1

t0 t1

(b) A 1-cycle that is a
boundary of a 2-chain.

c2

t0 t1

(c) A 1-cycle that is homol-
ogous to the one in the left-
most subfigure.

Figure 3.3: Examples of 1-cycles, boundaries, and homologous cycles.

This example suggests that cycles that are not boundaries capture some notion of
holes in the given simplicial complex. Removing the triangle from the complex intro-
duced a hole, or a “tunnel” through the complex, and likewise caused a boundary to
become a non-bounding cycle. The following definitions makes this notion precise.

Definition 3.3.5 (Homology groups). The pth (simplicial) homology group of a
simplicial complex K is the quotient group

Hp(K) := Zp(K)/Bp(K).

If the complex is clear from context, we write Hp instead of Hp(K). The elements of
Hp are called homology classes, and any two cycles in the same homology class are
said to be homologous. The rank of Hp is the pth Betti number, denoted βp.

Thus, two cycles are homologous if and only if their difference is a boundary. Usually,
Hp intuitively captures a notion of “p-dimensional holes” in the complex. This can
be made precise in some cases via abelianisations of homotopy groups, which we do
not describe in detail. With this intuitive perspective, we have that β1 is the number
of holes whose “boundary” is a 1-cycle, such as the hole in a circle or the middle of
a torus, and β2 is the number of holes whose “boundary” is a 2-cycle, such as the
empty interior of a sphere. β0, however, does not count holes, but can instead be
seen to be the number of connected components.

Example 3.3.3. Figure 3.3 shows a triangulation of the annulus, and highlights
the 1-cycles c0, c1, and c2, as well as the triangles t0 and t1. The cycle c0 is not a
boundary while c1 is the boundary of the 2-chain t0 + t1. Note that c2 = c0 + c1, and
c1 ∈ B1 so c2 lies in the coset c0 + B1. Of course c0 ∈ c0 + B1 also; thus c0 and c2 are
homologous. Intuitively, these figures suggest that homologous cycles correspond to
the same hole.

We now present a theorem that will help us motivate the use of persistent homology
in the next section.

19

3. Theory

c0

c1

Figure 3.4: A triangulated torus, with two highlighted 1-cycles c0 and c1.

Theorem 3.3.2. If K and L are simplicial complexes with homotopy equivalent
underlying spaces, then Hp(K) ∼= Hp(L) for all p.

A proof of this theorem can be found in the book Algebraic Topology by Hatcher
[14, Corollary 2.11]. As a consequence, all complexes that triangulate a triangulable
space have the same homology groups, and so it makes sense to speak of the ho-
mology of the space itself without respect to any specific triangulation. In this text,
we implicitly assume that all spaces we consider are triangulable, unless otherwise
specified.

To exemplify Betti numbers, we end this section by presenting those of the torus
and relating them to a triangulation.

Example 3.3.4. Figure 3.4 shows a triangulation of the torus together with two
1-cycles c0 and c1 on it. It is well-known that the Betti numbers of the torus
are β0 = 1, β1 = 2, β2 = 1, and βp = 0 for p > 2, and we can convince us of
this by considering the aforementioned figure. Since the torus has one connected
component, we must have β0 = 1. Next, both c0 and c1 are 1-cycles that are not the
boundary of any 2-chain, and further, c0 and c1 do not differ by a 1-boundary —
they are not homologous — so there are at least two distinct generators of H1. In
fact, there are precisely two generators, so β1 = 2. Lastly, there is only one non-zero
2-cycle, namely the sum of all triangles in the triangulation, and since there are no
3-simplices in this complex, this 2-cycle is not a boundary. Thus it generates H2,
and β2 = 1.

Of course, since there are no p-simplices for p > 2, βp = 0 for all such p.

3.4 Persistent homology
Our goal is to give a formal definition of persistent homology, as well as to link this
description with intuition. Consider the sets X ⊂ X ⊆ Rd where X is finite and X
is some triangulable space. This situation often arises in practice when the points
in X are points of data measured in some experiment, and X is the true domain
of the data. Ideally, we can construct a simplicial complex with vertices in X that

20

3.4. Persistent homology

is homotopy equivalent to X, for instance by constructing a Čech or Vietoris-Rips
complex with a specific radius ε. If so, we are able to compute the homology of X
only using X, which may be useful for further analysis of the data. This is however
too idealistic, so we describe persistent homology, a formalism that aims to solve the
problem of constructing the homology of X given only X.

The key idea of persistent homology is that tracking the homology groups of a
sequence of simplicial complexes on X can reveal key properties of X. As a concrete
example, we can choose a sequence of nonnegative real numbers

ε0 < ε1 < · · · < εn

and get a corresponding sequence of abstract simplicial complexes such as

Čε0(X) ⊆ Čε1(X) ⊆ · · · ⊆ Čεn(X)

or
Vε0(X) ⊆ Vε1(X) ⊆ · · · ⊆ Vεn(X).

We can then construct a sequence of homology groups on (realisations of) these
complexes and study their behaviour. The sequence of complexes needs not be
Čech or Vietoris-Rips, but can be any sequence. We call such a sequence a filtered
simplicial complex.

Definition 3.4.1 (Filtered simplicial complex). A filtered simplicial complex is a
pair (K,F) where K is a simplicial complex and F = (Ki)ni=0 is a finite increasing
filtration of K, that is, Ki ⊆ K ∀i and Ki ⊆ Kj iff i ≤ j. Given a simplex σ ∈ K,
we define its degree deg(σ) to be the index i such that σ ∈ Ki \Ki−1, or 0 if σ ∈ K0.
We will often denote a filtered simplicial complex (K,F) simply as K.

For a filtered complex K we obtain for i ≤ j the inclusion maps

η̃i,jp : Zp(Ki) ↪→ Zp(Kj).

These induce the homomorphisms

ηi,jp : Hp(Ki)→ Hp(Kj) (3.3)

such that the following diagram commutes:

Zp(Ki) Zp(Kj)

Hp(Ki) Hp(Kj)

η̃i,j
p

πi πj

ηi,j
p

Here, πi and πj are the canonical projections mapping cycles to their corresponding
equivalence classes. That is, ηi,jp maps a homology class in Hp(Ki) to the class in
Hp(Kj) that contains it.

21

3. Theory

By combining these maps we get a sequence of homology groups associated with the
filtration of K,

Hp(K0) Hp(K1) . . . Hp(Kn).η0,1
p η1,2

p ηn−1,n
p

The idea of persistent homology is to track homology classes through this sequence.
To this end we define persistent homology groups and their corresponding Betti
numbers.

Definition 3.4.2 (Persistent homology groups). Let K be a filtered simplicial com-
plex, and let ηi,jp : Hp(Ki)→ Hp(Kj) be the homomorphism induced by the inclusion
Ki ↪−→ Kj. The pth persistent homology group and pth persistent Betti number for
i ≤ j is

Hi,j
p = Hi,j

p (K) := im ηi,jp and βi,jp := rank Hi,j
p .

Persistent homology groups, like the homology groups of the individual subcom-
plexes Ki, do not necessarily reflect the topological features of the original space X.
It is rather the properties of Hi,j

p together with the maps ηi,jp that are relevant. This
leads us to the concept of barcodes, and to define this we need to explain what it
means for a homology class to be born and to die.

Definition 3.4.3 (Birth and death). Let K be a filtered simplicial complex, Hi,j
p

its persistent homology groups, and ηi,jp the induced homomorphisms as in equation
3.3. We say that an element γ ∈ Hp(Ki) is born at index i if

γ ∈ Hp(Ki) \ Hi−1,i
p (K). (3.4)

further, we say that an element γ that is born at index i dies at index j > i if

ηi,j−1
p (γ) 6∈ Hi−1,j−1

p and ηi,jp (γ) ∈ Hi−1,j
p . (3.5)

The birth and death of an element can be visualised with the following diagram:

Hp(Ki−1) Hp(Ki) Hp(Kj−1) Hp(Kj)

γ ηi,j−1
p (γ) ηi,jp (γ)

Hi−1,i−1
p Hi−1,i

p Hi−1,j−1
p Hi−1,j

p

∈

/∈
∈

/∈

∈

∈

Note that Hi−1,i−1
p = Hp(Ki−1). The element γ is born at index i since γ ∈ Hp(Ki) \

Hi−1,i
p . In other words, γ is a class at filtration step i, but it is not in the image of

the homology group at step i − 1, so it must be a new class in this sense. Next,
ηi,j−1
p (γ) ∈ Hp(Kj−1) \ Hi−1,j−1

p means that, at index j − 1, the image of γ still is
distinct from the image of any other element of Hp(Ki−1). In other words, γ is still

22

3.4. Persistent homology

distinct from all classes that were alive before γ was born. Finally, ηi,jp (γ) ∈ Hi−1,j
p

means that, at index j, the image of γ is now equal to the image of some element
existing already at index i− 1, so now γ has merged with some class that was alive
before γ was born.

Definition 3.4.4 (Persistence). For a given filtered simplicial complex, if a class γ
is born at index i and dies at index j, we say that the persistence of γ is j − i. If
there is no j such that γ dies at index j, we say that the persistence of γ is ∞.

Intuitively, the birth of a class at index i means that as we add new simplices when
going from Ki−1 to Ki a new homology class, i.e. a new class of non-bounding cycles
(or a p-dimensional hole), is formed in the complex. The death of a class at index
j means that as we add new simplices going from Kj−1 to Kj, the class merges
with another homology class that existed already in Hp(Ki−1). A class with high
persistence is one that exists in a large part of the filtration while one with low
persistence is short-lived.

The lifetime of a homology class can more precisely be represented using persistence
intervals.

Definition 3.4.5 (Persistence intervals). A persistence interval is a pair (i, j) with
0 ≤ i < j ∈ Z ∪ {∞}.

A homology class in a filtered simplicial complex born at i that dies at j can then
be represented with the persistence interval (i, j), where a class that does not die
corresponds to the interval (i,∞). The idea of a barcode is to represent the persistent
homology of a filtered complex with such intervals. In general, however, when a class
γ is born, so are its multiples, and of course these also die at the same index. Thus
we get an infinite number of persistence intervals if the ring of coefficients is infinite.
Under certain conditions, however, the persistent homology of a filtered complex
can be described with a finite number of persistence intervals. This was shown by
Zomorodian and Carlsson [15], and we present their theory below.

Definition 3.4.6 (Persistence modules). Let R be a ring. A persistence moduleM
over R is a family of pairsM = (Mi, ϕi)∞i=0 where each Mi is an R-module and each
ϕi : Mi →Mi+1 is a module homomorphism.

Of special interest, in order to define barcodes, are persistence modules of finite type.

Definition 3.4.7 (Finite type). A persistence module M is of finite type if each
component module Mi is finitely generated, and the maps ϕi are isomorphisms for
all i ≥ m for some m ∈ N.

Given a persistence moduleM over a ring R we define a graded module over R[t],

α(M) :=
∞⊕
i=0

Mi. (3.6)

23

3. Theory

Here the action of t on an element of the module is defined as

t · (m0,m1,m2, . . .) = (0, ϕ0(m0), ϕ1(m1), ϕ2(m2), . . .). (3.7)

This action “shifts” module elements one step up in the grading as defined by the
direct sum.

If the ring of coefficients R is not a field, there is no simple classification of persis-
tence modules [15]. If we instead consider homology over a field of coefficients F ,
persistence modules admit a simple decomposition. For a persistence interval (i, j),
define

q(i, j) :=

t
iF [t]/〈tj−i〉 if j <∞,
tiF [t] otherwise,

where 〈tj−i〉 is the principal ideal generated by tj−i. Finally, for a finite multiset of
persistence intervals B = ((i0, j0), (i1, j1), . . . , (ik, jk)), where the same persistence
interval may appear multiple times, let

Q(B) :=
k⊕
l=0

q(il, jl).

Then we have the following result by Zomorodian and Carlsson.

Theorem 3.4.1 (Correspondence). The map B 7→ Q(B) defines a bijection between
finite multisets of persistence intervals and isomorphism classes of persistence mod-
ules of finite type over the graded ring F [t].

We are now ready to define barcodes.

Definition 3.4.8 (Barcodes of persistence modules of finite type). Let M be a
persistence module of finite type. Then the barcode ofM is the finite multiset B of
persistence intervals such that

α(M) ∼= Q(B)

with α and Q defined as above.

We can naturally construct persistence modules of finite type from the homology of
a filtered simplicial complex.

Definition 3.4.9 (Barcodes of filtered simplicial complexes). Let K be a filtered
simplicial complex with a finite number of simplices, and Hp(Ki) its homology groups
with coefficients in a field F , and let p ≥ 0. Assume that the filtration has n + 1
levels (Ki)ni=0. Define a persistence module Hp := (Hi

p, η
i
p)∞i=0 where

Hi
p :=

Hp(Ki) if i ≤ n,

Hp(Kn) if i > n,

24

3.4. Persistent homology

and

ηip :=

η
i,i+1
p if i ≤ n,

idHp(Kn) if i > n.

Since K has a finite number of simplices, Hp is a persistence module of finite type.
Then the barcode of K in dimension p is the barcode of Hp, which we denote Bp.

In the graded module α(Hp), the action of t is

t · (γ0, γ1, γ2, . . .) = (0, η0,1
p (γ0), η1,2

p (γ1), η2,3
p (γ2), . . .) (3.8)

and corresponds to moving all homology classes one step forward in the filtration.
Note that each persistence interval (i, j) ∈ Bp corresponds to a basis element of
α(Hp), and in fact, this basis element generates all homology classes that are born
at index i and die at index j. Thus, barcodes describe the persistent homology of
a filtered complex as long as homology is considered over a field and the complex
is finite. Barcodes are often visualised by plotting each persistence interval as a
horizontal line segment with start and end positions in the x-coordinate being the
birth and death indices of the interval. See figure 3.6 and example 3.4.1.

We end this section with an example of a filtration for which we detail the theory
in this section.

Example 3.4.1. Consider the set X of ten points in figure 3.5a. The points are
placed uniformly on a circle with radius 1, offset by additive normally distributed
noise. We construct a filtered Vietoris-Rips complex (K,F) where K = V1(X) and
F = (V0.01k(X))100

k=0. Figure 3.6 shows the barcodes in dimensions 0 and 1 for this
filtration; B0 is represented with solid lines, and B1 with dashed lines. The barcode
B0 has ten intervals born at radius 0, indicating that H0(V0(X)) has rank 10, which
is indeed the case since it consists of ten connected components. At radius ε = 0.45,
the complex (figure 3.5b) has one component and one whole, so we have β0 = β1 = 1.
We get the same information from the barcodes, since both B0 and B1 have a single
interval crossing the point ε = 0.45, indicating a single generator in each of the two
dimensions. Finally, at radius ε = 1 the complex (figure 3.5d) has a 2-chain covering
the hole, so H1(V1(X)) is trivial, while H0(V1(X)) has a single generator. This can
be seen in the barcode since the dashed line has died at a smaller radius, and the
only class still persisting is in B0.

25

3. Theory

(a) Vietoris-Rips complex at ε = 0. (b) Vietoris-Rips complex at ε = 0.45.

(c) Vietoris-Rips complex at ε = 0.75. (d) Vietoris-Rips complex at ε = 1.

Figure 3.5: Vietoris-Rips complexes built on a set of 10 points, at various radii
ε. Also shown are disks of radius ε centered at each point.

0 0.5 1 1.5 2

Figure 3.6: The barcodes of a Vietoris-Rips complex on the ten points shown
in figure 3.5a in dimensions 0 and 1. In total, the the filtration consists of 100
subcomplexes with values of ε in the interval [0, 2]. Solid lines represent B0 while
the dashed line represents the only interval in B1. The arrowhead indicates that
the interval is infinite, not dying at any index.

26

4. Computing persistent homology

While homology can be defined with coefficients in any ring, if we restrict the co-
efficients to a field, persistent homology can computed efficiently. The standard
algorithm for computing persistent homology (algorithm 2) was first developed by
Edelsbrunner and Zomorodian [16] for homology over F2, and then extended to
arbitrary fields by Carlsson and Zomorodian [15].

Given a filtered simplicial complex K, one orders the simplices σi ∈ K such that
σi < σj implies that deg(σi) ≤ deg(σj), and that σj is not a face of σi. With the
ordered simplices, one then defines the boundary matrix ∂.

Definition 4.0.10 (Boundary matrix). Given a filtered simplicial complex and an
ordering on the simplices σi, the boundary matrix of the complex is the matrix ∂
with elements

∂i,j =

1 if σi is a face of σj of one dimension less,
0 otherwise.

Note that, if the simplices are ordered as required above, boundary matrices are
strictly upper triangular. On a boundary matrix ∂, we define the mapping j 7→
low∂(j) as follows:

Definition 4.0.11 (low∂(·)). Let ∂ be an n-by-n matrix. We define the function
j 7→ low∂(j) for j = 0, . . . , n− 1 by

low∂(j) :=

max {i | ∂i,j 6= 0} if ∂j 6= 0,
−1 otherwise.

If the matrix is clear from context, we may omit the index parameter and just write
low(·).

Here we follow the convention adopted in persistent homology literature, and write
∂j to mean the jth column of ∂. Persistent homology can then be computed by
reducing a boundary matrix with column additions until it is reduced.

Definition 4.0.12 (Reduced matrix). A matrix ∂ is reduced if low∂(·) is injective
on the non-zero columns of ∂.

Algorithm 2 is the typical example of how to compute persistent homology. This
algorithm is guaranteed to converge and to result in a valid reduced matrix, from

27

4. Computing persistent homology

which the persistence intervals can be read. The column additions performed by
the standard algorithm are usually called left-to-right operations, since we only ever
add column k to column j if k < j, i.e. if column k is to the left of column j.

Algorithm 2: Standard algorithm over arbitrary fields
Input: An n× n boundary matrix ∂

1 for j = 0, . . . , n− 1 do
2 while ∃k < j such that low∂(k) = low∂(j) > −1 do
3 i← low∂(j)
4 α← ∂i,j/∂i,k
5 ∂j ← ∂j − α∂k
6 end while
7 end for
8 return ∂

Often, persistent homology is computed over F2, in which case the standard algo-
rithm simplifies to algorithm 3.

Algorithm 3: Standard algorithm over F2
Input: An n× n boundary matrix ∂ over F2

1 for j = 0, . . . , n− 1 do
2 while ∃k < j such that low∂(k) = low∂(j) > −1 do
3 ∂j ← ∂j + ∂k
4 end while
5 end for
6 return ∂

From a reduced matrix r, we can read the persistence intervals by means of the
function lowr(·).

Definition 4.0.13 (Simplex classes). Let r be a reduced boundary matrix and
consider the map lowr(·) defined on it. If rj is nonzero, we call σj negative, and
σlow(j) positive. Simplices that are neither positive nor negative are called essential.

Positive simplices are those that, when born, create a new persistent homology class.
The corresponding negative simplex, when born, causes the death of that class.
Essential simplices cause the creation of a homology class that never dies later in the
filtration. So for every j such that rj 6= 0, we get the interval [deg(σlowr(j)), deg(σj)),
and for every j such that rj = 0 and 6 ∃k : lowr(k) = j, we get [deg(σj),∞). Further,
a persistence interval with minimum deg(σi) corresponds to a homology class of the
same dimension as σi.

Example 4.0.2. Consider a pointcloud of three points arranged in a triangle and
let K contain the triangle between the points, its edges, and its vertices. Then we
may define a filtration K0 ⊆ K1 ⊆ K2 = K as in figure 4.1.

28

4.1. Previous work

σ0 σ1

σ2

K0

⊆

σ0 σ1

σ2

σ3

σ4σ5

K1

⊆

σ0 σ1

σ2

σ3

σ4σ5 σ6

K2

Figure 4.1: A filtration of a simplicial complex consisting of one triangle.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 4.2: The barcode of the filtration in figure 4.1. Solid lines are connected
components, the dashed line is a one-dimensional hole.

Note that the ordering σ0 < · · · < σ6 respects the filtration: simplices introduced
in Ki are smaller than those introduced in Ki+1 (e.g. σ0 < σ3). The ordering
also respects the faces of the simplices: every simplex is larger than its faces (e.g.
σ3 < σ6). With this ordering, this filtration has the boundary matrix

∂ =

0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

.
The standard algorithm gives the reduced matrix r in two iterations as follows:

∂ =

0 0 0 1 0 1 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 7→

0 0 0 1 0 1 0
0 0 0 1 1 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 7→

0 0 0 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0

 = r.

Note that, in r, lowest nonzeroes only exist in rows 1, 2, and 5, and no two columns
have their lowest nonzero in the same row, so lowr(·) is injective on the nonzero
columns, as required.

We can now read the persistence intervals from the reduced matrix. We get four
intervals: [deg(σ1), deg(σ3)) = [0, 1), [deg(σ2), deg(σ4)) = [0, 1), [deg(σ5), deg(σ6)) =
[1, 2), and [deg(σ0),∞) = [0,∞). The intervals starting at deg(σ0) = deg(σ1) =
deg(σ2) measure connected components; the interval starting at deg(σ5) measures
a 1-dimensional hole, since σ5 is 1-dimensional. With all this, we can construct the
barcode in figure 4.2. We see that we have three connected components initially,
but only one persists infinitely, and we have one hole that is born in K1 and killed
in K2. Intuitively, the edge σ5 closes the loop, creating the hole, while the triangle
σ6 fills the hole, killing it.

4.1 Previous work
Chen and Kerber improved on the standard algorithm by introducing the clearing
lemma [17], and constructed the algorithm now commonly known as twist. The

29

4. Computing persistent homology

twist algorithm loops over the dimensions of the simplices in decreasing order, and
employs the clearing technique, but is otherwise similar to the standard algorithm,
reducing one column at a time. Bauer, Kerber and Reininghaus constructed a
parallelisable algorithm [18], sometimes called chunk, that partitions the columns
into chunks, reduces some columns within each chunk, and then performs standard
reduction on the remaining unreduced columns.

Mendoza-Smith and Tanner constructed the pms algorithm [8], that builds on the
concepts by Chen and Kerber [17] and Bauer et al. [18]. The pms algorithm differs
from the aforementioned algorithms in that it iteratively reduces matrices, and in-
stead of reducing one column at a time, it aims to operate on many columns each
iteration, partially reducing them every step. Informally, it aims to make low∂(·)
converge to lowr(·) of the reduced matrix r uniformly instead of pointwise. While
column additions are plentiful and can be done in parallel, pms only uses fully
reduced columns for additions, which it identifies in each iteration with sequential
loops over the matrices’ columns. Our algorithm instead identifies leftmost columns,
which are a superset of the reduced columns, exposing more column additions per
iteration. Mendoza-Smith and Tanner show how information about known reduced
columns can be used to estimate the set of essential simplices, that is columns that
lead to infinite persistence intervals [deg(σj),∞). Because our algorithm does not
know which columns are reduced, we cannot directly use the same method.

Many problems involving sparse matrices can be difficult to implement. In the arti-
cle by Elsman et al. that introduces the expand function, they show how expansion
can be used to compute products between sparse matrices and dense vectors or dense
matrices, while acknowledging that multiplication between two sparse matrices is
a more difficult problem. Other authors, e.g. Pizzuti et al. [19], further investi-
gate the generation of efficient sparse matrix vector multiplication from high-level
code. Apart from these, there seems to be a lack of more general sparse matrix
computations in similar high-level functional languages.

30

5. A parallel algorithm

The standard algorithm for boundary matrix reduction (algorithm 2) sweeps the
matrix from left to right, reducing the columns one at a time. Since it only performs
left-to-right column additions, when it adds ∂k to ∂j, we have that k < j. Thus, it
only adds reduced columns to other columns.

In truth however, we do not need any knowledge of which columns are reduced
to perform additions. In 2006, Cohen-Steiner et al. proved the pairing uniqueness
lemma [20] (lemma 5.1.1 below), but it was not until 2020 that Morozov and Nigme-
tov pointed out the lemma’s possible application in exposing new parallelism in the
reduction of boundary matrices [21]. The lemma shows that columns can be added
in any order, rather than reducing them one at a time, and this allows us to operate
on many columns simultaneously. We use this result, together with a simple obser-
vation about a commonly used technique by Chen and Kerber [17], to construct a
massively parallel boundary matrix reduction algorithm. Below, we construct our
algorithm for computing persistent homology over F2, although it is generalisable
to arbitrary fields.

5.1 Adding columns in parallel
The standard algorithm is often seen as defining a matrix factorisation r = ∂φ of
the input boundary matrix ∂, where r is reduced. Indeed, adding column ∂i to ∂j
is equivalent to setting φi,j = 1. More precisely, we have rj = ∑n−1

i=0 φi,j∂i. Note
then that the standard algorithm gives a factorisation where φ is invertible upper
triangular: start with φ = I the identity matrix, and for each column addition
∂j ← ∂j + ∂k, set φk,j = 1. Since additions are left-to-right we have k < j always, so
φ is upper triangular, and since its diagonal entries are nonzero, it is invertible. It
turns out that such a factorisation is all we need to compute persistent homology,
which is captured by the following lemma by Cohen-Steiner et al. [20].

Lemma 5.1.1 (Pairing uniqueness). Let ∂φ be a reduced matrix where φ is invertible
upper triangular. Then low∂φ(·) is independent of φ.

Thus the notewothy implication of lemma 5.1.1 is, as Morozov and Nigmetov put it,
that it does not matter in what order we add the columns. Any combination of left-
to-right column additions that leads to a reduced matrix (i.e. ∂φ such that low∂φ(·)
is injective on nonzero columns) will give the same correct persistence intervals.
In particular, we do not need to add reduced columns to other columns, as in the
standard algorithm, but we can choose columns to add more freely.

31

5. A parallel algorithm

There are many ways to use this freedom. In their paper, Morozov and Nigmetov use
the lemma by proposing a partially lockfree reduction algorithm for shared memory
multicore systems, based on dividing the matrix into one chunk per thread, each
chunk being reduced from left to right as in the standard algorithm. We instead
propose a chunkless approach, operating on a very large number of columns in
parallel. To this end, we partition the nonzero columns in ∂ into leftmost columns
and their corresponding neighours.

Definition 5.1.1. For a matrix ∂, the set of leftmost columns is

L := {j |6 ∃k < j : low∂(k) = low∂(j) > −1}.

Given ` ∈ L, its neighbours is the set

N (`) := {j > ` | low∂(j) = low∂(`)}.

The algorithm we propose is to iteratively add ∂` to ∂j for all ` ∈ L and j ∈ N (`)
until the matrix is reduced. See algorithm 4 below for imperative pseudocode.

Algorithm 4: Parallel column additions
Input: An n× n boundary matrix ∂ over Z2

1 while ∂ is not reduced do
2 L ← {j |6 ∃k < j : low∂(k) = low∂(j) > −1}
3 for ` ∈ L do
4 for j ∈ N (`) do
5 ∂j ← ∂j + ∂`
6 end for
7 end for
8 end while
9 return ∂

Note that both computing L and adding columns can be done in parallel; finding
leftmost columns can be done independently for each row, and column additions are
independent of each other.

5.2 Incorporating the clearing lemma
The clearing technique is an often used optimisation in boundary matrix reduction
which allows us to set some columns to zero without explicitly reducing them [17].
This result, commonly called the clearing lemma, was originally stated informally
as an observation of persistent homology. Here we instead present and prove the
lemma without any reference to homology.

Lemma 5.2.1 (Clearing). Let ∂ be a strictly upper triangular matrix such that
∂2 = 0. Let r be a reduced form of ∂, and let j be the index of a nonzero column in
r. Then it holds that the column with index lowr(j) in r is zero.

32

5.2. Incorporating the clearing lemma

Proof. First assume that ∂ is reduced. Then, column j in ∂2 equals ∑n−1
i=0 ∂i,j∂i,

which is zero since ∂2 = 0. Further, since ∂ is reduced, low∂(·) is injective on the
nonzero columns, implying that the nonzero columns in ∂ are linearly independent.
Thus, if ∂i,j 6= 0, have ∂i = 0. In particular, if ∂j 6= 0, we have ∂low(j),j 6= 0, and so
∂low(j) = 0.

Now assume that ∂ is not reduced. Then a reduction of ∂ is of the form ∂φ where φ is
an invertible upper triangular matrix, and so φ−1 is also invertible upper triangular.
Note that, analogously to the way that multiplying with φ on the right corresponds
to left-to-right column additions, multiplying with φ−1 from the left corresponds to
down-to-up row additions. Note also that such row additions must preserve low∂,
i.e. lowφ−1∂ = low∂. Let now e := φ−1∂φ. Then low∂φ = lowe, so e is reduced;
further, e2 = 0, so the lemma holds by the previous argument.

The clearing lemma is a standard optimisation; many existing algorithms invoke the
clearing lemma once they have guaranteed a column to be reduced. We propose,
however, that the lemma can be invoked at any time, without knowledge about
which columns have already been reduced.

Corollary 5.2.1. Let ∂ be a strictly upper triangular matrix such that ∂2 = 0, and
let j be the index of a nonzero column in ∂. Let r be a reduced form of ∂. Then it
holds that the column with index low∂(j) in r is zero.

Proof. Consider the standard algorithm (algorithm 2) and a column index j. First
assume that ∂j is already reduced, i.e. ∂j = rj. Then, by the clearing lemma, the
column in r with index low∂(j) is zero. Now assume instead that ∂j is not reduced.
Then, according to the standard algorithm, there must exist k < j such that ∂k = rk
and low∂(k) = low∂(j). Since ∂k is reduced, it holds by the clearing lemma that the
column in r with index low∂(j) is zero. Finally, the pairing uniqueness lemma tells
us that this result is independent of the reduction algorithm, since the result is only
about the map lowr(·), which must be uniquely determined.

This implies a strong form of the clearing technique: at any stage during reduction,
we may simply set column low∂(j) to zero for every column index j, if low∂(j) 6= −1.
We do this at every iteration in our algorithm, so incorporating this into algorithm
4 gives us algorithm 5 below.

This is the final form of the algorithm that we have implemented. We now give a
proof that algorithm 5 converges.

Theorem 5.2.1. Algorithm 5 converges and yields a reduced matrix.

Proof. Corollary 5.2.1 guarantees that the clearing loop at line 2 is valid.

Now, assume we have a nonreduced matrix ∂. Then there is some ` ∈ L and j ∈ N (`)

33

5. A parallel algorithm

Algorithm 5: The final form of our implemented algorithm
Input: An n× n boundary matrix ∂ over F2

1 while ∂ is not reduced do
2 for j = 0, . . . , n− 1 do
3 Set column low∂(j) to zero
4 end for
5 L ← {j |6 ∃k < j : low∂(k) = low∂(j) > −1}
6 for ` ∈ L do
7 for j ∈ N (`) do
8 ∂j ← ∂j + ∂`
9 end for

10 end for
11 end while
12 return ∂

and we know that j is an unreduced column. Thus, the algorithm will perform the
column addition ∂j ← ∂j+∂`, meaning that low∂(j) will strictly decrease during this
iteration. In general, low∂(j) must strictly decrease for some j at every iteration.
But low∂(j) ≥ −1 ∀j, so after a finite number of iterations, low∂(j) must have
reached its minimum for all j, at which point the matrix must be reduced. Since all
additions performed are left-to-right, lemma 5.1.1 guarantees correctness.

5.3 A functional perspective
The above pseudocode is useful for comparing our algorithm with other boundary
matrix algorithms in the literature, but before we give an implementation in Futhark
we present (an example of) algorithm 5 in conceptual Futhark code. Assume we
have a type matrix. Then we may do the clearing with a function clear of type
matrix→ matrix that sets the appropriate columns to zero.

For representing L, we may define a lookup table arglows such that arglows[i] = j
iff j is the minimum column index such that low∂(j) = i, otherwise arglows[i] = −1;
we may build arglows with a function leftmost_lookup of type matrix→ []i64.
This way, assuming ∂j 6= 0, if we have arglows[low∂(j)] = j, then we know that
j ∈ L; otherwise, arglows[low∂(j)] < j and j ∈ N (arglows[low∂(j)]). With this in
mind, convergence can be checked by verifying that every column is either zero or
in L.

Finally, we assume a function add_columns of type matrix → []i64 → matrix
that, given ∂ and arglows, performs all left-to-right column additions available.
Then we get the following representation of algorithm 5:
l et reduce_matrix (∂ : matrix) : matrix =

loop ∂ while ! (i s_reduced ∂) do
let ∂ ’ = c l e a r ∂

34

5.4. Implementation

l et arg lows = leftmost_lookup ∂ ’
in add_columns ∂ ’ arg lows

5.4 Implementation

5.4.1 Matrix data structure
The boundary matrix of a d-dimensional complex with n simplices will have a total
of n2 entries but at most n(d+ 1) nonzero entries. So if n is significantly larger than
d, which is a reasonable assumption if we wish to analyse large pointclouds, the
boundary matrix is sparse; a large portion of its elements are zero. If we then use a
sparse matrix data structure that only stores the nonzero entries, we may get O(n)
space complexity instead of O(n2). We will often mention the number of nonzero
elements nnz(∂) of a matrix ∂, and similarly the number of nonzero elements nnz(∂j)
of a single column.

Many numerical problems are sparse in nature, so a number of different sparse matrix
data structures have been developed. In our implementation we use a variant of the
sparse compressed column (CSC) format. In a typical CSC structure, one stores
three arrays to represent a matrix ∂ of size m×n: arrays column_offsets of length
n, and row_indices and values both of length nnz(∂). We now give an example
of a matrix in the standard CSC format, storing offsets but not lengths.

Example 5.4.1. The matrix

∂ =

2 0 0 0
0 0 1 6
0 0 3 5
7 0 0 7
1 0 8 9

has a CSC representation

column_offsets = [0, 3, 3, 6]
row_indices = [0, 3, 4, 1, 2, 4, 1, 2, 3, 4]

values = [2, 7, 1, 1, 3, 8, 6, 5, 7, 9]

assuming zero-based indexing. To extract a specific column ∂j, we first find its offset
p = column_offsets[j], and its number of nonzeroes nnz(∂j) = column_offsets[j+
1] − column_offsets[j] (although for the last column we instead have nnz(∂3) =
nnz(∂)− column_offsets[3]). Then, the column is described by row_indices and
values at the indices p through p+ nnz(∂j)− 1. For instance, the first column has
offset 0 and number of nonzeroes 3 − 0 = 3. Its row indices are then [0, 3, 4] and
its values are [2, 7, 1]. The number of nonzeroes of the second column is 3− 3 = 0,
meaning it is empty.

To do matrix reduction over F2, our matrices are binary and so we can omit the

35

5. A parallel algorithm

values array if we ensure that row_indices only correponds to true nonzero ele-
ments.

As demonstrated, with the standard CSC format the number of nonzeroes in a
column can be found by simply subtracting column offsets. However, we modify the
CSC format and explicitly store an array column_lengths in our structure. This is
because we need the possibility for the array row_indices to have a length of more
than nnz(∂); why we need this will be explained later.

Example 5.4.2. With our variant of the CSC format, the matrix
0 1 1 0
0 1 0 1
0 0 1 1
0 0 0 1

may be represented as

column_offsets = [0, 0, 3, 7]
column_lengths = [0, 2, 2, 3]

row_indices = [0, 1, ε, 0, 2, ε, ε, 1, 2, 3]

where ε is any dummy value that will never be accessed.

In our variant of the CSC format, column_lengths stores the number of nonzero
elements for each column. Note that, in example 5.4.2, row_indices contains more
elements than the total number of nonzeroes. We also require that, for all j, column
j is described by the column_lengths[j] first elements of row_indices starting at
index column_offsets[j]. The elements with value ε are simply padding at the end
of the column. For instance, the sequence of row indices (0, 1, ε) in the example
above is a valid description of the first column, while the sequence (0, ε, 1) is not
valid. We represent this with a Futhark type:
type csc_mat =

{ c o l _ o f f s e t s : [] i 64
, co l_ lengths : [] i 64
, row_idxs : [] i 32
}

We can find low∂(j) in constant time if we also keep the row index array sorted
column-wise. Then low∂(j), being the largest row index of a nonzero element, is
simply the last entry in row_idxs for column j:
l et low (∂ : csc_mat) (j : i 64) : i 64 =

i f ∂ . co l_ lengths [j] == 0
then −1
else i 64 . i 32 ∂ . row_idxs [∂ . c o l _ o f f s e t s [j] +

∂ . co l_ lengths [j] − 1]

Keeping the row indices sorted column-wise is also essential for our approach to
column additions, see section 5.4.4.

36

5.4. Implementation

5.4.2 Clearing
To avoid recomputing often, we explicitly store the array lows describing low∂(·)
separate from the matrix, and we do the same with the lookup table arglows that
describes L. To compress type signatures, then, we define a record type:
type~ s t a t e [n] =

{ matrix : csc_mat
, lows : [n] i 64
, arg lows : [n] i 64
}

The first stage of the main loop in our algorithm is to invoke the clearing lemma. In
our implementation, to check if a column j is zero or not, we simply check whether
lows[j] = −1. Thus, to clear a column we simply need to ensure that this holds;
we do not need to modify the column in the actual matrix. We then do clearing as
follows:
l et c l e a r [n] (s : s t a t e [n]) : s t a t e [n] =

l et lows ’ = s c a t t e r (copy s . lows)
s . lows
(r e p l i c a t e n (−1))

in s with lows = lows ’

In the application of scatter above, we create an index-value pair (low∂(j),−1) for
each j, thus setting lows[low∂(j)] to −1 as required. Recall that scatter ignores
out-of-bounds indices.

5.4.3 Identifying pairs of columns to add
Once clearing has been done, we build the set L of leftmost columns; that is, we
identify all indices j such that 6 ∃k < j : low∂(k) = low∂(j) > −1. A convenient way
of finding one minimum per row in Futhark is to use reduce_by_index:
l et update_lookup [n] (s : s t a t e [n]) : s t a t e [n] =

l et arglows ’ =
reduce_by_index (r e p l i c a t e n i64 . h i ghe s t)

i 64 . min
i64 . h i ghe s t
s . lows
(i o t a n)

in s with arg lows = arglows ’

In this function, we use the minimum function on 64-bit integers i64.min as reduc-
tion function, with neutral element i64.highest (equal to 263−1). For every index i
into the destination replicate n i64.highest, we are finding the minimum value
in iota n such that its corresponding index in s.lows equals i. In other words, we
are finding the smallest column index j such that s.lows[j] = i. For instance, if we
have a matrix with 4 columns and s.lows = [2, 1, 3, 2] we have that
reduce_by_index (r e p l i c a t e 4 i64 . h i ghe s t)

i 64 . min
i64 . h i ghe s t

37

5. A parallel algorithm

[2 , 1 , 3 , 2]
[0 , 1 , 2 , 3]

evaluates to [263−1, 1, 0, 2]. Note that no column has its lowest nonzero in row 0, so
the first element is 263 − 1. This is fine; we will never attempt to access the lookup
table at this index in this case.

5.4.4 Pairwise column additions
We begin by partitioning the indices of nonzero columns into those that are leftmost
columns (i.e. that will not be added to) and those that are neighbours of some
leftmost column (i.e. those that will be added to).
l et (neighbour_idxs , l e f tmost_idxs) =

(i o t a n) |> f i l t e r (λ j → s . lows [j] != −1)
|> p a r t i t i o n (λ j → s . arg lows [j]] != j)

Before performing column additions, we use s.lows and s.arglows to identify all
pairs of columns that should be summed. We define the array left_right_pairs
of type [](i64, i64) with (k, j) an element iff the addition ∂j ← ∂j + ∂k will be
performed in the current iteration.
l et l e f t _ r i g h t _ p a i r s =

map (λ j → (s . arg lows [s . lows [j]] , j))
neighbour_idxs

The next step is to set ∂j ← ∂j +∂k for every (k, j)-pair in left_right_pairs. This
is made nontrivial by using a sparse matrix structure together with the fact that we
cannot know the number of nonzeroes in the column ∂j + ∂k before computing it
— a problem also encountered in sparse matrix-matrix multiplication. We cannot
do column additions in-place since there may not be enough space. Instead, we
take the approach of calculating upper bounds on the new number of nonzeroes
and creating a new matrix with the capacity to hold that many elements. Then
we populate its columns, possibly leaving some unused space. Note that if (k, j) ∈
left_right_pairs, then low∂(j) = low∂(k), so

nnz(∂j + ∂k) ≤ nnz(∂j) + nnz(∂k)− 2

and we can use this as the size of the new columns. When creating a new matrix,
we gives its array of row indices a length of∑

(k,j)∈left_right_pairs

(nnz(∂j) + nnz(∂k)− 2) +
∑
j∈leftmost_idxs

nnz(∂j).

We initialise this array with elements equal to some unspecified value ε before pop-
ulating it with the new columns.

Example 5.4.3. Consider the following matrix and corresponding CSC represen-
tation:

∂ =

1 1 1
0 1 0
1 1 0

column_offsets = (0, 2, 5)
column_lengths = (2, 3, 1)

row_indices = (0, 2, 0, 1, 2, 0)

38

5.4. Implementation

Suppose we wish to compute the matrix

∂′ =
(
∂0 ∂0 + ∂1 ∂2

)
.

Since nnz(∂0) = 2 and nnz(∂1) = 3, nnz(∂0 + ∂1) ≤ 2 + 3 − 2 = 3, and we may
initialise the new matrix as

column_offsets’ = (0, 2, 5)
row_indices’ = (0, 2, ε, ε, ε, 0).

After computing the column sum we see that nnz(∂0 + ∂1) = 1 and its only nonzero
row index is 1; we write this into the new matrix and get

column_offsets’ = (0, 2, 5)
row_indices’ = (0, 2, 1, ε, ε, 0).

Now we know the lengths of each column, so we can set

column_lengths’ = (2, 1, 1).

Note how there are two unused elements with value ε, that aren’t contained in any
column as indicated by the lengths and offsets.

We divide the process of computing the new matrix, given left_right_pairs, into
three distinct steps: first we create a new CSC matrix ∂′ with an array row_indices’
large enough to store the results of column additions; second, we copy the leftmost
columns into this new matrix, since they won’t change; third, we add all (j, k)-pairs
and write the results into the new matrix.

5.4.4.1 Initialising the new matrix

Given the initial matrix ∂ and the array left_right_pairs we create a new CSC
matrix with the following function:
l et init_new_matrix (∂ : csc_mat)

(l e f t _ r i g h t _ p a i r s : [] (i64 , i 64))
: csc_mat =

l et neighbour_idxs = (unzip l e f t _ r i g h t _ p a i r s) . 1
l et new_col_lengths_bounds =

s c a t t e r (copy ∂ . co l_ lengths)
neighbour_idxs
(map (λ(k , j) → ∂ . co l_ lengths [k] +

∂ . co l_ lengths [j] − 2)
l e f t _ r i g h t _ p a i r s)

l et new_col_of f sets =
[0] ++ i n i t (scan (+) 0 new_col_lengths_bounds)

l et new_row_idxs =

39

5. A parallel algorithm

r e p l i c a t e (i 64 . sum new_col_lengths_bounds) (−1)
in { c o l _ o f f s e t s = new_col_of f sets

, co l_ lengths = new_col_lengths_bounds
, row_idxs = new_row_idxs
}

scatter pairs each j ∈ neighbour_idxs with nnz(∂k) + nnz(∂j) − 2, as described
above, and writes these values into a copy of ∂.col_lengths. That is,

new_col_lengths_bounds[j]

=

nnz(∂j) + nnz(∂k)− 2 if (k, j) ∈ left_right_pairs,
nnz(∂j) otherwise.

This gives an array of the upper bounds of the number of nonzeroes in the new
matrix. A prefix sum on this array then gives the new matrix’ column offsets, and
the sum of the bounds gives the total number of possible row indices that can be
written, so this is the length of the new array of row indices.

5.4.4.2 Copying the leftmost columns

Now we define a function that takes the initial matrix ∂, the newly initialised matrix
∂′, and the array leftmost_idxs, and copies all leftmost columns from ∂ to ∂′.
l et copy_columns (l e f tmost_idxs : [] i 64)

(∂ : csc_mat)
(∂ ’ : csc_mat)

: csc_mat =
l et (i s , as) =

expand
(λ j → ∂ . co l_ lengths [j])
(λ j α → (∂ ’ . c o l _ o f f s e t s [j] + α

, ∂ . row_idxs [∂ . c o l _ o f f s e t s [j] + α]))
l e f tmost_idxs

|> unzip
l et new_row_idxs =

s c a t t e r (copy ∂ ’ . row_idxs) i s as
in ∂ ’ with row_idxs = new_row_idxs

In the above code, we use expand to create index-value-pairs (with indices in
is and values in as), that we then scatter into the row index array. Each j ∈
leftmost_idxs is expanded into a value array containing the nonzero row indices
of ∂j, and an index array containing the indices of ∂′.row_idxs that corresponds to
∂′j.

Example 5.4.4. Assume we have

∂ =

1 1 1
0 1 0
1 1 0

∂.col_offsets = (0, 2, 5)
∂.col_lengths = (2, 3, 1)

∂.row_idxs = (0, 2, 0, 1, 2, 0)

40

5.4. Implementation

and a newly initialised matrix

∂′ =

0 0 0
0 0 0
0 0 0

∂′.col_offsets = (0, 2, 5)
∂′.col_lengths = (2, 3, 1)

∂′.row_idxs = (ε, ε, ε, ε, ε, ε)

and that leftmost_idxs = [0, 2], so that we wish to copy the first and last columns
of ∂ into ∂′. Then expand works as follows: The first element j = leftmost_idxs[0] =
0 is expanded into ∂.col_lengths[j] = 2 index-value-pairs, namely

(∂′.col_offsets[j] + 0, ∂.row_idxs[∂.col_offsets[j] + 0]) = (0, 0)

and

(∂′.col_offsets[j] + 1, ∂.row_idxs[∂.col_offsets[j] + 1]) = (1, 2).

In other words, we will scatter the row index values 0 and 2 into ∂′.row_idxs
at indices 0 and 1, respectively; this amounts to copying the first column. Sim-
ilarly, the second leftmost index j = leftmost_idxs[1] = 2 is expanded into
∂.col_lengths[j] = 1 index-value-pair, namely

(∂′.col_offsets[j] + 0, ∂.row_idxs[∂.col_offsets[j] + 0]) = (5, 0)

meaning we will copy the single nonzero element of the third column. In total,
expand gives us the index-value-pairs [(0, 0), (1, 2), (5, 0)]. Scattering these index-
value-pairs finally gives us new_row_idxs = [0, 2, ε, ε, ε, 0].

5.4.4.3 Adding columns

Finally, we need to compute the column sums indicated by left_right_pairs.
As mentioned, we keep the invariant that the row indices in the CSC matrix are
sorted column-wise, and we utilise this in our approach to adding columns. Given
two columns, i.e. two arrays of row indices, possibly of different lengths, we use
a sequential merge algorithm to find the sum of the columns. While a normal
merge algorithm simply computes a sorted union of two arrays, we compute the
sorted XOR of two arrays, since we are summing columns over F2. For each pair
(k, j) ∈ left_right_pairs, we keep a pointer px into the nonzero row indices of ∂k,
and likewise the pointers py and pz into ∂j and ∂′j respectively. If we let cx be the
sorted array containing the nonzero row indices of ∂k and similarly cy and cz for
∂j and ∂′j, the process of merging cx and cy into cz is described by the imperative
pseudocode in algorithm 6 below.

Note that, in algorithm 6, when a pointer px or py is pointing past the bounds of
the corresponding array, we set the row index rx or ry to ∞, so that the merging
always writes the other, finite index. The effect is that once one row index becomes
infinite, we simply write the remainder of the other column into cz. We do so
because it simplifies the implmentation in Futhark, as will be seen further down.
We also return the final value of pz, since this will equal the number of nonzero
elements in the column sum, which we can use to update the col_lengths array.

41

5. A parallel algorithm

Algorithm 6: Computing the XOR of sorted columns by sequential merg-
ing
Input: Two columns cx and cy over F2 to sum, and a mutable column cz

to write the sum into. All columns are in the form of arrays
containing the row indices of nonzero elements.

Output: The modified column cz, and the final state of the pointer pz.
1 px← 0, py← 0, pz← 0
2 while px < length(cx) or py < length(cy) do
3 rx← if px < length(cx) then cx[px] else ∞
4 ry← if py < length(cy) then cy[py] else ∞
5 if rx < ry then
6 cz[pz]← rx
7 px← px + 1, pz← pz + 1
8 else if ry < rx then
9 cz[pz]← ry

10 py← py + 1, pz← pz + 1
11 else
12 px← px + 1, py← py + 1
13 end while
14 return cz and pz

To sum all column pairs in parallel, we would have to run many instances of al-
gorithm 6 in parallel, one for each pair in left_right_pairs. These would then
have to either write into the same array, namely ∂′.row_idxs but at different posi-
tions, or they would have to return their individual cz columns which would then
be concatenated to form the final row index array of the new matrix. Neither of
these approaches are currently possible in Futhark, however. Instead, we exchange
the order of the outer parallel pass over the left-right-pairs and the inner sequential
merge loop; we use an outer sequential loop that, in each iteration, performs a single
step of the merge process for every left-right-pair in parallel. Since all columns may
have a different number of nonzero elements, the outer loop then has to perform
enough iterations to guarantee that every left-right-pair can be fully merged.

We describe the body of our parallel merge function in several steps, starting with
the name and type:
l et add_pairs [n0] (l e f t _ r i g h t _ p a i r s : [n0] (i64 , i 64))

(∂ : csc_mat)
(∂ ’ : csc_mat)

: csc_mat =

In the following, then, n0 is the number of left-right pairs. We start by extracting
the neighbour column indices (i.e. those that will be written into) and copy the row
indices of ∂′ so that we can scatter into the array,
l et neighbour_idxs = (unzip l e f t _ r i g h t _ p a i r s) . 1
l et row_idxs = copy ∂ ’ . row_idxs

42

5.4. Implementation

after which we define two useful arrays:
l et o f f s e t s =

map (λ j → ∂ ’ . c o l _ o f f s e t s [j]) neighbour_idxs
l et bounds =

map (λ j → ∂ ’ . co l_ lengths [j]) neighbour_idxs

Recall that j ∈ neighbour_idxs iff ∂′j will be written into. If j = neighbour_idxs[α],
offsets[α] is simply the offset of column j in row_idxs, and bounds[α] is now the
maximum number of nonzeroes that can possibly be written into the column. Then,
the body of add_pairs is as follows:
l et pxs = r e p l i c a t e n0 0
l et pys = r e p l i c a t e n0 0
l et pzs = r e p l i c a t e n0 0
l et (row_idxs , _, _, pz s_f ina l) =

loop (row_idxs , pxs , pys , pzs)
for i < i64 . maximum bounds do

let xs = tabu la t e n0 <| λα →
get_elem_in_col l e f t _ r i g h t _ p a i r s [α] . 0 pxs [α]

l et ys = tabu la t e n0 <| λα →
get_elem_in_col l e f t _ r i g h t _ p a i r s [α] . 1 pys [α]

l et row_idxs ’ =
update_row_idxs i row_idxs pzs xs ys

l et (pxs ’ , pys ’ , pzs ’) =
advance_pointers pxs pys pzs xs ys

in (row_idxs ’ , pxs ’ , pys ’ , pzs ’)

l et co l_lengths =
s c a t t e r (copy ∂ ’ . co l_ lengths)

neighbour_idxs
pz s_f ina l

in ∂ ’ with co l_lengths = co l_lengths
with row_idxs = row_idxs

To compare the loop in add_pairs with algorithm 6, let j = neighbour_idxs[α] be
the index of a column that will be written into. Then, pxs[α], pys[α], and pzs[α]
correspond to the pointers px, py, and pz (pointers into ∂k, ∂j, and ∂′j), while xs[α]
and ys[α] correspond to rx and ry (nonzero row indices in ∂k and ∂j).

Before looping we initialise the arrays of pointers pxs, pys, and pzs. Then we loop
over these pointers together with row_idxs, for i ranging from 0 to the largest length
bound of all neighbour columns. At every iteration, for every j ∈ neighbour_idxs,
we either write a single element into ∂′j, or do nothing, depending on the state of
the pointers. If we write an element, we write it at position pzs[α] relative to the
column’s offset.

At the start of every iteration, we use pxs and pys to look up the elements they
point to. We do this with the function

l et get_elem_in_col (j : i 64) (nz_idx : i 64) : i 32 =

43

5. A parallel algorithm

i f nz_idx < ∂ . co l_ lengths [j]
then ∂ . row_idxs [∂ . c o l _ o f f s e t s [j] + nz_idx]
else i 32 . h i ghe s t

so that xs[α] is the row index of column neighbour_idxs[α], as long as the pointer
pxs[α] is still within the length of that column — if it is not, we set xs[α] ←
i32.highest, which corresponds to setting rx←∞ in algorithm 6.

Once we have the elements xs and ys, for each α, we check whether xs[α] = ys[α].
If so, ∂k and ∂j have this row index in common, so it will not be in the column sum;
thus we do nothing in this case. Otherwise, we write the minimum of xs[α] and
ys[α] into ∂′j: However we only do this if i < bounds[α], since if this isn’t the case,
then the loop has iterated fully through column ∂′j and there cannot be anything
more to write:
l et update_row_idxs [m] (i : i 64)

(row_idxs : ∗ [m] i 32)
(pzs : [n0] i 64)
(xs : [n0] i 32)
(ys : [n0] i 32)

: ∗ [m] i 32 =
sca t t e r ’ row_idxs (tabu la t e n0 <| λα →

i f bounds [α] <= i
then (−1,−1)
else let idx = o f f s e t s [α] + pzs [α]

l et v = i f xs [α] == ys [α]
then −1 else i 32 . min xs [α] ys [α]

in (idx , v))

Here, scatter’ is a variant of scatter with type [n]t→ (i64, t)→ [n]t, that takes
a zipped list of index-value pairs.

The last step of the loop is to increment all pointers:
l et advance_pointers (pxs : [n0] i 64)

(pys : [n0] i 64)
(pzs : [n0] i 64)
(xs : [n0] i 32)
(ys : [n0] i 32)

: ([n0] i64 , [n0] i64 , [n0] i 64) =
tabu la t e n0 (λα →

i f xs [α] == ys [α]
then (pxs [α]+1 , pys [α]+1 , pzs [α])

else i f xs [α] < ys [α]
then (pxs [α]+1 , pys [α] , pzs [α]+1)

else (pxs [α] , pys [α]+1 , pzs [α]+1))
|> unzip3

Once the loop has finished, we use the final state of the pzs pointers, now called
pzs_final for emphasis, to set the actual column lengths of the resulting matrix
∂′. Recall that, in init_new_matrix, we set the column lengths of the neighbouring

44

5.4. Implementation

columns to the maximum upper bound on their sizes. After the loop, pzs indicates
how many elements were actually written per column, and these numbers equal the
final column lengths. Thus, we copy the initial column lengths of ∂′, and scatter
pzs_final into it.

5.4.5 Checking for convergence
Checking whether the matrix is reduced or not is simple: we just check whether, for
every nonzero column ∂j,

s.arglows[s.lows[j]] = j,

because if so, every nonzero column is a leftmost column. Thus we define the
following:
l et i s_reduced [n] (s : s t a t e [n]) : bool =

a l l (λ j → s . lows [j] == −1 | |
s . arg lows [s . lows [j]] == j)

(i o t a n)

45

5. A parallel algorithm

46

6. Experiments

We benchmark our implementation on some of the pointclouds used by Otter et
al. [7]. For each pointcloud, we use Javaplex [22] to generate Vietoris-Rips com-
plexes and their boundary matrices. We measure only the time taken to reduce
the boundary matrices. All benchmarks are run on an Nvidia GTX 1070 GPU,
and all runtimes presented are averages over 10 runs. The Futhark code is com-
piled to OpenCL. On the same datasets, we also benchmark the software OpenPH,
which implements pms [8], an existing GPU-based persistent homology algorithm.
OpenPH is written in CUDA, and we run all benchmarks on the same hardware.

We use six pointclouds (as collected and prepared by Otter et al.): klein: 400 points
in 3 dimensions sampled from a figure-8 immersion of the Klein bottle; dragon:
1000 points in 3 dimensions sampled from the Stanford dragon 3D model; fractal
r: 512 points in 259 dimensions generated from a certain self-similar network used
to study brain connectivity; hiv: 1088 points in 673 dimensions corresponding to
genomic sequences of the HIV virus genome; celegans: 297 points in 202 dimensions
corresponding to neurons in the connectome of c. elegans; genome: 1397 points in
688 dimensions representing a sample of the human genome; and h3n2: 2722 points
in 1173 dimensions corresponding to genomic sequences of the H3N2 virus.

For each pointcloud, we generate boundary matrices with about 106 columns. Table
6.1 shows the runtimes of our algorithm and OpenPH on these matrices. Further,
for each pointcloud, we generate a number of smaller matrices; figure 6.1 shows, for
each pointcloud, the runtime as a function of the number of columns in the matrix.
The number of columns in each matrix is controlled by varying the radius used in
constructing the Vietoris-Rips complexes. The largest matrix sizes for each dataset
are the largest that Javaplex was able to generate on the hardware used.

Dataset klein dragon fractal r hiv
Number of columns 2.1 · 106 2.5 · 106 1.5 · 106 1.4 · 106

Runtime OpenPH [s] 7.53 10.22 2.68 1.33
Runtime ours [s] 2.16 2.03 0.58 0.51

Speedup 3.49 5.03 4.62 2.61
Dataset celegans genome h3n2

Number of columns 1.4 · 106 3.8 · 105 1.3 · 106

Runtime OpenPH [s] 1.37 0.52 1.57
Runtime ours [s] 0.60 0.13 0.47

Speedup 2.28 4 3.34

Table 6.1: Average runtime over 10 runs on Vietoris-Rips complexes generated
from chosen pointclouds.

47

6. Experiments

0

2

4

6

500 1000 1500 2000
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

klein

0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000 2500
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

dragon

0

1

2

400 800 1200 1600
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

fractal r

0.0

0.5

1.0

500 1000
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

hiv

0.5

1.0

400 800 1200 1600
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

celegans

0.0

0.1

0.2

0.3

0.4

0.5

100 200 300 400
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

genome

0.0

0.5

1.0

1.5

500 1000
Number of thousand columns

R
un

tim
e

[s
]

Algorithm
OpenPH
Ours

h3n2

Figure 6.1: Average runtimes as a function of the number of columns for both
OpenPH (solid lines) and our algorithm (dashed lines). One subfigure for each
pointcloud. For each pointcloud, table 6.1 shows the runtimes in seconds for
the largest matrix.

48

6.1. Early stopping

6.1 Early stopping

As defined by Mendoza-Smith and Tanner, let low`
∂ be the map low as on the matrix

yielded after reducing ∂ for ` iterations. If r is a reduction of ∂, we define the relative
error

E` =

∥∥∥low`
∂ − lowr

∥∥∥
1

‖lowr‖1
(6.1)

between the approximated low after ` iterations and the true low. We run our
algorithm on the datasets described above, for a varying number of iterations. Figure
6.2 then shows E` as a function of ` on the same boundary matrices as used in table
6.1. Further, table 6.2 presents the time and number of iterations required to reach
E` ≤ 10−k, and compares the times to those of table 6.1.

Table 6.2: The number of iterations required to reach E` ≤ 10−2 on each of
the boundary matrices used in table 6.1. ` and t are the minimum number of
iterations and the time required, respectively, to reach E` ≤ 10−2. `0 and t0 are
the number of iterations required and the time required, respectively, to fully
reduce the matrix.

Dataset klein dragon fractal r hiv celegans genome h3n2
` 67 44 1 1 1 3 1
`0 252 195 16 6 3 9 4
t 1.22 1.12 0.41 0.37 0.43 0.091 0.35
t0 2.16 2.03 0.58 0.51 0.60 0.13 0.47

49

6. Experiments

1e−05

1e−02

1e+01

0 100 200
Number of iterations

E
rr

or

klein

1e−06

1e−03

1e+00

0 50 100 150 200
Number of iterations

E
rr

or

dragon

1e−09

1e−06

1e−03

1e+00

0 5 10 15
Number of iterations

E
rr

or

fractal

1e−07

1e−04

1e−01

0 2 4 6
Number of iterations

E
rr

or
hiv

1e−08

1e−05

1e−02

0 1 2 3
Number of iterations

E
rr

or

celegans

1e−06

1e−04

1e−02

1e+00

0.0 2.5 5.0 7.5
Number of iterations

E
rr

or

genome

1e−09

1e−06

1e−03

1e+00

0 1 2 3 4
Number of iterations

E
rr

or

h3n2

Figure 6.2: The error E` as a function of the number of iterations ` performed.
One subfigure for each pointcloud. Note the log scale on the y-axes.

50

7. Discussion

The work presented in this thesis forms the basis for a paper to be presented at
the ACM SIGPLAN International Workshop on Functional High-Performance and
Numerical Computing (FHPNC 2021) [23]. The source code of our implementation
can be found at https://github.com/erikvonb/futhark-ph.

7.1 Our experiments
We have presented a massively parallel algorithm for boundary matrix reduction
on GPU hardware. We have shown that it can be implemented in the functional
language Futhark, with most effort going into parallel column additions in a sparse
matrix structure. Our experiments show that this implementation is faster than pms,
an existing boundary matrix reduction algorithm for GPUs. Apart from successfully
reducing boundary matrices on GPU hardware, we have also shown that Futhark is
a viable language to use for this kind of sparse matrix operation.

Figure 6.2 shows that the relative `1 error of low∂ decreases very quickly during
the first few iterations. Although these convergence rates are experimental rather
than theoretical, the consistency across the seven different datasets suggests that
fast convergence in early iterations may be a general feature of our algorithm. For a
more thorough experimental study of convergence, other norms can be used. There
also exist metrics on spaces of barcodes, such as the Wasserstein distance and its
special case the bottleneck distance [7]. Such metrics can be used to define an error
between the approximate low`

∂ map and the true lowr.

7.2 Futher work
While our implementation is relatively simple, we would like to investigate whether
it is possible to improve it further. The standard, twist and chunk algorithms have
been efficiently implemented in the software package PHAT [24], and its authors
have shown that matrix data structure has a major impact on performance. For
instance, we can attempt to represent columns with bit sets, allowing the use of the
bitwise XOR operation to add columns. Furthermore, future versions of Futhark
may support accumulators, a feature that would allow us to map a column addition
function over the left-right pairs, allowing us to more directly implement algorithm
6 function in section 5.4.4.3. While this would likely lead to simpler, more readable
code, whether or not it would lead to performance improvements remains to be seen.

51

https://github.com/erikvonb/futhark-ph

7. Discussion

7.3 Using Futhark
Futhark is a high-level hardware-agnostic language, and as such allows us to write
code without thinking about the details of the hardware representations, nor do we
have to think about parallel computing primitives such as threads and synchroni-
sation, as is the case if we write e.g. OpenCL or CUDA by hand. We have instead
approached the problem entirely in terms of regular arrays and second-order array
combinators.

While knowledge about GPU hardware is certainly beneficial in order to know what
kind of behaviour to expect and to know which problems can be feasibly solved on a
GPU, the hardware agnosticism of Futhark has allowed us to write our code without
directly using any such knowledge. Note how neither chapter 2 nor 5 mention how
arrays are laid out in memory, accessed, cached, or traversed, nor do we mention
how computation is spread across threads, how and when threads are synced, or
even how many threads are used. Indeed, our implementation is presented without
any mention of threads at all. Instead, these things are all handled by the Futhark
compiler. The compiler analyses code and applies aggressive optimisation techniques
do decide all of this for us.

Futhark being purely functional gives us a very simple top-level description of the
algorithm: representing the CSC matrix is done with a simple record type, and the
functions low, clear, and update_lookup are arguably very simple to both write
and understand. The functions init_new_matrix and copy_columns are defined
only using a few SOACs, namely scatter and scan, and expand. While their
definitions are perhaps less understandable for a new reader, they are quite small
and, as mentioned, written without any reference to threads or regard for memory
access patterns, for instance.

The main challenge is adding column pairs in parallel. With access to fully irregular
arrays we could describe a sparse matrix with an array of arrays, each inner array
containing the nonzero row indices, and we could add columns by simply computing
and replacing the required inner array, even if its length has changed. However, man-
aging irregular data introduces many problems and possibly performance penalties
[13], and so this is not something that Futhark supports.

As mentioned, we are not able to map a column addition function over the array
left_right_indices to add all column pairs (recall the pseudocode in algorithm
6). Instead we had to swap the outer parallel loop over left-right-pairs with the
inner sequential loop over row indices, leading to a more complicated algorithm
description. The former of these approaches requires in-place updates in a manner
that is not possible to express in Futhark. This is due to current limitations that
may not exist in the future, as the upcoming accumulator feature should give enough
flexibility. While this indicates that Futhark will continue to evolve and become more
flexible, the fact that we were able to implement column addition in a reasonable
manner shows us that Futhark is already in its current state a usable language.

52

References

[1] H. Edelsbrunner and J. Harer, Computational Topology: An Introduction. 2010-
01, isbn: 978-0-8218-4925-5. doi: 10.1007/978-3-540-33259-6_7.

[2] M. Li, M. H. Frank, V. Coneva, W. Mio, D. H. Chitwood, and C. N. Topp, “The
persistent homology mathematical framework provides enhanced genotype-
to-phenotype associations for plant morphology,” Plant Physiology, vol. 177,
no. 4, pp. 1382–1395, 2018, issn: 0032-0889. doi: 10.1104/pp.18.00104.
eprint: http://www.plantphysiol.org/content/177/4/1382.full.pdf.
[Online]. Available: http://www.plantphysiol.org/content/177/4/1382.

[3] S. M. S. Syed Musa, M. S. Md Noorani, F. Abdul Razak, M. Ismail, M. A.
Alias, and S. I. Hussain, “Using persistent homology as preprocessing of early
warning signals for critical transition in flood,” Scientific Reports, vol. 11,
no. 1, p. 7234, 2021-03, issn: 2045-2322. doi: 10.1038/s41598-021-86739-5.
[Online]. Available: https://doi.org/10.1038/s41598-021-86739-5.

[4] B. Olsthoorn, J. Hellsvik, and A. V. Balatsky, “Finding hidden order in spin
models with persistent homology,” Phys. Rev. Research, vol. 2, p. 043 308,
4 2020-12. doi: 10.1103/PhysRevResearch.2.043308. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043308.

[5] M. K. Chung, J. L. Hanson, J. Ye, R. J. Davidson, and S. D. Pollak, “Persistent
homology in sparse regression and its application to brain morphometry,”
IEEE Transactions on Medical Imaging, vol. 34, no. 9, pp. 1928–1939, 2015.
doi: 10.1109/TMI.2015.2416271.

[6] W. K. Chong and S. Rudkin, “Persistent homology in tourism: Unlocking
the possibilities,” Tourism Management, vol. 81, p. 104 132, 2020, issn: 0261-
5177. doi: https://doi.org/10.1016/j.tourman.2020.104132. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
S0261517720300583.

[7] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data Science,
vol. 6, 2017-08. doi: 10.1140/epjds/s13688-017-0109-5.

[8] R. Mendoza-Smith and J. Tanner, “Parallel multi-scale reduction of persistent
homology filtrations,” arXiv preprint arXiv:1708.04710, 2017.

[9] M. Elsman, T. Henriksen, and C. E. Oancea, Parallel Programming in Futhark.
2018. [Online]. Available: https://futhark-book.readthedocs.io.

[10] “OpenCL.” (Accessed 2021-05-31.), [Online]. Available: https://www.khronos.
org/opencl/.

53

https://doi.org/10.1007/978-3-540-33259-6_7
https://doi.org/10.1104/pp.18.00104
http://www.plantphysiol.org/content/177/4/1382.full.pdf
http://www.plantphysiol.org/content/177/4/1382
https://doi.org/10.1038/s41598-021-86739-5
https://doi.org/10.1038/s41598-021-86739-5
https://doi.org/10.1103/PhysRevResearch.2.043308
https://link.aps.org/doi/10.1103/PhysRevResearch.2.043308
https://doi.org/10.1109/TMI.2015.2416271
https://doi.org/https://doi.org/10.1016/j.tourman.2020.104132
https://www.sciencedirect.com/science/article/pii/S0261517720300583
https://www.sciencedirect.com/science/article/pii/S0261517720300583
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://futhark-book.readthedocs.io
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/

References

[11] “CUDA.” (Accessed 2021-05-31.), [Online]. Available: https://developer.
nvidia.com/about-cuda.

[12] T. Henriksen. “Futhark.” (Accessed 2021-05-31.), [Online]. Available: https:
//futhark-lang.org/.

[13] M. Elsman, T. Henriksen, and N. G. W. Serup, “Data-parallel flattening by
expansion,” in Proceedings of the 6th ACM SIGPLAN International Workshop
on Libraries, Languages and Compilers for Array Programming, ser. ARRAY
2019, Phoenix, AZ, USA: Association for Computing Machinery, 2019, pp. 14–
24, isbn: 9781450367172. doi: 10.1145/3315454.3329955. [Online]. Avail-
able: https://doi.org/10.1145/3315454.3329955.

[14] A. Hatcher, Algebraic Topology. 2002.
[15] A. Zomorodian and G. Carlsson, “Computing persistent homology,” in Pro-

ceedings of the Twentieth Annual Symposium on Computational Geometry,
ser. SCG ’04, Brooklyn, New York, USA: Association for Computing Machin-
ery, 2004, pp. 347–356, isbn: 1581138857. doi: 10.1145/997817.997870.
[Online]. Available: https://doi.org/10.1145/997817.997870.

[16] H. Edelsbrunner, D. Letscher, and A. Zomorodian, “Topological persistence
and simplification,” in Proceedings 41st Annual Symposium on Foundations of
Computer Science, 2000, pp. 454–463. doi: 10.1109/SFCS.2000.892133.

[17] C. Chen and M. Kerber, “Persistent homology computation with a twist,”
Proceedings of the 27th European Workshop on Computational Geometry, 2011.

[18] U. Bauer, M. Kerber, and J. Reininghaus, “Clear and compress: Computing
persistent homology in chunks,” in Topological Methods in Data Analysis and
Visualization III, P.-T. Bremer, I. Hotz, V. Pascucci, and R. Peikert, Eds.,
Cham: Springer International Publishing, 2014, pp. 103–117, isbn: 978-3-319-
04099-8.

[19] F. Pizzuti, M. Steuwer, and C. Dubach, “Generating fast sparse matrix vector
multiplication from a high level generic functional ir,” in Proceedings of the
29th International Conference on Compiler Construction, ser. CC 2020, San
Diego, CA, USA: Association for Computing Machinery, 2020, pp. 85–95, isbn:
9781450371209. doi: 10.1145/3377555.3377896. [Online]. Available: https:
//doi.org/10.1145/3377555.3377896.

[20] D. Cohen-Steiner, H. Edelsbrunner, and D. Morozov, “Vines and vineyards
by updating persistence in linear time,” in Proceedings of the Twenty-Second
Annual Symposium on Computational Geometry, ser. SCG ’06, Sedona, Ari-
zona, USA: Association for Computing Machinery, 2006, pp. 119–126, isbn:
1595933409. doi: 10.1145/1137856.1137877. [Online]. Available: https:
//doi.org/10.1145/1137856.1137877.

[21] D. Morozov and A. Nigmetov, “Towards lockfree persistent homology,” in
Proceedings of the 32nd ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’20, Virtual Event, USA: Association for Computing
Machinery, 2020, pp. 555–557, isbn: 9781450369350. doi: 10.1145/3350755.
3400244. [Online]. Available: https://doi.org/10.1145/3350755.3400244.

54

https://developer.nvidia.com/about-cuda
https://developer.nvidia.com/about-cuda
https://futhark-lang.org/
https://futhark-lang.org/
https://doi.org/10.1145/3315454.3329955
https://doi.org/10.1145/3315454.3329955
https://doi.org/10.1145/997817.997870
https://doi.org/10.1145/997817.997870
https://doi.org/10.1109/SFCS.2000.892133
https://doi.org/10.1145/3377555.3377896
https://doi.org/10.1145/3377555.3377896
https://doi.org/10.1145/3377555.3377896
https://doi.org/10.1145/1137856.1137877
https://doi.org/10.1145/1137856.1137877
https://doi.org/10.1145/1137856.1137877
https://doi.org/10.1145/3350755.3400244
https://doi.org/10.1145/3350755.3400244
https://doi.org/10.1145/3350755.3400244

References

[22] H. Adams, A. Tausz, and M. Vejdemo-Johansson, “Javaplex: A research soft-
ware package for persistent (co)homology,” in Mathematical Software – ICMS
2014, H. Hong and C. Yap, Eds., Software available at http://appliedtopology.
github.io/javaplex/, Berlin, Heidelberg: Springer, 2014, pp. 129–136, isbn:
978-3-662-44199-2.

[23] E. von Brömssen, “Computing persistent homology in futhark,” in Proceed-
ings of the 9th ACM SIGPLAN International Workshop on Functional High-
Performance and Numerical Computing, ser. FHPNC 2021, Association for
Computing Machinery, 2021.

[24] U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner, “Phat – persistent ho-
mology algorithms toolbox,” Journal of Symbolic Computation, vol. 78, pp. 76–
90, 2017, Algorithms and Software for Computational Topology, issn: 0747-
7171. doi: https://doi.org/10.1016/j.jsc.2016.03.008. [Online].
Available: https : / / www . sciencedirect . com / science / article / pii /
S0747717116300098.

55

http://appliedtopology.github.io/javaplex/
http://appliedtopology.github.io/javaplex/
https://doi.org/https://doi.org/10.1016/j.jsc.2016.03.008
https://www.sciencedirect.com/science/article/pii/S0747717116300098
https://www.sciencedirect.com/science/article/pii/S0747717116300098

References

56

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Background
	Purpose
	Outline

	Futhark
	The basics
	Primitives and function definitions
	Records
	Lambda expressions

	Polymorphism
	Pattern matching
	Loops and branching
	Uniqueness types

	Arrays and second-order array combinators
	Map and tabulate
	Reduce and scan
	Filter and partition
	Expand
	Scatter

	Application operators
	Size parameters

	Theory
	Topology
	Simplicial complexes
	Simplicial homology
	Persistent homology

	Computing persistent homology
	Previous work

	A parallel algorithm
	Adding columns in parallel
	Incorporating the clearing lemma
	A functional perspective
	Implementation
	Matrix data structure
	Clearing
	Identifying pairs of columns to add
	Pairwise column additions
	Initialising the new matrix
	Copying the leftmost columns
	Adding columns

	Checking for convergence

	Experiments
	Early stopping

	Discussion
	Our experiments
	Futher work
	Using Futhark

	References

