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Systems biology of deregulated splicing in cancer
A pan-cancer analysis of dysfunctional splicing machinery and alternative splicing
events
LETICIA CASTILLON
Department of Biology and Biological Engineering
Chalmers University of Technology

Abstract
The deregulation or disruption of the splicing process has been shown to play a role
in the onset, development, and even response to treatment of some malignancies.
Partly due to our incomplete understanding of the mechanism and regulation behind
splicing and alternative splicing, the importance of aberrant splicing in oncogenesis
is not yet understood. In this project, we set out to perform a systematic analysis
of aberrant splicing events in cancer cell lines from two perspectives: deregulated
splicing because of dysfunctional splicing factors and the appearance of de novo
splicing events because of splice-disruption mutations in the DNA sequence.
All the analyses have been performed using data publicly available in the DepMap
portal. For the analysis of de novo splicing events caused by mutations in the DNA
sequence, we used the deep-learning tool SpliceAI. To the extent of our knowledge,
SpliceAI has not been previously used to analyze RNA-sequencing from cancerous
samples - cell lines nor human tumour samples. In this project, we decided to test the
deep learning algorithm in data from the Cancer Cell Line Encyclopedia collected by
the DepMap consortium and evaluate its performance to detect splicing alterations
that may affect oncogenesis. In order to try to evaluate the clinical relevance of our
findings, we used the MSK-IMPACT sequencing panel to narrow down the analysis
to actionable genes - genes that can be targeted by drugs.

Keywords: multi-omics, splicing, alternative splicing, deep learning, cancer, tran-
scriptome.
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1
Introduction

Cancer is arguably one of the most widely known and feared diseases of our time. In
spite of the mammoth efforts - economical, scientific, and medical - that have been
invested in finding a cure, an efficient treatment for all instances of cancer remains
elusive. Although this may seem puzzling, the truth is that cancer is a complex
disease about which we knew practically nothing until the last century.

Cancer converges to an array of distinguishing characteristics - namely cells that
are able to grow uncontrollably, to adapt to their environment better than normal
cells and eventually, to spread and invade other tissues. However, it would be wrong
to consider cancer as a single entity, since the molecular mechanisms driving each
cancer are exceedingly unique and influence factors such as the aggressivity of the
tumor, the response to treatment or the likelihood of relapse. Moreover, this shape-
shifting disease displays a twisted mirror of our own biology, usually being caused
by small variations in the biology of the cell that disrupt the delicate mechanisms
that maintain the homeostasis of the body. Yet the changes are so small that it is
exceedingly hard to find a treatment that obliterates cancerous cells while leaving
healthy ones undisturbed.
Cancer has shown to be an insidious disease that takes multiple forms and hitchhikes
our own biology to its advantage, eluding the efforts to completely eradicate it for
over a century. Its insidiousness and stubbornness – relapsing often after oncologists
believed they had ridden the body from the disease – have caused some researchers
to coin it as the emperor of all maladies [113].
In order to understand where we stand in our battle against cancer, it is important
to define the term itself.

1.1 Defining cancer
The term cancer comprises many diverse and complex neoplastic diseases [63] that
nevertheless share several characteristics, such as uncontrolled cell growth and the
ability to invade - and eventually destroy - adjacent tissues or organs [31], [48].
Cancer is caused by the accumulation of mutations and/or epigenetic changes in the
DNA that lead to alterations in the biology of the cell 1. Therefore, cancer is caused
by the interaction of both internal factors, such as mutations, hormones, or immune

1Some cancers can be caused by viruses, as first demonstrated by Peyton Rous [134]. Human
papillomavirus (HPV) is a prominent example of such a virus, being the leading worldwide cause
of cervical cancer [36]
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1. Introduction

conditions, and environmental/acquired factors, namely tobacco, radiation or diet
[3]. However, only 5-10% of all cancers are due to inherited genetic characteristics,
whereas the rest can be attributed to mutations linked to environmental factors [3].

Before addressing the molecular characteristics of cancer, it is good to clarify some
of the jargon. The terms tumor and cancer are usually used indistinctly, but they
do not necessarily denote the same objects. A tumor is a mass of cells that start
growing uncontrollably. A tumor may, however, be or not be cancerous, depending
on its ability to rapidly grow and invade other tissues. A benign tumor, although
still able to grow, is usually encapsulated and lacks the ability to invade surrounding
tissue - although it may still cause problems depending on its size and location. On
the other hand, a tumor is malignant or cancerous if it is invasive, meaning that it
can spread to adjacent tissues, or if the tumor can metastasize, meaning it spreads
to other parts of the body [1]. Therefore, not all tumors are cancers, and not all
cancers form tumors - for example leukemias, most lymphomas, and some types of
myelomas, which are cancers of the blood [1]. For the sake of clarity, when using the
word tumor in this work I will be referring to malignant tumors unless the contrary
is stated.

1.2 A brief history of cancer

Figure 1.1: The most ancient description of a neoplasm was found in a papyrus coming
from ancient Egypt, dating back to 2625 BC. The medical text described what may have
been a breast tumor.
© ANDRÉ/WIKIMEDIA COMMONS

Cancer is, in fact, an instance of evolution. Following an alteration that disrupts
the delicate balance of cellular proliferation and death, cancer usually arises because
a cell is able to grow faster and adapt better than its neighbors [113]. Therefore,
cancer is inherent to human biology and it becomes more prevalent as we age, since
the molecular mechanisms that prevent mutations to set in and protect cellular
homeostasis begin to fail. For this reason, even though there is evidence that cancer
has always accompanied the human race - Imhotep, the famous Egyptian physician
who lived around 2625 BC, already described a case of breast cancer; and cancer-
ous tissues have been found in mummies, the most ancient of these dating of 2000

2



1. Introduction

BC [113] - the disease became more evident as advances in medicine furthered our
life expectancy and plummeted the prevalence of previously deadly diseases such
as tuberculosis or smallpox. In the 1940s, cancer made its way to the second most
common cause of death in the US, only surpassed by heart disease [113]. In the
beginning of the century, cancer was listed seventh on that list [113].

Although cancer was present in the early days of human history, its prevalence was
indeed rare and therefore the disease remained nameless until - approximately - 400
BC, when Hippocrates gave it the name karkinos, coming from the Greek word for
“crab” [113]. Illness was explained by ancient Greeks as an imbalance between the
four humors that formed the body: blood, black bile, yellow bile and phlegm. Fol-
lowing this philosophy, cancer - back then only diagnosable when already forming
noticeable tumors - was explained as an excess of “trapped” black bile. Therefore,
the first treatment for cancer came in the form of medicines that attempted to
cleanse the excess of black bile [113]. However, in the seventeenth century it be-
came clear that the humoral theory of disease did not hold, hence opening the door
for a different course of treatment for cancer: the extraction of the tumor [91]. It
was the dawn of surgical oncology, propelled forward by the discoveries of antisepsis
and anesthesia - before of which it had been only possible to extract very small
and superficial tumors without an extreme risk for the patient [113]. In the twen-
tieth century, many primary tumors - not yet metastasized - could be removed by
surgery. As of today, surgical extraction still remains the standard treatment of lo-
calized tumors, often combined with adjuvant therapy [16], [149]. However, in spite
of surgical efforts to remove every bit of malignant tissue, some cancers kept coming
back. Although it was impossible to know back then, some of the tumors surgeons
were excising had already spread to other parts of the organism - the cancers had
metastasized.

Later, the discovery of X-rays unveiled yet another form of treatment. X-rays can
directly attack the DNA or produce toxic chemicals that are harmful to the molecule.
In response to this damage, cells usually stop dividing or even die - especially those
cells that divide quickly [113]. Soon enough, doctors and researchers realized the
potential of the new technology for treating cancer. In 1826 X-ray irradiation was
used for the first time to treat cancer; it was the birth of radiation oncology. Un-
fortunately, this treatment presented similar shortcomings than surgery, and was
of limited utility on tumours that had already metastasized. Moreover, as we well
know nowadays, radiation produces cancers by the same mechanism that destroys
the tumors: the DNA damage can induce cancer-driving mutations in genes.
It became evident that locally attacking a tumor was not sufficient to cure cancer.
The surgeon Willy Meyer put this realization into words in 1932: “If a biological
systemic after-treatment were added in every instance, we believe the majority of
such patients would remain cured after a properly conducted radical operation 2”
[113]. Oncologists and researchers came to the conclusion that cancer was, after

2A radical operation was a surgery in which they not only excised the tumor, but also surround-
ing tissue, muscle and sometimes even lymphatic nodes in order to ensure that no cancerous cells
remained - in an attempt to avoid cancer relapse.
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1. Introduction

all, a systemic disease. Therefore, the efforts to find a cure took a new direction:
finding a drug that would be potent enough to kill malignant cells, yet specific
enough to spare healthy ones. This concept was known as chemotherapy and was
not restricted to cancer, but also to other diseases caused by microorganisms. Paul
Ehlrich, considered one the father of chemotherapy, found chemicals able to cure the
sleeping sickness and syphilis - microbial diseases - and called them magic bullets
[113]. In spite of his efforts, he could not find such a chemical to treat cancer:
cancerous cells were too similar to healthy ones, and hence difficult to target.
Later attempts were more successful - Sidney Farber’s antifolates (1946) and Hitch-
ings and Elion’s 6-mercaptopurine (tried on patients in 1950) [113] - but only tem-
porarily. Similarly to surgery and radiotherapy, cancers kept relapsing. Combina-
tions of drugs - cocktails of up to four cytotoxic drugs were tried in the 60s - proved
to be more prosperous, but to a great cost for the patients. Eradicating the tumour
without killing the patient while doing it was the largest challenge of oncology - and
in many cases it still is. Even in the most successful clinical trials, only a small
percentage of patients both survived the treatment and remained cancer free for
more than one year [113]. The first targeted drug for cancer was tamoxifen, an
estrogen antagonist that was first used to treat breast cancer in 1969. The trial was
a success - in a proportion of the patients, the tumors almost immediately shrank,
although they would eventually relapse - but more importantly, it was an important
proof-of-concept: it was possible to target a specific pathway in a cancer cell. The
molecular mechanism behind the action of the drug was deciphered in 1973, being
the first time a molecular logic could be laid for a drug, its target and a cancer cell
[113]. It was also the first hormonal therapy used to treat cancer - practically before
the function of hormones in the body was completely understood. Notwithstanding
the success, the problem persisted that cancerous cells eventually become resistant
to both chemotherapy and hormonal treatment - even if only after years or decades.
It did highlight, however, the heterogeneity of cancer. At a genetic level, only a cer-
tain type of breast cancer, which still possessed estrogen receptors, was responsive
to treatment with tamoxifen. At an anatomic level, some cancers remained local
while others had a tendency to metastasize [113].
Besides the eventual development of resistance, the major setback of cancer treat-
ments is that we lack a therapeutic strategy incisive enough to distinguish between
cancerous and healthy cells, with current chemotherapy and radiation treatments
effectively poisoning malignant and normal cells alike. In 1997, it was observed that
cancers could present tumour-specific antigens - generated by point mutations, for
example - able to elicit an immune response from the patient [22]. In some cases,
such an immunological response could eliminate the tumor. With this realization
the development of a new treatment strategy began: immunotherapy, which aims to
harness the immune system in order to directly treat cancer [162], while sparing the
rest of the organism, since many of the targets used for immunotherapy are tumour
specific. Since the early days of immunotherapy, several strategies have appeared:
vaccines against cancer, cellular immunotherapies, antibodies or recombinant pro-
teins [47]; with immune checkpoint inhibition (ICI) therapy being one of the most
promising advances in cancer treatment [128] in the recent years. However, in spite
of the clinical efficacy of approaches such as ICI, most tumours are virtually un-
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responsive to this approach (i.e. pancreatic cancer, colorectal tumors and prostate
tumors) and even in responsive cancers, relapses usually occur [37].
In spite of the tremendous research efforts, it is evident that an efficient and durable
treatment for cancer remains elusive, with most cancers eventually able to become
resistant to therapy. Cancer is still the second cause of death worldwide, with an
incidence of 442.4 per 100,000 people per year [15] and mortality of 158.3 per 100,000
people per year in the US [17]. Besides the human cost, cancer also supposes a high
economic burden, costing around $150.8 billion in the US in 2018 [15]. Worldwide
statistics indicate that by 2040, the yearly number of new cancer cases will rise to
29.5 million and the associated deaths will also increase to 16.4 million [15], [55].

Figure 1.2: Age-standardized incidence rates world-wide in 2020, across different cancer
types. Data source: GLOBOCAN 2020 & WHO; International Agency for Research on
Cancer 2021.

In order to be able to envision efficient treatments, it seems clear that we need to
better understand the molecular mechanisms by which cells become cancerous and
the microevolutionary process occurring in the tumor that leads to the development
of resistance to chemotherapy or immunotherapy.

1.3 How do cells become cancerous?
As stated before, cancer is a process of microevolution: a cell will acquire a muta-
tion or epigenetic change that will give it a slight advantage over neighboring cells,
making it more suited for survival. Therefore, several rounds of genetic changes and
natural selection lead to tumor progression [1]. The consensus is that most cancers

5



1. Introduction

arise from a single cell, which is known as the monoclonal origin of tumors. How-
ever, there is evidence supporting a different theory, namely the multiclonal origin
of tumors that states that cancers arise from the interaction of many different clones
of cells [120].

To better understand the diversity and complexity of the disease, several molecu-
lar events have been defined as the hallmarks of cancer. These hallmarks can be
thought of as the capabilities that a cell needs to acquire to become malignant,
regardless of the molecular mechanism behind said capability [62]. In other words,
the hallmarks explain how tumoral cells can thrive and proliferate uncontrolled in
the organism, for example escaping immunological surveillance [62]. This does not
mean that every single tumor will check all of the hallmarks, but rather provides
a framework to understand the effects of the different changes a cell suffers when
undergoing a malignant transformation.

The hallmarks of cancer have been defined such as follows:

• Ability to alter energy metabolism: since cancer cells need to sustain an in-
creased rate of growth, they have increased energy needs. To sustain it,
cancerous cells can limit their energy metabolism to glycolysis, even in the
presence of oxygen, which is known as the Warburg effect [1], [62].

• Genomic instability: healthy cells have mechanisms in place to keep the mu-
tation rate low. In cancerous cells, these mechanisms are typically impaired,
facilitating the accumulation of random mutations over time [1], [62].

• Ability to avoid replicative cell senescence: normal cells can only divide a lim-
ited number of times, which is determined by the length of the telomeres,
which shorten with every cell division. By overexpressing the protein telom-
erase, cancer cells avoid the shortening of the telomeres and therefore the
programmed senescence [1], [62].

• Inducing angiogenesis: tumors need to create new blood vessels to be able to
uptake oxygen and nutrients and remove metabolic byproducts and carbon
dioxide [62].

• Activating invasion and metastasis: cancer cells are capable of breaking the
constraints that keep other cells in the place where they are supposed to be.
The process of metastasis is not completely understood yet but involves a
process that starts with the local invasion of adjacent tissue, followed by in-
travasation to the blood and lymphatic vessels and the transport of cancer
cells to distant tissues [1], [62].

• Ability to evade immune destruction: usually the immune system is able to
eliminate those cells that have suffered aberrant changes. However, some can-
cer cells are able to evade the immune surveillance [62] through different mech-
anisms, for example producing proteins that bind to and deactivate immune
cells [159].

Knowing and understanding the characteristics of cancerous cells is important to
find genetic signatures or biomarkers that can alert us of the presence of the disease,
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ideally in its early onset -for example liquid biopsies - as well as to find efficient/effec-
tive treatments [62], [13]. It is also important to understand the genetic mutations
that may be driving the disease or cancer dependencies.

1.4 Towards a molecular understanding of cancer
In the battle against cancer, it soon became evident that in order to find an efficient
treatment, we needed to understand the molecular mechanisms driving oncogenesis.
One of the first theories to emerge was the somatic mutation theory, first stated in
1914 [157]. Originally, its main premise was that cancer is derived from a somatic
cell that has accumulated multiple DNA mutations in genes that control cell pro-
liferation, making them more active [147], and resulted from the observation that
exposure to DNA-damaging chemicals often induced the disease and supported by
research using model systems such as cancer cells and oncogenic viruses [38]. The
study of heritable cancers uncovered different gene alterations that rendered some
genes inactive [147]. Since being formulated, the theory has grown to account for
the many different roles that genes have in oncogenesis, directly and indirectly, and
remains the paradigm of cancer research [157]. The realization that the cause for
cancer may be buried within our genes propelled the search of other genes responsi-
ble for oncogenic events such as metastasis [38] and provided one of the reasons to
embark on the Human Genome Project (HGP), an ambitious research effort seeking
to sequence and map of the genes of our species that began in 1990 and was com-
pleted in 2003 [151].

At the time the HGP commenced, sequencing was far from what it is today. The
birth of recombinant DNA technology in 1973 made isolating individual genes possi-
ble, but sequencing was extremely laborious. The first generation DNA sequencing
was developed by Sanger and colleagues in 1965 [137], [65]. The technique, later
known as Sanger sequencing, was subsequently improved and other protocols, like
Maxam and Gilbert’s [107] appeared. However, it was in 1977 when Sanger’s chain-
termination technique revolutionized DNA sequencing [65] and made it possible to
elucidate 300 to 500 bp of DNA sequence in a single experiment [[172]. When the
HGP started, Maxam-Gilbert sequencing and Sanger sequencing were used. Au-
tomation tools and high-throughput sequencing technologies had yet to be devel-
oped and the cost of sequencing a single DNA base was of approximately $10 and
involved the construction of clones for sequencing and PCR amplification [41]. The
HGP - together with other institutions, such as the Welcome Trust in the UK -
also propelled the development of high-throughput sequencing technology, or next-
generation sequencing (NGS).

The first large success of the second generation DNA sequencing, or next-generation
sequencing, was pyrosequencing. This method used a two-step luminescent tech-
nique that made it possible to observe the synthesis in real-time and avoided alter-
ation of the nucleotides with chemical labels. Moreover, it does not need a cloning
step of the DNA fragment to be sequenced which, together with other characteris-
tics, allows for massive parallelization, significantly increasing the amount of DNA
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that could be sequenced in a single experiment [65], [175]. Nowadays, the most
successful sequencing platform is owned by Illumina, ensconced in a near monopoly
and probably the most worldwide used NGS technology [60]. The advent of NGS
technologies was of especial importance for functional genomics. The development of
RNA-Sequencing in 2007 [43] allowed for profiling of the transcriptome using deep-
sequencing technologies - providing far more precise measurement of transcript and
isoform levels than previously used technologies, such as microarrays [171], [175]. Be-
fore RNA-sequencing, the transcriptome was already studied using microarrays or
Sanger sequencing, far more laborious techniques that also lacked the accuracy and
sensitivity of RNA-Seq. The profiling of the transcriptome with RNA-sequencing
and the fallouts of this technology are discussed more profoundly in the Theory
section.

Understanding the transcriptome is important for understanding the functional el-
ements of the genome, and thus for increasing our understanding of development
and disease [171]. RNA-sequencing experiments have allowed for quantifying the
levels of expression of the genes across tissues, development stages or in disease;
or to decipher the transcriptional structure of the genes - for example the splicing
patterns [171]. Other technologies also make use of NGS to study other events; for
example ChIP-Seq is used to discover interactions between the DNA and proteins
[138].
The advancement of NGS - together with the completion of the HGP - also rev-
olutionized cancer research, giving birth to cancer genomics [14], a discipline that
analyses the DNA and RNA of a tumor and classifies it based on its molecular
characteristics - among other features, the presence or absence of mutations.
Deciphering the molecular events in the genome and the transcriptome driving can-
cer progression has had a huge impact in choosing the right treatment for each
cancer [115]. For example, non-small-cell lung cancer, a cancer type with poor re-
sponse to chemotherapy, was further classified into subtypes depending on its driver
mutation. One of these subtypes of lung cancer was characterized by mutations
in the epidermal growth factor receptor (EGFR) gene. Mutated EGFR, in turn,
usually responds to inhibitors of epidermal growth factor receptors. In fact, two
studies have proven that EGFR-positive non-small-cell lung cancer treated with
an EGFR inhibitor shows longer progression-free survival than when treated with
standard chemotherapy [119]. Thus, non-small-cell lung cancer was one of the first
examples of using the genetic and molecular framework of the disease to guide its
therapy strategy [53]. However, in spite of the surge of genomic cancer information,
genome-based treatments have not evolved accordingly, probably because of the
complexity of the disease pathogenesis, which goes beyond mutations in the genome
[173]. The next logical step is to combine every piece of information in a multi-omics
approach - adding the information from the epigenome, transcriptome, proteome and
metabolome - to draw a better understanding of the events driving cancer, improve
the precision of treatments, and discover new biomarkers of disease [10], [160]. Such
an integrative approach will also improve our knowledge of those malignancies with
a non-mutated but dysregulated genome or transcriptome. The Cancer Genome
Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are two
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of the consortiums that set out to fully characterize the genome of thousands of
tumors. A huge amount of data combining mutations, gene expression and protein
levels across 33 cancer types has been collected [11]. The genomic characterization
of malignancies has aided the management of some cancers. For example, in breast
cancer it was demonstrated that the expression of poly (ADP-ribose) polymerase-1
(PARP1), is upregulated in tumors with a negative expression of estrogen receptors
(ER), progesterone receptor (PR), and human epidermal growth factor receptor 2
(HER2) - or negative expression of the three of them [118]. A tumor with these
molecular characteristics would be susceptible to therapy with PARP inhibitors -
drugs that target this particular gene. Nowadays, molecular testing is routinely used
for the management of breast cancer, to establish whether the tumor is susceptible
to treatment with PARP-inhibitors - or if it presents any other targetable mutation
[100]. Nevertheless, the enormous amount of information does not directly trans-
late into improved therapy - with less than a quarter of patients suffering from the
most common cancers benefitting from targeted therapy [11], since we do not know
how most mutations affect or perturb drug activity. Hence, beyond the molecular
characterization of human malignancies, it is important to understand the function
of the mutated genes, the molecules with which they interact and their molecular
networks. Furthermore, to complete the picture we need to understand how pertur-
bations in genes and other cellular elements - transcripts, proteins - connect with
the cellular phenotype and therefore influence the response to a treatment. Lately,
functional genomic studies are showing how screening technologies such as shRNA
and CRISPR/Cas9 screening platforms can be used to identify genome or context-
dependent cancer vulnerabilities [61]. One of the most ambitious projects to date
is The Cancer Dependency Map [154], [179], a consortium formed by the Broad
Institute and the Wellcome Sanger Institute collecting massive amounts of data to
uncover the vulnerabilities of cancer cells.

Probably, the next step will be a rise in the use of in-vivo functional screening -
using genetic engineering and screening tools to perform high-throughput in-vivo
genome perturbation, once the limitations of CRISPR technology in in-vivo systems
are overcome - which would allow for the study of the temporal dynamics of context-
dependency changes during the evolution of the disease [173].

1.5 The Cancer Dependency Map - systematic
functional screening to understand cancer

The Cancer Dependency Map (DepMap) Consortium was created with the aim of
supporting the systematic discovery of novel dependencies - vulnerabilities of the
cancer cells that arise from the mutations that cause cancer cells to grow - and the
efficient identification of patient populations for target discovery programs [154],
[179]. DepMap scientists are characterizing hundreds of cancer cell line models
collecting genomic information and sensitivity to genetic and small molecule per-
turbations. To achieve these goals, the consortium is divided in three projects, each
working towards a particular goal:
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• The Cancer Cell Line Encyclopedia (CCLE) [54] started in 2008 as a collab-
oration between the Broad Institute and the Novartis Institutes for Biomed-
ical Research. The project aims to characterize cell line models to study the
genome diversity across different human cancers, in order to devise efficient
targets for precision medicine.

• The Project Achilles [154], [56], [80] systematically identifies gene essentiality
across the characterized cancer cell lines. To conduct the screenings, they use
genome-scale RNAi and CRISPR-Cas9 genetic perturbations to knock out or
silence single genes and evaluate their effect in the survival of the cell. After
perturbation of an individual gene, they measure cell growth, cell death, gene
expression and cellular morphology [11], [33].

• To screen for drug sensitivity, screening methods such as PRISM (Profiling
Relative Inhibition Simultaneously in Mixtures) [179], [21] and CTPR (Can-
cer Therapeutics Response Portal) [130], [140], [7] aim to understand the effect
of drugs in the characterized cell lines, therefore evaluating the effect of the
compounds in a broad genetic spectrum.

Figure 1.3: Overview of the different ongoing projects at the Cancer Dependency
Map. Figure adapted from the DepMap portal.

The data generated from these experiments was processed and deposited in the
DepMap portal, where it is publicly available for other scientists to use and anal-
yse. In this thesis, I focused on the datasets provided by DepMap instead of other
resources, such as the in-vivo genomic information contained in TCGA, mainly
due to the functional information provided by molecular perturbation screens (i.e.
Achilles). Data from these screens makes it possible to infer the mechanistic con-
sequences that a cancer-specific molecular feature (e.g. a mutation) may have in
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the cell. Although it is true that information derived from cell lines will inevitably
miss some of the complexities of cancer biology, in vitro research is still undoubtedly
useful to understand the mechanisms behind cancer development and even to find
new therapeutic targets - with most drugs available today discovered from in vitro
experiments [11].

Multi-omics and functional screening experiments usually result in large data sets
whose information needs to be integrated in order to obtain a comprehensive char-
acterization of the organism or model of interest. Such a task is too complex to be
achieved by simple investigation of pairwise correlations [44]. Therefore, concomi-
tant with the surge of data is an increased demand for new tools and methodologies
that allow for an efficient analysis of these big datasets. Machine learning and
deep learning are good examples of such tools, being algorithms able to detect pat-
terns and features from the data without the need of previous knowledge. Machine
learning and deep learning methodologies have been successfully applied to analyze
genomic data since the demonstration of the applicability of deep learning to DNA
sequence data in 2015,[98], [117], [32], [67], [141], [44], [2], [184]. The application of
these methodologies has allowed for significant advances in functional genomics and
regulatory genomics, for example [185], [44]. More recently, an AI-based tool was
used to successfully the origin of metastatic tumors [101].
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Theory

As I explained in the previous section, there are many different molecular mecha-
nisms by which cancer cells can acquire the hallmarks that characterize them. This
divergence is one of the reasons behind the complexity of cancer. One such mecha-
nism is the dysregulation of the splicing process by either alterations on the DNA
sequence of the spliced gene, or mutations in the spliceosome. The goal of this thesis
is to use a multi-omics approach to relate alterations in the splicing process with
cancer dependencies or response to drugs, using the data generated by the DepMap
consortium. Before getting into the details of the research, I explain in this section
the key concepts to understand the analysis and its results.

2.1 Revisiting fundamental cell biology
Molecular biology has long revolved around the central dogma of molecular biology,
first coined by Francis Crick [24], [23]. The dogma broadly describes the transfer of
information in the cell during DNA replication, transcription into RNA and trans-
lation into proteins [126]. We now know that the dogma is an oversimplification
that overlooks many regulatory features - one such feature being the maturation of
messenger RNA (mRNA), of which we will talk more about later - but nevertheless
the central dogma is still useful to illustrate the basic functioning of the cell.

Figure 2.1: Simplified representation of the central dogma of molecular biology,
illustrating the effect that a mutation in the DNA may have in the resulting protein.

In cancer, mutations or epigenetic alterations at the DNA level often interfere with
this flow of information and result in altered proteins which cannot carry out their
normal function anymore, disrupting the homeostasis of the cell. However, there are
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many ways by which these alterations affect the resulting protein. One such way
is by altering the process of splicing, by which the pre-mRNA matures into mRNA
that is ready to migrate to the cytoplasm and be translated into proteins.

2.2 Splicing and alternative splicing
Cells need to fabricate proteins in order to properly function. As explained before,
these proteins are encoded in the DNA of the cell, which is transcribed into different
mRNAs. These mRNAs are then translated into proteins [1]. Until 1977, it was
assumed that every base pair in the gene contained information transferred to the
protein. A series of observations proved that this was not the case for eukaryotic
organisms, and it was shown that most genes in multicellular organisms contain
introns, segments of base pairs that were present in the DNA but not in the shorter
mRNA that was found in the cytoplasm [143]. Thus, there is one extra step prior
to translation, namely mRNA maturation. Before being translated, the mRNA suf-
fers a catalytic reaction known as splicing, which is defined as the process of intron
removal and exon ligation of the majority of the exons in the order in which they
appear in a gene [167]. Almost at the same time splicing was discovered, alternative
splicing was described as well. Alternative splicing is a deviation from the standard
mRNA maturation process by ligating a different number or combination of exons
[167]. This leads to a variety of mature mRNAs able to be translated into proteins,
all of which result from the same gene. In fact, alternative splicing leads to the dif-
ferences in transcript composition across different tissue types, with estimates that
over 50% of all splicing events differ among tissues [165].

Alternative splicing has an important role in several processes of eukaryotic organ-
isms [40], [84], being the major contributor to transcriptome and proteome diversi-
fication in eukaryotes. For humans, this means we can produce way more different
proteins than we have genes: approximately 95% of genes undergo alternative splic-
ing to produce different mRNA transcripts [84], [164]. In fact, it is estimated that
between 15% to 50% of human disease causing mutations seem to affect splice site
selection [166], [6].

2.3 The splicing code
The processes of splicing and alternative splicing modulate many critical cellular
processes [6] and usually work robustly and with minimal errors. The precision of
the process, however, astonished researchers, who could only find two universally
conserved nucleotides: GU at the 5´ site of the intron and AG at its 3´ site, which
seemed insufficient to explain the precision of splicing [5]. Later, the discovery of
other sequence features (the branch point and the polypyrimidine tract) further ex-
plained the accuracy of the process, defining the exon/intron junction - or splice
sites, or consensus sequences -, to which spliceosomal factors and other proteins
could bind to catalyze splicing [5]. However, these features were still not enough
to justify the accuracy of the reaction - usually error free -, least when taking into
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account alternative splicing. The discovery of auxiliary sequences, namely cis-acting
elements - which depending on their location and effect on splicing were termed en-
hancers and silencers - and trans-acting elements - splicing factors -, helped to better
understand the regulation of the process. Yet again, none of these elements are well-
conserved, and their functions are poorly understood. Enhancers and silencers can
be located within exons or introns, depending on which they are considered exonic
or intronic splicing enhancers (or silencers). Enhancer sequences located within an
exon promote exon recognition, which in term promotes RNA splicing. A silencer,
on the other hand, inhibits splicing of adjacent sequences [143]. Furthermore, other
factors also influence the outcome of splicing: the RNA structure, the transcription
rate and transcription factors (since splicing is synchronous to transcription [83],
[143], [85]), chromatin remodelling and epigenetic modifications [5].

In short, the regulation of splicing is far from completely understood, partly due
to its complexity and partly due to its degeneracy. Less than 5% of 5’ splice sites
are a perfect match of the established consensus sequence [5]. The degeneracy of
the splicing code is probably for the sake of plasticity, since it allows for alternative
splicing and in turn, for greater proteome diversity. However, this plasticity also
difficults the distinction between canonical and alternative splicing of a gene, which
is often context dependent [150].

2.4 Alternative (aberrant) splicing in cancer
Although we know that splicing events contribute to proteome diversity and have a
functional impact, the function of many of these events remains unknown [85]. Fur-
thermore, alternative splicing often results in products that have no function [85].
Aberrant splicing - abnormal alternative splicing - is widespread in cancer [158],
[85]. First thought to be a consequence of other cancer driving mutations, now it
seems clear that some of the aberrant splicing confers new properties to the cancer
cell [46], [79], although a percentage of it is probably cancer-specific noise likely
not relevant for the pathology of the disease [139]. An example of altered splicing
contributing to tumorigenesis would be mutations in the splicing factors SRSF2,
SF3B1 or U2AF1, all part of the spliceosome and involved in the recognition of the
3´splice site. These mutations would alter the splicing by affecting the recognition
of the splice site, which would affect the stability of transcripts that encode proteins
that promote transformation [57].

Previous analysis of data from The Cancer Genome Atlas (TCGA) highlighted the
extent to which mutations that alter splicing patterns are driver mutations for can-
cer, showing that 119 genes that encode core spliceosome and splicing factors are
suspected to be drivers for the disease across 33 tumor types [142]. Aberrant splic-
ing has proven so relevant to oncogenesis that some researchers have stated that
dysregulated alternative splicing should be considered a hallmark of cancer [87].
Beyond improving the molecular characterization of different cancer types, under-
standing the role of aberrant splicing in cancer could unveil novel treatment avenues.
In fact, clinical trials testing spliceosome inhibitors have already been conducted, al-
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beit unsuccessfully due to cytotoxic effects [164]. Nevertheless, a number of clinical
trials are currently ongoing using spliceosome inhibitors that show less toxicity (i.e.
H3B-8800 being tested in clinical trial NCT02841540) or inhibitors of the protein
arginine methyltransferase, PRMT5, which have shown antitumor effects associated
with aberrant splicing across many cancer types (i.e. the drug GSK3326595, tested
in two clinical trials with NCT numbers NCT03614728 and NCT02783300) [164].
Furthermore, alternative mRNA splicing may offer a wide variety of novel target sites
for cancer immunotherapy [50]. Aberrant splicing events generate a suite of novel
peptides that can bind to MHC class I molecules and serve as neoepitopes [50].
Recent studies have shown that the target space of splicing-derived neoepitopes
is significantly higher than those of somatic single-nucleotide variant events [50].
Furthermore, a recent study has shown that the majority of tumor-specific antigens
derive from presumably non-coding regions [89], and therefore could be missed by
standard alternative splicing analysis that rely on exon usage.

2.5 The spliceosome
One of the causes behind aberrant splicing are alterations of the DNA sequence to
be spliced, which would affect the splice sites and the binding of splicing factors
and other associated proteins. In addition to this, research has also shown that
many of the observed changes reflect alterations in components of the spliceosome
[4]. The spliceosome is the molecular machinery that catalyzes the splicing process.
The core spliceosome and its associated factors consist of more than 300 proteins
and 5 small nuclear RNAs (or snRNAs) that both perform and regulate splicing
and alternative splicing [4]. The spliceosome is found in the nucleus and it forms
on the pre-mRNA by recognizing active splice sites in the chain [161]. It is a very
complex and dynamic construct that changes composition across the different stages
of the splicing process [161]. Such dynamism is important to respond to regulation
cues that may control the catalysis of canonical splicing or alternative splicing [65].
It has also been reported that the splicing of a particular type of introns, named
minor or U12 introns, utilize a different spliceosome composed of different snRNPs
[40], highlighting even further the plasticity of the molecular machine. Furthermore,
cancerous cells across all cancer types present high levels of intron retention, which
exemplifies the importance of the spliceosome and its composition in the transcrip-
tion profile of human diseases [40]. Yet another example was provided by a study
that showed that the alternative splicing of important metabolic genes is regulated
by splicing factors, suggesting that splicing factors have an important role in tumor
metabolism [181].
Moreover,the spliceosome has also been identified as a cancer vulnerability for certain
tumors. As an example, MYC-driven tumors need of spliceosome components for
MYC to behave as an oncoprotein [4], [69]. MYC is a transcription factor and one
the most frequently overexpressed oncogenes in cancer, often driving transformation.
Previous work has shown that interactions between MYC and splicing factors such
as SRSF1 contribute to the oncogenic activity of MYC, sometimes even enhancing
its malignant potential [27], [81]. Furthermore, research has revealed that certain
spliceosomal elements are essential for the oncogenic activity of MYC, opening to
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the possibility of targeting the spliceosome in order to treat MYC-driven cancers
[4], [69], [81].

2.6 Machine learning & Deep learning

In order to know the role a mutation plays in the disease, we need to take into
account complex regulatory relationships that are not fully understood yet. Never-
theless, the DNA sequence contains most of this regulatory information - with the
exception of epigenetic mechanisms, such as DNA methylation [102], [112], [109].
Because of this, the use of machine learning algorithms that are able to learn and
recognize patterns from raw data is suitable to understand or predict the effect that
a mutation can have on the phenotype of a cell or disease .

The term machine learning refers to algorithms that are able to extract patterns and
learn features directly from data, and to improve their performance with experience
or, in other words, with the amount of data fed to the algorithm - the more data the
algorithm has, the more it will learn [98], [58]. However, the performance of most
simple machine learning algorithms relies on the pieces of information that they are
given - each piece of information known as a feature of the data [58]. When applying
machine learning to genomics, it is usually hard to know what features should be
given to the algorithm - if each nucleotide in the DNA sequence is a feature, it is
nearly impossible to know how each individual base pair will affect the phenotype
of the cell, partly due to our incomplete knowledge of some molecular mechanisms
and the regulation behind some processes. Such a problem - also encountered in
computer vision, for example, where the goal is that the algorithm recognizes the
different elements of an image - was solved with the development of an approach
known as representation learning, by which the algorithm is able to discover the
representation of the data on its own, meaning it is able to find a good set of
features with minimal human intervention [58]. Deep learning defines methods that
are able to implement representation learning by using multi-layer algorithms that
build complex features out of simpler features in successive elementary operations
[58]. In this way, it can extract useful information from the given data without
the need of explicitly providing an appropriate representation. For example, in
classifying a tumour as malign or benign, a deep learning algorithm can take into
account not only cell counts - which is the information that would be manually
provided by researchers - but also visual features like cell morphology or location,
and identify patterns in these features that are relevant for the classification problem
[44]. Similarly, using deep learning algorithms in genomics or multi-omics data
means that the algorithm is able to evaluate the complete context of the raw DNA
sequence and learn patterns and features embedded in the nucleotide chain - without
the need of feature selection. Not needing feature selection is extremely important
in the context of genomics and other omics, since our knowledge of the molecular
events that may influence the different phenotypes is incomplete. Hence, if we were
to give features as a representation of the data, this representation would most likely
be flawed and affect the performance of the algorithm.
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Figure 2.2: Simplified overview of a deep neural network. The example takes raw
clinical and omics data as input and eventually predicts whether a specific sample
presents the molecular signatures typical of canonical or aberrant splicing.

Since dysregulated alternative splicing or mutations in the spliceosome play such an
important role in the oncogenesis of some cancers, being able to predict whether a
mutation will affect the splicing process would help to better understand the impact
of the variant, eventually allowing for more informed therapeutic decisions.
Traditionally, alternative splicing has been studied using RNA-sequencing, which en-
ables transcriptome-wide profiling of the process [182]. Although RNA-sequencing
has allowed for unprecedented characterization of alternative splicing, the technique
presents some problems. One of the issues of using RNA-sequencing to analyze alter-
native splicing is the reliance of the sequencing method on high sequencing coverage,
which means that it is not reliable to detect splicing in genes with low expression
[182]. Some probabilistic methods such as Cufflinks [153] and MISO [77] perform
relatively well even for low-coverage, but do not completely solve the challenge [70].
Moreover, low-cost RNA-sequencing methods that rely on only capturing the 3’ tail
of transcripts are unfit for analysis of splice variants. However, since it was proven
that splicing (in bulk cells) can be reliably predicted from sequence-associated fea-
tures [70], [176] many machine learning models have been developed to predict splic-
ing levels both in bulk tissues and single cells [153], [94]. One such method is the
deep-learning tool SpliceAI [72]. As explained before, deep learning algorithms are
a subtype of machine learning that uses representation-learning methods - features
do not need to be fed by the user - with multiple levels of representation - or many
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layers [42], [92]. Each layer performs a nonlinear transformation on the previous
layer, building up a complex representation that makes them suitable to under-
stand complex patterns [146], [145]. Deep learning is particularly useful to study
the process of alternative splicing, since alternative splicing is a highly regulated
and complex biological event whose regulation and mechanism are not completely
understood yet. Even though we do not know exactly how splicing is regulated, the
splicing code is written in the DNA sequence. Therefore, deep learning approaches
that do not require feature selection are useful to extract patterns from this primary
sequence.

2.7 Using deep-learning to predict alterations in
the splicing process

There are many diseases caused by aberrations in the splicing process, such as the
Prader Willi syndrome, Treacher-Collins syndrome or prostate cancer [20]. Many of
these diseases may be caused by so-called cryptic splice variants, mutations occurring
outside the consensus GT and AG splicing nucleotides [72], [20], [75]. Identifying
such cryptic variants in the clinic is hard, mainly because of our incomplete knowl-
edge of the splicing code [72], [170]. Furthermore, even though RNA sequencing has
proved to be a useful tool for detecting splicing aberrations [20], [30], its capacity
to detect random novel mutations is limited because of the extremely large genomic
space in which splice-altering mutations can take place [20]. To overcome these
limitations, Jaganathan et al. developed a deep-learning algorithm able to predict
splicing events from any given pre-mRNA sequence, evaluating whether each nu-
cleotide in the transcript is a splice donor, splice acceptor or neither [20]. SpliceAI
is a deep residual neural network - an approach developed to tackle the loss of ac-
curacy when increasing the depth (or the number of layers) of an algorithm [64].

SpliceAI deep learning algorithm spans 32 dilated convolutional layers that are able
to identify sequence determinants separated by very large genomic distances [20].
Convolutional layers are those that apply a convolution operation, which merges two
sets of information and eventually serves to detect specific features from the input
[34]. The algorithm considers a window of 10,000 nucleotides of the flanking context
sequence of the evaluated position [20], which is important considering that the dif-
ferent splicing sites could be located very far from each other in the genome. The tool
was developed to aid with the diagnosis of rare genetic diseases, where cryptic splice
variants have been found to play a critical role [20]. To evaluate its performance,
the accuracy of the algorithm was compared to those of three other classifiers refer-
enced in the literature for the diagnosis of genetic rare diseases: GeneSplicer [124],
MaxEntScan [177] and NNSplice [131]. SpliceAI outperformed these tools in terms
of specificity, probably because the other classifiers focus on local motifs and do not
take the whole context of the sequence - i.e. long-range specificity determinants
- into account [20]. SpliceAI was tested on data from patients with autism spec-
trum disorders and severe intellectual disabilities (using data from the Deciphering
Developmental Disorders (DDD) study, which studies severe neurodevelopmental
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disorders [108]; and data from the Simons Simplex Collection and the Autism Se-
quencing Consortium, both containing data from individuals with autism spectrum
disorders (ASDs) [30], [136], [155]. The analysis successfully showed that splice-
disrupting mutations are enriched in intellectual disability and in autism spectrum
disorders [20]. Even though SpliceAI has shown to be able to predict splice-altering
mutations with high accuracy and specificity, the tool presents some limitations.
The algorithm only considers variants within genes defined by the gene annotation
file. Therefore, its prediction power is somewhat constricted by the quality of the
reference genome and the associated annotation file, and limited to the genes that
have been annotated there. Additionally, SpliceAI does not work on variants that
are close to chromosome ends (in 5 kilobases on either side of the genome) , on
deletions of length greater than twice the input parameter, or on variants that are
inconsistent with the fasta file used as reference [71].
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3.1 Datasets

Figure 3.1: Overview of the processing steps used by DepMap to generate the
datasets used in the analysis.

3.1.1 Mutation datasets
The mutations dataset was collected by the DepMap consortium and downloaded
from the DepMap portal. The version used in this project was the release 21Q1,
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uploaded in the portal in February 2021. The file contains the genomic characteriza-
tion of 1747 cell lines comprising 35 different cancer types. The data was generated
as part of the Cancer Cell Line Encyclopedia (CCLE) project [54]. The file is written
in Mutation Annotation Format (MAF), aggregated from annotated Variant Calling
Format (VCF) files. It is important to note that the VCF files often report variants
on multiple transcripts whereas the MAF files generated from the VCF only report
the most critically affected one.
In these datasets, the mutations annotated as splice site mutations are those aber-
rations occurring exactly at consensus annotated splice site sequences, and do not
include mutations that may affect splicing elsewhere. DepMap generated these an-
notations using Whole Exome Sequencing (WES) and Whole Genome Sequencing
(WGS) data and the tool Oncotator [129].

3.1.2 Expression datasets
The expression dataset used was generated by the DepMap consortium and down-
loaded from the DepMap portal. The analysed dataset in this study was version
21Q1, released in February 2021.
The file CCLE_expression.csv contains RNAseq TPM gene expression data for pro-
tein coding genes - not accounting for the different isoforms. The transcript quan-
tification was done by the DepMap team using RSEM [96]. The reporter expression
levels were log2 transformed, using a pseudo-count of 1.
The file CCLE_expression_full.csv contains RNAseq TPM gene expression data for
all genes. Transcript quantifications were also performed using RSEM and expres-
sion levels reported with a log2 transformation using a pseudo-count of 1.
The file CCLE_RNAseq_transcripts.csv contains RNAseq transcript TPM data -
which means that expression levels are reported for the different isoforms present in
the cell. The transcript quantification was done by the DepMap team using RSEM.
The reporter expression levels were log2 transformed, using a pseudo-count of 1.

3.1.3 Functional screening - Achilles knock-out screening
For a functional analysis of the mutations, we used the data generated by the Achilles
project, also stored in the DepMap portal [33], [110]. The analysed data set is the
version uploaded in the release 21Q1.
The file Achilles_gene_effect.csv contains the results of the pipeline CERES. The
data was processed and scale so that the median effect of nonessential knocked-out
genes is 0 and that the median effect of essential knocked-out genes is 1.
The file Achilles_gene_dependency.csv reports the probability that knocking-out a
particular gene has a real depletion effect. This metric is calculated from the gene
effect dataset.
Interpretation of the gene effect data (achilles_gene_effect.csv) should be done as
follows: a negative score corresponds to an essential gene in a cancer type, meaning
that if the gene is lost, the cancer cells will not survive - which means the gene
may be a potential oncogene. A positive score points in the opposite direction -
identifying the gene as a potential tumor suppressor. However, according to DepMap
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small positive scores are likely to be noisy and CRISPR data is not as reliable
for identifying tumor suppressors as it is for identifying tumor dependencies. The
difference between both files is that the “gene effect” contains the corrected CERES
score, which measures the effect size of knocking-out a gene and normalizes this effect
against the distributions of non-essential and pan-essential genes. The dependency
scores, on the other hand, assess how likely a certain gene is to belong to the non-
essential distribution or the common essential distribution in the studied cell line.

3.1.4 Drug sensitivity

The dataset was generated as part of the PRISM repurposing project, which aims
to treat molecularly barcoded cell lines with non-oncology drugs and monitor their
effect in the cell line growth [21]. The file was uploaded to the DepMap portal as part
of the release of 19Q4, in December 2019. The dataset screened 4686 compounds in
578 cell lines.
The file primary-screen-replicate-collapsed-logfold-change.csv contains the log-fold
change values relative to controls grown in DMSO . In this dataset, the more negative
the reported value is, the more sensitive is the cell line to that compound. Values
larger than 0 suggest that the treated cells grow more than control cells, but this is
usually an artifact.

3.1.5 List of spliceosome & splicing factors genes

The list of genes coding for elements of the spliceosome machinery and other splicing
factors to analyze was extracted from the research work carried out by Seiler et
al. [142]. The list contains 404 genes categorized as part of the core spliceosome
elements or not by Hegele et al. [66]. Some of the splicing factors have not been
located in any of these two categories, and they have been labelled as "other" for
the purposes of this analysis. According to this study, those genes labelled as "core"
genes were present in high abundance and known fucntion, or for being associated
with any of the parts of the spliceosome (i.e. with any of the snRNPs). The non-core
proteins, on the other hand, include mRNA binding and regulatory proteins [66]. A
comprehensive list of the splicing factors included in the analysis can be seen in the
Table A.1 in Appendix A.

Category Number of genes
Core 141

Non-core 103
Other 225

Table 3.1: Summary of the categories in which the genes coding for spliceosome
proteins and other splicing factors have been placed
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3.2 Hardware

3.2.1 Local analysis
Most of the analysis was performed locally using a MacBook Pro (2018) with 32
GB of memory and a 2,6 GHz 6-Core Intel Core i7 processor, provided by the
Systems and Synthetic Biology Division at the Department of Biology and Biological
Engineering at Chalmers University of Technology.

3.2.2 High-performance computing environment
We used the deep learning tool SpliceAI to predict whether a mutation reported
by the CCLE project could potentially disrupt the splicing process by modifying
splice donor or acceptor sites - or by creating new ones. SpliceAI computations were
performed in the PC-cluster Hebbe, a high-performance computing environment.
The access to the cluster was enabled by the Swedish National Infrastructure for
Computing (SNIC) at Chalmers Centre for Computational Science and Engineering
(C3SE).

3.3 Software & tools
Unless otherwise stated, the bulk of the analysis was carried out in the R program-
ming language, version 1.4.1106.

3.3.1 SpliceAI
As mentioned before, SpliceAI is a deep residual neural network employing a network
architecture consisting of 32 dilated convolutional layers. The input for the deep
learning network was the mutation datasets from CCLE, formatted into a VCF file
(see Supplementary information for more details).
SpliceAI was run in Hebbe, a local computing cluster at Chalmers University of
Technology. Access to the computing facilities was provided by C3SE (see below).
In order to run the software, we created another conda environment in the cluster
in which we installed both the deep learning tool (from bioconda) and tensorflow
- an open-source platform for machine learning containing tools necessary for the
analysis. The reference genome fasta file that was used for the analysis was the
assembly GRCh371 since it is the genome used by DepMap for annotation in their
experiments [15].
To facilitate running the pipeline and the parallelization in the cluster, the muta-
tion file was divided by chromosome and SpliceAI was run for each chromosome
separately. The output VCF files were then parsed together into a single file, ready
for analysis. The output of SpliceAI consists of 4 different scores that reflect the
probability that a particular mutation eliminates or creates a splice donor or splice
acceptor site.

1GRCh37 reference genome was downloaded from the NCBI portal
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3.3.2 Code availability
The code written to do all the analysis reported in this manuscript can be found in
the GitHub repository SplicingInCancer.

3.4 Mutational landscape & Gene expression pat-
terns in spliceosome deficient cancers

In order to understand the context of the mutations on the splicing factors, we
began by exploring the amount of mutations in the spliceosome suffered by different
cancers, and identifying those splicing factors bearing most mutations.

3.4.1 Dimensionality reduction
All the analysed datasets span thousands of features which makes the interpreta-
tion virtually impossible. Therefore, we applied the linear and non-linear dimen-
sionality reduction techniques Principal component analysis (PCA) [123], [73] and
t-distributed stochastic neighbor embedding (t-SNE) [103], respectively, for visual-
ization of our high-dimensional data. We used these techniques in the exploratory
analysis to get a sense of the distribution of the data and see if these algorithms could
detect patterns in the different datasets - expression, knock-out screening and drug
sensitivity - between cell lines with intact splicing factors and those with mutated
spliceosome machinery.
PCA is an unsupervised learning method able to find patterns without the need of
previous knowledge regarding the sample characteristics. The algorithm works by
reducing the dimensionality of the data by geometrically projecting the data points
onto lower dimensions - or principal components (PCs) - with the goal of finding
the minimum number of PCs that best summarize the variance of the data [95].
Although t-SNE is also a method for dimensionality reduction, both algorithms
work in different ways. The main difference is that while PCA tries to maximize
the variance, t-SNE preserves local similarities. In other words, where PCA tries to
maintain the global properties of the dataset, t-SNE plots neighbors close to each
other, allowing for visualization of both the local and global structure of a data set.

3.5 Transcriptional differences related to spliceo-
some deficiencies in cancer

3.5.1 Differential expression
The expression analysis aims to characterize the transcriptome: to quantify and
measure the relative frequency of all expressed transcripts in the cell at a certain
time [96]. We analyzed the differential expression on transcript data for both coding
and non-coding genes. As mentioned before, the reads are reported in the form
of transcripts per million (TPM), with a pseudocount of 1 (i.e. log(TPM + 1)).

25

https://github.com/angelolimeta/SplicingInCancer


3. Methods

Transcripts per million is a measurement of relative expression: the fraction of
transcripts of the transcriptome produced by a certain gene or isoform [96].

τi = vi

li
(
∑

j

vj

lj
)−1 (3.1)

Reporting the reads for each gene isoform as TPM is slightly problematic to perform
typical differential expression analysis - standard tools like edgeR do not work well
on TPM reads. TPM is a measurement of the proportion of transcripts in the sam-
ple. Therefore, this measurement allows for comparison of transcript with different
lengths - since each transcript is normalized by length - such as different isoforms
or different genes within a sample. However, it is worth noting that this measure
can be biased by expression levels of other transcripts. Such bias makes it impossi-
ble to correct for library composition and therefore TPM expression values are not
suited for differential expression analysis using tools such as edgeR. To overcome
this problem, we tested whether there is a significant relationship between the ex-
pression level of isoforms (log(TPM) data) and the presence of mutations in splicing
factors. When considering mutations in all splicing factors, the amount of cell lines
that remained “wild-type” - thus not presenting mutations in any splicing factor -
was quite low compared to the number of cell lines presenting a mutation. In an
attempt to balance the number of cell lines in both categories, we only took into ac-
count cancer types presenting both cell lines with and without mutations - reducing
the number of cell lines with mutations in the splicing factors being considered for
the analysis. This is also important because we need to include the variation across
disease in the analysis. Hence, we only kept those cancer cell lines for which at least
3 wild-type samples were available.

To test the relationship, we used a linear regression model and evaluated the rela-
tionship between expression levels and the presence of mutations in the spliceosome.
To correct for multiple testing, we applied the Benjamini-Hochberg procedure to ad-
just the p-values. We considered significant those p-values below 0.05. As a result of
the linear regression analysis,we obtained p-values for each transcript - from here on
referred as “transcript-level p-values”. However, extracting biological insights from
raw p-values is a daunting - nearly impossible - task. Thus, we decided to perform
a gene set analysis in order to facilitate the interpretation of the results. However,
most tools require gene-level p-values for gene set analysis.

3.5.2 Lancaster method for the aggregation of transcript-
level p-values

RNA-seq data is mostly studied at the gene level, among other reasons because the
analysis seems to be more robust and because results are easier to verify experi-
mentally [178]. However, mutations in the splicing factors may affect the splicing
process or other steps in the maturation of pre-mRNA. These changes may not be
reflected in the expression of the gene, but by alterations in the relative expression
of isoforms of that gene.
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Figure 3.2: The image depicts the reason why often using gene-level p-values may
overlook significant changes in the transcriptome.

Therefore, to study the effect that mutations in the splicing factors may have in the
transcriptome, studying the relative expression of transcripts is a more appropriate
approach. Nevertheless, it is problematic to use transcript-level p-values with tools
designed to obtain biological insights from statistical information. Most tools to
perform gene set analysis need gene-level p-values. Thus, we needed to aggregate
the transcript p-values to obtain gene-level p-values that would reflect the changes
seen in the transcriptome. Yi et al (2018) [178] suggested a new framework to
translate transcript p-values to gene p-values using the Lancaster method [88]. This
method proposes the weighted aggregation of transcript-level p-values, weighting
the p-value according to the expression level of the transcript.

T =
K∑

i=1
−2log(pi) (3.2)

T =
K∑

i=1
−φ−1

wi log(pi) (3.3)

In order to weigh the transcript-level p-values generated from the linear model, we
calculated the mean expression for each transcript for both cell lines with defects
in the splicing factor and cell lines with intact splicing factors. Then we used the
Lancaster method to aggregate the transcript-level p-values from the same gene,
generating the gene-level statistics.
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3.5.3 Gene-set analysis
Gene set analysis (GSA) is a method used to incorporate existing biological knowl-
edge into expression data [156]. In GSA, the genes are clustered into gene sets
based on shared properties that are usually defined by a reference database [106].
The gene sets are analyzed as a whole to determine whether such properties are of
interest for the phenotype under study [29]. In other words, it tries to identify sets
of biologically related genes involved in, for example, complex human diseases [106],
[97]. It facilitates interpretation since it reduces the dimensionality - from genes to
aggregations of genes (gene sets) - and it facilitates the detection of patterns and
effects that arise from coordinated smaller changes.
To perform the GSA, we used the software tool PIANO [156]. PIANO is an R
package that offers a platform to perform gene set analysis using several statistical
methods [156]. The tool uses the gene-level statistics derived from the linear model
and Lancaster aggregation: the unmodified (not corrected) aggregated p-value and
log fold-change, not including information about directionality. Therefore, signif-
icant results indicate that the gene set is affected by differential expression, not
specifying whether the gene is up- or down-regulated [156]. The p-values do not
need to be adjusted before running the GSA because the algorithm includes a step
performing FDR correction. To define the gene sets to analyze, we downloaded sev-
eral curated gene sets from KEGG [74] and the hallmark gene sets fromMSigDB [99].
We used the hallmark gene sets because they represent well-defined biological states
or processes. These gene sets were generated using a computational methodology
that identifies gene set overlaps and retains those genes that display coordinated ex-
pression, therefore reducing noise and redundancy and providing a better delineated
biological space for GSA [99].

3.5.3.1 Gene statistics methods

We performed the GSA using two different statistical methods:
• Fisher’s test [156], [49] In this methodology, for a given gene set i, which

contains n genes with p-values p1, p2, . . . pn, the gene set statistic Si is
calculated according to the following equation:

Si = 2
n∑

j=1
−ln(pj) (3.4)

In this case, for our gene set of n genes significance was calculated by gene
sampling. Gene sampling methods aim to identify those genes enriched with
differential expression signals [114]. In gene sampling, the significance (Si)
of the gene set score is evaluated by comparing it to the scores of randomly
assembled sets. The random sets are subsets of all genes under study [105].
The method presents the advantage of not being dependent on the number of
samples, therefore being suitable for GSA of small samples [105]. However, a
stringent correction for false positives is necessary because genes within a gene
set are not sampled independently: many of the genes included in a gene set
take part in the same biological pathways, which means that they are corre-
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lated to each other to some extent [114], [105].

• Reporter features [156], [122] Given a gene set i, containing n genes with p-
values p1, p2, . . . pn, the algorithm calculates the gene set statistic Si as
follows:

Si = 1√
n

n∑
j=1

(θ−1(1− pj)) (3.5)

Where θ−1 is the inverse normal cumulative distribution. The inverse cumula-
tive distribution function gives the value associated with a specific cumulative
probability. The gene set p-value is calculated using the normal cumulative
distribution function:

pSi
= 1− θ(Si) (3.6)

The significance estimation is calculated by normalizing the gene set statistic
Si with the mean and standard deviation of the background gene set statistics
for that particular gene set. The background gene set statistics are calculated
by randomizing the genes labels and recalculating the gene set statistic many
times. The gene set p-value can then be calculated back from the normalized
Z-scores by using the normal cumulative distribution function.

pSi
= 1− θ(Si − µn

σn

) (3.7)

This algorithm reports back all directionality classes. The non-directional class
is obtained by using all the unmodified p-values, which means that a mix of
up- and down- regulated genes can be considered as a significantly changed
gene set, as long as the gene set as a whole is significantly changed.

Since we are working with aggregated p-values generated with the Lancaster ag-
gregation, we lack a proper log fold-change value. Therefore, we can calculate the
significance of the gene set but we cannot generate information regarding the direc-
tionality of the changes. To address this, we selected some gene sets of interest, used
the labelled cell lines according to presence of mutations in the spliceosome machin-
ery and aggregated the transcripts into two categories: alternative and canonical.
The canonical transcript was extracted from the ENSEMBL database for each gene,
using the suite BioMart [39].

3.5.4 Shannon Entropy
A limitation to classical differential expression is its inability to detect altered levels
of expression, namely changes in the expression profile with low or no change in
mean expression [167].
Shannon entropy (SE) and coefficient of variation (CV) are metrics that measure
the variability of numerical data [168]. Differential variability analysis has been
applied before to the study of gene expression in human disease [68]. As an example,
increased entropy in gene expression has been observed as a characteristic of cancer,
[174], [9] with entropy levels correlating with different cancer stages [19]. The goal
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of these metrics is to detect changes in the expression profile even if the mean
change in level expression is too low to be detected by differential expression [167].
The difference is that both entropy and variation deal with normalized expression
variability, while differential expression detects differences in the mean expression
[167]. We used the package EntropyExplorer to calculate the differential Shannon
entropy (DSE) and differential coefficient of variation [168]. The measurement of SE
allows for the quantification of information content associated with the likelihood
that a given node has a given connectivity value in the network of interest [19]. The
formula to calculate the Shannon entropy can be seen below [19].

H = −
n∑

k=1
p(k)log2(p(k)) (3.8)

3.6 Predicting novel splice-altering mutations us-
ing SpliceAI

3.6.1 Running the deep learning algorithm
We used the DepMap dataset containing somatic mutations as input for the deep
learning network. Due to the large file size, the dataset was split according to the
chromosome in which the mutation occurs, to facilitate uploading the data to Hebbe.
Before running the deep neural network, the dataset was parsed into a VCF file to
meet the requirements of the algorithm. More details can be found in the Appendix
B.

3.6.2 Evaluating the performance of SpliceAI
To estimate the performance of the deep learning algorithm, we measured its ability
to classify the mutation in two classes: “splice-altering” or “not splice-altering”. As
mentioned before, SpliceAI outputs four probability scores for a mutation, evaluating
the likelihood of the event to alter either the donor or acceptor site by creating new
ones or destroying existing sites. The four scores are: Acceptor gain, Acceptor loss,
Donor gain and Donor loss.
According to Jaganathan et al. [72], a mutation can be confidently considered as
splice-altering when its SpliceAI score is above 0.5 - and this is the score they rec-
ommend as a cutoff. Therefore, we considered putative splice-altering mutation all
the variants for which SpliceAI gave a score of 0.5 or above. To evaluate the perfor-
mance of the algorithm, we compared its classification of mutations in splice-altering
or not splice-altering with the annotations made by DepMap in their somatic mu-
tations file. It is noteworthy that we can only estimate the number of true positives
and false negatives, since often SpliceAI finds that a mutation is likely to affect a
splice site downstream or upstream of the somatic mutation that was reported by
DepMap, and we lack experimental data for such positions. For the evaluation, we
used a Receiver Operating Characteristic (ROC) curve. A ROC curve is built using
a confusion matrix or contingency table with four categories [28]:
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• True Positives: cases correctly labelled as positives. In this case, it would be
mutations correctly considered to alter the splicing process by SpliceAI.

• False Positives: negative cases incorrectly labelled as positives. Here, it would
be mutations classified as splice altering that in reality have no influence on
the process.

• True Negatives: negatives correctly labelled as negative.
• False Negatives: positve cases incorrectly labelled as negative.

Using the contingency table, a ROC plot is drawn by plotting the false positive rate,
or inverted specificity (in the X-axis) against the true positive rate, or sensitivity (in
the Y-axis) for a number of candidate decision thresholds between 0 and 1 [12]. The
sensitivity, or true positive rate (TPR), and specificity are calculated as follows:

• Sensitivity = T rue positives
T rue positives + F alse negatives

;
where the TPR measures the fraction of positive cases being correctly labeled
[28].

• The false positive rate (FPR) can be calculated as the inverted specificity,
where specificity:
Specificity = T rue negatives

T rue negatives + F alse positives
;

and therefore FPR:
False Positive Rate = 1 − Specificity.
The FPR measures the fraction of negative examples misclassified as positive
[28].

ROC curves present the limitation of being overly optimistic evaluating the algo-
rithm’s performance when the class distribution of the data is highly skewed [28]. In
our case, due to the nature of the data, it is fair to assume that the distribution will
be skewed toward negative cases - mutations that will not affect splicing. To over-
come this problem, we can evaluate the performance of SpliceAI with yet another
tool: precision-recall (PR) curves. PR curves are also built by using a confusion
matrix, but the metrics to plot differ. In the PR space, one plots what we call
Recall - which is the same as TPR - on the X-axis and Precision on the Y-axis.

• Recall = T rue positives
T rue positives + F alse negatives

• Precision = T rue positives
T rue positives + F alse positives

;

where precision measures the fraction of cases being classified as positive that
are truly positive [28].

However, plotting these curves does not give an immediate measurement of the
performance of the classifier. To obtain an accurate evaluation, we can use the Area
Under the (ROC/PR) Curve (AUC) as a metric of the performance. The AUC
accurately represents the probability that a randomly chosen positive example of
the evaluated data is correctly rated - or ranked - above a randomly chosen negative
example [12].
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Figure 3.3: Example of a ROC and a PR curve. The curves do not correspond
to the data from SpliceAI. The figure depicts a curve corresponding to a perfect
classified (blue line), a curve corresponding to a classifier with no prediction power,
or random classifier (dotted red line), and an example of what a typical ROC and
PR curve with some prediction power may look like (purple line). The gray area
represents the Area Under the Curve (AUC) score.

The evaluation of SpliceAI’s performance using ROC and PR curves was done using
the R packages pROC [133] and PRROC [78].

3.6.3 MSK-IMPACT
MSK-IMPACT stands for Integrated Mutation Profiling of Actionable Cancer Tar-
gets, a research project carried out by the Memorial Sloan Kettering Cancer Center.
The researchers developed a hybridization capture-based NGS panel that performs
an integrated mutation profiling of actionable - meaning that they can be targeted
with drugs - cancer targets. In total, MSK-IMPACT analyzes 505 genes that play a
critical role in the development and behavior of tumors. The test can also detect all
protein-coding mutations, copy number (CN) alterations and some promoter muta-
tions and structural rearrangements in cancer-associated genes [180]. The overarch-
ing goal of the panel is to facilitate the identification of patients for enrollment in
genomically guided clinical trials [180].
In this project, we used the list of clinically relevant somatic mutations generated
by the MSK-IMPACT project to narrow down the analysis of functional screening
datasets to genes that are clinically relevant. The list of targeted genes generated
by the study [180] was retrieved from the cBio Cancer Genomics Portal [17], [52]
where it can be accessed under the name MSK-IMPACT Clinical Sequencing Cohort
(MSKCC, Nat Med 2017) 2.

2MSK-IMPACT data can be accessed here
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4.1 Mutational landscape of splicing factors
We used the spliceosome and splicing factors list compiled by Seiler et al. [142]
to explore the mutation landscape of the splicing factors in the somatic mutation
dataset provided by DepMap. The accumulated mutations per cancer type are
normalized for the number of cancer cell lines studied for each disease.

Figure 4.1: Number of mutations in the core spliceosome across different cancer
types normalized for the number of cell lines studied.

In general, we see that the spliceosomal mutational load varies greatly across cancer
types, and that it correlates well with the number of mutations across the entire
genome (total mutational load) - not only splicing factors - per cancer (see Appendix
A). We also created a binary heatmap to show the distribution of the deleterious
mutations in the splicing factors across different cell lines - for details about the
heatmap construction see Section A.3.
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Figure 4.2: Heatmap showing the deleterious -not SNP- mutations occurring on
the splicing factors across the studied cell lines.34
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4.2 Gene expression patterns in spliceosome de-
ficient cancers

Figure 4.3: PCA performed on the gene-level expression data (TPM), labeling the
cell lines depending on presence or absence of mutations on the genes encoding for
proteins that are part of the core spliceosome machinery
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Figure 4.4: tSNE performed on the gene-level expression data (TPM), labeling
the cell lines depending on presence or absence of mutations on the genes encoding
for proteins that are part of the core spliceosome machinery

From the PCA, we can see that there is not a clear separation of cell lines based on
cancer type (top part of figure 4.4). When applying the dimensionality reduction
technique to each cancer type labelling the cell lines according to the state of their
spliceosome, we can see a slight separation between both classes for some of the ma-
lignancies - for example for lung cancer, bladder cancer or breast cancer. However,
this difference is not clear enough to conclude that mutations in the spliceosome
are a major source of variability in the expression data. In the t-SNE plot, we can
see separation in subgroups for some of the malignancies (such as pancreatic cancer,
ovarian cancer, bile duct cancer, or sarcoma), but this separation is again not driven
by the mutations in the spliceosome. The application of these dimensionality re-
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duction techniques for the cell lines with mutations on the splicing factors from the
other categories show similar results. The plots can be found in the Appendix A.
Overall, it seems that there are no large differences at the gene level expression be-
tween cell lines with an altered spliceosome and cell lines that maintain the complex
and regulatory elements intact.

4.3 Transcriptional differences related to spliceo-
some deficiencies in cancer

4.3.1 Differential expression
Results for the GSA performed using PIANO on the aggregated p-values obtained
using the Lancaster method. We performed different analysis for cell lines with
mutations in the core spliceosome, cell lines with mutations in the non-core spliceo-
somal proteins and splicing factors and for the cell lines with mutations in genes
categorized as "other".

Mutations in core spliceosome proteins - Hallmarks gene set
Gene Set Analysis - Fisher

Genes p-value adj. p-value
G2M CHECKPOINT 196 0.0001 0.0012
E2F TARGETS 200 0.0001 0.0012
MYC TARGETS V1 200 0.0001 0.0012
OXIDATIVE PHOSPHORYLATION 198 0.0001 0.0012
UNFOLDED PROTEIN RESPONSE 111 0.0011 0.0110
PI3K AKT MTOR SIGNALING 83 0.0032 0.0267
MYC TARGETS V2 58 0.0058 0.0414

p-values adjusted for multiple testing using Bonferroni correction

Mutations in non-core spliceosome proteins - Hallmarks gene set
Gene Set Analysis - Fisher

Genes p-value adj. p-value
UNFOLDED PROTEIN RESPONSE 110 0.0001 0.0017
E2F TARGETS 200 0.0001 0.0017
MYC TARGETS V1 200 0.0001 0.0017
G2M CHECKPOINT 196 0.0003 0.0037
OXIDATIVE PHOSPHORYLATION 198 0.0004 0.0040
MYC TARGETS V2 58 0.0006 0.0050

p-values adjusted for multiple testing using Bonferroni correction
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Mutations in spliceosome components not classifed as core nor non-
core - Hallmarks gene set
Gene Set Analysis - Fisher

Genes p-value adj. p-value
MYC TARGETS V2 58 0.0007 0.0350

p-values adjusted for multiple testing using Bonferroni correction

4.3.2 MYC targets
The gene set MYC targets consistently appears as differentially expressed across the
three different categories. Both MYC targets gene set contain a subgroup of genes
regulated by MYC. MYC is a transcription factor that regulates the processes of
cell growth, differentiation, metabolism and death, and appears deregulated in more
than 50% of human cancers [81]. Furthermore, such deregulation has been associ-
ated with poor prognosis and patient survival. Although it may seem an obvious
therapeutic target, due to its structure MYC has been rendered "undruggable" [51].

MUTATED SPLICEOSOME YESNO

Figure 4.5: Ten most significant differentially expressed genes when considering
cell lines mutated for core splicing factors vs. wild-type cell lines in the MYC targets
gene set

38



4. Results

MUTATED SPLICEOSOME YESNO

Figure 4.6: Ten most significant differentially expressed genes when considering
cell lines mutated for non-core splicing factors vs. wild-type cell lines in the MYC
targets gene set

The plots shows an aggregation of the transcripts into two categories: alternative
and canonical transcripts as depicted in Subsection 3.5.3. We can see a general trend
of increased expression for those transcripts in cell lines with a mutated spliceosome.
In general, this trend is sharper for the alternative transcripts than for the canon-
ical one. Many of these genes are related to the processing of mRNA in different
ways. For example, IMP4 is necessary for pre-18S ribosomal RNA processing [59]
and EIF3D is necessary for the initiation of translation [93]. Some of these genes
are splicing factors as well: RNPS1 and PABPC1 are part of the non-core spliceo-
some machinery. RNPS1 is part of a post-splicing complex that initiates nonsense-
mediated mRNA decay (NMD), a process that clears truncated transcripts [135].
PABPC1 binds to the poly(A) tail and promotes ribosome recruitment and the
initiation of translation, and is also required for the first steps of NMD [86].

4.3.3 Shannon Entropy

The Shannon Entropy was calculated for each transcript using the transcript ex-
pression data. The results consistently show higher entropy for the expression of
transcript in mutated cell lines. For this calculation we considered the mutations in
any splicing factor or spliceosomal gene regardless of category.
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Figure 4.7: Example of calculation of the Shannon Entropy metric - note that the
values are only representative and do not correspond with the actual results.

Figure 4.8: Comparison of the distribution of the calculated Shannon Entropy per
gene between mutated and wild-type cell lines. Significance assessed using Wilcoxon
test. p-value < 2e-16.

The higher entropy for cell lines with dysfunctional or mutated spliceosome indicates
that a wider variety of transcripts are expressed in those cells than compared to
spliceosome wild-type cell lines. This is consistent with the results observed from
the differential expression analysis at transcript level, which show that there are
transcripts that are significantly up- or down-regulated between the two types of
cell lines (mutated and wild-type) and strengthens the idea that mutations in the
spliceosome may drive subtle but network-wide changes that are not detectable with
classical differential expression approaches.
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4.4 Predicting individual mutation-associated splic-
ing events using SpliceAI

4.4.1 Performance of SpliceAI
SpliceAI calculates the probability that a particular mutation will affect the splic-
ing process. More specifically, the deep learning tool predicts four probabilities,
depending on the likelihood of the considered mutation to disrupt or create a donor
or acceptor site. Since we are only interested in knowing whether the algorithm
considers the mutation able to alter splicing, we extracted the maximum proba-
bility of the four that are calculated and used it as a predictor variable. If the
maximum probability is 0.5 or larger, the mutation is considered to have an effect
on the splicing process. To understand the prediction capability of SpliceAI, we
decided to compare the prediction with the classification that CCLE had given to
the mutation. CCLE classifies mutations occurring in known splice consensus sites
as "Splice_site". Therefore, we decided to compare the predictor variable with the
given annotation to test the classification performance of SpliceAI. Since we are
facing a binary classification problem, we used ROC and PR curves as metrics to
evaluate the algorithm.
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Figure 4.9: Left graph displays the ROC curve when comparing the classification
of mutations made by SpliceAI with the annotation provided by CCLE. Right graph
shows the PR curve on the same data. AUC calculated for both curves.

In addition to the curves, we calculated the AUC as an additional metric of perfor-
mance. In both cases, the AUC is above 0.5 - an AUC (or a ROC or PR curve) with
value 0.5 or similar would mean that the algorithm is not better at classifying the
mutations than randomly assigning a class to them. In our case, as mentioned in
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Section 3.6.2, the data is imbalanced: we expect a larger number of mutations to not
affect the splicing than to have an effect on this process. Therefore, the PR curve is
a better metric since to a certain extent is able to correct for such imbalance. It is
worth mentioning that the predictive capability of SpliceAI is probably underesti-
mated with this approach, due to the nature of the data from DepMap. From their
annotations, we can only consider as splice-altering those mutations actually occur-
ring in the splice site. However, SpliceAI considers a large window of nucleotides
around the somatic mutation and can identify disrupting events that may occur at
a different position. Hence, some of the mutations predicted to be splice-altering by
SpliceAI that were not annotated as so by DepMap are probably not False Positives
(as we are considering them when calculating the ROC and PR curve), but having
an effect elsewhere in the genome. However, with the information that we possess
at the moment it is impossible to assess these cases.
To obtain a visual representation of the classification, we can observe the distribution
of the probabilities calculated by SpliceAI for the mutations that were given the
category of Splice Site (assumed to be splice altering mutations) by DepMap and
those that were not.

Figure 4.10: Distribution of the probabilities calculated by SpliceAI in mutations
labeled as being splice altering or not. Y-axis is displayed in log-scale. The dashed
line shows the probability score of 0.5 calculated by SpliceAI.

In the Figure 4.10 we can see that most of the mutations labelled as not splice-
altering (gray-colored in the figure) are given a low probability - some of these
mutations that have a probability above 0.5 are explained by the splice-altering
capability of some mutations that do not occur in splice sites and therefore were
not annotated as such by DepMap, as has been mentioned above. In the case of
the mutations that are classified as occurring in a splice site by DepMap (yellow-
colored in the figure), some of them are clearly below the 0.5 threshold. This may be
because the mutations may be silent, meaning that they do not have an effect on the
phenotype of the cell. Lastly, it is clear that the performance of the algorithm varies
across cancers - for example, the classification power for teratomas seems worse than

42



4. Results

Figure 4.11: Distribution of the probabilities calculated by SpliceAI in mutations
labeled as being splice altering or not, per cancer type. Y-axis is displayed in a
log-scale. The dashed line shows the probability score of 0.5 calculated by SpliceAI.
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for colorrectal cancer cell lines. Likely, this is due to the amount of cell lines studied
for each of the malignancies. Only one cell line for teratoma was analyzed in the
studied dataset, whereas for colorrectal cancer 79 cell lines are available (see Figure
A.1).

4.4.2 Predicted variants

We fed over 1 million somatic mutations to SpliceAI. Of these, the neural network
predicted slightly over 2% to alter the splicing process of a gene. The numbers can
be seen in the Table 4.4.

Events considered 1293157
Events predicted by SpliceAI 28982

Off-target events 1665
Summary of the mutation events used as input for the algorithm and the output of
the predictions.

Interestingly, we observed that in some cases, SpliceAI predicts that the variant will
occur in a different gene than the one carrying the mutation causing the alteration -
or in both the gene carrying the mutation and another one. We called these events
off-target splicing. Almost a 6% of the mutations were predicted to cause off-target
splicing by the algorithm (total number in Table 4.4). A complete list of the reported
off-target variants can be found in the table C.1 in Appendix C. Given that some of
the trans-splicing factors participating in the regulation of splicing can be located
in genomic regions far from the actual splicing site, it is not surprising that some
mutations may alter splicing events occurring elsewhere in the sequence.
The plot shows that most of the predicted splicing events do occur relatively close to
the somatic mutation causing the event. However, we can see that the distribution is
highly skewed in both tails, which shows that a minority of events occur in different
areas of the genome.

To better understand the possible effects of the predicted splicing alteration, we
wanted to know if the event would fall in an exon or an intron. For this, we used
the transcript list from CCLE (all the transcripts that suffer somatic mutations)
to extract the genomic positions of exon boundaries using BioMart databases [39].
Then, we used the package GenomicRanges [90] to create intervals for the exons and
for the mutations predicted by SpliceAI (we simply add +1 to the position where
splicing is predicted to be altered). The function findOverlaps detects when the
alteration predicted by SpliceAI falls within one of the exons.
Most of the splice variants predicted by SpliceAI lie within intronic regions, see
Table 4.5. Splicing mutations in deeper intronic positions are vastly under-reported
[132], hence it is positive to see that SpliceAI is able to predict variants laying within
introns as well.
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Figure 4.12: Plot showing the distance between the position in the genome were
the somatic mutation reported by CCLE occurs and the position where the splice-
altering event is predicted to happen according to SpliceAI.

Variants in introns 28117
Variants in exons 865

The table summarizes the number of SpliceAI predicted variants to fall within in-
trons or exons.

4.5 Functional impact of the splice-altering vari-
ants

We were interested in assessing the impact of the altered splicing events in the
function of the gene and the sensitivity of the cell line to drugs. To understand
the effect of the splicing alteration in the phenotype of the cell line, we used the
information contained in the CRISPR knock-out screening dataset (see Subsection
3.1.3) and the PRISM drug sensitivity screening dataset (see Subsection 3.1.4). To
narrow down the study, we decided to prioritise the analysis of genes that have
been shown to have clinical relevance in cancer. To achieve this, we used the MSK-
IMPACT panel - see Section 3.6.3. For clarity, from here we will be referring as intact
genes to those genes that were not predicted to suffer an alteration by SpliceAI.
However, bear in mind that this does not mean that these genes are wild-type, since
most of them are carrying a somatic mutation as reported by CCLE. The objective
of this section is to compare the effect that a splice-altering mutation has vs SNPs
or other type of mutations. For this analysis, we excluded those mutations that
have been classified as insertions or deletions by CCLE, since these alterations are
so disruptive that they usually result in loss of function of the gene.
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Figure 4.13: Comparison of gene effect for genes in the MSK-IMPACT panel that
were predicted to suffer a splice-altering mutation vs. those that were not. We
took a random subsection of the events to facilitate plottig and visualization and
we excluded damaging mutations. The statistical significance was calculated using
Welch’s t-test. The p-value is 0.005.
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In order to produce the plot 4.13, we first filtered the output of SpliceAI to only keep
those events happening in genes present in the MSK-IMPACT panel. Then, we used
the resulting list to label the CRISPR knockout dataset depending on whether the
evaluated gene carried a splice-altering event or not. Since the resulting dataset was
still considerably large, we randomly sampled the rest of the events and retained
20000 "intact" events and all the splice-altering mutations according to SpliceAI.
The reason for this sampling was to reduce the number of events to plot while re-
taining a similar proportion of both events to the one in the complete dataset. The
plot was created using the R package ggstatsplot [121].

The plot shows the effect on cell-line growth of knocking out a certain gene. A
negative score means that depleting the gene has a negative impact on the growth,
whereas a (relatively large)1 positive score means that knocking out that gene im-
proves growth. In the plot, we can observe that for the genes carrying splice altering
events, the scores tend to be closer to 0 - we get very few positive scores and very
few scores below -1.5. The scores’ tendency to be closer to 0 could be an effect of
the function of such genes being already impaired due to aberrant splicing events.
Consequently, since these genes would lack their function or have their activity de-
creased, the effect of knocking them out would be less evident or negligible. Due
to the nature of the data, we cannot simply compare the means - both means seem
to be fairly similar, but the reason for this could be that the altered genes also
present less positive gene effects, which lowers the mean value. This is consistent
with the hypothesis that the splice-altering mutations have already disrupted the
gene function. Thus, we compared the difference in gene effect between the "in-
tact" and the altered genes using Welch’s t-test for unequal variance, which gave a
p-value of 0.005. It seems that the effect of knocking out the altered genes is signif-
icantly smaller than knocking out genes that have not suffered an altered splicing
event, which could mean that these splice-altering mutations are more disruptive
than mutations that do not alter the splicing patterns.
To confirm this, we looked at the gene effect of splice-altering mutations in individual
genes - still focusing on those included in the MSK-IMPACT panel. The results can
be seen in the Figure 4.14. We decided to show only those genes for which a predicted
variant was present in more than 10 cell lines - in order to obtain more robust
statistics. Interestingly, all the genes are well-known tumor suppressors [76], [8], [35],
[183], [82], [125]. The general effect that we had observed in Figure 4.13 is repeated
for the individual genes, and the differences are significant in all cases except for
CDKN2A. The gene effect tends to be closer to 0 for those genes with mutations that
affect the splicing, and in all cases (again with the exception of CDKN2A) we see
that the positive effect in growth that the "intact" cell lines get from knocking out
the gene is missing on those carrying a splice-altering mutation. This observation
reinforces the hypothesis that these splice altering mutations disrupt the function
of the gene. If we take TP53, arguably the best studied tumor suppressor gene, we
see that upon knocking it out some of the cell lines without a splice-altering variant
get a clear positive effect in growth. This effect is missing in those cell lines with

1Due to the screening pipeline and how CCLE/DepMap processes this kind of data, a slightly
positive core is most likely attributed to noise
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altering mutations, which could indicate that the variants of TP53 carrying these
mutations were already unable to act as tumor suppressor genes.
Similarly, we were interested to see if there would be differences in the sensitivity
to drugs between genes carrying variants that alter the splicing pattern and genes
with splice-unrelated variants. For these analysis, we used the drug sensitivity data
generated by the PRISM repurposing project, see Subsection 3.1.4. To facilitate the
visualization, we decided to only show in this section the three cases for which a sig-
nificant difference in sensitivity can be observed (Figure 4.15). The complete figure
can be found in the Appendix C, Figure C.2. The three cases showed here are two
drugs targeting the gene MET and another one targeting the gene PARP1. PARP1
is a gene involved in many cellular processes and usually overexpressed in human
malignancies [169]. Furthermore, drugs inhibited PARP1 have been approved or are
under clinical investigation, showing the potential of the gene as a therapeutic target
[169]. In this case, the mutation seems to render the gene insensitive to the drug. On
the other hand, MET is a well-known proto-oncogen, with some alterations and gene
amplification events playing an important role in the onset of cancer [111], [152].
For this gene, mutations also seem to diminish the sensitivity of the cell line to the
drug. Although the results seem indicate that splice-altering mutations can have
an effect on the sensitivity of the cell line to drugs, the small number of cell lines
with splice-altered mutations make a rigorous estimation difficult, and the small
effects that we observe may disappear when taking into account a larger number of
mutated cell lines.
Considering that some of the observed responses to drugs may be driven by other
differences between cancer type, we also considered differences in sensitivity sepa-
rating the cell lines by malignancy. The results can be seen in the Appendix C in
Figure C.3. Here, we can see that the sensitivity seems to vary greatly from one
cancer type to the other, but the main observation that alterations seem to lower the
sensitivity to the drug remains. Here, we can also observe a clear case of misleading
statistics: for Rhabdoid cell lines, we obtain a significant p-value but when observ-
ing the data points, it does not seem that there is actually a biologically relevant
difference in the distribution - the result is likely a fluke due to the smaller number
of cell lines considered.
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SPLICE MUTATED

Figure 4.14: Comparison of the gene effect (calculated from CRISPR knockout
screens) in cell lines carrying a predicted variant from SpliceAI vs cell lines that do
not. Considering only genes present in the MSK-IMPACT panel. We considered
genes that carried a predicted variant in at least 10 cell lines. In the context of this
analysis WT means that the gene does not carry a variant predicted by SpliceAI.
The significance was assessed using the Wilcoxon rank test.
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SPLICEAI PREDICTION

Figure 4.15: Difference in sensitivity to drugs from PRISM per gene comparing
cell lines where the gene is predicted to be splice-altered according to SpliceAI vs.
cell lines where SpliceAI did not predict a mutation. Figure showing the drug-gene
pairs where a statistically significant difference was found (FDR corrected p-value <
0.05). The significance assessed using Welch’s t-test. In the context of this analysis
WT means that the gene does not carry a variant predicted by SpliceAI.
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Initially, we attempted to study the changes in expression due to mutations in the
spliceosome performing a classical gene expression analysis. However, no significant
changes in expression appeared. Considering the important role of the spliceosome
and splicing factors in the process of splicing, alternative splicing and transcrip-
tion in general, it seemed suspicious that mutations in these genes would not affect
expression. We then considered that it was likely that changes in these processes
would yield an altered expression in the individual transcript variants rather than
differences in the mean expression of the genes. To test our hypothesis, we studied
differential expression from the transcript level, using a linear model together with
Lancaster aggregation to obtain p-values that would reflect the changes in tran-
script expression. To support this, we also calculated the Shannon Entropy for each
gene to measure the variability in expression, since previous research has shown
that an altered spliceosome correlate with higher entropy levels. Both analysis re-
vealed that there are significant differences in the transcriptome expression levels
when comparing cell lines with a defective spliceosome with cell lines with an intact
one. Therefore, when studying the mutational landscape of spliceosome and splicing
factor genes, it seems that the presence of mutations leads to changes in the tran-
scriptional program of the cell. These changes seem to be subtle and span widely
through the transcriptional network rather than being large, localized changes -
therefore not always being obvious when using classical gene expression analysis
techniques that rely on mean change of the gene expression. Our results show
that the changes translate in an altered composition of the expressed transcripts,
especially increasing the expression of alternative transcripts compared with the
canonical ones. Nevertheless, the alterations caused by changes in the spliceosome
machinery can be detected by adapting differential expression workflows to allow
for analysis of transcriptional levels. Doing so, we were able to perform a GSA that
revealed that several important pathways presented differentially expressed genes.
Several of these pathways play an important role in oncogenesis. For example the
PI3-AKT-MTOR signaling pathway modulates cell growth, survival, metabolism
and angiogenesis, among other processes [144]. We decided to focus on the study of
the differences in the genes part of the MYC targets gene set. The reason for this
was that the gene set appeared significant even when considering only those splicing
factors that were not defined as part of the core or the non-core spliceosome ma-
chinery so it seemed that members of these gene set were more consistently affected
by mutations in any of the splicing factors. Furthermore, MYC has been shown
to be widely deregulated in human malignancies [51], [104], [163] and it is hard to
target therapeutically [18], [26]. When studying the most significantly differentially
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expressed genes in the gene set, we observed that some (RNPS1 and PABPC1)
were part of the non-core splicing machinery but also have a role in the process of
nonsense-mediate mRNA decay (NMD), see Figures 4.5 and 4.6. NMD is a process
that plays an extensive role in gene expression regulation, and its disruption has
been shown to lead to many pathologies, such as cancer [116], [148]. PABPC1 acts
by binding to the poly(A) tail of mRNAs and, when this binding occurs at spe-
cific positions, it can repress NMD. Therefore, hyperactive or promiscuous isoforms
of PABPC1 could hinder NMD and allow for aberrant transcripts to be expressed
[116]. On the other hand, the up-regulated expression of factors involved in NMD
may actually indicate that this process is more active than usual, which could be a
side-effect of aberrant spliceosome machinery producing high amounts of aberrant
transcripts. In such case, inhibition of NMD may appear as a therapeutic strategy
by increasing the load of aberrant transcripts in the cell and allowing the expression
of neoantigens in cancer - therefore enhancing the effect of immunotherapy [148].
The actual role of NMD in cancer is context dependent [127] and therefore a more
detailed analysis would reveal in which cases targeting NMD (perhaps by target-
ing genes such as PABPC1 or RNPS1) could be beneficial. Furthermore, we also
tested for significant differences in drug sensitivity between cell lines with a deficient
spliceosome vs cell lines that retained a wild-type spliceosome machinery. The re-
sults were not included in this report since we did not find any statistical significant
difference for the drugs part of the PRISM project. Nevertheless, the spliceosome
has proven to be a possible therapeutic vulnerability for cancers [69],[45], and there
are some molecules, such as H3B-8800, that have shown promise in clinical trials
[142]. Unfortunately, such drug was not available in PRISM repertoire - as PRISM
is a drug re-purposing project, and most of the tested chemicals were not originally
intended to treat cancer. Most likely, the lack of positive results in this case is sim-
ply because there is no drug in PRISM specifically targeting the spliceosome.

Regarding the prediction of new splicing variants using the deep learning tool
SpliceAI, the performance of the algorithm is outstanding considering that it has
not been specifically trained for cancer data. Furthermore, the methods we have
to assess its performance have limitations - we can only compare the predictions
against mutations annotated by CCLE, and we know they only annotate a mu-
tation as altering the splicing process when it happens precisely in the consensus
sequence. Therefore, it is likely that we are actually underestimating the accuracy
of the algorithm. In order to improve our estimates we would need data anno-
tated in more detail. An alternative would be to obtain access to the raw RNA
sequence data ad process it in order to manually detect exon-intron splice junctions
and differences in transcript expression due to mutations. However, this would be a
complex and computationally demanding process. Nevertheless, the deep learning
tool performs well and it can be used to confidently predict splice altering variants
from RNA sequence data in the context of malignancies. More interestingly, the
tool has shown to be able to predict variants outside the genes were the mutation is
originally located, showing that is able to take into account surrounding context and
revealing putative variants that could not be detected through the analysis of the
genome, for example using whole genome sequencing (WGS) or similar techniques.
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We did not set to estimate the relevance of these variances due to the relatively small
number of off-target variables available - we need to keep in mind that only a small
proportion of the studied mutations was predicted to be splice-altering by SpliceAI
and an even smaller percentage showed to produce off-target events. Undoubtedly,
further studies with more available data - or perhaps data collected specifically for
the studies of these variants could better assess the clinical relevance of these events.

A further assessment of the capability of SpliceAI was provided by the analysis of
the functional effect of the splice altering mutations in both effect on the cell lines
growth (provided by the CRISPr screenings) and the sensitivity to drugs (estimated
through the PRISM repurposing dataset). Specially in the analysis of the gene effect,
it seems clear that those genes carrying a mutation altering splicing are rendered not
functional more often than those carrying another kind of mutation, as evidenced
by the lower variance of the gene effect and the values closer to zero (see Figures
4.13 and 4.14). This also indicates that SpliceAI is indeed able to predict splice al-
tering mutations, since it seems clear that at least some of the predicted mutations
have a functional consequence and that the effect of such consequence seems to be
larger than for other types of mutations. More interestingly, all the genes that carry
a variant that is predicted to alter splicing in more than 10 cell lines appeared to
be important tumor suppressor genes. This is, however, to be expected since the
function of tumor suppressor genes is to prevent cells from becoming carcinogenic.
Therefore, it is common for carcinogenic cells to present aberrant isoforms that al-
low for maintenance of the abnormal carcinogenic rhythms [181]. On top of this,
hereditary cancer genes, such as NF1 and RB1 have been previously reported to
accumulate splice-altering mutations [132].

Regarding the response to drug treatment, it is hard to establish whether there is
indeed an effect from the mutations that leads to a lower sensitivity to the drugs.
Although Welch’s t-test indicates some significant statistical differences in the devi-
ation to the mean for some of the drug-gene pairs, the number of cell lines carrying
a splice altering mutation is too low to calculate robust statistics. It would not
be surprising that the splice-altering mutations do have an effect in the response
to certain drugs, and therefore it is a venue definitely worth exploring. Probably
better results would be achieved from collecting data specifically for this purpose -
enriching for cell lines with splice altering mutations.

Lastly, the work carried out in this thesis shows that well-maintained and prolific
public databases are very valuable resources for driving research, and the many
insights that can be derived from these collections. Clearly, the ambitious project
of the DepMap portal will go a long way in helping in the battle against cancer.
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A
Appendix 1 - Exploratory analysis

A.1 Splicing factors

List of splicing factors
Symbol Description CategoryMutation events

SPEN spen family transcriptional repressor other 251
RNF213 ring finger protein 213 other 250
SRRM2 serine/arginine repetitive matrix 2 core 202
INTS1 integrator complex subunit 1 other 169
ZC3H13 zinc finger CCCH-type containing 13 other 136
KIAA1429 other 128
SF3B1 splicing factor 3b subunit 1 core 123
NUMA1 nuclear mitotic apparatus protein 1 other 114
RBBP6 RB binding protein 6, ubiquitin ligase no_core 114
GPATCH8 G-patch domain containing 8 other 111
SNRNP200 small nuclear ribonucleoprotein U5 subunit 200 core 109
ZC3H4 zinc finger CCCH-type containing 4 other 108
GEMIN5 gem nuclear organelle associated protein 5 other 102
TCERG1 transcription elongation regulator 1 core 100
PRPF8 pre-mRNA processing factor 8 core 98
ZC3H18 zinc finger CCCH-type containing 18 no_core 93
AQR aquarius intron-binding spliceosomal factor core 91
CWC22 CWC22 spliceosome associated protein homolog core 89
ELAVL2 ELAV like RNA binding protein 2 other 89
DHX57 DExH-box helicase 57 no_core 88
TTC14 tetratricopeptide repeat domain 14 no_core 85
RBM47 RNA binding motif protein 47 other 84
SEC31B SEC31 homolog B, COPII coat complex component no_core 84
THOC2 THO complex 2 no_core 84
ACIN1 apoptotic chromatin condensation inducer 1 no_core 83
DDX3X DEAD-box helicase 3 X-linked no_core 83
DHX38 DEAH-box helicase 38 core 82
EIF3A eukaryotic translation initiation factor 3 subunit A other 82
CLASRP CLK4 associating serine/arginine rich protein other 81
CDK12 cyclin dependent kinase 12 other 79
RBM27 RNA binding motif protein 27 other 79
DHX34 DExH-box helicase 34 other 78
CACTIN cactin, spliceosome C complex subunit core 77
ZMYM3 zinc finger MYM-type containing 3 other 77
DHX16 DEAH-box helicase 16 core 76
TRIM24 tripartite motif containing 24 other 75
CCAR1 cell division cycle and apoptosis regulator 1 core 74
INTS5 integrator complex subunit 5 other 73
ZFR zinc finger RNA binding protein other 73
DHX36 DEAH-box helicase 36 other 72
RBM15B RNA binding motif protein 15B other 72
ILF3 interleukin enhancer binding factor 3 no_core 68
RBM26 RNA binding motif protein 26 other 68
SF1 splicing factor 1 core 68
PAXBP1 PAX3 and PAX7 binding protein 1 no_core 67
RNF20 ring finger protein 20 other 67
SRRT serrate, RNA effector molecule no_core 67
DHX9 DExH-box helicase 9 no_core 66
PPIG peptidylprolyl isomerase G core 66

Continued on next page
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Table A.1 – continued from previous page
Symbol Description CategoryMutation events

ZNF326 zinc finger protein 326 other 66
DHX8 DEAH-box helicase 8 core 65
NOVA1 NOVA alternative splicing regulator 1 other 64
RBM15 RNA binding motif protein 15 other 64
CDK11A cyclin dependent kinase 11A core 63
DNAJC6 DnaJ heat shock protein family (Hsp40) member C6 no_core 63
PRPF40A pre-mRNA processing factor 40 homolog A core 63
TAF15 TATA-box binding protein associated factor 15 other 63
PRPF4B pre-mRNA processing factor 4B core 62
RBM25 RNA binding motif protein 25 core 62
EFTUD2 elongation factor Tu GTP binding domain containing 2 core 61
PNN pinin, desmosome associated protein no_core 61
RNF40 ring finger protein 40 other 61
AGGF1 angiogenic factor with G-patch and FHA domains 1 no_core 60
HSPA8 heat shock protein family A (Hsp70) member 8 core 60
INTS7 integrator complex subunit 7 other 60
PPWD1 peptidylprolyl isomerase domain and WD repeat containing 1 core 60
PRPF40B pre-mRNA processing factor 40 homolog B other 60
SYNCRIP synaptotagmin binding cytoplasmic RNA interacting protein no_core 60
DDX27 DEAD-box helicase 27 other 59
HNRNPUL2 heterogeneous nuclear ribonucleoprotein U like 2 other 59
RBMXL2 RBMX like 2 other 59
THRAP3 thyroid hormone receptor associated protein 3 core 59
ZC3HAV1 zinc finger CCCH-type containing, antiviral 1 other 59
MATR3 matrin 3 no_core 58
RBM10 RNA binding motif protein 10 core 58
SDE2 SDE2 telomere maintenance homolog core 58
GPATCH1 G-patch domain containing 1 core 57
HNRNPM heterogeneous nuclear ribonucleoprotein M no_core 57
HNRNPUL1 heterogeneous nuclear ribonucleoprotein U like 1 no_core 57
INTS6 integrator complex subunit 6 other 57
RBM23 RNA binding motif protein 23 no_core 57
DDX26B other 56
SART1 spliceosome associated factor 1, recruiter of U4/U6.U5 tri-snRNP core 55
XAB2 XPA binding protein 2 core 55
INTS4 integrator complex subunit 4 other 54
TFIP11 tuftelin interacting protein 11 no_core 54
SRRM1 serine and arginine repetitive matrix 1 no_core 53
DDX42 DEAD-box helicase 42 core 52
KHSRP KH-type splicing regulatory protein other 52
MYEF2 myelin expression factor 2 other 52
RALYL RALY RNA binding protein like other 52
SKIV2L2 other 52
U2SURP U2 snRNP associated SURP domain containing core 52
ZC3H11A zinc finger CCCH-type containing 11A other 52
SF3B2 splicing factor 3b subunit 2 core 51
CDC40 cell division cycle 40 core 50
CDC5L cell division cycle 5 like core 50
DDX50 DExD-box helicase 50 other 50
DHX30 DExH-box helicase 30 other 50
PABPC1 poly(A) binding protein cytoplasmic 1 no_core 50
C17orf85 no_core 49
FUBP1 far upstream element binding protein 1 other 49
JUP junction plakoglobin no_core 49
TOPORS TOP1 binding arginine/serine rich protein, E3 ubiquitin ligase other 49
ZCCHC8 zinc finger CCHC-type containing 8 other 49
CELF4 CUGBP Elav-like family member 4 other 48
DDX21 DExD-box helicase 21 other 48
DDX46 DEAD-box helicase 46 core 48
FMR1 FMRP translational regulator 1 other 48
TNPO1 transportin 1 other 48
BCAS1 brain enriched myelin associated protein 1 other 47
DDX18 DEAD-box helicase 18 other 47
HNRNPU heterogeneous nuclear ribonucleoprotein U no_core 47
PRPF4 pre-mRNA processing factor 4 core 47
TOP1MT DNA topoisomerase I mitochondrial other 47
CLK2 CDC like kinase 2 other 46
DDX17 DEAD-box helicase 17 no_core 45
HNRNPL heterogeneous nuclear ribonucleoprotein L other 45
LSM1 LSM1 homolog, mRNA degradation associated other 45

Continued on next page
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Table A.1 – continued from previous page
Symbol Description CategoryMutation events

RAVER1 ribonucleoprotein, PTB binding 1 other 45
RBM5 RNA binding motif protein 5 core 45
SF3B3 splicing factor 3b subunit 3 core 45
SRPK1 SRSF protein kinase 1 core 45
SRPK2 SRSF protein kinase 2 core 45
DDX41 DEAD-box helicase 41 core 44
SFPQ splicing factor proline and glutamine rich other 44
SNRPN small nuclear ribonucleoprotein polypeptide N other 44
HTATSF1 HIV-1 Tat specific factor 1 core 43
MOV10 Mov10 RISC complex RNA helicase other 43
SNRNP70 small nuclear ribonucleoprotein U1 subunit 70 core 43
DDX20 DEAD-box helicase 20 other 42
DDX23 DEAD-box helicase 23 core 42
DHX35 DEAH-box helicase 35 core 42
FUS FUS RNA binding protein core 42
HNRNPCL1 heterogeneous nuclear ribonucleoprotein C like 1 other 42
RAVER2 ribonucleoprotein, PTB binding 2 other 42
RBM39 RNA binding motif protein 39 no_core 42
ZNF131 zinc finger protein 131 other 42
DDX1 DEAD-box helicase 1 other 41
DHX15 DEAH-box helicase 15 core 41
SUGP1 SURP and G-patch domain containing 1 core 41
CRNKL1 crooked neck pre-mRNA splicing factor 1 core 40
DDX5 DEAD-box helicase 5 core 40
DHX40 DEAH-box helicase 40 other 40
NCBP1 nuclear cap binding protein subunit 1 core 40
NSRP1 nuclear speckle splicing regulatory protein 1 no_core 40
PRCC proline rich mitotic checkpoint control factor core 40
RBM14 RNA binding motif protein 14 other 40
DDX39B DExD-box helicase 39B no_core 39
DGCR14 no_core 39
INTS3 integrator complex subunit 3 other 39
LENG1 leukocyte receptor cluster member 1 other 39
QKI QKI, KH domain containing RNA binding no_core 39
SF3A1 splicing factor 3a subunit 1 core 39
SRPK3 SRSF protein kinase 3 other 39
CDK10 cyclin dependent kinase 10 no_core 38
CTNNBL1 catenin beta like 1 core 38
FUBP3 far upstream element binding protein 3 other 38
GRSF1 G-rich RNA sequence binding factor 1 other 38
HSPA5 heat shock protein family A (Hsp70) member 5 other 38
PRPF3 pre-mRNA processing factor 3 core 38
PTBP1 polypyrimidine tract binding protein 1 no_core 38
CELF2 CUGBP Elav-like family member 2 other 37
CLK1 CDC like kinase 1 other 37
GPATCH3 G-patch domain containing 3 other 37
KHDRBS3 KH RNA binding domain containing, signal transduction associated 3 no_core 37
SNRNP48 small nuclear ribonucleoprotein U11/U12 subunit 48 other 37
SRSF4 serine and arginine rich splicing factor 4 no_core 37
SRSF6 serine and arginine rich splicing factor 6 no_core 37
CELF3 CUGBP Elav-like family member 3 other 36
CELF5 CUGBP Elav-like family member 5 other 36
HNRNPDL heterogeneous nuclear ribonucleoprotein D like other 36
KIN Kin17 DNA and RNA binding protein core 36
PRPF19 pre-mRNA processing factor 19 core 36
PRPF38B pre-mRNA processing factor 38B other 36
SF3A2 splicing factor 3a subunit 2 core 36
SREK1 splicing regulatory glutamic acid and lysine rich protein 1 other 36
WBP11 WW domain binding protein 11 core 36
HNRNPA2B1heterogeneous nuclear ribonucleoprotein A2/B1 no_core 35
HNRNPH1 heterogeneous nuclear ribonucleoprotein H1 no_core 35
HNRNPR heterogeneous nuclear ribonucleoprotein R no_core 35
IGF2BP3 insulin like growth factor 2 mRNA binding protein 3 other 35
MBNL1 muscleblind like splicing regulator 1 other 35
MBNL2 muscleblind like splicing regulator 2 other 35
NONO non-POU domain containing octamer binding other 35
BUD13 BUD13 homolog core 34
RBM42 RNA binding motif protein 42 no_core 34
RNPC3 RNA binding region (RNP1, RRM) containing 3 other 34
TIAL1 TIA1 cytotoxic granule associated RNA binding protein like 1 other 34
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ZNF207 zinc finger protein 207 no_core 34
CWC25 CWC25 spliceosome associated protein homolog other 33
DDX19B DEAD-box helicase 19B other 33
ELAVL4 ELAV like RNA binding protein 4 other 33
HNRNPA3 heterogeneous nuclear ribonucleoprotein A3 no_core 33
HNRNPC heterogeneous nuclear ribonucleoprotein C no_core 33
HNRNPK heterogeneous nuclear ribonucleoprotein K no_core 33
KHDRBS1 KH RNA binding domain containing, signal transduction associated 1 no_core 33
MFSD11 major facilitator superfamily domain containing 11 other 33
NOVA2 NOVA alternative splicing regulator 2 other 33
PPM1G protein phosphatase, Mg2+/Mn2+ dependent 1G other 33
PRPF39 pre-mRNA processing factor 39 other 33
PSIP1 PC4 and SFRS1 interacting protein 1 other 33
WDR77 WD repeat domain 77 no_core 33
ZNF830 zinc finger protein 830 core 33
CLK4 CDC like kinase 4 other 32
CWC27 CWC27 spliceosome associated cyclophilin core 32
ELAVL1 ELAV like RNA binding protein 1 no_core 32
NELFE negative elongation factor complex member E other 32
PRMT5 protein arginine methyltransferase 5 no_core 32
SLU7 SLU7 homolog, splicing factor core 32
THOC5 THO complex 5 no_core 32
YBX3 Y-box binding protein 3 no_core 32
ELAVL3 ELAV like RNA binding protein 3 other 31
HNRNPA1 heterogeneous nuclear ribonucleoprotein A1 no_core 31
PCBP4 poly(rC) binding protein 4 other 31
PPIL2 peptidylprolyl isomerase like 2 core 31
PTBP3 polypyrimidine tract binding protein 3 other 31
RBFOX2 RNA binding fox-1 homolog 2 no_core 31
RBM45 RNA binding motif protein 45 other 31
THOC1 THO complex 1 no_core 31
ZRSR1 other 31
CLK3 CDC like kinase 3 other 30
CPSF6 cleavage and polyadenylation specific factor 6 other 30
U2AF1 U2 small nuclear RNA auxiliary factor 1 core 30
HNRNPD heterogeneous nuclear ribonucleoprotein D no_core 29
HNRNPH2 heterogeneous nuclear ribonucleoprotein H2 no_core 29
PCBP1 poly(rC) binding protein 1 no_core 29
PLRG1 pleiotropic regulator 1 core 29
PUF60 poly(U) binding splicing factor 60 core 29
RNF113A ring finger protein 113A core 29
SRSF11 serine and arginine rich splicing factor 11 other 29
TRA2B transformer 2 beta homolog no_core 29
CD2BP2 CD2 cytoplasmic tail binding protein 2 core 28
HNRNPLL heterogeneous nuclear ribonucleoprotein L like other 28
IK IK cytokine core 28
LUC7L LUC7 like no_core 28
PPIL4 peptidylprolyl isomerase like 4 no_core 28
RBM22 RNA binding motif protein 22 core 28
RNF34 ring finger protein 34 other 28
SNRPA small nuclear ribonucleoprotein polypeptide A core 28
DDX6 DEAD-box helicase 6 other 27
FRA10AC1 FRA10A associated CGG repeat 1 no_core 27
PPP1CA protein phosphatase 1 catalytic subunit alpha no_core 27
PRPF31 pre-mRNA processing factor 31 core 27
PTBP2 polypyrimidine tract binding protein 2 no_core 27
SNW1 SNW domain containing 1 core 27
U2AF2 U2 small nuclear RNA auxiliary factor 2 core 27
DDX39A DExD-box helicase 39A other 26
FAM50B family with sequence similarity 50 member B core 26
ZRSR2 zinc finger CCCH-type, RNA binding motif and serine/arginine rich 2 other 26
CELF1 CUGBP Elav-like family member 1 no_core 25
EEF1A1 eukaryotic translation elongation factor 1 alpha 1 other 25
LUC7L3 LUC7 like 3 pre-mRNA splicing factor other 25
MBNL3 muscleblind like splicing regulator 3 other 25
NKAP NFKB activating protein no_core 25
NOSIP nitric oxide synthase interacting protein core 25
THOC3 THO complex 3 no_core 25
TIA1 TIA1 cytotoxic granule associated RNA binding protein other 25
TOE1 target of EGR1, exonuclease no_core 25

Continued on next page
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CCDC94 other 24
DDX19A DEAD-box helicase 19A other 24
FAM50A family with sequence similarity 50 member A core 24
MSI1 musashi RNA binding protein 1 other 24
MSI2 musashi RNA binding protein 2 other 24
PPIE peptidylprolyl isomerase E core 24
PPP1R8 protein phosphatase 1 regulatory subunit 8 no_core 24
SRSF7 serine and arginine rich splicing factor 7 no_core 24
WBP4 WW domain binding protein 4 other 24
WDR83 WD repeat domain 83 core 24
WTAP WT1 associated protein other 24
CHERP calcium homeostasis endoplasmic reticulum protein core 23
GNB2L1 no_core 23
MFAP1 microfibril associated protein 1 core 23
RALY RALY heterogeneous nuclear ribonucleoprotein no_core 23
SF3A3 splicing factor 3a subunit 3 core 23
YBX1 Y-box binding protein 1 no_core 23
ZNF346 zinc finger protein 346 other 23
FAM58A other 22
NRIP2 nuclear receptor interacting protein 2 no_core 22
RBM4 RNA binding motif protein 4 no_core 22
RBMX RNA binding motif protein X-linked no_core 22
SNIP1 Smad nuclear interacting protein 1 core 22
CELF6 CUGBP Elav-like family member 6 other 21
EIF4A3 eukaryotic translation initiation factor 4A3 core 21
GPKOW G-patch domain and KOW motifs core 21
HNRNPF heterogeneous nuclear ribonucleoprotein F no_core 21
PCBP3 poly(rC) binding protein 3 other 21
PDCD7 programmed cell death 7 other 21
RBM17 RNA binding motif protein 17 core 21
RBMS1 RNA binding motif single stranded interacting protein 1 other 21
RBMXL1 RBMX like 1 other 21
SNRNP35 small nuclear ribonucleoprotein U11/U12 subunit 35 other 21
SRSF5 serine and arginine rich splicing factor 5 no_core 21
THOC6 THO complex 6 other 21
U2AF1L4 U2 small nuclear RNA auxiliary factor 1 like 4 other 21
USP39 ubiquitin specific peptidase 39 core 21
CCDC130 coiled-coil domain containing 130 no_core 20
CSN3 casein kappa other 20
SSB small RNA binding exonuclease protection factor La other 20
EIF2S2 eukaryotic translation initiation factor 2 subunit beta other 19
ISY1 ISY1 splicing factor homolog core 19
PCBP2 poly(rC) binding protein 2 no_core 19
PSEN1 presenilin 1 other 19
RBM4B RNA binding motif protein 4B other 19
RBMX2 RNA binding motif protein X-linked 2 core 19
SYF2 SYF2 pre-mRNA splicing factor core 19
CIRBP cold inducible RNA binding protein no_core 18
HNRNPA0 heterogeneous nuclear ribonucleoprotein A0 no_core 18
PQBP1 polyglutamine binding protein 1 core 18
SF3B4 splicing factor 3b subunit 4 core 18
SRSF3 serine and arginine rich splicing factor 3 no_core 18
ZCCHC10 zinc finger CCHC-type containing 10 no_core 18
ALYREF Aly/REF export factor no_core 17
BCAS2 BCAS2 pre-mRNA processing factor core 17
BUB3 BUB3 mitotic checkpoint protein core 17
DNAJC8 DnaJ heat shock protein family (Hsp40) member C8 core 17
HSPA1B heat shock protein family A (Hsp70) member 1B other 17
PRPF18 pre-mRNA processing factor 18 core 17
SRSF9 serine and arginine rich splicing factor 9 no_core 17
C9orf78 chromosome 9 open reading frame 78 core 16
HNRNPH3 heterogeneous nuclear ribonucleoprotein H3 no_core 16
HSPA1A heat shock protein family A (Hsp70) member 1A no_core 16
HSPB1 heat shock protein family B (small) member 1 core 16
PRPF38A pre-mRNA processing factor 38A core 16
RNPS1 RNA binding protein with serine rich domain 1 no_core 16
SNRNP40 small nuclear ribonucleoprotein U5 subunit 40 core 16
SRSF1 serine and arginine rich splicing factor 1 no_core 16
SRSF2 serine and arginine rich splicing factor 2 no_core 16
ARGLU1 arginine and glutamate rich 1 no_core 15

Continued on next page
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FRG1 FSHD region gene 1 core 15
SMU1 SMU1 DNA replication regulator and spliceosomal factor core 15
SNRNP27 small nuclear ribonucleoprotein U4/U6.U5 subunit 27 core 15
BAG2 BAG cochaperone 2 no_core 14
ILF2 interleukin enhancer binding factor 2 no_core 14
LSM10 LSM10, U7 small nuclear RNA associated other 14
LSM4 LSM4 homolog, U6 small nuclear RNA and mRNA degradation associatedcore 14
SNRPC small nuclear ribonucleoprotein polypeptide C core 14
THOC7 THO complex 7 no_core 14
TRA2A transformer 2 alpha homolog no_core 14
ZCRB1 zinc finger CCHC-type and RNA binding motif containing 1 other 14
CXorf56 core 13
SRSF12 serine and arginine rich splicing factor 12 other 13
GEMIN2 gem nuclear organelle associated protein 2 other 12
RBM3 RNA binding motif protein 3 other 12
RBM7 RNA binding motif protein 7 no_core 12
SAP30BP SAP30 binding protein no_core 12
ZMAT5 zinc finger matrin-type 5 other 12
BUD31 BUD31 homolog core 11
RBM8A RNA binding motif protein 8A core 11
SNRPB small nuclear ribonucleoprotein polypeptides B and B1 core 11
ZMAT2 zinc finger matrin-type 2 core 11
C19orf43 core 10
CLNS1A chloride nucleotide-sensitive channel 1A no_core 10
SMNDC1 survival motor neuron domain containing 1 core 10
C1QBP complement C1q binding protein other 9
DDX3Y DEAD-box helicase 3 Y-linked other 9
SAP18 Sin3A associated protein 18 core 9
SNRNP25 small nuclear ribonucleoprotein U11/U12 subunit 25 other 9
LSM7 LSM7 homolog, U6 small nuclear RNA and mRNA degradation associatedcore 8
NUDT21 nudix hydrolase 21 other 8
SNRPA1 small nuclear ribonucleoprotein polypeptide A’ core 8
SNRPD2 small nuclear ribonucleoprotein D2 polypeptide core 8
SNRPG small nuclear ribonucleoprotein polypeptide G core 8
CCDC12 coiled-coil domain containing 12 core 7
CWC15 CWC15 spliceosome associated protein homolog core 7
HNRNPAB heterogeneous nuclear ribonucleoprotein A/B no_core 7
LSMD1 other 7
NCBP2 nuclear cap binding protein subunit 2 core 7
PPIL1 peptidylprolyl isomerase like 1 core 7
SMN1 survival of motor neuron 1, telomeric no_core 7
SNRPD3 small nuclear ribonucleoprotein D3 polypeptide core 7
LSM2 LSM2 homolog, U6 small nuclear RNA and mRNA degradation associatedcore 6
SNRPB2 small nuclear ribonucleoprotein polypeptide B2 core 6
SNRPD1 small nuclear ribonucleoprotein D1 polypeptide core 6
PPIL3 peptidylprolyl isomerase like 3 core 5
SNURF SNRPN upstream reading frame other 5
LSM3 LSM3 homolog, U6 small nuclear RNA and mRNA degradation associatedcore 4
LSM5 LSM5 homolog, U6 small nuclear RNA and mRNA degradation associatedcore 4
MAGOH mago homolog, exon junction complex subunit core 4
PPIH peptidylprolyl isomerase H core 4
SF3B5 splicing factor 3b subunit 5 core 4
FAM32A family with sequence similarity 32 member A core 3
SNRPF small nuclear ribonucleoprotein polypeptide F core 3
LSM6 LSM6 homolog, U6 small nuclear RNA and mRNA degradation associatedcore 2
LUC7L2 LUC7 like 2, pre-mRNA splicing factor other 2
TXNL4A thioredoxin like 4A core 2
PHF5A PHD finger protein 5A core 1
SNRPE small nuclear ribonucleoprotein polypeptide E core 1
UBL5 ubiquitin like 5 core 1

A.2 Mutational landscape of splicing factors

Here we include several plots that help to understand the contents of the somatic
mutations dataset from DepMap.
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Figure A.1: Top graph shows the amount of normalized somatic mutations -
including mutations in the splicing factors - reported per cancer cell lines. Bottom
shows the number of analyzed cell lines per cancer.
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Figure A.2: Count of the somatic mutations reported by DepMap in the CCLE
project classified according to mutation type.
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Figure A.3: PCA performed labeling the cell lines depending on presence or ab-
sence of mutations on the genes encoding for proteins that are part of the non-core
spliceosome machinery
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MUTATED
YES
NO

Figure A.4: t-SNE performed labeling the cell lines depending on presence or
absence of mutations on the genes encoding for proteins that are part of the no-core
spliceosome machinery
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MUTATIONS IN THE SPLICEOSOME

Figure A.5: PCA performed labeling the cell lines depending on presence or ab-
sence of mutations on the genes encoding for proteins that are part of the "other"
spliceosome machinery
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MUTATED
YES
NO

Figure A.6: t-SNE performed labeling the cell lines depending on presence or
absence of mutations on the genes encoding for proteins that are part of the "other"
spliceosome machinery
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A.3 Heatmaps
To produce the binary heatmaps (see below and figure 4.2) we used the R package
tidyheatmap, that provides an interface for the package pheatmap. To draw the
heatmaps we used the clustering method "complete" and the clustering distance
"binary" for clustering the splicing factors (rows).
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Figure A.7: Heatmap showing the all mutations occurring on the splicing factors
across the studied cell lines.XIV
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Appendix 2 - Transcriptional

differences related to spliceosome
deficiencies in cancer

B.1 MYC targets gene sets

List of genes in the MYC target gene sets
SYMBOL Description

ABCE1 ATP binding cassette subfamily E member 1
ACP1 acid phosphatase 1
AIMP2 aminoacyl tRNA synthetase complex interacting multifunctional protein 2
AP3S1 adaptor related protein complex 3 subunit sigma 1
APEX1 apurinic/apyrimidinic endodeoxyribonuclease 1
BUB3 BUB3 mitotic checkpoint protein
BYSL bystin like
C1QBP complement C1q binding protein
CAD carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase
CANX calnexin
CBX3 chromobox 3
CCNA2 cyclin A2
CCT2 chaperonin containing TCP1 subunit 2
CCT3 chaperonin containing TCP1 subunit 3
CCT4 chaperonin containing TCP1 subunit 4
CCT5 chaperonin containing TCP1 subunit 5
CCT7 chaperonin containing TCP1 subunit 7
CDC20 cell division cycle 20
CDC45 cell division cycle 45
CDK2 cyclin dependent kinase 2
CDK4 cyclin dependent kinase 4
CLNS1A chloride nucleotide-sensitive channel 1A
CNBP CCHC-type zinc finger nucleic acid binding protein
COPS5 COP9 signalosome subunit 5
COX5A cytochrome c oxidase subunit 5A
CSTF2 cleavage stimulation factor subunit 2
CTPS1 CTP synthase 1
CUL1 cullin 1
CYC1 cytochrome c1
DCTPP1 dCTP pyrophosphatase 1
DDX18 DEAD-box helicase 18
DDX21 DExD-box helicase 21
DEK DEK proto-oncogene
DHX15 DEAH-box helicase 15
DUSP2 dual specificity phosphatase 2
DUT deoxyuridine triphosphatase
EEF1B2 eukaryotic translation elongation factor 1 beta 2
EIF1AX eukaryotic translation initiation factor 1A X-linked
EIF2S1 eukaryotic translation initiation factor 2 subunit alpha
EIF2S2 eukaryotic translation initiation factor 2 subunit beta
EIF3B eukaryotic translation initiation factor 3 subunit B
EIF3D eukaryotic translation initiation factor 3 subunit D

Continued on next page
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EIF3J eukaryotic translation initiation factor 3 subunit J
EIF4A1 eukaryotic translation initiation factor 4A1
EIF4E eukaryotic translation initiation factor 4E
EIF4G2 eukaryotic translation initiation factor 4 gamma 2
EIF4H eukaryotic translation initiation factor 4H
EPRS1 glutamyl-prolyl-tRNA synthetase 1
ERH ERH mRNA splicing and mitosis factor
ETF1 eukaryotic translation termination factor 1
EXOSC5 exosome component 5
EXOSC7 exosome component 7
FAM120A family with sequence similarity 120A
FARSA phenylalanyl-tRNA synthetase subunit alpha
FBL fibrillarin
G3BP1 G3BP stress granule assembly factor 1
GLO1 glyoxalase I
GNL3 G protein nucleolar 3
GOT2 glutamic-oxaloacetic transaminase 2
GRWD1 glutamate rich WD repeat containing 1
GSPT1 G1 to S phase transition 1
H2AZ1 H2A.Z variant histone 1
HDAC2 histone deacetylase 2
HDDC2 HD domain containing 2
HDGF heparin binding growth factor
HK2 hexokinase 2
HNRNPA1 heterogeneous nuclear ribonucleoprotein A1
HNRNPA2B1 heterogeneous nuclear ribonucleoprotein A2/B1
HNRNPA3 heterogeneous nuclear ribonucleoprotein A3
HNRNPC heterogeneous nuclear ribonucleoprotein C
HNRNPD heterogeneous nuclear ribonucleoprotein D
HNRNPR heterogeneous nuclear ribonucleoprotein R
HNRNPU heterogeneous nuclear ribonucleoprotein U
HPRT1 hypoxanthine phosphoribosyltransferase 1
HSP90AB1 heat shock protein 90 alpha family class B member 1
HSPD1 heat shock protein family D (Hsp60) member 1
HSPE1 heat shock protein family E (Hsp10) member 1
IARS1 isoleucyl-tRNA synthetase 1
IFRD1 interferon related developmental regulator 1
ILF2 interleukin enhancer binding factor 2
IMP4 IMP U3 small nucleolar ribonucleoprotein 4
IMPDH2 inosine monophosphate dehydrogenase 2
IPO4 importin 4
KARS1 lysyl-tRNA synthetase 1
KPNA2 karyopherin subunit alpha 2
KPNB1 karyopherin subunit beta 1
LAS1L LAS1 like ribosome biogenesis factor
LDHA lactate dehydrogenase A
LSM2 LSM2 homolog, U6 small nuclear RNA and mRNA degradation associated
LSM7 LSM7 homolog, U6 small nuclear RNA and mRNA degradation associated
MAD2L1 mitotic arrest deficient 2 like 1
MAP3K6 mitogen-activated protein kinase kinase kinase 6
MCM2 minichromosome maintenance complex component 2
MCM4 minichromosome maintenance complex component 4
MCM5 minichromosome maintenance complex component 5
MCM6 minichromosome maintenance complex component 6
MCM7 minichromosome maintenance complex component 7
MPHOSPH10 M-phase phosphoprotein 10
MRPL23 mitochondrial ribosomal protein L23
MRPL9 mitochondrial ribosomal protein L9
MRPS18B mitochondrial ribosomal protein S18B
MRTO4 MRT4 homolog, ribosome maturation factor
MYBBP1A MYB binding protein 1a
MYC MYC proto-oncogene, bHLH transcription factor
NAP1L1 nucleosome assembly protein 1 like 1
NCBP1 nuclear cap binding protein subunit 1
NCBP2 nuclear cap binding protein subunit 2
NDUFAB1 NADH:ubiquinone oxidoreductase subunit AB1
NDUFAF4 NADH:ubiquinone oxidoreductase complex assembly factor 4
NHP2 NHP2 ribonucleoprotein
NIP7 nucleolar pre-rRNA processing protein NIP7
NME1 NME/NM23 nucleoside diphosphate kinase 1

Continued on next page
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NOC4L nucleolar complex associated 4 homolog
NOLC1 nucleolar and coiled-body phosphoprotein 1
NOP16 NOP16 nucleolar protein
NOP2 NOP2 nucleolar protein
NOP56 NOP56 ribonucleoprotein
NPM1 nucleophosmin 1
ODC1 ornithine decarboxylase 1
ORC2 origin recognition complex subunit 2
PA2G4 proliferation-associated 2G4
PABPC1 poly(A) binding protein cytoplasmic 1
PABPC4 poly(A) binding protein cytoplasmic 4
PCBP1 poly(rC) binding protein 1
PCNA proliferating cell nuclear antigen
PES1 pescadillo ribosomal biogenesis factor 1
PGK1 phosphoglycerate kinase 1
PHB prohibitin
PHB2 prohibitin 2
PLK1 polo like kinase 1
PLK4 polo like kinase 4
POLD2 DNA polymerase delta 2, accessory subunit
POLE3 DNA polymerase epsilon 3, accessory subunit
PPAN peter pan homolog
PPIA peptidylprolyl isomerase A
PPM1G protein phosphatase, Mg2+/Mn2+ dependent 1G
PPRC1 PPARG related coactivator 1
PRDX3 peroxiredoxin 3
PRDX4 peroxiredoxin 4
PRMT3 protein arginine methyltransferase 3
PRPF31 pre-mRNA processing factor 31
PRPS2 phosphoribosyl pyrophosphate synthetase 2
PSMA1 proteasome 20S subunit alpha 1
PSMA2 proteasome 20S subunit alpha 2
PSMA4 proteasome 20S subunit alpha 4
PSMA6 proteasome 20S subunit alpha 6
PSMA7 proteasome 20S subunit alpha 7
PSMB2 proteasome 20S subunit beta 2
PSMB3 proteasome 20S subunit beta 3
PSMC4 proteasome 26S subunit, ATPase 4
PSMC6 proteasome 26S subunit, ATPase 6
PSMD1 proteasome 26S subunit, non-ATPase 1
PSMD14 proteasome 26S subunit, non-ATPase 14
PSMD3 proteasome 26S subunit, non-ATPase 3
PSMD7 proteasome 26S subunit, non-ATPase 7
PSMD8 proteasome 26S subunit, non-ATPase 8
PTGES3 prostaglandin E synthase 3
PUS1 pseudouridine synthase 1
PWP1 PWP1 homolog, endonuclein
RABEPK Rab9 effector protein with kelch motifs
RACK1 receptor for activated C kinase 1
RAD23B RAD23 homolog B, nucleotide excision repair protein
RAN RAN, member RAS oncogene family
RANBP1 RAN binding protein 1
RCL1 RNA terminal phosphate cyclase like 1
RFC4 replication factor C subunit 4
RNPS1 RNA binding protein with serine rich domain 1
RPL14 ribosomal protein L14
RPL18 ribosomal protein L18
RPL22 ribosomal protein L22
RPL34 ribosomal protein L34
RPL6 ribosomal protein L6
RPLP0 ribosomal protein lateral stalk subunit P0
RPS10 ribosomal protein S10
RPS2 ribosomal protein S2
RPS3 ribosomal protein S3
RPS5 ribosomal protein S5
RPS6 ribosomal protein S6
RRM1 ribonucleotide reductase catalytic subunit M1
RRP12 ribosomal RNA processing 12 homolog
RRP9 ribosomal RNA processing 9, U3 small nucleolar RNA binding protein
RSL1D1 ribosomal L1 domain containing 1

Continued on next page
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RUVBL2 RuvB like AAA ATPase 2
SERBP1 SERPINE1 mRNA binding protein 1
SET SET nuclear proto-oncogene
SF3A1 splicing factor 3a subunit 1
SF3B3 splicing factor 3b subunit 3
SLC19A1 solute carrier family 19 member 1
SLC25A3 solute carrier family 25 member 3
SLC29A2 solute carrier family 29 member 2
SMARCC1 SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 1
SNRPA small nuclear ribonucleoprotein polypeptide A
SNRPA1 small nuclear ribonucleoprotein polypeptide A’
SNRPB2 small nuclear ribonucleoprotein polypeptide B2
SNRPD1 small nuclear ribonucleoprotein D1 polypeptide
SNRPD2 small nuclear ribonucleoprotein D2 polypeptide
SNRPD3 small nuclear ribonucleoprotein D3 polypeptide
SNRPG small nuclear ribonucleoprotein polypeptide G
SORD sorbitol dehydrogenase
SRM spermidine synthase
SRPK1 SRSF protein kinase 1
SRSF1 serine and arginine rich splicing factor 1
SRSF2 serine and arginine rich splicing factor 2
SRSF3 serine and arginine rich splicing factor 3
SRSF7 serine and arginine rich splicing factor 7
SSB small RNA binding exonuclease protection factor La
SSBP1 single stranded DNA binding protein 1
STARD7 StAR related lipid transfer domain containing 7
SUPV3L1 Suv3 like RNA helicase
SYNCRIP synaptotagmin binding cytoplasmic RNA interacting protein
TARDBP TAR DNA binding protein
TBRG4 transforming growth factor beta regulator 4
TCOF1 treacle ribosome biogenesis factor 1
TCP1 t-complex 1
TFB2M transcription factor B2, mitochondrial
TFDP1 transcription factor Dp-1
TMEM97 transmembrane protein 97
TOMM70 translocase of outer mitochondrial membrane 70
TRA2B transformer 2 beta homolog
TRIM28 tripartite motif containing 28
TUFM Tu translation elongation factor, mitochondrial
TXNL4A thioredoxin like 4A
TYMS thymidylate synthetase
U2AF1 U2 small nuclear RNA auxiliary factor 1
UBA2 ubiquitin like modifier activating enzyme 2
UBE2E1 ubiquitin conjugating enzyme E2 E1
UBE2L3 ubiquitin conjugating enzyme E2 L3
UNG uracil DNA glycosylase
USP1 ubiquitin specific peptidase 1
UTP20 UTP20 small subunit processome component
VBP1 VHL binding protein 1
VDAC1 voltage dependent anion channel 1
VDAC3 voltage dependent anion channel 3
WDR43 WD repeat domain 43
WDR74 WD repeat domain 74
XPO1 exportin 1
XPOT exportin for tRNA
XRCC6 X-ray repair cross complementing 6
YWHAE tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon
YWHAQ tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta
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Appendix 3 - Predicting

individual mutation-associated
splicing events using SpliceAI

C.1 Preparation to run SpliceAI
As explained in section 3.6.1, the CSV file downloaded from DepMap was parsed
into a VCF file. Then, the file was sorted and indexed using bgzip and tabix, both
included in the samtools suit [25] and installed locally in a conda environment.
#Parsing to a VCF f i l e
awk −F ’ , ’ ’BEGIN {printf ( "##f i l e f o rma t=VCFv4. 2
\n##r e f e r e n c e=GRCh37/hg19\n#CHROM\tPOS\tID\tREF\tALT\tQUAL\
tFILTER\tINFO\n" ) ; }
NR > 1 {printf ( "%s\ t%s\ t%s\ t%s\ t%s\ t . \ t . \ n " ,
$4 , $5 , $36 , $10 , $11 ) ; } ’
. . / path/ to /my/ f i l e / f i l ename . csv > /path/ to /output . vc f

# Sor t ing the f i l e
## Print headers
grep "^#" CCLE. vc f > CCLE_out . vc f
## Sort by chromosome and po s i t i o n
grep −v "^#" CCLE. vc f | s o r t −k1 , 1V −k2 , 2 g >> CCLE_out . vc f

#Index ing
bgzip CCLE_out . vc f
tab ix CCLE_out . vc f

#To run Sp l i ceAI on the c l u s t e r
s p l i c e a i −I mutations_CCLE . vc f −O output . vc f

−R hg19 . f a −A grch37

#Where the mutat ions CCLE f i l e i s the somatic mutat ions
#da ta s e t genera ted by CCLE, the output f i l e con ta ins the
#p r o b a b i l i t i e s c a l c u l a t e d by Sp l i ceAI and i t s p o s i t i o n and
#the hg19 f a s t a f i l e corresponds to the
#Genome Reference Consortium Human Bui ld 37 (GRCh37) .

XIX



C. Appendix 3 - Predicting individual mutation-associated splicing events using
SpliceAI

C.2 SpliceAI

Figure C.1: Number of off-target mutation events predicted by SpliceAI per cancer

List of off-target splicing events predicted by SpliceAI
DepMap ID SYMBOL DISEASE

ACH-000512 OR2L13 Myeloma
ACH-001328 OR2W3 Skin Cancer
ACH-000941 MTERF4 Endometrial/Uterine Cancer
ACH-000946 SNED1 Endometrial/Uterine Cancer
ACH-000579 CROCC2 Skin Cancer
ACH-000314 AL646016.1 Lung Cancer
ACH-000851 AL646016.1 Lung Cancer
ACH-000942 UBE2F-SCLY Leukemia
ACH-000608 RYR2 Ovarian Cancer
ACH-000901 RYR2 Lung Cancer
ACH-001518 ERO1B Endometrial/Uterine Cancer
ACH-002257 ERO1B Brain Cancer
ACH-000316 ERO1B Liver Cancer
ACH-000928 ERO1B Endometrial/Uterine Cancer
ACH-000955 RP5-862P8.2 Colon/Colorectal Cancer
ACH-001321 DAW1 Thyroid Cancer
ACH-000517 FARSB Pancreatic Cancer
ACH-000793 RP11-33O4.2 Gastric Cancer
ACH-000787 RP11-33O4.2 Lung Cancer
ACH-000972 RP11-33O4.2 Endometrial/Uterine Cancer
ACH-000730 RP11-33O4.2 Skin Cancer

Continued on next page
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DepMap ID SYMBOL DISEASE

ACH-000548 RP11-33O4.2 Head and Neck Cancer
ACH-001664 RP11-33O4.2 Gastric Cancer
ACH-001517 RP11-33O4.2 Endometrial/Uterine Cancer
ACH-000941 RP11-33O4.2 Endometrial/Uterine Cancer
ACH-000991 FCMR Colon/Colorectal Cancer
ACH-001517 RAB29 Endometrial/Uterine Cancer
ACH-000985 RAB29 Colon/Colorectal Cancer
ACH-000274 NBEAL1 Skin Cancer
ACH-000157 RNPEP Lymphoma
ACH-000957 HSPE1-MOB4 Colon/Colorectal Cancer
ACH-000969 HSPE1-MOB4 Colon/Colorectal Cancer
ACH-000692 RUBCN Head and Neck Cancer
ACH-000568 RP4-608O15.3 Breast Cancer
ACH-000987 RP4-608O15.3 Skin Cancer
ACH-000215 RP4-608O15.3 Brain Cancer
ACH-001137 RP4-608O15.3 Lung Cancer
ACH-000219 RP4-608O15.3 Skin Cancer
ACH-002001 RP4-608O15.3 Skin Cancer
ACH-002003 RP4-608O15.3 Skin Cancer
ACH-001081 TM4SF19-TCTEX1D2 Colon/Colorectal Cancer
ACH-000991 TM4SF19-TCTEX1D2 Colon/Colorectal Cancer
ACH-002253 RP11-447L10.1 Lymphoma
ACH-002253 TCTEX1D2 Lymphoma
ACH-002253 TM4SF19-TCTEX1D2 Lymphoma
ACH-000380 NEMP2 Myeloma
ACH-001339 INPP1 Skin Cancer
ACH-001796 P3H2 Liposarcoma
ACH-001498 P3H2 Lymphoma
ACH-000169 CENPU Sarcoma
ACH-001790 CENPU Sarcoma
ACH-000985 CENPU Colon/Colorectal Cancer
ACH-001151 NCKAP1 Ovarian Cancer
ACH-000274 USP13 Skin Cancer
ACH-000960 TTN Leukemia
ACH-001339 PIK3CA Skin Cancer
ACH-000901 ASB5 Lung Cancer
ACH-000888 AC009336.19 Lung Cancer
ACH-000888 HOXD4 Lung Cancer
ACH-000608 CDHR2 Ovarian Cancer
ACH-000157 SFXN1 Lymphoma
ACH-000662 CDCA7 Lung Cancer
ACH-000562 AC013461.1 Lung Cancer
ACH-000198 AC013461.1 Leukemia
ACH-000077 AC013461.1 Lymphoma
ACH-000590 AC013461.1 Lung Cancer
ACH-000996 AC013461.1 Endometrial/Uterine Cancer
ACH-000011 AC013461.1 Bladder Cancer
ACH-000026 AC013461.1 Bladder Cancer
ACH-001137 HMP19 Lung Cancer
ACH-000608 NEK1 Ovarian Cancer
ACH-000699 BBS5 Breast Cancer
ACH-000274 ANXA10 Skin Cancer
ACH-000662 TTC21B Lung Cancer
ACH-000468 QKI Pancreatic Cancer
ACH-000025 HMMR Brain Cancer
ACH-000900 CCDC190 Lung Cancer
ACH-000458 PLG Skin Cancer
ACH-000999 RP11-544M22.13 Colon/Colorectal Cancer
ACH-000123 SLC22A3 Ovarian Cancer
ACH-002163 LY75 Breast Cancer
ACH-002166 LY75 Skin Cancer
ACH-000927 LY75 Breast Cancer
ACH-001344 LY75 Neuroblastoma
ACH-000996 LY75 Endometrial/Uterine Cancer
ACH-002100 LY75 Skin Cancer
ACH-002193 LY75 Lung Cancer
ACH-000986 LY75 Colon/Colorectal Cancer
ACH-000782 LY75 Leukemia
ACH-001735 LY75 Leukemia
ACH-000993 LY75-CD302 Endometrial/Uterine Cancer

Continued on next page
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Table C.1 – continued from previous page
DepMap ID SYMBOL DISEASE

ACH-000784 LY75 Esophageal Cancer
ACH-000719 LY75 Ovarian Cancer
ACH-000977 CD302 Prostate Cancer
ACH-000999 RP11-574F21.3 Colon/Colorectal Cancer
ACH-000921 RP11-574F21.3 Lung Cancer
ACH-000638 RP11-574F21.3 Lung Cancer
ACH-000997 RP11-432B6.3 Colon/Colorectal Cancer
ACH-000901 SMC4 Lung Cancer
ACH-000946 RP11-432B6.3 Endometrial/Uterine Cancer
ACH-000787 RP11-432B6.3 Lung Cancer
ACH-001517 RP11-432B6.3 Endometrial/Uterine Cancer
ACH-000954 RP11-432B6.3 Endometrial/Uterine Cancer
ACH-000941 RP11-432B6.3 Endometrial/Uterine Cancer
ACH-001333 SCHIP1 Cervical Cancer
ACH-000984 ACKR1 Endometrial/Uterine Cancer
ACH-000718 PQLC2L Lung Cancer
ACH-000992 AC026407.1 Head and Neck Cancer
ACH-000804 GLMP Neuroblastoma
ACH-000608 THBS3 Ovarian Cancer
ACH-000757 DCST2 Lung Cancer
ACH-000978 CNKSR3 Endometrial/Uterine Cancer
ACH-000317 CNKSR3 Kidney Cancer
ACH-000963 CMC4 Colon/Colorectal Cancer
ACH-000965 GATB Endometrial/Uterine Cancer
ACH-001328 NEB Skin Cancer
ACH-000355 TMEM14EP Lung Cancer
ACH-000907 ARMT1 Kidney Cancer
ACH-000404 ERICH6 Skin Cancer
ACH-001127 ERICH6 Leukemia
ACH-000858 ERICH6 Lung Cancer
ACH-000972 ERICH6 Endometrial/Uterine Cancer
ACH-000504 ERICH6 Brain Cancer
ACH-000969 CIART Colon/Colorectal Cancer
ACH-000563 PRMT9 Lung Cancer
ACH-000749 PRMT9 Lung Cancer
ACH-000946 AF011889.5 Endometrial/Uterine Cancer
ACH-000963 AF011889.5 Colon/Colorectal Cancer
ACH-000759 AF011889.5 Breast Cancer
ACH-000988 AF011889.5 Endometrial/Uterine Cancer
ACH-002130 RP11-449H3.3 Lung Cancer
ACH-000987 RP11-449H3.3 Skin Cancer
ACH-000977 RP11-449H3.3 Prostate Cancer
ACH-001328 HHIP Skin Cancer
ACH-000989 NBPF10 Colon/Colorectal Cancer
ACH-000911 HGH1 Gastric Cancer
ACH-000681 WDR97 Lung Cancer
ACH-001627 WDR97 Prostate Cancer
ACH-000558 WDR97 Brain Cancer
ACH-000236 WDR97 Colon/Colorectal Cancer
ACH-001991 RP3-468K18.7 Ovarian Cancer
ACH-001328 CYP11B2 Skin Cancer
ACH-000781 ADGRB1 Lung Cancer
ACH-000628 ADGRB1 Lung Cancer
ACH-002309 ADGRG6 Sarcoma
ACH-001518 ADGRG6 Endometrial/Uterine Cancer
ACH-000901 TRPV5 Lung Cancer
ACH-000751 ADGRG6 Leukemia
ACH-000987 MGAM2 Skin Cancer
ACH-002119 MGAM2 Bone Cancer
ACH-001524 MGAM2 Skin Cancer
ACH-002004 MGAM2 Skin Cancer
ACH-000993 TBC1D9 Endometrial/Uterine Cancer
ACH-000993 CACNA1B Endometrial/Uterine Cancer
ACH-000757 CACNA1B Lung Cancer
ACH-000940 PCDHA1 Endometrial/Uterine Cancer
ACH-000940 PCDHA2 Endometrial/Uterine Cancer
ACH-000940 PCDHA3 Endometrial/Uterine Cancer
ACH-000940 PCDHA4 Endometrial/Uterine Cancer
ACH-000940 PCDHA5 Endometrial/Uterine Cancer
ACH-000940 PCDHA6 Endometrial/Uterine Cancer
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ACH-000940 PCDHA7 Endometrial/Uterine Cancer
ACH-000940 PCDHA8 Endometrial/Uterine Cancer
ACH-000940 PCDHA9 Endometrial/Uterine Cancer
ACH-000940 PCDHA10 Endometrial/Uterine Cancer
ACH-000940 PCDHA11 Endometrial/Uterine Cancer
ACH-000940 PCDHA12 Endometrial/Uterine Cancer
ACH-001559 PCDHA1 Lung Cancer
ACH-001559 PCDHA2 Lung Cancer
ACH-001559 PCDHA3 Lung Cancer
ACH-001559 PCDHA4 Lung Cancer
ACH-001559 PCDHA5 Lung Cancer
ACH-001559 PCDHA6 Lung Cancer
ACH-001559 PCDHA7 Lung Cancer
ACH-001559 PCDHA8 Lung Cancer
ACH-001559 PCDHA9 Lung Cancer
ACH-001559 PCDHA10 Lung Cancer
ACH-001559 PCDHA11 Lung Cancer
ACH-000838 PCDHA1 Myeloma
ACH-002038 PCDHA1 Ovarian Cancer
ACH-000838 PCDHA2 Myeloma
ACH-000838 PCDHA3 Myeloma
ACH-000838 PCDHA4 Myeloma
ACH-000838 PCDHA5 Myeloma
ACH-000838 PCDHA6 Myeloma
ACH-000838 PCDHA7 Myeloma
ACH-000838 PCDHA8 Myeloma
ACH-000838 PCDHA9 Myeloma
ACH-000838 PCDHA10 Myeloma
ACH-002038 PCDHA2 Ovarian Cancer
ACH-002038 PCDHA3 Ovarian Cancer
ACH-002038 PCDHA4 Ovarian Cancer
ACH-002038 PCDHA5 Ovarian Cancer
ACH-002038 PCDHA6 Ovarian Cancer
ACH-002038 PCDHA7 Ovarian Cancer
ACH-002038 PCDHA8 Ovarian Cancer
ACH-002038 PCDHA9 Ovarian Cancer
ACH-002038 PCDHA10 Ovarian Cancer
ACH-000652 PCDHA1 Pancreatic Cancer
ACH-000652 PCDHA2 Pancreatic Cancer
ACH-000652 PCDHA3 Pancreatic Cancer
ACH-000652 PCDHA4 Pancreatic Cancer
ACH-000652 PCDHA5 Pancreatic Cancer
ACH-000652 PCDHA6 Pancreatic Cancer
ACH-000652 PCDHA7 Pancreatic Cancer
ACH-000652 PCDHA8 Pancreatic Cancer
ACH-000984 PCDHA1 Endometrial/Uterine Cancer
ACH-000984 PCDHA2 Endometrial/Uterine Cancer
ACH-000984 PCDHA3 Endometrial/Uterine Cancer
ACH-000984 PCDHA4 Endometrial/Uterine Cancer
ACH-000981 PCDHA1 Leukemia
ACH-000981 PCDHA2 Leukemia
ACH-000981 PCDHA3 Leukemia
ACH-000981 PCDHA4 Leukemia
ACH-000960 ENTPD2 Leukemia
ACH-000398 ENTPD2 Lymphoma
ACH-000727 RP11-229P13.27 Lung Cancer
ACH-002245 ANKHD1-EIF4EBP3 Lymphoma
ACH-000860 ANKHD1-EIF4EBP3 Lung Cancer
ACH-001523 FBXW5 Skin Cancer
ACH-000171 KDM7A Kidney Cancer
ACH-000123 SLC4A9 Ovarian Cancer
ACH-001433 RP11-216L13.17 Sarcoma
ACH-001849 RP11-216L13.17 Bile Duct Cancer
ACH-001433 CCDC183 Sarcoma
ACH-001849 CCDC183 Bile Duct Cancer
ACH-000594 RP11-216L13.16 Lung Cancer
ACH-001377 LUC7L2 Pancreatic Cancer
ACH-000925 C7orf55 Lung Cancer
ACH-000925 C7orf55-LUC7L2 Lung Cancer
ACH-001061 ARFGEF3 Colon/Colorectal Cancer

Continued on next page

XXIII



C. Appendix 3 - Predicting individual mutation-associated splicing events using
SpliceAI

Table C.1 – continued from previous page
DepMap ID SYMBOL DISEASE

ACH-000997 ARFGEF3 Colon/Colorectal Cancer
ACH-000989 ARFGEF3 Colon/Colorectal Cancer
ACH-000876 ARFGEF3 Breast Cancer
ACH-000901 DGKI Lung Cancer
ACH-002370 ADGRG4 Unknown
ACH-001529 ADGRG4 Endometrial/Uterine Cancer
ACH-000998 ADGRG4 Colon/Colorectal Cancer
ACH-002397 ADGRG4 Thyroid Cancer
ACH-000671 CFAP77 Liver Cancer
ACH-001345 CFAP77 Colon/Colorectal Cancer
ACH-000274 AL161645.2 Skin Cancer
ACH-002389 MTG1 Neuroblastoma
ACH-000676 MTG1 Brain Cancer
ACH-000781 MTG1 Lung Cancer
ACH-000914 PRAP1 Lymphoma
ACH-000950 CFAP46 Colon/Colorectal Cancer
ACH-000970 CFAP46 Colon/Colorectal Cancer
ACH-000941 CFAP46 Endometrial/Uterine Cancer
ACH-002127 CFAP46 Lung Cancer
ACH-000937 CFAP46 Leukemia
ACH-000880 CFAP46 Gastric Cancer
ACH-001061 CFAP46 Colon/Colorectal Cancer
ACH-000997 CFAP46 Colon/Colorectal Cancer
ACH-000986 CFAP46 Colon/Colorectal Cancer
ACH-001835 CFAP46 Bile Duct Cancer
ACH-000998 CFAP46 Colon/Colorectal Cancer
ACH-000952 CFAP46 Prostate Cancer
ACH-000929 CFAP46 Lung Cancer
ACH-000757 CFAP46 Lung Cancer
ACH-001328 CFAP46 Skin Cancer
ACH-000641 CFAP46 Leukemia
ACH-002005 CFAP46 Skin Cancer
ACH-001081 CT55 Colon/Colorectal Cancer
ACH-000814 CT55 Skin Cancer
ACH-002340 CT55 Neuroblastoma
ACH-000992 JADE2 Head and Neck Cancer
ACH-001623 JADE2 Brain Cancer
ACH-000662 ANHX Lung Cancer
ACH-000894 CTD-2140B24.4 Lung Cancer
ACH-001328 C3orf36 Skin Cancer
ACH-001991 CTD-2410N18.5 Ovarian Cancer
ACH-000990 LYPD1 Endometrial/Uterine Cancer
ACH-002302 RP11-240B13.2 Leukemia
ACH-000941 RP11-240B13.2 Endometrial/Uterine Cancer
ACH-000941 HHLA1 Endometrial/Uterine Cancer
ACH-000993 OC90 Endometrial/Uterine Cancer
ACH-000993 RP11-240B13.2 Endometrial/Uterine Cancer
ACH-000274 OC90 Skin Cancer
ACH-001456 RP11-240B13.2 Colon/Colorectal Cancer
ACH-001041 RP11-240B13.2 Lung Cancer
ACH-001496 RP11-240B13.2 Esophageal Cancer
ACH-000274 RP11-240B13.2 Skin Cancer
ACH-000672 RP11-240B13.2 Lung Cancer
ACH-001536 RP11-240B13.2 Bile Duct Cancer
ACH-001791 RP11-240B13.2 Liposarcoma
ACH-001559 RP11-240B13.2 Lung Cancer
ACH-001568 RP11-240B13.2 Skin Cancer
ACH-001632 RP11-240B13.2 Ovarian Cancer
ACH-001856 RP11-240B13.2 Bile Duct Cancer
ACH-001751 RP11-240B13.2 Sarcoma
ACH-001645 RP11-240B13.2 Skin Cancer
ACH-000556 RP11-240B13.2 Cervical Cancer
ACH-001654 RP11-240B13.2 Esophageal Cancer
ACH-001414 RP11-240B13.2 Bladder Cancer
ACH-002002 RP11-240B13.2 Skin Cancer
ACH-000637 RP11-240B13.2 Esophageal Cancer
ACH-000820 RP11-240B13.2 Colon/Colorectal Cancer
ACH-000416 RP11-240B13.2 Lung Cancer
ACH-000921 RP11-240B13.2 Lung Cancer
ACH-000662 ADCY8 Lung Cancer
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ACH-000026 ADGRD1 Bladder Cancer
ACH-002275 ADGRD1 Leukemia
ACH-001414 CTB-127M13.1 Bladder Cancer
ACH-000813 CTB-127M13.1 Lung Cancer
ACH-000900 CTB-127M13.1 Lung Cancer
ACH-000940 CTB-127M13.1 Endometrial/Uterine Cancer
ACH-000984 CTB-127M13.1 Endometrial/Uterine Cancer
ACH-000973 STK26 Bladder Cancer
ACH-002238 CTC-432M15.3 Leukemia
ACH-001650 CTC-432M15.3 Cervical Cancer
ACH-002026 CTC-432M15.3 Endometrial/Uterine Cancer
ACH-000974 CTC-432M15.3 Endometrial/Uterine Cancer
ACH-000164 CTC-432M15.3 Pancreatic Cancer
ACH-000959 CTC-432M15.3 Colon/Colorectal Cancer
ACH-000274 COL6A5 Skin Cancer
ACH-000928 CPA1 Endometrial/Uterine Cancer
ACH-000992 RALGPS1 Head and Neck Cancer
ACH-000037 RALGPS1 Sarcoma
ACH-000995 JADE1 Leukemia
ACH-002258 JADE1 Leukemia
ACH-000999 ABHD18 Colon/Colorectal Cancer
ACH-000250 ISY1-RAB43 Kidney Cancer
ACH-000736 EFCC1 Gastric Cancer
ACH-000901 SMARCA1 Lung Cancer
ACH-000941 RP3-403A15.5 Endometrial/Uterine Cancer
ACH-000841 EDRF1 Lung Cancer
ACH-001550 ADGRD2 Skin Cancer
ACH-001555 ADGRD2 Lung Cancer
ACH-000248 ADGRD2 Breast Cancer
ACH-000017 ADGRD2 Breast Cancer
ACH-001610 ADGRD2 Brain Cancer
ACH-001517 ADGRD2 Endometrial/Uterine Cancer
ACH-000954 ADGRD2 Endometrial/Uterine Cancer
ACH-000941 ADGRD2 Endometrial/Uterine Cancer
ACH-000988 ADGRD2 Endometrial/Uterine Cancer
ACH-001518 METTL10 Endometrial/Uterine Cancer
ACH-002253 CFAP100 Lymphoma
ACH-000865 CFAP100 Esophageal Cancer
ACH-000398 DNAH10 Lymphoma
ACH-000157 CCDC14 Lymphoma
ACH-000901 MYLK Lung Cancer
ACH-000954 RP11-512M8.5 Endometrial/Uterine Cancer
ACH-000959 RP11-512M8.5 Colon/Colorectal Cancer
ACH-000681 NIFK Lung Cancer
ACH-002337 NIFK Lung Cancer
ACH-000345 PLPP4 Neuroblastoma
ACH-000025 TBC1D32 Brain Cancer
ACH-001118 COX6A1 Brain Cancer
ACH-000152 COX6A1 Brain Cancer
ACH-001419 GCN1 Breast Cancer
ACH-000984 GCN1 Endometrial/Uterine Cancer
ACH-000334 GCN1 Lymphoma
ACH-001664 GCN1 Gastric Cancer
ACH-000982 CFAP221 Colon/Colorectal Cancer
ACH-001345 CFAP221 Colon/Colorectal Cancer
ACH-000398 HGD Lymphoma
ACH-001303 CFAP221 Neuroblastoma
ACH-001145 CFAP221 Ovarian Cancer
ACH-000901 PLA1A Lung Cancer
ACH-000829 MFRP Myeloma
ACH-000123 VPS11 Ovarian Cancer
ACH-000960 SEPT6 Leukemia
ACH-001365 DCBLD1 Lung Cancer
ACH-000990 LSM8 Endometrial/Uterine Cancer
ACH-000999 LSM8 Colon/Colorectal Cancer
ACH-000901 DOCK11 Lung Cancer
ACH-000999 RP1-179P9.3 Colon/Colorectal Cancer
ACH-000568 FXYD6-FXYD2 Breast Cancer
ACH-001991 RP1-179P9.3 Ovarian Cancer
ACH-000684 RP1-179P9.3 Kidney Cancer
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ACH-000437 RP1-179P9.3 Brain Cancer
ACH-001127 RP1-179P9.3 Leukemia
ACH-001339 ROS1 Skin Cancer
ACH-001339 RP1-179P9.3 Skin Cancer
ACH-000662 RP1-179P9.3 Lung Cancer
ACH-000990 RP1-179P9.3 Endometrial/Uterine Cancer
ACH-000038 ZPR1 Lymphoma
ACH-000295 ZPR1 Leukemia
ACH-000396 ZPR1 Bladder Cancer
ACH-000732 ZPR1 Head and Neck Cancer
ACH-000655 ZPR1 Brain Cancer
ACH-000901 CASQ2 Lung Cancer
ACH-002301 CCDC186 Lymphoma
ACH-000988 CCDC186 Endometrial/Uterine Cancer
ACH-000394 CCDC186 Lung Cancer
ACH-001229 CTD-2287O16.3 Head and Neck Cancer
ACH-001500 CTD-2287O16.3 Esophageal Cancer
ACH-000806 CTD-2287O16.3 Lymphoma
ACH-000963 CTD-2287O16.3 Colon/Colorectal Cancer
ACH-000846 CTD-2287O16.3 Head and Neck Cancer
ACH-000607 LVRN Rhabdoid
ACH-002247 LVRN Non-Cancerous
ACH-000787 DNAJC25-GNG10 Lung Cancer
ACH-000563 LRCH2 Lung Cancer
ACH-001539 LRCH2 Lymphoma
ACH-000947 LRCH2 Ovarian Cancer
ACH-001151 RBM19 Ovarian Cancer
ACH-000804 RP11-212D19.4 Neuroblastoma
ACH-000936 RP11-212D19.4 Ovarian Cancer
ACH-001333 CCDC191 Cervical Cancer
ACH-001300 CCDC191 Neuroblastoma
ACH-000025 USP28 Brain Cancer
ACH-000662 USP28 Lung Cancer
ACH-000503 ZGRF1 Head and Neck Cancer
ACH-000937 ZGRF1 Leukemia
ACH-000998 ZGRF1 Colon/Colorectal Cancer
ACH-000998 USF3 Colon/Colorectal Cancer
ACH-000158 USF3 Lymphoma
ACH-000969 CFAP44 Colon/Colorectal Cancer
ACH-001023 CFAP44 Thyroid Cancer
ACH-000990 CFAP44 Endometrial/Uterine Cancer
ACH-000784 PALM2 Esophageal Cancer
ACH-000750 RP11-162P23.2 Skin Cancer
ACH-000956 RP11-162P23.2 Prostate Cancer
ACH-000641 RP11-162P23.2 Leukemia
ACH-001061 RP11-162P23.2 Colon/Colorectal Cancer
ACH-000997 RP11-162P23.2 Colon/Colorectal Cancer
ACH-000952 TMIGD3 Prostate Cancer
ACH-000999 RP11-108O10.8 Colon/Colorectal Cancer
ACH-002222 RP11-108O10.8 Leukemia
ACH-002256 RP11-475E11.9 Leukemia
ACH-000993 SELPLG Endometrial/Uterine Cancer
ACH-000757 KIAA1524 Lung Cancer
ACH-000946 COL4A5 Endometrial/Uterine Cancer
ACH-000990 CFAP58 Endometrial/Uterine Cancer
ACH-000717 CFAP58 Esophageal Cancer
ACH-002121 CFAP43 Skin Cancer
ACH-000993 CFAP43 Endometrial/Uterine Cancer
ACH-000977 CFAP43 Prostate Cancer
ACH-000978 CFAP43 Endometrial/Uterine Cancer
ACH-000901 CXorf57 Lung Cancer
ACH-000274 PACS2 Skin Cancer
ACH-000989 NEURL1 Colon/Colorectal Cancer
ACH-000274 PDCD11 Skin Cancer
ACH-000946 TXNRD1 Endometrial/Uterine Cancer
ACH-002294 BORCS7-ASMT Head and Neck Cancer
ACH-002294 AS3MT Head and Neck Cancer
ACH-000974 BORCS7 Endometrial/Uterine Cancer
ACH-000974 BORCS7-ASMT Endometrial/Uterine Cancer
ACH-001599 GRIN3A Lung Cancer

Continued on next page

XXVI



C. Appendix 3 - Predicting individual mutation-associated splicing events using
SpliceAI

Table C.1 – continued from previous page
DepMap ID SYMBOL DISEASE

ACH-000949 RP11-73M18.2 Gastric Cancer
ACH-000852 RP11-73M18.2 Lung Cancer
ACH-000757 STAB2 Lung Cancer
ACH-002508 PDGFD Skin Cancer
ACH-000916 BIVM-ERCC5 Lung Cancer
ACH-000971 BIVM-ERCC5 Colon/Colorectal Cancer
ACH-000522 BIVM Bladder Cancer
ACH-000517 TPP2 Pancreatic Cancer
ACH-000157 DYNC2H1 Lymphoma
ACH-000999 SLF2 Colon/Colorectal Cancer
ACH-001550 SLF2 Skin Cancer
ACH-000483 RP11-514P8.6 Liver Cancer
ACH-000483 RP11-577H5.5 Liver Cancer
ACH-000621 RP11-411B6.6 Breast Cancer
ACH-000941 RP11-411B6.6 Endometrial/Uterine Cancer
ACH-000225 RP11-514P8.6 Gastric Cancer
ACH-000757 CPN1 Lung Cancer
ACH-000662 COL15A1 Lung Cancer
ACH-001151 EMCN Ovarian Cancer
ACH-001677 LINS1 Lymphoma
ACH-001328 GAS2L3 Skin Cancer
ACH-000901 SLC25A47 Lung Cancer
ACH-001075 RPL36A-HNRNPH2 Lung Cancer
ACH-000965 ADGRG7 Endometrial/Uterine Cancer
ACH-000403 ADGRG7 Colon/Colorectal Cancer
ACH-002221 ADGRG7 Lymphoma
ACH-000901 CMSS1 Lung Cancer
ACH-000556 C2orf15 Cervical Cancer
ACH-000556 RP11-111H13.1 Cervical Cancer
ACH-000988 PLPPR4 Endometrial/Uterine Cancer
ACH-000467 PLPPR4 Colon/Colorectal Cancer
ACH-002244 RP11-548K23.11 Head and Neck Cancer
ACH-000986 CYP3A7-CYP3A51P Colon/Colorectal Cancer
ACH-001625 ERICH5 Head and Neck Cancer
ACH-002025 ERICH5 Colon/Colorectal Cancer
ACH-000999 PTCD1 Colon/Colorectal Cancer
ACH-000880 PTCD1 Gastric Cancer
ACH-001127 PTCD1 Leukemia
ACH-000249 ARHGAP19-SLIT1 Colon/Colorectal Cancer
ACH-000996 ARHGAP19-SLIT1 Endometrial/Uterine Cancer
ACH-000946 FAM169B Endometrial/Uterine Cancer
ACH-000911 ARHGAP19-SLIT1 Gastric Cancer
ACH-000341 ARHGAP19-SLIT1 Neuroblastoma
ACH-000157 TRRAP Lymphoma
ACH-001328 KLHL32 Skin Cancer
ACH-002171 MTERF3 Lung Cancer
ACH-000985 MTERF3 Colon/Colorectal Cancer
ACH-000913 CFAP54 Endometrial/Uterine Cancer
ACH-000538 CFAP54 Gastric Cancer
ACH-001081 CFAP54 Colon/Colorectal Cancer
ACH-002509 CFAP54 Skin Cancer
ACH-000967 CFAP54 Colon/Colorectal Cancer
ACH-002098 CFAP54 Skin Cancer
ACH-000434 CFAP54 Lung Cancer
ACH-000444 CFAP54 Lung Cancer
ACH-000991 CFAP54 Colon/Colorectal Cancer
ACH-002272 CFAP54 Lymphoma
ACH-000616 CFAP54 Gastric Cancer
ACH-000998 ACSM6 Colon/Colorectal Cancer
ACH-001363 ACSM6 Lung Cancer
ACH-000988 ACSM6 Endometrial/Uterine Cancer
ACH-000825 CFAP54 Lung Cancer
ACH-001151 CFAP54 Ovarian Cancer
ACH-001339 CYP2C9 Skin Cancer
ACH-000695 CDK17 Lung Cancer
ACH-000852 RP11-400G3.5 Lung Cancer
ACH-002282 RP11-400G3.5 Neuroblastoma
ACH-000993 PCSK1 Endometrial/Uterine Cancer
ACH-002510 TMEM56-RWDD3 Skin Cancer
ACH-002338 TMEM56-RWDD3 Skin Cancer
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ACH-001364 CENPP Lung Cancer
ACH-000977 CEP83 Prostate Cancer
ACH-000053 CEP83 Lymphoma
ACH-000770 CEP83 Leukemia
ACH-000912 IZUMO1R Lung Cancer
ACH-001137 SLF1 Lung Cancer
ACH-001081 CEP295 Colon/Colorectal Cancer
ACH-000717 CEP295 Esophageal Cancer
ACH-000914 CEP295 Lymphoma
ACH-000993 CCDC67 Endometrial/Uterine Cancer
ACH-000980 VPS50 Lung Cancer
ACH-000714 VPS50 Myeloma
ACH-000963 VPS50 Colon/Colorectal Cancer
ACH-000982 VPS50 Colon/Colorectal Cancer
ACH-001345 VPS50 Colon/Colorectal Cancer
ACH-000901 LRRC69 Lung Cancer
ACH-001339 PEX1 Skin Cancer
ACH-000997 PPP4R3A Colon/Colorectal Cancer
ACH-000967 PPP4R3A Colon/Colorectal Cancer
ACH-001199 PPP4R3A Colon/Colorectal Cancer
ACH-001719 MTERF1 Ovarian Cancer
ACH-000562 NGRN Lung Cancer
ACH-000562 RP11-697E2.12 Lung Cancer
ACH-000989 NGRN Colon/Colorectal Cancer
ACH-000989 RP11-697E2.12 Colon/Colorectal Cancer
ACH-002097 NGRN Skin Cancer
ACH-002097 RP11-697E2.12 Skin Cancer
ACH-000848 RP11-697E2.6 Liver Cancer
ACH-000946 LIPM Endometrial/Uterine Cancer
ACH-001610 ADGRV1 Brain Cancer
ACH-000950 ADGRV1 Colon/Colorectal Cancer
ACH-001119 ADGRV1 Lymphoma
ACH-000829 ADGRV1 Myeloma
ACH-000620 ADGRV1 Liver Cancer
ACH-000920 ADGRV1 Leukemia
ACH-000479 ADGRV1 Brain Cancer
ACH-002259 ADGRV1 Brain Cancer
ACH-001203 ADGRV1 Lymphoma
ACH-001509 ADGRV1 Head and Neck Cancer
ACH-000019 ADGRV1 Breast Cancer
ACH-000930 ADGRV1 Breast Cancer
ACH-000943 ADGRV1 Colon/Colorectal Cancer
ACH-002163 ADGRV1 Breast Cancer
ACH-000481 ADGRV1 Lung Cancer
ACH-001664 ADGRV1 Gastric Cancer
ACH-000991 ADGRV1 Colon/Colorectal Cancer
ACH-000924 ADGRV1 Lung Cancer
ACH-000891 ADGRV1 Lung Cancer
ACH-002040 ADGRV1 Skin Cancer
ACH-000989 ADGRV1 Colon/Colorectal Cancer
ACH-000123 CDK10 Ovarian Cancer
ACH-000999 WAPL Colon/Colorectal Cancer
ACH-001610 WAPL Brain Cancer
ACH-001751 WAPL Sarcoma
ACH-000963 RP3-382I10.7 Colon/Colorectal Cancer
ACH-000999 CFAP206 Colon/Colorectal Cancer
ACH-000999 RP3-382I10.7 Colon/Colorectal Cancer
ACH-000843 CFAP206 Lung Cancer
ACH-000843 RP3-382I10.7 Lung Cancer
ACH-000458 AFF1 Skin Cancer
ACH-000684 RP5-1052I5.2 Kidney Cancer
ACH-000599 RP11-178L8.4 Pancreatic Cancer
ACH-000901 CD8B Lung Cancer
ACH-001610 RNF103-CHMP3 Brain Cancer
ACH-000261 CA1 Lung Cancer
ACH-000960 DACH2 Leukemia
ACH-001521 CEP162 Skin Cancer
ACH-000431 CEP162 Lung Cancer
ACH-001306 CEP162 Thyroid Cancer
ACH-000855 SPATA31D3 Esophageal Cancer
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ACH-000481 GPAT3 Lung Cancer
ACH-000999 GPAT3 Colon/Colorectal Cancer
ACH-001339 TTLL7 Skin Cancer
ACH-000261 APOOL Lung Cancer
ACH-000143 RP11-505K9.4 Lung Cancer
ACH-000025 DLG2 Brain Cancer
ACH-001081 RP11-152F13.10 Colon/Colorectal Cancer
ACH-000572 RP11-152F13.10 Skin Cancer
ACH-001203 RP11-152F13.10 Lymphoma
ACH-000650 ADGRL2 Skin Cancer
ACH-000550 ADGRL2 Skin Cancer
ACH-000470 ADGRL2 Colon/Colorectal Cancer
ACH-000733 ADGRL2 Lung Cancer
ACH-000971 ADGRL2 Colon/Colorectal Cancer
ACH-000437 ADGRL2 Brain Cancer
ACH-002164 ADGRL2 Pancreatic Cancer
ACH-000886 ADGRL2 Lung Cancer
ACH-000898 PPFIA2 Gastric Cancer
ACH-000901 CACNA2D1 Lung Cancer
ACH-002111 BCO1 Bone Cancer
ACH-000961 BCO1 Endometrial/Uterine Cancer
ACH-000947 CEMIP Ovarian Cancer
ACH-000061 CEMIP Lymphoma
ACH-001850 CEMIP Gallbladder Cancer
ACH-000846 RP11-26J3.4 Head and Neck Cancer
ACH-000398 FASN Lymphoma
ACH-001063 DHFR Ovarian Cancer
ACH-000624 FAAP100 Breast Cancer
ACH-000886 ADGRL4 Lung Cancer
ACH-000383 ADGRL4 Esophageal Cancer
ACH-001529 BAHCC1 Endometrial/Uterine Cancer
ACH-000820 BAHCC1 Colon/Colorectal Cancer
ACH-001127 BAHCC1 Leukemia
ACH-000922 BAHCC1 Leukemia
ACH-002089 BAHCC1 Lung Cancer
ACH-000956 BAHCC1 Prostate Cancer
ACH-000963 ADGRL4 Colon/Colorectal Cancer
ACH-002017 ADGRL4 Eye Cancer
ACH-000744 ADGRL4 Lung Cancer
ACH-000028 ADGRL4 Breast Cancer
ACH-000019 ADGRL4 Breast Cancer
ACH-000806 CEP131 Lymphoma
ACH-000784 CEP131 Esophageal Cancer
ACH-001862 CEP131 Bile Duct Cancer
ACH-000943 CEP131 Colon/Colorectal Cancer
ACH-000973 CEP131 Bladder Cancer
ACH-002296 C14orf178 Head and Neck Cancer
ACH-000960 POMT2 Leukemia
ACH-000901 ROBO2 Lung Cancer
ACH-000799 CARNMT1 Skin Cancer
ACH-000695 TSPAN3 Lung Cancer
ACH-000963 LRRC74A Colon/Colorectal Cancer
ACH-001566 LRRC74A Skin Cancer
ACH-001356 LRRC74A Thyroid Cancer
ACH-000261 ANGEL1 Lung Cancer
ACH-000888 FAM47E-STBD1 Lung Cancer
ACH-001328 WDR41 Skin Cancer
ACH-000932 CNTNAP4 Gastric Cancer
ACH-002098 TMEM266 Skin Cancer
ACH-001523 ADK Skin Cancer
ACH-001321 KARS Thyroid Cancer
ACH-000973 RP11-77K12.7 Bladder Cancer
ACH-000938 RP11-77K12.7 Leukemia
ACH-000999 RP11-574K11.31 Colon/Colorectal Cancer
ACH-000981 RP11-574K11.31 Leukemia
ACH-000014 ZSWIM8 Skin Cancer
ACH-000995 RP11-77K12.1 Leukemia
ACH-000993 RP11-77K12.1 Endometrial/Uterine Cancer
ACH-000334 RP11-77K12.1 Lymphoma
ACH-000662 HIP1 Lung Cancer
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ACH-000960 HIP1 Leukemia
ACH-000974 ERICH3 Endometrial/Uterine Cancer
ACH-000948 ERICH3 Gastric Cancer
ACH-000991 CFAP70 Colon/Colorectal Cancer
ACH-000692 ERICH3 Head and Neck Cancer
ACH-001402 CFAP70 Cervical Cancer
ACH-001334 CFAP70 Cervical Cancer
ACH-000957 CFAP70 Colon/Colorectal Cancer
ACH-002133 ERICH3 Lung Cancer
ACH-000860 CFAP70 Lung Cancer
ACH-001024 CFAP70 Skin Cancer
ACH-000871 TNNI3K Lung Cancer
ACH-000999 TNNI3K Colon/Colorectal Cancer
ACH-000982 TNNI3K Colon/Colorectal Cancer
ACH-001345 TNNI3K Colon/Colorectal Cancer
ACH-000569 TNNI3K Lung Cancer
ACH-000399 TNNI3K Lung Cancer
ACH-002336 TNNI3K Unknown
ACH-000988 TNNI3K Endometrial/Uterine Cancer
ACH-000157 LOXL3 Lymphoma
ACH-000963 RP11-463D19.2 Colon/Colorectal Cancer
ACH-000981 RP11-463D19.2 Leukemia
ACH-001845 TNNI3K Bile Duct Cancer
ACH-000014 MLKL Skin Cancer
ACH-001414 TNNI3K Bladder Cancer
ACH-001751 BBOF1 Sarcoma
ACH-000662 GLG1 Lung Cancer
ACH-000186 SLC4A5 Lung Cancer
ACH-000996 SLC4A5 Endometrial/Uterine Cancer
ACH-000879 RP11-287D1.3 Endometrial/Uterine Cancer
ACH-000980 RP11-287D1.3 Lung Cancer
ACH-000988 RP11-287D1.3 Endometrial/Uterine Cancer
ACH-000537 NPIPB15 Liver Cancer
ACH-001390 RP5-1021I20.4 Breast Cancer
ACH-000901 ABCB7 Lung Cancer
ACH-000995 TEN1-CDK3 Leukemia
ACH-001061 TMEM94 Colon/Colorectal Cancer
ACH-000997 TMEM94 Colon/Colorectal Cancer
ACH-000986 TMEM94 Colon/Colorectal Cancer
ACH-002256 TMEM94 Leukemia
ACH-000992 TMEM94 Head and Neck Cancer
ACH-000928 TMEM94 Endometrial/Uterine Cancer
ACH-000696 TMEM94 Ovarian Cancer
ACH-000548 TMEM94 Head and Neck Cancer
ACH-000988 TMEM94 Endometrial/Uterine Cancer
ACH-002222 PPP4R2 Leukemia
ACH-000697 RP11-106M3.2 Lymphoma
ACH-002146 RP11-106M3.2 Ovarian Cancer
ACH-000192 RP11-106M3.2 Endometrial/Uterine Cancer
ACH-000695 RP11-106M3.5 Lung Cancer
ACH-000278 RP11-106M3.5 Ovarian Cancer
ACH-000974 RP11-106M3.5 Endometrial/Uterine Cancer
ACH-000695 CELF6 Lung Cancer
ACH-000695 RP11-106M3.2 Lung Cancer
ACH-000278 RP11-106M3.2 Ovarian Cancer
ACH-000974 RP11-106M3.2 Endometrial/Uterine Cancer
ACH-001328 TTYH2 Skin Cancer
ACH-000914 RP11-293I14.2 Lymphoma
ACH-000662 DYSF Lung Cancer
ACH-002174 TEX261 Lung Cancer
ACH-000966 TEX261 Ovarian Cancer
ACH-000559 SYNJ2BP-COX16 Lung Cancer
ACH-001339 BDP1 Skin Cancer
ACH-000901 KLHL1 Lung Cancer
ACH-000986 UGT2A2 Colon/Colorectal Cancer
ACH-000375 UGT2A2 Kidney Cancer
ACH-000897 UGT2A2 Thyroid Cancer
ACH-000956 RP11-529K1.3 Prostate Cancer
ACH-000955 RP11-529K1.3 Colon/Colorectal Cancer
ACH-000907 ADGRB3 Kidney Cancer
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ACH-000998 ADGRB3 Colon/Colorectal Cancer
ACH-000901 ADGRB3 Lung Cancer
ACH-000508 ADGRB3 Lung Cancer
ACH-002309 ADGRB3 Sarcoma
ACH-002387 ADGRB3 Skin Cancer
ACH-001536 ADGRB3 Bile Duct Cancer
ACH-000860 ADGRB3 Lung Cancer
ACH-000050 ADGRB3 Myeloma
ACH-001001 ADGRB3 Bone Cancer
ACH-000729 ADGRB3 Lung Cancer
ACH-000988 RP11-343C2.9 Endometrial/Uterine Cancer
ACH-000988 RP11-343C2.7 Endometrial/Uterine Cancer
ACH-000979 RP11-343C2.11 Prostate Cancer
ACH-002225 RP11-315D16.2 Brain Cancer
ACH-000279 RP11-315D16.2 Bone Cancer
ACH-000555 RP11-474G23.1 Kidney Cancer
ACH-000157 RP11-474G23.1 Lymphoma
ACH-000838 RP11-474G23.1 Myeloma
ACH-000535 RP11-474G23.1 Pancreatic Cancer
ACH-000580 RP11-474G23.1 Skin Cancer
ACH-000120 RP11-474G23.1 Neuroblastoma
ACH-000805 RP11-474G23.1 Skin Cancer
ACH-000786 RP11-474G23.1 Lymphoma
ACH-000056 RP11-474G23.1 Lymphoma
ACH-000198 RP11-474G23.1 Leukemia
ACH-000487 RP11-474G23.1 Leukemia
ACH-000027 RP11-474G23.1 Brain Cancer
ACH-000111 RP11-474G23.1 Breast Cancer
ACH-000725 RP11-474G23.1 Breast Cancer
ACH-000946 RP11-474G23.1 Endometrial/Uterine Cancer
ACH-000004 RP11-474G23.1 Leukemia
ACH-000069 RP11-474G23.1 Lymphoma
ACH-000799 RP11-474G23.1 Skin Cancer
ACH-000118 RP11-474G23.1 Pancreatic Cancer
ACH-000650 RP11-474G23.1 Skin Cancer
ACH-000476 RP11-474G23.1 Liver Cancer
ACH-000166 RP11-474G23.1 Leukemia
ACH-000501 RP11-474G23.1 Colon/Colorectal Cancer
ACH-000032 RP11-474G23.1 Leukemia
ACH-000156 RP11-474G23.1 Leukemia
ACH-000391 RP11-474G23.1 Bone Cancer
ACH-000077 RP11-474G23.1 Lymphoma
ACH-000462 RP11-474G23.1 Leukemia
ACH-000130 RP11-474G23.1 Leukemia
ACH-000129 RP11-474G23.1 Lung Cancer
ACH-000845 RP11-474G23.1 Lung Cancer
ACH-000766 RP11-474G23.1 Lung Cancer
ACH-000781 RP11-474G23.1 Lung Cancer
ACH-000481 RP11-474G23.1 Lung Cancer
ACH-000628 RP11-474G23.1 Lung Cancer
ACH-000491 RP11-474G23.1 Colon/Colorectal Cancer
ACH-000297 RP11-474G23.1 Lung Cancer
ACH-000050 RP11-474G23.1 Myeloma
ACH-000336 RP11-474G23.1 Leukemia
ACH-001182 RP11-474G23.1 Unknown
ACH-000441 RP11-474G23.1 Skin Cancer
ACH-000437 RP11-474G23.1 Brain Cancer
ACH-000146 RP11-474G23.1 Leukemia
ACH-002166 RP11-474G23.1 Skin Cancer
ACH-000820 RP11-474G23.1 Colon/Colorectal Cancer
ACH-000398 RANBP10 Lymphoma
ACH-000785 C8orf44-SGK3 Lung Cancer
ACH-001203 C8orf44-SGK3 Lymphoma
ACH-000417 AP003419.11 Pancreatic Cancer
ACH-000999 CKLF Colon/Colorectal Cancer
ACH-000754 RP11-745O10.4 Lymphoma
ACH-000963 RBM14-RBM4 Colon/Colorectal Cancer
ACH-000694 RBM14-RBM4 Esophageal Cancer
ACH-000999 BBS1 Colon/Colorectal Cancer
ACH-000960 EPHA5 Leukemia
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ACH-001328 BPTF Skin Cancer
ACH-000623 AC068533.7 Brain Cancer
ACH-000999 AC068533.7 Colon/Colorectal Cancer
ACH-000830 SIPA1 Lung Cancer
ACH-000996 CHURC1-FNTB Endometrial/Uterine Cancer
ACH-001551 SIPA1 Skin Cancer
ACH-001402 SIPA1 Cervical Cancer
ACH-000863 SIPA1 Brain Cancer
ACH-000994 SIPA1 Endometrial/Uterine Cancer
ACH-000981 SIPA1 Leukemia
ACH-002166 SIPA1 Skin Cancer
ACH-001345 SIPA1 Colon/Colorectal Cancer
ACH-000992 SIPA1 Head and Neck Cancer
ACH-001852 SIPA1 Bile Duct Cancer
ACH-000071 AC069368.3 Fibroblast
ACH-000398 PPWD1 Lymphoma
ACH-002256 ARL2-SNX15 Leukemia
ACH-002256 SNX15 Leukemia
ACH-002256 CTD-2116N17.1 Leukemia
ACH-001151 KCNH5 Ovarian Cancer
ACH-000891 ADGRL3 Lung Cancer
ACH-001401 ADGRL3 Adrenal Cancer
ACH-002283 ADGRL3 Neuroblastoma
ACH-000283 ADGRL3 Brain Cancer
ACH-000893 LKAAEAR1 Lung Cancer
ACH-001517 ZNF512B Endometrial/Uterine Cancer
ACH-000954 ZNF512B Endometrial/Uterine Cancer
ACH-000941 ZNF512B Endometrial/Uterine Cancer
ACH-001638 ZNF512B Lymphoma
ACH-000350 HNRNPUL2-BSCL2 Colon/Colorectal Cancer
ACH-000972 HNRNPUL2-BSCL2 Endometrial/Uterine Cancer
ACH-001685 HNRNPUL2-BSCL2 Lymphoma
ACH-001610 LIME1 Brain Cancer
ACH-001233 ZGPAT Lung Cancer
ACH-000328 ZGPAT Brain Cancer
ACH-002004 EEF1G Skin Cancer
ACH-002004 RP11-864I4.1 Skin Cancer
ACH-000941 RTEL1-TNFRSF6B Endometrial/Uterine Cancer
ACH-000808 RTEL1-TNFRSF6B Bile Duct Cancer
ACH-002166 RTEL1-TNFRSF6B Skin Cancer
ACH-000885 RTEL1-TNFRSF6B Ovarian Cancer
ACH-000989 RTEL1-TNFRSF6B Colon/Colorectal Cancer
ACH-002297 RTEL1-TNFRSF6B Head and Neck Cancer
ACH-001413 RTEL1-TNFRSF6B Bladder Cancer
ACH-001529 RTEL1-TNFRSF6B Endometrial/Uterine Cancer
ACH-000353 RTEL1-TNFRSF6B Esophageal Cancer
ACH-000236 RTEL1-TNFRSF6B Colon/Colorectal Cancer
ACH-000914 RTEL1-TNFRSF6B Lymphoma
ACH-000981 RTEL1-TNFRSF6B Leukemia
ACH-000681 RP11-310K10.1 Lung Cancer
ACH-000123 COL20A1 Ovarian Cancer
ACH-000988 RP11-51F16.8 Endometrial/Uterine Cancer
ACH-000945 RP11-51F16.8 Lung Cancer
ACH-000468 FADS3 Pancreatic Cancer
ACH-000930 CTD-2501B8.1 Breast Cancer
ACH-002026 CTD-2501B8.1 Endometrial/Uterine Cancer
ACH-000974 CTD-2501B8.1 Endometrial/Uterine Cancer
ACH-000982 CTD-2501B8.1 Colon/Colorectal Cancer
ACH-000207 CTD-2501B8.1 Head and Neck Cancer
ACH-000782 ICE2 Leukemia
ACH-001735 ICE2 Leukemia
ACH-000990 ICE2 Endometrial/Uterine Cancer
ACH-001134 ICE2 Lymphoma
ACH-000274 SS18L1 Skin Cancer
ACH-000840 PCNXL4 Lung Cancer
ACH-000025 STX3 Brain Cancer
ACH-000997 CTD-3138B18.4 Colon/Colorectal Cancer
ACH-000997 AC010642.1 Colon/Colorectal Cancer
ACH-000999 ZFP91-CNTF Colon/Colorectal Cancer
ACH-000269 RP11-80H18.3 Brain Cancer
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ACH-000979 CFAP20 Prostate Cancer
ACH-000929 AC003005.4 Lung Cancer
ACH-002175 AC003005.4 Lung Cancer
ACH-002238 GCOM1 Leukemia
ACH-001650 GCOM1 Cervical Cancer
ACH-002215 AC003002.6 Lymphoma
ACH-000461 DCTN2 Bile Duct Cancer
ACH-000999 AC003002.6 Colon/Colorectal Cancer
ACH-000999 AC004076.7 Colon/Colorectal Cancer
ACH-000009 AC003002.4 Colon/Colorectal Cancer
ACH-000763 AC003002.4 Myeloma
ACH-000763 ZNF547 Myeloma
ACH-000997 TRAPPC2P1 Colon/Colorectal Cancer
ACH-000997 AC003002.4 Colon/Colorectal Cancer
ACH-000409 DRC7 Ovarian Cancer
ACH-000988 DRC7 Endometrial/Uterine Cancer
ACH-000942 ADGRG1 Leukemia
ACH-000951 ADGRG1 Lung Cancer
ACH-000963 ADGRG1 Colon/Colorectal Cancer
ACH-000992 RP11-123K3.4 Head and Neck Cancer
ACH-000887 TMX2-CTNND1 Brain Cancer
ACH-000757 STAT6 Lung Cancer
ACH-000992 TMX2-CTNND1 Head and Neck Cancer
ACH-000960 MYO1A Leukemia
ACH-001494 ZIM2 Bile Duct Cancer
ACH-001030 CTD-2510F5.6 Bone Cancer
ACH-000992 CTD-2510F5.6 Head and Neck Cancer
ACH-000786 CTD-2510F5.6 Lymphoma
ACH-000995 CTD-2510F5.6 Leukemia
ACH-000825 CTD-2510F5.6 Lung Cancer
ACH-001151 CTD-2510F5.6 Ovarian Cancer
ACH-001151 SMG8 Ovarian Cancer
ACH-001490 CTD-2510F5.6 Lung Cancer
ACH-000990 STX16-NPEPL1 Endometrial/Uterine Cancer
ACH-001151 PRR11 Ovarian Cancer
ACH-000258 PLPP3 Breast Cancer
ACH-000941 PLPP3 Endometrial/Uterine Cancer
ACH-000662 STAT2 Lung Cancer
ACH-000620 RP11-977G19.10 Liver Cancer
ACH-001339 ANKRD52 Skin Cancer
ACH-001738 RP11-603J24.9 Leukemia
ACH-000744 SARNP Lung Cancer
ACH-000977 RP11-762I7.5 Prostate Cancer
ACH-000992 RP11-644F5.10 Head and Neck Cancer
ACH-001848 BLOC1S1 Bile Duct Cancer
ACH-000025 KTN1 Brain Cancer
ACH-002509 CTD-2105E13.6 Skin Cancer
ACH-000929 PPP4R3B Lung Cancer
ACH-001061 PPP4R3B Colon/Colorectal Cancer
ACH-000997 PPP4R3B Colon/Colorectal Cancer
ACH-002217 PPP4R3B Neuroblastoma
ACH-000937 PPP4R3B Leukemia
ACH-000930 PPP4R3B Breast Cancer
ACH-000974 PPP4R3B Endometrial/Uterine Cancer
ACH-000157 CTD-2587H24.4 Lymphoma
ACH-000274 CTD-2587H24.4 Skin Cancer
ACH-000157 DNAAF3 Lymphoma
ACH-001329 DNAAF3 Brain Cancer
ACH-001278 DNAAF3 Ovarian Cancer
ACH-001454 DNAAF3 Colon/Colorectal Cancer
ACH-001456 DNAAF3 Colon/Colorectal Cancer
ACH-000206 DNAAF3 Lymphoma
ACH-001433 DNAAF3 Sarcoma
ACH-001041 DNAAF3 Lung Cancer
ACH-001053 DNAAF3 Brain Cancer
ACH-001054 DNAAF3 Brain Cancer
ACH-001496 DNAAF3 Esophageal Cancer
ACH-002349 DNAAF3 Unknown
ACH-000941 DNAAF3 Endometrial/Uterine Cancer
ACH-002026 DNAAF3 Endometrial/Uterine Cancer

Continued on next page

XXXIII



C. Appendix 3 - Predicting individual mutation-associated splicing events using
SpliceAI

Table C.1 – continued from previous page
DepMap ID SYMBOL DISEASE

ACH-000274 DNAAF3 Skin Cancer
ACH-001737 DNAAF3 Leukemia
ACH-002044 DNAAF3 Head and Neck Cancer
ACH-001834 DNAAF3 Bile Duct Cancer
ACH-001836 DNAAF3 Bile Duct Cancer
ACH-001530 DNAAF3 Endometrial/Uterine Cancer
ACH-001539 DNAAF3 Lymphoma
ACH-000128 DNAAF3 Brain Cancer
ACH-001550 DNAAF3 Skin Cancer
ACH-001554 DNAAF3 Eye Cancer
ACH-001559 DNAAF3 Lung Cancer
ACH-001569 DNAAF3 Skin Cancer
ACH-001570 DNAAF3 Skin Cancer
ACH-000514 DNAAF3 Lung Cancer
ACH-000434 DNAAF3 Lung Cancer
ACH-000841 DNAAF3 Lung Cancer
ACH-000929 DNAAF3 Lung Cancer
ACH-000251 DNAAF3 Lung Cancer
ACH-001366 DNAAF3 Neuroblastoma
ACH-001368 DNAAF3 Esophageal Cancer
ACH-001719 DNAAF3 Ovarian Cancer
ACH-000247 DNAAF3 Gastric Cancer
ACH-001624 DNAAF3 Brain Cancer
ACH-000779 DNAAF3 Lung Cancer
ACH-001711 DNAAF3 Brain Cancer
ACH-001173 DNAAF3 Brain Cancer
ACH-001386 DNAAF3 Lung Cancer
ACH-000246 DNAAF3 Kidney Cancer
ACH-000172 DNAAF3 Rhabdoid
ACH-001685 DNAAF3 Lymphoma
ACH-002509 DNAAF3 Skin Cancer
ACH-002022 TNNI3 Colon/Colorectal Cancer
ACH-000295 TNNI3 Leukemia
ACH-000901 NCR1 Lung Cancer
ACH-000912 LEXM Lung Cancer
ACH-000535 LEXM Pancreatic Cancer
ACH-000954 LEXM Endometrial/Uterine Cancer
ACH-000314 MROH7-TTC4 Lung Cancer
ACH-000851 MROH7-TTC4 Lung Cancer
ACH-000991 RP11-231C18.3 Colon/Colorectal Cancer
ACH-000999 RP11-231C18.3 Colon/Colorectal Cancer
ACH-000835 RP11-231C18.3 Sarcoma
ACH-000929 MROH7-TTC4 Lung Cancer
ACH-001355 MROH7-TTC4 Neuroblastoma
ACH-000551 RP11-231C18.3 Leukemia
ACH-000996 RP11-231C18.3 Endometrial/Uterine Cancer
ACH-000845 RP11-231C18.3 Lung Cancer
ACH-001819 RP11-231C18.3 Breast Cancer
ACH-000157 PDE1B Lymphoma
ACH-000848 PLPP1 Liver Cancer
ACH-000025 CNOT3 Brain Cancer
ACH-000683 RP11-446E24.4 Colon/Colorectal Cancer
ACH-000989 RP11-231C18.3 Colon/Colorectal Cancer
ACH-000763 RP11-231C18.3 Myeloma
ACH-000871 RP11-793H13.10 Lung Cancer
ACH-000282 ASB3 Lung Cancer
ACH-000343 RP11-793H13.10 Lung Cancer
ACH-000625 RP11-793H13.10 Liver Cancer
ACH-000575 RP11-793H13.10 Lung Cancer
ACH-000962 RP11-793H13.10 Ovarian Cancer
ACH-000863 TNS2 Brain Cancer
ACH-000940 TNS2 Endometrial/Uterine Cancer
ACH-000998 TNS2 Colon/Colorectal Cancer
ACH-000997 TNS2 Colon/Colorectal Cancer
ACH-000941 TNS2 Endometrial/Uterine Cancer
ACH-001991 TNS2 Ovarian Cancer
ACH-001664 ERO1A Gastric Cancer
ACH-000800 ERO1A Lung Cancer
ACH-001517 ERO1A Endometrial/Uterine Cancer
ACH-000954 ERO1A Endometrial/Uterine Cancer
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ACH-000941 ERO1A Endometrial/Uterine Cancer
ACH-000995 RP5-966M1.6 Leukemia
ACH-000123 MYO5C Ovarian Cancer
ACH-000307 RP11-330H6.5 Pancreatic Cancer
ACH-000307 TWF2 Pancreatic Cancer
ACH-002222 AC018755.18 Leukemia
ACH-000996 AC018755.18 Endometrial/Uterine Cancer
ACH-000314 AC018755.18 Lung Cancer
ACH-000961 ABHD14A-ACY1 Endometrial/Uterine Cancer
ACH-000925 ABHD14A-ACY1 Lung Cancer
ACH-002077 CTD-2616J11.11 Lung Cancer
ACH-000025 GLDN Brain Cancer
ACH-000768 CTC-518B2.8 Breast Cancer
ACH-000952 CTD-2545M3.6 Prostate Cancer
ACH-000407 FIGNL1 Endometrial/Uterine Cancer
ACH-000459 FIGNL1 Kidney Cancer
ACH-000157 SMARCD1 Lymphoma
ACH-000997 CTC-326K19.6 Colon/Colorectal Cancer
ACH-001495 AL627171.1 Endometrial/Uterine Cancer
ACH-000928 ATP8B4 Endometrial/Uterine Cancer
ACH-000278 PRR12 Ovarian Cancer
ACH-000999 CTD-3148I10.9 Colon/Colorectal Cancer
ACH-001362 CTD-3148I10.9 Lung Cancer
ACH-000589 CTD-3148I10.9 Lung Cancer
ACH-000972 CTD-3148I10.9 Endometrial/Uterine Cancer
ACH-001321 GYS1 Thyroid Cancer
ACH-001339 COPS2 Skin Cancer
ACH-000928 CACNA1F Endometrial/Uterine Cancer
ACH-000985 CYTH2 Colon/Colorectal Cancer
ACH-001364 RP11-310N16.1 Lung Cancer
ACH-000683 RP11-310N16.1 Colon/Colorectal Cancer
ACH-000274 RP11-310N16.1 Skin Cancer
ACH-000274 LHCGR Skin Cancer
ACH-000937 STON1-GTF2A1L Leukemia
ACH-000972 GTF2A1L Endometrial/Uterine Cancer
ACH-000384 STON1-GTF2A1L Bladder Cancer
ACH-000243 RP11-729L2.2 Pancreatic Cancer
ACH-000992 RP11-729L2.2 Head and Neck Cancer
ACH-000458 PFKM Skin Cancer
ACH-000274 LONP2 Skin Cancer
ACH-000877 CFAP53 Lymphoma
ACH-001064 CFAP53 Lymphoma
ACH-000987 ADGRF4 Skin Cancer
ACH-000458 CORIN Skin Cancer
ACH-000807 RP11-761B3.1 Brain Cancer
ACH-000506 RP11-761B3.1 Lung Cancer
ACH-000998 RP11-886H22.1 Colon/Colorectal Cancer
ACH-000025 PACSIN3 Brain Cancer
ACH-000924 RPL17-C18orf32 Lung Cancer
ACH-001374 ADGRF1 Ovarian Cancer
ACH-000746 ADGRF1 Gastric Cancer
ACH-002098 ABC7-42404400C24.1 Skin Cancer
ACH-002302 JADE3 Leukemia
ACH-001484 PRSS50 Leukemia
ACH-001485 PRSS50 Leukemia
ACH-000274 ALS2CL Skin Cancer
ACH-001151 CPB2 Ovarian Cancer
ACH-001339 GABRA2 Skin Cancer
ACH-000958 BHMG1 Colon/Colorectal Cancer
ACH-001852 ERICH6B Bile Duct Cancer
ACH-000288 ERICH6B Breast Cancer
ACH-000839 ERICH6B Bladder Cancer
ACH-000183 ERICH6B Myeloma
ACH-001518 RP11-96O20.4 Endometrial/Uterine Cancer
ACH-001061 RP11-96O20.4 Colon/Colorectal Cancer
ACH-000997 RP11-96O20.4 Colon/Colorectal Cancer
ACH-000379 CH507-9B2.1 Lung Cancer
ACH-000963 CH507-9B2.1 Colon/Colorectal Cancer
ACH-000912 CH507-9B2.4 Lung Cancer
ACH-000912 CH507-9B2.3 Lung Cancer
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ACH-001517 CH507-9B2.5 Endometrial/Uterine Cancer
ACH-000941 CH507-9B2.5 Endometrial/Uterine Cancer
ACH-000988 CH507-9B2.5 Endometrial/Uterine Cancer
ACH-002152 RP11-290H9.2 Skin Cancer
ACH-000959 RP11-290H9.2 Colon/Colorectal Cancer
ACH-000416 CH507-42P11.8 Lung Cancer
ACH-000817 U2AF1L5 Myeloma
ACH-001577 U2AF1L5 Leukemia
ACH-000993 CBSL Endometrial/Uterine Cancer
ACH-000978 SPATS1 Endometrial/Uterine Cancer
ACH-001422 SPATS1 Prostate Cancer
ACH-000274 LOXHD1 Skin Cancer
ACH-000903 L34079.2 Thyroid Cancer
ACH-000989 L34079.2 Colon/Colorectal Cancer
ACH-000942 RP11-296A16.1 Leukemia
ACH-000974 RP11-296A16.1 Endometrial/Uterine Cancer
ACH-001127 RP11-296A16.1 Leukemia
ACH-002344 RP11-296A16.1 Unknown
ACH-002090 RP11-296A16.1 Kidney Cancer
ACH-001339 PHLDB3 Skin Cancer
ACH-000993 THADA Endometrial/Uterine Cancer
ACH-000995 CFAP57 Leukemia
ACH-000873 CFAP57 Esophageal Cancer
ACH-000157 ZNF318 Lymphoma
ACH-001162 P3H1 Myeloma
ACH-000998 P3H1 Colon/Colorectal Cancer
ACH-000104 P3H1 Leukemia
ACH-001203 P3H1 Lymphoma
ACH-000784 NIM1K Esophageal Cancer
ACH-000351 NIM1K Gastric Cancer
ACH-000159 NIM1K Kidney Cancer
ACH-000966 LINC01620 Ovarian Cancer
ACH-000855 LINC01620 Esophageal Cancer
ACH-001417 RP11-111K18.1 Lung Cancer
ACH-000609 KRBOX1 Brain Cancer
ACH-000979 KRBOX1 Prostate Cancer
ACH-000889 RP4-613B23.5 Myeloma
ACH-000295 AC006486.9 Leukemia
ACH-002240 AC006486.9 Lymphoma
ACH-002271 AC006486.9 Sarcoma
ACH-000416 AC006486.9 Lung Cancer
ACH-000795 AC006486.9 Leukemia
ACH-000981 AC006486.9 Leukemia
ACH-001321 TRERF1 Thyroid Cancer
ACH-000795 AC011513.3 Leukemia
ACH-000605 AC011513.3 Esophageal Cancer
ACH-002237 RP1-138B7.6 Bile Duct Cancer
ACH-001858 RP1-138B7.6 Bile Duct Cancer
ACH-002309 RP1-138B7.6 Sarcoma
ACH-000197 RP1-138B7.6 Leukemia
ACH-001655 JMJD7 Endometrial/Uterine Cancer
ACH-000583 GPAT4 Lymphoma
ACH-001333 RAB4B-EGLN2 Cervical Cancer
ACH-000695 BRCA1 Lung Cancer
ACH-000478 PTGES3L-AARSD1 Liver Cancer
ACH-000157 SHKBP1 Lymphoma
ACH-000993 C7 Endometrial/Uterine Cancer
ACH-000946 C7 Endometrial/Uterine Cancer
ACH-000794 SUGCT Head and Neck Cancer
ACH-000025 STAT5B Brain Cancer
ACH-001345 SUGCT Colon/Colorectal Cancer
ACH-001190 SUGCT Skin Cancer
ACH-001137 SUGCT Lung Cancer
ACH-000950 CTAGE5 Colon/Colorectal Cancer
ACH-000948 CTAGE5 Gastric Cancer
ACH-000981 CTAGE5 Leukemia
ACH-001190 RP11-407N17.3 Skin Cancer
ACH-000662 RP11-407N17.3 Lung Cancer
ACH-000662 MIA2 Lung Cancer
ACH-000973 CTC-360G5.8 Bladder Cancer
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ACH-001634 SARS2 Leukemia
ACH-000978 AC104534.3 Endometrial/Uterine Cancer
ACH-000356 AC104534.3 Gastric Cancer
ACH-001539 AC104534.3 Lymphoma
ACH-000274 WDR19 Skin Cancer
ACH-001239 CATSPERG Skin Cancer
ACH-000695 ATL2 Lung Cancer
ACH-000998 PLPP5 Colon/Colorectal Cancer
ACH-000948 PLPP5 Gastric Cancer
ACH-000960 PLPP5 Leukemia
ACH-000473 PLPP5 Bladder Cancer
ACH-001339 SIM2 Skin Cancer
ACH-000475 RP5-972B16.2 Liver Cancer
ACH-000800 RP5-972B16.2 Lung Cancer
ACH-000997 RP5-972B16.2 Colon/Colorectal Cancer
ACH-000937 RP5-972B16.2 Leukemia
ACH-000993 HYPM Endometrial/Uterine Cancer
ACH-000998 RP11-613M10.9 Colon/Colorectal Cancer
ACH-000634 RP11-613M10.9 Brain Cancer
ACH-000912 ADGRA2 Lung Cancer
ACH-000985 ADGRA2 Colon/Colorectal Cancer
ACH-000567 ADGRA2 Lymphoma
ACH-002511 ADGRA2 Skin Cancer
ACH-000992 ADGRA2 Head and Neck Cancer
ACH-000998 RP5-972B16.2 Colon/Colorectal Cancer
ACH-002278 RP5-972B16.2 Neuroblastoma
ACH-001363 RP5-972B16.2 Lung Cancer
ACH-001786 RP5-972B16.2 Colon/Colorectal Cancer
ACH-000875 RP5-972B16.2 Lung Cancer
ACH-000979 RP5-972B16.2 Prostate Cancer
ACH-001339 ANKRD30A Skin Cancer
ACH-001861 CEBPZOS Gallbladder Cancer
ACH-000971 NWD2 Colon/Colorectal Cancer
ACH-001061 RP5-972B16.2 Colon/Colorectal Cancer
ACH-000157 ARHGAP40 Lymphoma
ACH-000990 CCDC169-SOHLH2 Endometrial/Uterine Cancer
ACH-000999 CCDC169-SOHLH2 Colon/Colorectal Cancer
ACH-000925 TBC1D3K Lung Cancer
ACH-002238 PROSER3 Leukemia
ACH-001650 PROSER3 Cervical Cancer
ACH-000570 PROSER3 Brain Cancer
ACH-000395 AC002398.9 Lung Cancer
ACH-000991 AD000671.6 Colon/Colorectal Cancer
ACH-000521 CFAP47 Lung Cancer
ACH-000624 CFAP47 Breast Cancer
ACH-000924 CFAP47 Lung Cancer
ACH-000550 CREB3 Skin Cancer
ACH-002256 RP11-561B11.2 Leukemia
ACH-000028 RP11-244H3.4 Breast Cancer
ACH-000019 RP11-244H3.4 Breast Cancer
ACH-000993 LHX1 Endometrial/Uterine Cancer
ACH-000990 PHF24 Endometrial/Uterine Cancer
ACH-000157 PARD3 Lymphoma
ACH-000963 AP000295.9 Colon/Colorectal Cancer
ACH-000621 RP11-195F19.29 Breast Cancer
ACH-000971 AP000295.9 Colon/Colorectal Cancer
ACH-002020 RPS10-NUDT3 Cervical Cancer
ACH-000657 CCL15-CCL14 Ovarian Cancer
ACH-000941 CCL14 Endometrial/Uterine Cancer
ACH-000941 CCL15-CCL14 Endometrial/Uterine Cancer
ACH-000852 CCL15-CCL14 Lung Cancer
ACH-001517 RPS10-NUDT3 Endometrial/Uterine Cancer
ACH-000990 HEATR9 Endometrial/Uterine Cancer
ACH-000865 HEATR9 Esophageal Cancer
ACH-000705 HEATR9 Lung Cancer
ACH-001113 HEATR9 Lung Cancer
ACH-000159 HEATR9 Kidney Cancer
ACH-000652 HEATR9 Pancreatic Cancer
ACH-000954 HEATR9 Endometrial/Uterine Cancer
ACH-001053 HEATR9 Brain Cancer
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ACH-001054 HEATR9 Brain Cancer
ACH-000980 C1QTNF3-AMACR Lung Cancer
ACH-000980 C1QTNF3 Lung Cancer
ACH-000810 GDF5 Skin Cancer
ACH-001539 C1QTNF3-AMACR Lymphoma
ACH-000471 C21orf59 Liver Cancer
ACH-002166 C21orf59 Skin Cancer
ACH-000993 RYR3 Endometrial/Uterine Cancer
ACH-000758 AZIN2 Gastric Cancer
ACH-000813 AZIN2 Lung Cancer
ACH-000996 AZIN2 Endometrial/Uterine Cancer
ACH-000983 AZIN2 Leukemia
ACH-000157 NRP1 Lymphoma
ACH-002136 FAAP24 Lung Cancer
ACH-001544 RAD51L3-RFFL Esophageal Cancer
ACH-000662 BAG1 Lung Cancer
ACH-001328 YARS Skin Cancer
ACH-000982 RP1-27O5.3 Colon/Colorectal Cancer
ACH-001850 ZBTB8B Gallbladder Cancer
ACH-001610 XXbac-BPG181M17.5 Brain Cancer
ACH-000718 XXbac-BPG181M17.5 Lung Cancer
ACH-000124 XXbac-BPG181M17.5 Lymphoma
ACH-002256 XXbac-BPG246D15.9 Leukemia
ACH-000649 XXbac-BPG246D15.9 Kidney Cancer
ACH-000584 HLA-DOB Ovarian Cancer
ACH-001328 CCL11 Skin Cancer
ACH-000928 MTMR12 Endometrial/Uterine Cancer
ACH-000984 ADGRB2 Endometrial/Uterine Cancer
ACH-000480 ADGRB2 Liver Cancer
ACH-000938 ADGRB2 Leukemia
ACH-000948 ADGRB2 Gastric Cancer
ACH-000947 PPT2-EGFL8 Ovarian Cancer
ACH-000952 PPT2-EGFL8 Prostate Cancer
ACH-000998 PPT2-EGFL8 Colon/Colorectal Cancer
ACH-000999 PPT2-EGFL8 Colon/Colorectal Cancer
ACH-000617 PPT2-EGFL8 Ovarian Cancer
ACH-000517 STK19 Pancreatic Cancer
ACH-000920 XXbac-BPG116M5.17 Leukemia
ACH-000967 XXbac-BPG116M5.17 Colon/Colorectal Cancer
ACH-001199 XXbac-BPG116M5.17 Colon/Colorectal Cancer
ACH-000945 XXbac-BPG116M5.17 Lung Cancer
ACH-000318 C2 Esophageal Cancer
ACH-000318 XXbac-BPG116M5.17 Esophageal Cancer
ACH-000986 XXbac-BPG116M5.17 Colon/Colorectal Cancer
ACH-001061 C2 Colon/Colorectal Cancer
ACH-001061 XXbac-BPG116M5.17 Colon/Colorectal Cancer
ACH-000468 METTL20 Pancreatic Cancer
ACH-000930 MSH5-SAPCD1 Breast Cancer
ACH-000639 MSH5-SAPCD1 Lung Cancer
ACH-000965 MSH5-SAPCD1 Endometrial/Uterine Cancer
ACH-001956 MSH5-SAPCD1 Bone Cancer
ACH-000986 MSH5-SAPCD1 Colon/Colorectal Cancer
ACH-000978 MSH5-SAPCD1 Endometrial/Uterine Cancer
ACH-000745 MSH5-SAPCD1 Myeloma
ACH-000997 MSH5-SAPCD1 Colon/Colorectal Cancer
ACH-001127 XXbac-BPG32J3.20 Leukemia
ACH-002256 XXbac-BPG32J3.22 Leukemia
ACH-002256 LY6G5B Leukemia
ACH-002510 CSNK2B Skin Cancer
ACH-002338 CSNK2B Skin Cancer
ACH-002510 XXbac-BPG32J3.22 Skin Cancer
ACH-002338 XXbac-BPG32J3.22 Skin Cancer
ACH-000992 XXbac-BPG32J3.22 Head and Neck Cancer
ACH-000662 BPIFB2 Lung Cancer
ACH-000901 CCDC129 Lung Cancer
ACH-000444 ATP6V1G2 Lung Cancer
ACH-000992 ATP6V1G2-DDX39B Head and Neck Cancer
ACH-001127 ATP6V1G2-DDX39B Leukemia
ACH-000981 ATP6V1G2-DDX39B Leukemia
ACH-002256 ATP6V1G2-DDX39B Leukemia
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ACH-002195 ATP6V1G2-DDX39B Kidney Cancer
ACH-000995 ATP6V1G2-DDX39B Leukemia
ACH-000342 AC135048.1 Colon/Colorectal Cancer
ACH-000739 RP5-877J2.1 Liver Cancer
ACH-000869 RP5-877J2.1 Lung Cancer
ACH-001137 INMT-FAM188B Lung Cancer
ACH-000590 INMT-FAM188B Lung Cancer
ACH-000538 CCDC189 Gastric Cancer
ACH-000639 RP11-2C24.9 Lung Cancer
ACH-002059 RP11-2C24.9 Leukemia
ACH-001610 RP11-2C24.9 Brain Cancer
ACH-000620 RP11-2C24.9 Liver Cancer
ACH-000979 RP11-2C24.9 Prostate Cancer
ACH-000995 AC002310.13 Leukemia
ACH-001127 AC002310.11 Leukemia
ACH-000979 AC002310.11 Prostate Cancer
ACH-000608 CCT8 Ovarian Cancer
ACH-000560 GS1-114I9.3 Gastric Cancer
ACH-000974 TRIM39 Endometrial/Uterine Cancer
ACH-001339 DOC2A Skin Cancer
ACH-000971 SARAF Colon/Colorectal Cancer
ACH-000901 SEZ6L2 Lung Cancer
ACH-000515 AC009133.22 Lung Cancer
ACH-001328 OVCH1 Skin Cancer
ACH-000468 HMBOX1 Pancreatic Cancer
ACH-000998 RP11-435I10.4 Colon/Colorectal Cancer
ACH-000957 RP11-435I10.4 Colon/Colorectal Cancer
ACH-000999 RP11-435I10.4 Colon/Colorectal Cancer
ACH-000167 AC110084.1 Gastric Cancer
ACH-001642 AC110084.1 Lymphoma
ACH-001321 STMN4 Thyroid Cancer
ACH-000557 ADGRF3 Leukemia
ACH-000956 ADGRF3 Prostate Cancer
ACH-000584 RP11-96L14.7 Ovarian Cancer
ACH-001339 BTN2A1 Skin Cancer
ACH-000852 NUP58 Lung Cancer
ACH-000166 NUP58 Leukemia
ACH-002245 RSRP1 Lymphoma
ACH-000296 RSRP1 Colon/Colorectal Cancer
ACH-001339 EFR3B Skin Cancer
ACH-000996 RP11-717K11.2 Endometrial/Uterine Cancer
ACH-000930 RP11-717K11.2 Breast Cancer
ACH-001096 RP11-701H24.9 Sarcoma
ACH-000900 RP11-701H24.9 Lung Cancer
ACH-000899 RP11-701H24.9 Skin Cancer
ACH-000740 RP11-307N16.6 Head and Neck Cancer
ACH-000930 SPATA13 Breast Cancer
ACH-002044 LTB4R Head and Neck Cancer
ACH-000981 NEDD8-MDP1 Leukemia
ACH-000980 NEDD8-MDP1 Lung Cancer
ACH-000155 RP11-468E2.1 Pancreatic Cancer
ACH-000928 RP11-468E2.4 Endometrial/Uterine Cancer
ACH-000757 ALDH5A1 Lung Cancer
ACH-001339 AQP4 Skin Cancer
ACH-002156 RP11-507M3.1 Lung Cancer
ACH-001113 RP11-507M3.1 Lung Cancer
ACH-001321 UBXN2A Thyroid Cancer
ACH-000662 CST3 Lung Cancer
ACH-000901 SCNN1G Lung Cancer
ACH-000757 TNFRSF10C Lung Cancer
ACH-000872 ADGRA3 Lung Cancer
ACH-000992 ADGRA3 Head and Neck Cancer
ACH-001719 ADGRA3 Ovarian Cancer
ACH-000998 ADGRA3 Colon/Colorectal Cancer
ACH-000871 RP11-294C11.1 Lung Cancer
ACH-001347 RP11-145E5.5 Head and Neck Cancer
ACH-001736 RP11-145E5.5 Leukemia
ACH-000002 RP11-145E5.5 Leukemia
ACH-000546 RP11-145E5.5 Head and Neck Cancer
ACH-002256 RP11-145E5.5 Leukemia
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ACH-000796 RP11-145E5.5 Ovarian Cancer
ACH-000935 RP11-145E5.5 Colon/Colorectal Cancer
ACH-002275 RP11-145E5.5 Leukemia
ACH-002164 RP11-145E5.5 Pancreatic Cancer
ACH-001616 RP11-145E5.5 Lymphoma
ACH-001377 RP11-145E5.5 Pancreatic Cancer
ACH-000034 RP11-145E5.5 Leukemia
ACH-001740 RP11-145E5.5 Sarcoma
ACH-001196 RP11-145E5.5 Sarcoma
ACH-000715 RP11-145E5.5 Head and Neck Cancer
ACH-000303 RP11-145E5.5 Gastric Cancer
ACH-002310 RP11-145E5.5 Liposarcoma
ACH-000274 CDKN2A Skin Cancer
ACH-000993 OSBPL1A Endometrial/Uterine Cancer
ACH-000982 RP11-145E5.5 Colon/Colorectal Cancer
ACH-001345 RP11-145E5.5 Colon/Colorectal Cancer
ACH-000847 SPX Gastric Cancer
ACH-000993 DNAH11 Endometrial/Uterine Cancer
ACH-000014 XRN2 Skin Cancer
ACH-002275 RP11-545J16.1 Leukemia
ACH-002275 SLCO1B7 Leukemia
ACH-002215 RP11-545J16.1 Lymphoma
ACH-002215 SLCO1B7 Lymphoma
ACH-000228 RP11-545J16.1 Head and Neck Cancer
ACH-000621 RP11-545J16.1 Breast Cancer
ACH-000593 ANG Bladder Cancer
ACH-000593 RP11-903H12.5 Bladder Cancer
ACH-001002 RP11-545J16.1 Skin Cancer
ACH-000827 RP11-545J16.1 Skin Cancer
ACH-000997 HACD4 Colon/Colorectal Cancer
ACH-000988 LDAH Endometrial/Uterine Cancer
ACH-000458 ABCB5 Skin Cancer
ACH-001513 CFAP61 Cervical Cancer
ACH-000961 CFAP61 Endometrial/Uterine Cancer
ACH-000874 CFAP61 Leukemia
ACH-002222 CFAP61 Leukemia
ACH-000754 CFAP61 Lymphoma
ACH-001127 CFAP61 Leukemia
ACH-000556 MALRD1 Cervical Cancer
ACH-000780 MALRD1 Lung Cancer
ACH-001282 YJEFN3 Bone Cancer
ACH-000911 BORCS8-MEF2B Gastric Cancer
ACH-000911 BORCS8 Gastric Cancer
ACH-000953 RP13-279N23.2 Leukemia
ACH-000279 RP13-279N23.2 Bone Cancer
ACH-000735 ADGRG2 Head and Neck Cancer
ACH-000978 AC002985.3 Endometrial/Uterine Cancer
ACH-001639 ADGRG2 Leukemia
ACH-002094 SAXO1 Bone Cancer
ACH-000537 AC002985.3 Liver Cancer
ACH-000999 ARL6IP1 Colon/Colorectal Cancer
ACH-000696 NT5C1B Ovarian Cancer
ACH-002222 NT5C1B Leukemia
ACH-000715 NT5C1B Head and Neck Cancer
ACH-000400 NT5C1B Colon/Colorectal Cancer
ACH-001208 AC007192.4 Kidney Cancer
ACH-000953 AC007192.4 Leukemia
ACH-000999 SAA2-SAA4 Colon/Colorectal Cancer
ACH-000349 AC007192.4 Breast Cancer
ACH-001034 SAA2-SAA4 Bone Cancer
ACH-000375 GEN1 Kidney Cancer
ACH-000608 ATPAF2 Ovarian Cancer
ACH-000988 CTD-2278I10.6 Endometrial/Uterine Cancer
ACH-000876 CTD-2278I10.6 Breast Cancer
ACH-000989 CTD-2278I10.6 Colon/Colorectal Cancer
ACH-000386 CTD-2278I10.6 Leukemia
ACH-000953 CTD-2278I10.6 Leukemia
ACH-000977 AC010646.3 Prostate Cancer
ACH-001091 RP11-45M22.4 Colon/Colorectal Cancer
ACH-000072 RP11-45M22.4 Leukemia
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ACH-000626 RP11-45M22.4 Myeloma
ACH-000304 RP11-45M22.4 Skin Cancer
ACH-000887 RP11-45M22.4 Brain Cancer
ACH-000834 CTD-3222D19.2 Bladder Cancer
ACH-002166 CTD-3222D19.2 Skin Cancer
ACH-000998 CTD-3222D19.2 Colon/Colorectal Cancer
ACH-000720 CALR3 Bladder Cancer
ACH-000875 CTD-3222D19.2 Lung Cancer
ACH-000105 LRRC75A Leukemia
ACH-000458 DNAJC16 Skin Cancer
ACH-000438 RP11-385D13.1 Lung Cancer
ACH-000662 EPHX3 Lung Cancer
ACH-000960 EPHX3 Leukemia
ACH-000929 RBSN Lung Cancer
ACH-000969 RBSN Colon/Colorectal Cancer
ACH-002022 RBSN Colon/Colorectal Cancer
ACH-000663 RBSN Ovarian Cancer
ACH-000452 C12orf60 Esophageal Cancer
ACH-000941 ADGRE2 Endometrial/Uterine Cancer
ACH-000988 ADGRE2 Endometrial/Uterine Cancer
ACH-002217 ADGRE2 Neuroblastoma
ACH-000506 ADGRE3 Lung Cancer
ACH-000838 RP11-140L24.4 Myeloma
ACH-000633 RP11-140L24.4 Gastric Cancer
ACH-000485 RP11-140L24.4 Gastric Cancer
ACH-000990 RP11-140L24.4 Endometrial/Uterine Cancer
ACH-000217 RP11-140L24.4 Liver Cancer
ACH-000983 RP11-140L24.4 Leukemia
ACH-000773 RP11-140L24.4 Lymphoma
ACH-000858 RP11-140L24.4 Lung Cancer
ACH-000227 RP11-140L24.4 Neuroblastoma
ACH-000524 RP11-140L24.4 Ovarian Cancer
ACH-000604 RP11-140L24.4 Leukemia
ACH-000255 RP11-140L24.4 Gastric Cancer
ACH-000321 RP11-140L24.4 Leukemia
ACH-000203 RP11-140L24.4 Neuroblastoma
ACH-000409 RP11-140L24.4 Ovarian Cancer
ACH-000372 RP11-140L24.4 Leukemia
ACH-000030 RP11-140L24.4 Lung Cancer
ACH-000779 RP11-140L24.4 Lung Cancer
ACH-000513 RP11-140L24.4 Kidney Cancer
ACH-000537 RP11-140L24.4 Liver Cancer
ACH-000197 RP11-140L24.4 Leukemia
ACH-000488 RP11-140L24.4 Esophageal Cancer
ACH-000917 RP11-140L24.4 Esophageal Cancer
ACH-000146 RP11-140L24.4 Leukemia
ACH-000630 RP11-140L24.4 Head and Neck Cancer
ACH-000570 RP11-140L24.4 Brain Cancer
ACH-000269 ADGRE5 Brain Cancer
ACH-001539 ADGRE5 Lymphoma
ACH-002256 ADGRE5 Leukemia
ACH-000734 ADGRE5 Liver Cancer
ACH-001061 ADGRL1 Colon/Colorectal Cancer
ACH-000997 ADGRL1 Colon/Colorectal Cancer
ACH-000594 ADGRL1 Lung Cancer
ACH-000938 ADGRL1 Leukemia
ACH-000278 TCEANC Ovarian Cancer
ACH-000398 BTBD10 Lymphoma
ACH-000781 FAM234B Lung Cancer
ACH-000999 FAM234B Colon/Colorectal Cancer
ACH-000993 FAM234B Endometrial/Uterine Cancer
ACH-001856 WDR83OS Bile Duct Cancer
ACH-001366 MKRN2OS Neuroblastoma
ACH-000727 CTD-3105H18.14 Lung Cancer
ACH-000982 ZNF625-ZNF20 Colon/Colorectal Cancer
ACH-001345 ZNF625-ZNF20 Colon/Colorectal Cancer
ACH-000873 CTD-2006C1.10 Esophageal Cancer
ACH-000025 DNAH9 Brain Cancer
ACH-001328 DNAH9 Skin Cancer
ACH-002275 C19orf80 Leukemia
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ACH-000278 SMARCA4 Ovarian Cancer
ACH-001709 PRH1-PRR4 Lymphoma
ACH-001786 RP11-637O19.3 Colon/Colorectal Cancer
ACH-000638 RP11-637O19.3 Lung Cancer
ACH-000993 MRVI1 Endometrial/Uterine Cancer
ACH-001318 RP11-277P12.6 Liver Cancer
ACH-001318 KLRC2 Liver Cancer
ACH-000991 RP11-277P12.6 Colon/Colorectal Cancer
ACH-000991 KLRC3 Colon/Colorectal Cancer
ACH-001111 KLRC4-KLRK1 Lymphoma
ACH-000812 KLRC4-KLRK1 Skin Cancer
ACH-002309 APITD1-CORT Sarcoma
ACH-000269 CTD-2369P2.10 Brain Cancer
ACH-000999 PPAN Colon/Colorectal Cancer
ACH-001369 ARPC4-TTLL3 Ovarian Cancer
ACH-001377 GSG1L2 Pancreatic Cancer
ACH-000940 CFAP52 Endometrial/Uterine Cancer
ACH-000288 CFAP52 Breast Cancer
ACH-000990 ZNF559-ZNF177 Endometrial/Uterine Cancer
ACH-000996 CFAP52 Endometrial/Uterine Cancer
ACH-000991 CFAP52 Colon/Colorectal Cancer
ACH-001550 ZNF559-ZNF177 Skin Cancer
ACH-000943 MTCL1 Colon/Colorectal Cancer
ACH-000705 ANOS1 Lung Cancer
ACH-002156 ANOS1 Lung Cancer
ACH-001113 ANOS1 Lung Cancer
ACH-001857 ANOS1 Bile Duct Cancer
ACH-000965 ELAVL1 Endometrial/Uterine Cancer
ACH-000977 ELAVL1 Prostate Cancer
ACH-000608 C3AR1 Ovarian Cancer
ACH-000655 ELAVL1 Brain Cancer
ACH-001203 ELAVL1 Lymphoma
ACH-000809 ELAVL1 Esophageal Cancer
ACH-000095 ELAVL1 Brain Cancer
ACH-000620 ELAVL1 Liver Cancer
ACH-002234 ELAVL1 Head and Neck Cancer
ACH-002207 ELAVL1 Skin Cancer
ACH-000614 ELAVL1 Skin Cancer
ACH-002461 ELAVL1 Skin Cancer
ACH-000943 ELAVL1 Colon/Colorectal Cancer
ACH-002188 ELAVL1 Kidney Cancer
ACH-000804 ELAVL1 Neuroblastoma
ACH-000512 ELAVL1 Myeloma
ACH-000890 BLOC1S5 Lung Cancer
ACH-001819 BLOC1S5 Breast Cancer
ACH-000752 RP11-1099M24.7 Lung Cancer
ACH-000269 MCEMP1 Brain Cancer
ACH-002214 CTD-2207O23.10 Lymphoma
ACH-001321 TP53 Thyroid Cancer
ACH-000376 CTD-2207O23.3 Brain Cancer
ACH-000990 CTD-2207O23.3 Endometrial/Uterine Cancer
ACH-000867 SENP3-EIF4A1 Lung Cancer
ACH-000660 SENP3-EIF4A1 Lymphoma
ACH-000393 RP11-542C16.2 Liver Cancer
ACH-000855 RP11-542C16.2 Esophageal Cancer
ACH-000674 RP11-542C16.2 Gastric Cancer
ACH-000409 RP11-542C16.2 Ovarian Cancer
ACH-002287 RP11-542C16.2 Colon/Colorectal Cancer
ACH-000994 RP11-542C16.2 Endometrial/Uterine Cancer
ACH-000985 RP1-4G17.5 Colon/Colorectal Cancer
ACH-001458 RP11-146B14.1 Colon/Colorectal Cancer
ACH-000937 RNASEK-C17orf49 Leukemia
ACH-000914 ADGRE1 Lymphoma
ACH-001081 ADGRE1 Colon/Colorectal Cancer
ACH-000398 C3 Lymphoma
ACH-000993 DCHS1 Endometrial/Uterine Cancer
ACH-000695 ZBTB48 Lung Cancer
ACH-001328 GRID2IP Skin Cancer
ACH-000274 SLC25A23 Skin Cancer
ACH-000537 MCPH1 Liver Cancer
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ACH-000946 CHD5 Endometrial/Uterine Cancer
ACH-000917 CTB-54O9.9 Esophageal Cancer
ACH-000525 RIC1 Lung Cancer
ACH-000999 RIC1 Colon/Colorectal Cancer
ACH-000963 RIC1 Colon/Colorectal Cancer
ACH-002005 RIC1 Skin Cancer
ACH-000984 RIC1 Endometrial/Uterine Cancer
ACH-000806 RIC1 Lymphoma
ACH-000992 RIC1 Head and Neck Cancer
ACH-001239 TRIM6-TRIM34 Skin Cancer
ACH-002002 TRIM34 Skin Cancer
ACH-002091 TRIM6-TRIM34 Skin Cancer
ACH-000685 ICE1 Pancreatic Cancer
ACH-001489 HBG2 Lung Cancer
ACH-000277 EEF2KMT Breast Cancer
ACH-000988 RP11-234B24.6 Endometrial/Uterine Cancer
ACH-000025 DPP9 Brain Cancer
ACH-000994 MYDGF Endometrial/Uterine Cancer
ACH-000989 MYDGF Colon/Colorectal Cancer
ACH-000925 CTB-50L17.14 Lung Cancer
ACH-000970 TIGAR Colon/Colorectal Cancer
ACH-002124 CORO7-PAM16 Lung Cancer
ACH-000677 CHAF1A Lung Cancer
ACH-000860 CORO7-PAM16 Lung Cancer
ACH-000988 CORO7-PAM16 Endometrial/Uterine Cancer
ACH-000981 CORO7-PAM16 Leukemia
ACH-001791 CORO7-PAM16 Liposarcoma
ACH-000990 CORO7-PAM16 Endometrial/Uterine Cancer
ACH-000921 CRACR2A Lung Cancer
ACH-000998 NCBP3 Colon/Colorectal Cancer
ACH-000893 NCBP3 Lung Cancer
ACH-000662 TRAP1 Lung Cancer
ACH-000941 CRACR2A Endometrial/Uterine Cancer
ACH-000981 NCBP3 Leukemia
ACH-001127 NCBP3 Leukemia
ACH-000468 PRMT8 Pancreatic Cancer
ACH-001127 P2RX5 Leukemia
ACH-000491 P2RX5 Colon/Colorectal Cancer
ACH-000990 RP11-235E17.2 Endometrial/Uterine Cancer
ACH-000977 SMIM24 Prostate Cancer
ACH-000123 ITFG2 Ovarian Cancer
ACH-000426 PUM3 Myeloma
ACH-000921 CSMD1 Lung Cancer
ACH-000695 C5orf38 Lung Cancer
ACH-000649 RP11-20I23.1 Kidney Cancer
ACH-000649 RP11-20I23.3 Kidney Cancer
ACH-000806 RP11-20I23.1 Lymphoma
ACH-000247 RP4-734P14.4 Gastric Cancer
ACH-001421 CFAP99 Eye Cancer
ACH-000960 PLCH2 Leukemia
ACH-001151 TRPM5 Ovarian Cancer
ACH-000517 ZFYVE28 Pancreatic Cancer
ACH-000949 CFAP74 Gastric Cancer
ACH-001390 CRAMP1 Breast Cancer
ACH-001390 LA16c-431H6.6 Breast Cancer
ACH-000786 WNT5B Lymphoma
ACH-000998 CRAMP1 Colon/Colorectal Cancer
ACH-001610 AC005943.2 Brain Cancer
ACH-000025 ATAD3C Brain Cancer
ACH-000953 RP11-314N13.10 Leukemia
ACH-001091 RP11-314N13.10 Colon/Colorectal Cancer
ACH-000757 TPSD1 Lung Cancer
ACH-000925 CBARP Lung Cancer
ACH-000993 MUC2 Endometrial/Uterine Cancer
ACH-000941 AL645608.1 Endometrial/Uterine Cancer
ACH-001613 AL645608.1 Leukemia
ACH-001719 CRACR2B Ovarian Cancer
ACH-000988 PLPPR3 Endometrial/Uterine Cancer
ACH-001517 PLPPR3 Endometrial/Uterine Cancer
ACH-000788 PLPPR3 Skin Cancer
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ACH-002349 PLPPR3 Unknown
ACH-000996 PIDD1 Endometrial/Uterine Cancer
ACH-000987 PIDD1 Skin Cancer
ACH-000985 PIDD1 Colon/Colorectal Cancer
ACH-001391 PIDD1 Breast Cancer
ACH-001302 PIDD1 Neuroblastoma
ACH-000918 PIDD1 Leukemia
ACH-002256 PIDD1 Leukemia
ACH-001151 KDM5A Ovarian Cancer
ACH-000111 AHRR Breast Cancer
ACH-001339 SLC6A12 Skin Cancer
ACH-002285 PLPP2 Neuroblastoma
ACH-000008 PLPP2 Skin Cancer
ACH-000691 SCGB1C2 Breast Cancer
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C.3 Functional screening - Drug sensitivity

SPLICEAI PREDICTION

Figure C.2: Difference in sensitivity to drugs from PRISM per gene comparing cell
lines where the gene is predicted to be splice-altered according to SpliceAI vs. cell
lines where SpliceAI did not predict a mutation. We selected those genes where a
splice-altering variant occurred in at least 5 cell lines.In the context of this analysis
WT means that the gene does not carry a variant predicted by SpliceAI. Significance
assessed using Welch’s t-test.
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SPLICE MUTATED

Figure C.3: Comparison of sensitivity to PRISM repurposing drugs per cancer.
Not filtered for MSK-IMPACT panel genes. Significance estimated using Welch’s
t-test. Note that some cancers do not present any splice altering mutation, while
in Figure C.1 we can see that most of the cancers present off-target mutations and
therefore must carry splice altering mutations. The difference is because not all cell
lines present in the somatic mutation dataset (CCLE) were studied in the PRISM
repurposing project.
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