
Modern C++ and Rust in
embedded memory-constrained systems

Master’s thesis in Embedded Electronic System Design

Ashwin Kumar Balakrishnan

Gaurav Nattanmai Ganesh

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Modern C++ and Rust in
embedded memory-constrained systems

Ashwin Kumar Balakrishnan
Gaurav Nattanmai Ganesh

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Ashwin Kumar Balakrishnan
Gaurav Nattanmai Ganesh

' Ashwin Kumar Balakrishnan, Gaurav Nattanmai Ganesh 2022.

Supervisor: Lars Svensson, Department of Computer Science and Engineering
Advisor: Peter Lööf, QRTECH AB
Examiner: Per Larsson Edefors, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Ashwin Kumar Balakrishnan
Gaurav Nattanmai Ganesh
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Low level languages like C and traditional C++ have been used extensively in em-
bedded systems for a long time due to the critical advantages such as low runtime
overhead and good memory management, despite their memory safety issues. In
an attempt to overcome the safety issues, many high level languages have been in-
troduced recently, albeit with a high execution time overhead. This thesis mainly
focuses on Modern C++ and Rust, which is a multi-paradigm language introduced
for memory safety and improved performance. We make a comparison study on
using these two high level languages in a memory-constrained embedded system.

The comparison is made by running both the languages in resource intensive appli-
cations, such as arti�cial engine sound generation and Quicksort of large arrays on a
single hardware platform. The performance analysis focuses on the parameters: ex-
ecution time, memory usage and development time, which develops a conclusion as
to why high level languages can be used in memory constrained embedded systems
and which language performs better in this case.

v

Acknowledgements

We would like to express our heartfelt thanks to our supervisor Lars Svensson and
Examiner Per Larsson-Edefors for helping us with their guidance during our thesis
work.
We would also like to thank the people at Qrtech AB for providing us the opportunity
to do thesis work at their company, and especially Peter Lööf for his continual
guidance and suggestions to make the thesis better.

Ashwin Kumar Balakrishnan & Gaurav Nattanmai Ganesh, Gothenburg, January
2022

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution . 1
1.3 Scope . 2
1.4 Method . 2
1.5 Thesis outline . 2

2 Technical Background 5
2.1 High Level Languages in Embedded Systems 5
2.2 Modern C++ . 6

2.2.1 Classes . 6
2.2.2 Tuples . 7
2.2.3 Templates . 7
2.2.4 Auto . 8
2.2.5 Vectors . 8

2.3 Rust . 9
2.3.1 Mutability . 10
2.3.2 Ownership . 10
2.3.3 Borrowing . 11

2.4 Arti�cial engine sound generation . 12
2.5 Hardware . 13
2.6 Rust for embedded devices . 14

3 Methods 17
3.1 Arti�cial Engine Sound Algorithm . 17

3.1.1 Four Stroke Cycle . 17
3.1.2 Digital Waveguides . 18
3.1.3 Engine Model . 19

3.2 Quicksort Algorithm . 20
3.3 Performance Analysis Methods . 21

3.3.1 Execution Time Analysis . 21
3.3.2 Memory Usage . 22
3.3.3 Development time . 25

ix

Contents

4 Results and Discussion 27
4.1 Execution Time Analysis . 27

4.1.1 Discussion . 27
4.2 Memory Analysis . 28

4.2.1 Discussion . 29
4.3 Development Time Analysis . 29

4.3.1 Discussion . 30

5 Conclusion 31

x

List of Figures

2.1 STM32H753I-EVAL2 evaluation board - Front without LCD 13
2.2 STM32H753I-EVAL2 evaluation board - Back 14

3.1 The valve functions . 18
3.2 A Digital Waveguide . 19
3.3 Design of the engine model . 20
3.4 Memory Mapping for STM32H7 . 23
3.5 Heap Stack Memory Map . 23
3.6 Heap Memory after erase . 23
3.7 Heap Memory after write . 24
3.8 Stack Memory after erase . 24
3.9 Stack Memory after write . 25

xi

List of Figures

xii

List of Tables

4.1 Execution time analysis - Quicksort Algorithm for 1000 numbers rang-
ing from 0 to 99 . 27

4.2 Execution Time analysis - Arti�cial Engine Sound Algorithm for
RPM=8000 and Samples=7200 . 27

4.3 Execution Time analysis - Quicksort Algorithm for di�erent array sizes 28
4.4 Memory Analysis - Arti�cial Engine Sound Algorithm for RPM=8000

and Samples=7200 . 29
4.5 Memory Analysis - Quicksort Algorithm for 1000 numbers ranging

from 0 to 99 . 29

xiii

List of Tables

xiv

1
Introduction

As our devices keep getting packed with more features every generation, the com-
plexity of the embedded control systems inside these devices is bound to increase.
However, these devices are still required to be compact or maybe even smaller than
their previous versions. This limits the resources like computational power and
memory on the circuit boards at the core of the devices.

Traditionally, a common practice was to use low level languages like C to program
embedded systems without the use of complete operating systems. However, the C
programming language has a small overhead when it comes to memory usage and
runtime. Developers have to manually manage memory allocations which might
not be everyone’s strongest suit, resulting in software bugs which could a�ect the
safety and security of these devices. Moreover, C does not o�er a good level of data
abstraction and security when compared to higher level programming languages.

Rust is syntactically similar to C++ but can o�er a high level of memory safety
and management without garbage collection [1]. In this thesis, we will explore the
possibility and limitations of using higher level programming languages like C++
and Rust on memory-constrained embedded systems by implementing an algorithm
to generate sound of an engine based on the revolutions per minute(RPM) and also
another algorithm in Quicksort so as to strengthen our conclusions.

1.1 Problem Statement

With the complexity of embedded systems increasing steadily, programming them
with a low level language like C is cumbersome and time consuming. The main aims
of the thesis are to:

� Analyze why higher-level languages have not been primarily used and pinpoint
the bene�ts and risks of using higher level languages in embedded systems.

� Compare and contrast the performance of multiple algorithms by implement-
ing them on two di�erent high level languages, namely C++ and Rust.

1.2 Contribution

The thesis contributes the following:
� Design of an algorithm for arti�cial engine sound generation in C++ and Rust.
� Implementation of the Quicksort algorithm in C++ and Rust.

1

1. Introduction

� An evaluation of the performance of these languages in terms of execution
time, memory consumption and development time on a STM32 evaluation
board.

1.3 Scope

Evaluation of the performance of C++ and Rust in an embedded device by imple-
menting will be the scope of this master thesis.

Determining which programming language is superior is not the scope of this thesis.
The performance evaluation of these languages is limited to a single hardware device
and is not done on multiple hardware. The performance metrics considered for
evaluation are execution time, memory consumption and development time only.

1.4 Method

The algorithms will �rst be implemented in MATLAB to understand the concept
in order to e�ciently implement them in C++ and Rust using all the advanced
features that each language has to o�er. The algorithms will be run on STM32 eval-
uation board with limited resources to estimate their execution time and memory
consumption in real time.

The execution time of the algorithm on the evaluation board will be measured by
getting system clock timer values at the beginning and the end of the algorithm
execution by setting breakpoints in the IDE [2].

The IDE has an inbuilt memory analyzer tab which indicates how much stack mem-
ory has been used [2]. As for the heap memory, we will set the heap memory
addresses to a known value (like 1) before execution by using STM32 ST-Link Util-
ity software. After the execution, we will calculate the amount of heap memory used
by checking the over-written addresses.

The development time will be measured for multiple implementations of the same
algorithm, so as to give us more samples for strengthening our conclusions.

1.5 Thesis outline

The rest of the thesis is divided into the following chapters:
� Chapter 2 introduces the programming languages with their features and de-

scribes theory behind the working of an engine and the model of the engine
chosen to write the algorithm.

� Chapter 3 presents the design choices as well as design and evaluation method-
ology.

� Chapter 4 describes the the results obtained after evaluation.

2

1. Introduction

� Chapter 5 summarizes and concludes the thesis.

3

1. Introduction

4

2
Technical Background

This chapter deals with the technical aspects of the thesis with a background of
using high level languages in embedded systems and the main focus on the important
features of each language used in our algorithm. It also explains the concepts behind
sound generation and how the entire engine model is designed. Finally, we discuss
about the hardware used and how Rust is run on the hardware.

2.1 High Level Languages in Embedded Systems

Real time and embedded systems are naturally reactive as their working is a�ected
by external factors, for which the systems need to be resilient and robust. Hence,
safety and reliability are really important factors, which are provided by high level
languages as they allow higher level of data abstraction from machine language and
e�cient memory handling. But, the downside is the speed / execution time, as
low level languages (C, traditional C++) are much faster than high level languages.
Real time systems with hard deadlines and timing constraints would be a�ected in
this case due to the increased execution time of high level languages. Hardware sup-
port is another factor to be considered while choosing programming languages, as
low level and traditional languages have support in almost every hardware, whereas
for high level languages it is very dependent on factors like hardware architecture,
compiler etc. For example, in our case, the Rust compiler [1] depends on LLVM1

for generation of machine code. So in terms of hardware targets for Rust, it is un-
derstood that the ARM architecture supports Rust.

Some high level languages like Haskell have a runtime system which contains 50k
lines of C code, then a garbage collection mechanism, a scheduler and more. This
might be di�cult for a memory-constrained embedded system to handle. But, for
our case, Rust has less to no runtime due to its zero-cost abstractions which is an
advantage as it takes Rust closer to the e�ciency of a low level language in a sense.
As previously stated, high level languages provide safety and reliability, for example
high level languages like C++ provide safety using its classes and structures for data
privacy and abstraction. Some other bene�ts in theory for high level languages are
that they are programmer friendly, as in they are easy to write and debug. They are
also less error prone, as debugging errors is much simpler in high level languages.

1LLVM compiler infrastructure is a set of compiler and toolchain technologies which is used to
develop a front end for any programming language and also the back end of any instruction set
architecture[1].

5

2. Technical Background

2.2 Modern C++

C++ is a multi-paradigm programming language, as it supports both procedural and
object oriented programming. It was created by Bjarne Stroustrup as an extension
of the C programming language with classes [3]. The main idea behind the design
of C++ was to build a systems programming language for embedded and resource
constrained software for large systems with performance, e�ciency and �exibility
of use as its main features [4]. The latest versions of C++ from C++11, C++14
and later are classi�ed as �Modern C++� [5], a term becoming prevalent nowadays.
These versions rely on using the core features of the C++ language [5] like standard
libraries, exceptions and templates, rather than just using C with classes. Tradi-
tional C++ focuses more on Object Oriented Programming, while Modern C++
uses di�erent programming styles such as generic, object, procedural and modular
[5]. In this thesis, we analyze how the real time performance is a�ected by exploiting
some key aspects of Modern C++ discussed below.

2.2.1 Classes
This is one of the main features that attracts many developers even today. Classes
hold di�erent types of data as members or �elds and code that can be used to access
them are the methods or member functions. Objects are instances of such classes.
Since data and the functions that can modify the data are encapsulated in classes,
C++ provides a certain level of safety compared to C avoiding misuse of data. As
shown is listing 1, class DelayLine has two data members, delay of type double and
data which is a vector of doubles. These are declared in the private scope of the
class so that only the member functions like push can access them.

class DelayLine
{

private:
//class members
double delay{0.0};
std::vector<double> data;

public:
//class methods
void push(double &value, int &pos)
{

data[pos]=value;
}

};

Listing 1: An Example Class

6

2. Technical Background

2.2.2 Tuples
A tuple is an object of �xed size which holds elements of same or di�erent data types
as shown in listing 2. They are part of the standard library. Tuples are immutable
by default and have a �nite structure i.e new elements cannot be added or deleted
to/from a tuple. They can be constructed and deconstructed using standard library
functions and can also be used to return multiple values from functions. In the
example below, the function Tuple is used to construct and return a tuple which
may then be split up and stored in di�erent variables using the "tie" function.

std::tuple<char, int> Tuple() {
//constructing a tuple
return std::make_tuple(’a’, 1);
}
int main {
int x,y;
//deconstructing a tuple
std::tie(x,y)= Tuple();
std::cout<<"The value of x is << x << "and y is " << y;

}

Output :
The value of x is a and y is 1.

Listing 2: A Tuple

2.2.3 Templates
Function templates are used to operate on generic types thus allowing us to use the
same function independent of the data type of its parameters. Template is a type
that has not been speci�ed but it can be used by the function as any other data
type. This is done by using template parameters as an argument to the function,
as shown in listing 3. In the example below, the same function Max prints the
maximum value between two values regardless of the data type.

7

2. Technical Background

//template parameter declaration
template<typename T>

//templatized function
T Max(T x, T y)
{

return (x>y)?x:y;
}
int main()
{

int x = Max(5,10);
float y = Max(4.5, 6.8);
char z = Max(’a’, ’b’);
std::cout<<x<<,<<y<<,<<z;

}

Output:
10, 6.8, b.

Listing 3: Template function

2.2.4 Auto
Much like other high level languages, the auto keyword in C++ lets the compiler
deduce the type of data automatically while compiling, instead of having to explicitly
de�ne the data type. The auto keyword in C is just a storage class speci�er, to
indicate the variable to be local to a block [5].

2.2.5 Vectors
Vectors are similar to the concept of arrays in C but are dynamically allocated
according to the user’s needs. This has a big advantage over arrays due to the fact
that arrays have to be deallocated explicitly if de�ned dynamically. Vectors are
automatically deallocated from the heap as the destructor of vector is called when
the method executes. C++ standard library provides lot of functions to access and
modify vectors. Moreover, when arrays are passed to a function it is done by passing
a pointer to the �rst element so we also have to send their size. But in the case
of vectors, a copy of the vector is created and passed thus eliminating the need to
send the size as well as shown in listing 4. Passing by reference is ideal for vectors
of large sizes.

8

2. Technical Background

// The vector here is a copy of vector in main()
void function(std::vector<int> data)
{

data.push_back(30);
}

int main()
{

std::vector<int> t;
t.push_back(10);
t.push_back(20);

function(t);

// vector remains unchanged after function call
for (int i=0; i<t.size(); i++)

cout << t[i] << " ";

return 0;
}
Output:

10 20

Listing 4: Vectors

2.3 Rust

Rust is also a multi paradigm language, introduced primarily for performance and
safety. Rust is one of the recent additions to the family of systems programming
languages that supports development of operating systems and software [6], which
requires direct access to the hardware. Rust is a strongly statically typed language
where the data types of the variables are available at compile time instead of run time
which increases the performance. They are either speci�ed by the user or inferred by
the compiler thereby making error detection and bug removal easier at compile time.

The performance is further increased by the reduced runtime overhead due to ab-
sence of a garbage collector like C++. Rust has a type system and a borrow checker
to manage memory by ensuring that references do not outlive the data they are
referring to, thereby eliminating the concept of NULL (and wild) pointers and an
entire class of bugs caused by unsafe memory management [1].

9

2. Technical Background

2.3.1 Mutability
In Rust, variables are declared using the let keyword and are immutable by default
i.e, their values cannot be modi�ed later. Any attempt to change the value of
an immutable variable will generate a compile time error, as shown in listing 5.
However, the mut keyword allows us to modify the variables. The variables can also
be typed explicitly or determined by the compiler at compile time ensuring safety
and less runtime overhead.

fn main() {
let x = 5; //immutable variable
println!("The value of x is: {}", x);
x = 6;
//compile time error
println!("The value of x is: {}", x);
let mut y=6; //mutable variable
println!("The value of x is: {}", y); //Output is 6.
y=4;
println!("The value of x is: {}", y); //Output is 4.

}

Listing 5: Variables and Mutability

2.3.2 Ownership
Ownership is one of the unique features of Rust that helps in safe memory man-
agement without a garbage collector. Every value in Rust has a variable called
owner. There can be only one owner for a value and when the owner goes out of
scope the value will be dropped (the lifetime of a variable is the point from which
it was created till the end of the current scope). But unlike C and C++, as soon
the owner is out of scope, the "drop" function is called by Rust which deallocates
the memory. This is how Rust deals with memory management e�ciently without
a garbage collector.

When one variable is copied to another as shown in listing 6, Rust copies the details
of the pointer to the memory instead of copying the data into the second. However,
both variables will try to free the same memory when they go out of scope. This is
called the double free error and freeing memory twice leads to memory corruption
and this is where Rust’s ownership comes into play. To ensure memory safety, Rust
considers s1 to be no longer valid and therefore it doesn’t free anything when s1
goes out of scope. s2 gets ownership of the resource from the �rst and only s2 alone
can free the memory location when it goes out of scope. However, for primitive data
types like int, Rust copies the data so the ownership does not change.

10

2. Technical Background

fn main() {
let s1 = String::from("hello");
//ownership moved to s2
let s2 =s1;
//compilation error : value moved
println!("{}", s1);

}

Listing 6: Ownership

2.3.3 Borrowing
In order to share variables past their scope without taking ownership, Rust uses a
technique called borrowing which is basically using references to the owned variable
instead of copying the original variable. This is how functions return values in Rust.
The ownership of the value is temporarily borrowed when the function executes and
the lifetime of this borrow is only within the function as the ownership is transferred
back to the original variable when the function �nishes executing. The scope of these
borrows cannot exceed the scope of the owner and borrows are immutable by default.
But Rust allows one mutable borrow per variable. So each resource has exactly one
mutable borrow and/or an arbitrary number of immutable as shown in in listing 7.
This avoids the race condition when two pointers access or modify the same data
without synchronization.

11

2. Technical Background

fn main() {
let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s;
// Compile time error
//mutable borrow occurs when r1 and r2 are still in scope
println!("{}, {}, and {}", r1, r2, r3);

}

fn main() {
let mut s = String::from("hello");

let r1 = &s; // no problem
let r2 = &s; // no problem
println!("{} and {}", r1, r2);
// r1 and r2 are no longer used after this point

let r3 = &mut s; // no problem
println!("{}", r3);

}

Listing 7: Immutable Borrows

2.4 Arti�cial engine sound generation

The performance of the two languages Rust and C++ will be evaluated by applying
them on resource intensive applications, so as to make a holistic comparison. In
this case, the application chosen is arti�cial engine sound generation. The electric
vehicles produce less engine sound, especially silent at lower speeds, and at higher
speeds, the tire sounds become more dominant. Since the electric vehicles do not
produce much sound, they are considered to be very environment friendly. But, one
issue is that, these silent electric vehicles could cause some problems to the pedes-
trians, cyclists and visually impaired people. Hence, global governing bodies have
been trying to impose laws on minimum level of sound for electric vehicles [7].

12

2. Technical Background

The generation of the engine sound is based on the paper [8]. The sound design
imitates a combustion engine. The working of a four stroke engine is as follows: the
crankshaft rotates such that the piston moves in di�erent phases. There are four
strokes namely, intake, compression, ignition and exhaust. Firstly, during the intake
cycle, the fuel valve is opened allowing fuel/air to enter cylinder, while the exhaust
is closed, until the piston reaches the bottom. Then, as the piston moves up, it
compresses the mixture until a spark ignites the fuel mixture. So, when the piston
moves past the top, an explosion occurs which gives the crankshaft a rotational
energy. Hence, the four stroke cycle will continue as long as there is a supply of fuel
and air[9].

2.5 Hardware

The testing of the di�erent algorithms in Rust and C++ is done on an STM32H753I-
EVAL2 board [10] because evaluation boards are generally used for industry level
prototype testing. Figures 2.1 and 2.2 show the front and back of the STM32H753I-
EVAL2 board. The signi�cant reasons for the choice of this evaluation board are
its compatibility with Rust and the high end range of speci�cations among all the
evaluation boards such as high RAM, SAI Audio Support DAC and ADC as a sound
source.

Figure 2.1: STM32H753I-EVAL2 evaluation board - Front without LCD

13

2. Technical Background

Figure 2.2: STM32H753I-EVAL2 evaluation board - Back

2.6 Rust for embedded devices

Rust in embedded devices is run in a bare metal environment by using the no-std
attribute, where an attribute is a metadata applied to a module/crate. A crate is
a compilation unit in Rust, in the form of a binary/library. The standard library
libstd requires system integration as it provides a way of accessing OS abstractions
and also provides a runtime for setting up stack over�ow protection, processing com-
mand line arguments etc. No-std is a crate level attribute which speci�es that the
crate will link to the core-crate instead of the std-crate. The core-crate is a platform-
agnostic subset of the std crate which provides APIs for primitives data types like
�oats, strings, slices etc as well as processor features like atomic operations and
SIMD instructions. The libcore crate does not make any assumptions about the
system that the program will run on.

Additionally, we will also use Rust’s toolchain installer rustup to add targets for
cross compilation support for the ARM Cortex-M architectures. The debugger we
are going to use is GDB. But GDB [11] will not be able to communicate with ST-
link debugging hardware on the board. So we are going to use OpenOCD [12] that
translates between GDB’s TCP/IP based remote debug protocol and ST-Link’s USB
based protocol. OpenOCD also helps with breakpoint/watchpoint manipulation,
reading and writing to the CPU registers, continuing CPU execution after a debug
event etc which will be useful when we measure execution time. STM32CubeIDE has
a Hardware Abstraction Layer(HAL) embedded software that provides Application

14

2. Technical Background

programming interface(API) to the device’s peripherals. Stm32h7 crate provides
Rust support for all STM32 microcontrollers including board speci�c APIs and
HAL.

15

2. Technical Background

16

3
Methods

This chapter deals with the methods used for the algorithms and performance anal-
ysis. Section 3.1 explains the concepts and methods used to design the entire engine
model. Section 3.2 deals with the design of the Quicksort algorithm. Finally, section
3.3 discusses the methods used to measure each of the performance parameters.

3.1 Arti�cial Engine Sound Algorithm

3.1.1 Four Stroke Cycle
The starting step of the sound design algorithm is to mathematically represent the
four strokes of the engine. This step leads to a consistency in the physical processing.
The focus is held mainly on the acoustic contribution of these strokes. Each stroke
is represented as follows as in equations 3.1, 3.2, 3.3 and 3.4, where x and t are
crankshaft positions and ignition time respectively.

e(x) =

8
<

:
� sin(4�x) if 0:75 < x < 1

0 otherwise
(3.1)

i (x) =

8
<

:
sin(4�x) if 0 < x < 0:25

0 otherwise
(3.2)

s(x) =

8
<

:
sin(2� (x � 0:5)=t) if 0:5 < x < 0:5 + t=2

0 otherwise
(3.3)

p(x) = cos(4�x) (3.4)

The graph below in �gure 3.1 depicts the MATLAB simulation results of the func-
tions of the four stroke engine.

17

3. Methods

Figure 3.1: The valve functions

3.1.2 Digital Waveguides
An internal combustion engine can be considered as a set of interconnected pipes,
when just the acoustics are the priority. Here, the resonant modes of the engine are
excited by the aerodynamic interactions. Hence, in our design, these resonances are
simulated using digital acoustic waveguides.

In general, a digital waveguide is constructed as shown in �gure 3.2, consisting of
two delay lines, where one’s output is fed back as input of the other. The digital
waveguide imitates the pipe where the acoustic wave moves from one end to the
other and bounces back. As shown in �gure 3.2, � and � are the valve modulation
functions, as they are used to control the re�ectivity of the side. Hence, the delayed
wave produces an interference to the signal, thereby simulating the resonances in
the tube[8].

The delay lines have been designed using multiple methods, such as using �rst in �rst
out(FIFO) bu�ers and zero padded bu�ers. The FIFO bu�ers are of �xed length
and push out data every time the bu�er is full and the zero padded bu�ers were
designed in such a way that, the incoming signal is delayed for a certain number of
samples by padding zeros to the signal, depending on the length of the pipes using
equation 3.5, which simulates the time taken for the wave to reach from one end
to the other end of the pipe. Then, the signals are factored by a coe�cient less
than 1 to imitate the energy re-circulation. Equation 3.5 is used for delay samples
(tsamples) calculation, where D is the distance, S is the sample rate and c is the speed

18

3. Methods

of sound, which is 343 m/s.

tsamples =
D � S

c
(3.5)

Figure 3.2: A Digital Waveguide

3.1.3 Engine Model
The engine sound model is designed as shown in �gure 3.3. The system overall
has �ve inputs : the intake valve, piston motion, fuel ignition, exhaust valve, and
a �ltered white Gaussian noise. The low pass �ltered white noise is added to the
intake side, in order to simulate the air-fuel turbulence in the combustion chamber.
At the other end, there are three outputs/sound components such as intake, engine
vibration and the outlet.

The process of sound generation starts in the cylinder. The engine vibration sound
is produced in the cylinder by adding the piston motion and fuel ignition signals,
and later low pass �ltering the same. Meanwhile, the cylinder sound is then shared
to both the intake and the exhaust sides. So, the intake and the exhaust valves are
primarily used to modulate the feedback coe�cients of the waveguide. Hence, the
intake sound is �nally obtained by adding the low pass �ltered white noise with the
intake valve modulated cylinder sound. The exhaust side consists of a straight pipe,
mu�er and an outlet. Here, the cylinder sound is modulated by the exhaust valve
and sent through the straight pipe, which is designed as a waveguide. Then, it is
passed through the mu�er, which is used to reduce the exhaust noise. Hence, it is
designed as a group of four delay elements to create an interference to the signal
thereby reducing the noise. Thus, the exhaust sound is collected at the outlet,
thereby completing the trio of signi�cant sound components. Theoretically, in case
of a four cylinder engine, the cycles of each cylinder is shifted equally in phase,
to distribute the power uniformly to the crankshaft. In reality, the power is not
necessarily uniformly distributed, since the engine revolutions are not very precise,
so in design an o�set �uctuation to the phase is considered.

19

3. Methods

Figure 3.3: Design of the engine model

3.2 Quicksort Algorithm

Performance analysis of the languages should not just be restricted to one applica-
tion, since the sample size is too small to generalize the �ndings. Hence, to rea�rm
the same, the performance analysis is also done for the Quicksort algorithm of a
large sized array. Quicksort algorithm is a divide and conquer approach[13], where
the large array is continually subdivided into smaller groups which are in turn com-
pared and sorted.

This algorithm was implemented in C++ using the qsort() function, which is part
of the C++ standard library. The syntax for the function and its usage are shown
in listing 8, and it requires an extra comparison function to compare within the
sub-arrays for sorting purposes. Similarly in Rust, a crate called Quicksort is used
to implement the same algorithm, and it does not require any extra functions.

The Quicksort algorithm was designed in two methods for each language, one using
a pre-de�ned function, as in a function from the standard library in case of C++
or a crate in case of Rust. The other method was to write the algorithm without
using a pre-de�ned function and rather implement it on our own. The di�erence in
implementations of the pre-de�ned Quicksort functions in Rust and C++ created
an uncertainty during the performance evaluation, hence the idea of implementing
the algorithm in a similar manner for both the languages was put forth, for a fair
comparison.

20

3. Methods

As explained above, the implementation has two important functions namely, the
partition function and the swap function. A pivot element is chosen to partition
the entire array into two. The partition function is where the array is partitioned
in a way that the numbers less than pivot are on one side of the pivot and greater
numbers on the other side, and is done so on till the sub arrays are smaller and
sorted.

qsort(arr,num,sizeof(int),compare);
int compare(const void* a, const void* b);

Listing 8: qsort() function prototype

3.3 Performance Analysis Methods

The three parameters we will be measuring are execution time, memory usage and
development time.

3.3.1 Execution Time Analysis
For measuring execution time on the board while running the C++ program, we
use the debug mode in STM32CubeIDE which allows us to set breakpoints. We
record the time stamps of the system clock on the board by using the command
HAL_GetTick() (listing 9) which returns the time in milliseconds elapsed since
startup. The clock con�guration is set at 100 MHz, as it is the highest possible
hardware con�guration for the execution of test program.

While running Rust, we use OpenOCD to set the breakpoints. A timer is set up
with a frequency of 1kHz and we record the counter value of the timer using the
timer.counter() function (provided by the HAL in the stm32h7 crate) at the start
and end of execution.

21

3. Methods

int main(void)
{

/* USER CODE BEGIN 1 */

uint32_t startx=0, endx=0,timer_valuex=0;
/* USER CODE END 1 */

/* MCU Configuration--------------*/

/* Reset of all peripherals,
Initializes the Flash interface and the Systick. */
HAL_Init();

/* USER CODE BEGIN Init */
memset(heap_start_address, ’%’, 16384);
memset(stack_start_address, ’%’, 1536);
memset(0x20000000, ’$’, 128*1024);
/* USER CODE END Init */

/* Configure the system clock */
SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_TIM6_Init();
/* USER CODE BEGIN 2 */
// HAL_UART_MspInit(&huart1);
HAL_TIM_Base_Start_IT(&htim6);
startx=HAL_GetTick();
run_engine();
endx=HAL_GetTick();
timer_valuex=endx -startx;
HAL_TIM_Base_Stop_IT(&htim6);

Listing 9: Execution time measurement in STM32CubeIDE

3.3.2 Memory Usage
The memory on the STM32H7 board is mapped into several regions(see �gure 3.4).
Using the IDE, we set the minimum amount of heap and stack memory to 0x200
and 0x400 bytes as shown in �gure 3.5. In order to measure the memory used
by the program, we use the STM32 ST-Link utility software which gives the user

22

3. Methods

direct access to read and write the onboard memory. The memory is set to hold
’$’ using the command memset before running the program as shown in listing 9
and the amount of memory used(in bytes) is measured by subtracting the start and
end addresses rewritten after the execution of the program in the stack and heap
memory regions as depicted in the �gures 3.6, 3.7, 3.8 and 3.9.

Figure 3.4: Memory Mapping for STM32H7

Figure 3.5: Heap Stack Memory Map

Figure 3.6: Heap Memory after erase

23

3. Methods

Figure 3.7: Heap Memory after write

Figure 3.8: Stack Memory after erase

24

3. Methods

Figure 3.9: Stack Memory after write

3.3.3 Development time
We consider the time from the beginning of writing the code till successfully running
the program on the board to be the development time for that language. So we
measure the number of days it took to write and successfully run both the algorithms
on the board. The development time recorded here is strictly with respect to us and
there is no proper way to generalize this time as it will be di�erent for di�erent
software developers.

25

3. Methods

26

4
Results and Discussion

This chapter presents and discusses the results obtained from all the measurements
and tests. We discuss and compare C++ and Rust with respect to execution time,
memory consumption and development time for embedded devices.

4.1 Execution Time Analysis

The execution time analysis was done as explained in the previous section for the
two algorithms in Rust and C++. The results for the Quicksort algorithm are shown
in table 4.1. It is very clear that the execution time is signi�cantly less for C++
than Rust, in both the cases, with or without pre-de�ned function. This is also the
case in arti�cial engine sound algorithm to a certain extent, as shown in Table 4.2.

Table 4.1: Execution time analysis - Quicksort Algorithm for 1000 numbers ranging
from 0 to 99

Execution Time User-de�ned function Standard Library Function
ms ms

C++ 29 6
Rust 732 494

Table 4.2: Execution Time analysis - Arti�cial Engine Sound Algorithm for
RPM=8000 and Samples=7200

Execution Time Zero Padded Bu�er Loop Bu�er
s s

C++ 13.574 5.332
Rust 13.289 13.935

4.1.1 Discussion
The execution time is better for C++ in comparison with Rust, which was expected.
But there are di�erences in the execution of these languages on the board as the

27

4. Results and Discussion

standard library was used in the case of C++ and not in case of Rust, due to the
incompatibility to run std library on bare metal environment. This leads to an
addition of external crates to the Rust program which would subsequently increase
the execution time. The external crates are used from the Rust community website
developed by users, so they are not necessarily the most optimized versions of code.
Further, the core library in Rust is minimal: it isn’t even aware of heap allocation,
nor does it provide concurrency or I/O [1]. In the case of user-de�ned Quicksort
function, despite the usage of no external crates, the performance of Rust was sig-
ni�cantly worse than C++. One reason might be that the compiler optimizations of
LLVM compiler on ARM hardware is comparatively lesser than the GCC compiler
[14].

Table 4.3: Execution Time analysis - Quicksort Algorithm for di�erent array sizes

Execution Time 30000 unsigned 32 Numbers 60000 unsigned 16 Numbers
s s

C++ 0.497 1.397
Rust 1.989 3.193

The crates used for random noise generation alone cost close to 40% of the execution
time, which brings the execution time of rest of the program in Rust at least close
to C++. This also suggests that the features of Modern C++ were much more in
e�ect in the engine sound algorithm as compared to the Quicksort algorithm, as
only the standard library function was required in the Quicksort algorithm, which
meant it was closer to traditional C++ than Modern C++, and it in turn leads to a
low execution time. Moreover, the performance of Rust improved in comparison to
C++ as the size of the array was increased, as shown in Table 4.3. Due to memory
limitations in the board, the maximum array size possible was 60000, for which the
ratio of execution time of Rust to C++ was 2, compared to 25 for 10000 numbers.
From the observations, despite it still not being highly optimal, it can be said that
Rust approaches the execution time of C++, as the resource usage increases.

4.2 Memory Analysis

The memory consumed after running each algorithm is shown below in table 4.4.
And as expected Rust has performed better at handling memory compared to C++.
The memory used is almost halved for both of our algorithms because of Rust’s core
principles about lifetime of variables and ownership, explained further in the discus-
sion.

As for the Quicksort algorithm, the user de�ned algorithm uses much less heap
memory compared to the C++ version. And we were also unable to �ash the
program on the board as Quicksort crate had issues with no-std enviroment.

28

4. Results and Discussion

Table 4.4: Memory Analysis - Arti�cial Engine Sound Algorithm for RPM=8000
and Samples=7200

Memory Consumption Zero Padded Bu�er Loop Bu�er
(in bytes) Heap Memory Stack Memory Heap Memory Stack Memory

C++ 8464 1680 7520 1344
Rust 5760 848 3632 864

Table 4.5: Memory Analysis - Quicksort Algorithm for 1000 numbers ranging from
0 to 99

Memory Consumption User de�ned function Standard Library Function
(in bytes) Heap Memory Stack Memory Heap Memory Stack Memory

C++ 80 7568 80 4336
Rust 48 7536 - -

4.2.1 Discussion
As expected, Rust’s type system and rules on lifetime of variables has improved e�-
cient memory utilization. This is very important in embedded systems where there
is limited on-board memory. Rust’s ownership model where each value has a single
owner at any given point of time and its rules of borrowing and references where the
ownership of the value is transferred to a function are very di�erent from the ex-
isting programming languages. They seem to have a signi�cant impact by reducing
the memory consumed by almost half in the case of engine sound generation algo-
rithm. And as for the Quicksort algorithm, the amount of stack memory consumed
is almost the same for both languages. This could be due to the fact that there
are 1000 32 bit integers stored in an array in both cases. Therefore, based on our
analysis and observations, we can see that Rust is more e�cient in handling memory
than C++ and it also provides memory safety guarantees which are important in
embedded systems.

4.3 Development Time Analysis

Development time was a lot harder to measure and generalize than expected. We
implemented the algorithm �rst in MATLAB in order to understand the working
principle as described in [8]. Since this took a week longer than expected, the de-
velopment time in C++ , i.e. the time it took from starting to write the algorithm
in C++ till we successfully executed the program on the board was 3 weeks. This
includes the time required to become familiar with Stm32CubeIDE, using the debug
mode etc.

The Rust implementation of the same algorithm took each of us one week to write.
Since we were writing the algorithm for the third time, we believe that is the reason
for the programming time in Rust being much lower than C++ even though Rust
was relatively new to both of us. However, getting the algorithm to run on the board
was much harder than expected because of the need to �nd crates which run on the
no_std environment. We also needed to learn to set breakpoints using OpenOCD,

29

4. Results and Discussion

set up timers and clocks and extracting the values by programming which took
some more time since STM32CubeIDE does not have Rust support. So the total
development time in Rust was 4 weeks.

4.3.1 Discussion
Rust is a relatively new programming language compared to C and C++. With new
concepts like the type system, mutability of variables, ownership and borrowing Rust
could be overwhelming for beginners. However, Rust o�ers great documentation in
the form of books on the Rust programming language website [1] and help from the
Rust community provides a better learning experience to novice Rust programmers.
Compile time checks and Rust’s memory safety model helps reduce many classes of
bugs at compile time. We believe that the compile time checks and helpful error mes-
sages from the compiler played a huge role in reducing the writing time of the code
even though we did not use unsafe Rust or thread concurrency in our algorithms,
where unsafe Rust feature allows the use of certain operations such as: dereferencing
raw pointers, accessing �elds of unions, calling unsafe functions, etc. The complex-
ity of Rust increases as we begin to run Rust for embedded devices. Even though
Rust includes proper documentation of the steps involved in cross compiling and
successfully running on an embedded devices, it was challenging to �nd crates that
worked in a no-std environment. Crates for �lters and random number generation
which were essential to our program had to be changed and the new crates for the
no-std environment were written by users in the community and a�ected the execu-
tion time of the algorithm. Also data types like vectors which were available in the
standard library could not be used directly.

As far as coding in C++ is concerned, we argue that the time it took for us to
write code was more due to understanding of the algorithm itself rather than any
issues with the language Rust and applying its features. The algorithm written in
MATLAB was purely for understanding purposes so it did not have any data struc-
tures or e�cient coding techniques. The entire structure of the algorithm changed
for C++ when we used classes and templates for designing the engine. Also, once
the algorithm was written, it was much easier to run it on the board as the IDE
had support for C++ including all the standard libraries. Overall, we believe that
if Rust continues to gain popularity and with more support from manufacturers and
developers it is possible for Rust to have the same development time as C++.

30

5
Conclusion

With the objective to make a comparison study of high level languages in embed-
ded memory constrained systems, the thesis has met those requirements. From the
observations made, we can conclude that Rust has a better memory management,
with a caveat of higher execution time, while also improving safety and reliability.
But, as the number of testing algorithms/benchmarks is small, the strength of the
conclusions may not be high. Moreover, only one hardware was used for all the
tests, which may also weaken the argument. Despite these arguments, we tested
di�erent scenarios to validate our results. For example, one such observation in
the Rust vs C++ execution time comparison was that, when the size of the array
increases Rust’s performance improves in comparison with C++. Regarding devel-
opment time, Rust code took lesser time to write due to it being implemented last,
but much more di�cult to implement on the STM32H7 board that we used, as there
was less support for the hardware and more to investigate.

With respect to the future scope of this topic area, the performance evaluation can
be done on di�erent hardware and architectures to reach a more stable conclusion.
Further, on a general level, some organizations have started using Rust in their
implementations. For example, Google started using Rust for low level implementa-
tions in their Android Open source project [15] due to its modern safety guarantees
and good performance metrics, which indicates that high level languages like Rust
could be used in embedded systems despite their drawbacks.

31

5. Conclusion

32

Bibliography

[1] The Rust Foundation, �The Rust programming language,� https://www.
Rust-lang.org.

[2] �STM32CubeIDE - Integrated development environment for STM32,� https:
//www.st.com/en/development-tools/stm32cubeide.html.

[3] B. Stroustrup, A History of C++: 1979�1991. New York, NY, USA:
Association for Computing Machinery, 1996, p. 699�769. [Online]. Available:
https://doi.org/10.1145/234286.1057836

[4] B. Strostrup, The C++ Programming Language (2nd Ed.). USA: Addison-
Wesley Longman Publishing Co., Inc., 1991.

[5] �Modern c++ programming language,� https://docs.microsoft.com/en-us/
cpp/cpp/welcome-back-to-cpp-modern-cpp?view=msvc-160.

[6] N. Adolfsson and F. Nilsson, �A Rust-based runtime for the internet of things,�
Master’s thesis, Chalmers University of Technology, Gothenburg, Sweden,
2017. [Online]. Available: https://hdl.handle.net/20.500.12380/250074

[7] D. Washington, �Minimum sound requirements for hybrid and electric vehi-
cles: Final environmental assessment(document submitted to docket number
nhtsa-2011-0100. report no. dot hs 812 347),� National Highway Tra�c Safety
Administration., 11 2016.

[8] S. Baldan, H. Lachambre, S. D. Monache, and P. Boussard, �Physically in-
formed car engine sound synthesis for virtual and augmented environments,� in
2015 IEEE 2nd VR Workshop on Sonic Interactions for Virtual Environments
(SIVE), 2015, pp. 1�6.

[9] A. Farnell, �Designing sound.� Cambridge, Massachusetts, USA: MIT Press,
2008.

[10] �STM32H753I Evaluation board databrief,� https://www.st.com/resource/en/
data_brief/stm32h753i-eval.pdf, 2019.

[11] GDB Developers, �GDB: The GNU Project Debugger,� https://www.gnu.org/
software/gdb, Copyright Free Software Foundation, Inc., 51 Franklin St - Fifth
Floor, Boston, MA 02110-1301 USA.

[12] D. Rath, �Open On-Chip Debugger,� https://openocd.org.

33

https://www.Rust-lang.org
https://www.Rust-lang.org
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://doi.org/10.1145/234286.1057836
https://docs.microsoft.com/en-us/cpp/cpp/welcome-back-to-cpp-modern-cpp?view=msvc-160
https://docs.microsoft.com/en-us/cpp/cpp/welcome-back-to-cpp-modern-cpp?view=msvc-160
https://hdl.handle.net/20.500.12380/250074
https://www.st.com/resource/en/data_brief/stm32h753i-eval.pdf
https://www.st.com/resource/en/data_brief/stm32h753i-eval.pdf
https://www.gnu.org/software/gdb
https://www.gnu.org/software/gdb
https://openocd.org

Bibliography

[13] C. A. R. Hoare, �Algorithm 64: Quicksort,� Commun. ACM, vol. 4, no. 7, p.
321, jul 1961. [Online]. Available: https://doi.org/10.1145/366622.366644

[14] J.-J. Kim, S.-Y. Lee, S.-M. Moon, and S. Kim, �Comparison of LLVM and GCC
on the ARM platform,� in 2010 5th International Conference on Embedded and
Multimedia Computing, 2010, pp. 1�6.

[15] Android open source project, �Android Rust Introduction,� https://source.
android.com/setup/build/rust/building-rust-modules/overview, 2022.

34

https://doi.org/10.1145/366622.366644
https://source.android.com/setup/build/rust/building-rust-modules/overview
https://source.android.com/setup/build/rust/building-rust-modules/overview

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Contribution

	Technical Background
	High Level Languages in Embedded Systems

	Methods
	Artificial Engine Sound Algorithm
	Four Stroke Cycle

	Quicksort Algorithm
	Performance Analysis Methods
	Execution Time Analysis

	Results and Discussion
	Execution Time Analysis
	Discussion

	Memory Analysis
	Discussion

	Development Time Analysis
	Discussion

	Conclusion

