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Abstract
As the use of simulations is becoming more prominent in the industry, the need for
verified and validated simulation models becomes more important. For the simula-
tor esmini, there are no concrete methods or techniques for the V&V process, which
this thesis aims to unravel. This thesis presents a verification and validation (V&V)
framework for the traffic simulator esmini, with the purpose of providing a founda-
tion for the V&V process and contribute to the research field of simulation valida-
tion. The framework was developed by performing desk research on existing V&V
methodologies and combining found techniques with software engineering concepts
such as quality attribute scenarios (QAS) and acceptance test-driven development
(ATDD). The research was done in collaboration with Volvo Cars. Simultaneously,
a lane independent routing model for esmini was developed to solve a case provided
by Volvo Cars, to which the framework was applied in order to provide an example of
how the framework could be applied to a simulation model and to evaluate the frame-
work in terms of usefulness and effectiveness. The resulting framework consisted of
six iterative steps: creating an assumptions document, defining requirements and
acceptance tests, developing the model, testing and refactoring, reconnecting with
stakeholders, and performing empirical and visual validation. The fundamental con-
cept of the framework is to perform the steps iteratively, in order to continuously
improve the simulation model. The evaluation of the framework was primarily done
through fault injection and developer feedback from Volvo Cars which were encour-
aging. Overall, the conclusion is that the framework provides necessary guidance
for the V&V process in esmini and that it could be used for V&V in other similar
simulators.

Keywords: V&V, Verification, Validation, Framework, esmini, OpenDRIVE, Open-
SCENARIO, Simulation models
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1
Introduction

Verification and validation (V&V) are two procedures that software engineers should
use to increase the correctness, accuracy, and reliability of developed software prod-
ucts. Verification is the procedure to determine if a developed software represents
the conceptual design and specifications [1], [2], while validation is the procedure
to determine if the behavior of the developed software fulfills a set of criteria for
the intended use [2]. In other words, verification answers the question “have we
built the software right?” while validation answers the question “have we built the
right software?” [2]. V&V are even more important for simulation models, as these
procedures should be used to determine the correctness of the simulated models’
data compared to a realistic scenario.

The aim of the study is to create a framework for applying V&V to simulation
models developed in Environment Simulator Minimalistic (esmini) at Volvo Cars.
The framework should be presented as an informal process containing a set of sys-
tematic procedures applied in given steps. To create the framework, the plan is to
define new methods, but also take ideas or advantages from existing framework tech-
niques to improve on our framework. It should define the methods needed to assess
both verification and validation of a simulation model. The framework is intended
to be tested during the study by using it for the V&V process on a newly developed
simulation model, in order to evaluate the framework’s usability and effectiveness.
The goal of the developed framework is to provide a set of procedures for V&V of
future models, as well as identify problems with current simulation models.

1.1 Statement of the Problem
Verification and Validation: From what was found, there were no set frameworks
for V&V in regard to the development of models for esmini, this could be seen in
previous master thesis works [3], [4]. One of the theses [3] approaches validation of
the developed simulation model by scenario testing, which states a number of given
scenarios and discusses the behavior of the model in these scenarios. While the other
thesis [4] briefly mentions validation of the model, no steps are given. To ensure
that the future development of simulation models for esmini works as intended, a
framework for V&V would be beneficial.

The found V&V frameworks and methodologies can not be directly applied to esmini
as they are too general and loosely defined. Therefore, there is a need for a frame-
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1. Introduction

work in the field of V&V that fits esmini and can ensure that proper models are
developed.

Simulation modeling: The area of computer simulation is related to modeling
[5, p. 920], where a mathematical model is used by a simulation. Another definition
for computer simulation is that executed computer code provides solutions to the
equations of a model [5, p. 39]. Simulations enable computers to mimic the dynam-
ical behavior of a real system under specified conditions. Sargent [6] emphasizes
that a simulation model should have a distinct purpose in order for validation to
be performed with regard to that purpose. Without a properly defined purpose of
the simulation, the correctness and reliability of the targeted system will not be
applicable for V&V. Furthermore, the absence of V&V in a simulation will result in
insignificant outcomes achieved from the simulation models.

The importance of simulation is becoming more prominent and has become a com-
mon part of the testing process for various technical fields [7]. Simulation models
need to be verified and validated in order to find model errors and reach the desired
correctness and reliability.

Traffic simulation: Simulation of traffic scenarios require V&V to resemble real-
life scenarios as close as possible or to test simplified scenarios such as those used by
Euro NCAP [8]. Certification agencies and government authorities work together on
developing maneuver descriptions to be used for testing, validation, and certification
of vehicle safety systems and autonomous vehicles [9]. The simulation model’s rep-
resentativeness of real traffic scenarios is essential in order to apply results captured
by the simulation in a similar traffic scenario with real environments and vehicles.
Moreover, the importance of effective and efficient traffic simulation is connected to
the safety of vehicles and pedestrians. An adequate V&V process used to evaluate
a traffic scenario can benefit the safety of all actors involved. The Swedish National
Road and Transport Research Institute (VTI) conducts research on human behavior
in transport systems [10]. They use an in-house custom simulator environment to
recreate realistic driving experiences, which makes it possible to perform traffic ex-
periments and study various factors and their effects. Demonstrably, simulators are
tools to improve traffic safety with respect to technologies, vehicle characteristics,
road design and traffic environments among other things.

1.2 Purpose and Significance of Study
The purpose of this study is to create a framework for V&V for simulation modeling
in esmini, in order to create a more accurate and reliable V&V process. In this
case, the simulation models define road maneuver behavior inside the simulator.
The framework is intended to benefit both researchers and practitioners that are
working on traffic simulation modeling.

The thesis aims to improve existing modeling and simulation V&V by introduc-
ing a V&V framework for simulation model development in the simulator esmini.

2



1. Introduction

The goal is that the developed framework can be used as a foundation for future
V&V process development for esmini. It should also help improve simulation models
and therefore, as mentioned in the statement of problems, help improve public safety
through the increase of accurate simulation models. It will provide new aspects to
the research on simulation modeling V&V.

1.3 Research Questions
The connections and steps between the research questions are visualized in a flowchart
diagram in Figure 1.1.

RQ1: Develop and propose an optimized Validation & Verification framework for
simulation models with the inclusion of lane changing scenarios for the esmini sim-
ulator.

• What steps are needed to create a V&V framework?
• What procedures are used in the framework?

Use knowledge from existing V&V frameworks and knowledge gathered from current
simulation models in esmini to find and create procedures for the new framework.
The developed V&V framework will consist of a set of systematic procedures and
rule-based decisions, integrated to fulfill the functions of the new V&V framework.

RQ2: How can the created framework be applied to a simulation model containing
road maneuver scenarios from the standard ASAM OpenSCENARIO? The applica-
tion will be evaluated based on the terms of usefulness and effectiveness.

Document the application of the new framework on a developed simulation model
containing road maneuver scenarios, and evaluate the framework based on a set of
metrics measured during the application. The framework will be evaluated by per-
forming simulated experiments, in the form of fault injections and removal of parts
of the framework. Faults will be injected into the simulation model to verify that
the faults are detected by some step of the framework. By removing parts of the
framework, the usefulness and impact of the excluded steps will be presented.

1.4 Limitations and delimitations
The main limitations of the thesis are the time limit of approximately 5 months and
that the effort needed to be adapted to what is possible for two people to complete
during the duration of the thesis. Another important limitation of the framework
that is to be developed is that it can not be considered as a guarantee for developing
flawless simulation models, however it will improve the developed models with the
improved V&V process.

To delimit the ASAM standards that were used in this thesis, only the most current
versions of OpenSCENARIO (1.1.1) and OpenDRIVE (1.7.0) were considered. This
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1. Introduction

Figure 1.1: Flowchart of research questions.

delimitation was added to reduce the confusion and conflicting information that
could occur if several versions were used, but also to limit the complexity of the
development of both the framework and the model. Conduction of a complete liter-
ature review of known simulation model V&V methodologies and frameworks was
not deemed feasible as it would take too much time, resulting in that the process of
creating the framework and the application of it and model development might not
have been completed in time. The choice of applying the framework on a singular
model was as a delimitation due to the time limit of the thesis.

1.5 Thesis outline
The thesis is organized as follows: Chapter 2 provides an overview of the theoretical
background and related works. In Chapter 3, the methods used in the thesis are
presented and motivated. The developed framework is described in Chapter 4, while
Chapter 5 provides an example of how the developed framework can be used on a
model in esmini. Chapter 6 presents the results in regard to the research questions.
The discussion is presented in Chapter 7 and conclusion can be seen in Chapter 8.
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2
Theory

This chapter will present the related works, and introduce the needed theoretical
background. Sections 2.1 and 2.2 present and summarize the related works, while the
succeeding sections introduce important theory and concepts for the understanding
of the thesis and framework.

2.1 Verification and validation in regard to simu-
lation models

V&V is applied to the software process to ensure realistic and reasonable solutions
[1]. This is increasingly important for simulation models, as users and individuals
affected by the model need to know that the results are correct [6]. To validate a
model, there should be a specific purpose defined so that the model can be vali-
dated with respect to the purpose. Riedmaier et al. [7] state that verification and
validation must be performed on simulation models to assess the models’ inherent
errors and accuracy. Accurate models of reality have become the decisive factor for
simulation credibility and trustworthiness.

Sargent [6] discusses and proposes different approaches for V&V of simulation mod-
els, where the different approaches have takes on who and how the V&V process
should be performed. The first approach that Sargent discusses is that the devel-
opment team responsible for the model gets to decide if the model has reached a
valid state, through testing and evaluations made during the developing process.
However, Sargent states that this approach usually should be avoided if possible.
Instead, Sargent proposes that if the team size is small, it is better to involve the
model users in the validation of a model. This approach moves the focus of deter-
mining validity from the developer to the user, which helps with model credibility.
The third approach is the use of independent verification and validation, where a
third party is used to decide if the model is valid. This approach can be done during
different stages, which Sargent discusses, where the two main stages are concurrent
with the development or after the development. This approach is also supported
by the International Software Testing Qualifications Board (ISTQB) [11], as they
state that testing should be performed at multiple levels where a part of those are
performed by independent testers or test organizations. The last approach Sargent
presents is through scoring, where a model is given scores based on the outcome of
the validation steps performed, at the end of the validation the model’s score deter-
mines if the model should be seen as valid. Sargent states that he does not believe
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2. Theory

that this is an approach that should be used due to several reasons, one being that
a model could still pass even if it is flawed in some way.

Sargent [6] also discusses four concepts that influence different phases through the
validation process: data validity, conceptual model validity, computerized model
verification and operational validity. Data validity is often not considered to be a
part of model validation, as it is often difficult and time-consuming to obtain ap-
propriate and accurate data. However, the data is needed for three main purposes,
which are building the conceptual model, validating the model, and performing ex-
periments. According to Sargent [6], building and validating the model are usually
the reasons that data validity is an important part of model validation. Conceptual
model validation is done on the conceptual model, where the theories and assump-
tions made for the model are determined to be represented correctly. The model’s
structure, logic, mathematics and causal relationship are evaluated based on if they
are reasonable for the purpose of the model. Computerized model verification is
done to ensure that the programming and implementation of the model are cor-
rect, the main purpose of this step is to ensure that the implementation is tested
and deemed error-free. The last phase, operational validity, determines the validity
of the simulation model’s output. The output is evaluated based on the accuracy
required for the intended purpose in the domain where the model is applied. It
is during this phase that most of the validation and evaluation of the model takes
place [6].

MITRE [2] discusses how the V&V process can be extended within certain safety
critical fields, into the VV&A process. The extension is called accreditation, which
is the process of giving simulation models an official certification that shows if the
simulation models’ data can be regarded as acceptable for use within a specific
purpose.

2.2 Existing verification and validation method-
ologies

Sargent [6] presents several V&V techniques that can be used to validate simula-
tion models, together with a recommended minimum procedure for validation of a
simulation model. The procedure is described in eight steps, but due to that these
steps should be seen as the bare minimum according to Sargent, the procedure can
be deemed too generalizable to be seen as a useful framework. However, some of
the validation techniques that Sargent [6] discusses can be of interest for the goal of
this thesis and these techniques are listed below:

• Animation
• Comparison to other models
• Event validity
• Face validity
• Extreme Condition Tests
• Traces
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A proposed framework for optimizing V&V of simulation models has been created
by Roungas et al. [12]. They present a framework under the assumptions that sim-
ulations, real-world systems, methods, and techniques are dependent on the circum-
stances of the study performed. Furthermore, a table of suggested V&V methods
are provided, with descriptions of each method’s suitability concerning source code
accessibility, availability of real data, game V&V study suitability, types of require-
ments and purpose of the study. The framework incorporates the four validation
process phases introduced by Sargent [6]. In addition, the framework contains a list
of suitable statistical techniques to validate or verify various kinds of datasets. The
V&V method selection methodology proposed by Roungas et al. [12] utilizes the
aforementioned model properties and characteristics to determine appropriate V&V
methods in regard to the validation and verification purposes.

Barceló [13] introduces validation on models as an iterative process that is used
to calibrate the model parameters and compare the model to actual system behav-
ior. The seen differences are used to gain insight on how to improve the model until
an acceptable accuracy has been reached. The calibration process performed during
the validation has the objective to find the values for parameters that produce a
valid model. Therefore, according to Barceló, validation is concerned about if the
simulation model is an accurate representation of a given system. He also discusses
a basic methodological approach for validation of simulation models, assuming that
the input data can be properly modeled and that the measured data that the simu-
lation output is compared to is assumed to be error-free. He continues on to discuss
how the validation process consists of collecting simulated data and comparing it to
measured data, to determine if the simulated model is valid or not. If it is consid-
ered non-valid, the model needs to be revised and revalidated, thus implying that
validation is an iterative process that may need to be performed several times as
the model changes.

To help with the validation process, Barceló presents and discusses a four-step pro-
cess, that can be used iteratively after the first step has been satisfied. Steps 2-4
can be used iterative until an acceptance accuracy of the model is met[13]. The four
steps Barceló discusses are:

1. Error checking
2. Capacity calibration
3. Route choice calibration
4. Performance validation

The four steps can be explained in the following terms. Error checking is the pro-
cess to eliminate as many errors as possible in the model, to ensure that the model
does not create inconsistencies which could create problems that should not exist.
Capacity calibration is the process of determining the most appropriate and valid
parameters for core functions in the model. Route choice calibration is the process to
calibrate a model’s routes if routing exists in the model. The last step, performance
validation, is performed on the entire model, where performance measurements such
as travel time are compared to existing measures.

7



2. Theory

Barceló [14] highlights that the validation of simulation starts at the verification
level. He brings up the microscopic traffic simulator called SUMO, which is a sim-
ulator similar to esmini, as an example of a computer application that verifies its
models at different levels. The mentioned levels are: unit tests, acceptance tests
and model tests. Unit tests are the smallest test entity to verify smaller, individual
functions of a software. Each function’s expected behavior and output is compared
to the actual results given a certain set of input parameters. Acceptance tests com-
pare the output of the entire simulation model to the expected results. They are
more difficult to implement as the testing scenarios can become complex, but they
are more suitable for verifying the overall behavior of the model. Model tests on the
other hand are performed by comparing a model to other similar models.

Law [15] introduces a tutorial that demonstrates techniques for how to build valid
and credible simulation models. He states that a model can be considered valid
if it can be used in decision-making scenarios resembling those that would occur
if experimenting with the real system was sensible and cost-effective to an equal
degree. Since a simulation model is an approximation of a real system, the validity
of a model can never be absolute and depends on the time and money investments
during the model development. In addition, a model should be developed for a spe-
cific purpose. Moreover, the credibility of a model depends on a number of factors;
including what Law phrases as the decision-maker, their understanding of the model
and involvement in the project, the reputation of the model developers and effective
and convincing animation. Credibility is not synonymous with validity, a model can
be considered credible without being valid. For example, a model can be visually
convincing but not have the needed accuracy to be considered valid.

A seven-step approach is presented in Law’s tutorial [15] on how to create, im-
plement and evaluate valid simulations:

1. Formulate the problem
2. Collect data and construct assumptions
3. Verify that the assumptions are valid
4. Program the model
5. Verify the validity of the programmed model
6. Design, conduct and analyze experiments
7. Document and present the results

Communication errors are highlighted as a major reason for invalid assumptions of
simulation models, according to Law [15]. In order to mitigate these errors, a com-
prehensible assumptions document should be constructed to act as the main source
of documentation for various stakeholders. Law [15] emphasizes that the document
should primarily describe the particular issues a simulation model addresses, rather
than providing an extensive description of the entire system. The assumptions doc-
ument should contain enough information to act as the foundation for the developed
simulation computer program. A couple of relevant points to include in the assump-
tions document are:
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• Project goals
• Process-flow / System-layout diagram
• Subsystem descriptions and their interactions
• Simplifying assumptions
• Model limitations
• Model input data summary
• Important sources of information

In addition to the assumptions document, Law [15] pinpoints that for the assump-
tions document can be validated by performing a structured walk-through. More-
over, he specifies that this validation technique of the assumptions document might
be one of the most important validation techniques for nonexistent systems. The
structured walk-through is performed by having a meeting with experts and stake-
holders, and go through each point of the document and only proceed to the next
point if every meeting participant is satisfied. The assumptions document should
be sent to each participant prior to the meeting to allow for early reviews and com-
ments. The main benefit of this validation technique is to ensure that simulation
analysts receive a comprehensive and correct understanding of the system to model,
increasing both the validity and credibility of the simulation model.

Law [15] proposes a couple of techniques to verify and validate simulation mod-
els. One proposed technique is to validate the output of a model by comparing it
to observed data from the modeled, or real, system. The simulation model would
then be considered valid if the model output data is close to the output data of the
real system, by some threshold. This method is sometimes referred to as results
validation. Statistical tests can be used to compare the data, though the common
assumptions of independent and identically distributed data are not directly appli-
cable. This is due to the nature of most real-world and simulation systems being
non-stationary and auto-correlated [15]. A similar suggested statistical method is a
Turing test, where system experts examine different sets of data without knowing
their origin. Another proposed technique is animations. The animations can be
beneficial in displaying the invalidity of a simulation model, and they can also be
used to improve its credibility. Additionally, it can also be applicable for verification
purposes of a simulation computer program.

David et al. [16] discusses the V&V process on simulation model and proposes
several methods and techniques that can be used during the different stages of the
process. They discuss that the verifiability of a simulation model is influenced by
the procedure used to develop the simulation and breaks it down to two main pro-
cedures:

• The model is definable as a set of input/output pairs in a specific range and
thus the corresponding model is verified for the range considered.

• The model is defined according to a researcher/stakeholder’s intention in a
specified range and thus the corresponding model is verified for the range
considered until it reaches the researcher/stakeholder’s expectation.
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David et al. [16] mentions that both of these procedures create a clearly defined
parameter range to be verified. To help with the verification, they discuss how
techniques such as object-oriented design can simplify testing and debugging of
the model and how the use of defensive programming methodologies such as asser-
tion tests and unit test are well suited for verifying simulation models. They also
specifically mention two verification methods that according to them are the most
important ones to complement the techniques mentioned, these methods are traces
and structured walk-through.

Raunak and Olsen [17] investigate how validation can be performed on discrete-
event simulation (DES) models, from the perspective that this type of simulation
is often deemed as non-testable software. They discuss that performing validation
on non-testable software does not have methods for identifying and establishing the
coverage of validation in regard to simulation models. When validating a simula-
tion model, one needs to identify all elements that need validation. They propose
that this can be done by organizing them into high-level aspect groups, where each
aspect contains elements types. The elements can be divided into two categories,
input data and observable emerging information (OEI). OEI can be any observable
or measured behavior or data during the execution of the simulation [17].

For DES models, Raunak and Olsen [17] propose that the aspects groups are: Re-
sources, Request Characteristics and Workflow, these are defined after the three
main groups of elements found in a DES model. Elements in each aspect should be
validated to ensure that the entire model is valid. However, they do not specifically
propose any validation techniques, rather they mention that one should use the most
common techniques that fit each element, such as animation, comparison to other
models and extreme condition tests which are presented by Sargent [6] and Law [15].
Raunak and Olsen’s [17] main contribution is the implementation of weights to the
validation process to be used to calculate a coverage rate for the validation process
, where different techniques are given different weights based on the level of confi-
dence the technique has. Each element is also given a weighted score based on the
importance of validation of each element, the higher importance the higher weight.
To then calculate the coverage of the entire model, three sets of information are
needed.

• Elements that should be validated
• Validation techniques that can be applied for each element
• Validation techniques that were applied on each element

For each element, the coverage degree is determined by combining the weighted
score of each validation technique used divided by the combined weighted score of
all possible validation techniques. The coverage degree is then multiplied with the
weighted score of the element and after this is done on all elements, the coverage
degrees are combined and lastly divided by the total combined weight of all elements
to get the coverage degree on the entire DES model.

Another framework for V&V is proposed by Wang and Lehmann [18]. The frame-
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work focuses on three concepts of a simulation study: an associated role concept,
a process and product concept, and a quality assurance concept. The role concept
establishes an organizational structure to the model development by introducing
responsibility roles according to each role’s capabilities, such as sponsors, model
designers, software/hardware developers and users. The process and product con-
cept is targeted towards the intermediate products developed during the different
development cycles of a simulation model. The intermediate steps here refer to
the products created from each role, for example conceptual models from a model
designer or executable models from a developer. In the framework, the simulation
model development process consists of decision points [18]. Each decision point is
associated to a progress stage of the development and a collection of V&V activities
to perform in each respective stage. The intermediary V&V activities are used to
evaluate the intermediate products. However, the framework description does not
specify any specific suitable V&V techniques to apply, but mentions that the activ-
ities should be defined along with a requirement document.

The aforementioned frameworks or methodologies fall short of the area of this thesis,
since the intention of the proposed framework in this thesis is to be more focused
on simulation models based on the standards OpenDRIVE and OpenSCENARIO.
Sargent’s [6] proposed framework can be seen as more focused on mathematical or
physics simulation models, where his recommended procedure can be hard to apply
to traffic and road scenarios, where the models simulate more than just physics.
Roungas et al.’s [12] proposed framework can be seen as too general for the applica-
tion on esmini, where some parts could possibly be extracted and used on esmini,
but the entire framework is not directly compatible. Barceló’s [13] idea of an itera-
tive process could be applied to esmini, but would require modifications to be more
appropriate for the models developed in esmini. Law’s [15] proposed assumptions
document could be directly applicable to esmini, as it would improve the under-
standing of the model to develop, however it would not improve the V&V process
alone. The idea of adding weights to the V&V process which Raunak and Olsen [17]
propose does not in itself solve the issue of V&V, as their approach is more focused
on improving existing processes to increase the trustworthiness.

2.3 Modeling and Simulation techniques
Modeling and simulation techniques are research methods that can be applied to
organizational and operational systems in order to improve the V&V process of
model design and development [19]. They are utilized to increase the understanding
of real-world system behavior.

2.3.1 Simulation techniques
In operational management systems, there are two commonly used simulation meth-
ods, agent-based simulations and discrete-event simulations.

Agent-based simulation (ABS) is a bottom-up architecture simulation method for
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simulating industrial processes and complex scientific systems [19]. This form of
method aims to model individual agents (entities) and their interactions in a decen-
tralized manner, where each agent control themselves. The simulation model inputs
are therefore usually based on theory and data with respect to the behavior of the
agents. The individual agents’ decisions affect the outcome of the overall system.
Consequently, ABS is becoming a more prominent method to model and simulate
systems where behavior is heavily dependent on the behavior of smaller system en-
tities.

On the contrary, discrete-event simulation is a top-down architecture simulation
method where the focus is put on modeling time-based behavior systems on a higher
level in a centralized manner [19]. The model input data is frequently based on ob-
jective data collected from the system. Each entity in the simulation is processed
in sets of related steps dependently, where the simulation behavior is determined by
the relationship of these steps.

2.3.2 Traffic modeling techniques
The purpose of traffic modeling is to reproduce real-life observed traffic. Traffic
modeling contributes to the planning and management of traffic in road networks
[20]. In general, the traffic simulation models target three main areas of traffic
dilemmas: traffic flows, road network elements, and time and cost estimation of
travels. Traffic simulation models can be divided into three categories of modeling
architectures and applications, these are: microscopic, macroscopic and mesoscopic
modeling.

Microscopic modeling is based around modeling attributes of vehicles and their
movement in traffic. Various parameters such as traffic flow, vehicle speed and
stops are taken into account when collecting the model data. Azlan and Rohani [20]
provides brief descriptions of car following, lane changing and gap acceptance mod-
els as examples of microscopic modeling. In each of the models, certain parameters
are observed to allow individual vehicles to control their own behavior and perform
suitable actions.

Macroscopic modeling, models the traffic stream from mainly speed, flow, and den-
sity characteristics in mathematical descriptions [20]. These forms of models are
considered continuous simulations. Macroscopic models apply the same treatment
to every vehicle, and thus cannot make independent actions for each individual ve-
hicle [21]. This form of modeling is useful for models that do not require a high level
of detail, for example highway networks. The main benefit of macroscopic modeling
is its potential to provide useful and accurate information while still enabling a fast
simulation.

Mesoscopic modeling can be seen as a middle ground between macroscopic and
microscopic modeling [22]. It provides analysis of the different entities in smaller
groups [20]. The level of detail in the modeling of individual traffic entities is higher
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than macroscopic, but not as high as microscopic.

There exists a fourth category, which is nanoscopic or submicroscopic modeling.
An extension of the microscopic modeling approach, where details regarding inter-
nal functions of a vehicle is taken into consideration. This type of modeling is often
used for autonomous driving simulation, where vehicle vision or details like gear
shifts are simulated [22].

2.4 ASAM Standards

Association for Standardization of Automation and Measuring Systems (ASAM) is
a non-profit organization that hosts standards within the field of automotive de-
velopment and testing, founded in 1998 after an initiative by several German car
manufacturers, such as AUDI and BMW [23],[24]. As of now, ASAM has more than
350 companies that are members in the organization. The standards that ASAM
hosts are developed in collaboration between the members.

ASAM Standards defines data models, communication APIs, file formats, software
components APIs and communication protocols for data exchanged to help research,
development, and validation [25]. The aim of ASAM standardization is to allow for
the choice of the best tools based on capabilities, efficiency and support.

2.4.1 OpenDRIVE

Open Dynamic Road Information for Vehicle Environment (OpenDRIVE) is one
of the standards that is created by ASAM members, where the goal is to create
a common base for describing road networks for driving or traffic simulators [26].
The OpenDRIVE standard version 1.7.0 defines a format for creating road networks
using extensible markup language (XML) syntax and the file extension xodr. The
main purpose of OpenDRIVE is to allow for exchanges between simulators, this so
that the same description can be used without the need of first translating it, thus
reducing cost and spent time for development in the industry.

OpenDRIVE can be used to describe geometry of roads, lanes, and objects such
as road markers, it also allows for defining features such as signals. Roads in Open-
DRIVE are defined based on a reference line, which has its own coordination system
(s/t) which differ from the absolute coordination system (x/y). This allows for
features such as road markers to be attached to a road’s reference line with (s/t)
coordinates. Lanes are attached on either side of the reference line, given +/- IDs
based on which side of the reference line the lane is [27], an example of this can be
seen in Figure 2.1.
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Figure 2.1: Example of OpenDRIVE reference line [26] © ASAM e.V.(Used with
permission)

Roads can be connected to form junctions, and roads and junctions combined can
form road networks. Junctions can be defined in three different ways according
to OpenDRIVE, these are: common, direct or virtual junctions [27]. Common
junctions contain several overlapping roads that are drivable, which can represent
a normal four way intersection, seen in Figure 2.2. Direct junctions cannot have
overlapping lanes and can be used to represent highway entries and exits, seen in
Figure 2.3. Virtual junctions are not implemented in the current version of esmini,
hence they are irrelevant for this thesis.

Figure 2.2: Example of OpenDRIVE common junction [27] © ASAM e.V. (Used
with permission)
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Figure 2.3: Example of OpenDRIVE direct junction [27] © ASAM e.V. (Used
with permission)

2.4.2 OpenSCENARIO

OpenSCENARIO is another standard created by ASAM members, it defines a file
format using XML syntax to describe dynamic content of traffic and driving sce-
narios. The OpenSCENARIO version referenced during this thesis is 1.1.1 [28].
OpenSCENARIO’s primary use-case is to describe complex maneuvers that involve
several entities, where a maneuver is described as driver actions or trajectories that
are performed synchronously. However, OpenSCENARIO is not limited to this, as
it also can contain the description of vehicles, drivers, pedestrians, traffic and envi-
ronmental conditions [9].

A maneuver is described in a storyboard, which is divided into three parts, sto-
ries, acts, and maneuvers groups. A story describes a specific driving maneuver, for
a single vehicle, or specifies the dynamic behavior of several entities. Each story can
then be divided into several acts, which can be set to trigger at specific conditions.
Each act contains a maneuver group, which contains maneuvers on multiple vehicles
[9].

These maneuvers are described in detail by the use of events and actions, where
events describe when something is supposed to happen and actions describes what
should happen. There exists three types of actions in OpenSCENARIO, private,
global or user-defined. A private action describes what should happen for a single
entity, such as a vehicle, and could be a lane change. A global action relates to
the simulation and can be used to modify non-entity elements, like time of day and
traffic signals. A user-defined action however is an action that is not part of the
standard OpenSCENARIO, but something added between the simulator and the
scenario designer[28].
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2.5 Environment Simulator Minimalistic (esmini)

Environment Simulator Minimalistic is a simulator developed during a Swedish col-
laborative research project called Simulation Scenarios [29], the development of
which has continued based on user needs and the continued development of Open-
SCENARIO and OpenDRIVE [9], [30]. It is mainly written in the C++ program-
ming language. Currently, Volvo Cars is one of the main developers of esmini.
The two most important modules used in esmini are RoadManager and Scenario-
Engine. RoadManager provides the interface to OpenDRIVE, while ScenarioEngine
provides an interface to OpenSCENARIO. The purpose of esmini is to provide a
cross-platform development tool for working with the OpenSCENARIO data for-
mat [30]. Traffic scenarios in esmini are simulated from road network information
stored in OpenDRIVE and OpenSCENARIO formats. The modeling techniques
DES and microscopic modeling are used in esmini, and these concepts are explained
in Section 2.3.

Since esmini a deterministic simulator with little stochastic models, it can be used
as a foundation for building other simulators that implement more stochastic fea-
tures as it can act as the "ground truth" for elements of the simulation that are not
as important for the objective of the simulation. The esmini simulator is therefore
useful when only the barebone of a simulation is necessary.

2.5.1 Structure

There are six main modules in esmini, these are RoadManager, ScenarioEngine, Con-
trollers, ViewerBase, PlayerBase and CommonMini [31]. As mentioned previously,
the RoadManager module is responsible for the implementation of the OpenDRIVE
format. ScenarioEngine handles parsing of OpenSCENARIO files and constructs
entities, triggers and actions which are then consequently executed. The Scenari-
oEngine also accompanies a ScenarioGateway, whose purpose is to asynchronously
provide information about entity states, for instance through the UDP protocol.
Controllers are a concept present in OpenSCENARIO that enables custom behav-
ior of individual entities in addition to the functionality provided by the default
controller within ScenarioEngine. Controllers follow an API defined by class inher-
itance, where inherited classes can override and define custom behavior for certain
entities in the scenario. The ViewerBase module is a 3D viewer that provides visu-
alizations for the road network and features, as well as 3D models for the scenario
entities. The PlayerBase module connects the ScenarioEngine and ViewerBase to
provide a higher level API for handling scenarios in custom player applications.
Lastly, the CommonMini module is a collection of useful functions that can be used
by other modules. Some examples of the functionality provided in collection are
timers, math operations and loggers [31].
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Figure 2.4: UML diagram of acts and all related classes in esmini.

2.5.2 Event and Action
Events and actions in esmini are implemented based on the definitions from the
OpenSCENARIO standard [28]. As previously mentioned, OpenSCENARIO defines
three different actions, however only two of them are implemented in esmini as of
spring 2022. The two actions that are implemented can be seen in Figure 2.4, which
shows how all the classes related to acts are linked in esmini. In the UML diagram,
it can be seen that events can have one or more actions and a trigger that states
the start conditions of the event. It can also be seen that all links between these
classes are unidirectional, meaning that e.g, actions can not see what events they
are a part of.
Global and private actions work on different parts of the simulation, global on the
simulation and private on an entity. The implemented global actions are:

• Set parameter
• Traffic swarm
• Environmental / infrastructure
• Add entity

The private actions implemented in esmini are:
• Longitudinal speed
• Longitudinal distance
• Lateral lane change
• Lateral lane offset
• Assign controller
• Activate controller
• Teleport entity
• Assign route
• Follow trajectory
• Synchronize

Most of the private actions in esmini are quite self-explanatory of the functionality
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based on the name of the action. The actions have different parameters that change
their behavior, one of these parameters are if the actions has a relative or absolute
target. E.g, in lateral lane changes, this changes the behavior to either change to a
relative lane based on the location of the entity or an absolute lane that the entity
should change to.

2.5.3 Controllers
Controllers, which is a core element of the OpenSCENARIO simulation [28], is im-
plemented in esmini. The purpose of a controller is to customize the behavior of
simulation agents during runtime. A motivating factor for the usage of controllers
is that they provide a flexible way of extending functionality in esmini while also
conforming to the OpenSCENARIO standard [32]. The standard does not define
controller implementations, and the implementation present in esmini is hence an
interpretation of the controller concept. However, the standard does specify that
controllers are deactivated by default. Furthermore, esmini provides a set of embed-
ded controllers that can be useful for simulating certain scenarios. For instance, the
SloppyDriverController is a simulation model where the simulation entity performs
slight speed and turning deviations in order to mimic a sloppy driver [32].

Controllers are activated for a domain: longitudinal, lateral or both [32]. A do-
main represents the direction of motion of a simulation entity. The longitudinal
domain corresponds to motion along a reference line, for example, increasing the
speed of the vehicle. The lateral domain corresponds to motion perpendicular to a
reference line, such as lane changes.

OpenSCENARIO specifies two controller types: the default controller and user-
defined controllers. The default controller must enforce so-called control strategies
precisely, while user-defined controllers may customize these strategies. Control
strategies define how entities are assigned behaviors [28]. The default controller
follow control strategies after how they are defined in the OpenSCENARIO file.

2.5.4 Similar simulators
There are two other traffic simulators that are similar to esmini in the terms of
being capable of using the ASAM standard OpenDRIVE. These two simulators
are CARLA [33] and SUMO [34]. CARLA is a open-source simulator developed
for autonomous driving development and uses high fidelity graphics and physics
enabled by the use of Unreal Engine 4 to ensure that it is possible to train sensors
with realistic data. This means that CARLA is quite heavy to run compared to
esmini. CARLA have some support for OpenDRIVE and OpenSCENARIO, but
does not currently support the most recent version of OpenSCENARIO. SUMO is
a more lightweight traffic simulator and focuses more on traffic flows and traffic
management, which differs from esmini that is more useful for simulating smaller
traffic cases. The main difference between esmini and the simulators CARLA and
SUMO is that esmini was purposefully developed to support the ASAM standards
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Figure 2.5: Example of a general QAS for the quality attribute availability.

OpenDRIVE and OpenSCENARIO, while the other simulators has support for these
standards by the use of additional components but it is not one of the main features.

2.6 Quality Attribute Scenarios
Quality attributes are used in software engineering to describe a measurable or
testable property of a system [35]. The ISO 25010:2011 Standard [36] defines a
set of software quality attributes to use together with requirements and quality
evaluations. The attributes defined in the standard are the ones referred to in
this thesis. A quality attribute is used to indicate how well a system reaches its
requirements from stakeholders [35]. These are often retrieved from descriptions
such as functional requirements of a system, which means that they often specify
attributes, like modifiability or availability, that can be hard to measure without
further explanation or requirements. To solve this, one can use quality attribute
scenarios (QAS), which contains more concrete information about what is expected
of a system. A QAS is divided into six parts, each describing one section of the
requirement [35]:

• Stimulus: An event that arrives to the software.
• Stimulus source: Where the stimulus came from.
• Response: How the system should respond to the stimulus.
• Response measure: Measure of the response, if it reached the required degree.
• Environment: The condition of a system when the stimulus happens.
• Artifact: The portion of the system that is applicable for the requirement.

QAS allows for making quality attribute requirements testable and can be divided
into two subgroups, general or concrete, depending on how the QAS is defined.
General QAS are quality attributes scenarios that are not bound to a specific system
[35]. These are defined with a collection of definitions for each part of the QAS which
contains the characteristics for a specific quality attribute. A general QAS can be
modified to be system dependent by just having the relevant definitions for a quality
attribute for the given system. An example of a general QAS for the quality attribute
availability can be seen in Figure 2.5.
Concrete QAS (CQAS) are however specific to a system [35]. These are used when
testing if a system reached the wanted degree of a certain quality attribute. The
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Figure 2.6: Example of a concrete QAS for the quality attribute availability.

difference between a general and a concrete QAS is that the CQAS only have one
definition for each part, which allows it to create a testable definition of how a
system should react to an event, as well as making it measurable. An example of a
CQAS for the quality attribute availability can be seen in Figure 2.6.

2.7 Acceptance Test-Driven Development
Acceptance Test-Driven Development (ATDD) is a development methodology that
is similar to regular test-driven development, but focuses on acceptance testing to
help improve software quality and ensure that customer needs are fulfilled [37].
ATDD helps to provide a software development structure that closely follows and
implements the required functionality. Furthermore, the productivity of a team and
the quality of the code are increased by applying ATDD in a team [38]. The main
difference between a typical development workflow and an ATDD workflow can be
seen in Figure 2.7 and Figure 2.8. This section aims to describe the concept of
ATDD and how it can be beneficial in a V&V context.

Figure 2.7: Flowchart of a typical development workflow

Figure 2.8: Flowchart of acceptance test-driven development workflow

The main building blocks of ATDD processes are user stories [37]. Briefly described,
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Figure 2.9: The ATDD cycle visualized as a graph

a user story is a format for describing requirements that expresses desired behavior
by specifying who does what and why. In other words, the who can be seen as a
role or entity, the what can represent some functionality and the why describes the
benefit of the functionality. User stories are convenient for specifying requirements
in a format that most project participants can comprehend.

Acceptance tests are high-level descriptions of some desired system behavior or func-
tionality [37]. These tests are designed in relation to a user story and establishes
the behavior of the system in regard to some set of conditions as well as input and
output data. Acceptance tests focus mainly on what functionality to implement and
not on how it is achieved. An important aspect of acceptance tests is that they are
usually written together with different project roles, where the customer, developer,
and tester are all contributing to the design of the test.

The ATDD process is performed cyclically, and the cycle consists of four steps.
A basic visual representation of the cycle can be seen in Figure 2.9. A more detailed
visualization can be seen in Figure 2.10.

1. Pick a story
2. Write tests
3. Automate tests
4. Implement functionality

This process is performed for every user story. First, a user story is picked, and the
choice of story can depend on a priority list of user stories to consider. Secondly, cre-
ate the acceptance tests together with the customer, for example by spontaneously
coming up with relevant scenarios to test and sketching them down in any shape or
form. Thirdly, the tests should be automated so that they can be executed auto-
matically, making sure that the tests are identically executed every time and that
they provide simple yes-or-no answers. The fourth and final step in the cycle is to
implement the functionality in order to pass the previously created tests. When all
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Figure 2.10: The ATDD cycle graph in a more detailed visualization

the tests are passed, by implementing the corresponding functionality, a new user
story is picked and the cycle is repeated accordingly [37].

One of the main benefits of an ATDD workflow is the distinct definition of done
it provides. Koskela [37] highlights two key issues of project management, knowing
where a team is in a project timeline and knowing when to stop. ATDD provides
a simple answer to these questions, which is that a requirement is fulfilled if all the
tests for the corresponding user story pass. If not, there is remaining functionality
to be implemented before proceeding to a new user story.

2.8 Test automation
Test automation is usually associated with the automation of test execution, but
has in more recent years been expanded to other test activities such as the design,
scripting, evaluation and reporting of tests [39]. Several tools and software libraries
already exist to provide effective help for automation in different testing activities.
The automation of testing activities aim to reduce the effort and cost required to
develop tests, which subsequently promotes development of higher quality software.

An example of a testing approach to automate both test design and generation
is model-based testing (MBT) [40]. Instead of letting a developer manually design
a test, MBT uses modeling languages such as UML to express the behavior of a
system. Various model elements, such as states and transitions, are traced from the
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requirements to describe the system flow and its decisions. For most MBT tools,
tests can then be automatically generated from the model, with input parameters
and expected output parameters. The generated test describe sequences of actions
and events that a developer would normally have to perform manually. The essential
modeling process of MBT creates a visual representation of the model, usually in
the form of a graph. This promotes understanding of the model by not only develop-
ers, but also testers and other stakeholders. Furthermore, the MBT test generation
criteria can be altered to limit the number of generated tests [40]. For instance,
they can focus on requirements, allowing more tests that prioritize requirements to
be generated to verify that all requirements are fulfilled. This encourages close de-
velopment with specified requirements, which ensures a more reliable V&V process
and ultimately higher quality software.

Another example of a testing approach to automate test generation is property-
based testing (PBT) [41]. PBT generates random tests through description of valid
inputs and expected properties to hold for all valid inputs. Therefore, testers only
have to specify valid inputs and properties instead of manually verifying inputs and
expected outputs for many test cases. Writing tests with PBT is fast, more concise,
and generates more test cases than a human would be able to do manually [41].

Gambi et al. [42] propose a search-based testing technique, together with proce-
dural generation, to automatically test self-driving cars. In summary, their idea is
to create challenging virtual scenarios to test a virtual vehicle in, by generating new
road networks procedurally. Challenges introduced in a scenario could be factors
such as weather conditions or complex road shapes. In Gambi et al.’s case, this
testing technique is used to ensure self-driving cars perform lane keeping correctly
in a virtual environment.
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3
Methods

This chapter will describe and motivate the choices made during the development
of the framework and the model. It will also present the research and workflow
techniques used to achieve the result.

3.1 Design Science Research Process
The design method chosen for this thesis is the Design Science Research Process
(DSRP), as it has several advantages for our study. Mainly, DSRP allows us to
develop artifacts (a framework for V&V). DSRP is a six stage process and uses an
iterative process, seen in Figure 3.1, where the fifth and sixth step checks the current
system and allows for improvements if deemed necessary [43][44]. DSRP will also
allow us to solve a real problem, which in our case is to improve the V&V process
for development in esmini.

First stage: The first stage is problem identification and motivation. The problem
to be investigated in this thesis is to improve the V&V process for development
in esmini using the ASAM standards OpenDRIVE and OpenSCENARIO. The re-
search methods applied here are field study and desk research. These methods will
be applied in order to gain knowledge on existing research as well as the systems
involved. In this stage, the modeling techniques used for lane changing behavior in
esmini will be identified. The identified techniques will create the foundation for
a new artifact that is to improve V&V process. Model-based performance analysis
can be leveraged to explore performance properties of esmini models. Moreover,
this analysis would help us understand the modeling of parametric dependencies for
better performance prediction [45].

Second stage: The second stage is the definition of the objectives of a solution.
The objective is to create a framework artifact for V&V on simulation models for
the esmini simulator. Other similar proposed frameworks will be examined to un-
derstand the potential steps that are feasible in the framework artifact. The artifact
should primarily focus on lane changing models, but the desire is for the framework
to be generalizable.

Third stage: The third stage is design and development. During this step, the
creation of the artifact (a framework in the form of an informal process containing
a set of systematic procedures applied in given steps) takes place (RQ1). Defining
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Figure 3.1: The six steps of the Design Science Research Process.

desired properties, planning of the artifact’s architecture and the creation will take
place during this step. The artifact will be designed based on information gathered
from esmini as well as literature of existing similar frameworks. During this stage,
we will get support from Volvo Cars in the form of details of simulation models in
use and documentation on algorithms and access to experts in the field (esmini).
Therefore, all of these resources combined should help us define the details of our
framework development.

Fourth stage: The fourth stage is demonstration. In this step, the artifact will
be deployed on a simulation model (RQ2). The artifact will be used to drive the
V&V process on the specific model, and relevant data will be collected regarding
the artifact’s usefulness and effectiveness.

Fifth stage: The fifth stage is evaluation. In this stage, data collected during
the previous stage, the demonstration of the artifact (the framework), will be used
to determine the artifact’s usefulness and effectiveness. Meaning, how much help
the framework provides during the process in terms of ensuring that the stated re-
quirements and users needs are met. At the end of this stage there will be a decision
determining if the artifact has reached an acceptable level, if it is deemed to not have
reached the sought after efficiency, the processes can revert to the second stage for
additional adjustments. However, if deemed acceptable, the process can be moved
to the sixth and last step. (RQ2)

Sixth stage: The sixth and last stage is communication. During this stage, the
artifact together with the problem is communicated to relevant audiences, as for ex-
ample researchers, professionals, and practitioners. In our case, the outcome will be
communicated through a thesis that will present the framework and how it improves
V&V.
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3.2 Research methods
The research methods chosen for this thesis are field study and desk research. Field
study refers to research conducted in a specific, real world setting to study a specific
software engineering phenomenon [46], which for this thesis are V&V of a specific
simulation software (esmini). This research method was chosen as it would allow
for information gathering about the existing system in regard to modeling tech-
niques and V&V techniques. A base knowledge needed to be established for the
V&V Framework development. Therefore, the plan was to investigate the modeling
techniques that were used in the simulator esmini, especially with regard to Volvo
Cars’ lane changing road scenarios. Desk research is a secondary study and aims
to summarize or synthesize existing research presented in primary studies [46]. The
reason for choosing desk research as one of the methods is that to gather knowledge
for RQ1 & RQ2, we need to study and summarize already existing frameworks in
regard to the V&V process for simulation models.

3.3 The creation of the framework
In this section, the process of creating the framework will be described, as well as
the motivation behind the choices made during the development. It will also present
the metrics used to determine the frameworks usefulness and effectiveness.

3.3.1 Development process
In order to create the framework, a structured process that could help guide the di-
rection of development was needed. This chosen structure was DSRP, as described
previously in Section 3.1. As described in the DSRP process, the first step for devel-
oping the framework was to identify the problems of esmini and V&V. To identify
the problems, more knowledge of existing V&V techniques and methods was needed,
so the first step was to gather more knowledge of V&V and the structure of esmini.
After the knowledge was acquired, the next step was to begin to define the definition
of a solution to the V&V process in esmini. During this step, the most relevant tech-
niques and ideas were extracted and combined with the ideas of QAS and ATDD to
form the beginning of a solution for V&V in esmini.

After the definition of a solution is defined, the next step was the design and de-
velopment iterations, step three to six in Figure 3.1. The first iteration began with
combining the ideas of Barceló [13],[14], Law [15], QAS [35] and ATDD [37], [38]
to create the first draft of the framework. After the first draft was made, the next
step was to use in a concrete case, to make it more understandable and to see what
was missing in terms of verification and validation. The concrete case used for this
is the lane independent routing model, since the framework creation is further than
the development of the model, some data, and ideas used in the test application of
the first draft were fictional. This process repeated itself over a number of times
before the idea of the framework was finalized. The application of the framework,
on the concrete case, can be seen in Chapter 5.
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3.3.2 Motivation for chosen procedures
The assumptions document, based on Law’s [15] idea, is important in relation to
esmini mainly because of how esmini is developed with regard to the OpenDRIVE
and OpenSCENARIO standards. The standards do not always specify exactly how
some functionality is implemented, therefore requiring interpretations of how it could
be achieved specifically in esmini. Along with the interpretations, assumptions will
be needed to create a compliant implementation. Due to how esmini is implemented,
there are some limitations to what can be done and with the help of assumptions
the limitations in esmini can be circumvented. Additionally, the idea of using an
assumptions document, or requirement document, as part of the V&V process is
backed up by Wang and Lehmann [18].

Requirements are vital to the testing process of all software, as they document
the desired functionality. To verify the stated requirements, different testing tech-
niques can be used, one being acceptance tests. The creation of acceptance tests
has an increased difficulty compared to other testing levels, as it can be hard to
break down the requirements into testable components. The use of CQAS allows
for a clearer connection to acceptance tests, where the focus of CQAS is on creating
requirements based on quality attributes such as correctness or availability. Conse-
quently, the acceptance tests are easier to define as they target a specific attribute.
Additionally, CQAS reduces the complexity of behavior and functional testing by
providing an example that makes the behavior or functionality description easier to
comprehend. The use of requirements is also supported by David et al.’s [16] idea
that models are verifiable after the stakeholder’s intentions, and should therefore be
verified until it reaches the stakeholder’s expectations.

ATDD is a development structure that helps to closely follow and implement the
desired functionality. The idea of implementing the ATDD methodology into the
framework is motivated by the fact that validation becomes more prioritized and a
part of the development process. Since esmini does not currently have a designated
validation process, ATDD creates a structure to build the validation process upon.
Acceptance tests provide additional definitions of done, allowing a team to know
where they are on the project timeline and knowing when a requirement is fulfilled.

The combination of requirements, CQAS and acceptance tests through ATDD en-
ables a substantial and iterative V&V process, where new requirements can be added
throughout the development of the model. This promotes the robustness, reliability,
and correctness of the simulation model. Moreover, each stage of the iterative pro-
cess can be seen as what Wang and Lehmann [18] define as a decision point. Specific
V&V techniques are applied during each stage in order to evaluate the intermediary
artifacts created during the model development. In addition, the different develop-
ment stages follow the role concept introduced by Wang and Lehmann [18], where
each stage is connected to a set of roles that are responsible for that part of the
model development process.

The idea of performing V&V iteratively comes from Barceló [13], as he states
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that validation can be performed iteratively until an acceptable accuracy has been
achieved. The iterative process allows for simulation models to be calibrated and
optimized based on the requirements and acceptance criteria that has been created
in earlier stages of the process. This is useful for esmini, where accurate models
are especially important due to esmini being used as a test tool for safety critical
software for vehicles.

The final validation step in the iterative process relates to the model tests men-
tioned by Barceló [14], where models are compared to each other or expected data.
Here, methods such as statistical comparison, empirical analysis, and visual inspec-
tion can be used to calculate the model’s accuracy. Other methods for statistical
and visual validation can be obtained from Roungas et al.’s paper [12]. The addition
of the final validation step enhances the validation process by including other ways
of validating requirements and acceptance criteria. Using a diverse set of validation
methods increases the probability of developing a highly accurate model. If the
model fulfills the acceptance criteria it can be seen as validated, if not, revert to the
assumption document to find why the model does not behave as expected.

3.3.3 The application of the framework
The framework will be applied to the simulation model developed as a part of the
thesis, the application of the framework on the model will be shown in Chapter 5.
The application will then be evaluated based on the metrics: usefulness and effec-
tiveness to answer RQ2.

The evaluation of the framework will be based upon the example of how the frame-
work can be used, found in Chapter 5. The evaluation will consist of two main
methods, where one is the injection of faults into the model to see how effective the
framework is on detecting the faults. The other is user interviews, where developers
of esmini will be asked to answer a series of questions to determine if they find the
framework useful or effective for esmini based on the example provided. Based on
the result of the injection of faults and the feedback from developers, a degree of use-
fulness and effectiveness should be possible to determine. However, a study, where
the framework is used during development of models by esmini developers and then
evaluated based on their feedback, would have provided a stronger foundation for
evaluation. But due to time and resource limitation, it was deemed not possible for
the thesis.

3.4 The development of a lane independent rout-
ing model (LIRM)

This section will present the methods and steps followed in order to develop the lane
independent routing model (LIRM), based on the case provided by Volvo Cars, seen
in Appendix A.
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3.4.1 Model criteria
The simulation model developed simultaneously as the framework is a simplified
model of a vehicle navigator that should be able to find and calculate a path to a
target anywhere on the simulated road network. A detailed case description can be
seen in Appendix A. The current implementation of path finding in esmini is lane
dependent, meaning that the path finding can not find paths that are not directly
connected to the starting position’s lane, which is how the default control strategy
is defined in OpenSCENARIO.
The developed model, the LIRM, will be in the form of a controller capable of
overriding the default behavior of path finding in esmini. The model will be able
to find paths independent of the starting lane. The model should also implement a
functionality for changing lanes when it is necessary, to be able to follow the path.

3.4.2 Model design
The development of LIRM started with research into existing path finding algo-
rithms that could be adopted to fit the model’s purpose. A few alternatives were
considered, such as Dijkstra’s algorithm and A* search algorithm [47]. The choice
fell on Dijkstra’s as the path finding algorithm for the implemented model, due to
the lesser complexity and easier implementation.

After the choice of algorithm was made, the work began to find out and write
down all assumptions made, this included the assumption around the algorithm as
well as around the implementation of the entire model, such as the simulated road
network in OpenDRIVE. These assumptions can be seen in the example case for
the framework, in Section 5.1. This was done both as a part of V&V process of the
model, but also for documentation on why some functionality of the implementation
works as it does.

3.4.3 Model development
The implementation of LIRM into esmini started as a new controller that will con-
tain both the modeled path finding and the logic for modeled lane changes. The
code for the model, LIRM, can be found on GitHub1. The implementation can
be found in files ControllerFollowRoute and LaneIndependentRouter. The newly
added controller enables scenarios to use it dynamically, adding to the behavior of
the default controller and provide the intended pathfinding and waypoint following
functionality.

Lane independent path finding algorithm

The new functionality of lane independent path finding needed an algorithm capable
of finding the path through an OpenDRIVE road network. As mentioned, the choice
fell on an implementation of Dijkstra’s algorithm which needed some modifications
to work for the given purpose. To implement Dijkstra’s algorithm, there was a

1https://github.com/esmini/esmini/tree/follow_routes
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need for defining what were nodes and edges in the OpenDRIVE network. Our
implementation was that roads became edges and the connections between roads
became the nodes. This meant that the algorithm would find all connections between
two roads the vehicle needs to pass through to reach the goal. To make this approach
lane independent, the implementation added a node for the connection of each lane
in the driving direction on a road. The lane independent path finding supported
three different routing strategies, that are also specified in OpenSCENARIO [28],
and these were: shortest, fastest and least number of intersections (junctions). A
simplified description in pseudocode of the implemented path finding algorithm can
be seen in Algorithm 1.

priorityqueue pq;
list visited;
Create startNode;
Add startNode to pq;
while pq not empty do

Get first node (n) in pq;
if n is in visited then

Continue;
end
Add n to visited;
if n == target and target is in driving direction then

create targetNode;
return backTraceTargetToStart(targetNode);

end
for each road in connection n do

for each lane in driving direction on road do
Get connecting road for lane;
Create newNode;
Calculate weight for newNode;
Add newNode to pq;

end
end

end
return empty list;

Algorithm 1: The lane independent path finding algorithm in pseudocode.

Lane change controller

A lane change controller was developed to allow the modeled vehicle to follow routes
that included lane changes to reach the target, the logic of the controller can be seen
in the flowchart in Figure 3.2. This was needed as the default controller in esmini
does not have any functionality of changing lanes. However, since the normal driving
and route following could be handled by the default controller, it was decided to let
it control the vehicle until a lane change was necessary. This design choice was made
as creating a controller that handled all driving on its own would require duplicated
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Figure 3.2: A flowchart of the logic in the lane change controller.

code and functionality that the default controller already had, which would have
reduced the maintainability of esmini and should be avoided if possible.

When a lane change is necessary, the controller creates a new lateral lane change
action, which overrides the default controller and takes control over the modeled
vehicle while the lane change is performed. After the lane change is complete, the
control is returned to the default controller.

To get the default controller to follow the waypoints created by the lane indepen-
dent pathfinder, it was necessary to override the default waypoints created by the
default pathfinder. This was done by continuously updating the list of waypoints
that the default controller uses after each waypoint has been passed. When the final
waypoint has been passed, the controller is deactivated and the default controller
behavior takes over the driving of the vehicle.
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This chapter will present the developed framework. An illustrative example of how
the framework can be used to validate a model in esmini is seen in Chapter 5.

The developed framework for verification and validation for models in esmini is
described in the section below. It will provide a description of how the methods
and process presented in the framework can be applied to a model to improve the
verification and validation. Displayed in Figure 4.1 is a flowchart of the framework.
The flowchart visualizes the connections between the different steps of the frame-
work and shows how the framework deploys the ATDD and CQAS methodologies
through an iterative process.

In the current framework, all steps and processes that are a part of the framework
need to be performed manually except for unit tests and some acceptance tests that
can be automatically executed if wanted. The primary reason for including mostly
manual steps in the framework is the time constraint of the thesis, as automating
certain test activities would still require manual devising and preparation, which
would have been too time-consuming.

4.1 Assumptions Document
Communication errors across stakeholders are highlighted as a major reason for in-
valid assumptions of simulation models [15]. In order to mitigate these errors, a
comprehensible assumptions document should be constructed to act as the main
source of documentation for various stakeholders. The document should primarily
describe the particular issues a simulation model addresses, rather than providing
an extensive description of the entire system. The assumptions document should
contain enough information to act as the foundation for the developed simulation
computer program. The document can be validated by performing a structured
walk-through, where a meeting is held with stakeholders to ensure they are all sat-
isfied with the stated information and that they understand the fundamentals of
the modeled system. The term model in the assumption document refers to the
simulation model that should be developed, in other words, the software or code
that the model consists of.

The assumptions document can be seen as quite similar to a requirement document,
that is often used in software engineering, as both explains the wanted functionality
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Figure 4.1: Flowchart of the V&V framework
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of the software that is to be developed. However, a requirement document repre-
sents the functionality that a system should have by stating requirements that the
developed system should fulfill. The definition of an assumptions document pre-
sented in this thesis aims to represent both the general functionality of a model and
all possible assumptions and constraints which could affect the model development.
The assumptions document should then be used during the creation of the actual
requirements to ensure that the stated requirements consider the assumptions and
constraints that could affect the adaptation of the real system to a model.

4.1.1 Model functionality
Provide a description of the functionality that is desired with the model usage.
For example, write down a list of features, explain the model’s behavior output
depending on inputs, or show a figure that contributes to the overall comprehension
of the model’s behavior and purpose. The functionality described here does not
need to be excessively formal, as the more formal descriptions are created during a
later requirement stage of the framework application.

4.1.2 Model flowchart
Create a flowchart of the model’s functionality. It should contain the most important
functionality for the model and depict the different paths within the functionality.
This should be done to improve the understanding of the model both for stakeholders
and the model designers, to minimize the risk of misunderstandings of the model’s
functionality.

4.1.3 Model subsystems
Provide a more detailed description of the model’s main functionalities. Define what
each subsystem is responsible for and how they interact with each other, in terms
of what type of data may be exchanged between them.

4.1.4 Simplifying assumptions
Here, all assumptions regarding simplification of the real system should be stated.
Every assumption on how the simulation model simplifies the real system should
be explained in detail of how it differs and why the assumption is needed. The
documentation of assumptions is necessary for the creation of requirements and
validation, as it provides important information about how the developed model is
expected to behave in relation to reality.

4.1.5 Model limitations
Describe the possible limitations of the model that is to be developed. Any underly-
ing limitations in algorithms, software, or data used should be considered and noted
down. The limitations are essential in order to understand what cannot be achieved
with the model or how to possibly circumvent certain constraints.
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4.1.6 Model input data summary
Summarize the model input data to create a collection of data that can more easily be
comprehended by different types of stakeholders. The summary acts as an overview
of what input data the model is provided. It should also include the different types
of data, for instance text, numbers, boolean values, files etc. Complex data should
be explained and simplified to increase the level of comprehension and make it easier
for stakeholders with less specific knowledge to gain an understanding of the data.

4.1.7 Important sources of information
Document the sources used to gather the information that is being used to establish
the assumptions and limitations of the model. For each source, provide information
of what type of information the source provides. This should be done to facilitate
development in future iterations of the model, as it will eliminate the need to find
where more detailed information regarding the model can be found.

4.1.8 Acceptance criteria
Acceptance criteria are used to define the definition of done for the model. The
criteria should define how the model will behave related to the real system, and to
what degree the model can differ while still being acceptable. These criteria are
used during the V&V process to know if the model has reached the wanted degree
of accuracy to be deemed validated. These are also important for the requirement
and acceptance test creation for the model, in order to reconnect to the criteria and
check if the model is considered verified and validated.

4.1.9 Assumption validation
Validate the assumptions document before proceeding to the next step. A suggested
validation technique to use here is a structured walk-through [15]. A structured
walk-through is performed by having a meeting with experts and stakeholders, and
together address each point of the document and only proceed to the next point
if every participant in the meeting is satisfied. If any point is deemed inappropri-
ate, that part of the assumptions document should be reconsidered and improved
accordingly. The assumptions document should be sent to each participant prior
to the meeting to allow for early reviews and comments. The main benefit of this
validation technique is to ensure that simulation analysts receive a comprehensive
and correct understanding of the system to model, increasing both the validity and
credibility of the simulation model.

4.2 Requirements, Concrete QAS and Acceptance
Tests

After the assumptions document has been created and validated, the next step in
the framework is to create the requirements, CQAS and acceptance tests for the
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model.

4.2.1 Requirements
Requirements are used to ensure that the system fulfills a specific functionality or
behavior. The same applies with models, where requirements are used to state im-
portant functions. These are then used to create CQAS and acceptance tests for the
model, which helps improve the V&V process. An effective way of formulating the
requirements is to create user stories. User stories follow the form of who wants what
and why, most commonly “as a <role> I want <functionality> because <reason>”.
They provide a compact way of describing the desired functionality, who benefits
from it and its purpose.

4.2.2 Concrete Quality Attribute Scenario
Quality attributes are used in software engineering to describe a measurable or
testable property of a system [35]. A quality attribute is used to indicate how
well a system fulfills its requirements from stakeholders. CQASs are used for each
requirement to further explain where the source of the data comes from, how it
interacts with the system and what is expected from the interaction. This allows
for even more specific information about what is expected from a requirement than
just having it as a user story. It also allows for validation of models, where real-
life/system data may not exist, as CQASs can be used to compare to expectations
obtained from the earlier stated assumptions. A CQAS is divided into six parts,
each describing one section of the requirement, these can be seen in Table 4.1.

Stimulus An event that arrives to the model
Source of stimulus Where the stimulus came from
Response How the model is expected to respond to the stimulus
Response measure Measure of the response
Artifact The part of the system that the requirement applies to
Environment The condition of the model when the stimulus happen

Table 4.1: Table for defining a Concrete Quality Attribute Scenario.

4.2.3 Acceptance test
Acceptance tests are high-level descriptions of some desired system behavior or func-
tionality. These tests are designed in relation to a user story (a requirement) to es-
tablish the behavior of the system in regard to conditions, input, and output data.
The main purpose of using acceptance tests is to provide a way of determining
whether a requirement is satisfied. The tests focus mainly on what functionality to
implement, but not how it is achieved. They are usually designed in coordination
between different project roles (e.g., customer, developer, tester etc.) to include
contributions from different stakeholders.

A simplified version of the acceptance test can be provided in pseudocode to allow
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for a coherent overview of what is required for the test. In addition, a description
of the acceptance test should be provided to clarify any ambiguities. During the
creation of the acceptance tests, an OpenSCENARIO file or an OpenDRIVE file
should be created or specified, so that it can be used for the later testing.

4.3 Model development
In this step, the model is developed and the functionality described by the previously
elicited requirements is implemented. Unit tests are added to test smaller individual
parts of the model. Additionally, the execution of both unit tests and acceptance
tests should be automated in order to enable efficient and iterative confirmation on
whether tests are passed. This step is part of the ATDD process of implementing
functionality that passes the acceptance tests defined in step 2 in the flowchart in
Figure 4.1.

4.4 Calibration, Verification, and Validation
The calibration, verification, and validation step is a combination of several steps
inspired by Barceló [13], [14] and ATDD [37], that are further explained below.
The meaning of these steps is to test the model developed in step 3 based on the
requirements and acceptance test defined in step 2. The model should also be
validated towards the assumptions and acceptance criteria defined in step 1. These
steps can be clearly seen in the flowchart in Figure 4.1.

4.4.1 Iterative process
The calibration, verification, and validation is an iterative process that will most
likely occur several times during the development of a model. It is during this part
of the development that the model is tested with the acceptance tests to ensure
that the requirements have been met, thus ensuring that the model is calibrated.
These iterations include further connection to stakeholders to ensure that no new
requirements have occurred or are needed for the model to behave accurately. The
iterations also include the validation where the model is compared to the expected
behavior and the stated acceptance criteria. The purpose of using an iterative
process is not to document every iteration and record what was changed, but to
continuously improve the model.

Each iteration contains five steps, these are:
1. Create unit tests
2. Run tests
3. Perform refactoring and calibration
4. Reconnect with stakeholders
5. Empirical and visual validation
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4.4.2 Create unit tests
Barceló [14] pinpoints the importance of unit tests to verify the simulation model.
Unit tests are used to test small, individual units of the model. The goal is to isolate
a part of the model and identify faults in earlier stages of the model development
cycle. Unit tests can also be used for regression testing during refactoring, ensuring
that previously working modules are still working correctly. Creating unit tests is a
stepping stone to verify smaller modules of a model and subsequently build larger
and more complex tests.

4.4.3 Run tests
During this step, all acceptance and unit tests are performed to test that the current
model has the expected behavior based on the requirements stated in the earlier step.
If any of the tests does not pass, one should revert to the develop-model step and
solve the problem that results in the test failing.

4.4.4 Perform refactoring and calibration
If the acceptance and unit test has passed, the code of the model can be refac-
tored to ensure that it is maintainable and understandable. Examples of this can
be breaking long functions into several smaller functions or removing duplicate code
blocks. Refactoring also involves modifying or improving other artifacts, such as
clarifying the assumptions document. Calibration of the model means that param-
eters are adjusted to generate behaviors that are closer to the expected behavior.
Additionally, refactoring may cover performance optimizations, as esmini can run
simulations faster than real-time and is therefore dependent on optimized code. If
any refactoring or calibration has been performed, the acceptance and unit tests
should be performed once again to ensure that the refactoring has not introduced
any unwanted behavior into the model.

4.4.5 Reconnect with stakeholders
Reconnecting with the stakeholders iteratively during model development is essential
to make sure the right model is being created. This includes analyzing if the current
result satisfies the stakeholders, thus checking the validity, but also reiterating the
stated requirements and potentially add new requirements or modify existing ones.
Thus, stakeholders are continuously involved in the development process, which
leads to a higher likelihood of eliciting requirements that represent the desired model
functionality.

4.4.6 Empirical and visual validation
Validation should be performed on the model as the last step, including methods
such as statistical comparison, empirical analysis, or visual inspection can be used
to determine the model’s accuracy. This should be used to the maximum extent
possible. However, the use of statistical and empirical methods can be difficult to
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use on certain models in esmini, as esmini is a deterministic simulator. If the model
reaches the acceptance criteria, it can be seen as validated. If not, revert to the as-
sumption document to find why the model behaves unexpectedly and use the found
information to improve the model in the next iteration.
Data extraction: To validate the model, data needs to be extracted so that it
can be compared to the expected behavior or real life/system data. This can be
performed in different ways throughout the validation process, either manually or
with automated tools if possible. For an example of how to acquire the needed data,
see Section 5.4.3.
Empirical: Calculated data extracted from the model should be compared to the
expected behavior or real system data to determine how accurate the model is, thus
validating the behavior of it.
Visual: Data from the model can be validated through visual comparison between
the model’s data and the expected behavior. An example of such validation tech-
niques are Turing test or animation [15], where the expert visually inspects the
model’s behavior and deem it reasonable or not.
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This section provides an illustrative example of how the framework can be used on
an actual model.

The case the developed model, LIRM, aims to solve is the implementation of lane
independent routing in esmini, since as of now esmini can not find routes to a target
that does not exist in a road connected to the lane of the starting position. The lane
independent routing model should be able to find the route to target in all lanes. To
solve this, the model must also simulate lane changes so that the modeled vehicle
can change lane if necessary. A more detailed description of the case can be found
in Appendix A.

5.1 Assumptions document
The LIRM that is specified here aims to solve the problems and objectives stated
in the case description from Volvo Cars A. In short, LIRM aims to achieve the
independent lane routing functionality that allows navigation to target waypoints
where lane changes are required. A waypoint is defined as a position in the road
network, which specifies the road ID, lane ID and the offset road length from the
starting point of the road (s-pos). The validation of the model helps to ensure that
the model functionality is as close to the desired functionality as possible.

5.1.1 Model functionality
• Cars defined can find their way through a road network without having to be

placed in the correct lane.
• A route following controller has to be created, implementing the routing and

modeling of lane changes.
• The model should handle lane changing with some degree of realism, for ex-

ample, maybe not change lane 2 meters before an exit on a highway.
• The routing should support three different routing strategies as defined in

OpenSCENARIO, shortest, fastest and least number of intersections.

5.1.2 Model flowchart
To help with the development of the LIRM, a simplified flowchart over the LIRM’s
expected parts were created. The flowchart can be seen in Figure 5.1. The impor-
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Figure 5.1: A simplified flowchart of the model for the case.

tant modules in the LIRM are pathfinding and waypoint follower. The flowchart
also display how lane changes are performed, and how missed waypoints should be
handled.

5.1.3 Model subsystems
The case needs the LIRM to be divided into two subsystems, one for the pathfind-
ing and one for the waypoint following that is responsible for lane changes. The
pathfinding result is used to create a list of waypoints that the waypoint follower
can use.

5.1.4 Simplifying assumptions
• Road networks are not infinite / have some sort of limit on the size
• Only checks first and last lane section, as a road can not continue on after

a junction by the OpenDRIVE standard, as virtual junctions are not imple-
mented

– The assumption is that connections of roads can only happen at the start
or end of a road. For example, in a three-way intersection, no road can
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continue through, all roads connected to the “junction/intersection” are
different

• All lanes are always seen as switchable
– On a specific road, we assume that we can always change lane to another

lane in the same direction as we are driving (assuming that it is drivable)
• For fastest routing strategy

– Currently, the average speed of the entire road is used to calculate the
travel time (seconds) that is used as weight for Dijkstra’s algorithm

– If the road does not have a specified speed limit, the road type will be
checked

∗ If road type is motorway → speed limit = 90 km/h
∗ If road type is rural → speed limit = 70 km/h
∗ If road type is town → speed limit = 50 km/h
∗ If road type is low speed → speed limit = 30 km/h
∗ Else we assume that the road type is rural → 70 km/h

• Lane changes should have a degree of realism
– a lane change should be performed within approximately 5 seconds
– no lane change should be performed if another car exists in the target

lane (avoid collisions) within 10 meters.

5.1.5 Model limitations
• The model, LIRM, is developed after the rules and limitations stated in Open-

DRIVE v1.7.0. and OpenSCENARIO v1.1.1.
• For fastest routing strategy

– All lanes in a specific road have the same speed limit (as lane dependent
speed limits are not implemented yet in esmini)

• The target lane must be defined as drivable for the algorithm to find it (there
are different kinds of lanes in OpenDRIVE, e.g., borders, sidewalks, driving,
biking, etc.)

– This applies to all lanes that are in the path
• Lanes can’t connect with lanes with different heading (no U-turn)
• Driving in the opposite direction of the road is not allowed

5.1.6 Model input data summary
The input for LIRM contains the following data, see Figure 2.1 for visualization.

• Start position → (s-pos, offset, lane ID, road ID)
• Target position → (s-pos, offset, lane ID, road ID)

– road ID → ID for the specific road that the position is placed on
– s-pos → longitudinal position, the length (in meters) along the specific

road.
– lane ID → ID for the specific lane that the position is placed in (if omitted,

reference line is used (0))
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– offset → offset relative to current lane ID
• Routing strategy → Shortest | Fastest | Least number of intersections
• Road network → OpenDRIVE road network (.xodr file)

– Translated to esmini data structures (road, junction, lane, lane section)
• Scenario file → OpenSCENARIO

– Contains waypoints, vehicle start pos, vehicles, etc.

5.1.7 Important sources for information

• OpenDRIVE [27]
– Provides information related to road networks. This includes lanes, roads,

junctions, speeds, road marks etc.
• OpenSCENARIO [28]

– Provides information related to scenarios that are performed in a road
network. This includes storyboards, maneuvers, events, actions, triggers,
entities etc.

• Case definition from Volvo, seen in Appendix A
– Any information related to the case, assumptions or miscellaneous infor-

mation about esmini.

5.1.8 Acceptance criteria

The acceptance criteria of LIRM are:
• All acceptance tests should pass.
• The model should find the shortest, fastest and minimum number of intersec-

tion routes through a road network and not differ greatly from the optimal
routes.

• The model should perform lane changes that can be deemed realistic.

5.1.9 Assumption validation

The assumptions document was sent to the thesis supervisor at Volvo Cars, and
a confirmation that the assumptions document was acceptable and correct was ac-
quired after a walkthrough.

5.2 Requirements, CQAS and Acceptance Tests

In this section, the requirements, CQAS and acceptance tests for the model, LIRM,
are stated.
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5.2.1 Requirements

Shown in Table 5.1 is a selection of the requirements that were created for LIRM,
the entire list of requirements can be found in Appendix B.

Requirement As a <role>, I want <functionality>because <reason>.

1

As a developer, I want the algorithm to calculate a path within
a reasonable amount of time for the given size of OpenDRIVE
road network, as it should not slow down the rest of
the simulation.

2

As a developer, I want the algorithm to find the
expected/optimal path for a given route strategy (the strategy
that the pathfinder should use), since it should be close
to an ideal pathfinder.

3
As a developer, I want the modeled vehicle to be able to reach
the target waypoint, in order to follow the path created by
the lane independent pathfinder.

Table 5.1: A selection of requirement for the developed model.

5.2.2 Concrete quality attribute scenario

The concrete quality attribute scenarios for the requirements found in Table 5.1 can
be found in Table 5.2, Table 5.3 and Table 5.4

Stimulus A valid target position
Source of stimulus User or read from the OpenSCENARIO file
Response A path, (sequence of roads to traverse)
Response measure How long it takes to find / calculate the path
Artifact The lane independent path finding algorithm
Environment Runtime, after a new target as been received

Table 5.2: CQAS for requirement 1

Stimulus A valid target
Source of stimulus User or read from the OpenSCENARIO file
Response The expected/optimal path, (sequence of roads)
Response measure The found path
Artifact The lane independent path finding algorithm
Environment Runtime, after a new target as been received

Table 5.3: CQAS for requirement 2
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Stimulus A list of waypoints
Source of stimulus After path has been found, waypoints has been created
Response The modeled vehicle drives to target.
Response measure If the modeled vehicle has reached target
Artifact Lane change controller
Environment Runtime, after waypoints has been created

Table 5.4: CQAS for requirement 3

5.2.3 Acceptance tests

In this section, the acceptance tests for the requirements in Table 5.1 can be seen.

Acceptance test for requirement 1.
Uses the medium road network, multi_intersections.xodr, seen in Figure 5.2. Cal-
culates the time to find a path through the network and checks if it is less than 5
ms. The pseudocode for the test can be seen in Code 1.

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 1
Driving direction: opposite of road

startTime = save current time
path = result from pathfinder function
endTime = save current time

Verify that the returned path list is not empty
Verify that the last node in path has road id 209
calcTime = endTime - startTime
Verify that calcTime is less than < 5ms

Code 1: Acceptance test for requirement 1 in pseudocode.

Acceptance test for requirement 2.
The expected path can be acquired by manually tracing and finding the opti-
mal/expected path through the OpenDRIVE (.xodr) road network, multi_intersections.xodr,
seen in Figure 5.2. The pseudocode for the acceptance test can be found in Code 2.
This test should be repeated for each route strategy, SHORTEST, FASTEST and
LEAST INTERSECTIONS.
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Figure 5.2: An overview of the road network used for the acceptance tests 1&2.

1. Trace the OpenDRIVE road network and calculate the
expected route based on each route strategy from a start
position to a target position for 5 routes. This step
could be automated in the future, but was performed manually
in this case due to time constraints.

2. Enable path logger in the simulation model.
3. Run the simulation model, with the start and target positions

of the 5 routes.
Collect the calculated route for each route from the model.

4. Use the expected route and the collected calculate route
Visually inspect the routes and compare them to determine
if the calculated path takes the same route as the expected.

Code 2: Acceptance test for requirement 2 in pseudocode.

Acceptance test for requirement 3.
Create a scenario file with the start and target positions, with a vehicle that has the
controller activated. Use the small OpenDRIVE road network seen in Figure 5.3.
The pseudocode for the acceptance test can be found in Code 3.
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Figure 5.3: An overview of the road network used for the acceptance test 3.

Start position: s=10, t=0, road id = 0, lane id = -1
Target position: s=20, t=0, road id = 2, lane id = -1
Driving direction: in road
Run the simulation
Acquire the last position of the vehicle
Verify that last position is the same as target

Code 3: Acceptance test for requirement 3 in pseudocode.

5.3 Model development
In this step, LIRM is developed, and the functionality described by the previously
elicited requirements is implemented. The LIRM is seen in Figure 5.1. Unit tests are
added to test smaller individual parts of the model. Additionally, both the unit tests
and acceptance tests should be automated in order to enable efficient and iterative
confirmation on whether tests are passed. This step is part of the ATDD process
of implementing functionality that passes the acceptance tests defined in step 2 in
Figure 4.1. For the technical explanation of the developed model, see Section 3.4.

5.4 Iterations
The development of LIRM followed the framework’s process of iterations. However,
as the number of iterations performed during the actual development are more than
would be feasible to include in the example of use, the choice fell on displaying
the first, second and the final iteration. This as these would display the important
functions of the iterative process and how the final empirical and visual validation
could be performed. By just showing these three iterations, the example should be
easier to follow than several iterations with no meaningful information. As many of
the iterations performed during the development would end when running the tests
and seeing that one or more tests failed.
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5.4.1 First Iteration
For the first iteration, the development of LIRM began. At this stage, the model
had three acceptance tests, shown in Table 5.1. The first iteration of the develop-
ment focused primarily on implementing the lane independent pathfinder, as the
lane change controller needed the lane independent pathfinder to work before it
could be developed.

Three unit tests were created to test the average speed calculations on a road. The
tests were used to make sure the calculated average speed was correct for various
roads: roads without a defined speed, roads with a defined speed and roads with
more than one road type.

After the first version of LIRM was developed, the test was run to see if the model
worked as intended, the results can be seen in Table 5.5. The acceptance test for
requirement 3, was not tested as the development of the lane change controller had
not yet begun.

Req. Test type Test name Result
1 Acceptance FindPathTimeMedium Passed
1 Acceptance FindPathTimeLarge Passed
2 Acceptance FindPathShortest Passed
2 Acceptance FindPathFastest Failed
2 Acceptance FindPathMinIntersections Passed
- Unit CalcAverageSpeedForRoadsWithoutSpeed Passed
- Unit CalcAverageSpeedForRoadsWithDefinedSpeed Passed
- Unit CalcAverageSpeedForTwoRoadTypes Passed

Table 5.5: The test results from running the acceptance and unit tests during
the first iteration.

As seen in Table 5.5, the acceptance test FindPathMinFastest failed. The reason
for the failure was that no path was found from start to target, due to the last road
not being visited by the pathfinder. In this case, the framework directed the process
back to the development of the model in order to improve the model and make sure
all tests passed before moving on to the refactoring step.

5.4.2 Second Iteration
The second iteration focused on solving the problem that caused the test FindPath-
MinFastest to fail. Due to this, no new unit test or functionality was added during
this iteration. The solution to make test pass was to not stop the pathfinding on
the last connecting road to target, but also add it to the visited list so that it is
included when backtracking the fastest path.
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Req. Test type Test name Result
1 Acceptance FindPathTimeMedium Passed
1 Acceptance FindPathTimeLarge Passed
2 Acceptance FindPathShortest Passed
2 Acceptance FindPathFastest Passed
2 Acceptance FindPathMinIntersections Passed
- Unit CalcAverageSpeedForRoadsWithoutSpeed Passed
- Unit CalcAverageSpeedForRoadsWithDefinedSpeed Passed
- Unit CalcAverageSpeedForTwoRoadTypes Passed

Table 5.6: The test results from running the acceptance and unit tests during
the second iteration.

The failing test in the previous iteration, FindPathMinFastest, is now fixed and pass
in this iteration, as seen in Table 5.6.

After the test passed, the code was studied to see if there were any need for refactor-
ing to ensure that the code was understandable and maintainable. In this iteration,
a code block testing if the start and target position was valid was found duplicated
on two locations. To remove the duplicate code and increase maintainability, the
code block was extracted to a function.

After the refactoring was performed, the tests were run again to ensure that the
refactoring did not break any functionality. Since all tests passed, the next step
was to reconnect with the stakeholders and see if the current version fulfilled their
expectations. During the reconnection with stakeholders, a few new requirements
were stated, both for the lane independent pathfinder and the lane change controller.
These requirements were adapted to CQAS and then in the acceptance tests.

5.4.3 Final Iteration
At the final iteration, the LIRM’s three requirements had been extended with an
additional eight, resulting in a total of twelve requirements, seen in Table 5.7. The
requirements and their corresponding CQAS and acceptance tests can also be found
in Appendix B.
The final iteration contained 32 total tests, compared to the first and second itera-
tion, which had 7 tests. As this was the final iteration, no refactoring was performed,
nor were any requirements added to the LIRM’s behavior.

In addition to the increased number of total tests, empirical and visual validation
were added to some acceptance tests to support their validity. This was especially
important for lane changes, as empirical data was used to compare the observed lane
change data to expected behavior in order to achieve the required degree of realism.
Likewise, comparing the behavior through visual validation was done to ensure a
behavior that was visually adequate to what was expected.

50



5. Framework Application Example

Req. As a <role>, I want <functionality>because <reason>.

1
As a developer, I want the algorithm to calculate a path within a
reasonable amount of time for the given size of OpenDRIVE
road network, as it should not slow down the rest of the simulation.

2
As a developer, I want the algorithm to find the expected/optimal
path for a given route strategy, since it should be close to an
ideal pathfinder.

3
As a developer, I want the modeled vehicle to be able to reach the
target waypoint, in order to follow the path created by the
lane independent pathfinder.

4
As a developer, I want the algorithm to be able to find a path
(sequence of roads to traverse) between the vehicle position
to a valid target, so that the simulated vehicle can reach the target.

5
As a stakeholder, I want the algorithm to find the path based on
the routing strategy “shortest”, as it is defined in the
OpenSCENARIO specification.

6
As a stakeholder, I want the algorithm to find the path based on
the routing strategy “fastest”, as it is defined in the
OpenSCENARIO specification.

7
As a stakeholder, I want the algorithm to find the path based on
the routing strategy “the least number of intersections”,
as it is defined in the OpenSCENARIO specification.

8
As a developer, I don’t want esmini to crash if the algorithm can’t
find a valid path, as I want to be informed of this instead
and keep esmini running.

9 As a developer, I want the functionality to translate paths to
waypoints, so that the model can follow them.

10
As a developer, I want the modeled vehicle to be able to change
lane, in order to follow the path created by the
lane independent pathfinder.

11 As a tester, I don’t want the lane change to happen if it results
in a collision, as it would be “unrealistic”.

12 As a tester, I want the lane change to have a degree of realism,
since the model could be used for vehicle testing.

Table 5.7: All requirements for the developed model in the final iteration.
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Requirement 2

Requirement 2 states that pathfinder should find the expected/optimal path be-
tween two positions, so far this has only been tested as a part of the automated
tests, this however is not enough to validate the pathfinder. To increase the vali-
dation and make sure that the pathfinder behaves as wanted, visual and empirical
validation was performed. The OpenDRIVE road network used for this validation
can be found on Github.1 The road network that was used for this test is not quite
realistic, however it was chosen as it was determined to be the most suitable network
for testing all routes strategies on, due to it having several junctions and roads with
different speeds and lengths.

Visual validation: The visual validation for the pathfinder is performed by first
manually trace the expected path between two positions and then run the pathfinder
to see if it takes the expected path. This was performed for five paths for each of
the route strategies that the pathfinder supports.

Expected data: The expected data was traced on the OpenDRIVE road network,
after what would be the expected path after following the behavior of an “average
law-abiding” driver with respect to the limitations of the model, for example no
use of U-turns or other stated driving behaviors. The OpenDRIVE road networks
were opened in a 3D-viewer called OpenDRIVE Viewer2, which allows the user to
see and interact with the road network, which was necessary for extracting the ex-
pected path. The expected paths were then drawn on a map of the road network,
as this would be used to validate if the calculated path from the pathfinder was the
same as the expected.

Calculated data: The calculated data was extracted from LIRM by implementing
a test which logs all waypoints (road-ID, lane-ID, S-position) that are created by
the pathfinder for a given path. This data was written to a .csv file so that it would
be able to used to then visualize the calculated path similarly as the expected path.
The waypoints were then manually marked on a map of the road network and the
path was traced between them.

Validation: To perform the validation, five routes were created by randomly se-
lecting a start and a target position on the map, these can be seen in Table 5.8.

Criteria: The criteria of requirement 2 is that the calculated path should be the
same as the expected path. This could be further broken down to that the calculated
path should take the same roads as the expected path to reach the target. However,
as the calculated path is calculated on a road network with no other vehicles than
the simulated one, and as it implements the default driver model in esmini, it can
not be expected to take the same decisions regarding when and where lane changes
are performed, as the average driver would.

1https://github.com/esmini/esmini/blob/follow_routes/EnvironmentSimulator/Unittest
/xodr/multi_intersections_changed_speeds.xodr

2https://odrviewer.io
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Route Start Target
1 (266, 1, 29) (275, 1, 55)
2 (202, 2, 33) (196, 1, 49)
3 (197, -1, 52) (267, 1, 32)
4 (227, 1, 55) (242, -1, 50)
5 (242, 1, 50) (197, -1, 51)

Table 5.8: Start and target positions of the routes used in validation, written in
the format (road-ID, lane-ID, S-position).

(a) Calculated path (b) Expected path

Figure 5.4: Calculated and expected path for route 2, using route strategy:
shortest.

Route strategy, Shortest: The visual validation for the route strategy, short-
est for route 2, can be seen in Figure 5.4. As can be seen in the figure, there are
not many clear differentials between the calculated and expected path, this is due
to that the road network is mostly made up of one lane roads. However, in the
middle section a small difference can be seen between the calculated and expected
path, this as the expected path that follows an average driver would change lane
before the end of the lane to reduce the chance of accidents or the need of stopping.
But as stated in the criteria in the previous paragraph, the requirement does to not
require the calculated path to be exactly the same as the expected, so the model
fulfills it for this route. All other routes were also tested and visually inspected. The
model fulfilled the criteria for each route, which validates that the model behaves
as expected for the route strategy shortest.

Route strategy, Fastest: The visual validation for the route strategy, fastest for
route 3, can be seen in Figure 5.5. As show in the figure, the calculated path and
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(a) Calculated path (b) Expected path

Figure 5.5: Calculated and expected path for route 3, using route strategy:
fastest.

the expected path are practically the same. The single lane layout of the expected
path leaves no room for any deviations regarding lane changes. In order to follow
the fastest path, the calculated path has to be virtually identical to the expected
path in this case. The model fulfilled the criteria on the other four routes as well,
which validates that the model behaves as expected for the route strategy fastest.

Route strategy, Least intersections: The visual validation for the route strategy,
least intersections for route 4, can be seen in Figure 5.6. The expected path on for
this route is different from the other paths, as there are two valid paths to the target.
These are displayed with the red and orange lines. The expected path is more likely
the orange path, as an average driver would in most cases take the fastest path if two
were presented. However, as the model can not use more than one route strategy at
once, the calculated path can be either of these while still fulfilling the requirement.
As seen, the calculated paths follow the red expected path. As it can be seen there
are not any significant deviations between the expected and calculated path, this is
due to what have been mentioned previously for the route strategy shortest. The
model fulfilled the criteria on the other four routes as well, which validates that the
model behaves as expected for the route strategy least intersections.
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(a) Calculated path (b) Expected path

Figure 5.6: Calculated and expected path for route 4, using route strategy: least
intersections.

Requirement 12

Requirement 12 states that a lane change should have a degree of realism, as LIRM
could be used for testing vehicle software in the future, therefore it is important
that the performed lane changes behaves realistic, so that tested software is tested
correctly. This could not be performed with the automated tests, as it needed better
validation than what could be performed with the tests. So to validate this require-
ment, the choice fell on empirical validation.

Empirical validation: To validate requirement 12 for the model, expected and
calculated data can be compared against each other to see if the calculated data is
within the range of what the requirement specifies to be validated. The expected
data was collected through observations, in other words through empirical research
on lane changes. This comparison can be performed in several ways, this example
will compare the data by displaying it in graphs.

Expected data: The expected data regarding lane changes was obtained from
Volvo Cars, containing information about a vehicle’s longitudinal and latitudinal
changes and the velocity of the vehicle over time. This data was then used to ex-
tract an average time for the duration of a lane change. For the provided data seen
in the Figure 5.7, the average lane change time was approximately 5 seconds at
any given speed, the majority of the recorded lane changes followed the form of a
sinusoidal curve and the average distance traveled during a lane change was between
100 and 150 meters.

Calculated data: The calculated data for two lane changes was gathered by run-
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Figure 5.7: Graphs of lateral and longitudinal positions from expected data
regarding a lane change. The upper graph displays relative lateral position (m)
over time (s). The bottom graph displays relative longitudinal position (m) over

time (s).
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Figure 5.8: Graphs of lateral and longitudinal positions from calculated data in
esmini. The upper graph displays relative lateral position (m) over time (s). The

bottom graph displays relative longitudinal position (m) over time (s).

ning LIRM and recording the lateral change in position of the vehicle and the lon-
gitudinal change of the vehicle during a lane change. The lateral value is relative to
the reference line of the road, increasing to the right and decreasing to the left. The
collected data can be seen in Figure 5.8. From the calculated data, it can be seen
that a lane change takes approximately 5 seconds to complete, as seen in the upper
graph of Figure 5.8. The solid line represents a lane change in the right direction,
while the dotted line represents a lane change in the left direction. In the same
graph, it can also be seen that the lateral movement during a lane change follows a
sinusoidal curve. In the lower graph, it can be seen that the longitudinal movement
of the vehicle performing the lane change is approximately 125 meters. As this is
a simulation model that does not have any variation applied, the calculated data
will always be the same if no parameters were changed. This is what is causing the
lower graph to only display one line, as both lines are identical to each other.

Evaluation: By comparing the data of the real lane changes, (the expected data)
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with LIRM’s performed lane changes (calculated data) it is clearly seen in the graphs
that the model correspond quite accurately to how a real lane change is performed.
Since the overall shape of the modeled lane change follows a similar sinusoidal curve
and takes approximately 5 seconds to complete. This verifies and validates that
the model fulfill requirement 12, which states that the modeled lane changes should
have a degree of realism.
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6
Results

In this chapter, the results collected during the thesis will be presented, in order to
answer the research questions that were stated in Section 1.3. The first section will
describe the steps needed to create a framework for V&V, while the second section
will present the result from the evaluation of the framework.

6.1 Developing a framework
In order to develop a framework for V&V in regard to simulation models, a set of
procedures and methods were used. The first step was to choose an appropriate
research method for the task at hand. In the case of this thesis, the method it fell
upon was Design Science Research Process, as seen in Section 3.1. It was found
appropriate as it involves an agile/iterative development process, which allowed for
constant improvements of the framework. After the research methodology was cho-
sen, the next stage was to begin to gather and build knowledge about the systems
that the framework should be applied upon, as well as gaining knowledge of current
methodologies. This is also why DSRP was found to be useful for the development
of the framework, as the first two steps of DSRP are to identify the problem and
define a solution. The next step is to use the gained knowledge about the system
and existing methodologies to design and develop the framework. This step was
performed iteratively with constant deployment on a specific case to gain feedback
on what could be improved, this iterative process can also be found in DSRP.

The developed framework and the processes used within it can be found in Chap-
ter 4. The desk research, which contains descriptions of existing frameworks and
methodologies, is seen in Chapter 2.

6.2 Evaluation of framework
In this section, three different methods will be used to determine how effective and
useful the framework.

6.2.1 Feedback
Feedback regarding the framework was collected by interviewing esmini developers
at Volvo Cars. Four questions were asked, these were:
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1. How did you perceive the structure of the framework, were all steps easily
understandable and if not, what steps were more difficult to understand?

2. Did the application example of the framework provide useful insight on how
the framework can be applied to models in esmini?

3. From your experience, how useful do you think the framework would be in
practice?

4. Is there any step of the framework process that you would consider changing
or add to the framework?

The interviewees perceived the framework structure to generally be easy to under-
stand. For instance, the various flowcharts were much appreciated. There were some
questions on how useful empirical validation is in esmini, since esmini is a pure and
deterministic simulated environment, which could increase the difficulty of applying
empirical validation. However, they all agreed that for some models, the empirical
validation can be valuable. By some models, they refer to models that implement
certain realistic features that needs to be validated against real data. One example
of such a model is the lane change validation seen in Section 5.4.3, where real lane
change data was analyzed in order to validate the lane changes performed by the
model.

The application example of the framework proved to be a very appreciated visu-
alization of how the framework can be applied. The example provided the necessary
amount of information to be easily understandable by different roles, since it showed
how the overall development should be performed and how requirements could be
added throughout the process.

The interviewees agreed that the framework would be useful as a starting point
and guideline for how the development of larger models in esmini should be per-
formed to ensure that the models are verified and validated. On the other hand,
for smaller models or functions in esmini, they felt that the framework might be
too time-consuming or excessive to use. A benefit that was mentioned was that the
use of a framework such as this one would force the developers to actually validate
the models and document assumptions. The integration of the framework would be
quite seamless as several steps of the framework are used similarly to the current
development process, for example unit testing and some degree of requirement usage.

None of the interviewees had any changes that they wanted to incorporate into
the framework, neither were there any suggested additions to the framework.

6.2.2 Simulated experiment
The framework was quantitatively evaluated through simulated experiments in the
form of fault injections and removal of parts of the framework. The experiments
were performed to ensure that the framework detects any introduced faults into
the model and that some parts of the framework are essential to retain a complete
V&V process. The following examples show how the framework handles models that
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should not pass the validation process.

Fault injection

To evaluate the framework, three faults were injected into the code of the model,
LIRM. The injected faults can be seen in Table 6.1. These faults were chosen
due to them affecting one or more requirements. After the faults were injected, the
framework process was performed on the model, to see if it would detect the injected
faults.

Fault Description

1 Incorrect road weight calculation (random value between 10-100
added to weight when calculating with route strategy shortest)

2 Wrong nodes to positions translation
(the lane ID was acquired from the incorrect node)

3 Inaccurate lane change behavior (duration and shape incorrect)

Table 6.1: A description of the injected faults.

Automated tests
Fault 1 was detected by the automated tests, the acceptance test “FindPathShort-
est” failed, as well as the unit test “CalcWeightShortest”. The tests indicate that
something is incorrect for the weight calculation for the route strategy shortest, alert-
ing what functions are misbehaving. Fault 2 was detected by the automated tests,
where nine tests failed after the fault was injected, strongly indicating that some-
thing is not behaving as expected. From the tests that failed, “FollowRouteMedium”
and “CreateWaypointsMedium” being two of them, it was quite clear that the prob-
lem which caused the tests to fail existed in the waypoint creator function. However,
Fault 3 was not detected by the automated tests.

Empirical and visual validation
Fault 3 was detected during the last step of the framework, during the verification of
requirement 12, lane changes should a degree of realism. When the calculated data
was collected from LIRM, it was clearly seen that the calculated data, Figure 6.1,
did not correspond accurately to the expected data, seen in Figure 5.7. It was shown
that the LIRM’s lane changes did not have the degree of realism needed, as it did not
have the proper shape nor a duration that was close to the expected data. Thereby,
showing that something was incorrect regarding how the lane changes were modeled
in the model.

Removing parts of framework

To evaluate if different parts of the framework are useful, they will be removed and
then the process of the framework will be simulated after the example of use seen in
Chapter 5. This means that the entire framework process will not be reapplied on
the case, but rather visualized with a missing step, and the impact of the framework
will be presented. The parts of the framework that will be removed after each other
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Figure 6.1: Graphs of lateral and longitudinal positions from calculated data in
esmini after the injected fault. The upper graph displays relative lateral position
(m) over time (s). The bottom graph displays relative longitudinal position (m)

over time (s).
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are, the assumption document, the automated tests, reconnection with stakeholder,
and the empirical/visual validation.

Removing the assumptions document in the example of use, in Section 5.1, would
impact the creation of requirements, development of the model and the acceptance
tests. Without an assumptions document, there is no foundation to build the re-
quirements upon, since there is no described functionality and the model limitations
are unknown. Subsequently, the lack of adequate requirements will translate into a
model that is hard to verify and validate, as there are no well-defined definitions to
base the model upon. Similarly, it will be difficult to create acceptance tests for the
model behavior, as the expected behavior is not defined. In the example of use, the
assumptions document specify the limitations and assumptions for the model. An
example is the simplifying assumption that all lanes are always seen as switchable
if they are drivable. Without this assumption, it will be difficult to validate when a
lane change should be performed.

If the automated tests would be removed, it would require a lot more manual work as
both the acceptance test and unit tests would not be executed in that case. Instead,
a tester would have to manually perform the same steps for all tests by running the
model with different start parameters. Additionally, it would be difficult for a tester
to ensure that the tests are run exactly the same each time and within a reasonable
amount of time. As seen in the injected fault experiment, most of the faults were
detected by the automated tests. If these would not be a part of the framework,
the faults might not have been detected and could ultimately result in a model that
does not pass validation.

Removing the reconnection with stakeholders from the framework would impact
the V&V process negatively. As it can be seen in the example of application, in
Chapter 5, the development of the model started with three requirements which
over the iterations were extended to a total of twelve requirements. Without the
reconnection with stakeholders, these additional nine requirements would not be
elicited. This would have resulted in that the developed model did not fulfill the
expected behavior of stakeholders’ desire.

The empirical and visual validation, that can be performed as the last step in the
framework, is useful for validating requirements that can not be validated by auto-
mated acceptance tests. If this part of the framework was removed, it would result
in requirements that can not be validated. An example of this can be seen in the
example of use, where the empirical and visual validation is used to validate that
requirement 2 and 12 is fulfilled. If removed, these two requirements could not have
been validated, resulting in that the developed model could have undesired behavior.

6.2.3 Usefulness and effectiveness
Based upon the evaluation of the framework, it can be seen that the current version
of the framework provides usefulness when developing a simulation model in esmini.
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By removing parts of the framework, it is seen that they are all essential to the V&V
process of esmini, since excluding any of the parts in the framework would result in
a less validated model as it would be hard to know if the stated requirements are
fulfilled.

The framework proved effective in finding faults in LIRM, due to the many lev-
els of tests as well as visual and empirical validation at the end of each iteration.
The effectiveness of the framework on other models is difficult to estimate, as the
framework was only applied to a single model developed by the authors.
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This chapter contains the discussion, which will present subjects such as the frame-
work, the application of the framework, future research, threats to the report’s
validity, and ethics.

7.1 The developed model, LIRM
The lane independent routing model, LIRM, was developed to solve the case from
Volvo Cars and the framework was applied to it. LIRM has solved the issue with
lane dependent routing that esmini had, by implementing a new controller that
extends the behavior of the pathfinding and route following to incorporate lane
changes. We felt that the framework provided useful insights and help during the
development of LIRM, as it forced us to actually implement requirements and tests,
and consider assumptions and limitations before the development began, which is
something that is not always performed otherwise. The implementation of LIRM in
esmini was performed on a separate Git branch, but will be merged into the main
master branch.

7.2 The framework
For the evaluation of the framework, we chose three faults for to inject, seen in
Table 6.1. The faults were chosen in such a way that each fault targeted a different
requirement and a different step of the framework, in order to show how various
parts of the framework can detect a fault in the model. Evidently, there are many
other faults that could have been injected to inspect the fault detection of the frame-
work. However, more faults would have taken more time to inject and detect, which
ultimately led to the choice of having only three faults as this seemed reasonable
to show that the framework detected different kind of faults. We considered the
use of mutation testing, as this would have increased number of injected faults and
validity of the fault testing. However, we chose not to include it because of time
limitations as the visual and empirical validation would have taken a considerable
amount of time to perform for each mutation. Though, mutation testing would have
been useful for the acceptance and unit tests since these would not require manual
work and would have created a comprehensive set of faults.

In feedback interviews with employees at Volvo Cars, the framework seems to have
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value in regard to improving the V&V process and consequently the overall devel-
opment process in esmini. The interviewees stated that our framework would be
useful as a starting point for V&V in esmini, and the reason for that might be that
they did not apply the framework to gain experience of using it and that they felt
unsure about how easily it could be incorporated into the workflow at Volvo Cars.
The feedback also included that the framework could be to cumbersome for smaller
models or tasks, since the process of stating assumptions and eliciting requirements
would be both time consuming and require a lot of manual work in comparison to the
size of the model developed. We were aware that this could be one of the drawbacks
of the framework, however, we felt that the framework is likely to be more beneficial
for the V&V process when focusing on more comprehensive and complex models.
For the evaluation of the framework, the practical usefulness and effectiveness of the
framework has not yet been fully determined and would require more research to
acknowledge.

A major concern with the chosen method was that a proper evaluation study was
not included. Consequently, this made it difficult to answer RQ2, evaluating the
usefulness and effectiveness, as the evaluation of the framework was primarily based
on our own experiences. As mentioned in the Chapter 3, this could have been miti-
gated with a judgment study conducted as a part of the thesis work. However, we
deemed that incorporating such a study likely to exceed a reasonable workload and
time frame for a single master thesis. Another approach could have been to focus
on applying only a smaller set of the framework to a model. Though, this approach
would not enfold the entire framework and its iterative process unless the span of
the thesis was only regarding a smaller aspect of the V&V process.

There were several techniques that we found, which were interesting and were pos-
sible candidates of techniques to include in the framework. One of these techniques
was a weight system described by Raunak and Olsen [17], which is summarized in
Section 2.2. This technique could have been helpful to further enhance the V&V
process in the framework, as it would have provided a way of calculating the vali-
dation coverage of the model. However, we thought that it might not be as useful
in our framework due to the lack of statistical validation, as the weight system was
mostly used for statistical validation techniques. Another set of techniques that
were not explicitly specified in the framework were integration and system tests.
The primary reason for not including these, was that they were not emphasized as
particularly important by any literature or related work. Neither did we consider
them important on their own, as our definition of acceptance tests included the
concept of system and integrating testing. They can certainly be incorporated as
standalone verification techniques outside the framework, but they were not consid-
ered essential for the general V&V process of models in esmini.

The reason for the lack of statistical validation in the framework was that it re-
quired large amounts of data in order to be accurate. Since this is something that
is not always available for all types of models in esmini, and as esmini is mostly
a deterministic simulator, there are not many, if any models that would benefit
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from the addition of specific statistical validation techniques. The type of statistical
technique to use is highly dependent on the type of data and what it should be
validated against, which made it difficult to recommend any specific techniques in
general. Our case and developed model did not have real data that could be used
statistically nor did the model have requirements that needed statistical validation,
therefore the use of statistical validation was not deemed necessary nor beneficial to
include in the framework.

The framework is not meant to provide exhaustive testing of the model it is ap-
plied on, as this could be considered unreachable. However, it is designed to allow
the stakeholders and developers to reach a decided degree of coverage for the V&V
process, as reaching a 100% coverage degree can be considered impossible. This
is one of the reasons for using CQAS to create acceptance tests, as CQAS allows
for creating scenarios that test important parts of the model to reach the desired
coverage degree.

A benefit that the framework can provide to the development of models is to help
with the modification or correction of already existing models, to either accommo-
date for new requirements or calibrate faulty models.

7.3 Uniqueness of framework
The developed framework differentiates itself from most other found frameworks,
presented in Section 2.2, as it concretely defines the process needed to ensure that
V&V is performed on the developed model by presenting a set of steps that need to
be performed during the entire development process of the framework. This differs
from the other frameworks or concepts that focuses more on stating many differ-
ent techniques that could be useful depending on the model, such as Roungas et
al.’s [12] table of suggested V&V methods. We did not find any other frameworks
that included more extensive ideas and concepts from software engineering, such
as ATDD and CQAS, to better enhance the V&V process of simulation models.
Another adaptation that makes the framework unique, is the complete lack of sta-
tistical validation techniques, as these validation techniques were the most common
in the other frameworks. This was, as stated earlier, not implemented as statistical
validation has little to no value for simulation models in esmini.

The motivation for including the assumptions document in the framework is that
esmini does not directly adapt reality but has the ASAM standards as a layer be-
tween reality and the simulation, which causes more assumptions and limitations
than a direct adaptation of reality which many other simulators are. We chose to
include ATDD, CQAS and user stories to improve the understandability of require-
ments and the connection between tests and requirements, as this connection can
otherwise be difficult to understand. This choice was not specific to esmini, but
rather to improve the framework in general by reducing the risk of miscommuni-
cation and misunderstanding between stakeholders and developers. The inclusion
of our definition of refactoring and calibration should not be seen as a standalone
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V&V technique, but rather included in the framework to make sure that models
are improved in non-functional aspects. The idea of reconnecting with stakehold-
ers came from ATDD and agile practices, and was further motivated by the fact
that many stakeholders for esmini work at Volvo Cars which makes it possible to
perform this step without losing too much time. The main benefit of reconnecting
with stakeholders is to make sure that the right model is being created, therefore
increasing both validity and credibility. The last step in the framework is to perform
visual and empirical validation. Visual validation was suitable for esmini as most
models can be performed by running and visually inspect the result, which is com-
monly easier than comparing data to validate the model. This is further motivated
by most esmini models being deterministic and results not changing between runs.
Empirical validation is necessary to help validate sub-components within models
that require data analysis to be determined as accurate, such as the lane change
modeling performed in the developed model, LIRM.

7.4 Threats to validity

Threats to internal validity: The framework could make faulty assessments due
to selection bias during the creation of the framework. This could possibly affect the
effectiveness of the framework and the simulation model it was applied on. Certain
V&V methods included in the framework might be there as a result of the bias of
the researchers, for example, opinions could interfere. Consequently, this can have
led to an inefficient method usage.

Another threat to internal validity could be that the same persons that developed
the framework are the ones that performed the experiment, where the framework is
applied to a model. The developers of the framework are also the ones that evaluate
it. This could have led to a biased usefulness result of the framework, as the people
performing the experiment will already have in-depth knowledge of the framework
compared to an outsider. This could have been mitigated by performing a study
where other developers used or evaluated the framework, however, as mentioned
before this was not feasible due to the time limit. Instead, we tried to mitigate
this form of bias by receiving feedback and evaluation from developers and users at
Volvo Cars.

Threats to external validity: There is a risk that the simulation environment
that the framework was applied on does not represent a general environment, which
could have led to the framework being non-generalizable. The framework was only
applied to a singular class of simulation models, which might also have an impact
on the generalizability and usefulness of other models. Applying the framework to
multiple model classes to mitigate this threat was deemed infeasible due to the time
limit of the thesis.
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7.5 Future research

The presented framework should not be interpreted as the last and final version
for validation and verification in regard to esmini, on the contrary there are several
subjects that could be further researched to improve the frameworks usability and
effectiveness. Automation is one of these subjects that the framework would benefit
greatly on, as most steps and task currently are time-consuming to do, as they are
almost entirely manual. If more research went into automation of tests and test gen-
eration for models in esmini, the usability of the framework would increase greatly.

In the framework’s current shape, all steps are performed manually, except for the
execution of tests. Section 2.8 describes a couple of testing techniques that assist
in automating other testing activities. Two mentioned testing approaches that pro-
mote automated test generation are MBT and PBT. Both of these could most likely
be incorporated into the framework in one way or another. Though, manual work
is still required for both of them in an earlier step. For PBT, the properties would
have to be manually devised. For MBT, the modeled UML diagram(s) of the system
need to be manually traced according to the stated requirements. Presumably, much
time is spent on developing test cases and either one of these techniques contribute
to less effort spent on test case design.

Another area of testing to explore for future work is proposed by Gambi et al.
[42], see Section 2.8. The proposed idea is to procedurally generate road networks
used to test virtual self-driving vehicles in challenging virtual environments. A sim-
ilar approach could be utilized for esmini and our framework, where various types
of road networks are generated to test vehicle behavior or controller functionality.
The automatic generation of road networks puts the focus on expected behavior
and requirements, in contrast to putting a great effort on the creation of valid road
networks.

Another subject that could benefit from more research is the generalizability of
the framework, since as of now it has only been deployed on esmini models, but we
see that the framework has potential to be applied in other simulators. As the main
ideas that the framework consists of are not specific for esmini, the assumptions doc-
ument and the requirements with CQAS and acceptance tests are general concepts
that should be directly applicable to other simulators. The iterative steps of re-
connecting with stakeholders and the visual and empirical validation could however
need to be adapted to be applicable to other simulators. This could be supported
with more studies on the current framework on other models and simulators than the
example provided in the thesis, as studies on other models could identify problems
with the presented framework and further increase the effectiveness of the frame-
work.

To improve the efficiency and usability of the framework, another idea for future
work could be to develop a workflow management program for the framework. The
program could help the user with the creation of assumption documents, require-
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ments and CQAS to reduce the time spent on manually writing the documents for
these part. Additionally, such a program could be beneficial in introducing new
users to the framework.

7.6 Ethics
Since esmini is a traffic simulator with the functionality to be extended to test soft-
ware for actual vehicles, such as safety functions or self-driving functionality, it is
important to keep the models that are developed for esmini realistic so that they
do correspond to reality at the wanted degree. One step to ensure this is through
validation and verification of the models, which this framework aims to provide a
foundation for. If the models are not validated, the tested software might behave
differently in the simulation to what it will in reality, which possibly could have a
real world impact as it could result in accidents. Therefore, from a safety critical
standpoint, the framework is important to help ensure that the models in esmini
are validated and verified for their use cases.

If concrete statistical validation techniques were to be implemented into the frame-
work, another ethical issue arises in the form of data management. For statistical
validation to be performed, large amounts of data is required and this creates its
own problems such as how the data is collected, who should have access to it, how
can data privacy be ensured, and many more. Therefore, this is an important issue
to contemplate when considering statistical validation, which is one of the reasons
why statistical validation was not prioritized in the framework.
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This chapter will contain the conclusion of the thesis. The conclusion will provide
the authors’ input on how successful and useful the framework is, as well as sum-
marizing the entire thesis.

The aim of this thesis was to create a V&V framework for esmini and evaluate
it based on usefulness and effectiveness. Before creating the framework, time was
spent on researching existing V&V methods for simulation models as well as general
V&V techniques used in software engineering. Subsequently, the developed frame-
work was created by combining found methodologies and ideas from the authors
into an iterative procedure that encapsulates the entire development process of a
model. The framework was applied during the development of a simulation model
to provide an example of application to ease the understanding of the framework.
The developed simulation model, LIRM, has solved the issues esmini had in regard
to pathfinding. The evaluation of the framework was performed by fault injections,
removal of parts of the framework and feedback from developers in esmini. Fur-
thermore, there are still aspects of the framework that could be improved, such as
automating the test creation process to allow for less time to be spent on manual
implementation of tests. From the results and feedback collected during the appli-
cation and evaluation of the framework, we conclude that the framework provide
helpful guidance to the V&V process and is an important stepping stone in the
research of improving V&V for simulation models in esmini. The framework has
also proven that it could be useful for other similar simulators, as our framework
provides guidance for including V&V into an iterative development and calibration
process. Additionally, we believe that the application example of the framework
supports the conclusion that the framework improves the V&V process. One of the
main contributions to research is the concreteness of the developed framework, in
comparison to existing frameworks, with a clear visualization and explicit steps to
apply. Another contribution to research is the addition of a complete V&V process
for esmini, as no such process currently exists, that is also possibly useful for other
simulators with minor modifications.

71



8. Conclusion

72



References

[1] IEEE, “IEEE Standard for System, Software, and Hardware Verification and
Validation,” in IEEE Std 1012-2016 (Revision of IEEE Std 1012-2012/ In-
corporates IEEE Std 1012-2016/Cor1-2017), 2017, pp. 1–260. doi: 10.1109/
IEEESTD.2017.8055462.

[2] MITRE, System engineering guide: Verification and validation of simulation
models, 2014. [Online]. Available: https://www.mitre.org/publications/
systems-engineering-guide/se-lifecycle-building-blocks/other-
se-lifecycle-building-blocks-articles/verification-and-validation-
of-simulation-models (visited on 2021-12-10).

[3] O. Karlsson and E. Fredin, “Development of a controller to switch between
relative and absolute path for target vehicles in simulation scenarios,” Depart-
ment of Automatic Control, Lund University, Sweden, 2021. [Online]. Avail-
able: https : / / lup . lub . lu . se / luur / download ? func = downloadFile &
recordOId=9061680&fileOId=9061681.

[4] C. Chau and Q. Liu, “Driver modelling for virtual safety assessment of au-
tomated vehicle functionality in cut-in scenarios,” Department of Mechanics
and Maritime Sciences, Chalmers University of Technology, Göteborg, Swe-
den, 2021. [Online]. Available: https://odr.chalmers.se/bitstream/20.
500.12380/304058/1/2021-55%5C%20Christoffer%5C%20Chau%5C%20%5C%
26%5C%20Qianyu%5C%20Liu.pdf.

[5] C. Beisbart and N. J. Saam, Computer Simulation Validation: Fundamental
Concepts, Methodological, and Philosophical Perspectives. Switzerland: Springer
Nature Switzerland AG, 2019.

[6] R. G. Sargent, “Verification and validation of simulation models,” in Pro-
ceedings of the 2011 Winter Simulation Conference, Baltimore, USA, 2010,
pp. 166–183. doi: 10.1109/WSC.2010.5679166.

[7] S. Riedmaier, B. Danquah, B. Schick, and F. Diermeyer, “Unified framework
and survey for model verification, validation and uncertainty quantification,”
Archives of Computational Methods in Engineering, vol. 28, pp. 2655–2688,
2021. doi: 10.1007/s11831-020-09473-7.

73

https://doi.org/10.1109/IEEESTD.2017.8055462
https://doi.org/10.1109/IEEESTD.2017.8055462
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-lifecycle-building-blocks-articles/verification-and-validation-of-simulation-models
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-lifecycle-building-blocks-articles/verification-and-validation-of-simulation-models
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-lifecycle-building-blocks-articles/verification-and-validation-of-simulation-models
https://www.mitre.org/publications/systems-engineering-guide/se-lifecycle-building-blocks/other-se-lifecycle-building-blocks-articles/verification-and-validation-of-simulation-models
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9061680&fileOId=9061681
https://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=9061680&fileOId=9061681
https://odr.chalmers.se/bitstream/20.500.12380/304058/1/2021-55%5C%20Christoffer%5C%20Chau%5C%20%5C%26%5C%20Qianyu%5C%20Liu.pdf
https://odr.chalmers.se/bitstream/20.500.12380/304058/1/2021-55%5C%20Christoffer%5C%20Chau%5C%20%5C%26%5C%20Qianyu%5C%20Liu.pdf
https://odr.chalmers.se/bitstream/20.500.12380/304058/1/2021-55%5C%20Christoffer%5C%20Chau%5C%20%5C%26%5C%20Qianyu%5C%20Liu.pdf
https://doi.org/10.1109/WSC.2010.5679166
https://doi.org/10.1007/s11831-020-09473-7


References

[8] Euro NCAP, Euro NCAP protocols, 2022. [Online]. Available: https://www.
euroncap.com/en/for-engineers/protocols/ (visited on 2022-05-13).

[9] ASAM, ASAM OpenSCENARIO, 2021. [Online]. Available: https://www.
asam.net/standards/detail/openscenario/ (visited on 2021-12-06).

[10] VTI, Driving Simulation, 2020. [Online]. Available: https://www.vti.se/
en/research/vehicle-technology-and-driving-simulation/driving-
simulation (visited on 2021-12-13).

[11] ISTQB, Certified Tester Foundation Level (CTFL) Syllabus, Version 2018
v3.1.1, 2021. [Online]. Available: https : / / istqb - main - web - prod . s3 .
amazonaws.com/media/documents/ISTQB- CTFL_Syllabus_2018_v3.1.
1.pdf (visited on 2022-05-05).

[12] B. Roungas, S. Meijer, and A. Verbraeck, “A framework for optimizing sim-
ulation model validation & verification,” International Journal on Advances
in Systems and Measurements, vol. 11, pp. 137–152, 2018. [Online]. Avail-
able: http://resolver.tudelft.nl/uuid:53a9fbfe-5d9a-40df-924d-
94ee49bd21ae.

[13] J. Barceló, “Models, traffic models, simulation, and traffic simulation,” in Fun-
damentals of Traffic Simulation, J. Barceló, Ed. New York, NY: Springer New
York, 2010, pp. 1–62, isbn: 978-1-4419-6142-6. doi: 10.1007/978-1-4419-
6142-6_1. [Online]. Available: https://doi.org/10.1007/978-1-4419-
6142-6_1.

[14] J. Barceló, “Models, traffic models, simulation, and traffic simulation,” in Fun-
damentals of Traffic Simulation, J. Barceló, Ed. New York, NY: Springer New
York, 2010, pp. 269–293, isbn: 978-1-4419-6142-6. doi: 10.1007/978- 1-
4419-6142-6_1. [Online]. Available: https://doi.org/10.1007/978-1-
4419-6142-6_1.

[15] A. M. Law, “How to Build Valid and Credible Simulation Models,” in 2019
Winter Simulation Conference (WSC), 2019, pp. 1402–1414. doi: 10.1109/
WSC40007.2019.9004789.

[16] N. David, N. Fachada, and A. C. Rosa, “Verifying and validating simulations,”
in Simulating Social Complexity: A Handbook, B. Edmonds and R. Meyer, Eds.
Cham: Springer International Publishing, 2017, pp. 173–204, isbn: 978-3-319-
66948-9. doi: 10.1007/978-3-319-66948-9_9. [Online]. Available: https:
//doi.org/10.1007/978-3-319-66948-9_9.

[17] M. Raunak and M. Olsen, “Quantifying validation of discrete event simula-
tion models,” in Proceedings of the Winter Simulation Conference 2014, 2014,
pp. 628–639. doi: 10.1109/WSC.2014.7019927.

74

https://www.euroncap.com/en/for-engineers/protocols/
https://www.euroncap.com/en/for-engineers/protocols/
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://www.vti.se/en/research/vehicle-technology-and-driving-simulation/driving-simulation
https://www.vti.se/en/research/vehicle-technology-and-driving-simulation/driving-simulation
https://www.vti.se/en/research/vehicle-technology-and-driving-simulation/driving-simulation
https://istqb-main-web-prod.s3.amazonaws.com/media/documents/ISTQB-CTFL_Syllabus_2018_v3.1.1.pdf
https://istqb-main-web-prod.s3.amazonaws.com/media/documents/ISTQB-CTFL_Syllabus_2018_v3.1.1.pdf
https://istqb-main-web-prod.s3.amazonaws.com/media/documents/ISTQB-CTFL_Syllabus_2018_v3.1.1.pdf
http://resolver.tudelft.nl/uuid:53a9fbfe-5d9a-40df-924d-94ee49bd21ae
http://resolver.tudelft.nl/uuid:53a9fbfe-5d9a-40df-924d-94ee49bd21ae
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1007/978-1-4419-6142-6_1
https://doi.org/10.1109/WSC40007.2019.9004789
https://doi.org/10.1109/WSC40007.2019.9004789
https://doi.org/10.1007/978-3-319-66948-9_9
https://doi.org/10.1007/978-3-319-66948-9_9
https://doi.org/10.1007/978-3-319-66948-9_9
https://doi.org/10.1109/WSC.2014.7019927


References

[18] Z. Wang and A. Lehmann, “A Framework for Verification and Validation of
Simulation Models and Applications,” in AsiaSim 2007, J.-W. Park, T. G.
Kim, and Y.-B. Kim, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 237–246, isbn: 978-3-540-77600-0.

[19] C. Yin and A. McKay, “Introduction to modeling and simulation techniques,”
in Proceedings of ISCIIA 2018 and ITCA 2018. The 8th International Sympo-
sium on Computational Intelligence and Industrial Applications and The 12th
China-Japan International Workshop on Information Technology and Con-
trol Applications, Tengzhou, China, 2018. [Online]. Available: https://www.
researchgate.net/publication/332962311_Introduction_to_Modeling_
and_Simulation_Techniques (visited on 2022-05-09).

[20] N. Azlan and M. Rohani, “Overview Of Application Of Traffic Simulation
Model,” MATEC Web of Conferences, vol. 150, pp. 1–51, 2018. doi: https:
//doi.org/10.1051/matecconf/201815003006.

[21] A. Bazghandi, “Techniques, Advantages and Problems of Agent Based Model-
ing for Traffic Simulation,” IJCSI International Journal of Computer Science
Issues, vol. 9, pp. 115–119, 2012, issn: 1694-0814. [Online]. Available: https:
//www.ijcsi.org/papers/IJCSI-9-1-3-115-119.pdf.

[22] J. Nguyen, S. T. Powers, N. Urquhart, T. Farrenkopf, and M. Guckert, “An
overview of agent-based traffic simulators,” Transportation Research Interdis-
ciplinary Perspectives, vol. 12, 2021, issn: 2590-1982. doi: https://doi.org/
10.1016/j.trip.2021.100486.

[23] ASAM, ASAM, About ASAM, 2021. [Online]. Available: https://www.asam.
net/about-asam/our-vision/ (visited on 2022-02-09).

[24] ASAM, The History of ASAM, 2021. [Online]. Available: https://www.asam.
net/about-asam/history/ (visited on 2022-02-09).

[25] ASAM, Technology, 2021. [Online]. Available: https : / / www . asam . net /
about-asam/technology/ (visited on 2022-02-09).

[26] ASAM, ASAM OpenDRIVE, 2021. [Online]. Available: https://www.asam.
net/standards/detail/opendrive/ (visited on 2021-12-06).

[27] ASAM, ASAM OpenDRIVE, Version: 1.7.0, 2021. [Online]. Available: https:
/ / www . asam . net / index . php ? eID = dumpFile & t = f & f = 4422 & token =
e590561f3c39aa2260e5442e29e93f6693d1cccd#top-e8fe3504-e54c-48b9-
bddc-99c4fa67631e (visited on 2022-02-09).

[28] ASAM, ASAM OpenSCENARIO: User Guide, Version: 1.1.1, 2021. [Online].
Available: https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&

75

https://www.researchgate.net/publication/332962311_Introduction_to_Modeling_and_Simulation_Techniques
https://www.researchgate.net/publication/332962311_Introduction_to_Modeling_and_Simulation_Techniques
https://www.researchgate.net/publication/332962311_Introduction_to_Modeling_and_Simulation_Techniques
https://doi.org/https://doi.org/10.1051/matecconf/201815003006
https://doi.org/https://doi.org/10.1051/matecconf/201815003006
https://www.ijcsi.org/papers/IJCSI-9-1-3-115-119.pdf
https://www.ijcsi.org/papers/IJCSI-9-1-3-115-119.pdf
https://doi.org/https://doi.org/10.1016/j.trip.2021.100486
https://doi.org/https://doi.org/10.1016/j.trip.2021.100486
https://www.asam.net/about-asam/our-vision/
https://www.asam.net/about-asam/our-vision/
https://www.asam.net/about-asam/history/
https://www.asam.net/about-asam/history/
https://www.asam.net/about-asam/technology/
https://www.asam.net/about-asam/technology/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd#top-e8fe3504-e54c-48b9-bddc-99c4fa67631e
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd#top-e8fe3504-e54c-48b9-bddc-99c4fa67631e
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd#top-e8fe3504-e54c-48b9-bddc-99c4fa67631e
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4422&token=e590561f3c39aa2260e5442e29e93f6693d1cccd#top-e8fe3504-e54c-48b9-bddc-99c4fa67631e
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786


References

token=55bca7d8439f2bae072c4dffd1ee544a6d76b786 (visited on 2022-02-
09).

[29] E. Knabe, Simulation scenarios, 2019. [Online]. Available: https://sites.
google.com/view/simulationscenarios (visited on 2021-12-06).

[30] esmini, esmini, 2021. [Online]. Available: https : / / github . com / esmini /
esmini (visited on 2021-12-06).

[31] esmini, Inner Workings of esmini, 2021. [Online]. Available: https://github.
com/esmini/esmini/blob/master/docs/InnerWorkings.md (visited on
2022-03-02).

[32] E. Knabe, Controllers in esmini, 2020. [Online]. Available: https://github.
com/esmini/esmini/blob/master/docs/Controllers.md (visited on 2022-
02-11).

[33] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An
open urban driving simulator,” in Proceedings of the 1st Annual Conference
on Robot Learning, 2017, pp. 1–16.

[34] P. A. Lopez, M. Behrisch, L. Bieker-Walz, et al., “Microscopic traffic simula-
tion using sumo,” in The 21st IEEE International Conference on Intelligent
Transportation Systems, IEEE, 2018. [Online]. Available: https://elib.dlr.
de/127994/.

[35] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. USA: Pearson Education, Inc, 2015, pp. 63–69.

[36] “Systems and software engineering – Systems and software Quality Require-
ments and Evaluation (SQuaRE) – System and software quality models,” In-
ternational Organization for Standardization, Standard ISO/IEC 25010:2011,
Mar. 2011.

[37] L. Koskela, Test Driven: Practical TDD and Acceptance TDD for Java Devel-
opers, ser. Manning Pubs Co Series. Manning, 2008, ch. 9, pp. 323–362, isbn:
9781932394856.

[38] K. Pugh, Lean-Agile Acceptance Test-Driven Development: Better Software
Through Collaboration, 1st ed., ser. Net Objectives Lean-Agile Series. Addison-
Wesley Professional, 2010, isbn: 9780321714084.

[39] V. Garousi and F. Elberzhager, “Test automation: Not just for test execution,”
IEEE Software, vol. 34, no. 2, pp. 90–96, 2017. doi: 10.1109/MS.2017.34.

76

https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786
https://www.asam.net/index.php?eID=dumpFile&t=f&f=4596&token=55bca7d8439f2bae072c4dffd1ee544a6d76b786
https://sites.google.com/view/simulationscenarios
https://sites.google.com/view/simulationscenarios
https://github.com/esmini/esmini
https://github.com/esmini/esmini
https://github.com/esmini/esmini/blob/master/docs/InnerWorkings.md
https://github.com/esmini/esmini/blob/master/docs/InnerWorkings.md
https://github.com/esmini/esmini/blob/master/docs/Controllers.md
https://github.com/esmini/esmini/blob/master/docs/Controllers.md
https://elib.dlr.de/127994/
https://elib.dlr.de/127994/
https://doi.org/10.1109/MS.2017.34


References

[40] I. Schieferdecker, “Model-based testing,” IEEE Software, vol. 29, pp. 14–18,
Jan. 2012. doi: 10.1109/MS.2012.13.

[41] A. Löscher and K. Sagonas, “Targeted property-based testing,” in Proceedings
of the 26th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2017, Santa Barbara, CA, USA: Association for Comput-
ing Machinery, 2017, pp. 46–56, isbn: 9781450350761. doi: 10.1145/3092703.
3092711. [Online]. Available: https://doi.org/10.1145/3092703.3092711.

[42] A. Gambi, M. Mueller, and G. Fraser, “Automatically testing self-driving cars
with search-based procedural content generation,” Jul. 2019, pp. 318–328. doi:
10.1145/3293882.3330566.

[43] K. Peffers, T. Tuunanen, and M. A. Rothenberger, “A Design Science Research
Methodology for Information Systems Research,” Journal of Management In-
formation Systems, vol. 24, no. 3, pp. 45–77, 2007. doi: 10.2753/MIS0742-
1222240302.

[44] T. J. Ellis and Y. Levy, “A Guide for Novice Researchers: Design and Devel-
opment Research Methods,” in Proceedings of Informing Science & IT Educa-
tion Conference (InSITE) 2010, vol. 10, 2010, pp. 107–118. [Online]. Available:
http://proceedings.informingscience.org/InSITE2010/InSITE10p107-
118Ellis725.pdf (visited on 2021-12-14).

[45] S. Eismann, J. Walter, J. von Kistowski, and S. Kounev, “Modeling of Para-
metric Dependencies for Performance Prediction of Component-Based Soft-
ware Systems at Run-Time,” in 2018 IEEE International Conference on Soft-
ware Architecture (ICSA), 2018, pp. 135–139. doi: 10.1109/ICSA.2018.
00023.

[46] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering Research,”
ACM Transactions on Software Engineering and Methodology, vol. 27, no. 3,
pp. 1–51, 2018. doi: https://doi.org/10.1145/3241743.

[47] A. Candra, M. A. Budiman, and K. Hartanto, “Dijkstra’s and A-Star in Find-
ing the Shortest Path: a Tutorial,” in 2020 International Conference on Data
Science, Artificial Intelligence, and Business Analytics (DATABIA), 2020,
pp. 28–32. doi: 10.1109/DATABIA50434.2020.9190342.

77

https://doi.org/10.1109/MS.2012.13
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.1145/3293882.3330566
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
http://proceedings.informingscience.org/InSITE2010/InSITE10p107-118Ellis725.pdf
http://proceedings.informingscience.org/InSITE2010/InSITE10p107-118Ellis725.pdf
https://doi.org/10.1109/ICSA.2018.00023
https://doi.org/10.1109/ICSA.2018.00023
https://doi.org/https://doi.org/10.1145/3241743
https://doi.org/10.1109/DATABIA50434.2020.9190342


References

78



A
Lane Independent Router Case

from Volvo

I



Case: Lane independent routing with lane changes
When simulating a road network, and a vehicle in this network, a route can be defined to
determine how a vehicle should move in e.g., an intersection to follow this route. In the
present esmini implementation of this, this can only be done if the waypoints in the route are
connected to the lane the vehicle is presently in. This thesis should make a lane
independent route strategy, where a vehicle can change lanes in order to take the correct
path for a route.

Objectives
● Vehicles can find their way through a road network without having to be placed in the

correct lane
● A route following controller has to be created, implementing the routing and modeling

of lane changes.
● The model should handle lane changing with some degree of realism, for example,

maybe not change lane 2 meters before an exit on a highway.
● The routing should support three different routing strategies as defined in

OpenSCENARIO, shortest, fastest and least number of intersections.

Assumptions:
● Realism is not the highest priority, but could be added with the use of credible

parameters
● Road networks are not infinite / have some sort of limit on the size
● Lane can’t connect with lane with different heading (no U-turn)
● The target lane must be defined as drivable for the algorithm to find it (there are

different kinds of lanes in OpenDRIVE, e.g., borders, sidewalks, driving, biking, etc.)
● All roads or lanes that the vehicle passes through must also be defined as drivable.
● All lanes are always seen as switchable

○ On a specific road, assume that the vehicle can always change lane to
another lane in the same direction as it is driving

Example:
Looking at the picture below of a road network in esmini (see Figure 1). The current
implementation of routing allows the yellow vehicle to reach the red dot, and the green
vehicle to reach the pink dot. The goal of the lane independent routing with lane changes is
that both vehicles should be able to reach both dots. As well as actually changing lanes
when driving.

Figure 1



B
All Requirements and CQASs

III



Requirements:
The requirements for the lane independent routing model.

Lane independent path finding (LIPF):
User Story As a <role>, I want <functionality> because <reason>.

1 As a developer, I want the algorithm to calculate a path within a reasonable
amount of time for the given size of OpenDRIVE road network, as it should
not slow down the rest of the simulation.

2 As a developer, I want the algorithm to find the expected/optimal path for a
given route strategy, since it should be close to an ideal pathfinder.

4 As a developer, I want the algorithm to be able to find a path (sequence of
roads to traverse) between the vehicle position to a valid target, so that the
simulated vehicle can reach the target.

5 As a stakeholder, I want the algorithm to find the path based on the routing
strategy “shortest”, as it is defined in the OpenSCENARIO specification.

6 As a stakeholder, I want the algorithm to find the path based on the routing
strategy “fastest”, as it is defined in the OpenSCENARIO specification.

7 As a stakeholder, I want the algorithm to find the path based on the routing
strategy “the least number of intersections”, as it is defined in the
OpenSCENARIO specification.

8 As a developer, I don’t want esmini to crash if the algorithm can’t find a valid
path, as I want to be informed of this instead and keep esmini running.

9 As a developer, I want the functionality to translate paths to waypoints, so
that the model can follow them.

Lane change controller (LCC):
User Story As a <role>, I want <functionality> because <reason>.

3 As a developer, I want the modeled vehicle to be able to reach the target
waypoint, in order to follow the path created by the lane independent
pathfinder.

10 As a user, I want the modeled vehicle to be able to change lane, in order to
follow the path created by the lane independent pathfinder.

11 As a tester, I don't want the lane change to happen if it results in a collision,
as it would be “unrealistic”.

12 As a tester, I want the lane change to have a degree of realism, since the
model could be used for vehicle testing.



CQAS:
The concrete quality attribute scenarios for each requirement.

Requirement LIPF - User Story 1.

Quality Attribute Performance

Stimulus A valid target position

Source of stimulus User or read from the OpenSCENARIO file

Response A path, (sequence of roads to traverse)

Response measure How long it takes to find / calculate the path

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received

Requirement LIPF - User Story 2.

Quality Attribute Correctness

Stimulus A valid target

Source of stimulus User or read from the OpenSCENARIO file

Response The correct/optimal path, (sequence of roads to traverse)

Response measure The found path

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received

Requirement LCC - User Story 3.

Quality Attribute Functional completeness / Correctness

Stimulus A list of waypoints

Source of stimulus After path has been found, and waypoints has been created

Response The modeled vehicle drives to target.

Response measure If the modeled vehicle has reached target

Artifact Lane change controller

Environment Runtime, after waypoints has been created



Requirement LIPF - User Story 4.

Quality Attribute Correctness

Stimulus A valid target position

Source of stimulus User or read from the OpenSCENARIO file

Response A path, (sequence of roads to traverse)

Response measure If it finds a path

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received

Requirement LIPF - User Story 5.

Quality Attribute Functional completeness

Stimulus A valid target position, with route strategy: shortest

Source of stimulus User or read from the OpenSCENARIO file

Response A path, (sequence of roads to traverse)

Response measure If it finds a path

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received

Requirement LIPF - User Story 6.

Quality Attribute Functional completeness

Stimulus A valid target position, with route strategy: fastest

Source of stimulus User or read from the OpenSCENARIO file

Response A path, (sequence of roads to traverse)

Response measure If it finds a path

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received



Requirement LIPF - User Story 7.

Quality Attribute Functional completeness

Stimulus A valid target position, with route strategy: least number of
intersections

Source of stimulus User or read from the OpenSCENARIO file

Response A path, (sequence of roads to traverse)

Response measure If it finds a path

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received

Requirement LIPF - User Story 8.

Quality Attribute Fault tolerance

Stimulus An invalid target position or no path found

Source of stimulus User or read from the OpenSCENARIO file

Response A path, (sequence of roads to traverse)

Response measure If the application crashes or not.

Artifact The lane independent path finding algorithm

Environment Runtime, after a new target as been received

Requirement LIPF - User Story 9.

Quality Attribute Functional completeness / Correctness

Stimulus A path of nodes

Source of stimulus After path has been found, return value from pathfinder

Response A list of waypoints (path to target)

Response measure If a list has been created

Artifact The lane independent routing - waypoint creator

Environment Runtime, after a path has been found



Requirement LCC - User Story 10.

Quality Attribute Functional completeness / Correctness

Stimulus A waypoint in another lane

Source of stimulus After path has been found, and waypoints has been created

Response The model vehicle change lane to the one specified in waypoint

Response measure If the model vehicle has changed lane

Artifact Lane change controller

Environment Runtime, after a list of waypoints has been acquired

Requirement LCC - User Story 11.

Quality Attribute Functional completeness / Correctness

Stimulus A lane change

Source of stimulus A waypoint in another lane

Response Change lane if no vehicle in adjacent lane, otherwise recalculate
path to target

Response measure If lane change occurs and no collision

Artifact Lane change controller

Environment Runtime, when lane change controller is called

Requirement LCC - User Story 12.

Quality Attribute Functional completeness / Correctness

Stimulus A lane change

Source of stimulus A waypoint in another lane

Response Change lane if distance to end of road is more than specified
threshold

Response measure If lane change occurs, how it looks

Artifact Lane change controller

Environment Runtime, when lane change controller is called



Acceptance tests:
Small OpenDRIVE road network = highway_example_with_merge_and_split.xodr
Medium OpenDRIVE road network = multi_intersections.xodr
Large OpenDRIVE road network = large_network.xodr
In road direction: Heading = 0 radians
Opposite of road direction: Heading = π radians (relative to road direction)

Requirement: LIPF - User Story 1.
OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 1
Driving direction: opposite of road
startTime = save current time
path = result from pathfinder function
endTime = save current time
Verify that the returned path list is not empty
Verify that the last node in path has road id 209
calcTime = endTime - startTime
Verify that calcTime is less than < 5ms

OpenDRIVE: Large
Type: Code

Start position: s=1100, t=0, road id = 2291, lane id = -1
Target position: s=50, t=0, road id = 2502, lane id = 1
Driving direction: in road
startTime = save current time
path = result from pathfinder function
endTime = save current time
Verify that the returned path list is not empty
Verify that the last node in path has road id 2502
calcTime = endTime - startTime
Verify that calcTime is less than < 15ms

Requirement: LIPF - User Story 2.
OpenDRIVE: Medium
Type: Visual

1. Trace the OpenDRIVE road network and calculate the expected route based on
each route strategy from a start position to a target position for 5 routes. This step
could be automated in the future, but was performed manually in this case due to
time constraints.
2.  Enable path logger in the simulation model.
3.  Run the simulation model, with the start and target positions of the 5 routes.

Collect the calculated route for each route from the model.
4.  Use the expected route and the collected calculate route

Visually inspect the routes and compare them to determine if the calculated
path takes the same route as the expected.



Requirement: LIPF - User Story 2&5.
OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 1
Route strategy = shortest
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 209

Requirement: LIPF - User Story 2&6.
OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 1
Route strategy = fastest
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 209

Requirement: LIPF - User Story 2&7.
OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 1
Route strategy = least number of intersections
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty

Verify that the last node in path has road id 209

Requirement: LCC- User Story 3.
OpenDRIVE: Small
Type: Code

Start position: s=10, t=0, road id = 0, lane id = -1
Target position: s=20, t=0, road id = 2, lane id = -1
Driving direction: in road
run followRouteController with the start and target positions
Verify that vehicle has reached target



Requirement: LIPF - User Story 4.
OpenDRIVE: Small
Type: Code

Start position: s=10, t=0, road id = 0, lane id = -1
Target position: s=20, t=0, road id = 5, lane id = -2
Driving direction: in road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 5

OpenDRIVE: Small
Type: Code

Start position: s=10, t=0, road id = 0, lane id = -1
Target position: s=20, t=0, road id = 2, lane id = -1
Driving direction: in road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 2

OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 1
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 209

OpenDRIVE: Medium
Type: Code

Start position: s=50, t=0, road id = 217, lane id = -1
Target position: s=50, t=0, road id = 275, lane id = -1
Driving direction: in road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 275

OpenDRIVE: Large
Type: Code

Start position: s=50, t=0, road id = 5147, lane id = -1
Target position: s=100, t=0, road id = 2206, lane id = 1
Driving direction: in road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 2206



OpenDRIVE: Large
Type: Code

Start position: s=1900, t=0, road id = 1006, lane id = 3
Target position: s=20, t=0, road id = 2203, lane id = 1
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 2203

OpenDRIVE: Large
Type: Code

Start position: s=200, t=0, road id = 8277, lane id = 1
Target position: s=50, t=0, road id = 2291, lane id = -2
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 2291

OpenDRIVE: Large
Type: Code

Start position: s=2200, t=0, road id = 2431, lane id = 1
Target position: s=3700, t=0, road id = 2503, lane id = -1
Driving direction: opposite of road
path = result from pathfinder function
Verify that the returned path list is not empty
Verify that the last node in path has road id 2503

Requirement: LIPF - User Story 8.
OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 1000, lane id = 1
Driving direction: opposite of road
path = result from pathfinder function
Verify that function logs “path was not found”
Verify that no exception happened

OpenDRIVE: Medium
Type: Code

Start position: s=100, t=0, road id = 202, lane id = 2
Target position: s=20, t=0, road id = 209, lane id = 3
Driving direction: opposite of road
path = result from pathfinder function
Verify that function logs “path was not found”
Verify that no exception happened



Requirement: LIPF - User Story 9.
OpenDRIVE: Small
Type: Code

Start position: s=10, t=0, road id = 0, lane id = -1
Target position: s=20, t=0, road id = 2, lane id = -1
Driving direction: in road
path = result from pathfinder function
waypoints = waypointCreator(path)
Verify that waypoint not null
Position(road,laneid,sPos,Offset)
expected waypoints = ((0,-4,125,0),(4,-1,50,0),(2,-1,25,0))
Verify that calculated waypoints is the same as expected

OpenDRIVE: Small
Type: Code

Start position: s=10, t=0, road id = 0, lane id = -3
Target position: s=20, t=0, road id = 5, lane id = -3
Driving direction: opposite road
path = result from pathfinder function
waypoints = waypointCreator(path)
Verify that waypoint not null
Position(road,laneid,sPos,Offset)
expected waypoints = ((0,-3,100,0),(3,-3,25,0),(1,-3,57.5,0),(6,-3,15,0),(5,-3,20,0))
Verify that calculated waypoints is the same as expected

OpenDRIVE: Medium
Type: Code

Start position: s=50, t=0, road id = 266, lane id = 1
Target position: s=55, t=0, road id = 275, lane id = 1
Driving direction:opposite road
path = result from pathfinder function
waypoints = waypointCreator(path)
Verify that waypoint not null
Position(road,laneid,sPos,Offset)
expected waypoints = ((266,1,54.5,0),(258,-1,8.85,0),(261,-154.5,0),
(196,1,54,5,0),(204,-1,11.5,0),(197,-1,54,0),(275,1,55,0))
Verify that calculated waypoints is the same as expected



OpenDRIVE: Large
Type: Code

Start position: s=116, t=0, road id =5219, lane id = -1
Target position: s=17.5, t=0, road id = 2203, lane id = -1
Driving direction: in road
path = result from pathfinder function
waypoints = waypointCreator(path)
Verify that waypoint not null
Position(road,laneid,sPos,Offset)
expected waypoints = ((5219,-2,226.8,0),(8264,-2,11,0),(2357,-1,150.6,0),
(2505,-1,8.7,0),(2704,-1,21.8,0),(2701,-1,8.7,0),(2512,-1,765.5,0),(2203,-1,17.5,0))
Verify that calculated waypoints is the same as expected

Requirement: LCC - User Story 10.
OpenDRIVE: Small
Type: Code

Start position: s=10, t=0, road id = 0, lane id = -1
Target position: s=20, t=0, road id = 3, lane id = -2
Driving direction: in road
run followRouteController with the start and target positions
Verify that vehicle is in target lane

Requirement: LCC - User Story 11.
OpenDRIVE: Small
Type: visual

1. Create scenario with two vehicles, one with a “dumb” behavior and one with
the FollowRouteController enabled

2. Have the vehicles drive next to each other
3. Make the vehicle with the controller enabled try to change lane

a. Verify that it does not change lane if the dumb vehicle is in the way

Requirement: LCC - User Story 12.
OpenDRIVE: Small
Type: Empirical

1. Collect the calculated data from the model during lane changes. Record the lateral
change and the longitudinal change over time.

2. Compare the calculated data with the existing expected data regarding how a lane
change should behave, including time, travel distance, shape of lane change.

3. Evaluate if the model's lane change can be deemed realistic.
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