
Sequentially connected 2D assignment
problems solved using Lagrangian dual
methods
Application to the evaluation of multi-object tracking algorithms

Master’s thesis in Engineering Mathematics and Computational Science

CAMILLA CARLSSON
HANNA EKELUND

DEPARTMENT OF MATHEMATICAL SCIENCES

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Sequentially connected 2D assignment problems
solved using Lagrangian dual methods

Application to the evaluation of multi-object tracking algorithms

CAMILLA CARLSSON
HANNA EKELUND

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2022

Sequentially connected 2D assignment problems solved using Lagrangian dual meth-
ods
Application to the evaluation of multi-object tracking algorithms
CAMILLA CARLSSON
HANNA EKELUND

© CAMILLA CARLSSON, HANNA EKELUND, 2022.

Supervisor: Ann-Brith Strömberg, Department of Mathematical Sciences
Examiner: Ann-Brith Strömberg, Department of Mathematical Sciences

Master’s Thesis 2022
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2022

iv

Sequentially connected 2D assignment problems solved using Lagrangian dual meth-
ods
Application to the evaluation of multi-object tracking algorithms
CAMILLA CARLSSON, HANNA EKELUND
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Multi-object tracking (MOT) algorithms are used to track different objects over
time. The GOSPA metric has been used to accurately quantify object tracking in
one time step, but it does not take into account the so-called track switches. This
thesis will explore how an extended GOSPA metric can be solved efficiently. The
extended GOSPA metric is modeled as a mixed binary linear program, which con-
sists of several connected 2D assignment problems. To solve these, we utilize LP
relaxation which results in a lower bound on the optimal value unless the problem
possesses integrality property, in which case it equals the optimal value. We have
implemented two methods to quantify MOT algorithms, multi-block ADMM, and
a subgradient method. Our results show that both algorithms work well and scale
linearly with the number of time steps and cubic with the number of estimates and
ground truths. Thanks to a well-working heuristic which can be used as initializa-
tion, both methods converge fast for most instances. The heuristic finds optimal
values for all besides one of our test instances. The optimal solutions to all instances
are integer, indicating that the. Because of this, we formulate a conjecture that the
connected assignment problem also possesses integrality property, although the con-
straint matrix is not totally unimodular. To improve the results, we suggest that
one should prove or disprove the conjecture, to know whether the problem always
has integrality property or not. Also, one should improve the numerical solution
of the 2D assignment problems, since most of the computing time is spent on the
solution of the subproblems.

Keywords: Multi-object tracking, Connected assignment problems, Subgradient,
ADMM, Integrality property, Mixed binary linear program, LP relaxation

v

Acknowledgements
First of all, we would like to thank our supervisor and examiner Ann-Brith Ström-
berg for all your support and ideas during our thesis. Without your smart tips and
tricks, the subgradient implementation would not have become as good. Thank you
for all your courses in mathematical optimization that have made our interest in the
subject to grow.

Next, we would like to thank Lennart Svensson and Yuxuan Xia at Signal process-
ing, Chalmers University of Technology, for making the project possible from the
beginning. Also, for teaching us everything we know about multi-object tracking
and for providing us with data to try our models out in practice. Hopefully, our
thesis and our implementations can help you in your future research.

Camilla Carlsson, Hanna Ekelund, Gothenburg, May 2022

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

ADMM Alternating Direction Method of Multipliers
ADS Average direction strategy
GOSPA Generalized optimal sub-pattern assignment
IP Integer program
JVC Jonker-Volgenant-Castanon
LP Linear Program
MDS Modified deflected subgradient
MBLP Mixed-binary linear optimization program
MILP Mixed-integer linear optimization program
MGT Modified gradient technique
MOT Multi-object tracking

ix

Nomenclature

Below is the nomenclature of indices, sets, parameters, and variables that have been
used throughout this thesis.

Indices

i,j Indices for ground truths and estimates, respectively
k Index for time step
s Index for iteration

Sets

I Set of all indices of ground truths and estimates including the
indices of the dummy variables, {i, j | i = 1, ..., nX + 1, j =
1, ..., nY + 1}

Î Set of all indices of ground truths and estimates excluding the in-
dices of the dummy variables, {i, j | i = 1, ..., nX , j = 1, ..., nY}

K Set of all time steps, {k | k = 1, ..., T}
K̂ Set of all time steps excluding the last time step

T , {k | k = 1, ..., T − 1}
W Set of all possible assignment matrices
W LP relaxed set of W
X Set of ground truths
Y Set of estimates

Parameters

c Maximum allowed localization error
dk,i,j Element of distance matrix

xi

nX Number of ground truths
nY Number of estimates
p Penalty coefficient for the error
T Number of time steps
xk,i Position of ground truth i at time step k

yk,j Position of estimate j at time step k

α Polyak step length parameter
ζ Relaxation term
µ Penalty parameter for track switches
ρ Augmented Lagrangian parameter

Variables

hk,i,j = 1 if there is a track switch between time step k and k + 1 for
ground truth i and estimate j; = 0 otherwise

wk,i,j = 1 if there is an assignment in time step k between ground truth
i and estimate j; = 0 otherwise

γk,i,j Element k,i,j of a subgradient to the Lagrangian dual function in
time step k, ground truth i and estimate j

λk,i,j Lagrangian dual variable corresponding to the relaxed constraint
type 1 at time step k, ground truth i and estimate j

ξk,i,j Lagrangian dual variable corresponding to the relaxed constraint
type 2 at time step k, ground truth i and estimate j

ϕk,i,j Slack variable of constraint type 1 at time step k, ground truth i
and estimate j

ψk,i,j Slack variable of constraint type 2 at time step k, ground truth i
and estimate j

xii

Contents

List of Acronyms ix

Nomenclature xi

1 Introduction 1
1.1 Multi-object tracking algorithm . 1
1.2 Problem formulation . 1
1.3 Aim and limitations . 5

2 Theory 7
2.1 General integer optimization . 7
2.2 Lagrangian relaxation . 8
2.3 Integrality property . 9
2.4 Linearization of convex quadratic functions 12
2.5 Alternating direction method of multipliers (ADMM) 12
2.6 Subgradient optimization . 16
2.7 An algorithm for solution of the assignment subproblems 18

3 Implementation 19
3.1 An initialization heuristic . 19
3.2 Implementation of the ADMM . 20

3.2.1 ADMM initialization and parameters 27
3.2.2 ADMM bridges . 27

3.3 A modified deflected subgradient method 28
3.3.1 Subgradient initialization and parameters 30

4 Data, tests, and results 31
4.1 Results from the ADMM . 31
4.2 Results from the subgradient algorithm 36
4.3 A comparison between the ADMM and subgradient optimization . . . 41

5 Discussion 45
5.1 Heuristic . 45
5.2 ADMM . 46
5.3 Subgradient method . 47
5.4 ADMM versus subgradient . 48

xiii

Contents

5.5 Integrality property . 50

6 Conclusion 53

Bibliography 55

A Dual Feasibility I

B Trajectory plots V

C Code IX

xiv

1
Introduction

1.1 Multi-object tracking algorithm
A Multi-object tracking algorithm, or MOT algorithm, is used to estimate the true
position of a set of objects over time. The set of true positions over time of an object
is often referred to as a ground truth. The goal of the MOT algorithm is to generate
estimates as close to the ground truth as possible.

There are four types of errors that can occur in MOT algorithms. First of all, it can
be a distance error. This means that the estimate and the ground truth are not at
the same location. It can also happen that the MOT algorithm misses an object,
which means that it thinks that a ground truth does not exist at a specific time step.
This is referred to as a missed object. If the MOT algorithm instead generates an
estimate of a non-existing ground truth, it is referred to as a false object. The final
error is called track switch and it occurs when an estimate switches which ground
truth object it follows and vice versa.

MOT algorithms can be used in multiple areas, for example, in self-driving vehicles
for which the MOT algorithms are used for tracking its surroundings. It is important
for the MOT algorithms to correctly detect objects. A missed or false object can in
the worst case lead to a fatal outcome. Since there are multiple MOT algorithms, it is
important to quantify their performances, to be able to compare different algorithms
to each other.

MOT algorithms have previously been evaluated efficiently in single time steps using
the GOSPA metric. A disadvantage with this metric is that it only takes distance,
false and missed detected error, but provides no information about track switches.

1.2 Problem formulation
This thesis will explore how an extended version of the GOSPA metric can be solved
efficiently. The extended GOSPA metric, developed by A S. Rahmathullah, Á F.
García-Fernández, and L. Svensson [1], takes both distance, missed and false errors
into consideration, as well as track switches. The model and its variables, sets, and
parameters will be presented in this section.

To use this metric, we first denote nX as the number of unique ground truths, nY as

1

1. Introduction

the number of unique estimates, and T as the number of time steps evaluated. We
also introduce two dummy variables, one dummy estimate, and one dummy ground
truth. Why we need these will be explained later in this section.

Using these three parameters, we define four sets of indices, first

I :=
{

(i, j)
∣∣∣∣ i = 1, ..., nX + 1, j = 1, ..., nY + 1

}
(1.1a)

which includes all indices of ground truths and estimates, including the indices of
the dummy variables. The second set

Î :=
{

(i, j)
∣∣∣∣ i = 1, ..., nX , j = 1, ..., nY

}
(1.1b)

is a subset of I, in which the indices of the dummy variables are excluded. The
third set

K :=
{
k

∣∣∣∣ k = 1, ..., T
}

(1.2a)

includes all time steps. The last index set

K̂ :=
{
k
∣∣∣∣ k = 1, ..., T − 1

}
(1.2b)

is a subset of K where all time step but the last time step T is included.

Let X define the set of positions xk,i of all ground truths i ∈ {1, ..., nX} in every
time step k ∈ K. If the ground truth i does not exist at some time step k, then the
position xk,i equals the empty set ∅. The set of estimates Y is defined analogously
and define the position of all estimates j ∈ {1, ..., nY} in every time step k ∈ K.
Likewise, if the estimate j does not exist at some time step k, then yk,j = ∅. Which
ground truth i that belongs to estimate j is unknown, and vice versa.

At every time step k, a ground truth i can be assigned to an estimate j. In a perfect
case, the number of existing ground truths equals the number of existing estimates
in every time step k. Then, each ground truth i can be assigned to an estimate j in
every time step k.

Two errors that can occur in a MOT algorithm are false objects and missed objects.
If there exists more estimates as compared to the existing ground truths in a time
step k, then there exists at least one false object. The meaning of this is that the
MOT algorithm estimates there exists an object at a position yk,j but that actually
does not exist. If there instead exists more ground truths as compared to estimates
in a time step k, then there exists at least one missed object. The meaning of this
is that the MOT algorithm missed to detect a ground truth i, and thereby thinks
that an object at a position xk,i does not exist, while it actually does.

Even if the number of ground truths and estimates are the same at a time step
k, there might still exist both missed and false objects. To be able to penalize
these types of errors, we introduce one dummy estimate nY + 1 and one dummy
ground truth nX +1, which may be assigned to multiple ground truths or estimates,
respectively. For every ground truth assigned to the dummy estimate nY + 1, it is

2

1. Introduction

referred to as a missed object. For every estimate assigned to the dummy ground
truth, it is referred to as a false object. A dummy estimate may, however, not be
assigned to a dummy ground truth.

This problem can be formulated as a type of an assignment problem. We introduce
the binary variables wk,i,j, k ∈ K, (i, j) ∈ I. Let wk,i,j = 1 if there is an assignment
in time step k between ground truth i and estimate j, otherwise wk,i,j = 0.

In every time step k, every ground truth is assigned to one estimate, or dummy
estimate. Also, every estimate is assigned to one ground truth, or dummy ground
truth. This can be described in mathematical terms as, for each k ∈ K,

nX +1∑
i=1

wk,i,j = 1, j ∈ {1, ..., nY}, (1.3a)

nY +1∑
j=1

wk,i,j = 1, i ∈ {1, ..., nX}, (1.3b)

wk,nX +1,nY +1 = 0, (1.3c)
wk,i,j ∈ {0, 1}, (i, j) ∈ I. (1.3d)

Note that these assignment constraints are separated over each time step k. There-
fore, we define the matrix of binary assignment variables in a given time step k as
Wk, Wk = (wk,i,j | (i, j) ∈ I) , k ∈ K. The set of feasible assignments in any given
time step is then expressed as

W :=
{
Wk ∈ R(nX +1)×(nY +1)

∣∣∣∣ the constraints (1.3) hold
}
. (1.4)

For simplicity, we let W denote the compound of all assignment matrices Wk, i.e.,
W = (Wk | k ∈ K).

The distance matrix D, is a T × (nX + 1)× (nY + 1)-matrix. If ground truth i and
estimate j exist in time step k; the element dk,i,j is defined as the minimum of the
cut-off parameter c to the power of p, where p is a positive integer, and the Lp-norm
of the distance between the ground truth i and the estimate j, to the power of p. If
neither ground truth i nor estimate j exist at time step k, the element dk,i,j is equal
to zero. If exactly one of ground truth i or estimate j exists at time step k, the
element dk,i,j equals cp/2. In mathematical notation, the distance matrix is hence
defined as

dk,i,j =


min

{
cp, ∥xk,i − yk,j∥p

p

}
, if xk,i ̸= ∅ and yk,j ̸= ∅,

0, if xk,i = yk,j = ∅, k ∈ K, (i, j) ∈ I.
cp

2 , otherwise
(1.5)

Observe that xk,nX +1 = yk,nY +1 = ∅, since neither of the dummy ground truth nor
dummy estimate exist at any time step k ∈ K.

If both ground truth i and estimate j exists, and the distance is smaller than cp,
dk,i,j represents the localization error. If the distance is larger or equal than cp, and

3

1. Introduction

ground truth i and estimate j are assigned to each other in time step k, the ground
truth i is interpreted as a missed object and the estimate j is interpreted as a false
object in time step k.

If exactly one of ground truth i or estimate j exists at time step k, and these two
are assigned to each other, then it is interpreted as a missed or false cost, depending
on whether ground truth i or estimate j exists.

Each ground truth i does not have to be assigned to the same estimate j in each
time step k. If an assignment between ground truth i and estimate j between time
step k and k + 1 are different, hence wk,i,j ̸= wk+1,i,j, it is referred to as a track
switch. The interpretation of this being that the MOT algorithm thinks a ground
truth i is different objects in time step k and k + 1.

For example, if two cars, a red and a blue car, are driving parallel to each other in
two lanes. In the first two time steps, we estimate the red car to be red, and the
blue car to be blue. In between time step two and time step three, the blue and the
red car swap lanes. In the last two time steps, the MOT algorithm thinks the two
cars are in their original lanes and do not think the lane swap occurred. Therefore,
in the two last time steps, we estimate the red car to be blue and the blue car to be
red, see Fig. 1.1.

Figure 1.1: Illustration of a track switch. The red car is estimated to be red in time
step one and two, and blue in time step three and four. The blue car is estimated
to be blue in time step one and time step two, and red in time step three and time
step four.

If a ground truth i changes from being assigned to the dummy estimate nY + 1 to
an estimate j in the next time step or vice versa, this is referred to as a half switch.
The meaning of this is that a ground truth i goes from being unassigned to being
assigned in the next time step. Analogously, a half switch occurs if an estimate j
changes from being unassigned to being assigned, or the other way around, in the
next time step.

To evaluate the performance of a MOT algorithm, we need to solve T sequentially
connected assignment problems, such that Wk ∈ W , k ∈ K and penalize any time
an assignment changes between time step k and k + 1. The number of half track

4

1. Introduction

switches is calculated as the absolute difference of wk,i,j and wk+1,i,j, (i, j) ∈ Î and
k ∈ K̂. Two half switches equal one track switch. Every track switch is penalized
with µp, the higher the value, the more track switches will be avoided.

For some set of ground truths X and set of estimates Y , we can formulate the
optimization problem as follow

minimize
W

 T∑
k=1

nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j + µp

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

∣∣∣wk,i,j − wk+1,i,j

∣∣∣
 1

p

(1.6a)

subject to Wk ∈ W , k ∈ K. (1.6b)

Since the objective function (1.6a) is not linear due to the absolute value of the
difference of variables, we want to rewrite it into a linear function to be solved
easier. To obtain a linear objective function, we introduce help variables hk,i,j to
represent the number of half track switches to replace the absolute value in the
objective function. We also introduce two constraints for each help variable hk,i,j.
First, hk,i,j needs to be larger or equal than the difference between the solution of the
current time step assignment solution for wk,i,j and the solution of the forward time
step assignment solution, wk+1,i,j. Second, hk,i,j needs to be larger or equal than
the difference between the solution of the forward time step assignment solution for
wk+1,i,j and the solution of the current time step assignment solution, wk,i,j. This
optimization problem will be formulated as,

z⋆ := minimum
W,H

 T∑
k=1

nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j + µp

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

hk,i,j

 1
p

(1.7a)

subject to W ∈ W , (1.7b)
hk,i,j ≥ wk,i,j − wk+1,i,j, k ∈ K̂, (i, j) ∈ Î, (1.7c)
hk,i,j ≥ wk+1,i,j − wk,i,j, k ∈ K̂, (i, j) ∈ Î. (1.7d)

Since the objective function always is greater or equal than zero and p is a positive
integer, this problem can be treated as a mixed-binary linear optimization problem
(MBLP); since all the constraints as well as the objective function are defined by
linear forms and the variables wk,i,j are binary while hk,i,j are continuous variables.

1.3 Aim and limitations
The aim with this project is to develop an efficient optimization algorithm for solving
the optimization problem (1.7), to quantify the performance of a MOT algorithm
over a finite sequence of time steps. The performance will take into consideration,
the distance between sets of points in the ground truth and the estimate, as well
as penalties for missed objects, false objects, and track switches. Lower optimal
objective values will imply better MOT algorithms. The goal is to be able to use
the algorithm to quickly get a measure of the performance of a MOT algorithm in
order to compare it with other MOT algorithms.

5

1. Introduction

The project will only focus on the development of the optimization algorithm and
will not be a MOT algorithm itself, it will only quantify the performance of MOT
algorithms. The project will not explore how MOT algorithms work, only use the
two sets X and Y together with some user-specific parameters c, p, and µ, to evaluate
the performance of the MOT algorithm generating the set Y .

The project has implemented two optimization algorithms, a multi-block alternating
direction method of multipliers (ADMM) and modified deflected subgradient method
(MDS) applied to a Lagrangian dual of the model (1.7).

6

2
Theory

2.1 General integer optimization
A general integer program (IP) can be written as

minimize
x

c⊤x, (2.1a)

subject to Ax ≥ b, (2.1b)
x ∈ Zn, (2.1c)

where c ∈ Rn, b ∈ Rm and A ∈ Rn×m. General integer programs are NP-hard
problems and are classified as hard problems since they cannot be solved within
polynomial time. If the matrix A has only integer elements, then it is called an
integral matrix.

One can, however, use LP relaxation in order to transform the IP into an LP. This is
advantageous since linear problems are easy and can be solved in polynomial time.
The only difference between an IP and LP is that the constraint (2.1c) is changed
to x ∈ Rn, while the objective function and constraint (2.1b) remain the same. A
mixed-integer linear optimization program (MILP) is a combination of an IP and
an LP, where some of the variables are integers and the rest are continuous [2]. A
special case of these problems is when all integer variables are binary, then it is
called an MBLP.

An important property an LP possesses is that the optimal point is found in an
extreme point of the feasible set, as long as the feasible set is bounded and non-
empty. The solution to the LP-relaxed problem might not be optimal in the original
MILP, but is only guaranteed to yield a lower bound, unless the feasible set has the
integrality property.

Theorem 2.1.1 (Hoffman and Kruskal, see [3, Theorem 4.4]) "Let A be an
m×n integral matrix. The polyhedron x : Ax ≤ b,x ≥ 0 is integral for every b ∈ Zm

if and only if A is totally unimodular."

The feasible set is the polyhedron spanned by the constraints Ax ≥ b, x ≥ 0n and
it has the integrality property if and only if each extreme point of the polyhedron
is integer valued. A set can be shown to have the integrality property by utilizing
Theorem 2.1.1. The theorem states that the matrix A has to be totally unimodular
and by definition, a totally unimodular matrix is defined as

7

2. Theory

"A matrix A is totally unimodular if every square submatrix has deter-
minant 0,±1." ([3, p. 131])

2.2 Lagrangian relaxation
Assume one have a MILP problem where c ∈ Rn, b ∈ Rm and A ∈ Rn×m on the
following form

z⋆ := minimumx c⊤x, (2.2a)

subject to Ax ≥ b, (2.2b)
x ∈ S, (2.2c)

where the constraints (2.2b) are assumed to complicate the problem. The easy con-
straints form the set S and are represented in (2.2c). When applying Lagrangian
relaxation to the complicating constraints (2.2b), the constraints are moved to the
objective function and each of them multiplied by an individual Lagrangian multi-
plier ui ∈ R. The Lagrangian function is defined as [2, Chapter 17],

L(x,u) := c⊤x +
m∑

i=1
ui

(
bi −Aix

)
, x ∈ S. (2.3)

The Lagrangian dual function is then defined as

g(u) := minimum
x∈S

{
c⊤x +

m∑
i=1

ui

(
bi −Aix

)}
. (2.4)

The Lagrangian dual function will generate a lower bound on the primal optimal
value z⋆ for any u ≥ 0 [2, Chapter 17].

If the feasible set S is non-convex due to integer variables x, then one can use
LP-relaxation to transform the problem into a convex set. This can transform the
problem into a convex optimization problem which can be solved in polynomial time
[4]. The LP relaxed set we call S̄. The Lagrangian dual function is a concave function
[2, Chapter 17], constructed out of linear segments, one for each extreme point in
the feasible set S. The Lagrangian dual problem is to maximize the Lagrangian dual
function over non-negative values of the vector u, to yield an as good lower bound
as possible, i.e.,

g⋆ := maximum
u≥0

{
g(u)

}
. (2.5)

The advantage of relaxing an optimization problem is that the Lagrangian dual
function is often separable and its evaluation can be divided into several smaller
subproblems, which can be solved individually instead of as one large problem. If
the convex hull of the set S, conv(S) equals the set S̄, then the lower bound from the
Lagrangian dual problem g⋆ will be equal to the primal optimal value z⋆, namely, we

8

2. Theory

will have strong duality g⋆ = z⋆ [2]. This is true for all pure linear programs where
the feasible set S is convex. In other cases where S̄ ⊃ conv(S), strong duality does
not have to hold. The Lagrangian dual problem g⋆ can therefore provide a lower
bound which is smaller than the primal optimal value z⋆, as g⋆ ≤ z⋆. In this case,
most commonly we will have a duality gap between z⋆ and g⋆. This indicates that
the optimal solution to the Lagrangian dual problem is not an integer point. If we
do not have a duality gap when S̄ ⊃ conv(S), then the optimal solution is integer
in both the primal problem and the dual problem.

2.3 Integrality property
Regarding the integrality property of the evaluation problem (1.7), we could neither
prove nor disprove that it has the integrality property. However from what we know
about the problem a conjecture was made.

Conjecture 2.3.1 The MILP problem (1.7) has the integrality property and the
solution to the LP relaxation of (1.7) has integer extreme values and is a solution
to the non-relaxed problem as well.

The reason we strongly believe that we have integrality property is that all the solu-
tions found during this thesis were integer. Despite the fact that we let a computer
randomly generate and solve instances of (1.7) during a main part of our Masters
project, we could not construct a problem instance with non-integer solutions to the
LP relaxation.

Another reason which supports the conjecture that the evaluation problem (1.7)
has integer optimal solutions is the fact that it is made up of multiple assignment
problems which are known to have the integrality property. The evaluation problem
is made up of connected assignment problems and the connected part might destroy
the integrality property. We will try to use Theorem 2.1.1 in order to prove that our
problem has the integrality property. Since we know that the constraints from the
assignment problems define a totally unimodular matrix A, we focus on the addi-
tional constraints corresponding to the connected part. The connected constraints
are formulated as

wk,i,j − wk+1,i,j ≤ hk,i,j, k ∈ K̂, i, j ∈ Î (2.6a)
wk+1,i,j − wk,i,j ≤ hk,i,j, k ∈ K̂, i, j ∈ Î (2.6b)

and from this, we can construct the submatrix corresponding to these two constraints
for some fixed k, i, and j. We then get[

1 −1 −1
−1 1 −1

]
(2.7)

where the first column corresponds to the variable wk,i,j, the second to wk+1,i,j and
the third to hk,i,j. There are three square subdeterminants to this matrix, namely∣∣∣∣∣ 1 −1

−1 1

∣∣∣∣∣ = 0,
∣∣∣∣∣ 1 −1
−1 −1

∣∣∣∣∣ = −2,
∣∣∣∣∣−1 −1

1 −1

∣∣∣∣∣ = 2, (2.8)

9

2. Theory

which means that the matrix is not totally unimodular since some subdeterminant
does not equal ±1 or 0.

Theorem 2.1.1 states that the polyhedron is integer for every integer vector b. Al-
though, for our case, we only care about a specific b. We know that the elements in
b values corresponding to the constraints (2.6) will all be zero. By this, we believe
it is possible to construct a problem that has the integrality property without the
matrix A being totally unimodular.

The proof of Theorem 2.1.1 utilizes the fact that at an extreme point to the polyhe-
dron {x ≥ 0n : Ax ≤ b} satisfies n linearly independent inequalities that span the
polyhedron at equality [3, p. 132]. The n equations can then be written as Cx = d
and solved as a linear system x̄ = C−1d, where x̄ is the coordinates of an extreme
point of the polyhedron and the n inequalities Cx ≤ d are satisfied at equality. The
proof of Theorem 2.1.1 then uses the fact that A, and thereby also C, is totally
unimodular to show that C−1 is integral, meaning that each of its elements is an
integer. This does not hold for our problem but we know that some elements in
d equal 0 and that any real number multiplied by 0 is 0 and is therefore integer.
We wish to show that all non-integer elements of C−1 will be multiplied by some 0
element in the d vector when solving for x̄. Our problem will look like

A =


F 0
I 0
0 I
E

 (2.9)

where F corresponds to the assignment constraints which only depend on the W
variables and E to the connected constraints (2.6). We can only guarantee that
part of the matrix A is totally unimodular, we also know that the elements in the b
vector corresponding to the matrix E will be 0, and the matrix E is the only part
that is not totally unimodular. We define Cx = d to be n linearly independent
inequalities from our polyhedron Ax ≤ b satisfied at equality. Our conjecture is
that all non-integer elements in C−1 will be multiplied by one of the elements in d
that we know is 0.

To explain why we believe this holds and why this gives us integer solutions we have
to take a closer look at how C−1 interact with d and how C and C−1 correspond
to each other. If we assume that all integer elements in C−1 are multiplied by some
integer value in d and all non-integer elements in C−1 by 0, then it follows that x̄
is integer since the sum of some integers and zero is integer. As stated previously x̄
will be a extreme point to the polyhedron Ax ≤ b and if this holds for every linearly
independent combination of n constraints then it holds that every extreme point to
Ax ≤ b is integer and therefore the polyhedron Ax ≤ b is integral [3, Theorem 4.1].

Now if we take a closer look at how C and C−1 interact with each other, by Cramer’s
rule C−1 is equal to the adjugate matrix of C divided by the determinant of C [3].
The adjugate matrix is defined as the transpose of the cofactor matrix which in turn
is defined by the minor of C. Let Mij denote the (i, j)-minor of C, which is defined
as the determinant of the (n − 1) × (n − 1) matrix of C where row i and column

10

2. Theory

j are removed. The cofactor matrix of C is [(−1)i+jMij]1≤i,j≤n and the adjugate of
C then becomes [(−1)i+jMji]1≤i,j≤n. Since the matrix C is a square submatrix of
A and we wish to keep track of the rows from submatrix E, we introduce different
notations depending on which submatrix a row comes from. We denote the rows of
matrix C that comes the submatrix E as C(E) and the rows from matrix A that
are not in E as C(A \ E). For simplicity, all rows from the matrix E are placed at
the bottom and we can write

C =
[
C(A \ E)
C(E)

]
, d =



d1
...
dm

0
...
0


(2.10)

where the matrix C consists of n − m rows from the matrix E and m from the
matrix A \ E. Then we denote the (i, j)-minor as M(E)ij if row i comes from the
matrix E and M(A \E)ij otherwise. Then we can write C−1 in terms of M(E) and
M(A \ E) as

C−1 = 1
det(C)



M(A \ E)11 . . . (−1)1+nM(A \ E)1n
... ...

(−1)m+1M(A \ E)m1 . . . (−1)m+nM(A \ E)mn

(−1)(m+1)+1M(E)(m+1)1 . . . (−1)(m+1)+nM(E)(m+1)n
... ...

(−1)n+1M(E)n1 . . . M(E)nn



⊺

(2.11)

where det(C) is the determinant of C. Finally we can solve for x̄ and get

x̄ = 1
det(C)


∑m

i=1(−1)i+1diM(A \ E)i1 +∑n
j=m+1(−1)j+1 · 0 ·M(E)j1

...∑m
i=1(−1)i+ndiM(A \ E)in +∑n

j=m+1(−1)j+n · 0 ·M(E)jn



= 1
det(C)


∑m

i=1(−1)i+1diM(A \ E)i1 + 0
...∑m

i=1(−1)i+ndiM(A \ E)in + 0

 (2.12)

where we can see that as long as ∑m
i=1(−1)i+jdiM(A \E)ij is divisible by det(C) for

all j = 1, .., n then x̄ will be integer. This is easy to prove if every M(A \ E)ij is
divisible by det(C), since we know that each di is integer. This is easy for one specific
instance but it has to be done for every combination of n linearly independent rows
from the matrix A in order to prove that the polyhedron Ax ≤ b is integral. Then
one needs to prove that it holds for any number of ground truths, estimates, and time
steps for the problem (1.7) to have integer properties for every instance. One might
be able to prove this by induction, but even proving that M(A \E)ij is divisible by
the determinant of C is hard. Our understanding is that all the subdeterminants
of C that are not equal to 0 or ±1 have at least 1 row that is from the matrix E.

11

2. Theory

Therefore M(A \E)ij is probably divisible by the determinant of C, since removing
a row that is from the matrix A \ E should not change the determinant, however,
removing a column might change the value.

2.4 Linearization of convex quadratic functions
For some special cases of a quadratic integer program, it is possible to replace the
quadratic term with a linear term (see [5]). Assume we have a feasible set S,
including all binary vectors x ∈ Bn, fulfilling some constraints Bx = b

S := {x ∈ {0, 1}n | Bx = b}. (2.13)

The quadratic optimization problem can be expressed in vector form, where Q is an
Rn×n-matrix, where the goal is to minimize the quadratic function over some set S,
as

minimize
x∈S

q⊤x + x⊤Qx. (2.14)

The corresponding linear problem can be expressed in vector form, where c ∈ Rn,
where the goal is to minimize the linear function over some set S. The binary linear
optimization problem can be formulated as

minimize
x∈S

c⊤x. (2.15)

The quadratic optimization problem is equivalent to the linear optimization problem,
if and only if,

q⊤x + x⊤Qx = c⊤x, ∀x ∈ S, (2.16)
see [5]. This is true if Q is a diagonal matrix where Diag(q) + Q = Diag(c).

2.5 Alternating direction method of multipliers
(ADMM)

The alternating direction method of multipliers (ADMM) (see [6]) is an algorithm
that solves optimization problems where the objective function is separable with
respect to the variables, but the constraints are not. It utilizes the augmented
Lagrangian (see [7]) in order to relax the constraints and solves the problem itera-
tively, and sequentially with respect to one variable vector at a time. Specifically it
considers optimization problems on the form

z⋆ := minimum
x1, ..., xn

n∑
i=1

fi(xi), (2.17a)

subject to
n∑

i=1
Aixi = c (2.17b)

12

2. Theory

where xi ∈ Rmi are variables, and Ai ∈ Rp×mi and c ∈ Rp are constant matrices and
vectors, respectively. The problem consists of minimizing the sum of n functions fi

that are all convex and depend only on the corresponding variable vector xi, subject
to p constraints that depend on multiple variables xi. This problem is solved with
a multi-block ADMM where n > 2, while if n = 2 it can be solved with a two-block
ADMM. The distinction is made since the convergence analysis differs between the
two cases. The problem may also include constraints that only depend on one of
the variables xi, like xi ∈ Xi. Such constraints are included in the function fi as
an indicator function of the set Xi. The set Xi must be convex in order for its
indicator function and thereby the function fi to be convex. The algorithm works
for any finite number of variables as long as they are separable in the objective. The
number of relaxed constraints is not restricted either.

The augmented Lagrangian function is formulated as

Lρ(x1, ..., xn, λ) =
n∑

i=1
fi(xi) + λ⊤

(
n∑

i=1
Aixi − c

)
+ ρ

2

∥∥∥∥∥
n∑

i=1
Aixi − c

∥∥∥∥∥
2

2
, (2.18)

where λ ∈ Rp is the vector of dual variables and ρ > 0 is the augmented Lagrangian
parameter. The ADMM iterations start with some initialization x0 and s = 0 and
are formulated from the augmented Lagrangian and consist of the steps

xs+1
1 := argmin

x1
Lρ(x1, x

s
2, ..., x

s
n, λ

s), (2.19a)

xs+1
i := argmin

xi

Lρ(xs+1
1 , ..., xs+1

i−1 , xi, x
s
i+1, ..., x

s
n, λ

s), i = 2, ..., n− 1, (2.19b)

xs+1
n := argmin

xn

Lρ(xs+1
1 , ..., xs+1

n−1, xn, λ
s), (2.19c)

λs+1 := λs + ρ

(
n∑

i=1
Aix

s+1
i − c

)
, (2.19d)

where s denotes the iteration index. The algorithm consists of n primal minimization
steps and one dual variable update.

In order to guarantee convergence of two-block ADMM (i.e., for n = 2) two as-
sumptions must be fulfilled, one about the functions fi and the other about the
augmented Lagrangian. To guarantee convergence of multi-block ADMM, the same
two conditions must be fulfilled as well as some additional conditions.

Assumption 2.5.1 (see [6, Assumption 1]) "The (extended-real-valued)
functions fi : Rmi → R ∪ {∞}, i = 1, ..., n are closed, proper and convex."

Assumption 2.5.1 implies that all subproblems corresponding to updating the xi vari-
ables are solvable, meaning, there exist some values of xi, i=1, ..., n, that minimize
the augmented Lagrangian Lρ. The solution does not need to be unique, meaning
there can be multiple values of xi which all minimize the augmented Lagrangian.
This assumption allows the functions fi to be indicator functions over sets Xi, as
long as the sets Xi are non-empty and convex. The subproblem corresponding to
updating the value of the variable xi will then be a minimization problem over the
set Xi.

13

2. Theory

Assumption 2.5.2 (see [6, Assumption 2]) "The unaugmented Lagrangian L0
has a saddle point."

Assumption 2.5.2 states that the unaugmented Lagrangian

L0(x1, ..., xn, λ) =
n∑

i=1
fi(xi) + λ

(
n∑

i=1
Aixi − c

)
(2.20)

has a saddle point, which means that there exists some point (x⋆
1, ..., x

⋆
n, λ

⋆) such
that

L0(x⋆
1, ..., x

⋆
n, λ) ≤ L0(x⋆

1, ..., x
⋆
n, λ

⋆) ≤ L0(x1, ..., xn, λ
⋆) (2.21)

holds for all (x1, ..., xn, λ) ∈
(×n

i=1 R
mi

)
×Rp. Assumptions 2.5.1 and 2.5.2 together

imply that the value L0(x⋆
1, ..., x

⋆
n, λ

⋆) is finite for any saddle point (x⋆
1, ..., x

⋆
n, λ

⋆)
and that the primal point (x⋆

1, ..., x
⋆
n) solves (2.17).

Given that Assumptions 2.5.1 and 2.5.2 hold then the two-block ADMM iterations
satisfy residual, objective, and dual variable convergence (see [6]). With residual
(rs), objective and dual variable convergence, this means that

rs → 0 as s→∞; (2.22a)
n∑

i=1
fi(xs

i)→ z⋆ as s→∞; (2.22b)

λs → λ⋆ as s→∞ (2.22c)

holds. In order to guarantee that multi-block ADMM converges a sufficient condition
is defined as

"There exists two integers i and j such that any two matrices in the
sets {Ai, Ai+1, ..., Ai+j} and {Ai+j+1, Ai+j+2, ..., Am, A1, A2, ..., Ai−1} are
orthogonal". ([8, p. 22])

Here Ai represents the constraint matrices in (2.17) and m the number of variable
vectors xi. This states that if the Ai matrices can be split into two sets such that
each matrix in either set is orthogonal with every other matrix in the same set, then
multi-block ADMM will converge. This is a sufficient condition, but not necessary,
which means that even if this does not hold then the multi-block ADMM might still
converge. On the other hand, there exists a version of ADMM where the step size ρ
is small and a relaxation term ζ > 0 is introduced in the dual variable update step
(2.19d) in order to get

λs+1 := λs + ρζ

(
n∑

i=1
Aix

s+1
i − c

)
. (2.23)

For two-block ADMM the convergence can be guaranteed for every problem instance,
for some ζ ∈ (0,

√
5+1
2), however, for multi-block ADMM there exists no such range

for ζ such that every problem is guaranteed to converge (see [8]). However, for a
specific problem, there might exist a range for ζ such that the problem converges.

14

2. Theory

The optimality conditions and stopping criterion for the ADMM problem (2.17) are
formulated from the primal and dual feasibility conditions, as,

n∑
i=1

Aix
⋆
i − c = 0 (2.24)

and
0 ∈ ∂fi(x⋆

i) + Aiλ
⋆, i = 1, ..., n, (2.25)

respectively. The primal feasibility states that the solution has to be feasible in the
primal problem. The primal residual is constructed as rs := ∑n

i=1 Aix
s
i − c. From

the ADMM update (2.19c) it is know that xs+1
n minimizes Lρ(xs+1

1 , ..., xs+1
n−1, xn, λ

s)
and therefore

0 ∈ ∂fn(xs+1
n) + A⊺

nλ
s + ρA⊺

n

 n∑
j=1

Ajx
s+1
j − c


= ∂fn(xs+1

n) + A⊺
nλ

s + ρA⊺
nr

s+1

= ∂fn(xs+1
n) + A⊺

nλ
s+1. (2.26)

This will always satisfy the dual feasibility (2.25) for i = n.

Similarly, from the update (2.19b) it is known that xs+1
i minimizes

Lρ(xs+1
1 , ..., xs+1

i−1 , xi, x
s
i+1, ..., x

s
n, λ

s), i = 2, ..., n− 1, and therefore

0 ∈ ∂fi(xs+1
i) + A⊺

iλ
s + ρA⊺

i

 i∑
j=1

Ajx
s+1
j +

n∑
j=i+1

Ajx
s
j − c


= ∂fi(xs+1

i) + A⊺
iλ

s + ρA⊺
i r

s+1 + ρA⊺
i

n∑
j=i+1

Aj(xs
j − xs+1

j)

= ∂fi(xs+1
i) + A⊺

iλ
s+1 + ρA⊺

i

n∑
j=i+1

Aj(xs
j − xs+1

j). (2.27)

This is not guaranteed to satisfy the dual feasibility (2.25), however it will be satisfied
if the quantity qs+1

i := ρ
∑n

j=i+1 Aj(xs
j−xs+1

j), i = 2, ..., n−1 is 0. The quantity qs+1
i

is the dual residual for dual feasibility condition 0 ∈ ∂fi(x⋆
i)+Aiλ

⋆ at time iteration
s+ 1.

Finally, from the update (2.19a) we have that xs+1
1 minimizes Lρ(x1, x

s
2, ..., x

s
n, λ

s)
and

0 ∈ ∂f1(xs+1
1) + A⊺

1λ
s + ρA⊺

1

A1x
s+1
1 +

n∑
j=2

Ajx
s
j − c


= ∂f1(xs+1

1) + A⊺
1λ

s + ρA⊺
1r

s+1 + ρA⊺
1

n∑
j=2

Aj(xs
j − xs+1

j)

= ∂f1(xs+1
1) + A⊺

1λ
s+1 + ρA⊺

1

n∑
j=2

Aj(xs
j − xs+1

j). (2.28)

15

2. Theory

As before, this is not guaranteed to satisfy the dual feasibility in (2.25) for i = 1,
however if the quantity qs+1

1 := ρ
∑n

j=2 Aj(xs
j − xs+1

j) is 0 it will.

The optimality conditions consists of (2.24) and (2.25) and the dual feasibility con-
dition (2.25) for i = n will always be fulfilled. The residuals for the remaining
conditions are rs+1 and qs+1

i , i = 1, ..n − 1, for the primal and dual conditions, re-
spectively. As the ADMM iterations go to infinity the residuals go to zero [6], thus
if the residuals are small, then the problem approaches optimality. This means that
reasonable stopping criteria are that the residuals are small enough, i.e.,

∥rs∥2 ≤ ϵprimal and ∥qs∥2 ≤ ϵdual, (2.29)

where ϵprimal > 0 and ϵdual > 0 are the primal and dual tolerances respectively. The
tolerances scale with the room in which the residuals lie, meaning ϵprimal = √p · ϵ
since the primal residual is in Rp and ϵdual =

√∑n−1
i=1 mi · ϵ since the dual residual is

in Rm1+...+mn−1 [6].

2.6 Subgradient optimization
Subgradient methods are iterative algorithms which can be used to solve optimiza-
tion problems for both differentiable and non-differentiable functions, for example
the Lagrangian dual function.

Since the Lagrangian dual function consists of several linear segments, in an inter-
section by two or more segments, it is not differentiable. Instead we introduce the
subdifferential [2, Chapter 17].

The subdifferential ∂f(x) of a concave function f : Rm 7→ R is defined as the set of
vectors γ ∈ Rm, which at a given point x̃ ∈ Rm forms a supporting hyperplane to
the function f for all points x ∈ Rm

∂f(x̃) :=
{

γ ∈ Rm

∣∣∣∣ f(x) ≤ f(x̃) + γ⊤(x− x̃), ∀x ∈ Rm
}
. (2.30)

A simple subgradient method iteratively updates the dual variables to convergence
towards the optimal value by taking steps in subgradient directions. To do this, one
first initializes the dual variables u0. Then, evaluate the Lagrangian dual function
with the current dual variables in order to get a lower bound; see Section 2.2. Next,
one calculates a subgradient γs to the Lagrangian dual function, to determine the
step direction. Next, one determines the step length δs, to know how far one shall
step in the subgradient direction. Lastly, one updates the dual variables with step
length times the subgradient γs. This continues until some stopping criteria has
been met [2, Chapter 17].

The convergence rate will depend on the choice of step length. For many choices of
step lengths, subgradient methods will zigzag its way towards optimum. Zigzagging
patterns are correlated with a slow convergence. There are several ways to speed
up the convergence. First, one can use conditional subgradients. If the current dual

16

2. Theory

variable u is at the boundary of the feasible region for the dual variables, and if the
subgradient is pointing out of the set; the conditional subgradient will project back
the subgradient to the set of feasible directions, before calculating the step length.
This can yield a larger step length, and increase the speed of convergence.

Another way is to use modified deflected subgradients (MDS). This is a combination
of average direction strategy (ADS) and modified gradient technique (MGT). MDS
uses a convex combination of the previous step direction and the current subgradient
direction [9]. This decreases the zigzagging pattern and can converge more directly
towards an optimal solution [9]. This indicates a faster convergence.

To use this method, we first determine the Lagrangian dual function for the problem,
i.e., g(u), as defined in (2.4). Then we initialize the step direction v0 and the step
length α0.

First, we determine the parameter βs according to

βs :=
[
− (γs)⊤vs−1

∥γs∥ ∥vs−1∥

]
+
, (2.31)

where γs is the current iteration’s subgradient, vs−1 is the previous iterations step
direction, || · || is the L2-norm and [x]+ := max {0,x}. Then we determine the
parameter ηs ∈ [0.5, 1] as

ηs := 1
2− βs

, (2.32a)

as well as the step lengths for ADS, MGT and MDS, according to

Γs
ADS := ∥γs∥

∥vs−1∥
, (2.32b)

Γs
MGT :=

−ηs
(γs)⊤vs−1∥∥∥vs−1

∥∥∥2


+

(2.32c)

and
Γs

MDS := (1− βs)Γs
MGT + βsΓs

ADS, (2.32d)
respectively. From this in accordance with MDS, the current iteration’s step direc-
tion is determined as

vs := γs + Γs
MDSvs−1, (2.33)

as well as the step length according to the Polyak step length rule

δs :=
αs

(
z̄ − g(us)

)
∥vs∥2 . (2.34)

Finally, the dual variables are updated as

us+1 := us + δsv
s (2.35)

and are then projected onto the feasible region.

17

2. Theory

2.7 An algorithm for solution of the assignment
subproblems

Assignment solving algorithms are special solution methods used to solve assignment
problems. The main characteristic of a 2D assignment problem is that there are two
groups of objects and each object is to be assigned to one object in the other group.
However, there are variants of assignment problems with slight differences in how
the objects are allowed to be assigned. The 2D assignment problem can be expressed
as a matrix, where one group of objects is represented by the rows and the other
group by the columns. If a row is connected to a column, then this connection is
represented by a 1 in the assignment matrix. If there is no connection the element
is 0 in the assignment matrix. One variant is square assignment problems where
the number of rows and columns are the same. For this variant, each row and
column has to sum to one. Another variant is rectangular assignment problems
where the number of rows and columns are not equal, meaning that each object
cannot be assigned to exactly one other. For this variant, each row has to sum to
one if the number of rows is smaller than the number of columns and vice versa.
Some algorithms work for both square and rectangular problems while others only
work for one type. The Jonker-Volgenant-Castanon (JVC) algorithm is one such
algorithm which solves both square and rectangular assignment problems. The
JVC algorithm uses graph theory and a smart initialization in order to solve the
assignment problem. In theory, the complexity of the JVC algorithm is O(n3) but
in practice it is much faster [10].

18

3
Implementation

This section presents in detail how the two methods ADMM and MDS are applied
to the given optimization problem (1.7). Code for the two methods, link to all
instances used, can be found in Appendix C.

3.1 An initialization heuristic
For the Polyak step length rule, we need an upper bound. The heuristic iterative
solves the T assignment problems. In the next iteration s, it changes the cost matrix
based on the previous solution to the assignment problems. For every element dk,i,j

besides the dummy variables, we add the switching penalty times the value of a
function evaluated in the previous iteration s− 1:

f(ws−1
k,i,j) =


1− ws−1

k+1,i,j − 10−3, if k = 1, (i, j) ∈ Î
1− ws−1

k−1,i,j − ws−1
k+1,i,j − 10−3, if k ∈ K̂ \ {1}, (i, j) ∈ Î

1− ws−1
k−1,i,j − 10−3, if k = T, (i, j) ∈ Î

0, ∀k ∈ K, (i, j) /∈ Î

(3.1)

and then solve

W s := argmin
W

T∑
k=1

nX +1∑
i=1

nY +1∑
j=1

(
dk,i,j + µp

2 f(ws−1
k,i,j)

)
wk,i,j (3.2a)

subject to Wk ∈ W , k ∈ K (3.2b)

The function value is multiplied with the switching penalty µp/2, in order to com-
pensate for switching assignments between time steps. A small constant 10−3 is
subtracted from the function. This makes sure that when solving, it is cheaper to
assign a ground truth to something that does exist instead of assigning them both
to dummies. This is done in order to avoid getting stuck in suboptimal solutions
where too much is assigned to dummies.

As one can see, if the neighboring time steps ws−1
k−1,i,j = 1 and ws−1

k+1,i,j = 1 were
assigned as such for some i and j in the previous iteration, it makes it cheaper to
assign ws

k,i,j = 1 in the currant iteration.

19

3. Implementation

The heuristic is terminated when the assignment matrix is the same in two adjacent
iterations, W s = W s−1, or after T iterations. After termination, the number of
track switches is determined. This yields an upper bound z̄ on the optimal value z⋆,
which can be used in Polyak step length. For initialization to ADMM, the output
is instead the solution W̄ and H̄, which can be used to calculate Φ̄ and Ψ̄.

3.2 Implementation of the ADMM
Consider the optimization problem (1.7). Since ADMM applies to equality con-
straints, we rewrite the two inequality constraints into equality constraints. We add
a non-negative slack variable to each of the constraints (1.7c) and (1.7d). Also, we
add a non-negativity constraint to the help variable hk,i,j, such that we get

hk,i,j = wk,i,j − wk+1,i,j + ϕk,i,j, k ∈ K̂, (i, j) ∈ Î, (3.3a)
hk,i,j = wk+1,i,j − wk,i,j + ψk,i,j, k ∈ K̂, (i, j) ∈ Î, (3.3b)
ϕk,i,j ≥ 0, k ∈ K̂, (i, j) ∈ Î, (3.3c)
ψk,i,j ≥ 0, k ∈ K̂, (i, j) ∈ Î, (3.3d)
hk,i,j ≥ 0, k ∈ K̂, (i, j) ∈ Î. (3.3e)

ADMM also requires the feasible set to be convex, therefore the non-convex assign-
ment set W is LP relaxed to the convex set W . Using the definition presented in
(2.18), the augmented Lagrangian can be written as

Lρ(W,H,Φ,Ψ,Λ,Ξ) =
T∑

k=1

nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j + µp

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

hk,i,j

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

λk,i,j

(
wk,i,j − wk+1,i,j − hk,i,j + ϕk,i,j

)

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

ξk,i,j

(
wk+1,i,j − wk,i,j − hk,i,j + ψk,i,j

)

+ ρ

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

(
wk,i,j − wk+1,i,j − hk,i,j + ϕk,i,j

)2

+ ρ

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

(
wk+1,i,j − wk,i,j − hk,i,j + ψk,i,j

)2
(3.4a)

ϕk,i,j ≥ 0, k ∈ K̂, (i, j) ∈ Î, (3.4b)
ψk,i,j ≥ 0, k ∈ K̂, (i, j) ∈ Î, (3.4c)
hk,i,j ≥ 0, k ∈ K̂, (i, j) ∈ Î, (3.4d)

where λk,i,j are free dual variables for constraint (3.3a) and ξk,i,j are free dual vari-
ables for constraint (3.3b). Then, we form the subproblems where each subproblem
will be solved sequentially. First, we update the assignment variables in every time

20

3. Implementation

step k ∈ K and get the update

W s+1
1 := argmin

W1∈W
Lρ

(
W1,W

s
2 , ...,W

s
T , H

s,Φs,Ψs,Λs,Ξs
)

(3.5a)

W s+1
k := argmin

Wk∈W
Lρ

(
W s+1

1 , ..,W s+1
k−1 ,Wk,W

s
k+1, ...,W

s
T , H

s,

Φs,Ψs,Λs,Ξs
)
, k ∈ K̂ \ {1} (3.5b)

W s+1
T := argmin

WT ∈W
Lρ

(
W s+1

1 , ...,W s+1
T −1,WT , H

s,Φs,Ψs,Λs,Ξs
)
. (3.5c)

The updates involve solving T assignment problems with some quadratic objective
term, more specifically the subproblem for updating Wk looks like

Lρ

(
W s+1

1 , ...,W s+1
k−1 ,Wk,W

s
k+1, ...,W

s
T , H

s,Φs,Ψs,Λs,Ξs
)

=
nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j +
nX∑
i=1

nY∑
j=1

(− λs
k−1,i,j + λs

k,i,j + ξs
k−1,i,j

− ξs
k,i,j − 2ρ · ws+1

k−1,i,j − 2ρ · ws
k+1,i,j − ρ · ϕs

k−1,i,j + ρ · ϕs
k,i,j

+ ρ · ψs
k−1,i,j − ρ · ψs

k,i,j

)
wk,i,j + 2ρ · w2

k,i,j

+ CW
k , k ∈ K̂ \ {1}, (3.6)

where CW
k is some constant that does not depend on Wk. The problems for W1 and

WT look the same, but without some of the constants before the linear term. They
are all quadratic which means that the update steps involve solving an assignment
problem with a quadratic objective function, which are hard to solve. Instead we use
the theory in Section 2.4 and since the quadratic term can be rewritten as W⊤

k QWk

where Q = 2ρI, where I is the identity matrix. Since Wk is binary and Q is diagonal
(2.16) holds and the quadratic and linear problems are equivalent. The update for

21

3. Implementation

the assignment variables W can be written as

W s+1
1 := argmin

W1∈W


nX +1∑
i=1

nY +1∑
j=1

d1,i,jw1,i,j +
nX∑
i=1

nY∑
j=1

(λs
1,i,j − ξs

1,i,j

−2ρ · ws
2,i,j + ρ · ϕs

1,i,j − ρ · ψs
1,i,j + 2ρ

)
w1,i,j

+ CW
1

 (3.7a)

W s+1
k := argmin

Wk∈W


nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j +
nX∑
i=1

nY∑
j=1

(− λs
k−1,i,j + λs

k,i,j + ξs
k−1,i,j

− ξs
k,i,j − 2ρ · ws+1

k−1,i,j − 2ρ · ws
k+1,i,j − ρ · ϕs

k−1,i,j + ρ · ϕs
k,i,j

+ρ · ψs
k−1,i,j − ρ · ψs

k,i,j + 2ρ
)
wk,i,j

+ CW
k

 , k ∈ K̂ \ {1} (3.7b)

W s+1
T := argmin

WT ∈W


nX +1∑
i=1

nY +1∑
j=1

dT,i,jwT,i,j +
nX∑
i=1

nY∑
j=1

(− λs
T −1,i,j + ξs

T −1,i,j

−2ρ · ws+1
T −1,i,j + ρ · ψs

T −1,i,j − ρ · ϕs
T −1,i,j + 2ρ

)
wT,i,j

+ CW
T

 . (3.7c)

The updates for H, Φ, and Ψ are all very similar, they involve minimizing a convex
quadratic function over some convex set. Their update rule looks like

Hs+1 := argmin
H≥0

Lρ(W s+1, H,Φs,Ψs,Λs,Ξs) (3.8a)

Φs+1 := argmin
Φ≥0

Lρ(W s+1, Hs+1,Φ,Ψs,Λs,Ξs) (3.8b)

Ψs+1 := argmin
Ψ≥0

Lρ(W s+1, Hs+1,Φs+1,Ψ,Λs,Ξs) (3.8c)

and more specifically, for H we have that

Lρ

(
W s+1, Hs+1

1 , ..., Hs+1
k−1, Hk, H

s
k+1, ..., H

s
T −1,Φs,Ψs,Λs,Ξs

)
=

nX∑
i=1

nY∑
j=1

(µp

2 − λ
s
k,i,j − ξs

k,i,j − ρ · ϕs
k,i,j − ρ · ψs

k,i,j

)
hk,i,j

+ ρ · h2
k,i,j

+ CH
k , k ∈ K̂ \ {1}, (3.9)

which means that the update rule for H is separable with respect to k, i and j. This
means that the update of H is done by finding the minimum to a quadratic function
with the constraint that the variable has to be positive. The update then becomes

22

3. Implementation

the derivative of the function (3.9) projected onto the positive real line as

hs+1
k,i,j =

[
µp

4ρ −
1
2ρ(λs

k,i,j + ξs
k,i,j)−

1
2(ϕs

k,i,j + ψs
k,i,j)

]
+
, k ∈ K̂, (i, j) ∈ Î (3.10a)

ϕs+1
k,i,j =

[1
ρ
λs

k,i,j + ws+1
k,i,j − ws+1

k+1,i,j − hs
k,i,j

]
+
, k ∈ K̂, (i, j) ∈ Î (3.10b)

ψs+1
k,i,j =

[1
ρ
ξs

k,i,j − ws+1
k,i,j + ws+1

k+1,i,j − hs
k,i,j

]
+
, k ∈ K̂, (i, j) ∈ Î. (3.10c)

Finally, the dual variables are updated, their update rule is given in (2.19d) and
when it is applied to our problem it gives

λs+1
k,i,j := λs

k,i,j + ρ(ws+1
k,i,j − ws+1

k+1,i,j − hs+1
k,i,j + ϕs+1

k,i,j), k ∈ K̂, (i, j) ∈ Î, (3.11a)
ξs+1

k,i,j := ξs
k,i,j + ρ(ws+1

k+1,i,j − ws+1
k,i,j − hs+1

k,i,j + ψs+1
k,i,j), k ∈ K̂, (i, j) ∈ Î. (3.11b)

The whole algorithm can then be summarized as Algorithm 1 where the update

Algorithm 1: ADMM
Data: X ,Y
Result: z⋆

Initializing using heuristic, see Section 3.1
while Termination criteria not reached do

Update W
Update H
Update Φ
Update Ψ
Update Λ
Update Ξ

end

rules are as stated previously. The only things left are to formulate the termination
criteria and verify convergence. As stated in Section 2.5 there are two termination
criteria that have to be fulfilled in order to allow for termination. The termination
criteria state that the problem has to be both primal and dual feasible, meaning that
both the primal and dual residuals have to be small enough. The primal feasibility
states that the solution has to be feasible in the primal problem, i.e., the problem
before the constraints were relaxed. The primal feasibility conditions look like

0 = w⋆
k,i,j − w⋆

k+1,i,j − h⋆
k,i,j + ϕ⋆

k,i,j, k ∈ K̂, (i, j) ∈ Î (3.12a)
0 = w⋆

k+1,i,j − w⋆
k,i,j − h⋆

k,i,j + ψ⋆
k,i,j, k ∈ K̂, (i, j) ∈ Î. (3.12b)

We can then introduce the primal residual r and let it be defined by the right-hand
side of these two equations. More specifically it will be defined as

rs
1,k,i,j := ws

k,i,j − ws
k+1,i,j − hs

k,i,j + ϕs
k,i,j (3.13a)

rs
2,k,i,j := ws

k+1,i,j − ws
k,i,j − hs

k,i,j + ψs
k,i,j (3.13b)

23

3. Implementation

for k ∈ K̂, (i, j) ∈ Î and the termination criteria for the primal feasibility can then
be formulated as ∥ rs ∥< ϵprimal. Here ϵprimal is the primal tolerance and it is defined
as ϵprimal := ϵabs ·

√
2 · (T − 1) · nX · nY where ϵabs is some absolute tolerance and the

square root is to compensate for the dimension that the residual resides in.

The dual feasibility conditions look like

0 ∈∂
(
d1,i,jw

⋆
1,i,j

)
+ λ⋆

1,i,j − ξ⋆
1,i,j, (i, j) ∈ Î

(3.14a)

0 ∈∂
(
dk,i,jw

⋆
k,i,j

)
+ λ⋆

k,i,j − ξ⋆
k,i,j − λ⋆

k−1,i,j + ξ⋆
k−1,i,j, k ∈ K̂ \ {1}, (i, j) ∈ Î

(3.14b)

0 ∈∂
(
dT,i,jw

⋆
T,i,j

)
− λ⋆

T −1,i,j + ξ⋆
T −1,i,j, (i, j) ∈ Î

(3.14c)

0 ∈∂
(
µp

2 h
⋆
k,i,j

)
− λ⋆

k,i,j − ξ⋆
k,i,j, k ∈ K̂, (i, j) ∈ Î

(3.14d)

0 ∈∂
(

0 · ϕ⋆
k,i,j

)
+ λ⋆

k,i,j, k ∈ K̂, (i, j) ∈ Î
(3.14e)

0 ∈∂
(

0 · ψ⋆
k,i,j

)
+ ξ⋆

k,i,j, k ∈ K̂, (i, j) ∈ Î.
(3.14f)

We have by definition that Ψs+1 minimizes Lρ(W s+1, Hs+1,Φs+1,Ψ,Λs,Ξs) and
therefore

0 ∈ ∂
(

0 · ψs+1
k,i,j

)
+ ξs

k,i,j + ρ
(
ws+1

k+1,i,j − ws+1
k,i,j − hs+1

k,i,j + ψs+1
k,i,j

)
= ∂

(
0 · ψs+1

k,i,j

)
+ ξs

k,i,j + ρrs+1
2,k,i,j

= ∂
(

0 · ψs+1
k,i,j

)
+ ξs+1

k,i,j, k ∈ K̂, (i, j) ∈ Î.

This means that Ψs+1 and Ξs+1 always satisfy (3.14f); the same calculations can be
done for Φs+1 and (3.14e) resulting in the same conclusion for Φs+1 and Λs+1, which
can be seen in Appendix A. Then we continue with Hs+1 and (3.14d) and get

0 ∈∂
(
µp

2 h
s+1
k,i,j

)
− λs

k,i,j − ξs
k,i,j − ρ

(
ws+1

k,i,j − ws+1
k+1,i,j − hs+1

k,i,j + ϕs
k,i,j

)
− ρ

(
ws+1

k+1,i,j − ws+1
k,i,j − hs+1

k,i,j + ψs
k,i,j

)

=∂
(
µp

2 h
s+1
k,i,j

)
− λs+1

k,i,j − ξs+1
k,i,j

− ρ
(
− ϕs+1

k,i,j + ϕs
k,i,j − ψs+1

k,i,j + ψs
k,i,j

)
, k ∈ K̂, (i, j) ∈ Î.

24

3. Implementation

This is not always fulfilled, however it is fulfilled if ρ(−ϕs+1
k,i,j +ϕs

k,i,j−ψs+1
k,i,j +ψs

k,i,j) ∈
∂
(

µp

2 h
s+1
k,i,j

)
− λs+1

k,i,j − ξs+1
k,i,j for k ∈ K̂, (i, j) ∈ Î. We get similar expressions for W

and in the end, we have

ρ
(
− 2ws+1

2,i,j + 2ws
2,i,j + ϕs+1

1,i,j − ϕs
1,i,j − ψs+1

1,i,j + ψs
1,i,j

)
∈ ∂

(
d1,i,jw

s+1
1,i,j

)
+ λs+1

1,i,j − ξs+1
1,i,j, (i, j) ∈ Î (3.15a)

ρ
(
− 2ws+1

k+1,i,j + 2ws
k+1,i,j − ϕs+1

k−1,i,j + ϕs
k−1,i,j + ψs+1

k−1,i,j − ψs
k−1,i,j

+ ϕs+1
k,i,j − ϕs

k,i,j − ψs+1
k,i,j + ψs

k,i,j

)
∈ ∂

(
dk,i,jw

s+1
k,i,j

)
+ λs+1

k,i,j − ξs+1
k,i,j

− λs+1
k−1,i,j + ξs+1

k−1,i,j, k ∈ K̂ \ {1}, (i, j) ∈ Î (3.15b)

ρ
(
− ϕs+1

T −1,i,j + ϕs
T −1,i,j + ψs+1

T −1,i,j − ψs
T −1,i,j

)
∈ ∂

(
dT,i,jw

s+1
T,i,j

)
− λs+1

T −1,i,j + ξs+1
T −1,i,j, (i, j) ∈ Î (3.15c)

ρ
(
− ϕs+1

k,i,j + ϕs
k,i,j − ψs+1

k,i,j + ψs
k,i,j

)
∈ ∂

(
µp

2 h
s+1
k,i,j

)
− λs+1

k,i,j − ξs+1
k,i,j, k ∈ K̂, (i, j) ∈ Î, (3.15d)

for W s+1
1 ,W s+1

k ,W s+1
T , and Hs+1, respectively; the calculations for the rest can be

seen in Appendix A. From these equations, we wish to construct the dual residual
q, instead of letting all these expressions go to zero we can let their parts go to zero.
We note that all formulas in (3.15) include some difference of the variables W , Φ,
and Ψ; therefore instead of letting (3.15) go to zero, we can let their parts go to
zero. We construct q1, q2, and q3 to be the difference between two iteration steps s
and s+ 1 for W , Φ, and Ψ, like

qs+1
1,k,i,j :=

{
ws+1

k,i,j − ws
k,i,j, if k ∈ K \ {1}, (i, j) ∈ Î,

0, if k = 1, (i, j) ∈ Î,
(3.16a)

qs+1
2,k,i,j :=

{
ϕs+1

k,i,j − ϕs
k,i,j, if k ∈ K \ {T}, (i, j) ∈ Î,

0, if k = T, (i, j) ∈ Î,
(3.16b)

qs+1
3,k,i,j :=

{
ψs+1

k,i,j − ψs
k,i,j, if k ∈ K \ {T}, (i, j) ∈ Î,

0, if k = T, (i, j) ∈ Î.
(3.16c)

Let Q = (q1,k,i,j, q2,k,i,j, q3,k,i,j | k ∈ K, (i, j) ∈ Î). The termination criteria for
the dual feasibility can then be formulated in the same way as for the primal,
as ∥ Qs ∥< ϵdual. In the same way as for the primal, ϵdual is the dual tolerance
and it is defined as ϵdual := ϵabs ·

√
3 · (T − 1) · nX · nY . Finally, we will check the

25

3. Implementation

termination criteria. Assumptions 2.5.1 and 2.5.2 state that the functions that make
up the objective function are closed, proper, and convex and that the unaugmented
Lagrangian has a saddle point. The objective function (1.7) is a sum of other
functions which are separable with respect to the variables. The functions are all
linear which means that they are all convex. A proper convex function has a non-
empty domain, is never −∞, and has at least one point that is not∞. All functions
are linear, all variables are larger than or equal to zero and the slope of the functions
is positive since dk,i,j ≥ 0 and µp/2 ≥ 0. This means that the functions never take the
value −∞. A point which has a function value that is not ∞, can be, for example,
by assigning all ground truths i ∈ {1, ...nX} to dummy estimate nY + 1, and all
estimates j ∈ {1, ..., nY} to dummy ground truth nX + 1. Since this is interpreted
as leaving everything unsigned, there will be no track switches - therefore switching
cost is 0. Also, since 0 ≤ dk,i,j ≤ cp/2, it will generate a finite function value for our
case, as long as cp < ∞. As a result, we know that our functions are proper and
convex which means we can use the fact that closed and lower semi-continuous are
analogous to proper convex functions [11]. We know the functions are linear which
means they are continuous which is stronger than lower semi-continuous, therefore
the functions are closed, proper, and convex.

In order to prove we have a saddle point, we use the definition, that if the Hessian
matrix to the function is indefinite at some point then the function has a saddle
point at that point [12]. The Hessian is a matrix of the second-order derivatives of
the function, it is symmetric by definition. In our case the unaugmented Lagrangian
is

L0(W,H,Φ,Ψ,Λ,Ξ) =
nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j + µp

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

hk,i,j

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

λk,i,j

(
wk,i,j − wk+1,i,j − hk,i,j + ϕk,i,j

)

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

ξk,i,j

(
wk+1,i,j − wk,i,j − hk,i,j + ψk,i,j

)
(3.17)

which means that the Hessian for our function will be symmetric with a zero diagonal
since our function is linear with respect to any one variable. In order to show that
the Hessian is indefinite we wish to calculate the eigenvalues since, by definition, a
matrix that is indefinite has both positive and negative eigenvalues [12]. We also
know that the trace which is the sum of the diagonal of a matrix equals the sum of
the eigenvalues [12]. The diagonal is zero which means that the sum of eigenvalues is
zero. Unless every eigenvalue is zero, there exist some eigenvalues that are positive
and some that are negative such that they sum to zero. We also know from Cholesky
decomposition that a positive semidefinite matrix can be written as U⊺U , where U is
an upper triangular matrix where the elements on the diagonal are allowed to be zero
[13]. If we assume this holds for our case then we have no negative eigenvalues and
thus all eigenvalues are zero. However if it doesn’t hold then at least one eigenvalue
is negative and since all eigenvalues sum to zero, at least one has to be positive.
We assume it holds and try to construct some matrix U such that U⊺U equals our

26

3. Implementation

Hessian. We know that our Hessian has a zero diagonal and the diagonal of U⊺U
is the inner product of U with itself, meaning U has to be the zero matrix for it to
hold, which means that the Hessian also has to be zero which it is not. It therefore
holds that the Hessian is not positive semidefinite, and therefore along with the fact
that the eigenvalues sum up to zero we can prove that the Hessian has positive and
negative eigenvalues and therefore that the unaugmented Lagrangian has a saddle
point.

This means that if there exist two sets such that any two matrices in the same set are
orthogonal then the multi-block ADMM converges, see Section 2.5. The matrices
come from (3.3a) and (3.3b) which can be represented as matrices. It is easy to
realize that the vectors representing wk,i,j and wk+1,i,j are not orthogonal. This
means that these two cannot be in the same set. It is also easy to realize that the
vector for ϕk,i,j is not orthogonal with either wk,i,j or wk+1,i,j, which means it cannot
be in the same set as either one of them. This means that the sufficient condition
does not hold and we cannot guarantee that multi-block ADMM converges.

It is possible that there exists some range for ζ such that our problem converges for
the variant of multi-block ADMM. This is however nothing we have confirmed.

3.2.1 ADMM initialization and parameters

ADMM is initialized using the heuristic defined in Section 3.1, which determine the
values for W and H. From this, we can calculate Φ using (3.3a) and Ψ using (3.3b).

ADMM is run with varying values of the parameter ρ; it starts with ρ = 20 and
is multiplied with a factor of 2 if the dual and primal residuals are more than a
factor 10 apart. If the dual residual is more than a factor 10 larger than the primal
residual then ρ is divided by 2. If the primal residual is more than 10 times as large
as the dual residual, then ρ is multiplied by 2. We introduce the parameter ζ in the
dual update step and let ζ = 1 for all runs. The termination criteria is that both
the primal and dual residuals have to be small enough; the absolute tolerance for
the two of them is set to ϵabs = 10−4.

3.2.2 ADMM bridges

The main drawback with ADMM is that it is slow to converge, however, there are
ways to speed up the convergence. For example, letting ρ vary between iterations
or using a smart initialization in order to start at something close to the optimum.
We also tried another implementation of ADMM where we introduced redundant
constraints and then relaxed them. We saw that ADMM converged slowly and our
hypothesis was that since the relaxed constraints only connect to neighboring time
steps, it results in a slow flow of information. In order to speed up the flow of
information, we introduce some new constraints where time steps further away are
connected with each other. This can be done by combining two constraints in (3.3a),

27

3. Implementation

for k = l and k = l + 1, namely

hl,i,j = wl,i,j − wl+1,i,j + ϕl,i,j, (i, j) ∈ Î, (3.18a)
hl+1,i,j = wl+1,i,j − wl+2,i,j + ϕl+1,i,j, (i, j) ∈ Î. (3.18b)

By adding these two equations we find that the wl+1,i,j terms cancel each other while
wl,i,j and wl+2,i,j remain. This is known as telescoping [14] and can be done for any
number of time steps

0 = wl,i,j − wl+m,i,j +
m−1∑
n=0

(
ϕl+n,i,j − hl+n,i,j

)
, (i, j) ∈ Î, (3.19)

and results in a direct connection between time step l and m + l, we call these
constraints bridges. The downside of this is that all the added constraints have to
be relaxed and this introduces a new dual variable for each such constraint.

3.3 A modified deflected subgradient method
Consider the optimization problem (1.7). We Lagrangian relax the two constraints
(1.7c) and (1.7d) and multiply them with the non-negative dual variables, λk,i,j and
ξk,i,j, respectively, to get the Lagrangian function

L(W,H,Λ,Ξ) =
T∑

k=1

nX +1∑
i=1

nY +1∑
j=1

dk,i,jwk,i,j + µp

2

T −1∑
k=1

nX∑
i=1

nY∑
j=1

hk,i,j

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

λk,i,j

(
wk,i,j − wk+1,i,j − hk,i,j

)

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

ξk,i,j

(
wk+1,i,j − wk,i,j − hk,i,j

)
(3.20)

where W ∈ W and Λ,Ξ ≥ 0. Rearranging the expression above, the Lagrangian
function can be written as

L(W,H,Λ,Ξ) =
nX∑
i=1

nY∑
j=1

(
d1,i,j + λ1,i,j − ξ1,i,j

)
w1,i,j

+
T −1∑
k=2

nX∑
i=1

nY∑
j=1

(
dk,i,j + λk,i,j − ξk,i,j − λk−1,i,j + ξk−1,i,j

)
wk,i,j

+
nX∑
i=1

nY∑
j=1

(
dT,i,j − λT −1,i,j + ξT −1,i,j

)
wT,i,j

+
T −1∑
k=1

nX∑
i=1

nY∑
j=1

(
µp

2 − λk,i,j − ξk,i,j

)
hk,i,j

+
T∑

k=1

 nX +1∑
i=1

dk,i,nY +1wk,i,nY +1 +
nY +1∑
j=1

dk,nX +1,jwk,nX +1,j

. (3.21)

28

3. Implementation

Since hk,i,j is a free variable in the Lagrangian function, we can conclude that in
order for the dual problem to be optimal

µp

2 − λk,i,j − ξk,i,j = 0, k ∈ K̂, (i, j) ∈ Î (3.22)

must hold or else, hk,i,j will take values ±∞, which cannot be optimal in a bounded
solution. From this expression, we can simplify the Lagrangian function into one
set of dual variables, where we know that

0 ≤ λk,i,j ≤
µp

2 , k ∈ K̂, (i, j) ∈ Î. (3.23)

Using (3.22), the Lagrangian dual function can then be simplified into

g(Λ) = minimium
W ∈W


nX∑
i=1

nY∑
j=1

(
d1,i,j + 2 · λ1,i,j −

µp

2

)
w1,i,j

+
T −1∑
k=2

nX∑
i=1

nY∑
j=1

(
dk,i,j + 2 · λk,i,j − 2 · λk−1,i,j

)
wk,i,j

+
nX∑
i=1

nY∑
j=1

(
dT,i,j − 2 · λT −1,i,j + µp

2

)
wT,i,j

+
T∑

k=1

 nX +1∑
i=1

dk,i,nY +1wk,i,nY +1 +
nY +1∑
j=1

dk,nX +1,jwk,nX +1,j


(3.24)

where the dual function can be separated into T assignment subproblems. We get
the Lagrangian dual problem

g⋆ := maximize
0≤λk,i,j≤ µp

2

{
g(Λ)

}
. (3.25)

In order to maximize the Lagrangian dual function g, we utilize the modified de-
flected subgradient. First, we initialize the dual variables λk,i,j to µp/4, which is
equivalent to solving each assignment problem k, without any switching penalty.
Then, we solve T assignment subproblems. We calculate a subgradient, γ, given the
solutions to the subproblems, as

γk,i,j = wk+1,i,j − wk,i,j, k ∈ K̂, (i, j) ∈ Î, (3.26)

where each element in the subgradient to the simplified Lagrangian dual function
will be the difference between assignment in the next time step k + 1 and current
time step k.

Then, we use conditional subgradients [15], where the step direction is projected
onto the tangent cone of the feasible region at the current point λk,i,j, such that any
small enough positive step will lead to a feasible point. If λk,i,j = 0 and γk,i,j < 0,
then γk,i,j is projected like γk,i,j = 0. If λk,i,j = µp

2 and γk,i,j > 0, then similarly γk,i,j

is projected onto a feasible direction, like γk,i,j = 0. Then, we repeat the projection

29

3. Implementation

for step direction v. Next, we update the step direction v, this is done using (2.31)
– (2.33). Then, we determine the step length according to Polyak step length rule;
see (2.34).

Finally, we update our dual variables according to (2.35) and project back to the
feasible region, an operation which is similar to the computation of the conditional
subgradient direction. Namely, if λk,i,j < 0 we set λk,i,j = 0, and if λk,i,j >

µp

2 , we
set λk,i,j = µp

2 .

Algorithm 2: Modified deflected subgradient
Data: X ,Y
Result: z
Calculate D, z̄
Initializing Λ, v, α
while Termination criteria not reached do

Update W
Calculate L(W,Λ), γ(W)
if L(W,Λ) > z then

z ← L(W,Λ)
end
Calculate β, η, ΓADS, ΓMGT, ΓMDS
if Updating criteria fullfilled then

Update α
end
Calculate v, δ
Update Λ

end

3.3.1 Subgradient initialization and parameters
The upper bound is calculated ones using the heuristic defined in Section 3.1. Dual
variables are initialized to µp/4, which is equivalent to solving each assignment
problem T , without any switching penalty. The Subgradient method is run with an
initial α = 0.7 which is decreased by a factor of 0.5 every 20 iterations if there is
no improvement to the lower bound. The algorithm has three termination criteria.
Firstly, if α becomes smaller than 10−3. Secondly, if the absolute difference between
the upper and lower bound becomes smaller than 0.5. Thirdly, if the percentual
increase of the lower bound is smaller than 10−6 in three consecutive updates, then
it terminates. The algorithm also terminates if the subgradient is zero, meaning the
optimum is reached by definition.

30

4
Data, tests, and results

The result covers eighteen + twenty-one instances. The eighteen instances are used
for all results except for the scalability where the twenty-one instances are used. The
twenty-one instances are only used in order to compare the time complexity between
the algorithms. Four of the eighteen instances have been selected to be presented
with results more closely. These four instances have been selected due to different
pros and cons when it comes to difficulties, to show different types of instances. The
instances are named nX _nY_T , where the first number represents the number of
ground truths, the second number represents the number of estimates and the last
number represents the number of time steps.

For scalability, seven different numbers, T , of time steps were selected. For each value
of T , three different numbers of maximum number of ground truths and estimates
were generated. The resulting twenty-one instances were only used for scalability
results (see Fig. 4.8).

The data was generated using code from Signal processing. The set X was generated
randomly; where some parameters such as number of time steps T , the birth, and
death rate of the trajectories can be specified by the user. The set Y is then generated
by running a MOT algorithm on the randomly generated set X . All data was
generated with c = 20, p = 1, and µ = 2. These are user-specific parameters and
determine how much switches are penalized and the maximum distance between
ground truth and estimate, as well as how the penalty changes with the distance.

Results are presented with the selected hyperparameters presented in Section 3.2.1
for ADMM and Section 3.3.1 for subgradient, unless other hyperparameters are
explicitly specified.

4.1 Results from the ADMM
In Fig. 4.1, the convergence of objective value, and primal and dual tolerance for
ADMM is presented. Each of the four selected instances is presented using three
graphs. The top graph in green presents how the augmented Lagrangian value
Lρ changes for each iteration, normed with the optimal objective value z⋆ for the
given instance. The solid black line at Lρ/z

⋆ = 1 indicates where the augmented
Lagrangian value Lρ = z⋆. The middle graph in pink presents how the primal
residual changes in each iteration and the dashed black line represents the primal

31

4. Data, tests, and results

tolerance for the given instance. The bottom graph in blue present how the dual
residual changes in each iteration and the dashed black line represents the dual
tolerance for the given instance.

For instance 14_18_100, see Fig. 4.1a, ADMM terminated at 10 iterations. When
termination occurred, ADMM had reached its optimal value Lρ = z⋆. For instance
20_18_200, see Fig. 4.1b, ADMM terminated at 1 iteration. When termination oc-
curred, ADMM had reached its optimal value Lρ = z⋆. For instance 23_24_200, see
Fig. 4.1c, ADMM terminated at 6 iterations. When termination occurred, ADMM
had reached its optimal value Lρ = z⋆. For instance 34_38_100, see Fig. 4.1d,
ADMM terminated at 10 iterations. When termination occurred, ADMM had not
reached its optimal value Lρ ̸= z⋆.

32

4. Data, tests, and results

(a) 14_18_100 (b) 20_18_200

(c) 23_24_200 (d) 34_38_100

Figure 4.1: Normed objective value for ADMM, together with primal and dual
residual for each iteration until termination. The dashed lines indicate primal and
dual tolerances. Observe that the axis scales differ between the three plots.

In Fig. 4.2, ADMM instance 34_38_100 but with fixed ρ = 1. ADMM terminated
after 13 iterations, when the optimal value Lρ = z⋆ was reached.

33

4. Data, tests, and results

Figure 4.2: Convergens of ADMM for instance 34_38_100, with fixed ρ = 1.

Table 4.1 includes the mean and standard deviation of computing times in seconds
for ADMM run on all 18 instances. It also includes the objective value and the
number of iterations until the termination criteria was reached. The results are
from 100 runs of the program on the same instance and time is the only thing that
deviated between runs.

Data (nX _nY_T) Mean time (s) Std time (s) Objective Value Iterations
7_8_100 0.0327 0.00416 377.416 1

11_10_100 0.0476 0.00428 716.306 1
11_12_100 0.0519 0.00788 607.404 1
14_12_100 0.0656 0.00860 885.590 1
14_13_100 0.0581 0.00555 664.185 1
14_14_100 0.150 0.00553 858.781 10
14_18_100 0.169 0.00910 1170.75 10
34_38_100 0.495 0.0120 2191.46 10
15_16_150 0.104 0.00729 988.633 1
15_16_200 0.246 0.00835 1083.50 6
15_17_200 0.138 0.00395 1249.32 1
18_17_200 0.152 0.00634 1082.22 1
20_18_200 0.180 0.0135 1266.17 1
22_21_200 0.480 0.0295 1637.46 10
23_24_200 0.396 0.00987 1708.82 6
25_22_200 0.418 0.0330 1445.26 6
27_28_200 0.730 0.0546 2055.19 10
30_26_200 0.550 0.0211 1723.17 6

Table 4.1: The mean and standard deviation of the runtime of 100 runs of ADMM
on the eighteen instances.

34

4. Data, tests, and results

In Fig. 4.3 we see the times and final values for four version of the ADMM, ADMM
with and without initialization and bridges. In Fig. 4.3a we see the logarithmized
final times normed by the time for ADMM with initialization and without bridges.
In Fig. 4.3b the final values for the four ADMMs are presented. The values are
presented as the percentual deviation from the optimal value. All algorithms except
ADMM ordinary with initialization are run with fixed ρ = 0.05, while ADMM
ordinary with initialization is run with normal varying ρ starting at ρ = 20. ADMM
with bridges requires the number of bridges to be specified, we used

√
T/2 as the

number of bridges for all instances. The blue dotted line with circles is the ordinary
ADMM with initialization and no bridges, it is used as the standard for the time
since it is the fastest over all, but it also deviates the most from the true objective,
0.175%. On the other hand, the orange dash-dotted line with stars is ordinary
ADMM without initialization which is the slowest over all, but it is stable and finds
the optimum. The green dashed line with "×" is ADMM with initialization and
bridges which is as fast as ADMM ordinary with initialization for some instances
and as slow as ADMM ordinary without initialization one some others. Finally,
the last red solid line with squares is ADMM bridges without initialization which
is slower than ADMM bridges with initialization and faster than ADMM without
bridges and initialization.

35

4. Data, tests, and results

(a) Relative values of computation times (time nor-
malized by computation time for the model with-
out bridges and with initialization). Logarithmic
scale.

(b) Final relative objective values; percentual de-
viation from the optimal values.

Figure 4.3: The computation times and best objective values found for ADMM
with and without bridges and initialization.

4.2 Results from the subgradient algorithm
In Fig. 4.4, the lower bound, upper bound, and Lagrangian objective values are
presented for the subgradient method for each of the four selected instances until
termination. The solid black lines indicate the optimal value z⋆. The red dash-
dotted line represents the upper bound given by the heuristics. The thick blue line
represents the best lower bound found, i.e. the highest value of the Lagrangian ob-
jective value. The thin green line at the bottom represents the Lagrangian objective
value in each iteration.

For instance 14_18_100, see Fig. 4.4a, the heuristic finds the optimal value; hence
z̄ = z⋆. The lower bound is constant during the first 40 iterations. After 40 itera-
tions, the Lagrangian objective value begins to improve its initial value, and starts to
update the lower bound. After 724 iterations the subgradient method is terminated.

36

4. Data, tests, and results

At termination the lower bound is 0.04% from the optimal value z⋆.

For instance 20_18_200, see Fig. 4.4b, the heuristic finds the optimal value; hence
z̄ = z⋆. The Lagrangian objective value is the same as the upper bound in the
first subgradient iteration and the subgradient method is therefore terminated. The
optimal value z⋆ is found in the first iteration, since z̄ = z.

For instance 23_24_200, see Fig. 4.4c, the heuristic finds the optimal value, hence
z̄ = z⋆. The lower bound is constant during all iterations, because the Lagrangian
objective never finds a better value than the initial value. After 202 iterations the
subgradient method is terminated. At termination the lower bound is 0.12% from
the optimal value z⋆.

For instance 34_38_100, see Fig. 4.4d, the heuristic does not find the optimal
value, hence z̄ ̸= z⋆. The upper bound is 0.18% from the optimal objective value z⋆.
The lower bound is constant during the first 40 iterations. After 40 iterations, the
Lagrangian objective value begins to find better values and start to update the lower
bound. After 1000 iterations the subgradient method is terminated. At termination
the lower bound is 0.02% from optimal value z⋆.

37

4. Data, tests, and results

(a) Instance 14_18_100 (b) Instance 20_18_200

(c) Instance 23_24_200 (d) Instance 34_38_100

Figure 4.4: Normed convergence of upper and lower bound for four different in-
stances, using the subgradient method. Note that the axis scales differ between
instances.

In Table 4.2 the value for the heuristic — which is an upper bound on the objective
value — and the subgradient value — which is a lower bound — are presented. It
also includes the number of iterations it takes the respective method to generate
the value, as well as the run time as a mean and standard deviation. The time
for both the heuristic and the subgradient are parallelized with T threads, same
with the total time presented in the table. The only times not parallelized are the
unparallelized times which are the times for running the whole algorithm without
parallelization.

The parallelized times are generated without implementing any parallelizing and are
instead generated by running the code normally and only counting the longest time
it takes to solve any of the assignment problems in that iteration. This will then
approximate running the program with T number of threads. Both the heuristic and
the subgradient method are parallelized, specifically, the T assignment problems are

38

4. Data, tests, and results

parallelized in each iteration for both of them. The times are taken as the mean
and standard deviation over 100 runs.

39

4. Data, tests, and results

H
euristic

Subgradient
Total

U
n

parallelized
D

ata
T

im
e

(s)
T

im
e

(s)
T

im
e

(s)
T

im
e

(s)
(n

X _
n

Y _
T

)
Value

Iterations
M

ean
Std

Value
Iterations

M
ean

Std
M

ean
Std

M
ean

Std
7_

8_
100

377.416
91

0.0236
0.00600

377.416
1

0.0100
0.00125

0.0337
0.00690

0.573
0.0460

11_
10_

100
716.306

96
0.0393

0.00350
716.306

1
0.0226

0.00185
0.0619

0.00473
0.686

0.0216
11_

12_
100

607.404
94

0.0386
0.00494

607.404
1

0.0212
0.00163

0.0599
0.00569

0.702
0.0357

14_
12_

100
885.590

95
0.0491

0.00420
885.590

1
0.0331

0.00238
0.0822

0.00609
0.757

0.0337
14_

13_
100

664.185
93

0.0478
0.00337

664.185
1

0.0298
0.00166

0.0776
0.00424

0.794
0.0241

14_
14_

100
858.800

87
0.0503

0.00775
858.302

142
0.147

0.0189
0.197

0.0248
1.91

0.118
14_

18_
100

1170.80
88

0.0605
0.00972

1170.30
724

0.704
0.0711

0.765
0.0759

6.95
0.345

34_
38_

100
2191.67

a
100

0.267
0.0275

2187.26
1000

4.16
0.392

4.44
0.406

22.3
1.28

15_
16_

150
988.633

141
0.0964

0.0142
988.137

119
0.186

0.0177
0.282

0.0283
3.32

0.188
15_

16_
200

1083.46
197

0.127
0.0202

1082.93
390

0.673
0.0760

0.800
0.0926

9.90
0.804

15_
17_

200
1249.32

187
0.135

0.0246
1249.32

1
0.0728

0.00663
0.208

0.0298
3.23

0.241
18_

17_
200

1082.22
189

0.151
0.0178

1082.22
1

0.0835
0.00890

0.235
0.0235

3.52
0.205

20_
18_

200
1266.17

200
0.167

0.0100
1266.17

1
0.0964

0.00537
0.263

0.0138
3.85

0.109
22_

21_
200

1637.55
190

0.207
0.0274

1635.28
1000

3.32
0.309

3.53
0.328

26.6
1.57

23_
24_

200
1708.79

181
0.230

0.0186
1706.79

202
0.783

0.0414
1.01

0.0531
9.56

0.335
25_

22_
200

1445.23
197

0.223
0.0337

1443.23
202

1.00
0.104

1.23
0.125

9.53
0.576

27_
28_

200
2055.31

200
0.361

0.0461
2051.40

835
6.35

0.692
6.71

0.725
33.0

2.02
30_

26_
200

1723.13
195

0.357
0.0210

1721.81
225

1.66
0.110

2.02
0.121

18.7
0.540

T
able

4.2:
T

he
m

ean
and

standard
deviation

ofthe
run

tim
e

of100
runsofthe

subgradientw
ith

parallelizing
on

differentinstances.
O

bserve
that

the
heuristic

value
is

the
true

optim
alvalue

for
allinstances

besides
34_

38_
100.

aT
he

optim
alobjective

value
is

2187
.67

40

4. Data, tests, and results

4.3 A comparison between the ADMM and sub-
gradient optimization

In Fig. 4.5 the mean values for 10 runs generated by the subgradient method and
ADMM are presented when terminating after a certain computation time. The x-
axis states how long time in seconds the methods are allowed to run before they are
interrupted. If the time is too short, the algorithms will not generate a value. For
some time limits, the algorithms sometimes generated values and sometimes not; in
the figures these values (when they exist) are represented by triangles. The triangles
represent the mean values of the values that were generated within that time. All
values are normed by the actual objective value for the problem.

The red line with stars represents the upper bound for the subgradient in Fig. 4.5,
in all four instances, it can be seen to decrease until it stabilizes at some value.
The upper bound stabilizes at the optimal objective value for all instances except
34_38_100 where it finds a suboptimal upper bound. The green line with "×"
represents the ADMM objective that utilizes the same heuristic that finds the upper
bound. The heuristic is used as an initial guess in ADMM, the red (upper bound)
and green (ADMM) lines can be seen to coincide a lot due to this. Finally, the

(a) Instance 14_18_100 (b) Instance 20_18_200

(c) Instance 23_24_200 (d) Instance 34_38_100

Figure 4.5: The values generated by subgradient and ADMM after some allowed
time.

blue line with circles represents the lower bound from the subgradient method.

41

4. Data, tests, and results

Note that the first values for the lower bound take longer time to generate than
the upper bound and the ADMM objective. This is since the subgradient method
that produces the lower bound requires an upper bound in order to choose a step
length, meaning the algorithm cannot begin to update the lower bound before it
has an upper bound. The lower bound behaves a bit different for the four different
instances; for the instances 14_18_100 and 34_38_100, see Figs. 4.5a and 4.5d,
the lower bound starts at some smaller value and increases towards the optimum
value. For instance 20_18_200 (see Fig. 4.5b) on the other hand, the initial lower
bound equals the optimal value, and optimality is verified as soon as the initial lower
bound is computed. Finally for the instance 23_24_200 (see Fig. 4.5c), the first
lower bound detected is suboptimal and is never updated in the allowed computing
time.

The final values from the ADMM and the subgradient method can be found in
Fig. 4.6, where the objective value for ADMM and the upper and lower bound for
the subgradient are presented for all 18 instances. All values are normed by the
optimal value for that instance. The green dashed line with "×" is the objective
value of ADMM at termination; it finds the optimal value for all instances except
instance 34_38_100. The red dash-dotted line with stars is the upper bound from
the subgradient method; like the ADMM, it finds the optimal value for all instances
except 34_38_100. The blue dotted line with circles is the lower bound from the
subgradient method; compared to the others, which only miss the optimal value for
one of the eighteen instances, it misses it a total of ten times.

Figure 4.6: Normed values for obtained upper and lower bounds with subgradient
and ADMM objective values, for all eighteen instances.

In Fig. 4.7 the total time for all 18 instances for unparallelized and parallelized sub-
gradient method, as well as ADMM can be found. The total time is normed with
the time for ADMM for each individual instance, and then and logarithmized. The

42

4. Data, tests, and results

red solid line with dots at the top represents the time for unparallelized subgradi-
ents. The blue dash-dotted line with triangles in the middle represents the time for
parallelized subgradients. Finally, the dashed green line with stars at the bottom
represents the time for ADMM.

Figure 4.7: The total mean time for ADMM and unparallelized as well as paral-
lelized subgradient method, normed with the total mean time of ADMM for each
instance. All values are logarithmic.

In Fig. 4.8 the time performance is presented for the algorithms as a function of the
number of time steps T for three values of nmax, where nmax is the maximum of nX
and nY. Note that the instance with nmax = 12 and T = 70 takes a long time to
solve for all three methods. Each value is the mean from ten runs of the algorithm
at hand applied to the respective instance.

(a) ADMM (b) Parallelized subgradient (c) Unparallelized subgradi-
ent

Figure 4.8: Plots of how the time of each method changes with the value of T .

43

4. Data, tests, and results

44

5
Discussion

5.1 Heuristic

For all of the eighteen + twenty-one instances, the heuristic found the optimal value
within T iterations for all instances, besides 34_38_100. This indicates that the
heuristic works well for the problem at hand. It is indeed a heuristic and not an
optimizing algorithm, since we found an example where it did not find the optimal
value. There were some instances where both algorithms found the optimal value
in one iteration. Here the heuristic found the optimal value and then either ADMM
or the subgradient method can be used to verify that the objective value from the
heuristic is indeed the optimal value. For these cases, a large proportion of the total
time is used to run the heuristic; see Table 4.2. Although, since we knew the optimal
value from the heuristic, we were able to break after one iteration, meaning it is still
faster to use the heuristic, see Fig. 4.3a.

For subgradient, we tried with a simpler heuristic which provided us with a worse
upper bound, and use an ergodic sequence to update and improve the upper bound.
The simple heuristic is essentially our heuristic described in Section 3.1, evaluated
in the first iteration, which will be faster. For this combination, we needed more
iterations before reaching the same upper bound as for the iterative heuristic. Hence,
it was better to run the iterative heuristic instead of using an ergodic sequence. This
was true even for the instance 34_38_100, where the iterative heuristic did not find
the optimal value. For the ergodic sequence, it could find a better solution than
the heuristic, but it had to run for more than 1000 iterations to find a better upper
bound.

The heuristic seems promising in that it almost always finds the optimal value and
it might be possible to build on it, in order to not be a heuristic. Another positive
thing is that the heuristic can be parallelized over each time step k, resulting in a
time complexity of O(Tn3). The time complexity comes from the fact that in each
iteration one must solve T assignment problems, where each assignment problem
has a time complexity of O(n3). The heuristic must run at most T iterations to
converge, resulting in a total time complexity of O(T 2n3) which can be parallelized
in order to reduce it by a factor of T , to O(Tn3).

45

5. Discussion

5.2 ADMM

For ADMM, we can see that the best implementation according to speed is ordinary
ADMM with initialization using the heuristic. In Fig. 4.3a, we can see that the
fastest algorithms where the two algorithms with initialization, ordinary ADMM
with initialization is the fastest for ten out of eighteen instances. For two instances,
7_8_100 and 14_13_100 ADMM bridges with initialization were the fastest, while
the six remaining instances were solved equally fast for the two implementations
with initialization. We can also see that if we compare the implementations without
initialization, ADMM with bridges is the fastest. But, if we compare the implemen-
tations with initialization, bridges takes longer times to converge.

We could also see that for implementation with initialization, it was good from a
speed perspective to start with a large value on ρ and vary it during the run. If we
had bridges in the implementation, we needed to have a fixed small value for the
implementation to converge.

When it comes to precision, ordinary ADMM with initialization is not always the
best, as there is no guarantee that it converges. As we can see in Fig. 4.3b, the
values from this implementation deviates from the optimal value more than for the
other implementations.

We next focus on the four selected instances in Fig. 4.1, where we are using the
heuristic as initialization. For instance 14_18_100 in Fig. 4.1a we can see that we
start with a small primal residual, which indicates that the solution is primal feasible.
The dual residual on the other hand starts a little bit higher. The dual residual tells
us how good the objective value is. We can also see that when the primal residual
is high, the dual residual is low. This pattern follows for each iteration, where they
alternate between high and low values. For the objective value we can see that over
the ten iterations, it is always close to the optimal value. For some iterations, it is a
little bit over, and for some, it is a little bit under. ADMM finds the optimal value
fast, but takes time to verify that it is optimal.

For instance 20_18_200 in Fig. 4.1b we can see that both the primal and the dual
residual is zero after one iteration, which means that the optimal value is reached.
We can also see that the objective value has reached the optimal value.

For instance 23_24_200 in Fig. 4.1c it is similar to Fig. 4.1a. In this figure, both
primal and dual residual start at lower values. The alternating pattern is the same
for this instance as for 14_18_100. The objective value is constantly at the optimal
value, but ADMM takes time to verify it is optimal.

For instance 34_38_100 in Fig. 4.1d we can see that the objective value does not
converge to the optimal value, although primal and dual residual are close to zero.
For this instance, we saw that a too high value of the parameter ρ caused ADMM to
converge to the wrong objective value. For smaller values of ρ the instance converges
to the optimal value, but takes longer time to converge. This makes sense since the
theory states that multi-block ADMM might not converge at all or may converge

46

5. Discussion

for some small value of ρ. We can see that instance 34_38_100 converges when
we reduce ρ, which means we have not encountered any instance where multi-block
ADMM does not converge for our problem. However, when reducing ρ in order for
ADMM to converge, it takes longer time until it terminates.

Another good thing about ADMM is the scalability. From Fig. 4.8a we can see that
the time complexity for ADMM appears to be O(T) with respect to the number of
time steps T . We also know from the theory about assignment problem solvers that
their complexity is O(n3). This means that the total complexity for the ADMM
algorithm is likely to be O(Tn3), where n = nX + nY . Note in Fig. 4.8a that
the instance with nmax = 12 and T = 70 is slow for the subgradient as well as
ADMM. The fact that the instance performs bad on multiple algorithms indicates
that the long run time has something to do with the instance structure and not
the algorithms. It is probable that both algorithms perform badly on some specific
structure this instance possesses and it might be possible to make some changes such
that the algorithms perform better on them. However, this could result in longer
computation times for the other instances. There is also the instance with nmax = 12
and T = 30 that ADMM performs bad on, but not the subgradient method. This
could indicate that there is some structure in this instance that ADMM performs
badly on, but not the subgradient method, indicating that the two algorithms might
perform well on differently structured problem instances. There might be problem
instances where one algorithm performs better and another instance with the same
values of nX , nY , and T where the other algorithm performs better. The algorithms
might perform better on different structures, but there is still some structure where
neither performs good. This will be discussed more in Section 5.4.

5.3 Subgradient method

For the subgradient method, we can see in Table 4.2 that for eight out of eighteen
instances we can confirm the optimal value in one iteration, since the upper bound
and lower bound are the same. One of these is 20_18_200, which we can see in
Fig. 4.4b.

For two out of eighteen instances, we never find a better lower bound, and terminate
at 202 iterations, since α is too small. One of these is 23_24_200, which we can
see in Fig. 4.4c. Here we can see that the lower bound in the first iteration is the
best. The Lagrangian objective value overshot in the beginning. At 20 iterations it
begins to improve the Lagrangian objective value in every iteration, but too slow.

For two out of eighteen instances, we break at the maximum number of iterations
(1000). One of these is 34_38_100, which we can see in Fig. 4.4d. After 40 iterations,
the Lagrangian objective starts to update the lower bound. When it terminated
at 1000 iterations, the lower bound is 1.9 · 10−2 % from z⋆; see Table 4.2. Since
the heuristic for this instance never found the optimal value, and the Lagrangian
objective continues to improve the lower bound, the subgradient method continues
to run.

47

5. Discussion

The remaining six instances break at different numbers of iterations. One of these
is 14_18_100, which we can see in Fig. 4.4a. This instance terminates after 724
iterations because the percentual increase of the lower bound is smaller than 10−6.
This means that we do update the lower bound, but the update is small, and the
lower bound is presumably close to the optimal value. When termination occurs,
the lower bound is 4.3 · 10−2 % from z⋆; see Table 4.2. This shows that we are close
to the optimal value when terminating.

For scalability, we can see in Fig. 4.8c that the subgradient seem to scale with O(T 2).
But, if we can parallelize over T threads, then we can reduce the subgradient to scale
with O(T), as can be seen in Fig. 4.8b. We can then use the fact that the assignment
problem solver has O(n3) and get that the total time complexity for the parallelized
subgradient is likely O(Tn3).

5.4 ADMM versus subgradient

From what we can see, neither algorithm is uniformly better than the other, but they
seem to perform differently on some instances. Which algorithm to choose comes
down to what the user wishes to achieve; if solution speed is important then ADMM
might be better. One can even use only the heuristic which is the fastest, but with
no quality guarantee on the solution. There is also a lot one can change regarding
speed and accuracy by changing the hyperparameters. The hyperparameters used
in the termination criteria for the two algorithms are good indicators of whether
speed or precision is favored, meaning the tolerances. If the termination criteria
are slack then the algorithm favors speed over accuracy. On the other hand, if the
termination criteria are strict then accuracy is favored over speed. From Fig. 4.8
we can conclude that the two algorithms have the same time complexity O(Tn3),
meaning that the algorithms will be equally affected by the size of the problem
instances. These results hold if one is able to parallelize the two algorithms, if that
is not the case then the total time complexity for both algorithms will be O(T 2n3)
because of the heuristic. More specifically, without parallelizing the heuristic will
have time complexity O(T 2n3), while the ADMM part will have time complexity
O(Tn3) and the subgradient part O(T 2n3). Meaning that for ADMM it is the
preprocessing that has a higher-order time complexity, indicating that ADMM will
still be faster than the subgradient when they are not parallelized. This comes
from the fact that the two algorithms have the same preprocessing, but the main
algorithm has different time complexity. In this case, ADMM is the better choice
for speed.

There is also a difference in the output from the two algorithms; the subgradient
returns two values while ADMM returns one. Both outputs can be used to quantify
the performance of different MOT algorithms. This is provided that the gap between
the lower and upper bound is small enough, if the gap is large then multiple MOT
algorithms might overlap and it may be hard to say which is the best. On the other
hand, there is no guarantee that ADMM converges to the correct value. We have
seen that for small values of ρ, then all instances of our problem converge to the

48

5. Discussion

optimal value. It might be that there exists some range for ζ where every instance
of our problem converges for some small ρ. Even if that is not the case, we see that
the only instance that did not converge for a large ρ is 34_38_100. Every other
instance generated converged for large ρ as well as small, meaning there might be
some correlation between the difficulty of the instance and the convergence.

We can also note in Fig. 4.6 that ADMM finds the correct value for almost every
instance while the lower bound from subgradient is a bit away from optimal value
for every instance except the ones that converge in one iteration. The subgradient
is quick to converge for simpler instances, but for harder instances it takes time to
converge. Furthermore, from Fig. 4.4 we can see that the rate of convergence for
the subgradient decreases heavily with time. The accuracy of the two algorithms
seems to depend on the underlying structure of the instance; it might be beneficial
to study which structures the algorithms have a hard time solving. There are some
instances like 11_12_100 and 20_18_200, for which both algorithms perform good,
while both seem to have a hard time with instance 34_38_100.

To understand what seems to be a hard structure for the algorithms to solve, we
selected two instances and some selected time steps to present how the ground truths
and estimates move. This is presented more closely in Appendix B. In Fig. B.1 we
can see the trajectories for some time steps of instance 34_38_100 and even when
only considering one time step it is not clear which assignments are the best. There
are some clusters in time steps 7 to 11 where essentially any ground truth could be
assigned to any estimate. There are also some steps where switches are favorable,
which might also increase the difficulty of the instance. This is because we can see
that one estimate and one ground truth are close to each other for several time steps,
but suddenly they diverge from each other. When diverging, a new estimate is born
which is close to the old ground truth. This is a place where one probably wants
to introduce switches, given that the selected switching cost is not too high. If one
instead takes a look at the second instance in Fig. B.2 we can see the trajectories for
some time steps of instance 23_24_200, for which ADMM converges to optimality
while the subgradient method has a gap of 2: the upper bound is 1708.79 and the
lower bound is 1706.79. This is the instance for which the lower bound is never
updated, as seen in Fig. 4.4c. The lower bound is two units away from the optimal
value which might indicate that there are two switches in the solution that are not
suppose to be there. This means that there might be something in the structure
which makes it hard for subgradient to find the optimal value. The structure is
similar to instance 34_38_100, in that we have some clusters in time steps 22 to
26 but it involves fewer trajectories. However, two estimates are without a ground
truth in the cluster. It could be that this level of cluster is hard for the subgradient
but not for ADMM, while the cluster in Fig. B.1 is hard for both of them. It
could also be that there is some other structure that makes the problems hard and
it simply shows differently for ADMM and the subgradient. Many of the harder
problems are the instances with a large number of nX and nY , however, we believe
that the structures contribute more to the difficulty of the problem than the number
of estimates and ground truths. A problem with large quantities of estimates and
ground truths has a higher probability of having these hard structures, like clusters.

49

5. Discussion

In order to identify which structures are hard, more structures have to be observed
in order to make some concrete conclusion.

5.5 Integrality property
For all instances created, we have been able to verify that the optimal solution is
integer. We tried for several weeks with a brute force to find a non-integer optimal
solution, however without success. This made us think that the problem has the
integrality property, although it is not totally unimodular. This made us come up
with the conjecture about integrality property; see Section 2.3. Since we could not
prove nor disprove it, it is still a conjecture.

If we would not have integrality property, then the connected 2D assignment prob-
lems would not have the integrality property. Instead, it would be optimal to assign
fractional.

ADMM assumes that the problem possesses the integrality property, while the sub-
gradient does not. If we cannot make this assumption then we will have to examine
what solutions ADMM will give. In the implementation of ADMM, we use the
knowledge that since the assignment problems are totally unimodular, it will take
an integer value, either 0 or 1. Then, we can reduce the quadratic assignment prob-
lem in ADMM to a linear assignment problem. If the integrality property to the
problem is lost, then this simplification will force the solution to take integer val-
ues, and not converge to the optimal value for the relaxed problem. The solution
to ADMM will be integer and for this reason, it might be optimal in the original
problem. There exists a theory about non-convex ADMM which one might be able
to apply in this case and in that case the solution will be optimal [16]. If this holds
then ADMM could be used even if the problem does not possess integrality prop-
erty. If one cannot apply the theory about non-convex ADMM and wants to get
the optimal value to the LP relaxation, then one will be forced to solve quadratic
assignment problems instead of linear ones. This is much harder and will likely
result in slower computations, meaning ADMM loses both speed and accuracy. The
heuristic and subgradient method on the other hand make no assumptions about
integrality property and will still yield an upper and a lower bound respectively.

Since we have only been able to make a conjecture about the integrality property, it
would be beneficial to actually prove or disprove if the problem has the integrality
property. In order to attempt to prove the property, we would suggest using the
theory behind the proof of total unimodularity, as well as induction. There are
many similarities between the theory about total unimodularity and our problem.
As described in Section 2.3 we hope that by moving the condition from the constraint
matrix to the vector, it is possible to prove the integrality property. This can be used
to prove the property for a specific T , nX and nY , but we wish to prove it for any
parameters and in order to do this we suspect that induction can be used. In order
to disprove it, one simply has to find an instance where the optimal solution does
not have integer variables and is not a linear combination of some integer solutions
that are also optimal. Even if there exists some instance of the problem that does

50

5. Discussion

not possess the integrality property, there are many that do and perhaps one can
still prove that most instances possess the integrality property.

51

5. Discussion

52

6
Conclusion

We can conclude that both multi-block ADMM and subgradient are able to quantify
the performance of MOT algorithms. The two algorithms have different pros and
cons when it comes to speed and accuracy. ADMM is generally the faster algorithm,
while it cannot guarantee convergence to the optimal value. Although for sufficiently
small values of ρ, the eighteen + twenty-one instances converge to optimal values
at the expense of speed. For subgradient, the algorithm provides an upper and a
lower bound where the optimal value is somewhere in the range between these two.
If the difference between the upper and lower bound is large, it might be hard to
differentiate MOT algorithms between each other. Provided that it is possible to
parallelize the algorithms, they appeare to have equal computational complexity,
namely O(Tn3). In order to conclude that this is the computational complexity,
one needs to test for more data points. The dominating factor contributing to the
complexity of both algorithms is the solution of the 2D assignment problems. We
can therefore conclude that both algorithms would benefit from faster assignment
solvers.

To continue this research, we suggest to prove or disprove the integrality property
for the problem, since it will impact how one can solve the problem. Since the
assignment problems are the ones which contribute to the time complexity the most,
looking for alternatives to the JVC algorithm to solve these could speed up the
algorithms. With regards to ADMM, the main negative is that we cannot guarantee
convergence; this is however an ongoing research. Since the heuristic works well for
this problem, it would be interesting to see if one can modify it into an algorithm
which guarantees an optimal value.

53

6. Conclusion

54

Bibliography

[1] Abu Sajana Rahmathullah, Angel F. Garcia-Fernandez, and Lennart Svensson.
“Generalized optimal sub-pattern assignment metric”. In: 2017 20th Interna-
tional Conference on Information Fusion (Fusion) (July 2017). url: http:
//dx.doi.org/10.23919/ICIF.2017.8009645.

[2] J. Lundgren, M. Rönnqvist, and P. Värbrand. Optimization. Studentlitteratur,
2010. isbn: 978-91-44-05308-0.

[3] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Program-
ming. Springer, 2014.

[4] L.G. Khachiyan. “Polynomial algorithms in linear programming”. In: USSR
Computational Mathematics and Mathematical Physics 20.1 (1980), pp. 53–72.
issn: 0041-5553. doi: https://doi.org/10.1016/0041-5553(80)90061-0.

[5] Hao Hu and Renata Sotirov. “The linearization problem of a binary quadratic
problem and its applications”. In: Annals of Operations Research 307 (2021),
pp. 229–249. doi: 10.1007/s10479-021-04310-x.

[6] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein.
“Distributed Optimization and Statistical Learning via the Alternating Direc-
tion Method of Multipliers”. In: Foundations and Trends® in Machine Learn-
ing 3.1 (2011), pp. 1–122. url: http://dx.doi.org/10.1561/2200000016.

[7] Dimitri P. Bertsekas. Nonlinear Programming. Third. Athena Scientific, 2016.
[8] Caihua Chen, Bingsheng He, Yinyu Ye, and Xiaoming Yuan. “The direct ex-

tension of ADMM for multi-block convex minimization problems is not neces-
sarily convergent”. In: Mathematical Programming 155 (2016), pp. 57–79. doi:
10.1007/s10107-014-0826-5.

[9] Edvin Åblad, Ann-Brith Strömberg, and Domenico Spensieri. “Exact
makespan minimization of unrelated parallel machines”. In: Open Journal of
Mathematical Optimization 2 (May 2021), pp. 1–15. doi: 10.5802/ojmo.4.

[10] David F. Crouse. “On implementing 2D rectangular assignment algorithms”.
In: IEEE Transactions on Aerospace and Electronic Systems 52.4 (2016),
pp. 1679–1696. doi: 10.1109/TAES.2016.140952.

[11] Hoang Tuy. Convex Analysis and Global Optimization. Vol. 110. Springer In-
ternational Publishing, 2016. doi: 10.1007/978-3-319-31484-6.

[12] Lennart Råde and Bertil Westergren. Mathematics Handbook for Science and
Engineering. 5:18. Studentlitteratur, 2018.

[13] Nicholas John Higham. “Analysis of the Cholesky Decomposition of a Semi-
definite Matrix”. In: Reliable Numerical Computation. 1990.

55

http://dx.doi.org/10.23919/ICIF.2017.8009645
http://dx.doi.org/10.23919/ICIF.2017.8009645
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/10.1007/s10479-021-04310-x
http://dx.doi.org/10.1561/2200000016
https://doi.org/10.1007/s10107-014-0826-5
https://doi.org/10.5802/ojmo.4
https://doi.org/10.1109/TAES.2016.140952
https://doi.org/10.1007/978-3-319-31484-6

Bibliography

[14] Paul Glaister. “75.45 Telescoping Series”. In: The Mathematical Gazette 75.474
(1991), pp. 443–445. doi: https://doi.org/10.2307/3618631.

[15] Torbjörn Larsson, Michael Patriksson, and Ann-Brith Strömberg. “Condi-
tional subgradient optimization — Theory and applications”. In: European
Journal of Operational Research 88 (1996), pp. 382–403. doi: https://doi.
org/10.1016/0377-2217(94)00200-2.

[16] Yu Wang, Wotao Yin, and Jinshan Zeng. “Global Convergence of ADMM in
Nonconvex Nonsmooth Optimization”. In: Journal of Scientific Computing 78
(2019), pp. 29–63. doi: 10.1007/s10915-018-0757-z.

56

https://doi.org/https://doi.org/10.2307/3618631
https://doi.org/https://doi.org/10.1016/0377-2217(94)00200-2
https://doi.org/https://doi.org/10.1016/0377-2217(94)00200-2
https://doi.org/10.1007/s10915-018-0757-z

A
Dual Feasibility

The dual feasibility conditions can be found in (3.14) and here we will show the
calculations for the other variables not shown in Section 3.2. We start with Φs+1

which we know minimizes Lρ(W s+1, Hs+1,Φ,Ψs,Λs,Ξs) and therefore

0 ∈ ∂
(

0 · ϕs+1
k,i,j

)
+ λs

k,i,j + ρ
(
ws+1

k,i,j − ws+1
k+1,i,j − hs+1

k,i,j + ϕs+1
k,i,j

)
= ∂

(
0 · ϕs+1

k,i,j

)
+ λs

k,i,j + ρ
(
ws+1

k,i,j − ws+1
k+1,i,j − hs+1

k,i,j + ϕs+1
k,i,j

)
= ∂

(
0 · ϕs+1

k,i,j

)
+ λs+1

k,i,j, k ∈ K̂, (i, j) ∈ Î.

We find the same thing as for Ψs+1 and Ξs+1, namely that Φs+1 and Λs+1 always
satisfy (3.14e). The calculations for H can be found in Section 3.2, therefore we
continue with W and start with (3.14c) where k = T and get

0 ∈∂
(
dT,i,jw

s+1
T,i,j

)
− λs

T −1,i,j + ξs
T −1,i,j

=∂
(
dT,i,jw

s+1
T,i,j

)
− λs

T −1,i,j − ρ
(
ws+1

T −1,i,j − ws+1
T,i,j − hs

T −1,i,j + ϕs
T −1,i,j

)
+ ξs

T −1,i,j + ρ
(
ws+1

T,i,j − ws+1
T −1,i,j − hs

T −1,i,j + ψs
T −1,i,j

)

=∂
(
dT,i,jw

s+1
T,i,j

)
− λs

T −1,i,j − ρ
(
ws+1

T −1,i,j − ws+1
T,i,j − hs+1

T −1,i,j + ϕs+1
T −1,i,j

)
+ ξs

T −1,i,j + ρ
(
ws+1

T,i,j − ws+1
T −1,i,j − hs+1

T −1,i,j + ψs+1
T −1,i,j

)
− ρ

(
hs+1

T −1,i,j − hs
T −1,i,j − ϕs+1

T −1,i,j + ϕs
T −1,i,j

)
+ ρ

(
hs+1

T −1,i,j − hs
T −1,i,j − ψs+1

T −1,i,j + ψs
T −1,i,j

)

=∂
(
dT,i,jw

s+1
T,i,j

)
− λs+1

T −1,i,j + ξs+1
T −1,i,j

+ ρ
(
ϕs+1

T −1,i,j − ϕs
T −1,i,j − ψs+1

T −1,i,j + ψs
T −1,i,j

)
, (i, j) ∈ Î.

I

A. Dual Feasibility

Where we find that (3.14c) is satisfied if and only if ρ
(
− Φs+1

T −1 + Φs
T −1 + Ψs+1

T −1 −

Ψs
T −1

)
∈ ∂

(
dT,i,jw

s+1
T,i,j

)
−λs+1

T −1,i,j +ξs+1
T −1,i,j. Similarly for W s+1

k , we know it minimizes
(3.14b) and get

0 ∈∂
(
dk,i,jw

s+1
k,i,j

)
+ λs

k,i,j − ξs
k,i,j − λs

k−1,i,j + ξs
k−1,i,j

=∂
(
dk,i,jw

s+1
k,i,j

)
+ λs

k,i,j + ρ
(
ws+1

k,i,j − ws
k+1,i,j − hs

k,i,j + ϕs
k,i,j

)
− λs

k−1,i,j − ρ
(
ws

k+1,i,j − ws+1
k,i,j − hs

k,i,j + ψs
k,i,j

)
− ξs

k,i,j − ρ
(
ws+1

k−1,i,j − ws
k,i,j − hs

k−1,i,j + ϕs
k−1,i,j

)
+ ξs

k−1,i,j + ρ
(
ws

k,i,j − ws+1
k−1,i,j − hs

k−1,i,j + ψs
k−1,i,j

)

=∂
(
dk,i,jw

s+1
k,i,j

)
+ λs

k,i,j + ρ
(
ws+1

k,i,j − ws+1
k+1,i,j − hs+1

k,i,j + ϕs+1
k,i,j

)
− ξs

k,i,j − ρ
(
ws+1

k+1,i,j − ws+1
k,i,j − hs+1

k,i,j + ψs+1
k,i,j

)
− λs+1

k−1,i,j − ρ
(
ws+1

k−1,i,j − ws+1
k,i,j − hs+1

k−1,i,j + ϕs+1
k−1,i,j

)
+ ξs+1

k−1,i,j + ρ
(
ws+1

k,i,j − ws+1
k−1,i,j − hs+1

k−1,i,j + ψs+1
k−1,i,j

)
+ ρ

(
ws+1

k+1,i,j − ws
k+1,i,j + hs+1

k,i,j − hs
k,i,j − ϕs+1

k,i,j + ϕs
k,i,j

)
− ρ

(
− ws+1

k+1,i,j + ws
k+1,i,j + hs+1

k,i,j − hs
k,i,j − ψs+1

k,i,j + ψs
k,i,j

)
− ρ

(
ws+1

k,i,j − ws
k,i,j + hs+1

k−1,i,j − hs
k−1,i,j − ϕs+1

k−1,i,j + ϕs
k−1,i,j

)
+ ρ

(
− ws+1

k,i,j + ws
k,i,j + hs+1

k−1,i,j − hs
k−1,i,j − ψs+1

k−1,i,j + ψs
k−1,i,j

)

=∂
(
dk,i,jw

s+1
k,i,j

)
+ λs+1

k,i,j − ξs+1
k,i,j − λs+1

k−1,i,j + ξs+1
k−1,i,j

+ ρ
(

2ws+1
k+1,i,j − 2ws

k+1,i,j + ϕs+1
k−1,i,j − ϕs

k−1,i,j − ψs+1
k−1,i,j + ψs

k−1,i,j

− ϕs+1
k,i,j + ϕs

k,i,j + ψs+1
k,i,j − ψs

k,i,j

)
, k ∈ K̂, (i, j) ∈ Î.

II

A. Dual Feasibility

Lastly, we do the same calculations for (3.14a) and get

0 ∈∂
(
d1,i,jw

s+1
1,i,j

)
+ λs

1,i,j − ξs
1,i,j

=∂
(
d1,i,jw

s+1
1,i,j

)
+ λs

1,i,j + ρ
(
ws+1

1,i,j − ws
2,i,j − hs

1,i,j + ϕs
1,i,j

)
− ξs

1,i,j − ρ
(
ws

2,i,j − ws+1
1,i,j − hs

1,i,j + ψs
1,i,j

)

=∂
(
d1,i,jw

s+1
1,i,j

)
+ λs

1,i,j + ρ
(
ws+1

1,i,j − ws+1
2,i,j − hs+1

1,i,j + ϕs+1
1,i,j

)
− ξs

1,i,j − ρ
(
ws+1

2,i,j − ws+1
1,i,j − hs+1

1,i,j + ψs+1
1,i,j

)
+ ρ

(
ws+1

2,i,j − ws
2,i,j + hs+1

1,i,j − hs
1,i,j − ϕs+1

1,i,j + ϕs
1,i,j

)
− ρ

(
− ws+1

2,i,j + ws
2,i,j + hs+1

1,i,j − hs
1,i,j − ψs+1

1,i,j + ψs
1,i,j

)

=∂
(
d1,i,jw

s+1
1,i,j

)
+ λs+1

1,i,j − ξs+1
1,i,j

+ ρ
(

2ws+1
2,i,j − 2ws

2,i,j − ϕs+1
1,i,j + ϕs

1,i,j + ψs+1
1,i,j − ψs

1,i,j

)
, (i, j) ∈ Î.

III

A. Dual Feasibility

IV

B
Trajectory plots

In Fig. B.1, the positions in the current time step, together with two previous time
steps are visualized for some selected time steps of instance 34_38_100. The red
dots represent estimates and the black stars represent ground truths. Blue stars
represent newborn ground truths and green dots represent newborn estimates. The
red dashed lines represent estimates trajectories in the previous two time steps, while
the solid blacks line represents ground truths trajectories in the previous two time
steps. These time steps are selected in order to present what structure is hard for
the algorithms to solve. In time step k = 4, we can see that it is clear which to be
assigned to each other and which to leave unassigned. In time step k = 4 to k = 7
one can think that ground truth and estimate at [8,−5], k = 4 shall be assigned to
each other. But in k = 8 we can see that they start to diverge from each other.
Then in the next time step k = 9 a new ground truth is born close to the previously
discussed estimate. The new ground truth and previous estimate continue to follow
each other well, while the old ground truth continues to diverge.

Similarly, at k = 4 there exists a ground truth and estimate at about [7, 20]. These
two are near each other. In k = 5, these two start to diverge from each other. In
k = 6, a new estimate is born, with the same distance to the ground truth as the
previous estimate. In k = 7, the first estimate has disappeared, and the second
estimate is close to the ground truth. The second estimate starts to diverge in k = 8
and continues to diverge in k = 9. In k = 10 a third estimate is born close to the
ground truth, these two continue to follow each other well in k = 11.

Another difficulty, can be see in k = 9−11 is that there exist multiple ground truths
and estimates in a small space x = [0, 10], y = [−40, 0]. In this area, there exist
multiple possible assignments and it is hard to know which is optimal.

As one can see by these examples, it is not always easy to know whether one should
leave a ground truth or estimate unsigned, or introduce a track switch. These seems
to be hard for the algorithms to solve.

V

B. Trajectory plots

Figure B.1: Positions in the current time step, together with two previous time
steps. Red dots represent estimates and black stars represent ground truths. Blue
stars represent newborn ground truths and green dots represent newborn estimates.

VI

B. Trajectory plots

In Fig. B.2, the positions in the current time step, together with two previous time
steps are visualized for some selected time steps for instance 23_24_200. Red dots
represent estimates and black stars represent ground truths. Blue stars represent
newborn ground truths and green dots represent newborn estimates. Red dashed
lines represent estimates trajectories, while solid black lines represent ground truths
trajectories. For these figures, we want to show that a large number on nX and nY
does not necessarily indicate a hard problem.

A problem with the same number of ground truths nX and estimates nY can have
very different structures. The structure will depend on for example how many time
steps a ground truth survives. If it only survives a few time steps, each individual
assignment problem will be easier to solve, since fewer ground truths exist in every
time step. Another example is how close the living ground truths and estimates
are to each other. If multiple objects are close to each other, then it is harder to
determine the optimal value, since there are multiple combinations. If the objects
are far apart, there are fewer possible combinations which indicate an easier problem.

For this problem, one can see that there exist multiple ground truths and estimates
within x = [0, 20] and y = [−20, 0], at k = 21. Over time, every ground truth follows
an estimate well. For some single time steps, there exists an estimate which is closer
to the ground truth than the estimate following well over time, if the switching
penalty is small, then a track switch can be optimal for these cases. On the other
hand, if the switching penalty is high, then the ground truth and estimate which
follow each other well over time will be assigned. Other estimates will be assigned
as false detected objects, although it is not necessarily optimal if you only evaluate
a single time step as for GOSPA.

VII

B. Trajectory plots

Figure B.2: Positions in the current time step, together with two previous time
steps. Red dots represent estimates and black stars represent ground truths. Blue
stars represent newborn ground truths and green dots represent newborn estimates.

VIII

C
Code

All functions used are appended below. The code implemented in Jupyter Notebook,
together with all instances used can also be found on GitHub, https://github.
com/Camilla-C/sequentially-connected-2D-assignment-problems.

IX

https://github.com/Camilla-C/sequentially-connected-2D-assignment-problems
https://github.com/Camilla-C/sequentially-connected-2D-assignment-problems

C. Code

[1]: def Read_data(data):

dataX = scipy.io.loadmat('X_' + data + '.mat')
dataY = scipy.io.loadmat('Y_' + data + '.mat')
X = dataX['temp']
Y = dataY['temp']

return X, Y

[2]: def Create_D(X,Y,p,c):

n_X = len(X[0,0])
n_Y = len(Y[0,0])
T = len(X[0])
D = np.zeros((T,n_X+1,n_Y+1))
cp = c ** p
cp2 = cp/2

for t in range(T):
for i in range(n_X+1):

X_exists = True
if i == n_X:

X_exists = False
elif any(np.isnan(X[:,t,i])):

X_exists = False

for j in range(n_Y+1):
Y_exists = True
if j == n_Y:

Y_exists = False
elif any(np.isnan(Y[:,t,j])):

Y_exists = False

if X_exists and Y_exists:
D[t,i,j] = min(cp, (np.linalg.norm(X[:,t,i] -␣

↪→Y[:,t,j], ord=p)) ** p)

elif not X_exists and not Y_exists:
pass

else:
D[t,i,j] = cp2

return D

X

C. Code

[3]: def Update_W(D, beta):

n_X = len(D) - 1
n_Y = len(D[0]) - 1

temp1 = D[0:n_X,0:n_Y] + beta
temp2 = np.transpose(np.tile(D[0:n_X,n_Y], (n_X,1)))
temp3 = np.tile(D[n_X,0:n_Y], (n_Y,1))
temp4 = np.zeros((n_Y,n_X))

cost = np.block([[temp1, temp2],[temp3, temp4]])

row_ind, col_ind = linear_sum_assignment(cost)

row_ind = [n_X if x>n_X else x for x in row_ind]
col_ind = [n_Y if x>n_Y else x for x in col_ind]

W = np.zeros((n_X + 1, n_Y + 1))
W[row_ind,col_ind] = 1
W[n_X,n_Y] = 0

return W

[4]: def Get_upper_bound(D, switching_penalty):

############ Get input and def constants␣
↪→###

n_X = len(D[0]) - 1
n_Y = len(D[0,0]) - 1
T = len(D)

############ Initilization␣
↪→###

W = np.zeros((T, n_X+1, n_Y+1))

for iterations in range(T):

############ update W␣
↪→###

W_prev = np.copy(W)
beta = switching_penalty * (np.ones((n_X, n_Y)) -␣

↪→W_prev[1,0:n_X,0:n_Y] -10**-3)
W[0,:,:] = Update_W(D[0,:,:], beta)

for t in range(1,T-1):

XI

C. Code

beta = switching_penalty * (np.ones((n_X, n_Y)) -␣
↪→W_prev[t-1,0:n_X,0:n_Y] - W_prev[t+1,0:n_X,0:n_Y] -10**-3)

W[t,:,:] = Update_W(D[t,:,:], beta)

beta = switching_penalty * (np.ones((n_X, n_Y)) -␣
↪→W_prev[T-2,0:n_X,0:n_Y] -10**-3)

W[T-1,:,:] = Update_W(D[T-1,:,:], beta)

############ Calculate subgradients and objective value␣
↪→#####################

if (W == W_prev).all():
break

switches = 0
for t in range(0,T-1):

switches += np.absolute(W[t,0:n_X,0:n_Y] - W[t+1,0:n_X,0:
↪→n_Y]).sum()

objective = (D * W).sum() + switching_penalty * switches

return objective

[5]: def Subgrad_Opt(X, Y, p, c, mu, max_iter):

############ Get input and def constants␣
↪→###

D = Create_D(X,Y,p,c)
switching_penalty = (mu ** p)/2
n_X = len(X[0,0])
n_Y = len(Y[0,0])
T = len(X[0])

############ Initilization␣
↪→###

W = np.zeros((T, n_X+1, n_Y+1))
dual_var = 0.5*switching_penalty*np.ones((T-1, n_X, n_Y))
delta_W = np.zeros((T-1, n_X, n_Y))
MDS = 0.5*np.ones((T-1, n_X, n_Y))

############### CALCULATE UPPER BOUND␣
↪→###

upper_bound = Get_upper_bound(D, switching_penalty)
lower_bound = -np.inf

last_improvement = 0

XII

C. Code

alpha = 0.7
lagrangean_obj = lower_bound

for iterations in range(max_iter):

delta_lambda = 2*dual_var - switching_penalty
############ update W␣

↪→###

beta = delta_lambda[0,:,:]
W[0,:,:] = Update_W(D[0,:,:], beta)

for t in range(1,T-1):
beta = -delta_lambda[t-1,:,:] + delta_lambda[t,:,:]
W[t,:,:] = Update_W(D[t,:,:], beta)

beta = - delta_lambda[T-2,:,:]
W[T-1,:,:] = Update_W(D[T-1,:,:], beta)

for t in range(1,T):
delta_W[t-1,:,:] = W[t-1,0:n_X,0:n_Y] - W[t,0:n_X,0:

↪→n_Y]

############ Calculate subgradients and objective value␣
↪→#####################

subgradient = np.copy(delta_W)
lagrangean_obj_prev = lagrangean_obj
lagrangean_obj = (D * W).sum() +␣

↪→(delta_lambda*subgradient).sum()

############ Check special cases for projection␣
↪→##############################

if (dual_var == 0).any() or (dual_var ==␣
↪→switching_penalty).any():

ind1 = np.argwhere(dual_var == 0)
ind2 = np.argwhere(dual_var == switching_penalty)

for i in ind1:
if subgradient[i[0], i[1], i[2]] < 0:

subgradient[i[0], i[1], i[2]] = 0
if MDS[i[0], i[1], i[2]] < 0:

MDS[i[0], i[1], i[2]] = 0

for i in ind2:
if subgradient[i[0], i[1], i[2]] > 0:

XIII

C. Code

subgradient[i[0], i[1], i[2]] = 0
if MDS[i[0], i[1], i[2]] > 0:

MDS[i[0], i[1], i[2]] = 0

if (subgradient==0).all():
lower_bound = lagrangean_obj
break

if (MDS==0).all():
if lagrangean_obj > lower_bound:

lower_bound = lagrangean_obj
break

############ Modified Deflected Subgradient␣
↪→####################################

theta = max(0, -(subgradient*MDS).sum() / (np.linalg.
↪→norm(subgradient)*np.linalg.norm(MDS)))

sigma = 1/(2-theta)

gamma_ADS = np.linalg.norm(subgradient)/np.linalg.norm(MDS)
gamma_MGT = max(0, -sigma * (subgradient*MDS).sum() /␣

↪→(MDS**2).sum())
gamma_MDS = (1-theta) * gamma_MGT + theta * gamma_ADS
MDS = subgradient + gamma_MDS * MDS

step_size = alpha*(upper_bound - lagrangean_obj)/((MDS**2).
↪→sum())

dual_var = dual_var + step_size * MDS
dual_var[dual_var<0] = 0
dual_var[dual_var>switching_penalty] = switching_penalty

############### Terminate and update Alpha␣
↪→#######################

if lagrangean_obj > lower_bound:
prev_lb = lower_bound
lower_bound = lagrangean_obj
if lower_bound - prev_lb < prev_lb*(10**-6):

small += 1
else:

small = 0

last_improvement = 0

XIV

C. Code

if ((upper_bound - lower_bound) < 0.5) or (alpha < 10**-3)␣
↪→or (small == 3):

break

if last_improvement >= 20:
alpha *= 0.5
last_improvement = 0

last_improvement += 1

return lower_bound, upper_bound

[6]: def Initilization(D, switching_penalty):

############ Get input and def constants␣
↪→###

n_X = len(D[0]) - 1
n_Y = len(D[0,0]) - 1
T = len(D)

############ Initilization␣
↪→###

W = np.zeros((T, n_X+1, n_Y+1))
H = np.zeros((T-1, n_X, n_Y))
S_1 = np.zeros((T-1, n_X, n_Y))
S_2 = np.zeros((T-1, n_X, n_Y))

for iterations in range(T):

############ update W␣
↪→###

W_prev = np.copy(W)

beta = switching_penalty * (np.ones((n_X, n_Y)) -␣
↪→W_prev[1,0:n_X,0:n_Y] - 10**-3)

W[0,:,:] = Update_W(D[0,:,:], beta)

for t in range(1,T-1):
beta = switching_penalty * (np.ones((n_X, n_Y)) -␣

↪→W_prev[t-1,0:n_X,0:n_Y] - W_prev[t+1,0:n_X,0:n_Y] - 10**-3)
W[t,:,:] = Update_W(D[t,:,:], beta)

beta = switching_penalty * (np.ones((n_X, n_Y)) -␣
↪→W_prev[T-2,0:n_X,0:n_Y] - 10**-3)

W[T-1,:,:] = Update_W(D[T-1,:,:], beta)

XV

C. Code

############ Calculate subgradients and objective value␣
↪→#####################

if (W == W_prev).all():
break

for t in range(T-1):
H[t,:,:] = np.absolute(W[t,0:n_X,0:n_Y] - W[t+1,0:n_X,0:

↪→n_Y])
S_1[t,:,:] = H[t,:,:] - W[t,0:n_X,0:n_Y] + W[t+1,0:n_X,0:

↪→n_Y]
S_2[t,:,:] = H[t,:,:] - W[t+1,0:n_X,0:n_Y] + W[t,0:n_X,0:

↪→n_Y]

return W, H, S_1, S_2

[7]: def ADMM_ordinary(X, Y, p, c, mu, rho, max_iter):

Get input and def constants
D = Create_D(X,Y,p,c)
switching_penalty = (mu ** p)/2
n_X = len(X[0,0])
n_Y = len(Y[0,0])
T = len(X[0])

tol = 10**-4
primal_tol = tol*math.sqrt(n_X*n_Y*(T-1)*2)
dual_tol = tol*math.sqrt(n_X*n_Y*(T-1)*3)

Parameters for varing rho
rho_incr = 2
rho_decr = 2
rho_tol = 10

Initilization
W, H, S_1, S_2 = Initilization(D, switching_penalty)

lambda_1 = np.zeros((T-1, n_X, n_Y))
lambda_2 = np.zeros((T-1, n_X, n_Y))

r = np.zeros((T-1, 2, n_X, n_Y))

for iterations in range(max_iter):

update W

XVI

C. Code

W_prev = np.copy(W)
delta_lambda = lambda_1[0,:,:] - lambda_2[0,:,:]
delta_S = S_1[0,:,:] - S_2[0,:,:]
rho_part = delta_S - 2*W[1,0:n_X,0:n_Y] + np.

↪→ones((n_X,n_Y))
beta = delta_lambda + rho*rho_part
W[0,:,:] = Update_W(D[0,:,:], beta)

for t in range(1,T-1):
W_part = - W[t-1,0:n_X,0:n_Y] - W[t+1,0:n_X,0:n_Y] +␣

↪→np.ones((n_X,n_Y))
rho_part = - delta_S + 2*W_part
beta = - delta_lambda + rho*rho_part
delta_lambda = lambda_1[t,:,:] - lambda_2[t,:,:]
delta_S = S_1[t,:,:] - S_2[t,:,:]
beta = beta + delta_lambda + rho*delta_S
W[t,:,:] = Update_W(D[t,:,:], beta)

rho_part = - delta_S - 2*W[T-2,0:n_X,0:n_Y] + np.
↪→ones((n_X,n_Y))

beta = - delta_lambda + rho*rho_part
W[T-1,:,:] = Update_W(D[T-1,:,:], beta)

update H
H_prev = np.copy(H)
H = switching_penalty * np.ones((T-1,n_X,n_Y))
H = H - lambda_1 - lambda_2 - rho * S_1 - rho * S_2
H = - H/(2*rho)
H[H<0] = 0

update S_1, S_2, lambda_1 and lambda_2
S_1_prev = np.copy(S_1)
S_2_prev = np.copy(S_2)
for t in range(T-1):

delta_W = W[t,0:n_X,0:n_Y] - W[t+1,0:n_X,0:n_Y]
delta_W_H_1 = delta_W - H[t,:,:]
delta_W_H_2 = - delta_W - H[t,:,:]

update S_1
min_S_1 = - lambda_1[t,:,:]/rho - delta_W_H_1
min_S_1[min_S_1<0] = 0
S_1[t,:,:] = np.copy(min_S_1)

update S_2
min_S_2 = - lambda_2[t,:,:]/rho - delta_W_H_2

XVII

C. Code

min_S_2[min_S_2<0] = 0
S_2[t,:,:] = np.copy(min_S_2)

update lambda_1
lambda_1[t,:,:] = lambda_1[t,:,:] + rho*(delta_W_H_1 +␣

↪→S_1[t,:,:])

update lambda_2
lambda_2[t,:,:] = lambda_2[t,:,:] + rho*(delta_W_H_2 +␣

↪→S_2[t,:,:])

r[t,0,:,:] = delta_W_H_1 + S_1[t,:,:]
r[t,1,:,:] = delta_W_H_2 + S_2[t,:,:]

primal_residual = np.linalg.norm(r)
z = np.stack((2*W[1:T,0:n_X,0:n_Y], S_1, S_2))
z_prev = np.stack((2*W_prev[1:T,0:n_X,0:n_Y], S_1_prev,␣

↪→S_2_prev))
dual_residual = rho*np.linalg.norm((z-z_prev))

if primal_residual < primal_tol and dual_residual <␣
↪→dual_tol:

break

if primal_residual > rho_tol*dual_residual:
rho = rho_incr*rho

elif dual_residual > rho_tol*primal_residual:
rho = rho/rho_decr

Calculate final value
objective_value = (D * W).sum() + switching_penalty * H.sum()

return objective_value

[]: import numpy as np
import scipy.io

import math
from scipy.optimize import linear_sum_assignment

data = ['7_8_100', '11_10_100', '11_12_100']

p = 1
c = 20
mu = 2

XVIII

C. Code

rho = 20
max_iter = 1000
lower_bound = np.zeros((len(data)))
upper_bound = np.zeros((len(data)))
objective_value = np.zeros((len(data)))
di = 0

for dat in data:
X, Y = Read_data(dat)
print('Data: ', dat, '\n')

lower_bound[di], upper_bound[di] = Subgrad_Opt(X, Y, p, c, mu,␣
↪→max_iter)

objective_value[di] = ADMM_ordinary(X, Y, p, c, mu, rho,␣
↪→max_iter)

di += 1
␣

↪→print('---')

XIX

DEPARTMENT OF MATHEMATICAL SCIENCES
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	List of Acronyms
	Nomenclature
	Introduction
	Multi-object tracking algorithm
	Problem formulation
	Aim and limitations

	Theory
	General integer optimization
	Lagrangian relaxation
	Integrality property
	Linearization of convex quadratic functions
	Alternating direction method of multipliers (ADMM)
	Subgradient optimization
	An algorithm for solution of the assignment subproblems

	Implementation
	An initialization heuristic
	Implementation of the ADMM
	ADMM initialization and parameters
	ADMM bridges

	A modified deflected subgradient method
	Subgradient initialization and parameters

	Data, tests, and results
	Results from the ADMM
	Results from the subgradient algorithm
	A comparison between the ADMM and subgradient optimization

	Discussion
	Heuristic
	ADMM
	Subgradient method
	ADMM versus subgradient
	Integrality property

	Conclusion
	Bibliography
	Dual Feasibility
	Trajectory plots
	Code

