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Impact of Equilibration on the Heat Conductance and Noise of non-Abelian fractional Quantum
Hall Edges
Michael Hein
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract
Performing resistance measurements in a cold 2D electron gas allows to observe the quantum
Hall effect. It comes along with a quantized transverse and simultaneously vanishing longitu-
dinal resistance as well as transport along the edge in chiral channels. Some of the discovered
fractional quantum Hall states are predicted to host non-Abelian quasi particles that obey exotic
exchange statistics with potential use for quantum computation. An essential step towards the
manipulation of these particles is to uncover the edge structure of the underlying state and thus
verifying the usability of their non-Abelian properties. Recently, a novel method to distinguish
between potential candidates for the fractional quantum Hall edge at filling 5/2 has been estab-
lished using a combination of heat transport and noise arguments.

In this thesis, the role of equilibration between counter-propagating edge modes on the heat
conductance and the generation of noise at the 5/2 edge is investigated theoretically. This in-
cludes an analysis of potential structures describing the 5/2 edge within a common transport
scheme and a comparison to experimental results. It is furthermore shown that the heat con-
ductance of the most promising candidate is expected to be quantized to different values of the
quantum of heat κ0 = π2k2

B/(3h) depending on the degree of thermal equilibration between
the involved modes. Performing experiments with controlled thermal equilibration are therefore
predicted to uncover even more details of the underlying structure.

Keywords: Topological QuantumMatter, Condensed Matter Physics, Fractional Quantum Hall
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1
Introduction

With Max Planck postulating the discrete nature of energy emission and absorption in 1900
[1], the foundation for a quantized description of the energy in physical systems had been set.
The concept of quantum mechanics started to develop in the following decades and is still being
finalized today. In combination with classical field theory and special relativity, quantum field
theory was further introduced [2]. Together with theories about electromagnetism, statistical
physics and principles such as symmetry breaking and topological matter it builds the base of
modern condensed matter physics. The entirety of concepts that is available within this frame
allows to describe very specific phenomena on some length scale without the need to fit it into
a more general model. Therefore it becomes possible to examine systems beyond the standard
model and to describe new exotic particles [3]. One effect that is thought to have such peculiar
properties is the fractional quantum Hall effect which is in the focus of this thesis. To understand
the rich physics underlying this effect, its conceptual description is built up starting from the
classical Hall effect followed by a comparison to the integer quantum Hall effect and an extension
to the fractional quantum Hall effect.

1.1 Classical Hall Effect
The classical Hall effect can be understood from the transport characteristics of free charge
carriers subject to an applied electric ~E = (Ex, 0, 0)T and magnetic field ~B = (0, 0, B)T in a
solid sample. In such a setup the Lorentz force deflects charge carriers from their path along the
x̂-direction. According to the charge and the direction of the magnetic field, they will accumulate
at the edges of the sample, building up an electrical field Ey perpendicular to the applied Ex as
depicted in figure (Fig.) 1.1a.

+

+

-

-

Ex

B

Ey

(a) Setup of a sample with free electrons sub-
ject to an electrical field in x̂ and a magnetic
field in ẑ direction. The dotted blue line de-
notes the undeflected path.

∝ B

∝ 1
τ inc. τ

B [T ]

ρ
[Ω

]

ρxx
ρxy

(b) Plot of ρxx and ρxy in dependence of the
magnetic field strength B. As the scatter-
ing time τ increases, ρxy remains unchanged,
whereas ρxx decreases.

At a certain magnitude of the perpendicular electric field Ey, the effect of the ~B-field is compen-
sated for, leading to no further deflection in ŷ-direction and all charges being transported in the
x̂-direction. An explanation to this effect is given by the Drude-model taking collisions between
free electrons and impurities in the underlying lattice into account [4]. In linear response to the
electric field, the current density ~j in the (x, y)-plane is described by the matrix equation

~j = mnq2

m2 + q2B2τ2

(
τ −qBτ2

qBτ2 τ

)(
Ex
Ey

)
τ→∞−→ 1

B

(
0 −nq
nq 0

)(
Ex
Ey

)
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1. Introduction

with n denoting the number density of charge carriers with charge q and mass m. The current
in ŷ is therefore only caused by the ~B field acting on the charge carriers. This manifests in the
possibility to define a transverse resistivity ρxy, called Hall resistivity in the 2D system which
depends linearly on the magnetic field strength B

ρxy = Ey
jx

= B

qn

The longitudinal resistivity ρxx is found to be independent of B and vanishing for large scattering
times τ →∞ (compare Fig. 1.1b). The latter property was to be expected since infinite scattering
times correspond to the case of no collisions and thus no resistance. As will be seen later, the
quantum version of the Hall effect is quite different from this description. It is worth noting
that the definitions of resistance R and resistivity ρ coincide in (2+1) D since a homogeneous
geometry of unit cross-sectional area in d dimensions leads to the resistivity [5]

R = ρ
L

A
= ρ

L

Ld−1 = ρL2−d d=2= ρ

For later convenience rotational invariance around ẑ is assumed and the relation between con-
ductivity and resistivity therefore takes the general form

σσσ =
(
σxx σxy
−σxy σxx

)
with σxx = ρxx

ρ2
xx + ρ2

xy

σxy = −ρxy
ρ2
xx + ρ2

xy

Where the negative sign in σxy depends on the direction of the magnetic field. These relations
furthermore indicate that the distinction between an insulator and a conductor is not straight
forward in the presence of a ~B-field since it is possible to simultaneously have σij = ρij = 0 with
i, j ∈ {x, y}.

1.2 Integer Quantum Hall Effect in 2D
Performing the experiment from section (Sec.) 1.1 using a cold two dimensional electron system
and high magnetic field strengths, the integer quantum Hall (IQH) effect and the fractional
quantum Hall (FQH) effect are observed depending on the degree of disorder in the sample [6].
They result from a quantized energy spectrum of the underlying bulk system. This quantiza-
tion manifests in the transverse resistivity ρxy now showing plateaus persisting over a range of
magnetic field strengths with quite sharp transitions between neighbouring plateaus. Whenever
ρxy is on a plateau, the longitudinal resistivity ρxx becomes negligibly small. The description of
the individual states has been in the focus of research for many years and until today not all of
the observed states have been explained1.

Figure 1.2: Plot of the longitudinal and transverse resistance Rxx and Rxy using the measure-
ment setup indicated in the top right corner. Amongst many fractional states, the integer states
at filling ν = 2 and ν = 3 are visualized. (Fig. from Ref. [8])

1 I highly recommend to read the lecture notes of David Tong [7] for a great introduction into the effect.
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1. Introduction
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Figure 1.3: Visualisation of the energy spectrum for the gapped bulk energy states without
disorder (left) and with disorder (right).

The integer states are described by the filling of bulk Landau levels (LLs). Depending on how
many of these energy levels are filled, different states can be observed. To describe the number
of filled LLs, the filling factor ν ∈ Z+ is commonly used. According to this definition, the
transverse resistivity is quantized to 1/ν times the von Klitzing constant h/e2 [9].

The density required to observe the νth plateau n = B
Φ0
ν, with Φ0 = h

e the flux quantum,
is defined to be the density needed to fill exactly ν LLs. In order to occupy the next higher LL,
an energy gap ~ωc has to be overcome which is big enough to exclude thermal occupation of
higher LLs as long as kBT � ~ωc. Applying a small electric field to the system thus leads in no
electron transport and ρxx = 0 since there are no empty states available for the electrons to scat-
ter into. Looking at a fixed electron density, a decrease in the magnetic field strength B < nΦ0

ν
results in a partially filled LL ν + 1 which now has accessible states to scatter into. Thus ρxx
would be non-vanishing and ρxy non-quantized looking at a range of B values around the plateau.
This ambiguity has been resolved by taking the effect of disorder into account. Weak disorder2

broadens the δ-peaks of the discrete energy spectrum to some finite width [10] as visualized in
Fig. 1.3. This allows electrons to localize in close vicinity to the sites of disorder (impurities) in
states that lie within the energy gap of the former discrete spectrum. Only around the center of
the broadened peaks there exist extended states that contribute to transport across the sample.
Decreasing B with a fixed density n now first leads to population of the localized states3. Since
these do not contribute to the transport, a decrease in B results in a stagnating ρxy until all
localized states are filled. Further decrease of B then leads to partial population of the next LL
and thus to a changing in ρxy and some finite ρxx. Therefore, disorder explains the persistence
of the plateaus over a range of B as long as a mobility gap exists between localized and extended
states. Revisiting the argument for the precise value of the quantization, it was assumed that
all states contribute to the transport. With disorder being present in the sample it is not obvi-
ous anymore why this quantization should still be obtained. In section 2.2 an argument taking
into account topological aspects is used to remove any doubts about the proper quantization [11].

It is this connection to topological aspects that also gives rise to the occurrence of chiral edge
channels (or edge ”modes”) by the so called Bulk-boundary correspondence. The existence of
conducting edge states can already be seen in a semi-classical picture visualized in figure 1.4.
Electrons that are subject to an external ~B-field are forced into an orbital motion. In the bulk,
the Lorentz force leads to electrons moving on well defined orbits explaining the bulk insulating
behaviour. Looking at the region close to the edge of the sample4, the motion is disturbed
and the electrons need to perform a chiral skipping orbit motion directed by the magnetic field.
In contradiction to the insulating behaviour of the bulk, the edges now carry a chiral current.
Quantum mechanically the transport at the edge5 is explained by the bending of the LLs in
response to the steep potential confining the electrons at the border of the sample. Close to the
edge the LLs thus cross the Fermi-energy EF resulting in one chiral edge channel for every filled
LL in the bulk. These edge states are robust against disruption by weak disorder at the edge if

2 The potential associated with the disorder obeys V � ~ωc
3 Which are randomly distributed in the sample at locations of impurities.
4 Visually, looking at the region within the distance of the orbits’ radius from the edge.
5 In general, this picture holds only for integer fillings.

3



1. Introduction

the corresponding potential varies smoothly along the edge [11, 12]. The chirality also protects
electrons from back scattering since the entire sample would have to be crossed to change di-
rection. The picture of edge channel transport has been extended for the FQH effect by several
authors such as X.G. Wen [13] and will play an important role throughout this thesis, especially
in a Landauer-Büttiker scheme.

B⊥

Figure 1.4: Visualization of the electrons motion on cyclotron orbits in the bulk and the
disturbed nature of that motion close to the edge.

1.3 Fractional Quantum Hall Effect in 2D
For samples with less disorder than in case of the IQH effect, additional plateaus at fractional
values of 1/ν appear in the graph of ρxy (also shown in Fig. 1.2). The explanation to why
these plateaus occur is related to the arguments from before but with some caveats. Arguing
like in the IQH effect, one finds that these plateaus occur at fractional fillings of the LLs. Why
should those configurations lead to quantized behaviour? The answer lies in how the electron
system is modelled. Instead of having non-interacting electrons as in the IQH effect, electron-
electron interactions play a major role in the FQH effect. These strong interactions allow for
the occurrence of fractionally charged quasi-particles. To describe the electrons at the edge, the
Tomonaga - Luttinger liquid is used [14]. It has been shown to have exact solutions for the low
energy excitations of a 1D system by using the technique of bosonization [15]. As for the IQH
effect, the existence of gapless edge excitations plays a major role in why systems in the FQH
regime conduct in first place. Particularly interesting in the fractional quantum Hall regime is
that the different states represent different phases of topological matter with excitations called
anyons6. They can be divided into states with odd denominator[16], described by Abelian
anyons [17–19] and states with an even denominator that are predicted to host non-Abelian
anyons [20, 21] with potential use for quantum computation [22–24]. Contrary to the description
of the integer analogue, the channels at the edge of some fractional quantum Hall systems are
predicted to be counter-propagating, also allowing for length dependent transport behaviour if
the channels interact somehow. A brief introduction to the mathematical modelling of the edge
theory in the fractional quantum Hall effect is given in sections 2.4 and 2.5.

6 Anyons are quasi particles that are neither fermions (ϕ = π) nor bosons (ϕ = 0). They are defined by being
able to pick up any phase in the wave function when exchanged, hence the name any-on.
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1. Introduction

1.4 Recent Experimental Results and Goal of Thesis
Above, the theory of the quantum Hall effects (QHEs) has been introduced based on the trans-
port of charges. Intuitively, the edge transport of charged particles also gives the opportunity
to the quantized transport of energy (heat). In quantum Hall systems the mechanisms by which
heat and charges are transported along the edge have been found to be uncoupled [25–28].
Therefore measurements of the heat transport are expected to give further insights about the
underlying system, in particular about the edge structure of more complex states. In this con-
text, the existence of non-Abelian Majorana edge modes has been justified by measuring half
integer quantized thermal conductance for several bulk states [29]. Therefore, the experimental
observation of the thermal conductance of the ν = 5/2 state being quantized to 5/27 points
towards the existence of an odd number of Majorana modes at the edge [30]. Because of the
relevance of Majorana modes for topological quantum computation, the determination of the
actual edge structure has been in the focus of research for some time [22, 24, 31]. In 2022 a
paper [32] has been published describing the experimental implementation of a novel method
to distinguish between several theories for FQH states. It is based on interfacing fractional and
integer states to isolate the dynamics of the interesting non-Abelian parts. The results of above
mentioned works provide a mix of charge, heat and noise transport measurements at various
interfaces of ν = 5/2 with counter-propagating integer modes posing a great basis to distinguish
between theoretical proposals.

The main goal of this thesis is to describe and to visualize a suiting theory, recovering ex-
perimental results as well as proposing further measurements for consolidation. To achieve this,
I give a brief introduction into theoretical aspects of the topic in chapter (Ch.) 2 starting from
the description of the bulk and finishing with the theory for the edge state transport. In chapter
Ch. 3 the introduced description of the edge is used in phenomenological models to describe
mesoscopic transport properties. Using the defined tools, the transport at the 5/2 edge is de-
scribed in Ch. 4. The results of this thesis are summarized in Ch. 5 and a short outlook for
future work is given in Ch. 6.

7 The quantization of heat is in terms of the heat conductance quantum κ0T .
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2
Theory Toolbox

In this chapter, the theoretical description of quantum Hall systems is explained exemplary for
the integer quantum Hall effect since the theory of the fractional quantum Hall effect is based
on it. Whenever it is possible, implications on the fractional quantum Hall effect are made and
the corresponding publications are referenced.

2.1 QuantumMechanical Treatment of the Bulk States
In this section the insulating bulk states, called LL will be given a mathematical description.
Starting from the classical description of a particle with mass M and charge e in the presence of
a magnetic field ~B = ∇× ~A = B~ez, with ~A being a gauge field to be specified, the Lagrangian
takes the form

L = 1
2M~̇x2 − e~̇x · ~A. (2.1)

with the canonical momentum ~p = M~̇x−e ~A differing from the mechanical momentum by a term
including the gauge. The Poisson brackets of interest are

{xi, pj} = δij {xi, xj} = {pi, pj} = 0 {Mẋi,Mẋj} = −e
(
∂Aj
∂xi
− ∂Ai
∂xj

)
= −eεijkBk (2.2)

The quantized theory can be constructed by using canonical quantization with the given Poisson
brackets replaced by commutators as

[x̂i, p̂j ] = i~δij [x̂i, x̂j ] = [p̂i, p̂j ] = 0 [π̂x, π̂y] = −ie~B, (2.3)

where π̂ ≡ m~̇̂x is the mechanical momentum. Dropping the hat notation of operators, the
quantized Hamiltonian takes the form

H = 1
2M (~p+ e ~A)2 = 1

2M~π · ~π. (2.4)

Resubstituting the canonical momentum operator, the Hamiltonian takes the gauge-independent
form on the right side of the equation. The energy spectrum to this Hamiltonian is found by
introducing creation and annihilation operators a† and a arising from the mechanical momentum
with commutator in Eq. (2.3)

a† = lB√
2~

(πx + iπy) a = lB√
2~

(πx − iπy) obeying [a, a†] = 1, (2.5)

with lB =
√

~
eB the magnetic length. The Hamiltonian thus takes the form of a harmonic

oscillator, with eigenenergies En called LLs

En = ~ωc
(
a†a+ 1

2

)
with ωc = |e|B

M
. (2.6)

As for the general harmonic oscillator, the Hilbert space is constructed by filling up states
starting from a ground state |0〉, fulfilling a |0〉 = 0 and number states |n〉 by

a† |n〉 =
√
n+ 1 |n+ 1〉 and a |n〉 =

√
n |n− 1〉 . (2.7)

7



2. Theory Toolbox

To compute wave functions in position space and to visualize the state degeneracy, the symmetric
gauge is used in the following. It is defined as

~A = −1
2~r ×

~B = −By2 ~ex + Bx

2 ~ey. (2.8)

Within this gauge another momentum operator can be defined ~̃π = ~p − e ~A. It obeys the
commutation relations

[π̃x, π̃y] = ie~B and [πi, π̃j ] = 0. (2.9)
The corresponding ladder operators b and b† take the form

b = lB√
2~

(π̃x + iπ̃y) b† = lB√
2~

(π̃x − iπ̃y) obeying [b, b†] = 1. (2.10)

A general state |n,m〉 in the Hilbert space is now defined by applying both creation operators a
number of times on the ground state |0, 0〉, leading to

|n,m〉 = a†nb†m√
n!m!

|0, 0〉 with a |0, 0〉 = b |0, 0〉 = 0. (2.11)

It can be seen that the states corresponding to an energy En are degenerate, described by
the quantum number m. To compute wave functions in coordinate space, the chosen gauge is
inserted in the Hamiltonian, resulting in

H = 1
2M

(
−~2∇2 + eB(xpy − ypx) + e2B2

4 (x2 + y2)
)
. (2.12)

In this equation the canonical angular momentum operator in z-direction Lz = xpy − ypx
with eigenvalues m is identified. A transformation into polar coordinates x = r cos(φ) and
y = r sin(φ), with Lz = −i~∂φ leads to

H = − ~2

2M
1
r

∂

∂r

(
r
∂

∂r

)
+ L2

z

2Mr2 −
ωc
2 Lz + M

8 ω2
cr

2. (2.13)

At this point it is important to notice that Lz is not gauge invariant and its eigenvalues m
are no physical observables. In many textbooks this circumstance is not given much attention
even though it could lead to some confusion about signs in the results for the wave function in
coordinate space. The fact that Lz depends on the quantum number m reflects the symmetry
of the Hamiltonian. This symmetry however depends on the choice of coordinate system and
vector potential [33]. In order to make physical sense of it, the guiding center operators X and
Y are introduced instead as proposed by [34]

X = x− πy
Mωc

Y = y + πx
Mωc

obeying [X,H] = [Y,H] = 0 and [X,Y ] = il2B . (2.14)

It can be seen, that the guiding center coordinates are time-independent and don’t commute.
The latter property can be visualized by introducing a circle with radius R depicting the average
distance of the guiding center from the origin. For a given eigen-state |n,m〉, the guiding center
is uniformly distributed on this circle. With the definition of the guiding center, new ladder
operators c† and c are defined as

c† = X − iY
lB
√

2
c = X + iY

lB
√

2
with [c, c†] = 1. (2.15)

The eigenvalue value k ∈ Z+ of c†c, is given a physical meaning by noting the equation for a
circle in
R2 = X2 + Y 2 = (2c†c+ 1)l2B . (2.16)

Therefore k can be related to the distance of the orbits center from the guiding center1. In
symmetric gauge it furthermore holds that c†c = b†b. Therefore the wave functions derived
in the literature (for example in [7, 35]) can be used with m = k. The small but important
difference is that m > 0 is given a physical meaning by using the guiding center argument. The
wave function for the LLL (n = 0) in symmetric gauge takes the final form [34]

ψLLL ∼ rmeimφ exp
(
− r2

4l2B

)
. (2.17)

Eq. (2.17) indicates that ψLLL is peaked around r ≈
√

2ml2B .
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2. Theory Toolbox

2.2 Elaboration on Laughlin’s Argument
In preparation to explain why disorder does not change the nicely quantized value of ρxy, the
argument published by Laughlin and reworked by Halperin is presented in the following [7, 12,
36]. It is based on the existence of a mobility gap between localized and extended states and
the different effect of gauge transformations on them. Since the quantization of ρxy is a general
feature and should thus be independent of the geometry, the system can be modelled as having
any shape. To get another handle on the problem, the annulus2 geometry shown in Fig. 2.1 is
chosen and a magnetic flux Φ through its center is added replacing the applied voltage bias by
Faraday’s law[37]. The entire argument is presented in the Nobel lecture given by Laughlin [38].

Φ
~B

r
φ

V1 V2

Figure 2.1: Visualization of the Corbino disk geometry setup with a virtual flux Φ in the
center of the ring, a magnetic field ~B applied perpendicular to the surface and a voltage bias
∆V = V1 − V2 across the ring.

To visualize this argument, a single quantum particle in the setup depicted in Fig. 2.1 is consid-
ered. Its’ dynamics are described in polar coordinates (r, φ) by the Hamiltonian in symmetric
gauge with an additional gauge term Aφ as

H = 1
2m

[
~p+ e ~A

]2
= 1

2m

[
−~2

r
∂r(r∂r) +

(
~
r

(
−i∂φ + eBr2

2~ + er

~
Aφ

))2]
. (2.18)

The eigenenergies corresponding to this Hamiltonian are degenerate in one quantum number
as before (see Eq. (2.13) with Aφ = 0). Due to the geometry of the disk, the magnetic flux Φ
through its center can be identified with a constant gauge term Aφ in the corresponding vector
potential adding to the background flux Br2. In polar coordinates, Aφ is related to the flux Φ
through the surface S by Stokes’ theorem∮

~A · d~r =
∫
S

~B · d~S = Φ , (2.19)

leading to Aφ = Φ
2πr [12, 36]. For non-zero flux Φ it follows, that the spectrum of the system

directly depends on the chosen gauge which might look confusing from a classical point of view.
In quantum mechanics however, particles are sensitive to gauge fields by the Aharonov-Bohm
effect that couples gauge fields to the phase of the particles [39].

In the following the Fermi energy EF is placed between the first and second LL. If the par-
ticle is prepared in an eigenstate (choose LLL) of the Hamiltonian and the flux is increased
Φ : 0→ Φ0 slowly within the time t� 1

ωc
, the adiabatic theorem [40] ensures that the entire set

of eigenstates is restored. Individual states on the other hand are not necessarily mapped back
onto themselves. This phenomenon, where individual states are non-invariant after being gauge
transformed although they belong to a gauge equivalent Hamiltonian3 is called spectral flow [3].
Recall the wave functions of the LLL from Eq. (2.17) corresponding to the Hamiltonian with
Aφ = 0. In this system they are slightly different as they are symmetrically centered around
a center coordinate rm. Adding the flux Φ0 leads to a shift of the center coordinate by [3,
12]

rm(Φ + Φ0) = rm−1(Φ) . (2.20)
It furthermore leads to one level being pushed above the Fermi-level EF at the inner edge of the
system whereas on the outer edge one level sinks below EF . To reacquire thermal equilibrium

2 Often called Corbino disk. It is homeomorphic to the originally proposed geometry of a ribbon.
3 Meaning that HΦ=Φ0 can be mapped back onto HΦ=0 using a gauge transformation without altering the
boundary conditions.

9



2. Theory Toolbox

the system wants to react by transferring one electron from the inner to the outer edge. This is
however only possible with the before mentioned caveat of taking disorder into account as it gives
rise to the formation of localized and extended states [10, 12]. Using a gauge transformation to
remove the gauge field dependence from the Hamiltonian, the states are transformed accordingly
by

ψ(r, φ)→ e−
ieΦ
2π~φψ(r, φ) .

Transforming localized states in this manner resembles no problem since they are only non zero
in a finite region close to sites of disorder. Extended states on the other hand also have to
remain single valued as they are taken around the annulus φ → φ + 2π. This directly results
in the requirement of Φ being an integer multiple of Φ0. It furthermore implies that only the
extended states undergo spectral flow as the magnetic flux is increased adiabatically. Therefore
the conclusion from the case of no disorder still holds: If the extended states in ν LLs are filled,
the adiabatic change of the flux Φ : 0 → Φ0 results in the transport of ν electrons from the
inner to the outer edge. Noting that due to the confining potential there will always be at least
two extended states present at the edges of the annulus, a radial current Ir = ∆E

∆Φ = ν e
2

h ∆V
is maintained by the voltage difference ∆V = V1 − V2 between inner and outer edge. It is this
current that recovers the expected value of ρxy = ∆V

Ir
= ν h

e2 in the presence of disorder4.

2.3 Significance of Topology in Quantum Hall Effects
The introduced argument made by Laughlin can further be related to topological arguments in
~k space. Here, the focus lies on describing the topological effect on integer quantum Hall states5.
[7, 41]

In general, the adiabatic evolution of eigenstates results in a phase shift consisting of a dy-
namical φt 6 and a geometrical component γ, also called Berry-phase7. Therefore a final state
is defined up to a phase difference which depends on the shape of the momentum space of the
underlying system. Using Bloch’s theorem, the eigenfunctions in the Brillouin zone (BZ) are
defined by planar waves fine-tuned with a periodic expression u~k(~r)

ψ~k(~r) = ei
~k·~ru~k(~r). (2.21)

The periodicity implied by the periodic boundary conditions of the BZ requires the momentum
space to be a Torus T 2 in 2D and an annulus S1 in 1D. Using that the final state has to obey
the time-dependant Schrödinger equation, the Abelian Berry phase is obtained by integrating
the Berry connection ~A(~k) = −i 〈u~k| ∇~k |u~k〉 over the path taken in momentum space. For a
closed contour C, the Berry phase takes the form

γ =
∮
C
~A(~k) · d~k. (2.22)

Using Stokes’ theorem, the integral over the closed path C in ~k-space inscribing the surface D
is translated into a surface integral of the curl of the Berry connection. The resulting tensor
F = ∇~k × ~A(~k) is called Berry curvature and defines the Berry phase by

γ =
∫
D
F d~k. (2.23)

By the Gauss-Bonet theorem the above integral is quantized in units of 2π whenever it is
computed over a closed manifold D. Noting the equivalence to the Euler characteristic, the
topological invariant called first Chern number C ∈ Z is defined. As in the case of the Euler
characteristic it is deeply connected to the genus of the enclosed manifold. In case of the Torus,
the Chern number is computed by integrating the Berry curvature over the BZ

C = 1
2π

∫
T 2
Fxy dk2. (2.24)

4 Recall: Disorder also explains the persistence of the plateaus over a range of B values.
5 This can be extended to the FQH effect using the non-Abelian Berry connection as shown in [7].
6 It depends on the energy and the time T needed to complete a loop in parameter space ϕt =

∫ T
0 E(t) dt

7 This component is only non-zero for a cyclical variation of the Hamiltonian. The Aharonov-Bohm phase can
be seen as a "special" case of the Berry-phase.[39]
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2. Theory Toolbox

For a bulk insulator with a finite number of filled bands, one can assign a first Chern number to
each band α. For non-interacting systems, like in case of the IQH effect, the TKNN (Thouless,
Kohmoto, Nightingale, den-Nijs) formula [42] can then be used to connect the Hall conductivity
to the Chern numbers by

σxy = e2

h

∑
α

Cα. (2.25)

The Hall conductivity can thus be thought of as being a purely topological expression justi-
fying the existence of gapless edge channels. Using the two band Dirac model and imposing
translational symmetry in x-direction, the energy dispersion takes the form [43]

E(kx) = ~vF kx with group velocity dE(kx)
dkx

= ~vF . (2.26)

Since this energy dispersion implies the crossing of the Fermi-energy with a positive group
velocity it is viewed as a right moving edge mode. If the Hamiltonian is changed close to the
surface, the dispersion relation might be altered and the edge mode might cross the Fermi-energy
EF multiple times. The difference in crossings of EF with positive and negative group velocity
(NR, NL) however, has to remain constant and equal to the difference in Chern numbers ∆C at
the interface of the valence and conduction band

NR −NL = ∆C. (2.27)

This relation gives a vivid picture of the before mentioned bulk-boundary correspondence as it
relates the gapless edge excitations to the properties of the bulk insulator. [7, 43]

2.4 Bosonization
Having motivated the existence of gapless edge channels in quantum Hall systems, a model to
describe the charge carriers at the edge of a strongly interacting electron system is needed to
deduct transport characteristics for fractional quantum Hall systems. In this thesis the method
of bosonization is used to describe charge carriers in 1D chiral edge channels. [15, 44, 45]

For weakly interacting electron systems in 1D at low energies, the mathematical procedure
of bosonization is used to describe the fermionic system in terms of bosonic degrees of freedom.
It is based on linearizing the low energy spectrum of the fermions around the two Fermi points
±kF 8. The resulting V-shaped spectrum consists of two branches with opposite group velocity
and needs to be unbound to allow for a proper definition of bosonic operators [44]. In order to
avoid running into ultraviolet divergences, the final result is further regularized. In the following
only the right moving branch (vF > 0) with the normal ordered Hamiltonian H0 is considered,
where

H0 = vF
∑
k

k : c†kck : . (2.28)

The fermionic creation and annihilation field operators are defined in a box of length L by
assuming vanishing lattice spacing a → 0 and thus an infinitely large BZ

(
−πa , πa

)
. For x ∈[

−L2 , L2
]
they take the form

ψ(x) = 1√
L

∑
k

eikxck and ψ†(x) = 1√
L

∑
k

e−ikxc†k (2.29)

and obey the fermionic anti commutation relations

{ψ(x), ψ(y)} = {ψ†(x), ψ†(y)} = 0 and {ψ(x), ψ†(y)} = δ(x− y). (2.30)

8 Therefore there is a built-in particle-hole symmetry in the theory. Amongst other effects (no energy dependent
scatterer) this excludes the description of any thermo-electric effects in this model. To take them into account
the low energy corrections to the linearized spectrum could be considered (not done here).[46]
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2. Theory Toolbox

To construct a finite Hilbert space, the difference between the total number of fermions and
that of the vacuum state |0〉0 (Dirac sea) is used. Therefore the normal ordering of the number
operator N̂ is of crucial importance to avoid diverging behaviour

N̂ =
∑
k

: c†kck :=
∑
k

[
c†kck − 〈0|0 c†kck |0〉0

]
. (2.31)

Particle-hole excitations are created using the density operator ρ(q) with q 6= 0

ρ(q) =
∑
k

c†k+qck obeying [ρ(p), ρ(q)] = −Lp2π δp,−q. (2.32)

The commutation relation gives the possibility to define bosonic creation and annihilation oper-
ators b†q and bq based on ρ(q) by

b†q =
√

2π
Lq
ρ(q), bq =

√
2π
Lq
ρ(−q) with [b†q, b

†
q′ ] = [bq, bq′ ] = 0 and [bq, b†q′ ] = δq,q′ . (2.33)

In terms of the introduced bosonic operators, the fermionic density takes the form

: ψ†(x)ψ(x) := N̂

L
+ 1√

2πL
∑
q>0

√
q
[
eiqxbq + e−iqxb†q

]
. (2.34)

Having a description of the interacting fermionic system in terms of non-interacting bosons, it
remains to show that this description captures all excitations of the original system. At this
point the discovery of Haldane [15] provides the essential piece to the puzzle. He showed that
the N -particle Hilbert space spanned by all particle-hole excitations on top of the N -particle GS
is also spanned by applying the bosonic creation operator b†q a number of times on this GS. He
therefore showed that the bosonic representation of the Hilbert space is complete. To rewrite the
final expression for the fermionic density, the bosonic fields ϕ(x) and φ(x) are introduced

ϕ(x) = i√
L

∑
q>0

eiqx√
q
e−b

q
2 bq and (2.35)

φ(x) = ϕ(x) + ϕ†(x) = i√
L

∑
q>0

e−b
q
2
(
eiqxbq − e−iqxb†q

)
. (2.36)

The term e−bq/2 acts as a regularization and has been introduced to ensure convergence at
intermediate steps in the computation. Computational results should always be viewed with
b→ 0+. The fermionic annihilation operator takes the final form

ψ(x) = F√
2πb

ei2πN̂
x
L e−i

√
2πφ(x) , (2.37)

where F denotes a Klein factor that is used to ensure fermionic commutation relation when
Hilbert spaces of different particle numbers are connected. The important result of the entire
bosonization process is that the linearized Hamiltonian H0 is now expressed by

H0 = vF

∫ L
2

−L2
dx : ψ†(x)(−i∂x)ψ(x) := vF

2

∫ L
2

−L2
dx : (∂xφ)2 : +π

L
vF N̂(N̂ + 1) . (2.38)

The term π
LvF N̂(N̂ + 1) is neglected in the following since it becomes less important in the

thermodynamic limit9.
In combination with the topological argument, this result can now be used to define the action
of chiral bosonized fermions at the edge of a fractional quantum Hall system.

9 N̂ →∞, L→∞ and N̂/L = const.
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2. Theory Toolbox

2.5 Edge State Transport

As argued before, the transport in the quantum Hall regime is carried out by chiral edge states.
Using the bosonization result, the low energy excitations of the integer and the fractional quan-
tum Hall effect can now be described by non-interacting bosons. While the IQH edges consist
exclusively of co-propagating edge channels, this is only the case for the so called Laughlin-states
of filling ν = 1

m with m ∈ Z>0 in the FQH regime. Edge modes that are not Laughlin-states
are assumed to consist of a multitude of counter-propagating channels. The low energy effective
theory is thus described by various layers of incompressible quantum Hall fluids layered on top
of each other. In the following I will introduce the theory used in this thesis closely following
the descriptions of [13, 47, 48].

bulk 2DEG

undisturbed
boundary

ρ(x, t)

excess
charge

charge
deficiency

Figure 2.2: Illustration of the charge density wave ρ(x, t) propagating along the surface of the
bulk two dimensional electron gas (2DEG) system. According to the propagation of the wave,
there will be regions of excess and deficient charge.

The fundamental concept of this theory is to think about the GS as resembling an incompressible
disc shaped quantum Hall droplet. Excitations of this GS are thought to be deformations at
the boundary resulting in chiral one dimensional charge density waves that propagate along the
boundary of the droplet as illustrated in Fig. 2.2. By the effect of the bulk-boundary correspon-
dence the edge ”knows” about the bulk state properties and carries the correct amount of charge
(heat). In order to combine the bosonization result for the Hamiltonian with the chiral nature
of the edge wave, the action describing the edge state transport is derived from the equation
of motion (EOM) of the density wave ρ(x, t) propagating with velocity v. It has the general
form

∂tρ− v∂xρ = 0 . (2.39)

The bosonization result from before can now be used to rewrite the charge density ρ in terms of
the bosonic field φ. The resulting action describing the dynamics at the edge of filling ν takes
the form of the Floreanini-Jackiw action with φ a chiral compact bosonized fermion [13, 49,
50]

S = 1
4πν

x
∂tφ∂xφ− v(∂xφ)2 dx dt . (2.40)

The wave equation from before is recovered with ρ = 1
2π∂xφ by minimizing this action (compare

Sec. A.5.1). The quantization of the fields ρ and φ is done in momentum space with kn = 2πn
L ,

where L denotes the circumference of the disc that describes the 1D momentum space of the BZ.
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2. Theory Toolbox

It follows that

φ(x, t) = 1√
L

∞∑
n=−∞

φn(t)eiknx with kn = 2πn
L

and (2.41)

ρ(x, t) = 1√
L

∞∑
n=−∞

ρn(t)eiknx and ρn(t) = ikn
2π φn(t) . (2.42)

Discriminating between positive and negative n in the Fourier expansion of φn(t), the additional
condition φ−n(t) = φ∗n(t) is obtained (computation in Sec. A.5.2). Because the modes exist on
a circle, φn(t) is furthermore symmetric. The action rewritten in terms of φn(t) becomes

S = − 1
2πν

∫
t

∞∑
n=0

iknφ̇n(t)φ−n(t) + vk2
nφn(t)φ−n(t) , (2.43)

with the corresponding conjugate momentum πn(t) given as

πn(t) = − ikn2πν φ−n(t) = 1
ν
ρ−n(t) . (2.44)

Having defined the conjugate variables φn(t) and πn(t), the commutation relations in Fourier
space are

[ρn(t), φn′(t)] = iνδn+n′ [φn(t), φn′(t)] = 2πν
kn

δn+n′ [ρn(t), ρn′(t)] = knν

2π δn+n′ (2.45)

These relations are an example of a U(1) Kac-Moody Algebra and play an important role within
the use of CFT in later parts of this thesis. Transforming back into coordinate space, the equal
time commutation relations become9

[φ(x), φ(x′)] = iπνsgn(x− x′) [ρ(x), φ(x′)] = iνδ(x− x′) [ρ(x), ρ(x′)] = − iν2π∂xδ(x− x
′).

(2.46)

Having introduced the theory for a density wave ρ of one type of liquid at the edge of the quantum
Hall droplet, it remains to construct operators that create/annihilate particles in different fluids
at the edge. Therefore electron Ψe and quasi particle Ψqp annihilation are defined by the normal
ordered field operators

Ψe =: eimφ : Ψqp =: eiφ : . (2.47)

In Sec. A.5.3 it is shown that they indeed annihilate the correct charge in the corresponding
channel. The non-interacting theory is thus completely described by the above introduced the-
ory. For an edge consisting of multiple modes, the action is generalized to the K-matrix-action
[13]

S = 1
4π

x [
Kij∂tφi∂xφj − Vij∂xφi∂xφj

]
dt dx . (2.48)

The matrixKKK describes the filling factors and chiralities of the edge modes, whereas VVV hosts the
velocities of the modes. Therefore the off-diagonal elements of VVV describe Coulomb interactions
between the modes. With disorder being present at the edge this system is sometimes exactly
solvable at a random fixed point in the renormalization group sense [51, 52]. In the context
of this thesis coulomb interactions are neglected since they only renormalize the inter mode
tunneling conductances. When looking at the influence of reflections at the contacts however, it
becomes necessary to take them into account [53–55]. Disorder furthermore breaks translational
symmetry allowing for scattering events that give rise to inter channel equilibration by tunneling
interactions.

9 Here, sgn(x) is defined as sgn(0) = 1 which leads to sgn(x) = 2Θ(x)− 1 and thus ∂xsgn(x) = 2δ(x).
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3
Phenomenological Description of

Edge State Transport

In this chapter, three semi-classical models are introduced to describe the transport along the
edge consisting of channels that carry charge νi and heat ni. The obtained transport character-
istics are then used to draw conclusions about the models predictive power by comparing them
to experimental results.

3.1 Landauer-Büttiker Description
Assuming that the edge of a system in the quantum Hall regime consists of a number of well
defined channels, the Landauer - Büttiker formalism (LBF) is a useful approach to describe the
transport along the edge [56, 57]. The channels transport energy according to the applied voltage
∆V and temperature bias ∆T in a chiral way. By convention, the transport is considered to
be in the downstream direction if it follows the direction set by the magnetic field. Therefore
the transport by co-propagating channels is always ballistic in downstream direction which is
the case for integer and Laughlin edges [58]. The transport along more complex FQH edges is
predicted to be carried out by counter-propagating channels [58, 59]. To describe the transport
of the considered states within this thesis, three different types of edge channels are distinguished
depending on their intrinsic properties
1. Bosonic channel with filling ν = 1 and heat conductance n = 1
2. Bosonic channel with filling ν = 1/m and heat conductance n = 1
3. Majorana channel with filling ν = 0 and heat conductance n = 1/2

The notion of counter-propagating channels becomes visible by (for example) looking at the
transport characteristics of the ν = 2/3 edge. In general, this edge could be modelled by two
co-propagating channels, each with filling ν = 1/3. Contradictory to the expected uniform
transport characteristics, experimental results demonstrated properties that are not possible
within this description [60]. To circumvent this objection, the edge is instead modelled by a
downstream mode ν+ = 1 and an upstream mode with ν− = 1/3 giving the opportunity to
explain all observed transport characteristics depending on degree of equilibration between the
involved modes [52].
To show the influence of equilibration on the edge transport, the LBF is introduced first to
describe the transport along edges of non-interacting1 channels. Without interactions between
the channels there is no possibility for channels to equilibrate as they propagate along the edge.
The only possibility to achieve some equilibration at this edge is by inter channel mixing in
macroscopic2 contacts.
A chiral charge current Je,i emanating from contact i with voltage Vi is defined according to the
chirality χj and filling factor νj of the jth channel by

Je,i = χjνjVi . (3.1)

Similarly, a chiral heat current is defined by the squared temperature T 2
i at contact i

JQ,i = χjnjκ0T
2
i , (3.2)

1 The term interaction is used to describe scattering interactions between the channels. It does not refer to
Coulomb interactions.

2 I will refer to contacts that are connected to the edge in experiments as macroscopic to distinguish them
from any virtual probe contacts.
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Figure 3.1: Visualization of transport in common measurement setups with two, four or six
terminals (left to right) hosting one effective downstream channel.

where nj denotes the channels’ heat conductance. Multiple co-propagating channels at one
edge are further merged into one effective channel of filling νj and heat conductance nj . For
Nd downstream and Nu propagating channels of individual νl and nl this leads to effective
downstream νd(nd) and upstream parameters νu(nu)

νd =
Nd∑
l=1

νl nd =
Nd∑
l=1

nl νu =
Nu∑
l=1

νl nu =
Nu∑
l=1

nl

To compute transport properties that are observed in experiments such as conductances, the
most common measurement setups: two terminal setup, four terminal setup (Hall-cross) and six
terminal setup (Hall-Bar) (compare figure 3.1) are considered.
Looking at the charge transport by integer and Laughlin states in the the two terminal setup
the edge is modelled as consisting of one channel with filling ν ∈ {ν, 1

m}. Therefore, applying a
bias in the chemical potential µL > µR

3 leads to the charge current Je that can be referred to
the two terminal charge conductance G2t. Using the Fermi-distributions fL, fR at the left and
the right contact, the charge current evaluates to

Je = ν
e

h

∫ ∞
0

dE
[
fL(E,µL, T )− fR(E,µR, T )

]
. (3.3)

At low temperatures, the Sommerfeld expansion can be used to simplify this expression by
relating the statistical average of a function H(E) to the problem. With the inverse temperature
β = (kBT )−1, this expansion provides approximate solutions to problems that are described by
integrals of the form [61]∫ ∞

−∞

H(E)
eβ(E−µ) + 1 dE =

∫ µ

−∞
H(E) dE + π2

6

(
1
β

)2
H ′(µ) +O

(
1
βµ

)4
. (3.4)

Using this formalism with HL(E) = HR(E) = 1 and thus H ′L(E) = H ′R(E) = 0, the charge
current Je results in the charge conductance G2t

Je = ν
e

h

[ ∫ µL

0
1dE −

∫ µR

0
1dE

]
= ν

e

h
(µL − µR) = ν

e

h
∆µ (3.5)

G2t = Je
∆V = eJe

∆µ = ν
e2

h
. (3.6)

The charge conductance of G2t = {ν, 1
m} thus takes the expected form for integer and Laughlin

states in units of the charge conductance quantum g0 = e2

h . Applying a temperature gradient
TL > TR, the heat current JQ associated with transport in one channel of heat conductance n
evaluates to

JQ = n

h

∫ ∞
0

dEE
[
fL(E,µ, TL)− fR(E,µ, TR)

]
. (3.7)

3 By applying a voltage bias VL > VR
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3. Phenomenological Description of Edge State Transport

Using the Sommerfeld-expansion with HL(E) = HR(E) = E and thus H ′L(E) = H ′R(E) = 1 it
follows for the heat current after some steps

JQ = n
π2k2

B
6h (T 2

L − T 2
R) ≈ nπ

2k2
B

3h T∆T. (3.8)

In the second part of this equation, the heat current has been expanded for small biases ∆T
with TL = T0 + ∆T and TR = T0. Using the definition of the heat conductance GQ2t, one arrives
at the final result

GQ2t = dJQ

d∆T = n
π2k2

B
3h T0 = nκ0T0 , (3.9)

with the heat conductance quantum κ0 := π2k2
B

3h . An edge consisting of one channel with intrinsic
heat conductance n will thus show a quantized two terminal heat conductance of GQ2t = nκ, with
κ := κ0T the adjusted heat conductance quantum. The quantization of heat has been shown
in experiments in 2000 [62] and more recently also in quantum Hall states [27–30]. Unless
stated otherwise the expressions derived in this thesis are given in units of the charge and heat
conductance quantum g0 and κ. The computation of the one channel case for the Hall-cross and
the six terminal setup are not carried out explicitly in this thesis4.

L1

L1

1 2
Jnet

1 3

2

4

L1 L2

L3L4

Jnet
1 4

2 3

6 5

L1 L2 L3

L4L5L6

Jnet

Figure 3.2: Counter-propagating modes in common measurement setups with effective filling
factors of ν+ in the downstream and ν− in the upstream direction.

Looking at channels of opposite chirality in the considered setups visualized for two channels in
Fig. 3.2, the character of the LBF becomes visible. Additionally to the two terminal conductance
G2t, the setups with more than two macroscopic contacts allow to compute the Hall-conductance
GH between contacts of different edges and the longitudinal conductance GL between neigh-
bouring contacts at the same edge. The additional macroscopic contacts are modelled as voltage
probes leading to the local conservation law J in = Jout. The charge transport in linear response
to a voltage is described by the matrix equation ~I = GGG~V and the conductance matrices GGG have
to be circulant. They are defined for the setups shown in Fig. 3.2 using the permutation matrix
PPP = (pij) ∈ Rn×n corresponding to the permutation

πn =
(

1 2 3 . . . n
n 1 2 . . . n− 1

)
∈ Sn and pij =

{
1 if π(i) = j

0 else
, (3.10)

where n is the number of contacts and takes the values n ∈ {2, 4, 6} for Two Terminal setup,
Hall-Cross and Hall-Bar correspondingly. Accordingly, GGGn takes the general form

GGGn = (ν+ + ν−)111n − ν+PPPn − ν−PPPn−1
n . (3.11)

The so foundGGGn are singular and ~I = GGG~V cannot be solved for the voltages in this form. Assum-
ing the injected current I between source (left) and drain (right) is conserved and by imposing
gauge invariance of the system, the conductance matrix is reduced to a non-singular matrix. The
system of equations is then solved for the various voltages defining the conductances shown in
table (Tab.) 3.1. Using the introduced matrices for the setups these conductances are computed
depending on the effective filling factors ν+ and ν−. The results of this computation are shown

4 They can be deduced from the upcoming theory for counter-propagating channels by setting upstream
transport properties to zero.
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3. Phenomenological Description of Edge State Transport

Table 3.1: Definition of the charge Hall-conductance GH , the two terminal charge conductance
G2t as well as the longitudinal charge conductance GL in the considered setups. The longitudinal
conductance for the Hall-bar is defined according to the convention used in many experiments.

G2t GH GL

Two terminal
setup

I

V1 − V2
x x

Hall-cross I

V1 − V3

I

V2 − V4
see Sec. A.2

Hall-bar I

V1 − V4

I

V2 − V6
= I

V3 − V5

I

V2 − V3
= I

V5 − V6

below in Tab. 3.2. The heat transport in the different setups is described using a chiral heat
current. With the modes’ individual heat conductances, the heat conductance matrices are de-
duced from the charge conductance matrices by exchanging νi → κ0ni. Using gauge invariance
to analyze this system is more complicated this time. But since the transport is assumed to be
free of dissipation, the system is directly solved for the heat current in terms of the difference
of squared temperatures at source (L) and drain (R) T 2

L − T 2
R. The heat conductances GQ2t, G

Q
H

and GQL are then computed to the expressions shown in Tab. 3.2.

At this point one should be confused by the values of the conductances in the different mea-
surement setups - especially by the non-uniqueness of the Hall conductance which is the key
characteristic of the QHEs. This is a consequence of the LBF not taking interactions between
the channels into account. However, increasing the number of macroscopic contacts at the edge,
the two terminal charge(heat) conductance seems to approach the expected unique value of
G

(Q)
2t = |ν+(n+)− ν−(n−)|. This observation is further investigated in the following by looking

at mixing of edge channels in macroscopic contacts.

Table 3.2: Values of measurable charge conductances (in units e2/h) in the considered setups
depending on the effective filling factors of the downstream ν+ and upstream ν− propagating
modes as well as the heat conductances (in units of κ) depending on the effective heat conduc-
tances of the downstream n+ and upstream n− propagating modes.

G2t GH GL

Two terminal
setup ν+ + ν− x x

Hall-cross ν2
+ + ν2

−
ν+ + ν−

ν2
+ + ν2

−
ν+ − ν−

see Sec. A.2

Hall-bar ν3
+ + ν3

−
ν2

+ + ν+ν− + ν2
−

ν2
+ − ν+ν− + ν2

−
ν+ − ν−

ν3
+ + ν3

−
ν+ν−

GQ2t GQH GQL

Two terminal
setup n+ + n− x x

Hall-cross n2
+ + n2

−
n+ + n−

n2
+ + n2

−
n+ − n−

see Sec. A.2

Hall-bar n3
+ + n3

−
n2

+ + n+n− + n2
−

n2
+ − n+n− + n2

−
n+ − n−

n3
+ + n3

−
n+n−
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3. Phenomenological Description of Edge State Transport

3.2 Mixing Model
To verify, that the conductances approach a unique value for ν+(n+) 6= ν−(n−), an alternative
model taking a deeper look into the nature of mixing in macroscopic contacts is introduced in
the following. Therefore the local conservation law at each contact is viewed as resembling a
mixing of channels that emanate from different neighbouring contacts. Generalizing this thought
for an arbitrary number of contacts m attached to one edge5 leads to the notion of a recurrence
relation.
For Nd downstream channels with νj and Nu upstream channels with νl, the recurrence relation
for the charge transport becomes

Vn =
∑Nd
j=1 νj∑Nc
i=1 νi

Vn−1 +
∑Nu
l=1 νl∑Nc
i=1 νi

Vn+1. (3.12)

The voltage Vn at contact n is now described as the result of the weighted average between the
voltages of the neighbouring contacts Vn+1 and Vn−1. Summarizing channels propagating in the
same direction into one effective downstream channel with νd and one effective upstream channel
of νu, the mixing behaviour becomes even more vivid

Vn = νd
νd + νu

Vn−1 + νu
νd + νu

Vn+1. (3.13)

Applying a voltage bias between contact n = 0 (left) and n = m (right) and imposing the
corresponding boundary conditions for the top and bottom edge, the voltage at contact n of the
top(bottom) edge becomes for ν+ 6= ν−

V top(bot)n =
VL(R)

(
ν+
ν−

)m
− VL(R)

(
ν+
ν−

)n
+ VR(L)

(
ν+
ν−

)n
− VR(L)(

ν+
ν−

)m
− 1

. (3.14)

The corresponding two terminal charge conductance is obtained by computing the net current
at the top (bottom) Itop(bot) edge and takes the form

G2t = Itop − Ibot
VL − VR

= (ν+ − ν−)

(
ν+
ν−

)m
+ 1(

ν+
ν−

)m
− 1

. (3.15)

In the limits of having no mixing between the channels (m = 1) and having well mixed channels
m→∞, the two terminal charge conductance approaches the values:

G2t
m=1= ν+ + ν− G2t

m→∞→ ν+ − ν− (3.16)

Not only does this model reproduce the result of the LBF computation for the two terminal setup
with m = 1, it also shows that the quantized value of the conductance is obtained for the limit of
well-mixed channels G2t

m→∞−→ ν+ − ν−. Physically this refers to equilibration between two edge
modes of opposite chirality just by mixing in a large number of macroscopic contacts connected
to the edge. In Fig. 3.3b the voltage drop along the top and bottom edges are visualized. It
can be seen that the voltage drop occurs in the vicinity of the right contact at n = m. Since
a voltage drop leads to Joule-heating, this region is referred to as the hotspot in the following.
Even though the result might look promising, this model does not explain real setups where only
a finite amount of macroscopic contacts is connected to the edge. Therefore this already implies
that the assumption of non-interacting channels might not be suitable to describe the transport
by fractional quantum Hall edges.
In QSH systems on the other hand, where interactions between the channels are negligible due
to the energy required to flip the spin, the mixing model might be useful to predict charge and
heat conductances [63, 64]. With ν+ = ν−, the discrete voltage profiles for top(bottom) edge
now take the form

V top(bot) = VL(R) −
n

m
VL(R) + n

m
VR(L). (3.17)

5 Thus the total number of contacts attached to the system is N = 2m.
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3. Phenomenological Description of Edge State Transport

Computing the two terminal charge conductance as before, it follows for the limits of inter-
est

G2t = 2ν
m

G2t
m=1= 2ν G2t

m→∞−→ 0 (3.18)
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Figure 3.3: Visualization of the two terminal charge conductance G2t on the left and the
corresponding voltage drop along the top (solid lines) and the bottom edge (dashed lines) with
ν+ = 1, ν− = 1

3 and ν+ = ν− = 1 for an increasing number of probe contacts n.

In this scenario the net charge transport is computed to be vanishing in the well mixed limit
m→∞ since the channels carry the same amount of charge in opposite direction (compare Fig.
3.3a). The transport of charges is therefore referred to as being diffusive. This is underlined
taking a look at the recurrence relation of such a system

Vn = 1
2Vn−1 + 1

2Vn+1. (3.19)

Each macroscopic contact is influenced equally strong from its two neighbours, indicating a
random walk of charges and thus a linear voltage drop across the system as depicted in Fig.
3.3b.
Introducing a conserved heat current in the probe contacts, the formalism is also applicable to
look into mixing of heat along the edge. The recurrence relation for n+ 6= n− becomes

T 2
n = n+

n+ + n−
T 2
n−1 + n−

n+ + n−
T 2
n+1. (3.20)

To compute the heat conductance, the heat currents on top and bottom edge used to define the
net heat current across the sample JQ,net = J topQ − JbotQ by

J
top(bot)
Q = κ0

2 (n+T
2
0,top(bot) − n−T 2

1,top(bot)). (3.21)

Biasing the system by TL = T0 + ∆T and TR = T0 and expanding the net heat current small
∆T up to O(∆T ) the heat conductance is computed. In the relevant limits of no (m = 1) and
very well mixing (m→∞) it takes the form

GQ2t = (n+ − n−)

(
n+
n−

)m
+ 1(

n+
n−

)m
− 1

GQ2t
m→1−→ n+ + n− GQ2t

m→∞−→ n+ − n− (3.22)

Applying the same formalism for n+ = n− = n, depicting heat transport without a preferred
direction (diffusion), the heat conductance becomes

GQ2t = 2n
m

GQ2t
m→1−→ 2n GQ2t

m→∞−→ 0 (3.23)

As in the charge transport case, the heat conductance exponentially approaches its equilibrium
value for n+ 6= n− and vanishes diffusively for n+ = n−. Up to this point the unique nature
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3. Phenomenological Description of Edge State Transport

of the charge and heat conductances has been recovered under the constraint of having an
infinite number of perfect macroscopic contacts attached to the edge. Since this is not given in
common measurement setups, the mixing model is used best to compute the conductances of
systems with non-interacting channels for a finite number of probes. On the other hand there
has to be an explanation for the uniqueness of the conductances in the fractional quantum Hall
regime. Therefore it seems crucial to take interactions between the modes on one edge into
account.

3.3 Incoherent Tunneling Model
In the incoherent tunneling model, the already mentioned interactions between the two channels
are taken into account. Due to a large amount of disorder at the edge, tunneling between the
channels is allowed at a point contact. Assuming local equilibrium conditions in the channels,
it is possible to associate local voltages V and temperatures T to the channels before and after
the interaction site. A tunneling current at the point contact is then caused by the difference in
local V and T between the involved channels. Schematically, the edge is visualized in Fig. 3.4
for two counter propagating modes. [65–69]

D2

S1

S2

D1

V2,i, T2,i V2,i+1, T2,i+1

V1,i, T1,i V1,i+1, T1,i+1

J2,i+1J2,i

J1,i J1,i+1

Jτ,i

!D2
S1

S2
D1

Figure 3.4: Schematic drawing of the incoherent tunneling model described by two channels 1, 2
interacting at a point contact between two neighbouring virtual probes. It describes interactions
along a single edge segment as indicated in the top right corner.

To describe the transport properties resulting from this edge description it is assumed that two
adjacent tunneling points are located within a distance a larger than the coherence length of
the modes. Therefore any effect of quantum interference becomes negligible. Assuming that
no charge (heat) is dissipated at the disorder sites, the charge and energy current obey a local
conservation law given by

χ1I1,i+1 = χ1I1,i − Iτ,i and χ2I2,i+1 = χ2I2,i + Iτ,i . (3.24)

In general, the tunneling current depends on the chiralities of the two channels but to first order
the difference between the two cases χ1 = +(−) and χ2 = −(+) vanishes. The chiral currents
Ik,i of the kth channel (k ∈ {1, 2}) at the ith probe as well as the tunneling current between two
channels Iτ,i are defined by

Ik,i = νkVk,i and Iτ,i = g(V1,i − V2,i+1) . (3.25)

where g describes the probability amplitude of the tunneling (interaction) process. Restructuring
the system of equations, the discrete description of the voltages is obtained as(

V1,i+1
V2,i+1

)
=
(− gν2χ2

gν1χ1+ν1χ2ν2

gν2χ2
gν1χ1+ν1χ2ν2

g
g+χ2ν2

− g
g+χ2ν2

) (
V1,i
V2,i

)
. (3.26)
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3. Phenomenological Description of Edge State Transport

Taking the continuum limit for small tunneling amplitudes g → 0, vanishing a → 0 and by
introducing a constant length a

g = l, the continuous version of this equation is obtained. For an
infinite number of virtual probes along the edge, it takes the form

∂x
#»

V (x) = 1
l

(− 1
χ1ν1

1
χ1ν11

χ2ν2
− 1
χ2ν2

)
#»

V (x) . (3.27)

Imposing the boundary conditions V top1 (0) = V0, V top2 (L) = 0 for a setup biased by ∆V = V0,
the voltage profiles of the top edge are obtained as

V top1 (x) = V0
ν1 − ν2e

x−L
lCeq

ν1 − ν2e
− L

lCeq

and V top2 (x) = V0ν1
1− e

x−L
lCeq

ν1 − ν2e
− L

lCeq

. (3.28)

Here, a new constant charge equilibration length lCeq = l ν1ν2
ν1−ν2

has been introduced. Imposing the
boundary conditions for the bottom edge, the corresponding voltage profiles take the form

V bot1 (x) = V0ν2
e
− L

lCeq + e
x−L
lCeq

ν1 − ν2e
− L

lCeq

and V bot2 (x) = V0
ν2 − ν1e

x−L
lCeq

ν2 − ν1e
− L

lCeq

. (3.29)

In Fig. 3.5, the voltage profiles of the top and bottom edge are visualized for the ν = 2/3
state consisting of counter propagating channels with filling ν1 = 1 and ν2 = 1

3 . Similar to the
results for the mixing model, the voltage drop occurs within a small region, in vicinity to the
downstream contact at x = L indicating the position of the hotspot in that region. Based on
the voltages, the length dependent behaviour of the charge conductances between the different
channels’ source and drain contacts is computed. The "downstream" conductances are defined
by the conductance between the source of channel one S1 and the drains D1 and D2

GS1D1 = Itop1 (L)
V0

= ν1V
top
1 (L)
V0

and GS1D2 =
∣∣∣Itop2 (0)

V0

∣∣∣ =
∣∣∣ν2V

top
2 (0)
V0

∣∣∣ . (3.30)

Similarly, the "upstream" conductances become

GS2D1 =
∣∣∣Ibot1 (L)

V0

∣∣∣ =
∣∣∣ν1V

bot
1 (L)
V0

∣∣∣ and GS2D2 = Ibot2 (0)
V0

= ν2V
bot
2 (0)
V0

. (3.31)

In the limit L� lCeq, where the charge transport between the two channels is fully equilibrated,
the conductances take the values:

GS1D1

L � lCeq−→ ν1 − ν2 GS1D2

L � lCeq−→ ν2

GS2D1

L � lCeq−→ ν2 GS2D2

L � lCeq−→ 0
(3.32)

In the regime where the charge transport is not fully equilibrated, the charge conductances show
non unique behaviour as visualized in Fig. 3.5 for 0 ≤ L/lCeq ≤ 10.
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Figure 3.5: Visualization of the voltage profiles of the channels at top and bottom edge with
ν1 = 1, ν2 = 1

3 and lCeq = 0.1L on the left and the channel length dependent behaviour of the
conductances on the right.
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With the hand waving picture of particles being transported along the edge, it comes with no
surprise that there is also energy transported along the edge allowing to look into heat transport
characteristics. The heat transport equation is obtained by using the local conservation of energy
at the ith probe. It follows that

χ1J1,i+1 = χ1J1,i − Jτ,i and χ2J2,i+1 = χ2J2,i + Jτ,i . (3.33)

The chiral energy currents are furthermore described by the local constitution relation of the
kth mode at contact i

Jk,i = νk
e2

2hV
2
k,i + nk

κ0
2 T

2
k,i , (3.34)

where νk and nk are the filling factor and the heat conductance of the kth channel. Similarly to
the case of charge transport, an interaction energy current Jτ,i is defined. It has the form

Jτ,i = g
e2

2h (V 2
1,i − V 2

2,i+1) + gγκ0
2 (T 2

1,i − T 2
2,i+1) , (3.35)

where γ denotes the deviation from the Wiedemann-Franz law. Using the result from the charge
transport, the terms V1,i+1 and V2,i+1 are replaced by V1,i and V2,i. Expanding for small g
up to O(g), setting x = ia, introducing an infinite number of probes n → ∞ and taking the
continuum limit a → 0 by leaving g

a = 1
l = const, the continuous energy transport is given by

the equation

∂x

(
T 2

1 (x)
T 2

2 (x)

)
= γ

l

(
−χ1n2 χ1n2
χ2n1 −χ2n1

)(
T 2

1 (x)
T 2

2 (x)

)
+ e2

lhκ0

(
1
−1

)
(V1(x)− V2(x))2

. (3.36)

In the final heat transport equation the heat-wise equilibration between pairs of channels is taken
into account (first term) as well as a contribution from Joule-heating (second term). This model
describes only weak tunneling. Other transport regimes are described in [54].
For a system of length L with two counter-propagating channels (χ1 = +, χ2 = −) biased by a
temperature gradient ∆T , the two terminal heat conductance GQ2t is found by solving the heat
transport equation. Following the same algorithm as before (see Eq. (3.9)), the heat conductance
becomes for n1 6= n2

GQ2t =
(n1 − n2)

(
n1 + n2e

− L
l
eqQ

)
n1 − n2e

− L
l
eqQ

L�lQeq−→ n1 − n2 . (3.37)

The above introduced heat equilibration length lQeq = l
γ(n1−n2) is in general quite different from

the charge equilibration length lCeq allowing to view the transport of charge and heat on different
characteristic length scales. In the limit L� lQeq, the unique quantization of the heat transport
expected from experiments is recovered [30]. In case of n1 = n2 = n, the heat conductance
evaluates to the diffusive conductance

GQ2t = 2n
lQeq

lQeq + Lnγ

L�lQeq−→ 0 . (3.38)

In the trivial case of co-propagating channels with n1 and n2, the heat conductance is indepen-
dent of lQeq and evaluates to

GQ2t = n1 + n2 . (3.39)

Anticipating the prerequisites for following chapters, the above transport relations are general-
ized to an arbitrary number of channels N by the matrix equations [67]:

∂x
#»

V (x) = MV
#»

V (x) and ∂x
#  »

T 2(x) = MT

#  »

T 2(x) + ∆
#  »

V 2(x) . (3.40)
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In general, the matrices MV and MT become for an edge consisting of N channels [67]

MV =


−
∑

k 6=1
l−1
1,k

χ1ν1

l−1
1,2
χ1ν1

. . .
l−1
1,N
χ1ν1

l−1
2,1
χ2ν2

−
∑

k 6=2
l−1
2,k

χ2ν2
. . .

l−1
2,N
χ2ν2

...
... . . . ...

l−1
N,1

χNνN

l−1
N,2

χNνN
. . . −

∑
k 6=N

l−1
N,k

χNνN

 and (3.41)

MT =


−
∑

k 6=1
l̃−1
1,k

χ1n1

l̃−1
1,2

χ1n1
. . .

l̃−1
1,N
χ1n1

l̃−1
2,1

χ2n2
−
∑

k 6=2
l̃−1
2,k

χ2n2
. . .

l̃−1
2,N
χ2n2

...
... . . . ...

l̃−1
N,1

χNnN

l̃−1
N,2

χNnN
. . . −

∑
k 6=N

l̃−1
N,k

χNnN

 , (3.42)

where the lengths l̃m,n = lm,n
γm,n

and lm,n = ln,m = lCm,n resemble the heat and charge equili-
bration lengths corresponding to channel pairs (m,n). The Joule-heating contribution ∆

#  »

V 2(x)
furthermore generalizes to

∆
#  »

V 2(x) = e2

hκ0

N∑
n=1

(
(V1(x)− Vn(x))2

lC1,nχ1
, . . . ,

(VN (x)− Vn(x))2

lCN,nχN

)T
. (3.43)

In the following, the introduced model is applied to compute length dependent conductances
for the measurement setups shown in Fig. 3.2. According to the length dependence of the
equilibration mechanisms, three different regimes for counter-propagating modes of filling factors
ν+, ν− and heat conductances n+, n− are distinguished

1. The fully equilibrated regime where the channel length is much bigger than the equilibration
lengths L� l

C(Q)
eq .

2. The intermediate regime, where L ≈ lC(Q)
eq and the conductances are length dependent.

3. The fully non-equilibrated regime where L� l
C(Q)
eq .

Since the incoherent tunneling model describes the transport between two macroscopic contacts,
it is possible to define a downstream G

C(Q)
+ and upstream G

C(Q)
− charge (heat) conductance for

an edge segment that serve as ”new filling factors” in a Landauer-Büttiker approach. In general
the conductances for one edge segment are defined by:

Gi,+ = ν+
ν+ − ν−

ν+ − ν−e
− Li

lC
eq,i

and Gi,− = ν−
ν+ − ν−

ν+ − ν−e
− Li

lC
eq,i

. (3.44)

The equivalent heat conductances defined by relating the channels’ heat currents at the drain
to a corresponding conductance by

GQi,+ = d

d∆T J+,top(L) and GQi,− = d

d∆T J−,bot(0) . (3.45)

To simplify the expressions, symmetrical(homogeneous) properties of the segments are assumed
leading to Li = L and l

C(Q)
eq,i = l

C(Q)
eq . The adjusted conductance matrices for charge(heat)

transport GGG(Q)(L) become

GGG(Q)
n = (G(Q)

+ +G
(Q)
− )111n −G(Q)

+ PPPn −G(Q)
− PPPn−1

n . (3.46)

The charge conductances defined in Tab. 3.1 are summarized for transport in fractional quantum
Hall edges in the considered setups and the different regimes below. Since measuring heat
conductances is not as simple as measuring charge conductances, only the two terminal heat
conductance GQ2t is considered in the heat regime6. The diffusive regime is covered in A.3.

6 The temperatures needed to compute them are usually deduced from noise measurements.
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ν+ 6= ν−ν+ 6= ν−ν+ 6= ν−

Two terminal setup

G2t = G+ +G− G2t
L�lCeq−→ ν+ − ν− G2t

L�lCeq−→ ν+ + ν−

Hall-cross

G2t =
G2

+ +G2
−

G+ +G−
G2t

L�lCeq−→ ν+ − ν− G2t
L�lCeq−→ ν2

+ + ν2
−

ν+ + ν−

GH = −G
2
+ +G2

−
G−G+

GH
L�lCeq−→ ν+ − ν− GH

L�lCeq−→ ν2
+ + ν2

−
ν+ − ν−

Hall-bar

G2t =
G3

+ +G3
−

G2
+ +G+G− +G2

−
G2t

L�lCeq−→ ν+ − ν− G2t
L�lCeq−→ ν3

+ + ν3
−

ν2
+ + ν+ν− + ν2

−

GH = −G
2
+ −G+G− +G2

−
G2
− −G2

+
GH

L�lCeq−→ ν+ − ν− GH
L�lCeq−→ ν2

+ − ν1ν2 + ν2
−

ν+ − ν−

GL = ±G
3
+ +G3

−
G+G−

GL
L�lCeq−→ −∞ GL

L�lCeq−→ ±ν
3
+ + ν3

−
ν+ν−

n+ 6= n−n+ 6= n−n+ 6= n−

Two terminal setup

GQ2t = GQ+ +GQ− GQ2t
L�lQeq−→ n+ − n− G2t

L�lQeq−→ n+ + n−

Hall-cross

GQ2t =
G2

+,Q +G2
-,Q

G+,Q +G-,Q
GQ2t

L�lQeq−→ n+ − n− GQ2t
L�lQeq−→ n2

+ + n2
−

n+ + n−

Hall-bar

GQ2t =
G3

+,Q +G3
-,Q

G2
+,Q +G+,QG-,Q +G2

-,Q

GQ2t
L�lQeq−→ n+ − n− GQ2t

L�lQeq−→ n3
+ + n3

−
n2

+ + n+n− + n2
−

The conductances are found to agree to the ones obtained for the mixing model in the limit of
absent equilibration L� l

C(Q)
eq . Even though mixing in macroscopic contacts and equilibration

along the edge seems to result in a similar effect, only the latter one is able to describe the
transport in realistic setups. This is consolidated by the conductances of all setups approaching
a unique value in the limit of full equilibration L � l

C(Q)
eq as visualized in Fig. 3.6 for an

example.
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Figure 3.6: Comparison of the setups’ charge conductance for ν+ = 1, ν− = 1
3 (solid) and

ν+ = ν− = 1 (dashed) on the left and their heat conductance for n+ = 1, n− = 1
2 (solid) and

n+ = n− = 1 (dashed) on the right, in terms of L/lC(Q)
eq .
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3.4 Noise Generation at the Edge
Whenever there are multiple channels carrying charge in opposite directions on one edge, charge
partition noise (shot noise) can be measured. The partitioning mainly takes place within a
distance lCeq of the contacts where full equilibration between counter-propagating modes is not
given. This region is from now on referred to as the noise spot. The partitioning is enhanced
for an increased temperature at the corresponding contact. This leads to interesting scenarios
in the FQH regime where upstream heat transport from the hotspot to the noise spot is allowed
resulting in an increased noise. In the following the incoherent tunneling model is used to de-
scribe the dependency of the noise on the channels temperature profiles along the channels. [66,
67, 69]

Using a similar approach as above for two counter propagating modes of filling ν1 > ν2, fluctu-
ations in the charge current are computed. By convention the chiralities of the channels are set
to χ1 = + and χ2 = −. The total fluctuations of the tunneling current δIτ,j is split into δIintτ,j

describing the intrinsic temperature dependant fluctuations at the junction and δItrτ,j represent-
ing the transmitted fluctuations in the virtual probes. While the intrinsic fluctuations cannot
be defined in general since they depend on the applied biases as well as the edge structure of
interest, the transmitted fluctuations are defined by

δItrτ,j = g (δV2,j+1 − δV1,j) = g

(
δI2,j+1
ν2

− δI1,j
ν1

)
. (3.47)

Therefore the discrete transport model for the charge fluctuations becomes in matrix form
# »

δIj+1 = MMM
# »

δIj + #»v δIintτ,j . (3.48)

Imposing charge conservation, the matrix MMM and the vector #»v are obtained by expanding for
small tunneling probabilities g up to O(g). Introducing the total number of tunneling events N
between the contacts, the model is used to compute the fluctuations at the drain (j = N+1). This
is done by noting that charges undergo N+1 transitions between virtual probes and N tunneling
events as they are transported from source to drain. Since the charge current fluctuation at an
intermediate virtual probe j is influenced by the summed up effect of all previous tunneling
events, the solution takes the form(

δI1,N+1
δI2,N+1

)
= MMMN+1

(
δI1,0
δI2,0

)
+

N∑
j=0

MMMN−j #»v δIintτ,j . (3.49)

Introducing the dimensionless parameter α = ν2(g−ν1)
ν1(g−ν2) , the problem simplifies to

(
δI1,N+1
δI2,N+1

)
=
(
ν1−ν2α

N+1

ν1−ν2
δI1,0 + −ν1+ν1α

N+1

ν1−ν2
δI2,0 +

∑N
j=0 α

N−jδIintτ,j
ν2−ν2α

N+1

ν1−ν2
δI1,0 + −ν2+ν1α

N+1

ν1−ν2
δI2,0 +

∑N
j=0 α

N−jδIintτ,j

)
. (3.50)

The fluctuation δI2,0 at the source of channel two becomes

δI2,0 = ν1 − ν2
ν1αN+1 − ν2

δI2,N+1 −
ν2 − ν2α

N+1

ν1αN+1 − ν2
δI1,0 −

N∑
j=0

(ν1 − ν2)αN−j
ν1αN+1 − ν2

δIintτ,j . (3.51)

The total fluctuation at contact two is defined by contributions from both channels by

δI2 = δI1,N+1 − δI2,N+1 . (3.52)

Inserting (3.51) into (3.50), δI2 evaluates to

δI2 = − ν1 − ν2
ν1αN+1 − ν2

δI2,N+1 +
(

1 + ν2 − ν2α
N+1

ν1αN+1 − ν2

)
δI1,0 +

N∑
j=0

(ν1 − ν2)αN−j
ν1αN+1 − ν2

δIintτ,j . (3.53)
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3. Phenomenological Description of Edge State Transport

The noise corresponding to this fluctuation is defined by the average of the square of the fluctu-
ations and takes in general the form

S2 = δI2
2 = Ã(δI2,N+1)2 + B̃δI2,N+1δI1,0 +

∑
j

C̃δI2,N+1δIintτ,j + D̃(δI1,0)2

+
∑
j

ẼδI1,0δIintτ,j +
∑
j

F̃ (δIintτ,j )2 . (3.54)

This equation now consists of different noise contributions. Terms one and four describe the
noise originating from the macroscopic contacts two and one respectively. In the following they
are renamed to S2,R and S1,L. The second term describes the noise at the source of channel
one influenced by the current fluctuations at the source of channel two and is neglected in the
following. Terms three and five describe the connection of the noise at the tunneling junctions to
the contacts and will be called S2,x/R, S1,x/L respectively. The intrinsic noise at each junction is
described by term six. Because the intrinsic noise is assumed to depend on the local temperature
at the tunneling junction it is defined by a local noise kernel Λ(x) that has to be defined by
microscopic computations. The coefficients {Ã . . . F̃} \ B̃ are defined according to Eq. (3.54).
Taking the continuum limit N → ∞ by introducing ∆xj = L

N+1 , the summations can be
transformed into integrals by using Riemann’s definition of integrals. Defining the equilibration
length lCeq = 2L

N lnα [66] and x = j LN , the continuous version of eq. (3.54) is found by expanding
lCeq for small g to obtain

S2 ≈
2ν1ν2

glCeq(ν1 − ν2)

[
(AS2,R +DS1,L) +

∫ L

0
(CS2,x/R + ES1,x/L) dx+ 2g

∫ L

0
FΛ(x) dx

]
.

(3.55)

Where {A . . . F} are the adjusted coefficients of the according contributions to the discrete noise
in eq (3.54). They are obtained by {A . . . F} = limN→∞{Ã . . . F̃}. In particular they take the
values defined in Sec. A.4. It remains to define the expressions for the noise at the boundaries
of the channel (S2,R, S1,L, S2,x/R, S1,x/L) as well as the noise kernel Λ(x). Assuming local
equilibrium at the tunnel junctions, the principle of detailed balance gives the opportunity to
use thermal noise relations of the Johnson-Nyqvist form [70, 71]. Unfortunately, the assumption
of local equilibrium noise doesn’t hold in general and the channels’ temperatures might be
very different. In that case the non-equilibrium situation has too be investigated further. By
neglecting the noise contributions from the contacts, the excess noise at contact two8 Sexc2 is
defined. For non-diffusive charge transport with ν1 > ν2, it becomes

Sexc2 = 4ν1ν2(ν1 − ν2)

lCeq

(
ν1 − ν2e

− 2L
lCeq

)2

∫ L

0
Λ(x)e

− 4x
lCeq dx . (3.56)

In case of full (very efficient) charge equilibration and thus L� lCeq, it simplifies to

Sexc2 = 4ν2
ν1lCeq

(ν1 − ν2)
∫ L

0
Λ(x)e

− 4x
lCeq dx . (3.57)

In case of ν1 = ν2 = ν (diffusive charge transport) and by using the above approach with the
equilibration length leq = L(1−g)

(N+1)g [66], the noise at contact two takes the form

S2 = 1− g
gleq

[
(aS2,R + dS1,L) +

∫ L

0
(cS2,x/R + eS1,x/L) dx+ 2g

∫ L

0
fΛ(x) dx

]
. (3.58)

The corresponding prefactors follow from the charge transport equation in the diffusive charge
transport regime. They become

a = d =
l2eq

l2eq + L2 c = −e = − l2eq
(1− g)(leq + L)2 f =

l2eq
(1− g)2(leq + L)2 . (3.59)

Specifying the terms of interest for the case of interest as well as plugging in all of the necessary
prefactors, S2 is found by expanding the obtained expression for small g up to O(g).

8 The excess noise at contact one and two are identical.
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3. Phenomenological Description of Edge State Transport

The obtained expressions for charge, temperature and noise transport at the edge of fractional
quantum Hall systems are used to investigate the structure of different edges for different noise
scenarios. The scenarios arise from charge and heat transport being decoupled in the FQH
regime. In general there exist three different cases depending on the amount of heat transported
in the upstream direction that are characterized by a new quantum number νQ = n+ − n− [67].
It resembles the heat analogue to the equilibrated filling factor ν = ν+−ν− and similarly reveals
intrinsic details of the edge.
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Figure 3.7: Plot of the temperature profiles (left) of channel one (solid) and two (dashed)
for an applied voltage bias V0 as well as the resulting excess noise (right) in terms of L/lCeq for
ν1 = 1, ν2 = 1

3 , n1 = n2 = 1, ν1 = 2, ν2 = 1
3 , n1 = 2, n2 = 1 and ν1 = 1, ν2 = 2

5 , n1 = 1, n2 = 2

In case of equilibrated upstream heat transport νQ < 0, the temperatures of the channels are
non-zero basically over the entire channel length. Therefore tunneling will be enhanced leading
to a constant noise independent of the channel length. For diffusive heat transport νQ = 0, the
temperature decays over the channel length from the hot spot close to x/L = 1 to the noise
spot x/L = 0 leading to a vanishing noise for long channels. Equilibrated downstream heat
transport on the other hand leads to an even lower increase in the temperature at the noise spot
for channels much longer than the charge equilibration length. The noise is expected to decay
exponentially over the channel length in this scenario. The νQ dependent behaviour of the noise
is summarized according to [67] by9

νQ > 0: Ballistic downstream heat transport ⇒ Sexc ' e−L/lCeq

νQ = 0: Diffusive heat transport ⇒ Sexc '
√
L/lCeq

νQ < 0: Ballistic upstream heat transport ⇒ S ' const. for L/lCeq � 1
Having defined the transport characteristics as well as the generation of noise within the incoher-
ent tunneling model, the theoretical insights are used in the following to compare the implications
of different trial structures for the edge at filling 5/2 to experimental results.

9 One can also view this in analogy to a fish school. If the majority of the fishes swims from left to right, one
individual fish wont get very far swimming right to left without getting carried away by the rest. Therefore
all fishes will eventually end up at the right position. Similarly, the net number of fishes ending up at the left
position will be zero (diffusive) for two equally sized groups of fishes. In case of the majority of fishes going
from right to left (ballistic upstream) all fishes will end up at the left position. To make the connection to
the actual problem, the fishes resemble heat carriers.
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4
Transport at the 5/2 Edge

In this chapter the incoherent tunneling model is used to describe the transport characteristics
at the edge of filling 5/2 using various candidate edge theories. The obtained expressions for
the heat conductance and noise of each candidate are then compared to recent experimental
results to identify the theory describing the 5/2 edge best [30, 32]. This edge is of particular
interest since it has been predicted to host non-Abelian anyons [31, 72–74] with potential use
for quantum computation [22, 24].

4.1 Candidates for the 5/2 Edge
Since the edge structure of the 5/2 state is nothing that can be defined bottom up, one is
restricted to compare experimental results probing specific features of this edge to trial theories.
In this thesis the comparison is based on transport features of the edge. The considered trial
theories are the particle-hole Pfaffian (phPf) [75–78], anti-Pfaffian (aPf) [79, 80] and Pfaffian
(Pf) [72] structures which have been identified as potential candidates for the 5/2 edge before.
They consist of a combination of bosonic channels and a Majorana channel1 to recover the
expected charge conductance of G2t = 5/2. To get more evidence about the underlying edge
structure, a method to distinguish between different candidates has been used in experiments [30,
32]. It is based on interfacing the 5/2 edge with different counter propagating integer channels in
order to expose the exotic nature of the edge. The transport characteristics of the interfaced edges
are then used to compare theoretical predictions of the candidates to experimental observations.
In Fig. 4.1 the interfaced edges of interest are visualized using an arrow scheme that encodes the
transport properties of the involved channels.
Whenever there are counter-propagating channels with identical transport characteristics, they
become irrelevant for the transport2. Therefore pairs of counter propagating integer states
between the candidates and ν ∈ {2, 3} can be removed from the description. This results in
different reduced edge structures, visualized in Fig. 4.1).
An edge structure consisting of more than two channels after interfacing is called an intermediate
model. It requires multiple steps to reach full charge and/or heat equilibration depending on
the possible interactions between pairs of the involved channels. For the considered interfaces
there exist only intermediate models in the heat transport regime since the Majorana does not
carry charges on its own. Using the incoherent tunneling model (compare Sec. 3.3) for pairwise
heat equilibration between multiple channels without an applied voltage, the heat conductance
is obtained by solving the system of heat transport equations for the corresponding boundary
conditions.

#  »

T 2
top(bot)(L) = eLMT

#  »

T 2
top(bot)(0) . (4.1)

In case of the phPf-3, the matrix MT consists of the sum of pairwise heat interaction matrices
between pairs of counter-propagating3 channels

MT = 1
l12
M1
T + 1

l23
M2
T . (4.2)

1 The existence of a Majorana mode was shown by measuring half-integer quantized heat conductance [29].
2 For strong interactions (caused by large degree of disorder) this is due to ”true” localization [10]. For weak
interactions they still don’t contribute to the transport for L� l

C(Q)
eq due to their diffusive nature.

3 In general, there also exists a matrix corresponding to interactions between the co-propagating φ and ψ. It
is omitted since it doesn’t change the heat conductance.
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↑↓LLLs

↑2LL
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ψ
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aPf-3

fully eq.

Pf-3

intermediate

Figure 4.1: Interface between phPf, aPf and the Pf and counter-propagating ν ∈ {0, 2, 3} edges
(gray). The chirality of the channels is defined by the arrows direction (positive: left to right).

They correspond to the equilibration interaction between the following pairs channels

M1
T =̂(φ, φ4) and M2

T =̂(φ4, ψ) . (4.3)

They furthermore depend on the equilibration lengths lij given by the interactions between the
involved modes i and j 4. The two terminal heat conductances of the interfaces are computed
using the channels heat conductances n1, n2, n3 and imposing the boundary conditions cor-
responding to the channels’ chiralities. Throughout the following computations, the direction
corresponding to positive chirality on the top edge is defined as ”left to right” and biases are
applied accordingly.
An edge structure is called to be an effective one if interfacing the candidate with ν ∈ {2, 3}
leads to an edge structure of two counter-propagating modes. Therefore the results of the two
channel transport model introduced in Sec. 3.3 can be used directly and only one step is needed
to achieve full equilibration.
A fully equilibrated model on the other hand consists of co-propagating modes, leading to no
further equilibration.
The difference between an intermediate and an effective model becomes visible when computing
the length dependent two terminal heat conductance GQ2t(L) shown in Fig. 4.2. Whereas the
effective model (phPf−2) shows only one transition, the intermediate models (aPf−2, Pf−3 and
phPf−3) show two transitions at different length scales I and II representing the different length
dependencies of the underlying mechanisms of equilibration. In these plots it is furthermore
indicated that the two transitions in the intermediate model are only possible to be resolved
if the length scales for I and II are very different. The closer lIeq gets to lIIeq the less distinct
the plateau at GQ2t = 3/2 becomes. These plots were created using a self-written module for
Mathematica presented in Sec. A.9.
The existence of transport in opposite directions also gives the opportunity to look into noise
characteristics at the edges. Upstream heat transport allows for some finite increase in the

4 Interactions involving the Majorana mode ψ can not be explained by electron tunneling into (out of) the
Majorana channel.
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Figure 4.2: Visualization of the two terminal heat conductance in dependency of the degree of
thermal equilibration between the involved modes. The graphs are obtained for different thermal
equilibration lengths L/lIeq,i ∈ 8 · {102, 103, 104} (solid, dashed, dotted) and L/lIIeq,1 = 105.

temperature at the upstream contact which is measured by increased thermal noise. The mag-
nitude of the noise depends heavily on how well the channels at the interface equilibrate and
thus how much heat arrives at the upstream contact. Therefore an intricate relation between
charge, heat and noise transport exists depending on the specific length scales for charge and
heat transport.
Depending on the considered length scale, the structures are expected to show well-defined
transport and noise behaviour. Considering the case of L � l

C(Q)
eq , all of the edge structures

are assumed to show non-uniform charge and heat transport properties. Within this regime
the cancellation of the interfaced integer modes is not given and noise is expected for all of the
edge structures. Even though this length scale might not be resolvable in experiments, it might
explain some ”left over” noise at the edges of structures that are not expected to show noise
in first place. The non-universal values describing the transport on different length scales vary
between the fully equilibrated (GQeq, GCeq) and fully non-equilibrated (GQneq, GCneq) values. They
are calculated by:

GCneq =
∑
i

νi , GCeq =
∑
i

χiνi , GQneq =
∑
i

ni and GQeq =
∑
i

χini . (4.4)

For the edge structures of interest the corresponding values are shown in Tab. 4.1. Unless stated
otherwise the cancellation of the integer channels is assumed to take place on a length scale
much smaller than the smallest length of interest in the following. This leads to the notion of
noise only in the intermediate and effective models since the fully eq. models don’t allow for
upstream heat transport.5
Assuming that only one edge structure describes the 5/2 edge over all length scales, the phPf
is predicted to describe the edge transport best. This prediction is based on measurements of
the heat conductance for the bare 5/2 structure and at the interface 5/2-3 which showed values
of 5/2 and 1/2 respectively. Since this is not agreeing with the aPf and Pf edges [30], the phPf
edge poses the best candidate and is therefore in the focus of computations.
To connect the phenomenological model to microscopic insights, the charge (heat) currents at the
edge are computed using CFT in the upcoming sections. Therefore, the unperturbed dynamics

5 In the intermediate models one can furthermore think about the noise as being due to partitioning of charges.
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4. Transport at the 5/2 Edge

Table 4.1: Comparison of the different edge structures’ heat (GQ) and charge (GC) conductance
in the fully non-equilibrated (neq) and the fully equilibrated (eq) limit. Measurements in an
experiment may take values within these limits. Only absolute values are considered.

phPf aPf Pf phPf-2 aPf-2 Pf-2 phPf-3 aPf-3 Pf-3
GQneq 3.5 4.5 3.5 5.5 6.5 5.5 6.5 7.5 6.5
GQeq 2.5 1.5 3.5 0.5 0.5 1.5 0.5 1.5 0.5
GCneq 2.5 3.5 2.5 4.5 5.5 4.5 5.5 6.5 5.5
GCeq 2.5 2.5 2.5 0.5 0.5 0.5 0.5 -0.5 0.5

of the bosonic and Majorana edge channels are defined by the K-matrix action Sφ (compare Sec.
2.5) and the action for a Majorana fermion Sψ by [81]

Sφ = − 1
4πν

x [
χφ∂tφ∂xφ+ v(∂xφ)2] dx dt and (4.5)

Sψ = −
x [

χψψi∂tψ + uψi∂xψ
]
dx dt . (4.6)

Interactions and thus the effect of equilibration between the channels are modelled by perturba-
tions of the modes’ actions and depend on the type of involved channels. Charge equilibration
between channels of opposite chirality is achieved by tunneling processes between the channels.
At each of the tunneling points charge is conserved locally meaning that an electron is annihi-
lated in the initial channel i and created in the final channel f . In terms of electron operators
the perturbation is described by the action

Sτ = − Γ0
2πb

x [
f(x)Ψ†e,fΨe,i + h.c.

]
dx dt = − Γ0

2πb
x [

f(x)e
i

(
φf
νf

+φi
νi

)
+ h.c.

]
dx dt . (4.7)

In some scenarios it is more efficient to think about the tunneling of quasiparticles. The tunneling
of one electron then corresponds to the tunneling of ν−1 quasiparticles of charge e∗ = νe from
an initial to a final channel. According to the definition of creation and annihilation operators
of quasiparticles and the commutation relations (compare Sec. 2.5), the tunneling action for
pairwise interactions takes the form

Sτ = − Γ0
2πb

x [
f(x)Ψ†qp,fΨqp,i + h.c.

]
dx dt = − Γ0

2πb
x [

f(x)ei(φf+φi) + h.c.
]
dx dt . (4.8)

Above, the cut off b from the bosonization procedure has been re-introduced for the electron
and quasiparticle description. The function f(x) can be adjusted to cover the cases of point
contact tunneling f(x) = δ(x) and random Gaussian correlated tunneling f(x) = ξ(x), with
〈ξa(x)ξb(x′)〉 = Wδa,bδ(x − x′). For processes that cannot be described by the tunneling of
an electron such as between a charged bosonic and a neutral Majorana mode this interaction
term cannot be used. Instead the simplest possible interaction term between these modes is
used [82]

S′ = −Γ0
x

δ(x)∂xφψi∂xψ dx dt . (4.9)

To understand the impact of different perturbations on the bare modes actions, the operators
of allowed perturbations are analyzed from a scaling dimension perspective in the following.

4.2 Scaling Dimension Analysis of viable Perturbations
In general, the scaling dimension analysis is used to describe the rescaling properties of a local
operator under spacetime dilations xµ → λxµ [83]. It therefore gives a more intuitive way of
looking at the renormalization of a viewed theory. For a scale invariant theory each operator
rescales by a factor of λ∆ under spacetime dilations, where ∆ describes the scaling dimension of
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the operator. This furthermore means that the two point-correlation function depends on the
square of the distance by

〈O(x, 0)O†(0, 0)〉 ∼ x−2∆ (4.10)

For a bosonic mode with filling ν = 1
m , the Luttinger liquid propagator [14, 44] is furthermore

used to obtain

〈eimjφj(x,0)e−imjφj(0,0)〉 = em
2〈φ(x,0)φ(0,0)〉 ∼ x−m2ν (4.11)

which further implies that the scaling dimension for electron tunneling in the Luttinger liquid
becomes

∆ = m2ν

2
el. tun.= m

2 (4.12)

In the following the scaling dimension analysis is used to describe the temperature dependence
of the heat equilibration length lQeq in the conformally invariant theory of the 5/2 - ν edge. By
assigning scaling dimensions ∆− and ∆+ to the operators corresponding to the left and right
moving fields accordingly, the overall scaling dimension of the perturbation is obtained by the
total scaling dimension ∆ = ∆+ + ∆−. To assign some temperature scaling corresponding to ∆,
the following constraints are imposed to have a properly defined theory:

1. The action S has to be dimensionless.
2. The heat conductance G has to be dimensionless in 1D.

The latter one is visualised by noting that the conductivity has length dimension −1 in 1D.
Therefore the heat conductance is required to have length dimension zero. Imposing the first
requirement leads to

[S] != 0 ⇒ [Γ0] = 1−∆ (4.13)

Therefore the dimension of Γ0 depends on the scaling dimension of the perturbation. In order
to have

[
G
] != 0, the external influence on the heat conductance 6 has to balance the dimension

of Γ0. Depending on the experimental setup this might be a voltage or a temperature. In the
following only the case of a temperature dependence is considered since it will be mostly used
to describe the temperature scaling of the heat equilibration length lQeq. Using Fermi’s golden
rule it follows [7]

G
eV�kBT∼ |Γ0|2Tα ⇒ α = 2(∆− 1) (4.14)

Where the scaling exponent of the temperature α directly depends on the scaling dimension of
the operator. To find the proper value of ∆ for the different edge structures, the most relevant
perturbation operators O′ have to be defined. The most relevant operators for the different edge
structures are summarized in Tab. 4.2.

Table 4.2: Overview of the scaling dimensions ∆ for the most relevant perturbation operators
of the previously introduced interfaces shown in Fig. 4.1. The deduced temperature scaling
exponent α, defined by leq,Q ∼ 1/g ∼ 1/G ∼ T−α, is shown in the last column.

Interface operator ∆ α

phPf-2 (effective) ∂xφ4iψ∂xψ 3 4
phPf-3 (intermediate) ψei(2φ4+φ3) 2 2
phPf-3 (effective) ∂xφ4iψ∂xψ 3 4
aPf-2 (intermediate) ψei(2φ4+φ3) 2 2
aPf-2 (effective) ∂xφiψ∂xψ 3 4
Pf-3 (intermediate) ψei(2φ4+φ3) 2 2

Pf-3 (effective) ∂xφ4iψ∂xψ 3 4

6 The heat conductance is connected to the incoherent tunneling model by G = gκ.
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4.3 Heat Conductance of the effective phPf-3 Edge
To uncover microscopic insights about the heat equilibration at the edge of the effective phPf-
3 interface, a perturbative approach is used to describe the adjacent heat interaction. The
intermediate phPf-3 is predicted to equilibrate at first charge wise and then heat wise7, leading
to a schematic path of equilibration as shown below in Fig. 4.3.

intermediate
ν = 1

2 n = 1
ν = 1 n = 1
ν = 0 n = 1

2

effective
ν = 1

2 n = 1
ν = 0 n = 1

2

equilibration

Figure 4.3: Phenomenological visualization of the equilibration from the intermediate model
to the effective model of the phPf-3 edge by tunneling charges between the bosonic modes (solid
arrows) and subsequent heat equilibration between neutral (curly arrow) and Majorana modes
(dashed arrow). The so obtained effective model describes transition II in Fig. 4.2.

Starting from the non-interacting quadratic theory S0 = Sφ + Sψ, defined by the bosonic K-
matrix action Sφ and the Majorana action Sψ (Eq. (4.5) and (4.6)), a small perturbation is
added to account for a heat wise interaction between the modes. The perturbation of interest
is the one with the smallest possible scaling dimension for the interaction of a bosonic and a
Majorana mode. In the following a point interaction term at the interaction site x = 0 as defined
in Eq. (4.9) is considered.
To simplify the following calculation, the field operators are separated into right (+) and left (-)
moving ones. Products of field operators are further merged into a single field operator. The
convention used in the computation is given by

T− = (∂xφ)2
, T+ = ψi∂xψ and O− = ∂xφ O+ = T+ (4.15)

where T+(−) resemble the energy density of the channel with corresponding chirality +(-).
Rewriting the velocities v+ =

√
2πu and v− = v, the Hamiltonians take the form

H0 = ~
∫

dx
[ v+√

2π
T+ + v−

2π T−
]

H ′ = Γ0O−(0)O+(0) . (4.16)

To start the perturbative approach, the ground state energy (heat) current corresponding to the
Hamiltonians at the drain is defined according to [84]

J
(0)
+ (d, t) = ~

v2
+

2π T+(t̃) J
(0)
− (d, t) = ~

v2
−

2π T−(t̃) , (4.17)

where t̃ = t − d
vi

is a shifted time referring to the transport of energy from source to drain by
modes having some velocity. The average heat current is computed on top of the ground state
energy current by using the Kubo formula in the interaction picture

〈JQ(t)〉 = 〈T e
i
~

∫
t
H′(t)

J
(0)
Q (t̃)e−

i
~

∫
t
H′(t)〉 , (4.18)

7 It is based on the experimental results of [30] indicating that the charge transport is equilibrated while the
heat transport is not yet fully equilibrated.
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4. Transport at the 5/2 Edge

with T denoting time ordering of the following operators. The operators including the time
evolution are expanded for small tunneling amplitudes up to O(Γ2

0) by using the identity of
time-ordering Eq. (A.1). Collecting terms corresponding to the same order in Γ0, the first and
second order correction to the heat current become

J
(1)
Q (t) = i

~

∫ t

−∞
dt′[H ′(t′), J (0)

Q (t̃)] and (4.19)

J
(2)
Q (t) = i2

~2

∫ t

−∞
dt′
∫ t′

−∞
dt′′[H ′(t′′), [H ′(t′), J (0)

Q (t̃)]] . (4.20)

Imposing conservation of energy only the left-moving part of the chiral energy current is con-
sidered in the following. The simplified expressions for the corrections to the heat current are
obtained by applying the tools of CFT. After some computational steps including the OPE fields
(carried out in Sec. A.6), the final result is obtained. For the first order correction to the heat
current it follows that 〈J (1)

Q 〉 = 0. Thus, only the second order contribution to the heat current
gives rise to equilibration between φ and ψ. Visually, this means that 〈J (2)

Q,−〉 can be associated
with the total interaction current between the two modes. The total heat current thus takes the
form

〈JQ,−〉 = 〈J (0)
Q,−〉+ 〈J (1)

Q,−〉+ 〈J (2)
Q,−〉 = 〈J (0)

Q,−〉+ 〈J (2)
Q,−〉 . (4.21)

Since conservation of energy has already been imposed, these expressions are related to the chiral
energy currents and the heat interaction current following the visualization in Fig. 4.4 at the
point contact

〈JoutQ,−〉 = 〈J inQ,−〉+ 〈J intQ,−〉 . (4.22)

By comparison, it follows that

〈J inQ,−〉 ≡ 〈J (0)
Q,−〉 〈JoutQ,−〉 ≡ 〈JQ,−〉 〈J intQ,−〉 ≡ 〈J (2)

Q,−〉 . (4.23)

Following the computational steps carried out in Sec. A.7, the heat interaction current thus
evaluates to

〈J (2)
Q 〉 = 32b2k6

Bπ
7Γ2

0cν

105~7v2
−v

4
+

T 5∆T . (4.24)

Therefore the resulting heat conductance at the junction becomes with the central charge of the
fermionic Majorana mode c = 1/2 and the filling fraction of the bosonic mode ν = 1/2

GQint = d

d∆T 〈J
(2)
Q 〉 = 8b2k4

Bπ
5Γ2

0
35~6v2

−v
4
+
T 4κ . (4.25)

The so defined heat conductance should be thought of as a ”heat interaction conductance” since
the underlying interaction is not based on tunneling mechanisms. As expected, this result
recovers the temperature scaling of the scaling dimension argument in Sec. 4.2. Referring to the
phenomenological description of the edge, the interaction heat conductance GQint is associated
to the unit less parameter g which is furthermore connected to the lengths defined within the
incoherent tunnelling model l and lQeq by

lQeq = l

γ(nφ − nψ) = 2a
gγ

= 2aκ
GQintγ

∼ 1
T 4 , (4.26)

where γ denotes the deviation from the Wiedemann-Franz law. Therefore the computation
makes it possible to connect microscopic properties of the edge to the temperature scaling of
the heat equilibration length and thus the heat conductance which is a macroscopic observable.
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4. Transport at the 5/2 Edge

S+ D+
J in

Q,+ Jout
Q,+

J int
Q

D− S−
Jout

Q,− J in
Q,−

Figure 4.4: Phenomenological description of the point contact interaction with channels +(−)
emanating from source S+(−).

4.4 Noise at the intermediate phPf-3 Edge
Following the approach in [32], the noise generated at the interface by injecting a source current
Iin in the source contact S is computed in the following. A schematic view of the experimental
setup is given in Fig. 4.5. The authors of [32] indicate that the experiments took place in
the regime of fully equilibrated charge but not fully equilibrated heat transport. This leads to
the constraint on the charge conductance G2t =

∣∣νeq,5/2 − νeq,Int∣∣. In the considered case of
5/2− 3 this means that G2t = 0.5. To ensure this value in the incoherent tunneling model, the
dependence of the charge conductance on δ is examined for different δ ∈ {0.01, 0.1, 0.15}, where
δ is defined by

δ = lCeq/L . (4.27)

For δ = 0.01, the deviation from the expected value becomes immeasurable small which indicates
it to be a good choice for further usage within the regime of full charge equilibration. For
δ = 0.1, the deviation is ≈ 0.005% and therefore still in a reasonable range. The measured
charge conductance furthermore indicates that the integer channels of the edges cancel on very
small length scales.

ds
us

D S

Iin

A

Sexc

ν=3

ν=5/2

noise noise

Figure 4.5: Schematic drawing of the experimental setup used to measure the excess noise Sexc
at the interface of 5/2 and 3 by injecting a current Iin at the source S and measuring the noise
at the amplifier A [32]. Using the predicted phPf edge, the majority of the charge and heat is
transported downstream (ds) from S to drain D. For not fully equilibrated thermal transport it
is possible to observe noise at the upstream (us) amplifier by the red channel transporting heat
upstream.

At the interface, the edge is resembled by the intermediate phPf-3. Injecting a current into this
interface8 leads to voltage drop along the edge that is visualized in Fig. 4.6 for the considered
values of δ. The characteristic drop of the voltage in the region close to x/L = 0 leads to the
formation of a hotspot denoted by fire symbols in Fig. 4.5. The generated heat is then transported
away from the hotspot by the channels at the interface. In the case of the phPf-3 edge, the channel
marked in red (φ2) in Fig. 4.5 allows for heat transport in the upstream direction leading to
an increased temperature at the amplifier contact (A) measured by an increased excess noise
Sexc in general. Depending on the degree of thermal equilibration between the channels at
the edge, the measured Sexc is expected to take different values. In case of very good thermal

8 Which is equivalent to applying a voltage bias between source and drain.
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4. Transport at the 5/2 Edge

equilibration, the majority of the heat is transported downstream and the temperature at the
upstream contact is only slightly altered. Imposing very good charge equilibration this leads to
vanishing noise at contact A. In case of absent thermal equilibration on the other hand, the heat
equilibration length lQeq → ∞ implies MT → 0 in the incoherent tunneling model. Therefore
the channels’ temperatures are constant upon leaving the hotspot. The corresponding noise is
expected to be constant and independent of the channel length L, similar to the case νQ < 0 in
the phenomenological model for two channels (see Sec. 3.4). To compute the noise in the various
cases, the incoherent tunneling model is supplemented with a microscopical description of the
noise kernel Λ(x) [30].
The edge dynamics of the intermediate PHPf-3 are defined in the bosonized language of the
chiral Luttinger liquid according to the adjacent modes (see Sec. 4.1). The most relevant per-
turbation in this scenario is the point contact tunneling with amplitude Γ0 at x = 0, given by
the Hamiltonian

Hτ = Γ0
2πb

∫
δ(x)

(
ψei(φ1+2φ2) + h.c

)
dx . (4.28)

With the definition of the excess noise in the incoherent tunneling model (see Eq. (3.57)), it re-
mains to compute the noise kernel Λ(x) in terms of the local temperatures T+(−)(x) of the down-
stream (+) and upstream channels (−) as well as the voltage difference ∆V (x) by [55][85]

Λ(x) = ~Sloc(∆V (x), T+(x), T−(x))
2gloc(∆V (x), T+(x), T−(x)) , (4.29)

where Sloc(x) and gloc(x) denote the local noise and charge conductance. Starting from a
perturbative approach in the interaction picture, the tunneling current Iτ , its’ deviation from
the average and thus the noise are obtained. Therefore the resulting terms for Sloc and gloc,
expressed by the operator O of the tunneling Hamiltonian Hτ take the form [55]

Sloc(x) = 4
∫ ∞
−∞

cos
(
e∆V (x)τ

~

)
〈O(τ, 0)O†(0, 0)〉 dτ and (4.30)

gloc(x) = 2i
∫ ∞
−∞

τ〈O(τ, 0)O†(0, 0)〉 dτ . (4.31)

To compute these expressions, the modes’ Greens’ functions are used to rewrite the correlator
of interest. It takes the form

〈O(τ, 0)O†(0, 0)〉 = Γ2
0

(2πb)2Gψ(τ, 0)Gφ1(τ, 0)Gφ2(τ, 0) , (4.32)

with b being a cut-off introduced in the bosonization procedure. Since this expression depends
on the individual modes temperatures which are in general quite different, some assumptions on
these temperatures have to be made to solve for the noise kernel. In case (i) of all channels being
at the same temperature T , the case of very good heat equilibration and thus very short thermal
equilibration lengths between the involved modes lij is viewed first. Performing the computation
(see Sec. A.8), the resulting noise kernel evaluates to the expected equilibrium Johnson-Nyqvist
form [70, 71]

Λi(x) = 2kBT (x) . (4.33)

To simplify the description of the degree of thermal equilibration, the dimensionless parame-
ters α and β are introduced to describe the equilibration behaviour depending on the pairwise
equilibration between the involved modes9 by

α = l12
L

and β = l23
L

. (4.34)

Here, the subscripts 1,2 and 3 refer to the channels φ1, φ2 and ψ respectively. The temperature
profiles of the three channels are visualized in Fig. 4.6 for an applied voltage bias of ∆V = V0.

9 The equilibration process between the co-propagating channels 1 and 3 is neglected since it has very low
impact in general.
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Figure 4.6: Visualization of the voltage profiles in terms of the charge equilibration coefficient
δ (left) and the temperature profiles of φ1 (solid), φ2 (dashed) and ψ(dotted) for (αi, βi) ∈
{(0.01, 0.01), (0.01, 0.5), (0.5, 0.01)} and δ = 0.01.

They justify the assumption of case (i) to hold for very short thermal equilibration lengths
α ≈ β � 1. Since the temperatures drop very fast to zero, noise is expected to be exponentially
suppressed as in the case of νQ > 0 for the two channel analogue. In the slightly different cases
of (ii,1) defined by α � β < 1 and (ii,2) defined by 1 > α � β, two of the channels are at
very similar temperatures. Thus, it looks intuitive to use an adjusted thermal equilibration,
where only two temperatures are equal and the remaining one is within some range of them.
Depending on the viewed case, the ratio κ1j(x) = T1(x)

Tj∈{2,3}(x) is defined for j ∈ {2, 3}. The noise
kernels are then computed for small deviations of κj(x) from the equilibrium value κj(x) = 1.
They take an adjusted Nyqvist form10 (derivation in Sec. A.8)

α� β < 1 ⇒ T1(x) ≈ T2(x) ⇒ Λii,1(x) = 3κ13(x)− 7
κ13(x)− 3 kBT1(x) (4.35)

1 > α� β ⇒ T2(x) ≈ T3(x) ⇒ Λii,2(x) = 9κ12(x)− 13
3κ12(x)− 5 kBT1(x) (4.36)

The noise in those cases is expected to be again exponentially suppressed in the channel length.
So far, it has been assumed that thermal equilibration plays a major role in the edge dynamics.
(iii) In case of no thermal equilibration along the edge and therefore lij = lQeq → ∞, the heat
transport is described by

∂x
#  »

T 2(x) = e2

hlκ0
∆

#  »

V 2(x) . (4.37)

The resulting temperature profiles are visualized for reasonable values of δ in Fig. 4.7 (left) using
the incoherent tunneling model. The Majorana mode is thus found to stay at zero temperature
in absence of thermal equilibration since it only interacts by thermal equilibration processes
with the other modes. Because it is unreasonable that the Majorana is not influenced by the
heating at the hotspot, the model is adjusted to account for some heating of the Majorana.
One intuitive way to do this is by thinking about how the total power P dissipated at the
hotspot (x = lCeq) is transported along the edge. In general P is computed by integrating the
Joule-heating contribution over the channel length L, resulting in

P = e2V 2
0

hlCeq

∫ L

0
∆V 2(x) dx

L�lCeq−→ e2V 2
0

2h
νu(νd − νu)

νd
. (4.38)

10 As expected from the assumption of two channels being at the same temperature and the third one deviating
only slightly from it.
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4. Transport at the 5/2 Edge

For the viewed case νd = 1 and νu = 1/2, this expression simplifies to P = e2V 2
0

8h in the limits of
full charge equilibration. The so generated power is transported away from the hotspot by the
modes according to their ability to transfer heat. This behaviour is described by a heat divider
between upstream and downstream transport with nd = n2 and nu = n1 + n3 and a subsequent
divider between the two upstream transporting modes which leads to the effective heat currents
Ji, defined as

J1 = κ0
2 T

2
1 = n1

n1 + n3

nu
nd + nu

P = 2
5P , (4.39)

J2 = κ0
2 T

2
2 = nd

nd + nu
P = 2

5P and (4.40)

J3 = κ0
2 T

2
3 = n3

n1 + n3

nu
nd + nu

P = 1
5P . (4.41)

Thereby after leaving the hotspot, the three channels can be associated with effective temper-
atures, defined as T 1 = T 2 =

√
2 T 3 =

√
e2V 2

0
10hκ0

. In absence of thermal equilibration, the so
defined temperature profiles become with the unit step function σ(x) and the dimensionless
parameter δ

T1 =
√

2T3 = σ
(
−
( x
L
− δ
))√ e2V 2

0
10hκ0

and T2 = σ
( x
L
− δ
)√ e2V 2

0
10hκ0

. (4.42)

The obtained temperature profiles are visualized in Fig. 4.7 (right).
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Figure 4.7: Comparison of the temperature profiles for φ1, φ2 and ψ in terms of x/L for an
applied voltage bias of V0 in the bare incoherent tunneling model (left) and in the adjusted case
(right) for δ = 0.1. The position of the hotspot is marked with the fire symbol.

In case of absent thermal equilibration the heat generated at the hotspot is thus transported
back to the noisespot by φ2 with the constant temperature T2. Comparing the two plots in Fig.
4.7, the effect of the Majorana heat transport is small in this case but still desirable11. The
corresponding noise kernel evaluates to

Λ(x) = 6
√

6
5
eV0ζ(3)
π3 . (4.43)

Using the current-voltage relation I0 = 1
2
e2

h V0 to rewrite the noise (the computation is carried
out in Sec. A.8), it takes the constant value

Sexc ≈ 0.0637e
3

h
V0 = 0.1274eI0 ≈ 0.3953 V0 · 10−30 A2

Hz µV . (4.44)

To account for some left over heat transport in all channels, the introduced extension to the
incoherent tunneling model would have to be modified further. This could (e.g) be done by
taking heat reflection at the contacts into account [55]. In general such an approach leads to

11 The concept of heat division at the hotspot becomes more important when looking into the effect of heat
reflection at the contacts.
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a scenario with three channels of (very) different temperatures at the noise spot. Thus the
non-equilibrium situation at the noise spot would have to be investigated further to obtain a
solution.
The expected noise for the three viewed cases is computed numerically using the derived noise
kernels. They are visualized using numerical integration techniques for increasing values of
1/δ = L/lCeq in Fig. 4.8.
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Figure 4.8: Numerically derived plots of the noise for an increasing ratio L/lCeq at the intermedi-
ate phPf-3 edge for the cases of very good thermal equilibration (i), good thermal equilibration
with α = 0.01, β = 0.5 (ii,1) and α = 0.5, β = 0.01 (ii,2) as well as for absent thermal
equilibration (iii).
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5
Results and Conclusion

To compare the results of the incoherent tunneling model to experimental observations, the
results from Dutta, et al. are summarized in Tab. 5.1. They measured the heat conductance
[30] and noise [32] at the interface between the 5/2 edge and several integer ones in two different
devices. The measured heat conductance of GQ2t = 5/2 κ at the bare 5/2− 0 edge eliminates the
Pf edge from the list since it implies ballistic downstream (ds) heat transport with GQ2t = 7/2 κ.
Furthermore, the heat conductance at 5/2 − 3 interface has been measured to be GQ2t = 1/2 κ
which cannot be described using the aPf theory predicting GQ2t = 3/2 κ. Additionally, the
observation of noise at the 5/2 − 3 interface is inexplicable with the aPf structure since the
aPf-3 edge consists of co-propagating channels giving no opportunity for the generation of noise.
Therefore, the observed heat conductance as well as the generation of noise at the 5/2−3 interface
point towards the phPf edge structure to describe the 5/2 edge best amongst the candidates.

Table 5.1: Comparison of experimental results for the charge (heat) conductance [30] and
noise at different interfaces [32] to the theoretical prediction of the considered candidates. If the
theoretical prediction matches the experimental result, the candidate is given a X(otherwise: 7).

interface |G2t|
[
e2

h

]
|GQ2t| [κ] Noise measured? Agrees to 5/2 candidate

PHPf APf Pf
5/2− 0 5/2 5/2 X X X 7

5/2− 1 3/2 3/2 X X X 7

5/2− 2 1/2 1/2 X(only ds) X X 7

5/2− 3 1/2 1/2 X(only us) X 7 X

Having justified the phPf edge to be the candidate of choice, the mechanisms that lead to equili-
bration of the transport at the phPf - 3 interface are reviewed next. Depending on the degree of
equilibration (heat and charge), the edge structures are thought to show non-unique transport
behaviour. Since the charge conductances have been measured to take the well equilibrated
values, it is reasonable to assume that the charge transport equilibrates on smaller length scales
than the heat transport. Under these assumptions, the two terminal heat conductance GQ2t[κ] at
the interface is found to show distinct plateaus at 5/2, 3/2 and 1/2 depending on the thermal
equilibration length lij between pairs of the involved channels. This is as expected since all
physical processes that take place on a similar length scale are thought to overlap. Therefore it
gets more difficult to resolve their individual effects if the individual length scales get closer to
another. In case of the heat equilibration of the 5/2 state, the plateau of GQ2t = 3/2 κ vanishes
if the equilibration lengths of the two pairs of counter-propagating modes differ less. The exis-
tence of the plateaus for different pair-wise equilibration lengths also infers that an intermediate
system might exist at the corresponding length scales leading to an observable change in the
heat conductance.
The transitions between the predicted plateaus are described by possible interactions between
the involved modes. Transition I is explained by charge tunneling between the φ1 and φ2

1 and

1 Even though, the Majorana carries no charge on its own, it is needed in the description of charge tunneling
since it shares an electron with the 1/2 boson.
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transition II by an effective heat interaction between the charge-neutral separated modes of the
effective phPf-3. According to the different mechanisms of equilibration, the thermal equilibra-
tion lengths corresponding to transitions I and II are expected to show different temperature
scaling. In particular the equilibration length of transition I scales as T−2 whereas the one
of transition II scales as T−4. The different temperature scalings of the thermal equilibration
lengths also influence the temperature depending behaviour of the heat conductance which is
visualized for arbitrarily chosen values of lIeq(T ) and lIIeq (T ) in Fig. 5.1. In case of the prefac-
tors taking the same value, the transitions vanish entirely and the heat conductance becomes
GQ2t = 1/2 κ. Because there is no reason for the prefactors in lieq(T ) to be identical, a measure-
ment at even lower temperatures is expected to reveal the theoretical plateau like structure of
GQ2t at the interface.
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Figure 5.1: Temperature dependent equilibration of GQ2t[κ] at the phPf-3 edge for different
chosen heat equilibration lengths lIeq ∼ T−2 · {7 · 10−5, 7 · 10−7, 7 · 10−8} (solid, dashed, dotted)
and lIIeq ∼ 10−16 · T−4. Since these values were chosen arbitrarily, the temperature scale has to
be considered with caution.

Since the equilibrated heat transport at the phPf-3 edge is along the direction of the charge
transport, the generated noise is assumed to show the characteristic behaviour of the class νQ > 0
(see Sec. 3.4). Due to the complexity of computation with three involved modes, the extreme
cases of full and absent thermal equilibration have been used to give an idea about possible values
of the noise at this interface. In case of very good thermal equilibration, the expected behaviour of
exponentially vanishing noise for an increasing channel length L is approved numerically. For the
opposite extreme of no thermal equilibration, the noise is expected to show length independant
behaviour. Assuming that the charge transport is well equilibrated and thus lCeq � L2, the noise
is found to be within the region

Sexc

V0
∈
(
0, 0.0637

]e3

h
⇔ Sexc

V0
∈
(
0, 0.3953

]
· 10−30 A2

µVHz

The noise measured in the experiment [32] is within this described region indicating the under-
lying edge structure to be consistent with the experiment.

2 This refers to the region to the far right in Fig. 4.8.
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6
Outlook

One possible step to investigate the structure of the 5/2 edge in more detail is to perform
measurements of the noise and the heat conductance using the same device. It is then possible
to compare the experimental results for noise and heat conductance to theoretical predictions
depending on the degree of thermal equilibration. In such a scenario, two observables can
be measured in the same device which gives the opportunity to estimate the heat and charge
equilibration lengths.
In the following I’d like to further state some of the questions/problems that I did not tackle in
this project but that could be included in a follow-up project on this topic

1. The (heat) transport in a system that is connected to macroscopic contacts always allows
for some reflection at the contacts. Therefore the next step to look further into the heat
transport along the edge would be to take this reflection into account in a setup like the
one shown schematically in Fig. 6.1. [55]

2. To take the heat transport in Majorana channels into account it could furthermore be
interesting to examine the transport in these channels in more detail. This includes to
answer the question which physical process leads to the heat up of the Majorana channel
if a system consisting of multiple modes is only biased by a voltage difference.

3. Relaxing the assumption of the edge to consist of a single edge structure throughout the
entire edge, new transport scenarios could arise. The interplay between puddles of differ-
ent edge structures along the edge allows for additional longitudinal interactions between
different puddles. In general these interactions also lead to a finite reflection of charge and
heat at the interfaces between puddles allowing for even more intricate descriptions of the
noise at the edge. [86–90]

∆V 2
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Figure 6.1: Schematic view of a model taking heat reflection at the contacts into account.
Applying only a temperature bias, heat is reflected with RL(R) or transmitted with TL(R) at the
corresponding contacts which leads in general to non-zero temperatures at the noise spot for all
involved channels.

43





Bibliography

1M. Planck, “On an improvement of wien’s equation for the spectrum”, Ann. Physik 1, 719–721
1900.

2R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics”, Rev. Mod.
Phys. 20, 367–387 1948.

3A. Altland and B. D. Simons, Condensed Matter Field Theory (Cambridge University Press,
Cambridge, England, UK, Mar. 2010).

4P. Drude, “Zur Elektronentheorie der Metalle”, Ann. Phys. 306, 566–613 1900.
5S. M. Girvin, “The Quantum Hall Effect: Novel Excitations and Broken Symmetries”, arXiv,
10.48550/arXiv.cond-mat/9907002 1999.

6D. C. Tsui, H. L. Stormer, and A. C. Gossard, “Two-Dimensional Magnetotransport in the
Extreme Quantum Limit”, Phys. Rev. Lett. 48, 1559–1562 1982.

7D. Tong, David tong: lectures on the quantum hall effect, http://www.damtp.cam.ac.uk/
user/tong/qhe.html, Accessed: 2022-03-15.

8Z. Papić and A. C. Balram, “Fractional quantum Hall effect in semiconductor systems”, arXiv,
10.48550/arXiv.2205.03421 2022.

9K. von Klitzing, “The quantized hall effect”, Rev. Mod. Phys. 58, 519–531 1986.
10P. W. Anderson, “Absence of Diffusion in Certain Random Lattices”, Phys. Rev. 109, 1492–
1505 1958.

11R. B. Laughlin, “Anomalous quantum hall effect: an incompressible quantum fluid with frac-
tionally charged excitations”, Phys. Rev. Lett. 50, 1395–1398 1983.

12B. I. Halperin, “Quantized hall conductance, current-carrying edge states, and the existence of
extended states in a two-dimensional disordered potential”, Phys. Rev. B 25, 2185–2190 1982.

13X.-G. Wen, “THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL
EFFECTS”, Int. J. Mod. Phys B 06, 1711–1762 1992.

14J. M. Luttinger, “An Exactly Soluble Model of a Many-Fermion System”, J. Math. Phys. 4,
1154–1162 1963.

15F. D. M. Haldane, “’luttinger liquid theory’ of one-dimensional quantum fluids. i. properties
of the luttinger model and their extension to the general 1d interacting spinless fermi gas”,
Journal of Physics C: Solid State Physics 14, 2585–2609 1981.

16F. D. M. Haldane, “Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible
Quantum Fluid States”, Phys. Rev. Lett. 51, 605–608 1983.

17J. M. Leinaas and J. Myrheim, “On the theory of identical particles”, Nuovo Cim. B 37, 1–23
1977.

18F. Wilczek, “Magnetic Flux, Angular Momentum, and Statistics”, Phys. Rev. Lett. 48, 1144–
1146 1982.

19Y.-S. Wu, “General Theory for Quantum Statistics in Two Dimensions”, Phys. Rev. Lett. 52,
2103–2106 1984.

20G. A. Goldin, R. Menikoff, and D. H. Sharp, “Comments on "General Theory for Quantum
Statistics in Two Dimensions"”, Phys. Rev. Lett. 54, 603 1985.

21E. Witten, “Quantum field theory and the Jones polynomial”, Commun. Math. Phys. 121,
351–399 1989.

22C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, “Non-abelian anyons and
topological quantum computation”, Reviews of Modern Physics 80, 10.1103/revmodphys.
80.1083 2008.

23V. Lahtinen and J. Pachos, “A short introduction to topological quantum computation”, Sci-
Post Physics 3, 10.21468/scipostphys.3.3.021 2017.

24A. Y. Kitaev, “Fault-tolerant quantum computation by anyons”, Ann. Phys. 303, 2–30 2003.

45

https://doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/RevModPhys.20.367
http://dx.doi.org/10.1103/RevModPhys.20.367
https://doi.org/10.1002/andp.19003060312
http://dx.doi.org/10.1002/andp.19003060312
http://dx.doi.org/10.1002/andp.19003060312
http://dx.doi.org/10.1002/andp.19003060312
https://doi.org/10.48550/arXiv.cond-mat/9907002
http://dx.doi.org/10.48550/arXiv.cond-mat/9907002
https://doi.org/10.48550/arXiv.cond-mat/9907002
https://doi.org/10.48550/arXiv.cond-mat/9907002
https://doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://dx.doi.org/10.1103/PhysRevLett.48.1559
http://www.damtp.cam.ac.uk/user/tong/qhe.html
http://www.damtp.cam.ac.uk/user/tong/qhe.html
https://doi.org/10.48550/arXiv.2205.03421
http://dx.doi.org/10.48550/arXiv.2205.03421
https://doi.org/10.48550/arXiv.2205.03421
https://doi.org/10.48550/arXiv.2205.03421
https://doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
http://dx.doi.org/10.1103/RevModPhys.58.519
https://doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
http://dx.doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
http://dx.doi.org/10.1142/S0217979292000840
https://doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
https://doi.org/10.1063/1.1704046
http://dx.doi.org/10.1063/1.1704046
https://doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
http://dx.doi.org/10.1088/0022-3719/14/19/010
https://doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.51.605
http://dx.doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1007/BF02727953
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1007/BF02727953
http://dx.doi.org/10.1007/BF02727953
https://doi.org/10.1007/BF02727953
https://doi.org/10.1103/PhysRevLett.48.1144
http://dx.doi.org/10.1103/PhysRevLett.48.1144
http://dx.doi.org/10.1103/PhysRevLett.48.1144
http://dx.doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1103/PhysRevLett.48.1144
http://dx.doi.org/10.1103/PhysRevLett.48.1144
https://doi.org/10.1103/PhysRevLett.52.2103
http://dx.doi.org/10.1103/PhysRevLett.52.2103
http://dx.doi.org/10.1103/PhysRevLett.52.2103
https://doi.org/10.1103/PhysRevLett.52.2103
http://dx.doi.org/10.1103/PhysRevLett.52.2103
https://doi.org/10.1103/PhysRevLett.54.603
http://dx.doi.org/10.1103/PhysRevLett.54.603
http://dx.doi.org/10.1103/PhysRevLett.54.603
http://dx.doi.org/10.1103/PhysRevLett.54.603
https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-121/issue-3/Quantum-field-theory-and-the-Jones-polynomial/cmp/1104178138.full
https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-121/issue-3/Quantum-field-theory-and-the-Jones-polynomial/cmp/1104178138.full
https://doi.org/10.1103/revmodphys.80.1083
http://dx.doi.org/10.1103/revmodphys.80.1083
http://dx.doi.org/10.1103/revmodphys.80.1083
https://doi.org/10.1103/revmodphys.80.1083
https://doi.org/10.1103/revmodphys.80.1083
https://doi.org/10.1103/revmodphys.80.1083
https://doi.org/10.21468/scipostphys.3.3.021
http://dx.doi.org/10.21468/scipostphys.3.3.021
https://doi.org/10.21468/scipostphys.3.3.021
http://dx.doi.org/10.21468/scipostphys.3.3.021
http://dx.doi.org/10.21468/scipostphys.3.3.021
https://doi.org/10.21468/scipostphys.3.3.021
https://doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1016/S0003-4916(02)00018-0


Bibliography

25C. L. Kane and M. P. A. Fisher, “Quantized thermal transport in the fractional quantum Hall
effect”, Phys. Rev. B 55, 15832–15837 1997.

26R. A. Melcer, B. Dutta, C. Spånslätt, J. Park, A. D. Mirlin, and V. Umansky, “Absent thermal
equilibration on fractional quantum Hall edges over macroscopic scale”, Nat. Commun. 13, 1–7
2022.

27S. K. Srivastav, R. Kumar, C. Spånslätt, K. Watanabe, T. Taniguchi, A. D. Mirlin, Y. Gefen,
and A. Das, “Determination of topological edge quantum numbers of fractional quantum Hall
phases”, arXiv, 10.48550/arXiv.2202.00490 2022.

28S. K. Srivastav, R. Kumar, C. Spånslätt, K. Watanabe, T. Taniguchi, A. D. Mirlin, Y. Gefen,
and A. Das, “Vanishing Thermal Equilibration for Hole-Conjugate Fractional Quantum Hall
States in Graphene”, Phys. Rev. Lett. 126, 216803 2021.

29M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y. Oreg, and A. Stern, “Observation
of half-integer thermal hall conductance”, en, Nature 559, 205–210 2018.

30B. Dutta, V. Umansky, M. Banerjee, and M. Heiblum, “Isolated ballistic non-abelian interface
channel”, 2021.

31R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C. Gossard, and J. H. English,
“Observation of an even-denominator quantum number in the fractional quantum Hall effect”,
Phys. Rev. Lett. 59, 1776–1779 1987.

32B. Dutta, W. Yang, R. Melcer, H. K. Kundu, M. Heiblum, V. Umansky, Y. Oreg, A. Stern, and
D. Mross, “Distinguishing between non-abelian topological orders in a quantum hall system”,
Science 375, 193–197 2022.

33Y. Kitadono, M. Wakamatsu, L. Zou, and P. Zhang, “Role of guiding center in landau level
system and mechanical and pseudo orbital angular momenta”, International Journal of Modern
Physics A 35, 10.1142/s0217751x20500967 2020.

34S. J. van Enk, “Angular momentum in the fractional quantum hall effect”, American Journal
of Physics 88, 10.1119/10.0000831 2020.

35O. Ciftja, “Detailed solution of the problem of landau states in a symmetric gauge”, Eur. J.
Phys. 41 2020.

36R. B. Laughlin, “Quantized hall conductivity in two dimensions”, Phys. Rev. B 23, 5632–5633
1981.

37M. J. Clerk, “VIII. A dynamical theory of the electromagnetic field”, Philos. Trans. R. Soc.
Lond. 155, 459–512 1865.

38The Nobel Prize in Physics 1998, https://www.nobelprize.org/prizes/physics/1998/
laughlin/lecture, [Online; accessed 28. Jun. 2022], June 2022.

39Y. Aharonov and D. Bohm, “Significance of Electromagnetic Potentials in the Quantum The-
ory”, Phys. Rev. 115, 485–491 1959.

40M. Born and V. Fock, “Beweis des Adiabatensatzes”, Z. Phys. 51, 165–180 1928.
41B. M. Victor, “Quantal phase factors accompanying adiabatic changes”, Proc. R. Soc. Lond.
A. 392, 45–57 1984.

42D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, “Quantized hall conductance
in a two-dimensional periodic potential”, Phys. Rev. Lett. 49, 405–408 1982.

43C. Kane, “Chapter 1 - topological band theory and the Z2 invariant”, in Topological insulators,
Vol. 6, edited by M. Franz and L. Molenkamp, Contemporary Concepts of Condensed Matter
Science (Elsevier, 2013), 3–34.

44E. Miranda, “Introduction to bosonization”, Braz. J. Phys. 33 2003.
45J. von Delft and H. Schoeller, “Bosonization for beginners - refermionization for experts”,
Annalen der Physik 7, 225–305 1998.

46A. Imambekov and L. I. Glazman, “Universal Theory of Nonlinear Luttinger Liquids”, Science
323, 228–231 2009.

47X. G. Wen, “Gapless boundary excitations in the quantum hall states and in the chiral spin
states”, Phys. Rev. B 43, 11025–11036 1991.

48A. M. Chang, “Chiral luttinger liquids at the fractional quantum hall edge”, Rev. Mod. Phys.
75, 1449–1505 2003.

49R. Floreanini and R. Jackiw, “Self-dual fields as charge-density solitons”, Phys. Rev. Lett. 59,
1873–1876 1987.

50X.-G. Wen, “Topological orders and edge excitations in fractional quantum Hall states”, Adv.
Phys. 44, 405–473 1995.

46

https://doi.org/10.1103/PhysRevB.55.15832
http://dx.doi.org/10.1103/PhysRevB.55.15832
http://dx.doi.org/10.1103/PhysRevB.55.15832
http://dx.doi.org/10.1103/PhysRevB.55.15832
https://doi.org/10.1038/s41467-022-28009-0
http://dx.doi.org/10.1038/s41467-022-28009-0
http://dx.doi.org/10.1038/s41467-022-28009-0
http://dx.doi.org/10.1038/s41467-022-28009-0
https://doi.org/10.1038/s41467-022-28009-0
https://doi.org/10.48550/arXiv.2202.00490
http://dx.doi.org/10.48550/arXiv.2202.00490
https://doi.org/10.48550/arXiv.2202.00490
https://doi.org/10.1103/PhysRevLett.126.216803
http://dx.doi.org/10.1103/PhysRevLett.126.216803
http://dx.doi.org/10.1103/PhysRevLett.126.216803
http://dx.doi.org/10.1103/PhysRevLett.126.216803
https://doi.org/10.1103/PhysRevLett.59.1776
http://dx.doi.org/10.1103/PhysRevLett.59.1776
http://dx.doi.org/10.1103/PhysRevLett.59.1776
http://dx.doi.org/10.1103/PhysRevLett.59.1776
https://doi.org/10.1126/science.abg6116
http://dx.doi.org/10.1126/science.abg6116
http://dx.doi.org/10.1126/science.abg6116
http://dx.doi.org/10.1126/science.abg6116
https://doi.org/10.1142/s0217751x20500967
http://dx.doi.org/10.1142/s0217751x20500967
https://doi.org/10.1142/s0217751x20500967
http://dx.doi.org/10.1142/s0217751x20500967
http://dx.doi.org/10.1142/s0217751x20500967
https://doi.org/10.1142/s0217751x20500967
https://doi.org/10.1119/10.0000831
http://dx.doi.org/10.1119/10.0000831
https://doi.org/10.1119/10.0000831
http://dx.doi.org/10.1119/10.0000831
http://dx.doi.org/10.1119/10.0000831
https://doi.org/10.1119/10.0000831
https://doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
http://dx.doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1103/PhysRevB.23.5632
https://doi.org/10.1098/rstl.1865.0008
http://dx.doi.org/10.1098/rstl.1865.0008
https://doi.org/10.1098/rstl.1865.0008
http://dx.doi.org/10.1098/rstl.1865.0008
http://dx.doi.org/10.1098/rstl.1865.0008
http://dx.doi.org/10.1098/rstl.1865.0008
https://www.nobelprize.org/prizes/physics/1998/laughlin/lecture
https://www.nobelprize.org/prizes/physics/1998/laughlin/lecture
https://doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
http://dx.doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
https://doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
http://dx.doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l
http://dx.doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l
http://dx.doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l
http://dx.doi.org/10.1002/(sici)1521-3889(199811)7:4<225::aid-andp225>3.0.co;2-l
https://doi.org/10.1126/science.1165403
http://dx.doi.org/10.1126/science.1165403
https://doi.org/10.1126/science.1165403
http://dx.doi.org/10.1126/science.1165403
http://dx.doi.org/10.1126/science.1165403
https://doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.75.1449
https://doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.75.1449
http://dx.doi.org/10.1103/RevModPhys.75.1449
https://doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.59.1873
https://doi.org/10.1103/PhysRevLett.59.1873
http://dx.doi.org/10.1103/PhysRevLett.59.1873
https://doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566
http://dx.doi.org/10.1080/00018739500101566


Bibliography

51C. L. Kane and M. P. A. Fisher, “Impurity scattering and transport of fractional quantum
Hall edge states”, Phys. Rev. B 51, 13449–13466 1995.

52C. L. Kane, M. P. A. Fisher, and J. Polchinski, “Randomness at the edge: Theory of quantum
Hall transport at filling ν = 2/3”, Phys. Rev. Lett. 72, 4129–4132 1994.

53C. Spånslätt, Y. Gefen, I. V. Gornyi, and D. G. Polyakov, “Contacts, equilibration, and inter-
actions in fractional quantum Hall edge transport”, Phys. Rev. B 104, 115416 2021.

54I. Protopopov, Y. Gefen, and A. Mirlin, “Transport in a disordered ν=2/3 fractional quantum
hall junction”, Annals of Physics 385, 287–327 2017.

55R. Kumar, S. K. Srivastav, C. Spånslätt, K. Watanabe, T. Taniguchi, Y. Gefen, A. D. Mirlin,
and A. Das, “Observation of ballistic upstream modes at fractional quantum hall edges of
graphene”, Nat. Commun. 13, 213 2022.

56R. Landauer, “Electrical transport in open and closed systems”, en, Z. Physik B - Condensed
Matter 68, 217–228 1987.

57M. Büttiker, “Four-terminal phase-coherent conductance”, Phys. Rev. Lett. 57, 1761–1764
1986.

58C. W. J. Beenakker, “Edge channels for the fractional quantum Hall effect”, Phys. Rev. Lett.
64, 216–219 1990.

59A. H. MacDonald, “Edge states in the fractional-quantum-hall-effect regime”, Phys. Rev. Lett.
64, 220–223 1990.

60Y. Cohen, Y. Ronen, W. Yang, D. Banitt, J. Park, M. Heiblum, A. D. Mirlin, Y. Gefen, and
V. Umansky, “Synthesizing a ν=2/3 fractional quantum Hall effect edge state from counter-
propagating ν=1 and ν=1/3 states”, Nat. Commun. 10, 1–6 2019.

61A. Sommerfeld, “Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik”, Z.
Phys. 47, 1–32 1928.

62K. Schwab, E. A. Henriksen, J. M. Worlock, and M. L. Roukes, “Measurement of the quantum
of thermal conductance”, en, Nature 404, 974–977 2000.

63C. Wu, B. A. Bernevig, and S.-C. Zhang, “Helical Liquid and the Edge of Quantum Spin Hall
Systems”, Phys. Rev. Lett. 96, 106401 2006.

64G. Zhang, I. V. Gornyi, and C. Spånslätt, “Delta-T noise for weak tunneling in one-dimensional
systems: Interactions versus quantum statistics”, Phys. Rev. B 105, 195423 2022.

65C. Nosiglia, J. Park, B. Rosenow, and Y. Gefen, “Incoherent transport on the ν= 2/3 quantum
hall edge”, Physical Review B 98, 10.1103/physrevb.98.115408 2018.

66J. Park, A. D. Mirlin, B. Rosenow, and Y. Gefen, “Noise on complex quantum hall edges:
chiral anomaly and heat diffusion”, Physical Review B 99, 10.1103/physrevb.99.161302
2019.

67C. Spånslätt, J. Park, Y. Gefen, and A. D. Mirlin, “Topological classification of shot noise on
fractional quantum hall edges”, Physical Review Letters 123, 10.1103/physrevlett.123.
137701 2019.

68J. Park, C. Spånslätt, Y. Gefen, and A. D. Mirlin, “Noise on the non-Abelian ν=5/2 Fractional
Quantum Hall Edge”, Phys. Rev. Lett. 125, 157702 2020.

69C. Spånslätt, J. Park, Y. Gefen, and A. D. Mirlin, “Conductance plateaus and shot noise in
fractional quantum Hall point contacts”, Phys. Rev. B 101, 075308 2020.

70H. Nyquist, “Thermal Agitation of Electric Charge in Conductors”, Phys. Rev. 32, 110–113
1928.

71J. B. Johnson, “Thermal Agitation of Electricity in Conductors”, Phys. Rev. 32, 97–109 1928.
72G. Moore and N. Read, “Nonabelions in the fractional quantum hall effect”, Nucl. Phys. B
360, 362–396 1991.

73X. G. Wen, “Non-Abelian statistics in the fractional quantum Hall states”, Phys. Rev. Lett.
66, 802–805 1991.

74N. Read and D. Green, “Paired states of fermions in two dimensions with breaking of parity
and time-reversal symmetries and the fractional quantum Hall effect”, Phys. Rev. B 61, 10267–
10297 2000.

75L. Fidkowski, X. Chen, and A. Vishwanath, “Non-Abelian Topological Order on the Surface
of a 3D Topological Superconductor from an Exactly Solved Model”, Phys. Rev. X 3, 041016
2013.

76D. T. Son, “Is the Composite Fermion a Dirac Particle?”, Phys. Rev. X 5, 031027 2015.

47

https://doi.org/10.1103/PhysRevB.51.13449
http://dx.doi.org/10.1103/PhysRevB.51.13449
http://dx.doi.org/10.1103/PhysRevB.51.13449
http://dx.doi.org/10.1103/PhysRevB.51.13449
https://doi.org/10.1103/PhysRevLett.72.4129
http://dx.doi.org/10.1103/PhysRevLett.72.4129
http://dx.doi.org/10.1103/PhysRevLett.72.4129
http://dx.doi.org/10.1103/PhysRevLett.72.4129
https://doi.org/10.1103/PhysRevB.104.115416
http://dx.doi.org/10.1103/PhysRevB.104.115416
http://dx.doi.org/10.1103/PhysRevB.104.115416
http://dx.doi.org/10.1103/PhysRevB.104.115416
https://doi.org/10.1016/j.aop.2017.07.015
http://dx.doi.org/10.1016/j.aop.2017.07.015
http://dx.doi.org/10.1016/j.aop.2017.07.015
http://dx.doi.org/10.1016/j.aop.2017.07.015
https://doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevLett.57.1761
http://dx.doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevLett.57.1761
https://doi.org/10.1103/PhysRevLett.64.216
http://dx.doi.org/10.1103/PhysRevLett.64.216
https://doi.org/10.1103/PhysRevLett.64.216
http://dx.doi.org/10.1103/PhysRevLett.64.216
http://dx.doi.org/10.1103/PhysRevLett.64.216
https://doi.org/10.1007/BF01391052
http://dx.doi.org/10.1007/BF01391052
https://doi.org/10.1007/BF01391052
http://dx.doi.org/10.1007/BF01391052
http://dx.doi.org/10.1007/BF01391052
http://dx.doi.org/10.1007/BF01391052
https://doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
http://dx.doi.org/10.1103/PhysRevLett.96.106401
https://doi.org/10.1103/PhysRevB.105.195423
http://dx.doi.org/10.1103/PhysRevB.105.195423
http://dx.doi.org/10.1103/PhysRevB.105.195423
http://dx.doi.org/10.1103/PhysRevB.105.195423
https://doi.org/10.1103/physrevb.98.115408
http://dx.doi.org/10.1103/physrevb.98.115408
http://dx.doi.org/10.1103/physrevb.98.115408
https://doi.org/10.1103/physrevb.98.115408
https://doi.org/10.1103/physrevb.99.161302
http://dx.doi.org/10.1103/physrevb.99.161302
http://dx.doi.org/10.1103/physrevb.99.161302
https://doi.org/10.1103/physrevb.99.161302
https://doi.org/10.1103/physrevb.99.161302
https://doi.org/10.1103/physrevlett.123.137701
http://dx.doi.org/10.1103/physrevlett.123.137701
http://dx.doi.org/10.1103/physrevlett.123.137701
https://doi.org/10.1103/physrevlett.123.137701
https://doi.org/10.1103/physrevlett.123.137701
https://doi.org/10.1103/physrevlett.123.137701
https://doi.org/10.1103/PhysRevLett.125.157702
http://dx.doi.org/10.1103/PhysRevLett.125.157702
http://dx.doi.org/10.1103/PhysRevLett.125.157702
http://dx.doi.org/10.1103/PhysRevLett.125.157702
https://doi.org/10.1103/PhysRevB.101.075308
http://dx.doi.org/10.1103/PhysRevB.101.075308
http://dx.doi.org/10.1103/PhysRevB.101.075308
http://dx.doi.org/10.1103/PhysRevB.101.075308
https://doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRev.32.110
http://dx.doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.97
http://dx.doi.org/10.1103/PhysRev.32.97
http://dx.doi.org/10.1103/PhysRev.32.97
http://dx.doi.org/10.1103/PhysRev.32.97
https://doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevLett.66.802
http://dx.doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevLett.66.802
http://dx.doi.org/10.1103/PhysRevLett.66.802
http://dx.doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
http://dx.doi.org/10.1103/PhysRevX.3.041016
https://doi.org/10.1103/PhysRevX.3.041016
https://doi.org/10.1103/PhysRevX.5.031027
http://dx.doi.org/10.1103/PhysRevX.5.031027
http://dx.doi.org/10.1103/PhysRevX.5.031027
http://dx.doi.org/10.1103/PhysRevX.5.031027


Bibliography

77P. T. Zucker and D. E. Feldman, “Stabilization of the Particle-Hole Pfaffian Order by Landau-
Level Mixing and Impurities That Break Particle-Hole Symmetry”, Phys. Rev. Lett. 117,
096802 2016.

78L. Antonić, J. Vučičević, and M. V. Milovanović, “Paired states at 5/2: Particle-hole Pfaffian
and particle-hole symmetry breaking”, Phys. Rev. B 98, 115107 2018.

79S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, “Particle-Hole Symmetry and the ν = 5
2

Quantum Hall State”, Phys. Rev. Lett. 99, 236807 2007.
80M. Levin, B. I. Halperin, and B. Rosenow, “Particle-Hole Symmetry and the Pfaffian State”,
Phys. Rev. Lett. 99, 236806 2007.

81H. Asasi and M. Mulligan, “Partial equilibration of anti-pfaffian edge modes at ν=5/2”, Phys.
Rev. B 102, 205104 2020.

82K. K. W. Ma and D. E. Feldman, “Thermal equilibration on the edges of topological liquids”,
Phys. Rev. Lett. 125, 016801 2020.

83P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal field theory, Graduate texts in
contemporary physics (Island Press, 1996).

84A. Cappelli, M. Huerta, and G. R. Zemba, “Thermal transport in chiral conformal theories
and hierarchical quantum hall states”, Nuclear Physics B 636, 568–582 2002.

85J. Rech, T. Jonckheere, B. Grémaud, and T. Martin, “Negative delta-t noise in the fractional
quantum hall effect”, Physical Review Letters 125, 10.1103/physrevlett.125.086801 2020.

86W. Zhu, D. N. Sheng, and K. Yang, “Topological Interface between Pfaffian and Anti-Pfaffian
Order in ν=5/2 Quantum Hall Effect”, Phys. Rev. Lett. 125, 146802 2020.

87D. F. Mross, Y. Oreg, A. Stern, G. Margalit, and M. Heiblum, “Theory of Disorder-Induced
Half-Integer Thermal Hall Conductance”, Phys. Rev. Lett. 121, 026801 2018.

88C. Wang, A. Vishwanath, and B. I. Halperin, “Topological order from disorder and the quan-
tized Hall thermal metal: Possible applications to the ν = 5/2 state”, Phys. Rev. B 98, 045112
2018.

89B. Lian and J. Wang, “Theory of the disordered ν = 5
2 quantum thermal Hall state: Emergent

symmetry and phase diagram”, Phys. Rev. B 97, 165124 2018.
90P.-S. Hsin, Y.-H. Lin, N. M. Paquette, and J. Wang, “Effective field theory for fractional
quantum Hall systems near ν = 5/2”, Phys. Rev. Res. 2, 043242 2020.

91H. Ebisu, N. Schiller, and Y. Oreg, “Fluctuations in Heat Current and Scaling Dimension”,
Phys. Rev. Lett. 128, 215901 2022.

92T. Martin, “Noise in mesoscopic physics”, arXiv, 10.48550/arXiv.cond-mat/0501208 2005.

48

https://doi.org/10.1103/PhysRevLett.117.096802
http://dx.doi.org/10.1103/PhysRevLett.117.096802
http://dx.doi.org/10.1103/PhysRevLett.117.096802
https://doi.org/10.1103/PhysRevLett.117.096802
http://dx.doi.org/10.1103/PhysRevLett.117.096802
https://doi.org/10.1103/PhysRevB.98.115107
http://dx.doi.org/10.1103/PhysRevB.98.115107
http://dx.doi.org/10.1103/PhysRevB.98.115107
http://dx.doi.org/10.1103/PhysRevB.98.115107
https://doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236807
http://dx.doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevLett.99.236806
http://dx.doi.org/10.1103/PhysRevLett.99.236806
https://doi.org/10.1103/PhysRevB.102.205104
http://dx.doi.org/10.1103/PhysRevB.102.205104
https://doi.org/10.1103/PhysRevB.102.205104
http://dx.doi.org/10.1103/PhysRevB.102.205104
http://dx.doi.org/10.1103/PhysRevB.102.205104
http://dx.doi.org/10.1103/PhysRevB.102.205104
https://doi.org/10.1103/PhysRevLett.125.016801
http://dx.doi.org/10.1103/PhysRevLett.125.016801
http://dx.doi.org/10.1103/PhysRevLett.125.016801
http://dx.doi.org/10.1103/PhysRevLett.125.016801
https://doi.org/10.1016/s0550-3213(02)00340-1
http://dx.doi.org/10.1016/s0550-3213(02)00340-1
http://dx.doi.org/10.1016/s0550-3213(02)00340-1
http://dx.doi.org/10.1016/s0550-3213(02)00340-1
https://doi.org/10.1103/physrevlett.125.086801
http://dx.doi.org/10.1103/physrevlett.125.086801
http://dx.doi.org/10.1103/physrevlett.125.086801
https://doi.org/10.1103/physrevlett.125.086801
https://doi.org/10.1103/PhysRevLett.125.146802
http://dx.doi.org/10.1103/PhysRevLett.125.146802
http://dx.doi.org/10.1103/PhysRevLett.125.146802
http://dx.doi.org/10.1103/PhysRevLett.125.146802
https://doi.org/10.1103/PhysRevLett.121.026801
http://dx.doi.org/10.1103/PhysRevLett.121.026801
http://dx.doi.org/10.1103/PhysRevLett.121.026801
http://dx.doi.org/10.1103/PhysRevLett.121.026801
https://doi.org/10.1103/PhysRevB.98.045112
http://dx.doi.org/10.1103/PhysRevB.98.045112
http://dx.doi.org/10.1103/PhysRevB.98.045112
http://dx.doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevB.98.045112
https://doi.org/10.1103/PhysRevB.97.165124
http://dx.doi.org/10.1103/PhysRevB.97.165124
http://dx.doi.org/10.1103/PhysRevB.97.165124
http://dx.doi.org/10.1103/PhysRevB.97.165124
https://doi.org/10.1103/PhysRevResearch.2.043242
http://dx.doi.org/10.1103/PhysRevResearch.2.043242
http://dx.doi.org/10.1103/PhysRevResearch.2.043242
http://dx.doi.org/10.1103/PhysRevResearch.2.043242
https://doi.org/10.1103/PhysRevLett.128.215901
http://dx.doi.org/10.1103/PhysRevLett.128.215901
http://dx.doi.org/10.1103/PhysRevLett.128.215901
http://dx.doi.org/10.1103/PhysRevLett.128.215901
https://doi.org/10.48550/arXiv.cond-mat/0501208
http://dx.doi.org/10.48550/arXiv.cond-mat/0501208
https://doi.org/10.48550/arXiv.cond-mat/0501208


A
Additional Computations

A.1 General Identities
Expansion of a time-ordered exponential

T {e
∫ t

0
A(t′)dt′} ≡

∞∑
n=0

1
n!

∫ t

0
. . .

∫ t

0
T {A(t′1) . . . A(t′n)} dt′1 . . . dt′n

≡
∞∑
n=0

∫ t

0
. . .

∫ t′n−1

0
A(t′1) . . . A(t′n) dt′1 . . . dt′n (A.1)

Definition of δ function by[ 1
t1 − t2 − iδ

− 1
t1 − t2 + iδ

]
δ→0+

= 2πiδ(t1 − t2) (A.2)

Action of δ function on functions f(x) under the integral∫
x

δ(x− y)f(x) dx = f(y) (A.3)∫
x

∂xδ(x− a)f(x) dx = −
∫
∂xf(x)δ(x− y) dx = −∂yf(y) (A.4)

A.2 Longitudinal Conductance in the Hall-cross
In general, four different well-defined longitudinal charge and heat conductances can be defined
for the Hall-cross. It is, however, not very common to discuss longitudinal conductances in this
setup. For a Hall-cross biased by a voltage ∆V and contact three connected to GND V3 = 0,
the longitudinal conductances can be defined by

GL,a = I

V1 − V2
GL,b = I

V2 − V3
GL,c = I

V3 − V4
GL,d = I

V4 − V1

By the definition of V3 ≡ GND, it follows that GL,a = −GL,d and GL,b = −GL,c. The conduc-
tances become for the considered cases

ν+ 6= ν−ν+ 6= ν−ν+ 6= ν−

GL,a =
G2

+ +G2
−

G−
GL,a

L�l−→∞ GL,a
L�l−→ ν2

+ + ν2
−

ν−

GL,b =
G2

+ +G2
−

G+
GL,b

L�l−→ ν1 − ν2 GL,b
L�l−→ ν2

+ + ν2
−

ν+

ν+ = ν− = νν+ = ν− = νν+ = ν− = ν

GL,a = GL,b = 2ν2

L
l + ν

GL,a
L�l−→ 0 GL,a

L�l−→ 2ν

I
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A.3 Conductances in the Diffusive Transport Regime

Analogous to the transport for ν+(n+) 6= ν−(n−) it is possible to describe a downstream and
upstream charge (heat) conductance in the diffusive transport regime (in units e2/h and κ).
This regime however, does not correspond to a proper quantum Hall state. The conductances
take the following values:

ν+ = ν− = νν+ = ν− = νν+ = ν− = ν

Two terminal setup

G2t = 2ν2

L
l + ν

G2t
L�l−→ 0 G2t

L�l−→ 2ν

Hall-cross

G2t = ν2

L
l + ν

G2t
L�l−→ 0 G2t

L�l−→ ν

GH →∞

Hall-bar

G2t = 2ν2

3
(
L
l + ν

) G2t
L�l−→ 0 G2t

L�l−→ 2
3ν

GH →∞

GL = ± 2ν2

L
l + ν

GL
L�l−→ 0 GL

L�l−→ ±2ν

n+ = n− = nn+ = n− = nn+ = n− = n

Two terminal setup

GQ2t = 2
lQeq

lQeq + γLn
n GQ2t

L�lQeq−→ 0 GQ2t
L�lQeq−→ 2n

Hall-cross

GQ2t = n

1 + L
l nγ

GQ2t
L�l−→ 0 GQ2t

L�l−→ n

Hall-bar

GQ2t = 2n
3
(
1 + L

l nγ
) GQ2t

L�l−→ 0 GQ2t
L�l−→ 2

3n

A.4 Continuous Noise Coefficients
The continuous versions of the coefficients to the various noise contributions are defined by

A = (ν1 − ν2)2(
ν2 − ν1e

2L
lCeq

)2 C = (ν1 − ν2)2e
2(L−x)
lCeq(

ν2 − ν1e
2L
lCeq

)2 D =
ν2

2

(
e

2L
lCeq − 1

)2

(
ν2 − ν1e

2L
lCeq

)2 (A.5)

E = −
ν2(ν1 − ν2)

(
e

2L
lCeq − 1

)
e

2(L−x)
lCeq(

ν2 − ν1e
2L
lCeq

)2 F = (ν1 − ν2)2e
4(L−x)
lCeq(

ν1 − ν2e
2L
lCeq

)2 (A.6)
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In case of L� lCeq, they simplify to

A→ 0 C → 0 D →
(
ν2
ν1

)2
E → − ν2

ν2
1

(ν1 − ν2)e
− 2x
lCeq F → (ν1 − ν2)2

ν2
1

e
− 4x
lCeq (A.7)

A.5 Description of the Edge Theory

A.5.1 Equation of Motion
Given the action for a chiral bosonic mode Sφ connected to a contact SV with χ, v and ν the
chirality, velocity and fillling factor of the considered bosonic mode

Sφ = − 1
4πν

x
dx dt

[
χ∂tφ∂xφ+ v(∂xφ)2

]
and SV = − χ

2π
x

dx dt V (x)∂xφ , (A.8)

the total action Stot = Sφ + SV is minimized using the principle of stationary action :

lim
ε→0

1
ε

[
Stot[φ+ εη]− Stot[φ]

]
= 0 . (A.9)

By the algebraic limit theorem, the limits are viewed one by one, starting with Sφ
1
ε

[
Sφ[φ+ εη]− Sφ[φ]

]
= − 1

4πν
x

t,x

(
χ (∂tφ∂xη + ∂tη∂xφ+ ε∂tη∂xη) + v

(
2∂xφ∂xη + ε(∂xη)2)) .

(A.10)

integrating terms 1,2 and 3 by parts (endpoints are fixed) and taking the limit gives

lim
ε→0

1
ε

[
Sφ[φ+ εη]− Sφ[φ]

]
= 1

4πν
x

t,x

[
2χ∂t∂xφ+ 2v∂2

xφ
]
η

!= 0 . (A.11)

The EOM for the chiral boson without attached contacts is thus given by

χ∂t∂xφ(x, t) + v∂2
xφ(x, t) = 0 . (A.12)

A left moving mode φ(x, t) = φ(x+ vt) fulfills the EOM for χ = −1, whereas for a right moving
mode φ(x, t) = φ(x − vt) solves the EOM for χ = +1. In terms of the 1D charge density
ρ(x, t) = χ

2π∂xφ(x, t), this becomes

∂tρ(x, t) + χv∂xρ(x, t) = 0 . (A.13)

Viewing this as a continuity equation of the kind ∂tρ+∂xI = 0, the current I takes the form

I(x, t) = χvρ(x, t) . (A.14)

The variation of SV , describing the additional contribution from the contact evaluates as
1
ε

[
SV (φ+ εη)− SV (φ)

]
= − χ

2π
x

t,x

V (x)∂xη = χ

2π
x

t,x

∂xV (x)η . (A.15)

Therefore the equation of motion for the total action becomes

lim
ε→0

1
ε

[
Stot(φ+ εη)− Stot(φ)

]
= 1

4πν
x

t,x

[
2χ∂t∂xφ+ 2v∂2

xφ+ 2ν∂xV
]
η

!= 0 . (A.16)

Looking at the EOM wrt the charge density ρ(x, t)

∂tρ+ χ∂x (vρ+ νV ) = 0 . (A.17)

An additional ”contact” term has been added. The current can now be described by

I = χ(vρ+ νV ) . (A.18)

The net current carried by one mode connected to the potentials V1 = eµ1 > V2 = eµ2 becomes
in units e2

h

Inet = χ (vρ+ νV1 − (vρ+ νV2)) = χν(V1 − V2) . (A.19)
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A.5.2 Derivation of φ−n(t) = φ∗(t)
Looking at positive and negative n separately in the Fourier expansion of φ(x, t), one gets:

φ(x, t) = 1√
L

∞∑
n=0

[
φn(t)eiknx + φ−n(t)e−iknx

]
. (A.20)

Since φ(x, t) is a real valued field (particle, anti-particle argument), it follows for each Fourier-
component

Im
{[

Re{φn(t)}+ i Im{φn(t)}
]
eiknx +

[
Re{φ−n(t)}+ i Im{φ−n(t)}

]
e−iknx

}
!= 0 (A.21)(

Re{φn(t)} − Re{φ−n(t)}
)

sin(knx) +
(

Im{φn(t)}+ Im{φ−n(t)}
)

cos(knx) = 0 . (A.22)

Since sin(knx) and cos(knx) are in general not equal to zero and kn is fixed for each n, this gives
the solution

Re{φn(t)} = Re{φ−n(t)} and Im{φn(t)} = − Im{φ−n(t)} ⇒ φ−n(t) = φ∗n(t) (A.23)

The same argument can be used to also show this relation for ρ(x, t). Checking if φ(x, t) ∈
R:

φ(x, t) = 1√
L

∞∑
n=0

Re{φn(t)}
[
eiknx + e−iknx

]
− 1
i

Im{φn(t)}
[
eiknx − e−iknx

]
(A.24)

φ(x, t) = 2√
L

∞∑
n=0

Re{φn(t)} cos(knx)− Im{φn(t)} sin(knx) ∈ R q.e.d (A.25)

A.5.3 Derivation of the Commutators between ρ(x) and Ψ(†)
e , Ψ(†)

qp

For a well behaved function f(B) the following identity is used

[A, f(B)] = f ′(B)[A,B] if [[A,B], B] = 0 . (A.26)

Since the commutator [ρ(x), φ(x′)] is just a number the above identity can be used to obtain for
the annihilation operator of the quasi particle Ψqp and the electron Ψe

[ρ(x),Ψqp(x′)] = [ρ(x), eiφ(x′)] = ieiφ(x′)[ρ(x), φ(x′)] = −νΨqpδ(x− x′) and (A.27)

[ρ(x),Ψe(x′)] = [ρ(x), eimφ(x′)] = i

ν
eimφ(x′)[ρ(x), φ(x′)] = −Ψeδ(x− x′) . (A.28)

Similarly, it follows for the commutators of the charge density and the creation operators of
quasi-particles and electrons

[ρ(x),Ψ†qp(x′)] = [ρ(x), e−iφ(x′)] = νΨ†qpδ(x− x′) and (A.29)

[ρ(x),Ψ†e(x′)] = [ρ(x), e−imφ(x′)] = Ψ†eδ(x− x′) . (A.30)

Thus the creation and annihilation operators of the quasi-particles and electrons produce the
correct charge.

A.6 Second order Correction to the Heat Current
Starting from the definition of the corrections to the heat current and by using the statistical
independence of the chiral fields [(. . . )+, (. . . )−] = 0, the commutator of interest for the first
order correction becomes

[Γ0O−(t′)O+(t′), J (0)
Q,−(t̃)] = −~v2

−Γ0

2π [T−(t̃), O−(t′)]O+(t′) . (A.31)

IV



A. Additional Computations

The following OPEs are used to further simplify this expression [83]

T (z)O(z′) ∼ hOO(z′)
(z − z′)2 + ∂z′O(z′)

z − z′ + . . . and (A.32)

O(z)T (z′) ∼ hOO(z)
(z − z′)2 −

∂zO(z)
z − z′ + . . . . (A.33)

Going back from imaginary to real time by z− z′ → δ+ iv−(t1− t2) and by using Eq. (A.2) [91],
the commutator becomes

[T (t1), O(t2)] = −2πi
v2
−
δ(t1 − t2)∂t2O−(t2) + 2πid−

v2
−

∂t1δ(t1 − t2)O−(t2) , (A.34)

where d− denotes the conformal dimension of the operator O−. The first order correction to the
heat current is thus described by

J
(1)
Q (t) = −iv

2
−Γ0

2π

∫ t

−∞
dt′
[2πid−

v2
−

∂t̃δ(t̃− t′)O−(t′)− 2πi
v2

+
δ(t̃− t′)∂t′O−(t′)

]
O+(t′) and

(A.35)

J
(1)
Q (t) = Γ0

∫ t

−∞
dt′
[
d−∂t̃δ(t̃− t′)O−(t′)O+(t′)− δ(t̃− t′)∂t′O−(t′)O+(t′)

]
. (A.36)

Performing the integration gives with the identities defined in Eqs. (A.3) and (A.4)

J
(1)
Q (t) = Γ0

(
d−∂t̃

(
O−(t̃)O+(t̃)

)
−
(
∂t̃O−(t̃)

)
O+(t̃)

)
. (A.37)

Since the operators of the + and - fields are statistically independent, one finds a vanishing
average of the first order correction

〈J (1)
Q (t)〉 = 0 . (A.38)

The second order correction is obtained by following a similar way

J
(2)
Q (t) = i2Γ2

0

∫ t̃

−∞
dt′′
[
O−(t′′)O+(t′′), d−∂t̃

(
O−(t̃)O+(t̃)

)
−
(
∂t̃O−(t̃)

)
O+(t̃)

]
and (A.39)

J
(2)
Q (t) = −Γ2

0

∫ t̃

−∞
dt′′
(
d−(1)− (2)

)
. (A.40)

Evaluating the commutator, the contributions (1) and (2) are computed to become

(1) = O−(t′′)O+(t′′)∂t̃
(
O−(t̃)O+(t̃)

)
− ∂t̃

(
O−(t̃)O+(t̃)

)
O−(t′′)O+(t′′) and (A.41)

(2) =
(
∂t̃O−(t̃)

)
O+(t̃)O−(t′′)O+(t′′)−O−(t′′)O+(t′′)

(
∂t̃O−(t̃)

)
O+(t̃) . (A.42)

Expanding the derivative ∂t̃
(
O−(t̃)O+(t̃)

)
and using the commutation relations to rearrange

some terms, one finds

(1) =
[
O−(t′′)

(
∂t̃O−(t̃)

)
O+(t′′)O+(t̃) +O−(t′′)O−(t̃)O+(t′′)

(
∂t̃O+(t̃)

)
(A.43)

−
(
∂t̃O−(t̃)

)
O−(t′′)O+(t̃)O+(t′′)−O−(t̃)O−(t′′)

(
∂t̃O+(t̃)

)
O+(t′′)

]
. (A.44)

introducing the time difference τ = t′′−t̃ and the Green’s functionsG+(−)(τ) = 〈O+(−)(τ)O+(−)(0)〉,
the corresponding averages become〈

(1)
〉

= −
[(
∂τG−(τ)

)
G+(τ) +G−(τ)

(
∂τG+(τ)

)
−
(
∂τG−(−τ)

)
G+(−τ)−G−(−τ)

(
∂τG+(−τ)

)]
.

(A.45)

Noting that Gi(τ) = Gi(−τ) and ∂τGi(τ) = −∂τGi(−τ) with i ∈ {+,−}, the resulting expres-
sions simplify to〈

(1)
〉

= −2d−∂τ
(
G−(τ)G+(τ)

) 〈
(2)
〉

= −
(
∂τG−(−τ)

)
G+(−τ) +

(
∂τG−(τ)

)
G+(τ) .

(A.46)
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Performing the integration, only the contribution of (2) gives a non-zero result. The integration
of 〈(2)〉 can further be simplified by∫ t̃

−∞

〈
(2)
〉
dτ =

∫ t̃

−∞

(
∂τG−(τ)

)
G+(τ) dτ −

∫ t̃

−∞

((
∂τ ′G−(−τ ′)

)
G+(−τ ′) dτ ′ . (A.47)

Using a transformation of variables τ ′ → −τ ′ in the second term, it follows

〈J (2)
Q (t)〉 = Γ2

0
~

∫ ∞
−∞

(
∂τG−(τ)

)
G+(τ) dτ . (A.48)

The so found relations are in agreement with [91].

A.7 Computation of the Interaction Heat Current
In order to compute the finite temperature Greens’ functions of the modes, a conformal transfor-
mation onto the cylinder z(w) = exp

(
2πiw/(~β+(−)v+(−))

)
is performed. The Greens’ function

for the derivatives of the bosonic left-moving fields can be obtained by noting that they are
primary fields and transform as [83]

G−(w1, w2) = 〈∂w1φ(w1)∂w2φ(w2)〉 =
(
dw

dz

)−d−
w1

(
dw

dz

)−d−
w2

〈∂z1φ(z1)∂z2φ(z2)〉 . (A.49)

Introducing α− = 2πi
~β−v− and thus z(w) = exp(α−w) and by using the operator product expan-

sion for the bosonic case 〈∂z1φ(z1)∂z2φ(z2)〉 ∼ − ν
(z1−z2)2 , it follows

G−(w1, w2) = −να2d−
−

(
eα−w1 − eα−w2

e
α−d−

2 w1e
α−d−

2 w2

)−2
d−=1= −να2

−
(
e
α−
2 (w1−w2) − e−

α−
2 (w1−w2)

)−2

(A.50)

= −ν
(α−

2

)2 (
sinh

(α−
2 (w1 − w2)

))−2
. (A.51)

Setting w1 − w2 = −iv−τ and re-introducing the cut off b from the bosonization result, one
obtains the following expression for the φ modes’ Greens’ function

G−(τ) = − ν
b2

(
πib/(~v−β−)

sinh(πi/(~v−β−)(b− iv−τ))

)2
= − ν

b2

(
πb/(~v−β−)

sin(π/(~v−β−)(b− iv−τ))

)2
,

(A.52)

∂τG−(τ) = 2
b2

(
iνπ

~β−

)
cot
(
π(b− iv−τ)

~v−β−

)(
πb/(~v−β−)

sin(π/(~v−β−)(b− iv−τ))

)2
. (A.53)

To obtain the Greens’ function of the right moving Majorana mode G+(τ), the conformal trans-
formation of the energy momentum tensor T+ has to be considered

T (w) =
(
dw

dz

)−2 [
T (z)− c

12{w; z}
]

[83] (5.131)=
(
dw

dz

)−2
T (z) + c

12{z;w} , (A.54)

where {z;w} denotes the Schwarzian derivative. Using 〈T (z)〉plane = 0, the Greens’ function are
found by

G+(w1, w2) = 〈T (w1)T (w2)〉 =
(
dw

dz

)−2

w1

(
dw

dz

)−2

w2

〈T (z1)T (z2)〉+ c2

144{z;w}w1{z;w}w2 .

(A.55)

The Schwarzian becomes for the given transformation of the + mode

{z;w} =
(
∂3z

∂w3

)(
∂z

∂w

)−1
− 3

2

(
∂2z

∂w2

)2(
∂z

∂w

)−2
= 2π2

~2v2
+β

2
+
. (A.56)
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Therefore the Greens’ function become with the OPE of T (z1)T (z2) ∼ c
2

1
(z1−z2)4

G+(w1, w2) = c

2
16π4

~4v4
+β

4
+

e
4πi

~v+β+
(w1+w2)

(z1 − z2)4 + c2

36

(
π

~v+β+

)4
. (A.57)

Setting α+ = 2πi
~v+β+

and using the given transformation of z

G+(w1, w2) = c

2α
4
+

e2α+(w1+w2)

(eα+w1 − eα+w2)4 + c2

36

(α+
2

)4
= c

2α
4
+

(
eα+w1 − eα+w2

e
α+
2 (w1+w2)

)−4
+ c2

36

(α+
2

)4

(A.58)

= c

2α
4
+

(
e
α+
2 (w1−w2) − e−

α+
2 (w1−w2)

)−4
+ c2

36

(α+
2

)4
(A.59)

= c

2

(α+
2

)4
sinh

(α+
2 (w1 − w2)

)−4
+ c2

36

(α+
2

)4
. (A.60)

Putting back in the expression for α+ as well as introducing the cut off b and setting w1−w2 =
−iv+τ , the final result becomes

G+(τ) = c

2b2

(
πb/(~v+β+)

sin(π/(~v+β+)(b− iv+τ))

)4
+ c2

36

(
π

~v+β+

)4
. (A.61)

The Greens’ functions can now be used to compute the second order correction to the heat
current. A variable shift of the form τ → τ + i bv− − i

~β−
2 is introduced to rearrange some terms

in the integral. This shift is allowed since it does not exclude any of the poles. The second order
correction to the heat current becomes with ±∞∗ = ±∞+ i bv− − i

~β−
2 [92]

〈J (2)
Q (t)〉 = − Γ2

0b
2π7cν

18~7v2
−v

4
+β

3
−β

4
+

∫ ∞∗
−∞∗

f(τ) dτ , (A.62)

where f(τ) is described by

f(τ) = sech2
(
πτ

~β−

)
tanh

(
πτ

~β−

)c+ 18b2 csc4

π
(
b− bv+

v−
− ~v+β−

2 − iv+τ
)

~v+β+

 . (A.63)

Expanding this expression for small b while keeping terms up to leading order removes the b
dependence from the argument. The integral limits are further switched back to ±∞. In the
following, the dependency on the small temperature bias is examined up to order O(∆T ). The
local temperatures are defined by the temperatures of the reservoirs the modes emanate from,
leading to T+ = T + ∆T

2 and T− = T − ∆T
2 . Performing the expansion and transforming back

into real time τ → it gives

〈J (2)
Q (t)〉 = 2Γ2

0k
7
Bπ

8T 6cν

~8v2
−v

4
+

∆T
∫ ∞
−∞

sech6
(
πkBT

~
t

)
tanh2

(
πkBT

~
t

)
dt (A.64)

= 32b2k6
Bπ

7Γ2
0cν

105~7v2
−v

4
+

T 5∆T . (A.65)

Therefore the correction to the heat conductance (resembling the "interaction conductance")
becomes with c = 1/2, ν = 1/2

GQint = d

d∆T 〈J
(2)
Q 〉 = 8b2k4

Bπ
5Γ2

0
35~6v2

−v
4
+
T 4κ . (A.66)

A.8 Computation of the Noise Kernel Λ(x)
The final result for the noise kernel Λ(x) is computed starting from the definition of the local noise
and charge tunneling conductance in Eq. (4.30) and (4.31). Using the substitution ωV = e∆V (x)τ

~
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it follows

Sloc(x) = 4
∫ ∞
−∞

cos (ωV τ) 〈T (τ, 0)T †(0, 0)〉 dτ and (A.67)

gloc(x) = 2i
∫ ∞
−∞

τ〈T (τ, 0)T †(0, 0)〉 dτ . (A.68)

The correlation function of the tunneling operators becomes for the desired edge structure

〈T (τ, 0)T †(0, 0)〉 = 〈ψ(τ, 0)ψ(0, 0)〉〈e i
ν1
φ1(τ,0)e

i
ν1
φ1(0,0)〉〈e i

ν2
φ2(τ,0)e

i
ν2
φ2(0,0)〉 (A.69)

and thus in terms of the modes Greens’ functions

〈T (τ, 0)T †(0, 0)〉 = Γ2
0

(2πb)2Gψ(τ, 0)Gφ1(τ, 0)G2
φ2

(τ, 0) . (A.70)

The Greens’ functions are obtained by the known identities for the correlators of bosons and
fermions in CFT (to be correct Gφ is actually eGφ , if Gφ is the bare bosonic correlator).

Gψ = Gφ1 = Gφ2 = Gi = πbkBTi
~vi

csc
(
πkBTi
~vi

(b− iviτ)
)

(A.71)

Using the definitions of the finite temperature Greens’ functions, the temperatures are adjusted
to meet the assumptions of the considered cases where α = l12/L and β = l23/L

case assumptions
(i) α, β � 1 T1(x) = T2(x) = T3(x)

(ii) α� β < 1 T1(x) = T2(x) = κ(x)T3(x)
1 > α� β T1(x) = κ(x)T2(x) = κ(x)T3(x)

(iii) α, β →∞ T1(x) = T3(x) = 0 and T2(x) =
√

3
π2

eV0
kB

(A.72)

The correlator of interest is thus defined by different combinations of the modes’ temperatures.
Whenever temperatures are set to zero, the corresponding zero temperature Greens’ function
has been used. Depending on the given ”reference temperature”, the trick from the heat current
computation is used once again. Assuming that everything is expressed in terms of T1, the
integrals for Sloc and gloc are modified by introducing the shift {τ ′ = ~β

π τ − i ~
kBT1

+ i bv1
}. Under

the condition ~v1β1 > b, there is no pole included in the contour and the integral boundaries
can be switched back to ±∞ in both cases

Γ2
0

(2πb)2

∫ ∞
−∞

f(τ ′)Gψ(τ ′, 0)Gφ1(τ ′, 0)G2
φ2

(τ ′, 0) dτ , (A.73)

where f(τ ′) ∈ {cos(ωV τ ′), τ ′} for Sloc and gloc respectively. The integrand is then expanded to
leading order in the cut off b (O(b2)) for both expressions. In case of Sloc, it is further expanded
for small applied voltage biases. For (ii), the expressions are expanded around κ = 1 up to first
order in κ additionally. Having done all these steps the final result is readily obtained for (i)
and (ii). For (iii) the noise kernel evaluates to (τ ′ → τ)

Λ(x) = 2kBT2

∫∞
−∞

(π2−4τ2)sech2(τ)
(π2+4τ2)2 dτ∫∞

−∞
sech2(τ)
π2+4τ2 dτ

, (A.74)

with the expressions of interest

Sloc = S0

∫ ∞
−∞

(π2 − 4τ2)
(π2 + 4τ2)2 cosh2(τ)

dτ and gloc = g0

∫ ∞
−∞

1
(π2 + 4τ2) cosh2(τ)

dτ , (A.75)

where S0 and g0 are constants that absorb the prefactors. Noting that 1/cosh2(τ) is a mero-
morphic function with an infinite set of poles ±(2k + 1) iπ2 , k ∈ Z≥0, it is rewritten using the
Mittag-Leffler’s theorem

1
cosh2(τ)

= −
∞∑
k=0

[
1(

τ − (2k + 1) iπ2
)2 + 1(

τ + (2k + 1) iπ2
)2
]
. (A.76)
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With this expression, the integrals for the two expressions of interest can be identified with the
following integrals:

gloc: −
∫

R

dτ

(τ ± z)2(4τ2 + π2) dτ = 2
(π − 2iz)2 and (A.77)

Sloc: −
∫

R

(π2 − 4τ2)
(τ ± z)2(4τ2 + π2) dτ = 4π

(π − 2iz)3 . (A.78)

Identifying the similarity between z in Eqs. (A.77) and (A.78) and (2k + 1) iπ2 in Eq. (A.76),
by using the Fubini-Tonelli theorem to reverse the order of integration and summation and by
inserting the series description of 1

cosh2(τ) , the solutions to the integrals become

gloc = g0
π2

∞∑
k=0

1
(k + 1)2 = g0

π2

∞∑
k=1

1
k2 = ζ(2)

π2 g0 = g0
6 and (A.79)

Sloc = S0
π2

∞∑
k=1

1
k3 = ζ(3)

π2 S0 ≈ 0.121794S0 . (A.80)

Recovering the prefactors S0 and g0, the noise kernel Λ(x) is given by

Λ(x) = Sloc

2gloc = 12kBT2ζ(3)
π2 =

√
6
5

6eV0ζ(3)
π3 . (A.81)

Under the assumption of very efficient charge equilibration (L� lCeq), the corresponding excess
noise is computed as before by evaluating

Sexc = lim
L�lCeq

 4ν1ν2(ν1 − ν2)

lCeq

(
ν1 − ν2e

− 2L
lCeq

)2

∫ L

0
Λ(x)e

− 4x
lCeq dx

 . (A.82)

The resulting expression for the excess noise SexcV0
is given in units e3V0/h. Using the current-

voltage relation

I0 = GV0
e2

h
leads to SexcI0 =

SexcV0

V0

I0
G

h

e2 . (A.83)

In case of the interface phPf-3, G
L�lCeq−→ 1/2. To connect to units used in [32] , e→ 1.602·10−19As,

h→ 6.626 ·10−34Js and V0 → 10−6V0,exp are inserted in the noise expression instead. The noise
is then given in units 10−30A2/(µV Hz).

A.9 HeatCond Module for Mathematica
This Module has been written to compute the two terminal heat conductance of edge structures
for an applied temperature bias of ∆T with pairwise interactions between the involved modes.
It converts inputs of the channels’ chirality, heat conductance and specified pairwise equilibra-
tion lengths into the corresponding two terminal heat conductance. The given matrix MT , is
diagonalized by its eigenvalues λi and and eigenvectors #»v i by

MT = PDP−1 , D = diag({λi}) and P = ({ #»v i})T . (A.84)
The heat transport equation thus becomes

∂x
#»

T (x) = MT
#»

T (x) = PDP−1 #»

T (x) ⇒ ∂xP
−1 #»

T (x) = DP−1 #»

T (x) . (A.85)

Introducing a new temperature
# »

T ′(x) = P−1 #»

T (x), the system takes the diagonal form

∂x
# »

T ′(x) = D
# »

T ′(x) (A.86)
and is solved for the missing boundary conditions using standard methods. The final result is
obtained by resubsting #»

T (x). It becomes
# »

T ′(L) = eDL
# »

T ′(0) ⇒ #»

T (L) = PeDLP−1 #»

T (0) . (A.87)

The code is attached in the electronic version of this thesis (https://odr.chalmers.se/).

IX
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A.10 Color-map of GQ
2t for the intermediate phPf-3

Modelling the hotspot by heated contacts allows to compute (and measure) heat conductance
and noise in the same setup. The thermal conductance GQ2t corresponding to an applied ∆T is
visualized in the color-map below. It depends on the degree of equilibration between pairs of
channels, defined by α = l12/L and β = l23/L. It follows in the corresponding limits:

1. Full thermal equilibration between channel one and two as well as between channel two
and three

GQ2t → 1/2 κ for α→ 0 and β → 0
2. Absent thermal equilibration between channel one and two and full thermal equilibration

between channel two and three
GQ2t → 3/2 κ for α→∞ and β → 0

3. Absent thermal equilibration between channel one and two as well as between channel two
and three

GQ2t → 5/2 κ for α→∞ and β →∞
In the limit α → 0 and β → ∞, it can furthermore be seen that the equilibration between
channel two and three (' β) plays a minor role compared to the equilibration between channels
one and two (' α).

5 10

5

10

α

β

Thermal Conductance

1

1.5

2

GQ
2t[κ]

Figure A.1: Visualization of the thermal conductance GQ2t of the intermediate phPf-3 edge
depending on α and β in the range 0 ≤ α, β ≤ 10.
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