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Capturing the Base Station by Feature Engineering
Visualisation and Clustering of Feature Vectors Representing Base Station States
Rikard Helgegren
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
A feature vector is a compact representation of an object or system, that contains
the most important or informative aspects of the entity. A feature vector is often
used in the context of machine learning due to the effectiveness and noise reduction,
but can also be used for data exploration.

In this thesis we want to investigate if a complex system such as a base station can be
represented with a feature vector in an useful manner. To create the feature vector,
we ask subject matter experts for the most relevant attributes of the base station.
The feature vector is evaluated by partitioning all the base stations, either with an
unsupervised clustering algorithm, or by an interesting attribute of the base station.
The partitions are then visualized and presented to experts, who determined if the
partitions brings forth interesting patterns that can be useful, or if the partitions
are useful in themselves.

The result is a feature vector containing 494 features, based of 22 attributes that are
recommended by subject matter experts. The feature vector brings forth interesting
and useful patterns, and we can thus conclude that a feature vector can be used to
represent a complex system such as a base station in an useful manner.

Keywords: Feature vector, Visualisation, Clustering, Evaluation metrics, Base sta-
tion.
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1
Introduction

Many large companies automatically generate huge amount of data. Lot of big-data
applications have been made and many companies and institutions wants to join
the bandwagon of machine learning and AI, in order to find out to what extent
they can use their data. With vast amount of data however, it can be hard to
get an understanding of what information the data contains, how to find certain
information and what the data can be used for. This results in that only people
with lot of experience from working with the data are able to use the data in an
efficient manner. For a new employee looking at gigabytes of data he or she does
not know what is important and it is hard to spot interesting patterns. However
if only the most relevant information is extracted and presented, then it is much
easier to compare data and find patterns. When the pattern is found then it might
be suitable to go back to the full data set [1, 2].

To extract only the most relevant information it is common to create what is known
as a feature vector, which is a dense representation of an object. The first approach
for creating a feature vector is often to use machine learning methods [3]. This
approach is easy to implement and works well on large data sets and can capture
complex structures.

However, deep learning algorithms have low interpretability and are often viewed
upon as black boxes [4, 5]. This is not desirable if understanding of the results is
highly valued, or the patterns found should be interpreted. Therefore some compa-
nies would rather continue to apply statistical methods or use domain expertise for
creating feature vectors [3].

The question that this project aims to answer is if a complex entity such as a
base station state can be represented in a feature vector so that visualising feature
vectors for multiple base stations the visualisation is useful or forms distinct clusters.
If distinct clusters are found, it could be of great use when exploring the vast data.
Moreover, if the feature vector captures distinct underlying properties of a base
station, this could be used as a baseline comparison of base stations.

The data in this project is provided by the telecommunication company Ericsson,
and therefore the data is gathered from base stations. In telecommunication the base
station have a central role. The base station transmits and receives radio signals
and is the link between a wired network and the wireless network, e.g. between a
mobile phone and a radio tower.
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1. Introduction

1.1 Thesis outline

In this thesis we engineer a feature vector based on features recommended by subject
matter experts. The data used can roughly be categorised in to the configurational
data, log message data, and data regarding alarms, however more details regard-
ing the data will not be possible to provide due to confidentiality. Due to missing
values, subsets of the data is imputated or omitted depending of what is suitable.
In order to make the feature vector suitable for clustering, all features are made
comparable by scaling and translation. Then the feature vectors for all base sta-
tions are clustered by k-means, Gausian Mixture Models (GMM), Baysian Gausian
Mixture Models (BGMM) and Density-based spatial clustering of applications with
noise (DBSCAN). The clusterings are visualised by t-SNE and by a heat map of
the feature vectors. Based on these two visualisations the usefulness of the feature
vector is determined, in combination with clustering evaluation scores. However,
what these use cases are is also classified. The conclusion of this study is that it
is possible to create a feature vector such that it is useful for representing a base
station.

1.2 Related work

As far as we know, no paper has investigated visualisation and clustering of feature
vectors in the context of base stations. However, both the papers P. Bodik et al. [6],
which is about error classification, and H. Shilin et al. [7], which is about anomaly
detection, uses feature vectors for describing complex systems.

Similar to both of these paper, we have in this thesis used a time window. In these
papers the time window is used for selecting recent and relevant data. In our case it
is mainly a way to reduce the amount of data to make the computations faster, but
also for selecting relevant data. Bodik et al. represent their data based on metric
quantiles which proves to be efficient for error comparisons, however, for representing
a complex object, not focusing on errors, we believe that such a representation would
not be suitable. Shilin et al. uses a frequency vector as feature vector for each time
window, which is the same approach for handling text strings as in this thesis.

1.2.1 Visualisation
Principal component analysis (PCA) is often used for reducing the number of di-
mensions before using a scatter plot to visualise the data [8]. This approach was
used in the beginning of this project but started to fail when the dimensionality
of the data passed 50 dimensions, and almost all data points is presented as one
compact cluster. Then t-SNE was implemented instead, which in J. Tang et al. [9]
is described as one of the most popular ways to make two dimensional visualisations
of high dimensional data. As a complement to t-SNE the data was visualised with
heat maps as well, which is also implemented in [6], and [8].
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1. Introduction

1.2.2 Clustering methods
There exists lots of clustering algorithms based on various approaches. In P. Berkhin
[10], the approaches of k-means methods, probabilistic clustering with mixture mod-
els, and density based clustering are evaluated in the context of data mining. This
includes the problem of clustering high dimensional data and different methods of
dimensionality reduction.

1.2.3 Evaluating clusterings
As well as many clustering algorithms there are many clustering validation algo-
rithms of different categories and approaches. M. Halkidi et al. [11] compare the
most used validation indexes, and presents strengths and drawbacks with the differ-
ent indexes. The same is done in J. Handl et al. [12], which evaluates many of the
same evaluation indexes as M. Halkidi et al., and points out biases of the different
evaluating indexes.
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2
Theory

2.1 Clustering

Clustering is the technique of grouping data points together that are similar to each
other, or that are probable to be generated by the same phenomenon or object.
Typical examples of clustering have well separated groups of data points. A good
clustering algorithm would then assign these groups to different clusters, where data
points within the same group would be assigned to the same cluster.

Even if it is an easy task for a human to cluster the data points in two dimensions it
is hard to write an algorithm that works in all situations, and humans definitely need
algorithms when surpassing three dimensions. Clustering algorithms have not one
and the same approach but uses different presumptions of what defines a cluster. It
is usually a presumption regarding shape of the clusters, the density of the clusters,
the distance between clusters, or regarding the number of clusters.

2.1.1 K-means
K-means is a well known clustering algorithm using a simple and fast algorithm for
clustering the data into K clusters, where each data point is assigned to the cluster
with the nearest cluster mean.

The algorithm works as follows: K data points are selected at random, and are
used in the first iteration as cluster means. Then each data point is assigned to the
closest cluster mean. Now the new means are calculated as the centers of masses,
and the process repeats until the cluster means remain static. [13]

2.1.2 Gaussian Mixture Model
Gaussian mixture models (GMM) is a probabilistic model which uses an expectation
maximisation (EM) algorithm to fit its parameters to the data. The model is a
weighted sum of K Gaussians, where each Gaussian can be seen as representing a
cluster [14]. The GMM is defined as

p(x|λ) =
K∑

i=1
wig(x|µi,Σi), (2.1)

5



2. Theory

where wi is the weight associated to the ith Gaussian. The Gaussian is calculated as

g(x|µi,Σi) = 1
(2π)D/2|Σi|1/2 exp {−1

2(x− µi)T Σ−1
i (x− µi)}, (2.2)

where µi and Σi are the mean and the covariance matrix of the ith Gaussian, re-
spectively, and D is the dimensionality of the data vector x.
The Gaussian mixture model have three parameters to fit, that is wi, µi, and Σi

which will collectively be represented by λ = {wi,µi,Σi}.

One method for estimating the parameters of GMM so that it matches the data
is to use maximum likelihood in combination with EM. The idea behind EM is to
initiate λ and then calculate new parameters λ′ which improves the model. This is
done in repeat until convergence according to some set threshold. The equations to
improve the parameters are as follows: For mixture weights

wi = 1
T

T∑
t=1

Pr(i|xt, λ), (2.3)

for means
µi =

∑T
t=1 Pr(i|xt, λ)xt∑T

t=1 Pr(i|xt, λ)
, (2.4)

and for variances
σ2

i =
∑T

t=1 Pr(i|xt, λ)x2
t∑T

t=1 Pr(i|xt, λ)
− µ2

i . (2.5)

The probability for the ith component is given by

Pr(i|xt, λ) = wig(x|µi,Σi)∑K
k=1 wkg(x|µk,Σk)

. (2.6)

2.1.3 Bayesian Gaussian Mixture Model
The Bayesian Gaussian Mixture model (BGMM) is closely related to the GMM.
However BGMM also adds regularisation by computing and using the full posteriors.
This makes the algorithm less prone to overfitting but makes the model a bit biased
[15,16]. For full details, read H. Attias [16].

2.1.4 DBSCAN
Density-based spatial clustering of applications with noise (DBSCAN), is a clustering
algorithm that clusters data points that are close to each other to the same cluster
and data points that are in sparse regions are classified as noise [17].

DBSCAN have two important parameters, ε which is the radius that determines if
something is regarded as close or not, and m, which is the smallest number of data
points that will be considered a cluster. The algorithm classifies each data point
into one of the following.

• A core point, if there is at least m other data points within a radius of ε.

6



2. Theory

• A border point if there is a core point within the radius of ε, but the point
is not a core point itself.

• An outlier if it is none of the above.
A core point form a cluster with all core points and border points that is reachable
by moving between points with steps of maximum length of ε.

2.1.5 Spectral clustering
Spectral clustering have some similarities with DBSCAN in that it finds high density
areas [18]. The algorithm will not be explained in detail since it does not make out
a substantial part of this thesis. In short the clustering works as follow:

First create a graph representation of the data by using k-nearest neighbour. Then
compute the Laplacian matrix of the graph. Calculate the K first eigenvectors of
the matrix, these will span a K-dimensional space. This results in a N ×K matrix
where each row is a base station in this K-dimensional space. At this stage K-means
is used for partitioning the data points in to K clusters.

2.2 Data Visualisation
Data visualisation is the technique of graphically present information in a explana-
tory way, in order to make it easier to grasp the information of the data. To present
the information the graphical object often uses colours, various shapes, and various
sizes, as to help the viewer find patterns and relations within the data.

2.2.1 t-SNE
t-distributed stochastic neighbor embedding (t-SNE) is a visualisation technique
for visualising high dimensional data in two and three dimensions. The technique
preserves local distances so that data points that are similar are embedded close to
each other, and dissimilar points are distant [19].
The best mapping is defined as finding the minimum of the sum of Kullback-Leibler
divergences, Equation 2.7, which is found by using gradient descent.

C =
N∑
i

N∑
j

pji log pji

qji

(2.7)

Given the perplexity Perp, number of iterations T, learning rate η, and momentum
α(t), first compute the pairwise affinities pj|i by

pj|i = exp(− ‖ xi − xj ‖2 /2σ2
i )∑

k 6=i exp(− ‖ xi − xk ‖2 /2σ2
i ) , (2.8)

where σi is the variance of the Gaussian, determined with a binary search so that it
matches the perplexity according to Equation 2.9.

Perp = 2−
∑N

j
pj|i log2 pj|i (2.9)

7



2. Theory

The pairwise similarities are then defined by using the pairwise affinities as

pij = pj|i + pi|j

2N . (2.10)

Sample an initial data representation Y(0) = {y1, y2, ..., yn} from a normal distribu-
tion with small variance. Next, for T iterations the following is preformed:
(i) Calculate the low-dimensional similarities

qij = (1+ ‖ yi − yj ‖2)−1∑
k 6=l(1+ ‖ yk − yl ‖2)−1 . (2.11)

(ii) Calculate the gradient of the sum of the Kullback-Leibler divergences

∂C

∂yi

= 4
∑

j

(pij − qij)(yi − yj) (2.12)

(iii) Calculate the updated mapping

Y(t) = Y(t−1) + η
∂C

∂Y
+ α(t)(Y(t−1) − Y(t−2)). (2.13)

After the iterations the low-dimensional data representation Y(T ) is complete.

To summarise, the goal is to find a mapping Y which minimises the cost function
C, which is the same as making the similarities in the original space pji and the
similarities in the mapping qji, as similar as possible. This is done by incrementally
updating the mapping with gradient decent.

2.2.2 PCA
Principal component analysis is a dimension reduction method that finds an orthog-
onal coordinate system such that the variance is maximised along each axis. That
is, given data points x1, ...,xN it finds the unit vector r that maximises

N∑
i=1

(rT (xi − x̄))2. (2.14)

Then to find the other axis the data is projected to the orthogonal complement
of all rs’ that have been calculated and repeat the above again until the desired
dimensionality is accomplished.

2.2.3 Heat map
A heat map is a visualisation tool for showing the magnitude of matrix’s elements.
The advantage with this visualisation tool compared to both PCA and t-SNE is that
the data do not have to be mapped or projected but can be viewed in the feature
space. A problem in t-SNE is that a pattern in the visualisation can be hard to
interpret, and might not be meaningful in the feature space. This is not the case
with a heat map. However, it can be harder to find patterns in a heat map, since
the patterns might not be as visible.

8



2. Theory

2.3 Preprocessing data
The aim of preprocessing data is to have the similar magnitude and scale for each
attribute. This is of uttermost importance when using data exploration algorithms
as for example clustering. The reason is that without preprocessing, attributes with
larger values would dominate the attributes that have low values [20, 21].

2.3.1 Standardization
Standardisation, also known as the z-score, is a commonly used preprocessing method
which centralises each feature around 0 and scales it by dividing by the standard
deviation of each feature. The standardization is defined as

X ′ = X − µ
σ

,

where µ is the mean and σ is the standard deviation.

2.3.2 Normalization
Normalization of data is done by subtracting the smallest value for each feature,
and dividing by the range of the feature. The Normalization is defined as

X ′ = X −Xmin

Xmax −Xmin
. (2.15)

2.3.3 Robust scaling
The Robust scaling is defined as

X ′ = X −Xmedian

XIQR

, (2.16)

where Xmedian is the median for each feature, and XIQR is interquartile range, that
is the difference between 75th and 25th percentiles. This preprocessing method is
not as influenced by outliers as when the mean or the variance are used.

2.4 Missing values
When using gathered data there is sometimes the problem of missing values. This
can be caused by an error in the object inspected, that not all data is allowed to be
gathered from an object, or that there are different sampling frequencies for different
data. To deal with the missing values there are three methods [22].

The first one is to simply remove the observation with missing values. This could
bias the data if there are a lot of missing values or if the values are not missing at
random [23]. But it is appropriate if the data set is large enough.

9



2. Theory

Secondly, the missing values can be imputed with values that are reasonable. For
example if no values are found for the number of errors related to well working
objects, it could be reasonable to impute with the value 0. This imputed value
would then be used as if it was observed. However a risk with imputation is that it
can lead to artificial similarities.

Lastly, based on the other observations an unbiased value can be calculated by using
maximum likelihood.

2.5 Mixed types of data
There are two approaches for clustering data with both categorical and numerical
data. First there are clustering algorithms that handles mixed types [24]. The second
approach is to convert the data so that all data is either numerical or categorical [21].

One common way to convert categorical data to numerical is to use one-hot-vectors
[21]. That is, a vector with the same size as the number of categories is created;
an observation is then converted so that if, for example, the third categorical value
is observed this would result in a vector with all zeroes except for at the third
place of the vector where there would be one. The same method can be used
for converting text to numerical values. Then every unique word in the data is
considered a category, and a string consisting of the 4th, 7th, and 8th word would
result in a one-hot-vector with only ones at the 4th, 7th, and 8th position. Both when
converting categories and strings to one-hot-vectors, the result is usually spars.

2.6 Evaluation indices
There are two major ways to evaluate the quality of a clustering. There is the
External evaluation, which measures how well the clustering matches some external
labels which is provided as a ground truth. And then there is Internal evaluation,
which without external information uses the structure of the clustering to evaluate
the goodness of the clustering.

2.6.1 External evaluation
The external indices are designed to estimate the similarity of two partitions, they
do not however give any indications of how good the partitions are in themselves.
These indices are determined by the confusion matrix describing the count of pairs
of data points that are in the same cluster according to two partitions P1 and P2.
Thus, there are four possible classifications of a pair of data points.

• If the pair are in the same clustering according to P1 and P2, this is denoted
yy.

• If the pair belongs to the same clustering according to P1 but not P2, this is
denoted yn.

10



2. Theory

• If the pair does not belong to the same clustering according to P1 but does so
according to P2, this is denoted ny.

• And lastly, If the pair does not belong to the same clustering according to P1
nor according to P2, this is denoted nn.

The total amount of parings is thus NT = N(N−1)
2 = yy + yn+ ny + nn, where N is

the total number of data points.

2.6.1.1 Adjusted Rand index

The Adjusted Rand index is an improvement of the Rand index which is defined
as yy+nn

NT
. The rand index calculates the ratio of parings which P1 and P2 agrees

on relative to the total amount of pairings. The rand index however have the flaw
that if the two partitions where randomly generated, the index would increase when
increasing the number of clusters, due to the increase of nn. Therefore the adjusted
Rand index was proposed by Hubert and Arabie, which is a more advanced index
that do not suffer from the same problem [25]. The adjusted Rand index is defined
as:

S =

(
N
2

)
(yy + nn)− [(yy + yn)(yy + ny) + (ny + nn)(yn+ nn)](

N
2

)2
− [(yy + yn)(yy + ny) + (ny + nn)(yn+ nn)]

(2.17)

where [(yy + yn)(yy + ny) + (ny + nn)(yn+ nn)] is the expected index [26].

2.6.1.2 Jaccard index

The Jaccard index is a combination of the two frequently used terms

Recall = yy

yy + yn
(2.18)

and
Precision = yy

yy + ny
. (2.19)

The Jaccard index is defined as the intersection of P1 and P2, divided by the union.
Which in our notation is the same as

S = yy

yy + yn+ ny
. (2.20)

2.6.1.3 Hubert Γ index

Define a variable Xk associated to partition Pk. Xk(i, j) = 1 if two data points i
and j are in the same cluster according to Pk, otherwise Xk(i, j) = 0. The Hubert Γ
index is defined with this indicative variable Xk, as the average correlation between
X1 and X2 [27].
Also define the mean µXk

and the standard deviation σXk

µXk
= 1
NT

∑
i<j

Xk(i, j) (2.21)
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σ2
Xk

= 1
NT

∑
i<j

Xk(i, j)2 − µ2
Xk

(2.22)

Then the Hubert Γ index is calculated as

S =
∑

i<j(X1(i, j)− µX1)(X2(i, j)− µX2)
NTσX1σX2

(2.23)

2.6.2 Internal evaluation
Internal evaluation are clustering measures that are based on mainly three traits:
Compactness, which increases with small variation within a cluster. This measure
works well for spherical clusters and when the clusters are well separated.
Connectedness, a local method that is based on the principle that neighbouring
data points should belong to the same cluster. This measure works good for clusters
of all shapes that have a high density.
Spatial separation, improves with increased separation between clusters, however
this can result in trivial solutions especially if there are outliers in the data [12].

2.6.2.1 Dunn index

The Dunn index combines compactness and spatial separation and is defined as

S = dmin

dmax

, (2.24)

where dmin is the smallest distance between points belonging to different clusters,
and dmax is the largest distance between points belonging to the same cluster [27].
The distances are defined as follows:

dmin = min
k 6=k′

( min
xi∈Ck
xj∈Ck′

‖ xi − xj ‖), (2.25)

and
dmax = max

1≤k≤K
( max

xi,xj∈Ck

i 6=j

‖ xi − xj ‖), (2.26)

where Ck is a cluster and K is the total number of clusters.

2.6.2.2 Davies–Bouldin index

Davies–Bouldin index is measuring the within cluster scatter for each cluster and
the cluster separation between all clusters. The index almost calculates the average
of the fraction between the within cluster scatter and the distance between a cluster
and the cluster closest to it in space [27]. For the true definition is as follows.

Define the center of a cluster Ck as

µ{k} = 1
nk

∑
xi∈Ck

xi, (2.27)
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where nk is the number of data points in Ck. Then the mean distance for the points
x
{k}
i in the cluster Ck to the center µ{k} is defined as

δk = 1
nk

∑
xi∈Ck

‖ x{k}i − µ{k} ‖, (2.28)

Which makes it possible to define the Davies–Bouldin index as

S = 1
K

K∑
k=1

max
k′ 6=k

( δk + δk′

µ{k′} − µ{k}
), (2.29)

where K is the total number of clusters.

2.6.2.3 Silhouette width

The silhouette width index is roughly formulated as an averaged value of how suit-
able it would be to reassign a data point to another cluster. This is based on how
close it is to data points in its current cluster, and how close it is to the data points
in the other clusters respectively.

Define the mean distance a data point have to all other data points belonging to the
same cluster Ck as

ai = 1
nk − 1

∑
xi,x

′
i∈Ck

i′ 6=i

d(xi, xi′), (2.30)

and define the mean distance for this point to each of the other clusters Ck′ as

∂(xi, Ck′) = 1
nk′

∑
xi∈Ck
x′

i∈Ck′

d(xi, xi′). (2.31)

Now the cluster resulting in the minimum of all ∂(xi, Ck′) would be the best choice
for changing the cluster point xi belongs to. Therefore we calculate what is called
the silhouette width of a point as

si = mink′ 6=k ∂(xi, Ck′)− ai

max(ai,mink′ 6=k ∂(xi, Ck′)) . (2.32)

si can assume values between -1 and 1, where 1 indicates that the point xi is assigned
to the right cluster and -1 indicates that xi should be assigned to another cluster.
The silhouette width for a cluster is defined as

Sk = 1
nk

∑
xi∈Ck

si, (2.33)

and finally the silhouette index is then the mean of the silhouette widths of all
clusters, that is

S = 1
K

K∑
k=1

Sk. (2.34)
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2.6.2.4 S-Dbw index

The S-Dbw index is defined as the sum of average scattering of clusters S based of
the variance for each feature and the inter-cluster density D-bw denoted as G [11,12].
Define a vector V of variances Var(Vi) for each of the p variables V1, ..., Vp

V = [Var(V1), ...,Var(Vp)], (2.35)

and likewise the variances for each cluster Ck

V{k} = [Var(V {k}1 ), ...,Var(V {k}p )]. (2.36)

Then S is given as

S =
1
K

∑K
k=1 ‖ V{k} ‖
‖ V ‖

. (2.37)

In order to define G, first define σ as

σ = 1
K

√√√√ K∑
k=1
‖ V{k} ‖. (2.38)

Then the density γkk′ for a given point is defined as the number of data points
belonging to the clusters Ck and Ck′ within radius σ of this point in space.
The inter-cluster density G is then defined as

G = 2
K(K − 1)

∑
k<k′

γkk′((µ{k′} + µ{k
′})/2)

max(γkk′(µ{k})γkk′(µ{k′})) (2.39)

Now the S-Dbw index can be calculated as

S = S + G (2.40)
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Method

3.1 Data
The data used in this report is provided by the telecommunication company Ericsson.
The data is pre-extracted from base stations and stored in tabular form as text
strings, categorical values and numerical values. The details of the data are classified
but the data consists of information regarding the configuration of the base stations
and their software, alarms, and log data. Three data sets have been used, containing
data from years back,with millions of recorded events per day. Each event contain
information regarding the 10 000 attributes that are recorded by these three files.

When managing the huge size of data that been used in this project we have used
the analytics engine Apache Spark in Python (PySpark), and the data analysis and
manipulation tool Pandas, which also is for Python. We used PySpark for filtering
and for the first steps of managing the data. The filtering results in a massive
reduction of data so that it was possible to continue with Pandas which is more
compatible with Python libraries used in this thesis.

3.1.1 Filtering and Merging
Due to huge amount of data we decided in the beginning to only analyse data from
one day, otherwise the compiling time would slow down the project and the data
would require too much computer memory. There are three files that we extract data
from, these contain the attributes that subject matter experts (SME) have classified
as extra relevant. When merging the data from different data files, we matched
the base station name, timestamp and date, and customer, as was recommended by
experts.

3.1.2 Missing data
In this thesis we have two situations of missing data. There are some time frames
where there is no configuration data for some base stations, and then there are some
time frames where we have no alarm data or log data for some base stations.

Base stations with no configuration data is removed from the data set. This is mo-
tivated by the fact that all base stations have a configuration and if the information
about the configuration is absent in the data we have no interest in that base station
before that error is corrected. The numbers of base stations after omission are 1079.
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The reason for missing alarm and log data is that there were no alarms for that
base station in that time period, so it is reasonable to impute with zeroes where no
alarms nor log messages was recorded.

3.1.3 Preprocessing data
All categorical data and text data have been transformed to one-hot-vectors in order
to be compatible with the numerical algorithms that are used. If a word or a category
appears multiple times the number of occurrences is stored instead of a one. After
the transformation the data was standardised in order for the clustering algorithms
to perform well.

3.2 Visualisation
In the beginning of the project, PCA was used for visualisation to evaluate new
parameters and as a way to gain insight how a certain parameter changed the dis-
tances and how the data is grouped. However with increasing number of parameters
and also the problem of outliers contributing to the variance, a change from PCA to
t-SNE was made to easier asses if the feature vector would be suitable for clustering.

t-SNE was also used for inspecting how the clustering algorithms clustered the base
stations together. Along with t-SNE, heat maps of the feature vector was also used
for inspecting the result of the clustering. The heat map was used by first sorting
the feature vectors based on their cluster and then plot the heat map. This made it
possible to look for patterns directly, without mapping the feature vectors down to
two dimensions. For an illustration of patterns in a heat map see Figure 4.2.

3.3 Clustering
When clustering the data we have used well known clustering methods from the
python library Scikit-learn [28]. This include K-means, GMM, BGMM, DBSCAN,
and Spectral Clustering. The choices was based on what others use [11, 12, 24, 29],
and what have been used in machine learning courses at Chalmers. The clustering
algorithms have also been chosen so that they cover different approaches of clustering
algorithm. The clustering of the data is done in the original space before the result
is mapped down to two dimensions for visualisation.

Each clustering algorithm was executed several times with different hyper-parameters
in order to find optimal settings. For k-means, GMM, and BGMM, the number of
clusters was altered to find the best clustering, and for DBSCAN the distance of
what was considered a neighbour was altered as well as the limit of what is consid-
ered a cluster.

The parameters that is most suitable for the clustering was determined by doing 30
runs of calculating the different index scores for each setting and then taking the
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average score to represent the score for that setting. Then by inspecting the plot of
scores, the parameter values that resulted in the highest score and parameters that
resulted in extra high peaks, was selected for extra inspection.

The scores used during the inspection was for internal indexes the Silhouette width,
the S-Dbw index, the Dunn index, and the Davies-Bouldin index, and the external
indexes used was the Adjusted rand index, the Jaccard index, and the Huberts Γ
index. The label used as the truth for the external evaluation scores, was attributes
selected by SMEs. The goal with this was to see if a clustering matches some
previous known attribute well.

3.4 Evaluating results

The main way to evaluate if the feature vector is useful was to ask the SMEs of
their opinions. This is due to that they have the best understanding of the base
stations and what is useful to know, or extract. The experts were given a document
explaining the context, which data that have been used, and the visualisations with
explanatory text of which features that was extra important for the different clusters,
or which known attribute that the clustering was made with. The experts was then
asked to rate the clusterings of the feature vector from 1 (not useful) to 5 (useful),
where 3 means might be useful.

The second way of evaluating the results was by using evaluation indexes. We
decided to use common and well known evaluation indexes [12, 27]. In hope that
these will be more general and useful than evaluation metrics that are not as well
tested or tailored for specific problems. The signs of the S-Dbw index and the
Davies–Bouldin index were inverted, so that a higher index would indicate a better
clustering, same as the other indexes. The indexes used in the evaluation were
only the internal indexes, since they are a more objective quality measure then the
external, and the external labels are not the actually aim of the clustering.

3.5 Label matching

When implementing the Jaccard index for evaluation, the clustering algorithm can
sometimes find the same clusters as the labels without receiving a good score. This is
due to that the clustering might have labelled the clusters differently. For example,
if we have two clusters and the clustering algorithm names them 2 and 1 but our
reference labels are the other way around, that is 1 and 2. Then this would result in
a low score when in fact is spot on. Therefore we have written a relabeling algorithm
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that tries to match the labels in a good way.
Algorithm 1: Re labelling
Create confusion matrix
while there exists matrix element not equal to -1 do

Select largest value and remap so that labelling matches the reference label.
Set all values on same row and column in the confusion matrix to -1, in
order to avoid mapping multiple labels to same reference label, and to
avoid remapping a already managed label.

end
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4.1 Feature vector
The feature vector was created by using 22 attributes, resulting in 494 features. 84 of
the features describe configuration data. These features are based on 14 attributes,
and it is 2 categorical attributes that make up most of the 84 features. 73 features
describe log data, which are based on 3 attributes. These are all strings that is
converted to an one-hot-vector. 377 features describe alarm data. These features
are based on 5 attributes which of 2 are strings, the strings make up most of the
features.

4.2 Figures and Findings
Figure 4.1 shows the result of a how t-SNE have mapped the feature vector of each
base station to two-dimensions. In this particular figure the data is first preprocessed
by normalization and then clustered by BGMM, which can be extracted from the
figures title. The legend of the figure shows that the clustering algorithm found two
clusters, ”0” coloured dark blue, and ”1” coloured light blue. This is a very similar
clustering to one of the labels recommended by a subject matter expert (SME),
used for testing if the feature vector could capture an interesting attribute. The
clustering is presented in Figure A.12

Figure 4.2 is the same clustering of the feature vectors as in Figure 4.1 but now
presented in a heat map. The heat map have feature vectors as rows, and the
features as columns. To clarify, traversing horizontally the different features for a
base station is changing, and traversing vertically the base station is changing but
the feature is the same. The rows of the heat map are sorted by cluster number so
cluster "0" is at the top and the highest cluster number is at the bottom. In Figure
4.2 the two clusters can be identified based on the horizontal shift in the heat map.
White pixels represent high values, gray pixels is the value zero, and black pixels are
negative values. This makes it clear that the feature vectors are sparse since most
of the heat map is gray.

Figure 4.3 is also a t-SNE plot, same as Figure 4.1, but they uses Standardisation for
preprocessing instead of Normalization which results in a different mapping. One
clear distinction between the preprocessing methods is that standardisation seem to
be more prone to outliers, which can be seen on the left side in Figure 4.3. Another
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Figure 4.1: This BGMM clustering of the normalized feature vectors separates the
feature vectors quite well. The clustering is similar to a label classified as interesting
by a SME, See Figure A.12.

Figure 4.2: This BGMM clustering of the normalized feature vectors shows a quite
clear change of feature vectors close to feature vector 400. This shift makes it
probable that the clustering is good.

big distinction between Figure 4.3 and Figure 4.1 is that the latter is coloured by
a clustering algorithm, whereas Figure 4.3 is coloured by an attribute considered
interesting by a SME. The colouring fits the mapping well, forming distinct clusters
as can be seen in Figure 4.3.
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Figure 4.3: Clustering by an attribute considered interesting by a SME. The at-
tribute presents clear patterns in the visualised feature vectors, which indicates that
the feature vector is capable of capturing attributes of this kind.

4.2.1 Clustering by attributes
For evaluating the feature vector, one of the approaches was to colour the t-SNE
mapping with attributes that the SMEs thought was interesting. The reasoning
was that if the feature vector was able to capture these attributes, by presenting
clear patterns, that would indicate usefulness. Six of these attributes are shown in
Figure 4.4, and all attributes are in the Appendix A, where they are in full size.
The attributes 1 to 4 show fairly clear patterns whereas attribute 5 is unclear, and
attribute 6 present no clear pattern.
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Figure 4.4: t-SNE mapping of standardized feature vectors coloured by selected
attributes 1 to 6, counting left to right, top to bottom. The colouring of the t-SNE
mappings shows quite clear patterns for attributes 1 to 4, 5 is debatable whether it
is a good cluster or not and attribute 6 display no obvious pattern. For full scale
mappings, see Appendix A.
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4.2.2 Clustering by algorithms
The second approach for evaluating the feature vectors was to use clustering algo-
rithms and see if they created interesting clustering. The clusterings where visualised
with t-SNE plots and heat maps before they were presented to SMEs for evaluation;
a selection of the most interesting of these clusterings are presented in Figure 4.5.
Among the clusterings in Figure 4.5, there is a variation of clusterings with 2, 14,
and 15 clusters. The reason why the clustering algorithms performed better with
so many clusters as 15, which was the maximum numbers of clusters tested, is pre-
sumably that the cluster scoring methods resulted in higher scores if outliers was
classified as a cluster of its own. In Figure 4.5 image 1 and 2, the t-SNE mapping
creates distinct well separated clusters. In both of these cases does GMM assign the
majority of the data to cluster 0 and only 20 to 50 data points in to cluster 1. The
images 7, 8 and 9 uses standardisation as preprocessing instead of Robust scaling
as in images 1 and 2, which does not result in equally well separated clusters. The
heat map images 11 and 12 show clearly which features that are characteristic for
the different clusters. This is presented as a white or gray vertical line that ends
when the cluster switches, see Figure 4.5.

4.3 Evaluation by Subject matter experts

Ten Subject matter experts (SMEs) was emailed a form, with a preface explaining
the context of the form, an explanation of what the figures displayed, along with
the figures presented in Section ??, and what feature or attribute that is unique for
each cluster. Due to classification restrictions the features and attributes can not
be presented in this report, but are referred to by aliases. The experts was asked
to rate the figures usefulness from 1 (not useful) to 5 (useful), where 3 should be
considered as might be useful.

From these ten emails seven replied in total. Two filled in the form, three replied
only with an answer without filling in the form, and two asked instead for a quick
meeting where they gave their verbal feedback.

All experts rated one or more images with 4, see Table 4.1, or replied with ”The
impact and usefulness of this method and this information is great.”, ”I think the
work you’ve done is interesting.”, ”I could see where it might be useful.”, ”I think
your work is interesting.”, or ”Your ideas are very interesting, and I’m sure this
is very useful.”. Some experts who did not fill in the form mentioned examples of
images they thought of as most relevant. These images are attribute 1, 2, and 3 in
Figure 4.4, and images 3 and 9 in Figure 4.5. The opinion of how useful an image
is and which images are the most useful varies between the SMEs.

4.4 Choosing parameters and clustering methods
The evaluation of how many clusters gave the best result, resulted in using 2, 14
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Figure 4.5: A selection of interesting clusterings, the images will be referred to as 1 to
12, counting left to right and top to bottom. Each clustering is shown with a t-SNE
plot and its associated heat map directly below. For full scale images, see Appendix
A. In image 1 and 2 the t-SNE mapping creates distinct well separated clusters. In
both of these cases does GMM assign the majority of the data to cluster 0 and only
20 to 50 data points in to cluster 1. The images 7, 8 and 9 uses standardisation as
preprocessing instead of Robustscaling as in images 1 and 2, which does not result
in equally well separated clusters. The heat map images 11 and 12 show clearly
which features that are characteristic for the different clusters. This is presented as
a white or gray vertical line that ends when the cluster switches.

or 15 clusters. This is shown in Figure 4.6, where the highest score of the cluster
indices is achieved at the endpoints. There are some strong indications that 3, 4, 5
or 7 clusters might yield good results as well, but this was not the case, as shown
in Figure 4.7.

Due to that some of the best evaluation scores was yielded for the maximum numbers
of clusters tried, a few runs with more clusters was tried as well, see Figure 4.8, but
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Table 4.1: The usefulness of each image according to the two experts who answered
the form. The rating is from 1 (not useful) to 5 (useful), where 3 should be considered
as might be useful, and "-" marks where no answer where given. Both experts rate at
least a few of the images with 4. The opinion of how useful an image is and which
images are the most useful varies between the SMEs

Figure 4.4 \ SME 0 1
Attribute 1 4 3
Attribute 2 3 2
Attribute 3 3 3
Attribute 4 3 5
Attribute 5 2 4
Attribute 6 2 4
Figure A.2 - 3
Figure A.4 3 2
Figure A.10 3 1
Figure A.11 3 4
Figure A.7 4 1

Figure 4.5 \ SME 0 1
Image 1 2 4
Image 2 4 4
Image 3 - 1
Image 4 - -
Image 5 - -
Image 6 - 1
Image 7 2 1
Image 8 - 2
Image 9 3 2
Image 10 - 1
Image 11 - 1
Image 12 - 1

Figure 4.6: The images will be referred to as 1 to 6 counting left to right and top
to bottom. Evaluation scores from different scoring functions used for selecting
the number of clusters for the clustering algorithms. The number of clusters that
received the highest scores are 2, 14 and 15, where 15 is the highest number of
clusters tested. There are also some peaks for 3, 4, 5 and 7 clusters.

this yielded similar clusterings as with 15 clusters.

In addition to K-means, GMM, and BGMM the clustering algorithms Spectral clus-
tering and DBSCAN was also tested in the thesis but did not perform well, and
was therefore not used in the later parts. Spectral clustering have the problem of
entangling clusters, and DBSCAN either classified too many data points as noise,
or resulted in bad clusters, see Figure 4.9.
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Figure 4.7: Two examples of bad clusterings due to selection of hyperparameters.
The left image have cluster 1 and 2 entangled, and the right image have one large
cluster, that is cluster 0, and six clusters only including a very few numbers of data
points.

Figure 4.8: Evaluation of clusterings with more than 15 clusters. No clear peak is
visible, which makes it unclear how many clusters would result in the best clustering.

4.5 Evaluation by metrics
Evaluating the clusterings with internal clustering metrics resulted in that attribute
5 recived comparatively high scores compared to the other attributes, as shown in
Table 4.2. However the attributes receives generally lower scores than the cluster-
ings created by algorithm. The clustering that over all gets the best scores is the
clustering in Figure 4.5, Image 1, which receives the best scores in two out of four
indexes and is close to the highest score on a third, see Table 4.2.
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Figure 4.9: Two examples of bad clusterings due to clustering algorithm. The left
image using Spectral clustering have entangled the clusters. The right image using
DBSCAN have a bit to many data points clustered as noise. The noise clas is clored
with blue.

Table 4.2: Clusterings that received the highest/lowest score by an index is coloured
in green/blue. Attribute 5 receives the highest scores in 3 out of 4 clustering indexes,
when comparing to other attributes. The clustering that seems to perform best
from Figure 4.5 is image 1, which receives the highest scores in 2 out of 4 clustering
indexes, and is close to the top score in a third index as well. The signs of the S-Dbw
index and the Davies–Bouldin index are inverted, so that a higher index indicates a
better clustering, same as the other indexes.

Figure 4.4 \ Index Silhouette - S-Dbw Dunn - Davies Bouldin
Attribute 1 0.14 -1.42 0.002 -6.94
Attribute 2 0.06 -0.91 0.024 -3.35
Attribute 3 -0.15 -0.84 0.0 -3.87
Attribute 4 -0.15 -1.51 0.002 -3.9
Attribute 5 0.27 -0.97 0.053 -1.81
Attribute 6 0.2 -1.16 0.018 -5.08

Figure 4.5 \ Index Silhouette - S-Dbw Dunn - Davies Bouldin
Image 1 0.85 -0.67 0.08 -0.23
Image 2 0.88 -1.22 0.01 -0.47
Image 3 0.58 -2.03 0.006 -0.6
Image 7 0.28 -1.15 0.018 -3.88
Image 8 0.14 -0.27 0.024 -1.07
Image 9 0.16 -0.38 0.025 -1.07
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5.1 Discussion

5.1.1 Feature vector
The feature vector is constructed by only including features recommended by SMEs.
This resulted in that only 22 attributes was used from a pool of 10 000 attributes.
It is highly probable that some attributes, now left out, would be improving the
feature vector and making it more useful. However, the approach used have high
interpretability and was quick to implement, and is therefore suitable as a first
evaluation of whether a useful feature vector can be created.

Based on the images in Figure 4.4, it is clear due to the distinguishable clusters
that the feature vector is intricate enough to capture some of the most important
attributes of a base station. The sufficient intricacy is further confirmed by the
clusterings in Figure 4.5, image 1, 2, 3 and 9, which captures traits of the base
stations that some SMEs consider probably useful. This does however not mean that
a more intricate feature vector would be worse. I believe that a feature vector created
with deep learning methods would outperform the feature vector presented in this
thesis, due to the ability of deep learning methods to capture complex structures [3].

5.1.2 Usefulness
For determining the usefulness of the feature vector, SMEs where asked to rate the
usefulness of the different visualisations of the feature vector. From their replies, see
Section 4.3 it is clear that what is considered useful varies. This can be due to that
the SMEs are from different areas within Ericsson, have different knowledge, and
think of different purposes the feature vector can be used for. Another factor that
might affect the answers is how well the different SMEs understood the images. An
example of this is Figure A.7 which takes some time to analyse but are according to
some SMEs interesting and probably useful, but was according to others considered
as noise. Most of the SMEs had little time to spare which resulted in that not all
SMEs took the time to inspect every image carefully.

When determining if the feature vector is useful, it is okay that it is not useful for
all departments. It must how ever be useful for some persons, in some departments,
to be considered useful. This might not be the SME, even if the SME have the best
knowledge of what is important. For example, it is mentioned in the introduction
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that a feature vector might be of use for the not so experienced worker. He or she
could for example cluster by an attribute and see which patterns appear, to learn
the relations that the SME already know.

The highest ratings from the two SMEs that filled in the form are 4 respectively 5,
and our interpretation of the replies presented in Section 4.3, is that they range from
3 to 5. Thus, it is reasonable to conclude that the feature vector is useful. It might
seem strange to use subjective opinions to determine whether the feature vector
is useful or not, but according to J. Handl et al. [12], it is common with manual
evaluation of clusterings. This is because it is hard or impossible to mathematically
describe what is useful even though a expert knows what is useful.

5.1.2.1 Evaluation metrics

To make it easier to compare the feature vector with future feature vectors, and as a
way to evaluate the feature vector more objectively; the clusterings were evaluated
with internal clustering metrics. The metrics are well defined and makes it easier
to say which clustering is the better and by how much. The problem is that what
we as humans consider the best cluster or the most useful cluster, do not have to
receive the highest scores. An example of this is the clustering of attribute 3, which
is a relatively clean pattern, receive the lowest scores from both the Silhouette index
and the Dunn index.

However, if a new feature vector where created, and it received generally higher
scores, and found interesting and useful patterns, that would indicate that the data
points in the new feature space are more clustered and that the new feature vector
probably is better. So the clustering evaluation scores are interesting to present for
comparative purposes, even if they favors simplicity, which can result in that useless
clusterings gets high scores.

5.2 Conclusion
In this thesis we created a useful feature vector, and thereby proven that a base
station can be represented by a feature vector in a useful manner. The feature
vector, containing 494 features, captures interesting and important attributes of
the base station in useful patterns. The visualisation of the feature vectors results
in distinct clusters, and well separated clusters for some preprocessing methods.
However, most of the clusterings made with the feature vector in this thesis are not
considered useful, which indicates that further improvements of the feature vector
would be desirable.

Further, we evaluated the feature vector with internal clustering indexes. Those
results can not be used for determining the usefulness of the feature vector, as is
argued in the discussion, but the scores can be useful for future works for comparative
purposes.
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Future work could include regularisation of the feature vector to only use the most
relevant features in the current feature vector. This reduction could be made by
implementing a dimension reduction technique with correlation filters and low vari-
ance filters. It would also be interesting to allow all the attributes in the data set
to be used and apply machine learning algorithms for creating the feature vector.
Lastly, it could also be interesting to try hierarchical clustering methods such as
Agglomerative clustering, which was done in the very end of the project, but too
late in the project to include it in this report.

To conclude, it is possible to capture a complex system such as a base station in a
useful manner with a feature vector. However, there are still room for improvements
on such a vector.
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Appendix

A.1 Figures clustered by attributes
In this section we present figures clustered by attributes.

I



A. Appendix

Figure A.1: t-SNE plot of attribute 1.

Figure A.2: Due to no shifts in the lower parts of this figure, we can not easily say
where one cluster ends and the other begins. Therefor have we choosen to stripe
the bar on the left side of the heat map as an indication of this.
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A. Appendix

Figure A.3: t-SNE plot of attribute 2.

Figure A.4: Heat map of attribute 2.
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A. Appendix

Figure A.5: t-SNE plot of attribute 3.

Figure A.6: t-SNE plot of attribute 4.
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A. Appendix

Figure A.7: Heat map of attribute 4.

Figure A.8: t-SNE plot of attribute 5.
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A. Appendix

Figure A.9: t-SNE plot of attribute 6.

Standardized, Attribute 7

Figure A.10: t-SNE plot of attribute 7.
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Standardized, Attribute 8

Figure A.11: t-SNE plot of attribute 8.
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A. Appendix

Figure A.12: t-SNE plot of attribute 2.

A.2 Figures clustered by clustering algorithm
In this section we present figures clustered by clustering algorithms.
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A. Appendix

Figure A.13: t-SNE plot of the result from GMM.

Figure A.14: Heat map of GMM clustering.
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A. Appendix

Figure A.15: t-SNE plot of the result from GMM.

Figure A.16: Heat map of GMM clustering.
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A. Appendix

Figure A.17: t-SNE plot of the result from BGMM.

Figure A.18: Heat map of BGMM clustering.
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A. Appendix

Figure A.19: t-SNE plot of the result from BGMM.

Figure A.20: Heat map of BGMM clustering.
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A. Appendix

Figure A.21: t-SNE plot of the result from k-means.

Figure A.22: Heat map of k-means clustering.
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A. Appendix

Figure A.23: t-SNE plot of the result from k-means.

Figure A.24: Heat map of k-means clustering.
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