

Simulering av industriellt distributionsnät

Statisk och dynamisk analys i NEPLAN & SIMPOW

Examensarbete inom Elektroteknik 270hp

ANDERS AXELSSON

Institutionen för Energi och Miljö Avdelningen för Elteknik CHALMERS TEKNISKA HÖGSKOLA Arbetet utfört hos ÅF Engineering Göteborg, februari 2009 Simulering av industriellt distributionsnät Statisk och dynamisk analys i NEPLAN/SIMPOW

© ANDERS AXELSSON, 2009

Institutionen för Energi och Miljö Chalmers Tekniska Högskola SE-412 96 Göteborg Sverige Telefon 031-772 1000

Sammanfattning

Den här studien syftade till att bestämma aktuell status på en industriell elanläggning genom att utföra statisk såväl som dynamisk simulering av anläggningen. Därutöver var förhoppningen att studien skulle ge svar på varför vissa fenomen och störningar uppstått i nätet och vad som i så fall kan göras för att undvika dessa. Även en introduktion med inkoppling av närliggande vindpark utförs för att studera ömsesidiga problem i de inkopplade anläggningarna i samband med olika typer av störningar.

De två mjukvarorna NEPLAN och SIMPOW har använts för att utföra den statiska respektive dynamiska delen. Den statiska simuleringen går ut på att ta fram värden på anläggningens kortslutningskapacitet och spänningsfall i olika delar av nätet, medan den dynamiska simuleringen framställer momentanvärden för studier kring transienta förlopp i samband med exempelvis koppling av kondensatorbatterier samt till- och frånslag av matande ledningar. Särskilt i den dynamiska delen har förmodade störningskällor upptäckts vilket föranleder några utvalda förslag till förbättringar.

Abstract

This work focuses on simulation of an industrial distribution network located in a paper mill that is manufacturing pulp as well as the final paper sheet. A power grid like this contains not just big motors but also sensitive power electronics. The purpose with this job is to get a "fingerprint" of the present state of the facility and thereby provide a base for future development but also to explain former disturbances that occurred in the grid. Both static as well as dynamic simulations are performed and at the end of the work a wind park is connected to a nearby station to study the mutual performance in case of a disturbance.

NEPLAN is used for static simulation which provides knowledge about, for example, short circuit capacity in different locations of the grid and voltage drop in case of big motor starts. For dynamic simulation SIMPOW is used and here instantaneous values in time domain are of great interest when studying for example switching of capacitor banks or looking at voltage transients in case of switching feeders on and off. Especially in the latter case some probable reasons of former disturbances are found due to arising transients.

Förord

Arbetet har bedrivits hos ÅF i Göteborg mot Holmen Paper AB under sommaren och hösten 2008.

Jag vill tacka de som varit inblandade, först och främst Håkan Larsson och Ingvar Andersson på Wargöns Bruk, Haris Mehmedovic och Tobias Sonesson på ÅF samt Torbjörn Thiringer på Chalmers, men även behjälplig personal hos Vargön Alloys, VG Power, Alstom och ABB. Jag vill även tacka min Theres och min övriga familj för alla uppmuntrande ord och stora tålamod.

Alla figurer och bilder i rapporten är egenhändigt framtagna med undantag av:

Figur 6, 7, 8 och 9 som är kopierade från [13] samt

figur 10 som är kopierad från Elforsk rapport 04:44 *Frekvensomriktare - guide* för elanvändare och allmänt sakkunniga inom elområdet

samtliga med författarnas tillstånd.

Omslagsbild: Pappersmaskin PM5, Holmen Paper Wargöns Bruk

Innehållsförteckning

Sammanfattning	iii
Abstract	iv
Förord	v
Innehållsförteckning	vi
1 Introduktion	1
1.1 Bakgrund	1
1.2 Syfte	1
1.3 Metod	2
2 Anläggning och nätuppbyggnad	
3 Förberedande teori	5
3.1 Allmänt	5
3.1.1 Synkronmaskinen	5
3.1.2 Symmetriska komponenter	7
3.1.3 Lösningsmetod för lastflödesberäkning	
3.1.4 Kortslutningsberäkningar	
3.1.5 Vindkraft	
3.1.6 Asynkronmotorn	
3.1.7 Om generatorns reglering	
3.3 Mjukvaror för simulering	
3.3.1 NEPLAN	
3.3.2 SIMPOW	
3.3.3 Vision	
4 Modellering och simulering	
4.1 Allmänna förutsättningar och avgränsningar	
4.1.1 Om lastflöde och kortslutning i NEPLAN	
4.1.2 Generator	
4.1.3 Vindkraftverk	
4.1.4 Kondensatorbatteri	
4.1.5 Motorer	
4.1.6 Is-begränsare	
4.1.7 Kablar	
4.1.8 Transformatorer	
4.1.9 Laster	
4.1.10 Skydd och brytare	
4.1.11 Frekvensomriktare	
4.2 Statisk simulering	
4.2.1 Lastflöde	
4.2.2 Kortslutning	
4.3 Dynamisk simulering	
4.3.1 Koppling av kondensatorbatteri	
4.3.2 Jordfel och spänningsdipp	
4.3.3 Generatorns beteende vid fel i nätet	
4.3.4 Start av stora motorer	
4.3.5 Urkoppling av matande linje	
4.3.6 Inkoppling av matande linje	
5 Resultat	
Figur 17. Förenklat enlinjeschema över distributionsnätet.	

5.1 Statisk simulering	
5.1.1 Lastflöde	
5.1.2 Kortslutning	
5.1.3 Jämförelse med tidigare beräkningar gjorda i Vision	
5.2 Dynamisk simulering	
5.2.1 Koppling av kondensatorbatteri	
5.2.2 Jordfel och spänningsdipp	
5.2.3 Generatorns beteende vid fel i nätet	
5.2.4 Start av stora motorer	
5.2.5 Urkoppling av matande linje	
5.2.6 Inkoppling av matande linje	
5.1.3 Jämförelse med tidigare beräkningar gjorda i Vision	
6 Slutsatser och åtgärdsdiskussion	
6.1 Statisk simulering	
6.2 Dynamisk simulering	
7 Fortsatta studier	
8 Referenser	
9 Appendix	
A Förkortningar	
B Enlinjeschema från NEPLAN	
C Indatatabeller Neplan	
D Resultattabeller Neplan	
D1 Med vind	
D2 Utan vind	
D3 Med vind och mottryckskraft	
D4 Utan vind och med mottryckskraft	
D5 Utan vind och utan mottryckskraft	
E Enlinjeschema Simpow	
F Simpow-kod	
G Resultat Simpow lastflöde	
H Tabeller över antagna värden samt utökad teori	
H1 Komponenters impedans i osymmetriska system	
H2 Symmetriska komponenter vid olika typer av fel	
H3 Bestämning av tröghetsmoment och H-värde	
H4 Typvärden för modellering av asynkronmotorer	
H5 Parks modell och vanliga värden på synkronmaskiners reaktans	
H6 Mer om kortslutningsberäkningar	
H7 Beräkning av startspänningsfall	
H8 Reglerteknik	121
H9 Om begreppet stabilitet	

1 Introduktion

Simulering av en elektrisk anläggnings beteende i en viss driftsituation är ett sätt att skaffa sig en helhetsbild av de fenomen som uppträder i anläggningen, samtidigt som det därmed är möjligt att dra olika slutsatser om enskilda utrustningars krav på dimensionering, placering, prestanda etc. Ibland är det dessutom det enda praktiska sättet att skaffa sig en dylik information då regelrätta beräkningar skulle ta för lång tid eller inte ens vara möjliga att utföra. I det här arbetet har både en statisk såväl som en dynamisk simulering gjorts i syfte att få ut så mycket information som möjligt om anläggningen i fråga. Den statiska simuleringen syftar till att via lastflödesanalys bestämma storlek på belastningsströmmar, spänningsfall, aktiva och reaktiva effektflöden etc. i normaldrifttillstånd samt att genom standardiserad kortslutningsberäkning bestämma strömmar och nätets kortslutningskapacitet vid eventuell kortslutning. De dynamiska simuleringarna ska ge en uppfattning om nätets stabilitet samt utseende på de strömmar och spänningar som förekommer i anläggningen vid olika typer av händelser. När det är utrönt vilka påkänningar de olika anläggningsdelarna utsätts för kan denna kunskap utnyttjas vid projektering men även som vägledning vid felsökning i anläggningen.

1.1 Bakgrund

Distributionsnätet på Holmen Paper i Vargön har tidigare varit föremål för statisk simulering i samband med diverse ombyggnader av anläggningen. Kund och leverantör har också träffat en överenskommelse där nätet i sin helhet ska simuleras i en viss mjukvara, i det här fallet NEPLAN. Eftersom det förekommit ett antal störningar som inte gått att härleda till någon känd händelse i nätet har det blivit aktuellt att göra en modelluppbyggnad i en programvara som även kan hantera systemets dynamik.

1.2 Syfte

Utöver en aktuell analys över lastflöde och kortslutningsnivåer som gjorts tidigare blir det nu möjligt att simulera resultatet av i anläggningen ingående skyddsfunktioner såväl som transienta tillstånd i samband med in- urkopplingar av kondensatorbatterier samt mottrycksturbinens beteende i händelse av en störning på nätet. Syftet med det senare är bland annat att få tillräckligt med underlag för att om möjligt kunna spåra källorna till tidigare störningar. För att få en uppfattning om hur ett industrinät skulle kunna påverkas vid en framtida utbyggnad av vindkraft görs även en simulering där ett antal vindkraftverk ansluts till närliggande matningsstation i syfte att se om detta utgör en potentiell störningsrisk.

Efter att examensarbetet startats upp har ett nedläggningsbeslut för bruket tagits vilket innebär att nuvarande produktion kommer att upphöra. Det finns dock flera goda skäl att fortsätta arbetet vilket från nu anses bedrivas på ett fiktivt "akademiskt" nät där huvudsyftet blir att inblandade parter får dra allmän lärdom från arbetet och istället applicera dessa i liknande anläggningar med motsvarande problemställningar.

1.3 Metod

För arbetet används programvaran NEPLAN för statiska simuleringar och SIMPOW för dynamiska simuleringar. Vissa resultat härifrån kommer att jämföras med tidigare framtagna resultat från exempelvis Vision i ömsesidigt valideringssyfte.

2 Anläggning och nätuppbyggnad

Nätet är radiellt matat via kabel från en yttre 10kV-station till en mottagningsstation och fördelar sig därifrån vidare ut till ytterligare två 10kV-stationer. I den yttre matande stationen, som ligger på intilliggande smältverks område, finns ett stort kondensatorbatteri. De tre stationerna på bruket har belastningsmässigt lite olika karaktäristik; mottagningsstationen är belägen i massafabriken där belastningarna består till största delen av stora motordrifter, ångcentralens station inhyser en generator driven av en mottrycksturbin och pappersfabrikens station belastas till stor del av frekvensomriktar- och strömriktardrifter.

I den sistnämnda stationen finns även här ett kondensatorbatteri av mindre storlek installerat. Båda de nämnda kondensatorbatterierna är oreglerade och inkopplade för kontinuerlig drift.

I massafabriken finns både synkron- och asynkronmotorer. Synkronmotorerna regleras lokalt så att ingen reaktiv effekt förbrukas eller produceras ($\cos \varphi = 1$).

Generatorn regleras på ett effektbörvärde som ställs in manuellt utifrån hur stor ångmängd som finns att tillgå. Även en reaktiv effektreglering är möjlig där ett totalt reaktivt effektuttag manuellt sätts som börvärde.

10kV-nätet är jordat över ett motstånd medan 500V-nätet för processkraft är ett traditionellt isolerat system, så kallat IT-system. Avsikten med det senare är att möjliggöra fortsatt drift trots det faktum att anläggningen är felbesatt. Systemet är dock egentligen jordat över en mycket hög impedans för detektion av jordfel.

Vid normal drift förbrukas ca 25MW med en effektfaktor på ca 0,9 induktiv. Den egna produktionen uppgår i medeltal till ca 2MW med en varierande reaktiv effektproduktion då generatorn vanligtvis reglerar på brukets totala reaktiva effektbehov.

Anläggningen skyddas i matningspunkten av Is-begränsare.

Utförligt enlinjeschema för nätet finns i Appendix B men ett förenklat schema finns som figur 1 på nästa sida.

Figur 1. Förenklat enlinjeschema över distributionsnätet på Wargöns bruk.

3 Förberedande teori

3.1 Allmänt

3.1.1 Synkronmaskinen

Synkronmaskinen är en dynamisk komponent; den viktigaste komponenten vid studier av elektromekaniska oscillationer i kraftsystem [1]. Det är samtidigt den allra vanligaste typen av generator för kraftproduktion i det allmänna elnätet. En synkronmaskin utförd som generator kan i princip oförändrad även köras som motor.

Den trefasiga synkronmaskinen har två lindningar, en trefasig växelströmslindning samt en likströmslindning. Växelströmslindningen, ankarlindningen, är utförd på samma sätt som på en asynkronmotor och är placerad i statorn. Likströmslindningen i rotorn skapar erforderligt magnetfält. Synkronmaskiner för låga varvtal utförs med utpräglade poler och har stor diameter samt förhållandevis liten axiell längd. Generatorer för höga varvtal är istället utförda med cylindrisk rotor med ett litet förhållande mellan diameter och längd. Polhjulet utformas så att man (approximativt) får ett sinusformat flöde. Det kan visas att varvtalet ges av

$$n = \frac{120 \cdot f}{p} \tag{3.1}$$

där p är antalet poler och n varvtalet per minut. Synkronmaskinen kan förenklat beskrivas med hjälp av dess ekvivalenta schema, figur 2

Figur 2. Kombinerat ekvivalent schema för en synkronmaskin.

$$X_s = X_m + X_l \tag{3.2}$$

där X_m är huvudreaktansen och X_l läckreaktansen. Maskinens inre emk, E_q , är en fiktiv storhet och härrör från sammanslagningen av X_m och X_l enligt ovan. E_q bestäms av fältströmmen I_m , $E_q \propto I_m$ [2]. I figuren ovan är ankarkretsens resistans försummad vilket är ett vanligt antagande då $R_q \ll X_s$. Generatorspänningen

$$E_t = E_q - jX_s I_t \tag{3.3}$$

i stationärt tillstånd enligt figuren eller beskrivet i motsvarande visardiagram, figur 3

Visardiagrammet är ritat med generatoriska referenser och åskådliggör såväl fasvinkeln som lastvinkeln δ mellan spänningarna vilken är ett mått på maskinens belastning. Eftersom

$$a = X_{s}I_{t}\sin\varphi \text{ och } b = X_{s}I_{t}\cos\varphi \qquad (3.4, 3.5)$$

kan maskinens avgivna effekt uttryckas som

$$P = \frac{U_f \cdot E_q}{X_s} \sin \delta \tag{3.6}$$

alltså maximalt avgiven effekt för $\delta = 90^{\circ}$.

Eftersom synkronmaskinen beter sig som om dess inre impedans ändrar sig vid en störning, exempelvis en kortslutning, så måste olika fall beaktas där impedansen är olika stor beroende på vilken tidsram maskinen befinner sig i. X_s , den synkrona reaktansen, gäller i stationärt tillstånd. Den subtransienta reaktansen, X_d , gäller under de första perioderna efter att störningen har inträffat och den transienta reaktansen, X_d , under de första sekunderna efter störningen. Motsvarande emk och strömmar gäller då samtidigt enligt det ekvivalenta schemat. Det finns fler komponenter av reaktansen som används i modelleringen motsvarande X_q , X_q ' och X_q ''. Dessa är i praktiken ofta i samma storleksordning som motsvarande dkomponent och om ankarresistansen är liten kommer kortslutningsströmmen inte påverkas nämnvärt av dessa. [3], [4], [5]. Uttrycken med index d och q härrör från en vanlig matematisk modell av elmaskiner, Parks modell, vilken står att läsa mer om i Appendix H. Parks modell är den teori som SIMPOW använder sig av i sina beräkningsalgoritmer.

Vid obalans mellan inmatad och utmatad effekt beskrivs synkronmaskinens uppförande av svängningsekvationen

$$J\frac{d\omega_m}{dt} = T_m - T_e \quad [3]. \tag{3.7}$$

Här får J beteckna tröghetsmomentet hos turbin och generator tillsammans, T_m det mekaniska momentet och T_e elektromekaniskt moment. ω_m är rotorns vinkelhastighet. Skillnaden mellan inmatat mekaniskt moment och uttagen elektrisk effekt orsakar alltså en rotorrörelse som kommer att avvika från den nominella vinkelfrekvensen ω_0 vilket i sin tur innebär att avvikelser mellan producerad effekt och förbrukad effekt i elnätet orsakar frekvensavvikelser. Ofta skrivs ovan nämnda uttryck på en alternativ form där rotorns position uttrycks i förhållande till en synkront roterande referens betecknad δ_m och med tröghetsmomentet normaliserat till den så kallade tröghetskonstanten H. Uttrycket blir då istället

$$\frac{2H}{\omega_0} \cdot \frac{d^2 \delta_m}{dt^2} = T_{m(pu)} - T_{e(pu)} \,. \tag{3.8}$$

Ur lösningen till den här differentialekvationen kan rotorvinkeln under ett fel uppskattas enligt följande. Antag $T_e = 0$ under felets varaktighet. Vidare antas begynnelsevärdena

$$\delta(t=0) = \delta_1 \operatorname{och} \frac{d\delta}{dt}(t=0) = 0.$$
 (3.9, 3.10)

Lösningen på ekvationen

$$\iint \frac{d^2 \delta_m}{dt^2} = \iint \frac{\omega_0}{2H} P_{m(pu)} \tag{3.11}$$

blir då

$$\delta(t) = \frac{\alpha_0 \cdot P_{m(pu)}}{4H} t^2 + \delta_1 \tag{3.12}$$

där t är tiden för felets varaktighet.

Synkronmaskinen används ibland även som motor eftersom den har vissa speciella egenskaper jämfört med asynkronmaskinen. En viktig fördel är att synkronmotorn, i stationärt tillstånd, är lastoberoende och har därvid konstant varvtal oavsett sin belastning.

3.1.2 Symmetriska komponenter

För att underlätta analys av osymmetriska system kan en metod kallad Symmetriska komponenter användas. Metoden går ut på att alla osymmetriska system kan beskrivas med hjälp av en kombination av tre symmetriska system kallade plus-, minus- och nollföljdssystem. Nollföljdskomponenterna kan beskrivas av tre visare med samma amplitud och samma riktning. Plusföljdskomponenterna motsvarar ett symmetriskt trefassystem med positiv, "rätt", fasföljd medan minusföljdskomponenterna utgör ett symmetriskt trefassystem med negativ fasföljd. Detta beskrivs grafiskt i figur 4 nedan.

Figur 4. Plus-, minus- och nollföljdskomponenter åskådliggjort med visare.

I figuren har komponenterna betecknats som strömmar men det samma gäller för spänningarna. Om en operator a väljs som

$$a = 1 \cdot e^{j120^{\circ}} = -\frac{1}{2} + j\frac{\sqrt{3}}{2}$$
(3.13)

så kan det osymmetriska systemets spänningar efter några analytiska steg skrivas som

$$\begin{bmatrix} V_a \\ V_b \\ V_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a^2 & a \\ 1 & a & a^2 \end{bmatrix} \begin{bmatrix} V_{a0} \\ V_{a1} \\ V_{a2} \end{bmatrix}.$$
 (3.14)

Inverstransfomering är möjlig för att ifrån det osymmetriska systemet istället beräkna fram de symmetriska komponenterna.

Varje spänning och ström enligt ovan kommer att uppleva olika impedanser, det vill säga varje systemkomponent i ett elsystem kommer att representeras av en viss uppsättning av impedanser av plus-, minus- och nollföljd. Sådana komponenter är till exempel kablar, generatorer och transformatorer [5], [6]. För exempel på vanliga värden på dessa impedanser och lite mer om teorin kring Symmetriska komponenter, se Appendix H.

3.1.3 Lösningsmetod för lastflödesberäkning

Om ett elnät är uppbyggt så att produktion och förbrukning gör det möjligt för effekten att överföras olika vägar kommer det uppstå ett ekvationssystem. För att bestämma effektflödet i ett sådant nät används effektflödesekvationerna [15].

Om två noder i ett system indexeras j respektive k kan nodernas spänning samt admittansen mellan noderna definieras som

$$U_{j} = \left| U_{j} \right| e^{j\Psi_{j}}, U_{k} = \left| U_{k} \right| e^{j\Psi_{k}}, Y_{kj} = \left| Y_{kj} \right| e^{j\lambda_{kj}}$$
(3.15, 3.16, 3.17)

där Ψ är överföringsvinkeln i respektive nod och λ är admittansvinkeln mellan noderna.

Aktiv och reaktiv effekt kan sedan beräknas från

$$P_{k} = \sum_{j=1}^{n} |y_{kj}| ||U_{j}| ||U_{k}| \cos(\Psi_{kj} - \lambda_{kj}) = \sum_{j=1}^{n} |y_{kj}| ||U_{j}| ||U_{k}| (G_{kj} \cos \Psi_{kj} + B_{kj} \sin \Psi_{kj}) = f_{kp} \quad (3.18)$$

$$Q_{k} = \sum_{j=1}^{n} |y_{kj}| ||U_{j}| ||U_{k}| \sin(\Psi_{kj} - \lambda_{kj}) = \sum_{j=1}^{n} |y_{kj}| ||U_{j}| ||U_{k}| (G_{kj} \sin \Psi_{kj} - B_{kj} \cos \Psi_{kj}) = f_{kq} \quad (3.19)$$

Den algoritm som använts vid lastflödesberäkningarna i det här arbetet använda mjukvaror bygger på den "förlängda" numeriska metoden enligt Newton Raphson.

Genom att utveckla ovanstående i Taylor-serier kring lämpliga initialvärden kan dessa skrivas

$$P_{k} \approx f'_{kp} + \dots + \left(\frac{\partial f_{kp}}{\partial \Psi_{j}}\right)' \Delta \Psi'_{j} + \dots + \left(\frac{\partial f_{kp}}{\partial |U_{j}|}\right)' \Delta |U_{j}|' \dots \qquad (3.20)$$

$$Q_{k} \approx f'_{kq} + \dots + \left(\frac{\partial f_{kq}}{\partial \Psi_{j}}\right) \Delta \Psi'_{j} + \dots + \left(\frac{\partial f_{kq}}{\partial |U_{j}|}\right) \Delta |U_{j}|' \dots \qquad (3.21)$$

$$\Delta P_{k} = P_{k} - f_{kp} \text{ och } \Delta Q_{k} = Q_{k} - f_{kq}$$
(3.22, 3.23)

är skillnaden mellan verkliga värden och motsvarande uppskattade, framräknade, värden.

$$\begin{bmatrix} \cdot \\ \Delta P_{k}^{'} \\ \cdot \\ \Delta Q_{k}^{'} \end{bmatrix} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \left(\frac{\partial f_{kp}}{\partial \Psi_{j}}\right)^{'} & \cdot & \left(\frac{\partial f_{kp}}{\partial |U_{j}|}\right)^{'} & \cdot \\ \cdot & \left(\frac{\partial f_{kq}}{\partial |U_{j}|}\right)^{'} & \cdot & \left(\frac{\partial f_{kq}}{\partial |U_{j}|}\right)^{'} & \cdot \\ \cdot & \left(\frac{\partial f_{kq}}{\partial |U_{j}|}\right)^{'} & \cdot & \left(\frac{\partial f_{kq}}{\partial |U_{j}|}\right)^{'} & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} \cdot \\ \Delta \Psi_{j}^{'} \\ \cdot \\ \Delta |U_{j}|^{'} \end{bmatrix}$$
(3.24)

alternativt

$$\Delta U^{\nu} = J \cdot \Delta X^{\nu} \tag{3.25}$$

Där J är Jacobis-matrisen. En iterationsprocess tar vid enligt följande:

- $\left| U_{k}^{'} \right|$ och $\Psi_{k}^{'}$ (tillståndsvariablerna) tilldelas lämpliga initialvärden
- Utifrån valda värden beräknas f_{kp} och f_{kq} enligt sambanden ovan samt de partiella derivatorna i Jacobis-matrisen.
- Bestäm effektdifferenserna $\Delta P_k = P_k f_{kp}$ och $\Delta Q_k = Q_k f_{kq}$
- Matrisekvationen ovan löses varvid förändringarna i tillståndsvariablerna adderas så att tillståndsmatrisen uppdateras.
- Iterationen avbryts när en tillräckligt stor noggrannhet uppnåtts.

3.1.4 Kortslutningsberäkningar

Kortslutningsberäkningar kan syfta till att bestämma storleken på strömmen för att få ett bra underlag för dimensionering av exempelvis kablage och utrustningar vid någon form av kortslutning men det kan också vara ett sätt att ta fram ett mått på hur "starkt" nätet är, det vill säga vilken ekvivalent impedans det bakomliggande nätet motsvaras av. Detta är i sin tur intressant för att kunna bedöma bland annat hur start av stora motorer påverkar nätet och för dimensionering av ingående skydd. Resulterande kortslutningsström bestäms av generatorernas interna spänning och systemets impedans mellan generatorer och felställe. I de flesta fall utvecklas den största kortslutningsströmmen då ett system utsätts för trefasig kortslutning. Detta i kombination med det faktum att en trefasig kortslutning är ett symmetriskt fel gör det lämpligt att använda som underlag för dimensionering där maximal kortslutningsström är intressant.

Vid kortslutningsberäkning modelleras nätet med val av de maskinreaktanser som är av intresse för det aktuella beräkningsfallet, till exempel X_d för stabilitetsanalys och framtagning av reläinställningar [12]. Ledningar och transformatorer representeras av sina respektive π -scheman men med ledningskapacitans och transformatorekvivalenternas shuntbrancher försummade. *Superpositionsteoremet* kan användas för beräkning av kortslutningsströmmen liksom *Thevenins teorem*. Teoremet säger att de ström- och spänningsändringar som uppstår i nätet vid kortslutning kan beräknas genom att alla spänningskällor (generatorer) betraktas som kortslutna och med spänningen före felet inkopplat i felstället. Eventuell belastningsström adderas vektoriellt med den beräknade strömändringen och den totala kortslutningsströmmen är bestämd.

Generellt gäller för en trefasig kortslutning att

$$I_k = \frac{U_f}{Z_k} \tag{3.26}$$

där Z_k är den resulterande impedansen per fas räknat från spänningskällan till felstället.

Kortslutningseffekt definieras som

$$S_k = \sqrt{3} \cdot U_h \cdot I_k = \frac{U_h^2}{Z_k}$$
(3.27)

och kan främst ses som ett mått på hur starkt nätet är. Det underlättar även framtagande av delkortslutningseffekter för komponenter som exempelvis transformatorer där S_k beräknas med hjälp av den relativa kortslutningsspänningen, u_k , enligt

$$S_{k} = \frac{S_{n}}{u_{k}}$$
[11]. (3.28)

NEPLAN använder, liksom de flesta beräkningsprogram, IEC-standarden 60909 för beräkning av kortslutningsströmmar. Enligt standarden ska bland annat en ekvivalent spänningskälla användas, så att

$$I_k = \frac{c \cdot U_n}{\sqrt{3} \cdot Z_k}.$$
(3.29)

Spänningsfaktorn c ska kompensera för att spänningen kan avvika från nominellt värde och sätts vid beräkning av maximal kortslutningsström till 1,1. Minsta tid för kontaktseparering i strömbrytare i samband med fel är en annan faktor som måste beaktas.

Kortslutningsströmmens principiella utseende med den initialt höga strömstöten är åskådliggjord i figur 5. Både växel- och likströmskomponenten avklingar tills ett stationärt rent växelströmsförlopp uppnås.

Figur 5. Typisk kortslutningskurva där kortslutningen inträffar i t=0.

För mer detaljer kring kortslutningsberäkningar, se Appendix H samt IEC 60909-0.

3.1.5 Vindkraft

Ett vindkraftverk kan vara utfört för fast varvtal eller för variabelt varvtal. För att begränsa inkommande effekt används metoder som pitchreglering eller stallreglering. Vanligtvis används pitchreglering vilket innebär att bladvinkeln styrs genom att respektive blad vrids kring sin egen axel.

Den mekaniska effekten från en vindturbin kan beräknas ur

$$P_{mek} = \frac{1}{2} \rho A_r C_p (\lambda, \beta) w_s^3 \quad \text{där löptalet } \lambda = \frac{\Omega_r r}{w_s} \quad [13] \quad (3.30, 3.31)$$

 C_p , effektkoefficienten, är en funktion av både löptalet λ och pitchvinkeln β . ρ är densiteten hos luft, w_s vindhastigheten, A_r den svepta arean, Ω_r rotorhastigheten och r rotorradien.

Det är möjligt att visa att effektkoefficienten C_p har ett maximum för ett givet optimalt löptal λ , se figur 6.

Figur 6. Effektkoefficienten som funktion av löptalet vid konstant pitchvinkel.

Detta kan utnyttjas för ett vindkraftverk med variabelt varvtal genom att varvtalet tillåts variera med vindhastigheten enligt

$$\Omega_r = \frac{w_s \lambda_{opt}}{r} \tag{3.32}$$

vilket innebär att effektkoefficienten hålls på sitt maximala värde. Varvtalet på vindturbinen kommer att öka linjärt med vindhastigheten upp till sitt maximala värde enligt figur 7 nedan.

Figur 7. Typisk karaktäristik för en vindturbin med variabelt varvtal visande effekt som funktion av vindhastighet.

På fastvarvtalsverk är generatorn, som utgörs av en asynkronmaskin, alltid direktkopplad till elnätet. Ibland är dessa system kompletterade med styrda rotorresistanser för att kunna påverka varvtalet (semivariabelt varvtalssystem).

På variabelvarvtalsverk återfinns två huvudtyper; fulleffekt och DFIG. En variabelvarvtalsturbin för fulleffekt kan använda sig av antingen asynkron- eller synkronmaskin som generator. Namnet fulleffekt kommer av att en omriktare är ansluten mellan generatorn och nätet vilken måste hantera hela den genererade effekten. Ett system som är vanligt i dagsläget är istället DFIG. Förkortningen kommer från engelskans doubly fed induction generator vilket kan översättas som dubbelmatad asynkronmaskin. Innebörden är att rotorkretsen matas via omriktare men statorn är kopplad direkt mot elnätet enligt figur 8 nedan. [13]

Figur 8. Schematisk beskrivning av en DFIG för användning i vindkraftverk.

Anledningen till att systemet blivit så vanligt är att omriktaren endast behöver klara en bråkdel av generatorns märkeffekt, ca 20 - 30 %. Förlusterna i omriktaren kan således minskas jämfört med ett fulleffektsystem.

Det ekvivalenta schemat för en asynkronmaskin med omriktarmatad rotorkrets kan ses i figur 9. Effekten som omriktaren behöver hantera är proportionell mot eftersläpningen vilket innebär att om maximal eftersläpning är 30% så kan omriktaren dimensioneras till cirka 30% av generatorns märkeffekt. [13]

Figur 9. Ekvivalent schema över asynkronmotor med omriktarmatad rotor.

Vindkraftverk har inverkan på elkvaliteten, bland annat vad gäller snabba spänningsvariationer, även kallat flicker (flimmer). Fenomenet uppkommer till följd av vindturbulens i samspel med vindkraftverket. Genom att använda kraftelektronik kan dessa spänningsvariationer reduceras. Ett annat problem skulle kunna vara kopplingstransienter till exempel vid inkoppling av vindkraftverk eller manövrering av kondensatorbatteri. När det gäller variabelvarvtalsverk är påverkan på grund av kopplingstransienter begränsad. [13]

I samband med spänningsdippar kan omriktaren utsättas för skadlig överspänning. För att skydda omriktaren finns därför en "crowbar" installerad vilken kortsluter rotorkretsen vid behov. Mer om olika nödvändiga reglersystem längre fram.

3.1.6 Asynkronmotorn

Asynkronmotorn är den mest använda motorn i industriella sammanhang. Direktstartad motor för konstantvarvtalsdrift är det vanligaste men i takt med att kraftelektroniken har utvecklats har nu även varvtalsreglerade drifter blivit mycket vanligt. Asynkronmotorn är, sin funktionsprincip till trots, relativt enkel och billig att tillverka. Tack vare sin driftkaraktäristik får den också egenskaper som gör den väl lämpad för praktiska applikationer. En vanligtvis uppkommande nackdel är den relativt höga strömstöten som uppstår i samband med starten.

Den vanligaste typen av asynkronmotor, den kortslutna, har fått sitt namn från rotorns utförande som här består av en "bur" av aluminiumstänger som är sammanbundna i båda ändar. Statorn består av en trefaslindning som matas från nätet. När motorn är spänningssatt roterar en flödesvåg med en hastighet bestämd av nätets frekvens. Flödesvågen inducerar strömmar i rotorburen och en kraft enligt

$$F = BI_r l \tag{3.33}$$

uppstår på varje ledare i rotorn. B är flödestäthetens amplitud och I_r rotorströmmen. Ett vridande moment skapas enligt

$$T \propto BI_r$$
 (3.34)

som får rotorn att börja rotera [17]. Varvtalet i rpm ges av

$$n = \frac{120 \cdot f}{p} (1 - s). \tag{3.35}$$

s är eftersläpningen vilket är den procentuella avvikelsen i hastighet hos rotorn jämfört med statorns flödesvåg. Eftersläpningen är fysikaliskt nödvändig för att strömmar ska induceras i rotorn och skapa moment.

En direktmatad asynkronmotor har i stationärt tillstånd en ström- och momentkaraktäristik enligt figur 10 där en fyrpolig asynkronmotor om 4kW använts.

Figur 10. Moment-strömkaraktäristik över asynkronmotor som ej matas av frekvensomriktare.

14

För beräkning och modellering kan asynkronmotorn beskrivas av ett ekvivalent schema som i figur 11.

Figur 11. Ekvivalent schema över asynkronmotorn i stationärt tillstånd.

R1 och R2' representerar statorns respektive rotorns resistans. X1 och X2' är statorns och rotorns läckreaktans. Rm representerar järnförlusterna i maskinen och försummas ofta vid beräkningar. Xm är magnetiseringsreaktansen. R2'(1-s)/s är ett direkt mått på motorns avgivna axelmoment.

Ovanstående schema används för övrigt helt analogt, med undantag för den momentbildande resistansen, vid beräkningar på transformatorer där motorns stator och rotor istället utgörs av transformatorns upp- och nedsida.

Med hjälp av kraftelektronik kan alltså asynkronmotorn varvtalsregleras genom att växelspänningen omriktas till önskad frekvens. I en frekvensomriktare likriktas först matningsspänningen varpå en styrd växelriktare skapar en spänning med önskad frekvens från den liktriktade spänningen. Då en motor är konstruerad för en viss magnetisk flödestäthet måste även spänningen till viss del styras samtidigt som frekvensen eftersom

$$B \propto \frac{V}{f} \tag{3.36}$$

det vill säga om frekvensen ökas måste även spänningen ökas i motsvarande grad. Eftersom märkspänningen är en begränsande faktor kommer flödestätheten vid frekvenser över märkfrekvens att minska vilket påverkar motorns momentegenskaper vid övervarvning!

Det finns även en typ av asynkronmotor med lindad rotor som då tillförs separat spänning via släpringar. Den här typen används till exempel i vindkraftverk av DFIG-typ. Ett annat utförande som används i vissa motordrifter är att yttre motstånd kopplas in i rotorkretsen via släpringarna vilka då påverkar motorns momentegenskaper. Detta används tillexempel då ett högt startmoment önskas.

3.1.7 Om generatorns reglering

För att en generator ska kunna utföra det arbete den är avsedd för på ett säkert och stabilitetsmässigt acceptabelt sätt krävs ett antal reglerkretsar. En central funktion är spänningsregleringen vars funktion är att hålla klämspänningen konstant vid varierande belastning och därigenom också bidra till en stabil drift även i samband med störningar. Spänningen regleras genom att fältströmmen anpassas till lämplig storlek. Både spänning och reaktiv effekt bestäms av maskinens magnetisering, det vill säga fältströmmen. Ibland är det önskvärt att istället reglera produktionen av reaktiv effekt vilket görs genom att ett reaktiv effektbörvärde påverkar spänningsregulatorn via en rampfunktion. Avsikten är att MVArregleringen på så sätt ska bli så pass långsam att spänningsregulatorns snabba verkan finns kvar vid eventuella störningar i nätet.

På samma sätt som reaktiv effekt och spänning har en fundamental innebördes koppling har även aktiv effekt och frekvens en liknande relation. Här är det istället den tillförda mekaniska effekten som är bestämmande och i fallet med en ångturbin bestäms denna av ångflödet som tillförs turbinen. Frekvensen är beroende på det sättet att vid exempelvis en ökad elektrisk last på generatorn kommer lasten att försöka bromsa rotationen, om än lite, och på så sätt påverka frekvensen då ju denna är direkt kopplad till maskinens varvtal.

Frekvensreglering utgör en speciell reglerteknisk utmaning då generatorn arbetar i ett nät med flera parallella generatorer vilket vanligtvis är fallet. Eftersom kopplingen är stark mellan effekt och frekvens så är det lätt att komma i ett läge där generatorerna "stjäl" last från varandra i händelse av att en generator med avvikande frekvens arbetar sig tillbaka mot sitt börvärde, grundfrekvensen 50 Hz. En andra generator som då tappar last kommer enligt samma resonemang att rusa och därmed frånkopplas eller falla ur fas. Därför används en reglermodell vid frekvensreglering där frekvensen tillåts variera något kring grundfrekvensen. I reglersammanhang kallas detta för statik och dess karaktäristik bestäms av faktorn R och har enheten Hz/MW. Mer om reglerteknik och statik i Appendix H.

Ett verkligt system kan beskrivet som blockschema se ut som i figur 12 och 13 nedan

Figur 12. Schematisk reglering av spänning och reaktiv effekt.

Figur 13. Schematisk reglering av frekvens och aktiv effekt.

I händelse av modellering av systemet finns ett par olika vägar att gå; den ena är att förenkla systemet så att endast tillräckligt vitala delar ingår och bygga upp modellen ifrån grunden vilket givetvis också innebär ett kraftigt förenklat system med avseende på prestanda och dynamik. Den andra är att använda sig av de standardmodeller som bland andra IEEE har tagit fram och som beskriver olika typer av system med hjälp av alla ingående beståndsdelars överföringsfunktioner. Oavsett vägval krävs förstås kunskap om de parametrar och koefficienter som måste tillhandahållas för varje modell för att göra modellen så verklig som möjligt.

3.3 Mjukvaror för simulering

De mjukvaror som kort beskrivs nedan har det gemensamt att de använder någon variant av de beräkningsteorier och modeller som beskrivs i den här rapportens teoridel och appendix.

Av licenstekniska skäl har arbetet delats upp så att statiska simuleringar körs i NEPLAN och dynamiska simuleringar i SIMPOW. Det är dock möjligt att köra samtliga simuleringar med NEPLAN som bas eftersom en implementering av SIMPOW i NEPLAN kan göras. SIMPOW utnyttjar då den redan färdiga nätkonfigurationen i NEPLAN vilket sparar arbete eftersom uppbyggnadsfasen i SIMPOW utgår.

3.3.1 NEPLAN

NEPLAN är ett grafiskt och Windowsbaserat beräknings- och simuleringsprogram från BCP Busarello i Schweiz. Nätet byggs upp grafiskt via drag-och-släpp med tillhörande dialogrutor. På så sätt blir programmet lättillgängligt och användarvänligt. NEPLAN har det mesta i funktioner men de olika delarna licenseras separat varför inte alla funktioner automatiskt finns tillgängliga.

I NEPLAN byggs nätet upp en gång och de olika funktionerna är sedan tillgängliga via menyraden.

3.3.2 SIMPOW

SIMPOW är en moduluppbyggd programvara som från början utvecklats av ABB men som nu tagits över av STRI. SIMPOW tillhandahåller också det mesta i funktioner men kan kännas mer svårtillgängligt då det bygger på traditionell kodning. SIMPOW erbjuder dock via en av sina moduler konvertering till enlinjeschema vilket gör det lätt att kontrollera att systemet byggts upp på rätt sätt.

I SIMPOW byggs först nätet upp via kod i en optpow-fil vilken sedan körs i modulen OPTPOW för lastflödesanalys. För att köra dynamiska och osymmetriska fall byggs koden vidare i en dynpow-fil. Dynpow-filen körs i modulen för dynamisk simulering, DYNPOW, som använder resultatet från OPTPOW som begynnelsevillkor för sina beräkningar. För att skapa och åskådligöra kurvor från simuleringarna används modulen DYNPOST och för eventuell visualisering av nätet kan ett enlinjeschema upprättas i modulen SLD. Utöver detta finns möjlighet att definiera egna modeller i så kallad DSL-kod.

DYNPOW kan köras i två olika beräkningsformer; MASTA och TRANSTA. MASTA används för beräkning av exempelvis maskinstabilitet och presenterar momentanvärden medan TRANSTA presenterar effektivvärden för traditionell transientberäkning.

3.3.3 Vision

Vision upplevs som ett lättillgängligt och delvis enklare program vilket utvecklas och marknadsförs av Phase to Phase, Nederländerna. Vision fokuserar på statisk analys och beräkning i form av kortslutnings- och spänningsfallsberäkningar. Sin enkelhet till trots måste det nog i många fall anses prisvärt för den här typen av grundläggande men viktiga beräkningar. Programmet är helt grafiskt och Windowsbaserat.

4 Modellering och simulering

4.1 Allmänna förutsättningar och avgränsningar

Indata för kablar, transformatorer, motorer och generator presenteras via tabeller i Appendix C. Nätets verkliga uppbyggnad beskrivs i sin helhet av enlinjeschemat i Appendix B.

Simuleringen utförs dels på befintligt nät och dels på ett fiktivt nät där en uppsättning vindkraftverk, fem stycken med en märkeffekt på 2,5 MW vardera, kopplas in via ett 500 meter långt kablage till Alloys 10kV-station.

Införandet av vindparken ska ses som en introduktion till eventuellt kommande arbeten då det krävs en större studie för att få en bra analys av vindkraftens och industrinätets ömsesidiga påverkan.

Inför den dynamiska simuleringen har nätet förenklats något för att få det praktiskt hanterbart i kodningen och för att spara beräkningskapacitet. Förenklingen går ut på att kablage, generator och stora motordrifter behålls intakt medan övriga laster buntas under ett fåtal transformatorer. För att inte förändra dynamiken i nätet har storleken på transformatorerna begränsats till max 3MVA och lasterna har sedan fördelats under dessa så att den totala belastningen per skena överensstämmer med originalfallet.

Där märkdata eller uppgift från tillverkare inte finns har parametrar och värden uppskattats. Detta påverkar givetvis noggrannheten i simuleringen. Vidare har eventuell inverkan av övertoner försummats rakt i genom arbetet då sådana simuleringar som regel måste göras separat eller med delvis andra modeller. Övertonshalten i högspänningsanläggningen har också nyligen mätts upp och har visat sig ha mycket låga THD-halter både vad gäller ström och spänning.

4.1.1 Om lastflöde och kortslutning i NEPLAN

Då nätet i sin helhet är radiellt uppbyggt är effektflödets storlek och riktning helt förutsägbart. Det finns dock andra intressanta frågor att bevara som totalt flöde av aktiv effekt i förhållande till total reaktiv effekt samt tillexempel möjligheten att kontrollera kablagens belastningsnivå och därmed deras dimensionering. Här finns också möjlighet till simulering av skyddsfunktioner vilket av tidsskäl dock utgår i detta arbete. Eftersom det på flertalet transformatorer inte är känt vilket lindningskopplarsteg som används har lastflödesanalysen i det här fallet även använts till att justera lindningskopplarna på respektive transformator så att spänningen på sekundärsidan uppgår till 100%. Detta är en förenkling och har gjorts för att lättare kunna läsa av det relativa spänningsfallet. Om lindningskopplarnas läge istället skulle vara känt kan detta lätt justeras i efterhand.

I förekommande procesställverk har belastningarna simulerats som en grupplast av ett antal asynkronmotorer om 90kW per motor. Belastningens totala storlek är satt till för varje ställverk avläst medellast. Förekommande större motordrifter, > 400kW, modelleras separat. Motordata enligt märkskylt och eventuella uppgifter från tillverkare samt enligt föregående teoriavsnitt och Appendix H.

Beräkningsmodeller enligt teoriavsnitt och Appendix H. 19

4.1.2 Generator

Aktuell generator drivs av en mottrycksturbin av radialtyp. Efter en mottrycksturbin kondenseras inte ångan omedelbart utan används i det här fallet bland annat för uppvärmning av pappersmaskinens torkcylindrar. Magnetiseringssystemet är ett modernt statiskt system bestående av en tyristorbrygga matad via separat transformator.

I SIMPOW finns tillgång till modellstandarder enligt IEEE och tillverkaren av magnetiseringssystemet rekommenderar modellering enligt dessa, se nedan.

Den här typen av generator innehåller inga dämplindningar men i simuleringsmodellen beaktas ändå dämpning som en del i modellen. Detta beror på att inducerade virvelströmmar i rotorjärnet ger upphov till ekvivalenta dämpparametrar som måste beaktas [3].

Den magnetiska mättningen i maskinen har uppskattas genom att interpolation använts för att passa en kurva på så sätt att en spänning på 1,0 pu motsvarar en fältström på 1,2 pu.

Typiska värden på generatorns reaktanser och resistanser har inhämtats från tillverkaren.

Modellen utgörs av en fältlindning samt en dämplindning i d-led och en dämplindning i q-led. En mera detaljerad modell finns att tillgå i SIMPOW vilken är menad att användas vid stabilitetsanalyser men denna kräver komplexa inparametrar som endast kan tillhandahållas av tillverkare i samband med generatorns leverans. Generatorn är av en äldre typ varför dessa värden inte finns att tillgå.

En total effekt om 2MW och 1MVAr produceras vid tidpunkten för applicerade fel och störningar i simuleringen.

Turbin

En standardmodell för "non reheat"- turbin enligt IEEE har använts då inga närmare uppgifter går att ta fram för denna äldre typ av turbin [20]. Modelluppbyggnaden beskrivs i form av överföringsfunktioner enligt nedan, figur 14.

Figur 14. Överföringsfunktioner för att beskriva turbinregleringsmodellen.

De värden som använts i modellen är

rabeli 1. Alivalida parametervalden i tabihimodeli								
Κ	T ₁	T ₂	T ₃	P _{UP}	P _{DOWN}	P _{MAX}	P _{MIN}	T _{CH}
25	3	0	0,1	0,1	-0,1	1	0	0,3

Tabell 1. Använda parametervärden i turbinmodell

Magnetisering

Enligt leverantören av magnetiseringsutrustningen kan modell typ 2A enligt IEEE 421.5 användas för modellering av befintligt statiskt system. För att få så rättvisande resultat som möjligt krävs parametrar framtagna för det aktuella systemet totalt sett vilket inte finns att tillgå. Eftersom flera andra antaganden måste göras angående nätet och ingående maskiner som ytterligare kommer att påverka träffsäkerheten hos modellen anses det här tillräckligt att använda de typvärden som finns framtagna enligt IEEE [19]. Dock har verkliga värden vad gäller reglerparametrar och reaktiv kompensering m.m. använts.

Figur 15. Överföringsfunktioner för att beskriva reglermodellen för magnetiseringen.

De värden som använts i modellen är

Tabell 2. Använda parametervärden i magnetiseringsmodell

T _R	V _{Rmax}	K _F	T _E	V _{Rmin}	K _P	T _A	K _E	KI
0	1	0,05	0,5	0	4,88	0,15	1	8
T _F	K _A	K _C	E _{FDmax}					
1	18	1,82	3,3					

Följande allmänna antaganden görs:

- MVAr-reglering aktiv och konstant reaktiv effekt
- PSS inaktiverad (vilket är fallet med den aktuella generatorn)
- Ingen begränsning av fält- eller statorström (i verkligheten <5s fördröjning)
- Ingen aktiv kompensering
- Negativ reaktiv kompensering aktiv
- V/Hz-begränsning inaktiv (i verkligheten 5s fördröjning)

Fler detaljer kring modelluppbyggnaden finns att hämta direkt i koden, Appendix F.

4.1.3 Vindkraftverk

I dag är vindkraftverk av DFIG-typ det vanligast förekommande vilket är en anledning till att det används i det här fallet. En annan orsak är att konstruktionen är relativt sett dåligt dämpad för 50Hz-störningar vilket gör studien mer intressant.

En producerad aktiv effekt om 10MW uppdelat på fem verk används i simuleringen och kopplas in via kabel i överliggande 10kV-station. Regleringen av reaktiv effekt är utförd så att varje verks omriktare producerar tillräckligt med reaktiv effekt för att täcka sitt eget behov, varvid nettoflödet av reaktiv effekt blir noll.

Den DFIG-modell som finns att tillgå i SIMPOW är komplett med avseende på erforderliga reglerkretsar som pitchreglering, varvtalsreglering, spänningsreglering och "crowbar". I modellen ingående och förvalda Cp-kurvor används. Därtill antas konstant vindstyrka vilken svarar mot i simuleringskoden angiven effektproduktion.

Eftersom vindparken är en fiktiv park som kopplas in i studiesyfte har typvärden använts rakt över för parametrering av modell och reglerkretsar.

En viktig begränsning med den inbyggda DFIG-modellen är att den endast kan köras i TRANSTA då modellen är av effektivvärdestyp.

4.1.4 Kondensatorbatteri

Batterierna är ständigt inkopplade och oreglerade. De modelleras med motsvarande kapacitiva reaktans, som vid märkspänning ger upphov till dess märkeffekt, i serie med en liten resistans så att batteriernas förluster därmed också beaktas i simuleringen.

4.1.5 Motorer

Synkronmotorn

En modell liknande den för generatorn har använts men med för ändamålet lämpligare parametervärden. Reaktanser, resistanser och H-värden är inte kända utan hämtade från typtabell enligt Appendix H.

Motorerna innehåller dämplindningar och den i programmet inbyggda modellen bygger på asynkron start med hjälp av dessa. De verkliga motorerna startas dock med hjälp av kontrollerad kortslutning av fältlindningen varför start av dessa inte simuleras då det är osäkert om resultatet kan ses som representativt. Den magnetiska mättningen i maskinen har uppskattats och införts på samma sätt som i generatorfallet.

Asynkronmotorn

Modellen bygger på det traditionella ekvivalenta schemat där ingående värden bestäms utifrån vetskapen om starteffektfaktor, maxmoment, startmoment, eftersläpningskaraktäristik m.m. För att validera modellerna har simuleringarnas startkurvor jämförts och justerats mot verkliga uppmätta startkurvor. Tröghetskonstanten H har uppskattats utifrån uppmätta starttider.

Start-cos φ , cos φ , verkningsgrad η , startström I_{st} och startmoment har tagits ur datablad alternativt från Appendix H. Mekaniska laster har matchats mot motordrifternas verkliga medellast och tillförts en lastkaraktäristik enligt $P = K(1-s)^N$ där K är belastningsgraden och N=2.

4.1.6 ls-begränsare

Hela den inkommande matningen till bruket skyddas av så kallade Is-begränsare. Is betecknar stötström och namnet Is-begränsare syftar på att skydden är kraftigt strömbegränsande. Skydden består av sprängpatroner som initieras elektroniskt då två villkor är uppfyllda

- ett tröskelvärde för uppmätt ström passeras.
- ett tröskelvärde för strömmens tidsderivata, $\frac{di}{dt}$, passeras, här ca 5kA/ms

Max bryttid för de här skydden är knappt 1,4 ms vilket ger en ungefärlig total kortslutningsström om 7kA. Detta innebär att i det här arbetet beräknade värden på kortslutningsströmmarna utgör teoretiska värden för de strömmar som skulle uppstå då Isbegränsarna av någon anledning inte fungerar!

4.1.7 Kablar

Kablar modelleras med hjälp av sina ekvivalenta π -scheman som i figur 16.

Figur 16. Det så kallade π -schemat för modellering av kabel. 23

Plus- och nollföljdsvärden för kablarna är till stor del taget från tillverkaren men i övrigt uppskattat enligt Appendix H. Korrektionsfaktorer är satta till 0,75 och Imax enligt tabeller för nominellt strömvärde. Eftersom skyddsinställningarna inte är aktiverade i simuleringen har kablaget inte kontrollerats med avseende på kortslutningstålighet.

4.1.8 Transformatorer

Endast lindningskopplaren på matande transformator T3 är aktiv vad gäller spänningsreglering. Övriga lindningskopplare står i ett fixt läge.

Järnförlusterna varierar med storleken på transformatorerna men har här satts konsekvent till 2kW av praktiska skäl. Kopparförluster har på samma sätt satts till 1%. u_k -värden har satts till 7% då data inte är givna.

Transformatorernas inkopplingsströmstöt modelleras inte då detta kräver mycket otillgängliga data för den enskilda transformatorn.

4.1.9 Laster

Alla buntade laster modelleras som PQ-laster. Motorlaster modelleras enligt ovan. Lasterna har olika karaktäristik:

Konstant effekt	$P = P_0$	(3.34)
Konstant ström	$P = P_0 \left(\frac{U}{U_0} \right)$	(3.35)
Konstant impedans	$P = P_0 \left(\frac{U}{U_0} \right)^2$	(3.36)

De flesta buntade lasterna anses förbruka konstant effekt för att efterlikna motor- och frekvensomriktardrifter.

4.1.10 Skydd och brytare

En kontaktresistans om 0,1 m Ω är tillförd samtliga brytare.

Då anläggningen innehåller ett flertal olika typer av skydd och då anläggningens fortlevnad, till följd av nedläggningen, är akut hotad har aktuella skyddsinställningar inte lagts in av relevans- och tidsskäl.

Selektiviteten i anläggningen kan inte kontrolleras eftersom inställningsvärde för respektive reläskydd saknas. Med tanke på Is-begränsarnas arbetssätt och snabba prestanda är dock selektivitet heller inte något som normalt finns i anläggningen.

4.1.11 Frekvensomriktare

SIMPOW har ingen färdig smidig modell för industriella frekvensomriktare varför lasten på PM5 endast består av PQ-laster med karaktäristiken konstant effekt. Det är därför tyvärr inte möjligt att dra slutsatser om omriktarnas påverkan på eller påverkande av nätet utifrån dess kraftelektroniska egenskaper.

4.2 Statisk simulering

I den statiska simuleringen studeras två parallella uppsättningar av fall där i den första uppsättningen vindkraftparken är urkopplad och i den andra med vindkraftparken inkopplad.

Motorstart är möjligt att göra i NEPLAN där spänningsfallet då redovisas för t=0 men görs här istället i den dynamiska simuleringen vilken då kommer att innehålla mer information om spänningsfallet såväl som andra händelser under hela startförloppet.

Resultat visas i	a) Utan vindkraft	b) Med vindkraft
5.1.1	Lastflöde	Samma som i a)
5.1.2	Kortslutning	_``_

Tabell 3. Simuleringsfall vid statisk simulering.

4.2.1 Lastflöde

Lastflödet studeras med och utan mottrycksturbin i drift främst för att studera fördelningen mellan aktiv- och reaktiv effekt men även för att få en uppfattning om spänningsfall under normal drift samt storleken på systemets förluster. Även kablagens belastningsgrad ges av simuleringen.

4.2.2 Kortslutning

Olika typer av fel har applicerats på olika ställen i anläggningen för att göra det möjligt att jämföra konsekvenserna av de olika fallen. Feltyperna som simulerats är trefas kortslutning och enfas jordslutning.

4.3 Dynamisk simulering

I den dynamiska simuleringen studeras även här två parallella uppsättningar av fall där i den första uppsättningen vindkraftparken är urkopplad och i den andra med vindkraftparken inkopplad.

Den dynamiska simuleringen visar sig vara krävande när det gäller omställningar mellan olika simuleringsfall varför mer tid skulle behöva ägnas åt dessa körningar. Speciellt när det gäller införandet av vindparken får detta som tidigare sagts ses som en liten introduktion.

Resultat visas i	a) Utan vindkraft	b) Med vindkraft
5.2.1	Koppling av kondensator-	Samma som i a)
	batteri i Alloys respektive PM5	
5.2.2	Jordfel och spänningsdipp 10kV och	Ej spänningsdipp
	500V	
5.2.3	Generatorns beteende vid fel	Samma som i a) men
	i nätet, kritisk bortkopplingstid	utförd i TRANSTA
5.2.4	Start av stora motorer	Utgår
5.2.5	Urkoppling av matande linje	Samma som i a)
5.2.6	Inkoppling av matande linje	Utgår

Tabell 4. Simuleringsfall vid dynamisk simulering.

4.3.1 Koppling av kondensatorbatteri

Batterier både i PM5 och Alloys kopplas in och ur i olika ordning för att studera eventuella skillnader i spänning och strömmar ute i nätet. Här TRANSTA-simulering vilket bortser från de spänningsspikar som uppstår vid manövreringen.

4.3.2 Jordfel och spänningsdipp

Jordfel i både 10kV-system och 500V-system var för sig. Spänningsdippen åskådliggörs i MASTA varför denna körning inte är direkt jämförbar i fallet med vindparken inkopplad!

4.3.3 Generatorns beteende vid fel i nätet

Studier kring generatorns vinkelstabilitet i händelse av fel i nätet samt bedömning av generatorns kritiska bortkopplingstid. Även här görs simuleringen i MASTA varför ingen jämförelse med inkopplad vindpark kan göras.

4.3.4 Start av stora motorer

Start av större motorer samt jämförelse mellan direktstart över transformator. Spänningsfallet vid start samt startförloppets allmänna karaktär studeras.

4.3.5 Urkoppling av matande linje

Momentan bortkoppling att likna vid totalströmavbrott där transienta förlopp i samband med brytningen kan vara intressant. Här öppnas brytaren vid t = 0, alla synkronmotorer samt generatorn 100ms senare och asynkronmotorerna ytterligare 100ms senare. Fördröjningen är tänkt att simulera bortkoppling av respektive skydd, som exempelvis underspänningsskydd.

4.3.6 Inkoppling av matande linje

Momentan inkoppling att likna vid tillslag efter totalströmavbrott. Transienta förlopp studeras med anläggningen i tomgång.

5 Resultat

Figur 17 påminner om det simulerade systemets utseende.

Figur 17. Förenklat enlinjeschema över distributionsnätet.

5.1 Statisk simulering

Mer detaljerade resultattabeller för samtliga fall enligt Appendix D.

5.1.1 Lastflöde

a) Utan vindkraft

Anläggningens aktiva förluster från transformatorer och kablage uppgår till ca 450 kW.

Total last är 27MW respektive 10MVAr vilket ger en total effektfaktor för anläggningen om ca 0,92 induktivt.

Om däremot hela nätets last inklusive Alloys smältverk inräknas så fås en total last om 32MW och -2MVAr. Detta ger en total effektfaktor på ca 0,99 kapacitivt vilket alltså innebär en reaktiv överkompensering!

Högspänningsnätets kablage klarar samtliga belastningsfall vid kontroll mot nominellt strömvärde.

b) Med vindkraft

Inga relevanta förändringar i nätet med avseende på lastflöde.

5.1.2 Kortslutning

a) Utan vindkraft

Vid trefasig kortslutning

[kA]	Utan mottryckskraft	Med mottryckskraft
OT92 Regionstation	16,4	16,6
PM5C, D	30,5	32,9
Hästskon A	39,1	45,4
Hästskon B	39,4	43,6
T3C Lågspänningsställverk	43,8	44,1

Tabell 5. Resultat av strömmar vid trefasig kortslutning utan vindkraft.

Vid enfasig jordslutning uppstår en kapacitiv jordström om 26A i det icke direktjordade högspänningsnätet. På lågspänningssidan uppstår en ström som i redovisningen kan anses vara noll.
b) Med vindkraft

Vid trefasig kortslutning

	a tronably noncolatining mod vindinal	
[kA]	Utan mottryckskraft	Med mottryckskraft
OT92 Regionstation	-	16,7
PM5C, D	-	34,1
Hästskon A	-	47,8
Hästskon B	-	45,9
T3C Lågspänningsställverk	-	44,2

Tabell 6. Resultat av strömmar vid trefasig kortslutning med vindkraft.

Vid enfasig jordslutning uppstår en kapacitiv jordström om 34A i det icke direktjordade högspänningsnätet. En ökning till följd av den för vinden tillkommande kabelinstallationen. På lågspänningssidan uppstår en ström som i redovisningen kan anses vara noll.

5.1.3 Jämförelse med tidigare beräkningar gjorda i Vision

Vid jämförelse av kortslutningsberäkningarna avviker resultaten 5 – 7 % jämfört med Vision där värden beräknade i NEPLAN är konsekvent högre än motsvarande i Vision. Båda mjukvarorna använder IEC 60909 för beräkningen men då nätet har justerats något i matande kablage vid uppbyggnad i NEPLAN får resultaten ses som väl överensstämmande.

Jämförelserna ovan gjordes dock i ett tidigt skede av arbetet och då med överensstämmande maskinreaktanser i båda programfilerna. Sedemera har dessa justerats till av tillverkaren givna värden varför jämförelser inte är möjliga för de värden som presenteras i denna rapport.

5.2 Dynamisk simulering

5.2.1 Koppling av kondensatorbatteri

a) Utan vindkraft

Ingen momentan sänkning vid frånslag på grund av generatorns spänningsreglering och övrig kapacitans i nätet. Kondensatorbatteriet i PM5, från nu KBPM, sitter långt inne i anläggningen och påverkar spänningen mest lokalt som kan ses i figur 18. I matande station, Alloys, påverkas spänningen relativt sett minst. I brukets mottagningsstation, Hästskon, påverkas spänningen ytterligare lite mera för att lokalt i station PM5 påverkas mest.

Figur 18. Frånslag av kondensatorbatteri i station PM5C.

Med båda kondensatorbatterierna urkopplade påverkas spänningen ca 2,8% totalt i anläggningen.

Eftersom TRANSTA räknar med effektivvärden syns inte spänningsspikarna som uppstår vid till- och frånslag men detta är istället åskådliggjort i avsnitt 5.2.2.

Koppling av kondensatorbatteri medför bland annat momentstörningar hos asynkronmotorer i drift enligt figur 19, där effekten av en inkoppling kan ses på en av anläggningens högspänningsmotorer.

Figur 19. Påverkan på momentet hos en asynkronmotor då spänningen ändras.

30

Detta till följd av sambandet mellan moment och spänning enligt $M \propto U^2$. Även en kraftig strömpuls uppstår som en konsekvens härav. Förloppet är helt över efter ca 0,5 sekund när momentbalansen upprättats igen och det är oklart om detta kan medföra några störningar i processen.

Ett sedan tidigare känt problem uppstår om Alloys kondensatorbatteri, från nu kallat KBAl, kopplas in då KBPM är inkopplat. Strömökningen blir då så kraftig att tröskelvärdet för Isbegränsarnas $\frac{di}{dt}$ -steg överskrids vilket får till följd att Isbegränsarna löser ut. Tidigare teorier har byggt på att KBPM snabbt laddas ur över inkommande linje då KBAl kopplas in. Simuleringen styrker att strömderivatasteget påverkas och med marginal överskrider tröskelvärdet men den största strömderivatan uppstår genom den kabel som matar ställverksskenan där KBPM *inte* är inkopplad, Hästskon A! På Hästskon A ligger mottrycksgeneratorn vars ström påverkas av dess produktion av reaktiv effekt kontra den reaktiva effekt som finns att tillgå i nätet. Detta gäller även synkronmotorerna i nätet. På samma skena finns också de flesta asynkronmotorerna vilka reagerar som i figur 19. Den kritiska strömökningen kan ses i figur 20 där grafiskt kan bestämmas en $\frac{di}{dt} \approx 6kA/ms$ ur den översta kurvan medan den undre kommer upp i ca 3kA/ms. Tröskelvärdet enligt inställningsprotokoll är ca 5kA/ms.

Figur 20. Strömmens förändring vid tillslag av kondensatorbatteri.

b) Med vindkraft

Med vindkraften inkopplad fås en generellt högre spänningsnivå i systemet eftersom $\Delta U \approx (R \cdot \cos \varphi + X \cdot \sin \varphi)|I|$ för små överföringsvinklar. Detta gäller endast i jämförelse relativt fallet utan vindkraft eftersom spänningen kommer att regleras med lindningskopplaren på transformator T3. I figuren 21 ses stator- och rotorströmmarna samt spänning, aktiv- och reaktiv effekt under en sekvens av till- och frånslag av de två kondensatorbatterierna. Den blå kurvan indikerar om "crowbaren" aktiveras $0 \rightarrow 1$. Spänningen har att följa nätets spänning och små snabba störningar i den aktiva effekten syns då stator- och rotorströmmarna ändrar sig. Kurvformer och fenomen i nätet i övrigt liknar helt de som förekommer utan vindkraften inkopplad.

Figur 21. Strömmar, spänning och effekt hos en DFIG vid koppling av kondensatorbatteri.

5.2.2 Jordfel och spänningsdipp

a) Utan vindkraft

Vid applicering av jordfel i 10kV-nätet fås en förväntad kurvform, figur 22.

Figur 22. Fasspänningarnas utseende vid enfasigt jordfel i impedansjordat nät.

De två friska faserna antar ca $\sqrt{3} \cdot U_f$ på 10kV-sidan medan uppsidan förblir opåverkad. Även här fås övergående störningar på generator och asynkronmotorer enligt figur 23 och 24.

Figur 23. Generatorns reaktion då jordfel inträffar samt bortkopplas.

Spänningsregleringen känner av spänningsförändringen i nätet och drar ner magnetiseringen så att Q = 0.

Figur 24. En asynkronmotors reaktion då jordfel inträffar samt bortkopplas.

Likt fallen i 5.2.1 kommer spänningsförändringen att medföra kortvarig momentrubbning hos anslutna maskiner. I fallet med motordrifterna fås samma resultat vid kortslutning på lågspänningssidan. Den stora skillnaden i övrigt ligger i att felet på högspänningssidan kommer att medföra bortkoppling av anläggningen medan felet på lågspänningssidan medger fortsatt drift. Det är i praktiken troligt att påverkan på nätet vid jordfel på 500V-sidan inte visar sig av speciellt transient natur då dessa fel ofta utvecklas långsamt och gradvis.

10kV-nätet är som nämnts tidigare icke direktjordat varför en kapacitiv nollföljdsström kommer att uppstå. För att tillföra en resistiv jordfelskomponent för detektering av felbesatt anläggningsdel är systemet motståndsjordat. Nollpunktsbildaren och resistorn är dimensionerade för en jordfelsström om 15A. Simuleringen visar dock på en total nollföljdsström på närmare 31A vilket kan ses i figur 25.

Figur 25. Kapacitiv nollföljdsström i 10kV-nätet.

NEPLAN ger ett framräknat värde på 26A men nätmodellen som används i SIMPOW är förenklad varför en direkt jämförelse inte är möjlig. Vattenfall har dock gjort avstämningsmätningar som bekräftar att dimensioneringen av den ursprungliga utrustningen inte svarar upp mot nuvarande anläggning. Vattenfall presenterar en kapacitiv jordslutningsström på 33A uppmätt på plats med mobil reaktor [21]

En spänningsdipp om 100ms kan vid simulering i momentanvärdesskala se ut som i figur 26.

Figur 26. Momentanvärdeskurva över spänningen i samband med en spänningsdipp.

Den högsta spänningsspiken som uppstår då spänningen återvänder motsvarar lite över 140% och verkar över några millisekunder. Spikarna uppstår till följd av att spänningen ökar stegartat över kondensatorbatterierna vilket är att likna med ett direkt tillslag av densamma. I inkopplingsögonblicket uppfattas kondensatorbatteriet som en kortslutning vilket genererar både ström- och spänningstransienter. Samma fenomen uppträder i 5.2.1 men kan inte uppfattas i figuren på grund av att effektivvärden och inte momentanvärden simuleras. Figur 27 nedan visar att transienterna kopplas direkt över till lågspänningssidan. Ansluten utrustning kommer därvid utsättas för denna spänning.

Figur 27. Momentanvärdeskurvor över spänningen på lastsidan.

b) Med vindkraft

Vid applicering av jordfel i 10kV-nätet fås en reaktion hos vindkraftverket enligt figur 28 som visar små momentana störningar i aktiv effekt men i övrigt inga speciella händelser. I nätet i övrigt kan inte hittas några annorlunda upptäckter till följd av att vindkraften tillkommit i anläggningen.

Figur 28. Ett vindkraftverks reaktion vid jordfel i 10kV-nätet (TRANSTA).

Resultat från simulering av spänningsdipp kan som nämnts tidigare inte jämföras rakt av då den förra simuleringen gjordes i MASTA.

5.2.3 Generatorns beteende vid fel i nätet

a) Utan vindkraft

WargonVind DYNPOW DATA

En nära stum trefasig kortslutning appliceras i till bruket inkommande matning vilket ger en reaktion hos mottrycksgeneratorn, figur 29.

Figur 29. Förändring i effekt och lastvinkel hos generatorn vid trefasig kortslutning.

37

Kurvformerna är klassiska för en synkronmaskin under en störning och illustrerar insvängningsförloppet bestämt av lösningen till svängningsekvationen omnämnd i avsnitt 3.1.1. Svängningarna i aktiv effekt är synonymt med avvikelse i varvtal vilket i sin tur innebär avvikelser i frekvensen. Stabiliteten åskådliggörs här av att vinkelavvikelsen dämpas ut efter några sekunder. Efter en viss tid av kvarvarande störning kommer vinkeln att rubbas så pass att maskinen förlorar synkronism. Denna kritiska tidpunkt har genom test bestämts till ca 250ms för den aktuella belastningsgraden. Tiden kortas då den överförda effekten ökar enligt teorin. Gällande reläinställningar är dock över lag ställda för snabbare bortkoppling än 250ms av andra skäl, exempelvis har över- och underfrekvens samt överspänning en inställd utlösningstid på 100ms och differentialskydd på 150ms.

Eventuell fortsatt drift av generatorn med annan anläggningsägare kommer att medföra andra belastningsnivåer i en helt annan nätkonfiguration varför vidare studier av det här fallet känns orelevant.

b) Med vindkraft

Även här står vi utan möjlighet till direkta jämförelser men för att ge en uppfattning om händelseförloppet har en trefasig kortslutning applicerats i anläggningen och studerats i TRANSTA vilken kan ses i figur 30 nedan.

Figur 30. Ett vindkraftverks kurvformer vid trefasig kortslutning (TRANSTA).

Utseendet stämmer inte rakt av vid jämförelse med liknande simuleringar i exempelvis PSS/E. Den här simuleringen har ju sin brist i att vara av typ TRANSTA men det kan också vara ett skäl till varför en fördjupande studie vore intressant.

5.2.4 Start av stora motorer

a) Utan vindkraft

Direktstart av en motor på 2MW ger spänningsprofil som i figur 31.

Figur 31. Spänningens utseende vid direktstart av asynkronmotor.

Spänningsfallet i station Hästskon (HORSEA) uppgår till ca 2,3%. Detta får ses som ett mycket bra värde och ska inte orsaka några problem. För start av samtliga större motordrifter ligger spänningsfallet i samma storleksordning och varierar sinsemellan på decimalnivå. Som jämförelse kan ses i figurerna nedan start av två identiska motorer med och utan transformator, figur 32 och 33.

Figur 32. Direktstart utan transformator.

Här sker start utan transformator vilket ger värden korresponderande mot tidigare figur. Vid start med transformator har spänningsfallet minskat till ca 1,8% men starttiden blir då längre. Detta beror på att spänningsfallet på sekundärsidan transformatorn blir relativt sett större vilket ger ett lägre startmoment och därmed ett utdraget startförlopp.

Figur 33. Direktstart med transformator.

En generell bild av startförloppet på maskinnivå kan ses i figur 34 och ger en bra helhetssyn över påverkan i moment, effektfaktor, aktiv och reaktiv effekt etc. i samband med start.

Figur 34. Kurvformer vid direktstart av asynkronmotor.

40

I figur 31-34 ovan kan ett momentrippel som uppstår precis i startögonblicket uppfattas. En viktig kommentar är att om transformatorernas magnetiska mättning simulerats, och därmed den kraftiga strömstöten vid inkoppling, hade en betydligt större strömspik uppstått precis vid tillslag och under någon/några perioder framåt. Figurerna visar därmed alltså inte hela sanningen.

b) Med vindkraft

Utgår, ej relevant.

5.2.5 Urkoppling av matande linje

a) Utan vindkraft

Under den första halvsekunden efter brytning av inkommande matning ser spänningsprofilen ut enligt figur 35.

Figur 35. Spänningen vid bortkoppling av inkommande matning.

Under de första 100ms efter bortkopplingen försöker generatorns spänningsreglering upprätthålla spänningen varför denna ligger kvar relativt opåverkad fram till att generatorn kopplas bort. Så länge motorerna är inkopplade och kapacitans finns i nätet, KBPM är fortfarande inkopplat, kommer de att arbeta som generatorer vilket gör att spänningen avtar långsamt. Motorernas övergång från motordrift till generatordrift kan ses i figur 36 nedan i form av teckenväxling på aktiv effekt och moment. Den sista kvarvarande spänningen efter 200ms beror på kondensatorbatteriets urladdning. Körningen är gjord i TRANSTA men även körningar i MASTA visar att inga omfattande transienta förlopp förekommer.

Figur 36. Asynkronmotorn blir för ett ögonblick generator.

b) Med vindkraft

En kraftig dipp i från vindkraften producerad aktiv effekt uppstår då den närliggande förbrukningen faller bort, figur 37. Den är dock återställd inom någon millisekund och verken förblir i drift efter störningen.

Figur 37. Ett vindkraftverks kurvformer då bruket, alltså närliggande last, kopplas bort.

5.2.6 Inkoppling av matande linje

a) Utan vindkraft

Då inkoppling av inkommande matning av naturliga skäl görs med anläggningen i tomgång kommer det här försöket helt att likna fallet i 5.2.1 med inkoppling av kondensatorbatteri med inslag av de inkopplingsströmstötar som uppstår vid tillslag av transformatorerna. Inkopplingsströmstötarna finns alltid närvarande, dock med olika kraftfullhet beroende på respektive transformators remanens och det tidsögonblick för var på sinuskurvan tillslag sker.

b) Med vindkraft

Utgår, ej relevant.

5.1.3 Jämförelse med tidigare beräkningar gjorda i Vision

Vid motorstarter ger Vision ett värde på resulterande spänningsfall mellan 2,0 - 2,3% i högspänningsnätet vid start av de större motordrifterna vilket stämmer mycket bra överens med fallet i 5.2.4 här ovan.

6 Slutsatser och åtgärdsdiskussion

6.1 Statisk simulering

Till följd av situationen med överkompensering behöver närliggande industri se över situationen i samband med brukets avveckling genom att minska storleken på sitt kondensatorbatteri till i storleksordningen 1 MVAr istället för 16MVAr.

Som allmän kommentar till de olika kortslutningsströmmarna kan sägas att det är viktigt att följa med i takt med en anläggnings ombyggnad och utveckling så att det säkerställs att ingående komponenter och utrustningar tål förekommande strömmar. I den undersökta anläggningen begränsas kortslutningsströmmen med hjälp av Is-begränsare på ett okonventionellt sätt eftersom ett fel kommer att koppla bort hela anläggningen. En dålig metod när det gäller anläggningen av Is-begränsare är att begränsa kortslutningsströmmen genom att bestycka generatormatningar med Is-begränsare parallellt med en reaktor eller för att på samma sätt parallellförband [11]. I en projekteringssituation med större valmöjligheter finns det andra sätt att begränsa kortslutningsströmmen som till exempel sektionering med flera separata transformatorgrupper, variering av u_k -värde på transformatorer eller inkoppling av reaktor i serie.

6.2 Dynamisk simulering

I föreliggande fall behövs kondensatorbatteriet för att uppnå tillräcklig kompensering i anläggningen eftersom mottrycksgeneratorn inte ensam klarar en MVAr-produktion av erforderlig storlek. Ett lämpligt alternativ är att istället använda mjukkoppling där kondensatorbatteriet kopplas in i nollgenomgången på kurvan och därvid undviker de höga transienterna [22]. Detta kan ordnas med en så kallad SVC där kraftelektronik används för inkoppling istället för traditionella brytare. Ett alternativ skulle kunna vara att komplettera kondensatorbatteriet med en seriereaktor till ett filter vilket dämpar spänningstransienterna. En lämplig arbetsordning skulle kunna vara:

- 1. Ta bort onödiga kondensatorbatterier. De kan finnas kvar av historiska skäl, de är tveksamma ur tillgänglighetssynpunkt och de kan orsaka resonansfenomen.
- 2. Undersök möjligheten att använda befintliga synkronmaskiner för kompensering
- 3. Ersätt eventuellt kvarvarande direktkopplade batterier med SVC eller

Vid ombyggnad, nyinstallation eller ingrepp enligt ovan är det viktigt att utreda riskerna för resonans i nätet. En approximativ kontroll kan göras med sambandet

$$n = \sqrt{\frac{S_K}{Q_C}} \tag{6.1}$$

där n är resonansfrekvensens ordningstal, S_K kortslutningseffekten [MVA] och Q_C kondensatorbatteriets effekt [MVAr]. En kontroll för den aktuella anläggningen visar att problem skulle kunna uppstå vid ca 8,5kHz vilket är en i sammanhanget hög frekvens. En egenvärdesanalys som gjorts visar dock inte på några problem.

Det kan också vara värt att tänka på att undvika till- och frånkopplingar som inte är absolut nödvändiga.

När det gäller nollpunktsbildaren och jordningsmotståndet behöver dessa omdimensioneras som det ser ut idag men problemet kan också tänkas försvinna i samband med brukets nedläggning då stora mängder kabel som idag finns i nätet utgår.

När det gäller spänningsdippar och transienta överspänningar har det diskuterats om åtgärder redan på upphandlingsstadiet av kraftelektronik, särskilt frekvensomriktare [23]. Här redogörs för vissa åtgärder som tillverkaren kan göra i samband med leverans för att förbättra tåligheten hos processen. När det gäller spänningsdippar är det ofta möjligt att justera underspänningsskydden till ca 65% under 200ms istället för 85% som tidigare. Manövermatningar förutsätts då vara UPS-matade. Överspänningsskydden skulle kunna ställas av men omriktarnas mellanled har traditionellt tålt ca 130% spänning vilket gör att dessa riskerar att slås ut vid spänningsnivåer enligt ovan [22].

Generellt för ett elsystems stabilitet gäller att snabb bortkoppling av fel samt snabb reglering hos generatorer förbättrar stabiliteten vilket kan vara värt att tänka på [3].

7 Fortsatta studier

Det finns möjlighet för fördjupade studier på de delar som är förenklade eller är helt bortsett ifrån i det här arbetet. Exempel på lämplig fortsättning som kan användas för ytterligare lärdom är:

- Ta fram en DFIG-modell som klarar MASTA-simulering i SIMPOW, det vill säga momentanvärdessimulering för bland annat stabilitetsanalys.
- Ta fram en modell för DTC-reglerad frekvensomriktare för SIMPOW för att på så sätt göra SIMPOW mer attraktivt för simulering i industriapplikationer.
- Fördjupad analys av industrinät i närheten av vindkraft.

8 Referenser

- [1] Andersson Göran, *Dynamic Phenomena in Electric Power Systems*, Institutionen för elektrotekniska system, KTH, Stockholm 2001.
- [2] Mogensen Hans, *Elmaskiner*, Liber, Stockholm 1989.
- [3] Kundur Prabha, *Power System Stability and Control*, Electric Power Research Institute, McGraw-Hill Inc, 1994.
- [4] Kimbark Edward W, *Power System Stability V.III*, John Wiley & Sons Inc, New York, USA, 1956.
- [5] Sarma, Glover m.fl, *Power System Analysis and Design*, Fourth Edition, Thomson Learning, 2008.
- [6] Daalder, Le, *Power System Analysis*, Kompendium, Division of Electric Power Engineering, Chalmers, 2007.
- [7] Kundur Prabha m.fl, *Definition and Classification of Power System Stability*, IEEE/CIGRE Joint Task Force on Stability Terms and Definitions, IEEE, 2004.
- [8] *Electrical Transmission and Distribution Reference Book*, Central Station Engineers of the Westinghouse Electric Corporation, Pittsburgh, 1964.
- [9] *Calculation of short circuit currents*, www.sayedsaad.com/Protection, 2008-06-17.
- [10] Red. Hennig Gremmel, *Switchgear Manual*, 11th edition, ABB Calor Emag, Ratingen, 2006.
- [11] Red. Hans Blomqvist, *Elkrafthandboken Elkraftsystem* 2, Första upplagan, Liber, 1997.
- [12] Stenborg B, *Elkraftsystem Del 2*, Chalmers, ReproService, 1997.
- [13] Petersson, Thiringer m.fl, *Elektriska system i vindkraftverk*, Elforsk rapport 06:04, Inst. för energi och miljö, Chalmers, 2006.
- [14] Lennartson Bengt, *Reglerteknikens grunder*, Upplaga 4:6, Studenlitteratur, 2002.
- [15] Stenborg B, *Elkraftsystem Del 1*, Chalmers, ReproService, 1997.
- [16] Boldea I, *The Electric Generators Handbook Synchronous Generators*, Polytechnical Institute Timisoara, Romania, CRC Press, 2006.
- [17] Hughes A, *Electric Motors and Drives Fundamentals, Types and Applications*, Great Britain, Elsevier, 2006.

- [18] Red. Elfving G, *ABB Handbok Elkraft*, ABB Distribution, 1993.
- [19] *IEEE Std 421.5*TM-2005 *IEEE Recommended Practice for Excitation System Models for Power System Stability Studies*, IEEE, 2006.
- [20] Dynamic Models for Steam and Hydro Turbines in Power System Studies, IEEE, 1973.
- [21] Hansson L, NX-avstämning T3 nät, Rapport Vattenfall Västnät, 2004-09-30.
- [22] Red. Elfving G, ABB Handbok Industri, ABB Industrigruppen, 1993.
- [23] Starkströmsutrustningar med integrerad elektronik i processdrivutrustningar SSG4908, SSG-rapport, 2005.

9 Appendix

A Förkortningar

IEEE	Institute of Electrical and Electronics Engineers
CIGRÉ	International Council on Large Electric Systems
DFIG	Doubly Fed Induction Generator – Dubbelmatad asynkrongenerator
TRANSTA	Transient Stability – Beräkningsmodul i SIMPOW
MASTA	Machine Stability – Beräkningsmodul I SIMPOW
DTC	Direct Torqe Control - Reglerprincip för en typ av moderna frekvensomriktare
SVC	Static Var Compensator – Tyristorstyrd reaktiv kompensering

56

kA	k	MVA	MVA	Mvar	MW				
lk"max	lk"min	Sk"max	Sk"min	Qoper	Poper	LF I ype	Name	<u> </u>	

2008-09-11 17:22:14

ſ								,					
	۵	Name	Vector	S	P	Ur2	ukr(1)	uRr(1)	Pfe	Earthing	pTap	Ir1max (high)	Ir2max (high)
			Group	AVM	k۷	Š	%	%	kW	primary	%	A	۲
1	64	T3	YNd11	60	130	10	10	-	0	direct	0	266,5	3464,1
2	3106	T10 Trafo	Dyn11	1,6	11	0,525	7	t	1,76	isolated	0	84	1759,5
3	3163	Slipv10 Trafo	YNy0	2	10	5	5,33	-	0	isolated	0	115,5	230,9
4	3655	T6 Trafo	Yyn0	2	10	0,5	6,5	1	2	isolated	0	115,5	2309,4
5	3678	T3A Trafo	Dyn11	2	10,4	0,525	6,5	1	2	isolated	0	111	2199,4
9	3701	T4 Trafo	Dy5	2	11	0,525	7	1	0	isolated	0	105	2199,4
7	3724	T3C Trafo	Dyn11	2	10,4	0,525	6,13	1	2	isolated	0	111	2199,4
œ	3747	T7 Trafo	Dyn11	2,5	10,5	0,525	6,5	1	2,5	isolated	0	137,5	2749,3
6	3791	T3B Trafo	Dy1	1,5	10	0,5	7,38	1	1,65	isolated	0	86,6	1732,1
10	3814	T26 Trafo	Dyn11	2,5	10,5	0,525	6,3	-	4,3	isolated	0	137,5	2749,3
11	3837	T08 Trafo	Yy0	2	10	0,5	7,41	-	2	isolated	0	115,5	2309,4
12	3859	T07 Trafo	Dyn11	2,2	11	0,525	7	1	2,2	isolated	0	115,5	2419,4
13	3881	T06 Trafo	Yy0	3,15	10	6,3	9	1	2	isolated	0	181,9	288,7
14	3903	T05 Trafo	Yd11	e	10,4	3,7	7,96	1	2,7	isolated	0	166,5	468,1
15	3925	T2A Trafo	Dyn11	2	10,5	0,525	9	1	2	isolated	0	110	2199,4
16	3947	T2C Trafo	Dv1	2	10	0.5	7.91	1	2	isolated	0	115.5	2309.4
17	3969	T2E Trafo	Dy11	2	10	0,525	5,9	1	2,65	isolated	0	115,5	2199,4
18	3997	T09A Trafo	Dyn11	2	10,4	0,525	5,59	+	2	isolated	0	111	2199,4
19	4010	T1A Trafo	Yy0	1,5	10	0,5	6,5	1	1,65	isolated	0	86,6	1732,1
20	4081	TA6 Trafo	Dyn11	0,8	10,4	0,525	5,72	1	1,2	isolated	0	44,4	879,8
21	4124	TA1 Trafo	Dyn1	2	10	0,5	4,86	1	3	isolated	0	115,5	2309,4
22	4165	TA2 Trafo	Yyo	1,5	10	0,5	6,5	1	1,65	isolated	0	86,6	1732,1
23	4206	TA3 Trafo	Yyo	1,5	10	0,5	6,5	1	1,65	isolated	0	86,6	1732,1
24	4247	T5E Trafo	Dyn11	1,5	10,25	0,525	6,5	1	1,65	isolated	0	84,5	1649,6
25	4289	TA4 Trafo	Dyn11	1	10,25	0,4	6,5	1	1,6	isolated	0	56,3	1443,4
26	4335	T5G Trafo	Dyn11	2	10,4	0,4	6,5	1	2	isolated	0	111	2886,8
27	4414	T5H Trafo	Dy11	2	10,4	0,4	6,5	1	2	isolated	0	111	2886,8
28	4458	T5K Trafo	Dyn11	1,5	10,25	0,525	6,5	1	1,65	isolated	0	84,5	1649,6
29	4503	T5L Trafo	Dyn11	1	10,4	0,5	7,2	1	1,3	isolated	0	55,5	1154,7
30	4550	T5M Trafo	Dy11	1,5	10,25	0,525	6,5	1	1,65	isolated	0	84,5	1649,6
31	4595	T5N Trafo	Dy11	0,5	10,4	0,4	6,5	1	0,8	isolated	0	27,8	721,7
32	4640	T5P Trafo	Dy11	٢	10,4	0,4	5,4	1	1,3	isolated	0	55,5	1443,4
33	4706	T5Q Trafo	Dyn11	1	10	0,4	6,5	1	1,3	isolated	0	57,7	1443,4
34	4807	T5R Trafo	Dyn11	۲	10	0,4	6,3	1	1,3	isolated	0	57,7	1443,4
35	4853	T5S Trafo	Dyn11	2	10,4	0,525	6,5	1	2	isolated	0	111	2199,4
36	4898	T5T Trafo	Dyn11	2,5	10,4	0,525	6,4	1	2,5	isolated	0	138,8	2749,3
37	4943	T5U Trafo	Dyn11	2	10,4	0,525	6,1	1	2	isolated	0	111	2199,4
38	4988	T5V Trafo	Dyn11	2,5	10,5	0,525	9	1	2,5	isolated	0	137,5	2749,3
39	5089	T09D Trafo	Dyn11	2	10	0,5	6,5	1	2	isolated	0	115,5	2309,4
40	5137	T09C Trafo	Dyn11	2	10	0,5	6,5	1	2	isolated	0	115,5	2309,4

2W Transformer

2008-09-11 17:52:51

Ir2max (high)	A	2309,4	1230 Q
Ir1max (high)	A	115,5	:115 5
pTap	%	0	c
Earthing	primary	isolated	isolated
Pfe	MX	2	c
uRr(1)	%	+	+
ukr(1)	%	6,5	5 33
Ur2	k۷	0,5	L.
Ur1	k۷	10	10
Sr	MVA	2	~
Vector	Group	Dy11	Yvn0
Name		T09B Trafo	Slinv 9 Trafo
۵		5176	5573
		41	42

2W Transformer

58

2008-09-11 17:52:51

Asynchronous Machine NEPLAN®

POW				5	5									5				5	5		5	5	5	5	5	5
		0	0	0,01	0,01	0	0	0	0	0	0	0	0	0,01	0	0	0	0,01	0,01	0	0,01	0,01	0,01	0,01	0,01	0,01
SIMPOV C2			1	0,7	0,7	1	+	1	1	1	1	1	1	0,7	1	1	-	0,7	0,7	1	0,7	0,7	0,7	0,7	0,7	0,7
SIMPOW C1		-	1	0,8	0,8	1	1	1	+		1	1	1	0,8	L	-	-	0,8	0,8	٢	0,8	0,8	0,8	0,8	0,8	0,8
Q oper	Mvar	0,3	0,3	0,18	0,18	0,046	0,0483	0,01	0,047	0,012	0,04413	0,056	0,25	0,63	0,03	0,03	0,04	0,5	0,5	0,04	0,58	0,39	0,05	0,048	0,048	0,048
P oper	MM	0,5	0,5	0,3	0,3	0,085	0,085	0,03	0,0765	0,029	0,0756	0,09	0,4	1,3	0,07	0,079	0,07	1,2	1,2	0,07	1,2	0,8	0,08	0,077	0,077	0,077
sr	%	1,333	1,333	1,2	1,2	1,333	1,333	1,333	1,333	1,333	1,333	1,333	0,8	0,7	1,333	1,333	1,333	0,733	0,733	1,333	0,5	0,7	1,333	1,333	1,333	1,333
cosphi start		0,387	0,387	0,35	0,35	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,35	0,3	0,3	0,3	0,35	0,35	0,3	0,3496	0,35	0,35	0,35	0,35	0,35
Conv. drive																										\bowtie
Pole pairs		2	2	4	4	2	2	2	2	2	2	2	3	3	2	2	2	2	2	2	3	3	2	2	2	2
Number		-	1	1	~	10	6	t	8	9	6	5	2	-	2	5	2	1	1	8	1	1	10	8	10	8
la/Ir		5	5	9	9	5	5	5	5	5	5	5	6,4	9	5	5	5	6,5	6,5	ى ك	9	9	5	5	5	5
eta		0,95	0,95	0,906	0,906	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,936	0,95	0,95	0,95	0,962	0,962	0,95	0,9228	0,936	0,95	0,95	0,95	0,95
cosphi		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	6'0	0,85	0,85	0,85	0,9	0,9	0,85	0,9	0,9	0,85	0,85	0,85	0,85
-	kА	1,0895	1,0895	0,5998	0,5998	0,1287	0,1287	0,1287	0,1287	0,0429	0,1287	0,1287	0,572	1,8505	0,1287	0,1287	0,1287	0,127	0,127	0,1287	0,168	1,8505	0,1287	0,1287	0,1287	0,1609
Ŀ	ž	0,525	0,525	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	10,5	10,5	0,5	9	0,5	0,5	0,5	0,5	0,4
s	MVA	0,991	0,991	0,519	0,519	0,111	0,111	0,111	0,111	0,037	0,111	0,111	0,495	1,603	0,111	0,111	0,111	2,31	2,31	0,111	1,746	1,603	0,111	0,111	0,111	0,111
Pr	MM	0,8	0,8	0,4	0,4	0,09	0,09	0,09	0,09	0,03	0,09	0,09	0,4	1,35	0,09	0,09	0,09	2	2	0,09	1,45	1,35	0,09	0,09	0,09	0,09
Name		(varn 1	(varn 2	SpW 1	SpW 2	ast T7	ast T3C	.ast T4	-ast T3A	.ast T6	.ast T10	.ast T2A	.ast T2C	Slipv 8	-ast T09A	.ast T1A	-ast T08	Raffinör 6	Raffinör 5	-ast T07	Slipv 7	Sulzer	.ast TA2	.ast TA3	.ast T5E	-ast TA4
₽	•	262 k	280 k	362 5	377 5	428 L	449 L	469 L	494 L	514 L	558 L	600 L	639 L	661 5	680 L	1 669	718 L	732 F	740 F	776 L	795 \$	971 5	987 1	000	025 L	044 [
	Unit	1	2 5	3	4 5	5 5	6 5	7 5	8	9 5	10 5	11 5	12 5	13 5	14 5	15 5	16 5	17 5	18 5	19 5	20 5	21 5	22 5	23 6	24 6	25 6

2008-09-11 17:28:49

Asynchronous Machine NEPLAN®

	_	,								,,,,,,,				
SIMPOW	ХО	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,015
SIMPOW	C2	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7	0,7
NOUNIS	G),8	,8),8	,8),8),8),8),8),8),8),8),8),8
O oner	242 2	0,048 (0,048 (0,04 (0,04 (0,04	0,034 (0,034 (0,048 (0,047 (0,04 (0,047 (0,053 (0,053 j(
P oner	- -	0,075	0,055	0,065	0,065	0,065	0,055	0,055	0,077	0,075	0,055	0,077	0,085	0,085
sr	5	1,333	1,333	1,333	1,333	1,333	1,333	1,333	1,333	1,333	1,333	1,333	1,333	1,333
cosphi	start	0,35	0,35	0,35	0,3496	0,3496	0,3496	0,3496	0,35	0,3496	0,3496	0,3496	0,3496	0,3496
Conv.	drive	X	\bowtie				\bowtie	\bowtie	\bowtie	X	X	M	M	\bowtie
Pole (pairs	2	2	2	5	2	2	2	2	5	5	5	2	2
Viimber	2												2	3
la/Ir	3	8	0	5	5	5	10	2	Ω Ω	5	5	5	5	5
eta	2	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95
cosnhi	Indeepa	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
lr.	:	0,1609	0,1609	0,1287	0,1287	0,1287	0,1609	0,1609	0,1609	0,1609	0,1287	0,1287	0,1287	0,1287
11r	5	0,4	0,4	0,5	0,5	0,5	0,4	0,4	0,4	0,4	0,5	0,5	0,5	0,5
Sr	5	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111	0,111
ą	•	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09	0,09
Name		Last T5G	Last T5H	Last T5K	Last T5L	Last T5M	Last T5N	Last T5P	Last T5Q	Last T5R	Last T5S	Last T5T	Last T5U	Last T5V
₽	<u>)</u>	6063	6609	6118	6137	6156	6175	6194	6213	6232	6251	6270	6289	6308
		26	27	28	29	30	31	32	33	34	35	36	37	38

2008-09-11 17:28:49

Asynchronous Machine NEPLAN®

	1	·····	·····								
Qtot		0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,01
Ptot		-2	-2	-2	-2	-2	-0,4	-0,4	-0,4	-0,4	-0,4
Slip		4	4	4	4	4	4	4	4	4	4
Double fed		\ltimes			×	\bowtie	×	X	\bowtie	\bowtie	Ø
cosphi start		0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35	0,35
Pole pairs		2	2	2	2	2	2	2	2	2	2
Number			1	1	1	1	1	ł	1	1	1
la/Ir		5	5	5	5	5	5	5	5	5	5
eta		0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95	0,95
cosphi		0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
느		2,5905	2,5905	2,5905	2,5905	2,5905	0,829	0,829	0,829	0,829	0,829
Ŀ		0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69	0,69
ŝ		3,096	3,096	3,096	3,096	3,096	0,991	0,991	0,991	0,991	0,991
Ł		2,5	2,5	2,5	2,5	2,5	0,8	0,8	0,8	0,8	0,8
Name		WM1	0 WM2	7 WM3	≰WM4	I WM5	≩ WM6	5 WM7	2 WM8	≩WM9	3 WM10
9		174215	174260	174277	174294	174311	174328	174345	174362	174375	17439(
	-	-	2	e	4	5	9	7	8	6	10

2008-11-19 17:38:59

Synchronous Machine NEPLAN®

		16111			
Ŧ	s	4	9,5	9,5	10,7
Model		Classica	Classica I	Classica I	Classica I
Cos oper		0	~	.	-
P max	ΜM	4	5	7	2,85
Amortisseur Winding					
Ufmax/ur	1	1.3	1.3	1.3	1.3
x(0)	%	5	10	10	10
x(2)	%	15	35	35	35
xd" sat	%	11	20	20	20
xd' sat	%	21	30	30	30
xd sat	%	120	144	144	144
cosphi	•	0,86	6 ' 0	6 ' 0	.
Ŀ	k۷	10,5	10	10	3,6
Sr	MVA	12	2,222	2,222	2'8 2
Type		ASEA GT	Strömberg	Strömberg	Strömberg
Name	•	Gen ÅK	Slipv 10	Slipv 9	Slipv 6
	Unit	+	7	3	4

2008-11-19 17:31:31

Load NEPLAN®

2	lam	e	٩	σ	-	cos(phi)	R-L Model	Phases
5399 Last T3E	8		0,05	0,031	0,068	0,85	Wye	L1L2L3N
5833 Last T09L	6		0,6	0,4	0,833	0,832	Wye	L1L2L3N
5846 Last T09C	6		0,15	0,1	0,208	0,832	Wye	L1L2L3N
5862 Last T09E	6	~ ~	0,2	0,15	0,289	0,8	Wye	L1L2L3N
5951 Last TA6	A6		0,04	0,03	0,058	0,8	Wye	L1L2L3N
3083 TA6 UPS	PS		0,08	0,06	0,115	0,8	Wye	L1L2L3N

2008-09-11 17:06:49

							Line								
	₽	Name	Type	Length	Number	R(1)	X(1)	C(1)	R(0)	(0)X	C(0)	Irmax (low)	Temp. end of SC	d Oper Temp	Max OperTemp
				к к		Ohm/	Ohm/	uF/	Ohm/	Ohm/	uF/	A	۰	•	o
-	81	Friledning	FerAl 1x592	0,25	4	0,0506	0,09111	0,67	2,45	0,3417	0,62	661	160	40	80
2	2926	Linje 2A	FCKJ 1x400	0,45	33	0,081	0,1696	0,52	0,2025	0,636	0,57	730	160	40	80
3	2941	Linje 1B	FCKJ 1x500	0,015	2	0,064	0,1665	0,61	0,16	0,62438	0,62	810	160	40	80
4	2936	Linje 2B	FCKJ 1x500	0,015	2	0,064	0,1665	0,61	0,16	0,62438	0,62	810	160	40	80
5	2931	Linje 1A	FCKJ 1x400	0,45	e	0,081	0,1696	0,52	0,2025	0,636	0,57	730	160	40	80
9	2967	Kbl KB Alloys	Fulkabel	0,001	-	0,2	0,07	0,579999	2	0,26	0,55999	1000	160	40	80
7	3022	Kbl Skena ÅKC	AXKJ 3x300/25	0,1	2	0,1	0,08168	0,47	2,5	0,3063	0,515	375	160	40	80
∞	3042	Kbl Skena C PM5	FCKJ 1x400	0,3	-	0,081	0,1696	0,52	0,2025	0,636	0,57	730	160	40	80
ი	3114	Kbl Trafo T10	AXKJ 3x240/25	0,194	F	0,125	0,08482	0,43	2,525	0,318075	0,459	340	250	40	90
10	3175	Kbl Trafo Slipv10	AXKJ 3x150/25	0,07	+	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
11	3195	Kbl Raff5	AXQJ 3x240/25	0,04	1	0,125	0,097	0,42	2,525	0,3586575	0,449	340	250	40	90
12	3236	Kbl Raff6	AXQJ 3x240/25	0,04	-	0,125	0,097	0,42	2,525	0,3586575	0,449	340	250	40	90
13	3256	Kbl Trafo T6	FCKJ 3x70	0,12	-	0,279	0,0974	0,3	3,879	0,365	0,21	130	160	40	80
14	3372	Kbl Trafo T3A	AXKJ 3x150/25	0,08	-	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
15	3377	Kbl Trafo T4	AXKJ 3x150/25	0.19	+	0.206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
16	3382	Kbl Trafo T3C	AXKJ 3x150/25	0.09	-	0.206	0.09111	0.35	2.606	0.3416625	0.386	260	250	40	90
17	3387	Kbl Trafo T7	AXKJ 3x150/25	0,03	1	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
18	3392	Kbl Trafo T3B	FCKJ 3x70	0,1	-	0,279	0,0974	0,3	3,879	0,365	0,21	130	160	40	80
19	3397	Kbl Trafo T26	AXKJ 3x240/25	0,114	1	0,125	0,08482	0,43	2,525	0,318075	0,459	340	250	40	90
20	3461	Kbl Trafo Slipv9	AXKJ 3x150/25	0,07	~	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
21	3517	Kbl Trafo T08	AXKJ 3x240/25	0,1	-	0,125	0,08482	0,43	2,525	0,318075	0,459	340	250	40	90
22	3522	Kbl Trafo T07	AXKJ 3x120/25	0,15	-	0,258	0,0943	0,32	3,2575	0,353	0,35	220	160	40	80
23	3527	Kbl Trafo T06	AXKJ 3x150/25	0,09	-	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
24	3532	Kbl Trafo T05	AXKJ 3x240/25	0,095	1	0,125	0,08482	0,43	2,525	0,318075	0,459	340	250	40	90
25	3607	Kbl Trafo T2A	AXKJ 3x150/25	0,07	2	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
26	3612	Kbl Trafo T2C	FCKJ 3x70	0,01	-	0,279	0,0974	0,3	3,879	0,365	0,21	130	160	40	80
27	3618	Kbl Trafo T2E	AXKJ 3x150/25	0,095	~	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
28	3623	Kbl Trafo T09A	AXKJ 3x150/25	0,1	1	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	0 0
29	3628	Kbl Trafo T1A	AXKJ 3x150/25	0,24	1	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	0 0
30	4065	Kbl Trafo TA6	FCKJ 3x70	0,02	٢	0,279	0,0974	0,3	3,879	0,365	0,21	130	160	40	80
31	4120	Kbl Trafo TA1	FCKJ 3x120	0,02	+	0,263	0,0943	0,38	3,863	0,353	0,27	145	160	40	80
32	4161	Kbl Trafo TA2	AXQJ 3x150/25	0,015	-	0,206	0,107	0,35	2,606	0,3824562	0,386	0	250	40	90
33	4202	Kbl Trafo TA3	FCKJ 3x120	0,02	1	0,263	0,0943	0,38	3,863	0,353	0,27	145	160	40	80
34	4243	Kbl Trafo T5E	FCKJ 3x120	0,03	1	0,263	0,0943	0,38	3,863	0,353	0,27	145	160	40	80
35	4285	Kbl Trafo TA4	AXKJ 3x150/25	0,1	-	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	06
36	4331	Kbl Trafo T5G	AXKJ 3x150/25	0,02	ŕ	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
37	4405	Kbl Trafo T5H	AXKJ 3x150/25	0,02	1	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	90
38	4450	Kbl Trafo T5K	AXKJ 3x150/25	0,1	1	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	00
39	4495	Kbl Trafo T5L	AXKJ 3x150/25	0,1	1	0,206	0,09111	0,35	2,606	0,3416625	0,386	260	250	40	06
40	4542	Kbl Trafo T5M	FCKJ 3x150	0,1	1	0,214	0,0943	0,42	2,614	0,353	0,3	165	160	40	80

2008-09-11 17:02:43

1/3
	Max OperTemp	0	06	90	90	90	90	90	90	90	90	80	90	90	90	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	90	80	80	80	80	80
	Oper Temp	۰	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
	Temp. end of SC	0	250	250	250	250	250	250	250	250	250	160	250	250	250	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	250	160	160	160	160	160
	Irmax (Iow)	A	60	60	260	260	960	340	340	340	340	730	340	340	340	375	1000	260	260	260	260	260	260	260	260	260	260	1000	1000	4000	4000	4000	4000	4000	260	4000	260	4000	260	260	4000	260
	C(0)	uF/	0,386	0,386	0,386 2	0,386 2	0,386	0,459	0,459	0,459	0,459	0,57	0,459	0,459	0,459	0,515	0	0,56	0,56	0,56	0,55999	0,56	0,55999	0,559999	0,559999	0,55999	0,55999	0,55999	0,55999		0	0	0	0	0,56	0	0,386	0	0,56	0,56	0	0,56
	(0)X	Ohm/	0,3416625	0,3416625	0,3416625	0,3416625	0,3416625	0,318075	0,318075	0,318075	0,318075	0,636	0,318075	0,318075	0,318075	0,3063	0,016	0,25913	0,25913	0,25913	0,25913	0,25913	0,25913	0,25913	0,25913	0,25913	0,25913	0,26	0,26	0,016	0,016	0,016	0,016	0,016	0,25913	0,016	0,3416625	0,016	0,25913	0,25913	0,016	0,25913
	R(0)	Ohm/	2,606	2,606	2,606	2,606	2,606	2,525	2,525	2,525	2,525	0,2025	2,525	2,525	2,525	2,5	0,048	2,606	2,606	2,606	2,606	2,606	2,606	2,606	2,606	2,606	2,606	2	2	0,048	0,048	0,048	0,048	0,048	2,606	0,048	2,606	0,048	2,606	2,606	0,048	2,606
	C(1)	uF/	0,35	0,35	0,35	0,35	0,35	0,43	0,43	0,43	0,43	0,52	0,43	0,43	0,43	0,47	0	0,58	0,58	0,58	0,579999	0,579999	0,579999	0,579999	0,579999	0,579999	0,579999	0,579999	0,579999	0	0	0	0	0	0,58	0	0,35	0	0,58	0,58	0	0,58
Line	X(1)	Ohm/	0,09111	0,09111	0,09111	0,09111	0,09111	0,08482	0,08482	0,08482	0,08482	0,1696	0,08482	0,08482	0,08482	0,08168	0,01	0,0691	0,0691	0,0691	0,0691	0,0691	0.0691	0,0691	0,0691	0,0691	0,0691	0,07	0,07	0,01	0,01	0,01	0,01	0,01	0,0691	0,01	0,09111	0,01	0,0691	0,0691	0,01	0,0691
	R(1)	Ohm/	0,206	0,206	0,206	0,206	0,206	0,125	0,125	0,125	0,125	0,081	0,125	0,125	0,125	0,1	0,008	0,206	0,206	0,206	0,206	0,206	0,206	0,206	0,206	0,206	0,206	0,2	0,2	0,008	0,008	0,008	0,008	0,008	0,206	0,008	0,206	0,008	0,206	0,206	0,008	0,206
	Number		-	1	1	2	1	1	1	1	1	+	1	1	1	2	1	1	1	1	1	1	1	1	1	+	1	1	+	1	1	1	1		10	+	+	+	8	7	1	12
	Length	т,	£.	,12	,15	,05	,15	,1	,05	,05	,05),3),075),02),02),025	0,005),1),1	0,1),1),1),1	0,1),1	0,1	0,1	0,001	0,001	0,005	0,005	0,005	0,005	<u></u> ,01	0,005	0,005	0,03	0,005	0,03	0,025	0,005	0,025
	Type		AXKJ 3x150/25 0	AXKJ 3x150/25 [0	AXKJ 3x150/25 0	AXKJ 3x150/25 0	AXKJ 3x150/25 0	AXKJ 3x240/25 0	AXKJ 3x240/25 0	AXKJ 3x240/25 (AXKJ 3x240/25 0	FCKJ 1x400 (AXKJ 3x240/25 (AXKJ 3x240/25 (AXKJ 3x240/25 (AXKJ 3x300/25 (NOBADUCT GF (AKKJ 3x150/41 (AKKJ 3x150/41 (AKKJ 3x150/41 (AKKJ 3x150/41 (AKKJ 3x150/41 (AKKJ 3x150/41 (AKKJ 3x150/41 (AKKJ 3x150/41	AKKJ 3x150/41	AKKJ 3x150/41 (Fulkabel	Fulkabel	NOBADUCT GF	NOBADUCT GF	NOBADUCT GF	NOBADUCT GF	NOBADUCT GF	AKKJ 3x150/41	NOBADUCT GF	AXKJ 3x150/25	NOBADUCT GF	AKKJ 3x150/41	AKKJ 3x150/41	NOBADUCT GF	AKKJ 3x150/41
	Name		Kbi Trafo T5N	Kbl Trafo T5P	Kbl Trafo T5Q	KbI KB PM5	Kbl Trafo T5R	Kbl Trafo T5S	Kbl Trafo T5T	Kbl Trafo T5U	Kbl Trafo T5V	Kbl Skena D PM5	Kbl Trafo T09D	Kbl Trafo T09C	Kbl Trafo T09B	Kbl Generator	T26 Trafo till skena	Kbl 3 Kvarn 1	Kbl 2 Kvarn 1	Kbl 1 Kvarn 1	Kbl 1 Kvarn 2	Kbl 5 Kvarn 1	Kbl 4 Kvarn 1	Kbl 5 Kvarn 5	Kbl 4 Kvarn 2	Kbl 3 Kvarn 2	Kbl 2 Kvarn 2	Kbl SpW2	Kbl SpW1	T7 Trafo till skena	T3C Trafo till skena	T4 Trafo till skena	T3A Trafo till skena	T3B Trafo till skena	T6 Trafo till skena	T10 Trafo till skena	Kbl Slipv 10	T2A Trafo till skena	T2C Trafo till skena	Kbl Slipv 8	T09A Trafo till skena	T1A Trafo till skena
	Q		4587	4632	4698	4743	4799	4844	4890	4935	4980	5007	5073	5133	5172	5200	5251	5308	5303	5298	5323	5318	5313	5343	5338	5333	5328	5391	5386	5417	5437	5458	5483	5475	5503	5547	5539	5588	5646	5665	5684	5703
			41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	62	80

2008-09-11 17:02:43

Max OperTemp	0	80	90	80	90	90	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80	80
Oper Temp	•	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40	40
Temp. end of SC	•	160	250	160	250	250	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
Irmax (low)	A	1000	260	4000	0	340	4000	4000	4000	4000	260	260	260	4000	4000	260	260	4000	4000	4000	4000	4000	4000	4000	260	260	260	4000
C(0)	uF/	0	0,386	0	0,386	0,459	0	0	0	0	0,56	0,56	0,56	0	0	0,56	0,56	0	0	0	0	0	0	0	0,56	0,56	0,56	0
(0)X	Ohm/	0,016	0,3416625	0,016	0,3824562	0,318075	0,016	0,016	0,016	0,016	0,25913	0,25913	0,25913	0,016	0,016	0,25913	0,25913	0,016	0,016	0,016	0,016	0,016	0,016	0,016	0,25913	0,25913	0,25913	0,016
R(0)	Ohm/	0,048	2,606	0,048	2,606	2,525	0,048	0,048	0,048	0,048	2,606	2,606	2,606	0,048	0,048	2,606	2,606	0,048	0,048	0,048	0,048	0,048	0,048	0,048	2,606	2,606	2,606	0,048
c(1)	uF/	0	0,35	0	0,35	0,43	0	0	0	0	0,58	0,58	0,58	0	0	0,58	0,58	0	0	0	0	0	0	0	0,58	0,58	0,58	0
X(1)	Ohm/	0,01	0,09111	0,01	0,107	0,08482	0,01	0,01	0,01	0,01	0,0691	0,0691	0,0691	0,01	0,01	0,0691	0,0691	0,01	0,01	0,01	0,01	0,01	0,01	0,01	0,0691	0,0691	0,0691	0,01
R(1)	Ohm/	0,008	0,206	0,008	0,206	0,125	0,008	0,008	0,008	0,008	0,206	0,206	0,206	0,008	0,008	0,206	0,206	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,206	0,206	0,206	0,008
Number		-	۲	+	+	2	1	1	1	L	7	10	10	1	1	17	17	1	1	٢	1	1	1	+	5	14	12	1
Length	т т	0,005	0,025	0,005	0,025),03	0,005	0,005	0,005	0,005	0,05	0,01	0,01	0,005	0,005	0,06	0,06	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,01	0,015	0,015	0,005
Type		NOBADUCT GF	AXKJ 3x150/25 (NOBADUCT GF	AXQJ 3x150/25	AXKJ 3x240/25	NOBADUCT GF	NOBADUCT GF	NOBADUCT GF	NOBADUCT GF	AKKJ 3x150/41	AKKJ 3x150/41	AKKJ 3x150/41	NOBADUCT GF	NOBADUCT GF	AKKJ 3x150/41	AKKJ 3x150/41	NOBADUCT GF	AKKJ 3x150/41	AKKJ 3x150/41	AKKJ 3x150/41	NOBADUCT GF						
Name		T08 Trafo till skena	Kbl Slipv 9 /	T07 Trafo till skena	Kbl Slipv 7	Kbl Slipv 6	T09D Trafo till skena	T09C Trafo till skena	T09B Trafo till skena	TA6 Trafo till skena	Kbl Sulzer	TA2 Trafo till skena	TA3 Trafo till skena	T5E Trafo till skena	TA4 Trafo till skena	T5G Trafo till skena	T5H Trafo till skena	T5K Trafo till skena	T5L Trafo till skena	T5M Trafo till skena	T5N Trafo till skena	T5P Trafo till skena	T5Q Trafo till skena	T5R Trafo till skena	T5S Trafo till skena	T5T Trafo till skena	T5U Trafo till skena	T5V Trafo till skena
٩		5722	5761	5780	5799	5816	5825	5850	5866	5943	5960	5991	6010	6029	6048	6067	6103	6122	6141	6160	6179	6198	6217	6236	6255	6274	6293	6312
		81	82	83	84	85	86	87	88	89	06	91	92	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107

Line

66

2008-09-11 17:02:43

Shunt NEPLAN®

67

	 ٩	Name	ŗ	P(1)	Q(1)	P(0)	Q(0)	RE	XE	Active	U set	Connection	Regulation	Phases	From	ő
			Ş	MM	MVar	ΜW	MVar	Ohm	Ohm	%	%					
[2976	KB Alloys	11	0	-16,16	0	0	0	0	100	100	Wye	fixed	L1L2L3N	KB In	М
	4763	KB PM5	10,5	0	-3,5	0	0	0	0	100	100	Wye	fixed	L1L2L3N	KB PM5 In	\bowtie

2008-09-11 16:53:49

Summary NEPLAN®

	From	То	P Loss	Q Loss	P Imp	Q Imp	P Gen	Q Gen	P Load	Q Load	Qc Shunt	
	Area/Zone	Area/Zone	MM	MVar	MM	MVar	MM	MVar	MM	MVar	MVar	
۳	Network		0,527	1,99	30,085	2,377	42,085	2,327	41,559	18,521	18,184	
2	Alloys/Holmen		0,527	1,99	0	0	42,085	2,327	41,559	18,521	18,184	
З	Alloys		0,073	0,602	-15,012	-10,51	30,085	2,377	15	6	14,735	
4	Hästskon		0,242	0,595	16,662	6,804	0	0	16,42	6,208	0	
S	PM5		0,117	0,355	9,306	2,569	0	0	9,189	5,663	3,449	
9	Vindpark		0,085	0,422	-9,915	0,472	10	-0,05	0	0	0	
7	ÅKC		0,01	0,015	-1,04	0,665	2	0	0,95	0,65	0	
ω												
၈	Un		P Loss Li	Q Loss Li	P Loss Tr	Q Loss T						
10	k۷		MW	MVar	ΜW	MVar						
11	0,4		0,003	0,001	0	0						
12	0,5		0,031	0,012	0	0						
13	3,6		0,001	0,001	0	0						
14	6,3		0	0	0	0						
15	10,5		0,151	0,041	0,28	1,331						
16	130		0	0	0,061	0,604						
17												
18	From	To			P Tie	Q Tie	P Tie Sch					
19	Area/Zone	Area/Zone			ΜW	MVar	ΜW					
20	Alloys	Hästskon			24,928	10,038						
21	Alloys	Vindpark			-9,915	0,472						
22	Hästskon	PM5			9,306	2,569						
23	Hästskon	ÅKC			-1,04	0,665						

From	То	P Loss	Q Loss	P Imp	Q lmp	P Gen	Q Gen	ΡΓο
rea/Zone	Area/Zone	MM	MVar	MM	MVar	M	MVar	ž
vork		0,527	1,99	30,085	2,377	42,085	2,327	41,559
/s/Holmen		0,527	1,99	0	0	42,085	2,327	41,559
/S		0,073	0,602	-15,012	-10,51	30,085	2,377	15
skon		0,242	0,595	16,662	6,804	0	0	16,42
		0,117	0,355	9,306	2,569	0	0	9,189
park		0,085	0,422	-9,915	0,472	10	-0,05	0
		0,01	0,015	-1,04	0,665	2	0	0,95
		P Loss Li	Q Loss Li	P Loss Tr	Q Loss T			
		MM	MVar	ΜW	MVar			
		0,003	0,001	0	0			
		0,031	0,012	0	0			
		0,001	0,001	0	0			
		0	0	0	0			
		0,151	0,041	0,28	1,331			
		0	0	0.061	0,604			

D Resultattabeller Neplan

Node results NEPLAN®

Zone		PM5	PM5	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	Hästskon	PM5	PM5	PM5	Hästskon
Description																										
Q Shunt	MVar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Q Gen	MVar	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P Gen	MM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Q Load	MVar	0	0	0,5	0,5	0	0	0	0,58	0,63	0	0	0	0	0	0	0	0	0	0	0,18	0,18	0,39	0	0	0
P Load	ΜW	0	0	1,2	1,2	1	0	2,5	1,2	1,3	1	0	0	0	0	0	0	0	0	0	0,3	0,3	0,8	0	0	0
U ang	0	-2,1	-2,1	-2	-2	-2	-2	9-	-3,3	-4,2	-2,1	-2	-2	-9	-2	-3,3	-2	-4,2	-2	-2	-3,7	-3,7	-3,1	-3,1	-2,1	ر ،
5	%	99,18	99,37	99,47	99,47	99,45	99,46	99,5	97,85	98,64	99,4	99,41	99,46	99,54	99,44	97,87	99,4	99,09	99,39	99,41	96,93	96,93	97,23	97,79	99,17	98,24
∍	۶	10,414	10,434	10,444	10,444	10,443	10,443	3,582	6,165	0,493	10,437	10,438	10,444	3,583	10,441	6,166	10,437	0,495	10,436	10,438	0,485	0,485	0,486	0,489	10,413	0,491
Name		PM5 D	PM5 Ut	Raff 5 In	Raff 6 In	Slipv 10 In	Slipv 10 Ut	Slipv 6 In	Slipv 7 In	Slipv 8 In	Slipv 9 In	Slipv 9 Ut	Slipv10 Upp	Slipv6 Nedsi	Slipv6 Uppsi	Slipv7 Nedsi	Slipv7 Uppsi	Slipv8 Nedsi	Slipv8 Uppsi	Slipv9 Uppsi	Sp-W 1 In	Sp-W 2 In	Sulzer In	Sulzer Nedsi	Sulzer Uppsi	T07 Nedsida
₽		5004	4998	3192	3233	5530	5527	5810	5794	5660	5755	5576	3166	3909	3503	3887	3500	3972	3576	3458	5365	5368	5957	4128	4126	3865
		27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

	₽	Name	-	5	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			ž	%	•	MM	MVar	MM	MVar	MVar		
52	5775	T07 Stv	0,491	98,23	ę	0,56	0,32	0	0	0		Hästskon
53	3486	T07 Uppsida	10,443	99,45	-2	0	0	0	0	0		Hästskon
54	3843	T08 Nedsida	0,496	99,11	-2,3	0	0	0	0	0		Hästskon
55	5717	T08 Stv	0,496	99,11	-2,3	0,14	0,08	0	0	0		Hästskon
56	3466	T08 Uppsida	10,445	99,48	-2	0	0	0	0	0		Hästskon
57	3981	T09A Nedsid	0,501	100,12	-2,3	0	0	0	0	0		Hästskon
58	5679	T09A Stv	0,501	100,12	-2,3	0,14	0,06	0	0	0	•••••	Hästskon
59	3601	T09A Uppsid	10,44	99,43	-2	0	0	0	0	0		Hästskon
60	5180	T09B Nedsid	0,494	98,89	-2,3	0	0	0	0	0	•••••	ÅKC
61	5861	T09B Stv	0,494	98,89	-2,3	0,2	0,15	0	0	0		ÅKC
62	5178	T09B Uppsid	10,446	99,48	-2	0	0	0	0	0		ÅKC
63	5141	T09C Nedsic	€0,495	99,08	-2,2	0	0	0	0	0		AKC
64	5845	T09C Stv	0,495	99,08	-2,2	0,15	0,1	0	0	0	0	ÅKC
65	5139	T09C Uppsic	ŧ 10,446	99,48	-2	0	0	0	0	0		ÅKC
66	5095	T09D Nedsic	0,489	97,84	ر م	0	0	0	0	0	•	ÅKC
67	5822	T09D Stv	0,489	97,82	ကု	0,6	0,4	0	0	0		ÅKC
68	5070	T09D Uppsic	10,445	99,47	-2	0	0	0	0	0		ÅKC
69	3633	T10 Nedsida	0,49	98,06	-3,1	0	0	0	0	0		Hästskon
70	5544	T10 Stv	0,49	98,05	-3,1	0,454	0,265	0	0	0	0	Hästskon
71	3108	T10 Uppsida	10,444	99,46	-2	0	0	0	0	0	0	Hästskon
72	3984	T1A Nedsida	0,493	98,52	-2,9	0	0	0	0	0		Hästskon
73	5698	T1A Stv	0,492	98,45	-2,9	0,395	0,15	0	0	0		Hästskon
74	3604	T1A Uppsida	10,443	99,46	-2	0	0	0	0	0		Hästskon
75	3820	T26 Nedsida	0,498	<u>99,69</u>	-3,5	0	0	0	0	0		Hästskon
76	5248	T26 Stv	0,498	99,66	-3,5	0	0	0	0	0		Hästskon

	₽	Name	5	э	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			k۷	%	•	MM	MVar	MM	MVar	MVar		
17	3309	T26 Uppsida	10,437	99,4	-2	0	0	0	0	0		Hästskon
78	3931	T2A Nedsida	0,491	98,28	-2,8	0	0	0	0	0		Hästskon
79	5585	T2A Stv	0,491	98,27	-2,8	0,45	0,28	0	0	0		Hästskon
80	3537	T2A Uppsida	10,445	99,47	-2	0	0	0	0	0	0	Hästskon
81	3950	T2C Nedsida	0,497	99,48	-3,6	0	0	0	0	0	0	Hästskon
82	5638	T2C Stv	0,496	99,18	-3,6	0,8	0,5	0	0	0	0	Hästskon
83	3540	T2C Uppsida	10,445	99,47	-2	0	0	0	0	0		Hästskon
84	3684	T3A Nedsida	0,493	98,66	-3,2	0	0	0	0	0		Hästskon
85	5480	T3A Stv	0,493	98,64	-3,2	0,612	0,376	0	0	0		Hästskon
86	3294	T3A Uppsida	10,438	99,41	-2	0	0	0	0	0		Hästskon
87	3797	T3B Nedsida	0,485	97	-3,7	0	0	0	0	0	o	Hästskon
88	5348	T3B Stv	0,485	96,96	-3,7	0,05	0,031	0	0	0		Hästskon
89	3306	T3B Uppsida	10,443	99,46	-2	0	0	0	0	0		Hästskon
06	3730	T3C Nedsida	0,492	98,49	-3,3	0	0	0	0	0		Hästskon
91	5434	T3C Stv	0,492	98,47	-3,3	0,765	0,435	0	0	0	0	Hästskon
92	3300	T3C Uppsida	10,443	99,46	-2	0	0	0	0	0		Hästskon
93	3707	T4 Nedsida	0,498	99,65	-2	0	0	0	0	0		Hästskon
94	5455	T4 Stv	0,498	99,65	-2	0,03	0,01	0	0	0		Hästskon
95	3297	T4 Uppsida	10,445	99,48	-2	0	0	0	0	0		Hästskon
96	4251	T5E Nedsida	0,493	98,66	4	0	0	0	0	0		PM5
97	6024	T5E Stv	0,493	98,64	4	0,77	0,48	0	0	0		PM5
98 8	4249	T5E Uppsida	10,413	99,17	-2,1	0	0	0	0	0		PM5
66	4339	T5G Nedsid	0,394	98,62	-3,2	0	0	0	0	0		PM5
100	6062	T5G Stv	0,393	98,28	-3,2	0,6	0,384	0	0	0		PM5
101	4337	T5G Uppsid	10,42	99,24	-2,2	0	0	0	0	0		PM5

₽	Name	Þ	n	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
		k۷	%	•	MM	MVar	MM	MVar	MVar		
4412	T5H Nedsida	0,399	99,83	-2,4	0	0	0	0	0		PM5
6098	T5H Stv	0,399	99,77	-2,4	0,11	0,096	0	0	0	¢	PM5
4410	T5H Uppsida	10,42	99,24	-2,2	0	0	0	0	0	¢	PM5
4457	T5K Nedsida	0,49	98,07	<u>ې</u>	0	0	0	0	0	•	PM5
6117	T5K Stv	0,49	98,06	ကု	0,325	0,2	0	0	0	¢	PM5
4455	T5K Uppsida	10,42	99,23	-2,2	0	0	0	0	0	¢	PM5
4502	T5L Nedsida	0,492	98,38	-3,4	0	0	0	0	0	¢	PM5
6136	T5L Stv	0,492	98,37	-3,4	0,325	0,2	0	0	0	0	PM5
4500	T5L Uppsida	10,42	99,23	-2,2	0	0	0	0	0	•····	PM5
4549	T5M Nedsid	0,502	100,47	-3	0	0	0	0	0	¢	PM5
6155	T5M Stv	0,502	100,46	<u>ې</u>	0,325	0,2	0	0	0	•••••	PM5
4547	T5M Uppsid	10,42	99,23	-2,2	0	0	0	0	0	•·····	PM5
4594	T5N Nedsida	0,396	99,08	-2,9	0	0	0	0	0	•·····	PM5
6174	T5N Stv	0,396	99,08	-2,9	0,11	0,068	0	0	0	•	PM5
4592	T5N Uppsida	10,42	99,24	-2,2	0	0	0	0	0	¢	PM5
4639	T5P Nedsida	0,399	99,72	-2,5	0	0	0	0	0	••••••	PM5
6193	T5P Stv	0,399	99,72	-2,5	0,11	0,068	0	0	0	•····	PM5
4637	T5P Uppsida	10,42	99,24	-2,2	0	0	0	0	0	¢	PM5
4705	T5Q Nedsid	0,394	98,44	-4,3	0	0	0	0	0		PM5
6212	T5Q Stv	0,394	98,41	-4,3	0,616	0,384	0	0	0	·····	PM5
4703	T5Q Uppsid	10,418	99,22	-2,2	0	0	0	0	0	¢	PM5
4806	T5R Nedsida	0,394	98,49	-2,7	0	0	0	0	0	·····	PM5
6231	T5R Stv	0,394	98,48	-2,7	0,15	0,094	0	0	0		PM5
4804	T5R Uppsida	10,42	99,24	-2,2	0	0	0	0	0		PM5
4851	T5S Nedsida	0,5	100,02	-2,3	0	0	0	0	0	•••••	PM5

0000	0000000					000000000000000000000000000000000000000		
000	0000000	000000000000	000000000000	<u> </u>	000000000000000000000000000000000000000	000000000000000000000000000000000000000	<u> </u>	000000000000000000000000000000000000000
000	0 0 0 0 0 0	0000000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	<u> </u>	<u> </u>	<u> </u>
0	00000	0000000	0000000000					
0	0 0,636 0 0	0 0,636 0 0 0,689 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0,636 0 0 0,689 0 0,072 0 0 0,072 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
00	,02 0,6	,02 0,6 0 0 105 0,6 0 0,6	,02 0,6 0 0 105 0,6 0 0 0 0 0 0	.02 0.6 0 0 105 0,6 174 0,0 174 0,0 185 0,4	.02 0.6 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,02 0,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.05 0.05 0.05 0.0 0 0 0 0 0 0 0 0 0 0	.02 0.0 0 0 105 0 1174 0 <tr< td=""></tr<>
-3,9 0	-2.2 0	-2,2 0 -3,7 0 -3,7 1,10	2,2 0 3,7 0 3,7 0 2,2 0 2,3 0,17	2.2.2 0 3.7 0 3.7 1,10 2.2.3 0 2.3 0,17 -2.3 0,17 -3.3 0,85 -3.3 0,85	2.22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.22 0 1 1.10 3.7 0 0 2.23 0 1.17 2.33 0 0 3.33 0 0 3.33 0 0.85 3.9 0 0.8 3.9 0 0 3.9 0 0 3.9 0 0 2.1 0 0	2.2.2 0 3.7 0 3.7 1,10 2.2.2 0 2.3 0,17 2.3 0,17 3.3 0,85 3.3 0,85 3.3 0,85 3.3 0,85 3.3 0,85 3.3 0,85 3.5 0 3.5 0 3.5 0 0,61 1,0 3.5 0 0,61 1,0 0,17 0,17 0,17 0,17 0,17 0,17 0,17	2.22 0 3.7 0 3.7 10 2.23 0 2.33 0 3.33 0 3.33 0 3.39 0 3.5 0 3.5 0 0.61 2.1 0 2.1 0 2.1 0 2.1 0
99,23 -2 99,9 -3 99,78 -3	99.23 -2	99,23 -2 99,31 -3 99,28 -3	39,23 -2 39,31 -3 39,28 -3 39,28 -3 39,15 -2 39,16 -2	99,23 -2 99,31 -3 99,28 -3 99,23 -2 99,15 -2 99,17 -2 99,73 -3 97,7 -3	99,23 2 99,21 3 99,28 3 99,28 3 99,15 2 99,17 2 97,73 3 99,47 2 98,83 3 38,83 3	99,23 2 90,23 2 90,31 3 99,28 3 99,28 3 99,15 2 99,15 2 99,16 2 99,17 2 99,17 3 99,17 2 99,17 2 99,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2	99,23 2 99,31 3 99,31 3 99,28 3 99,15 2 99,15 2 97,7 3 39,77 2 39,47 2 39,43 3 30,47 2 30,47 2 30,57 2	99,23 2 90,23 2 90,31 3 90,28 3 90,28 3 90,28 3 90,15 2 90,16 2 91,15 2 90,17 2 91,17 2 98,17 2 99,17 2 39,16 3 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2 39,17 2
42 00 00 00 00 00	419 9	419 97 96 90 90 90 90 90 90	419 90 90 90 90 90 90 90 90 90 90 90 90 90	89 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	97 97<	419 997 996 996 996 996 996 996 910 996 910 910 910 910 910 910 910 910 910 910	91 419 997 997 9997 9997 9997 9997 9997	419 90 97 99 98 99 99 96 99 96 99 96 99 96 99 96 99 96 99 96 99 96 99 96 99 96 99 96 90 99 91 94 91 91 91 91 91 91 91 91 91 91
psida 10,4 dsida 0,5	stv 0,49 psida 10.4	štv 0,49 psida 10,4 dsida 0,49 Štv 0,49 psida 10,4	NV U, 49 psida 0, 49 dsida 0, 49 Stv 0, 49 Stv 0, 49 sida 0, 49 psida 0, 49	NV 0,49 pssida 10,49 3sida 0,49 NV 0,49 Stv 0,49 Psida 10,4 V 0,49 V 0,49 V 0,49 Sida 0,49 V 0,49 V 0,49 Sida 0,49 V 0,49	No. No. <td>No. No. No.<td>Siv 0,49 pssida 10,49 it 0,499 it 0,499 it 0,430 it 0,449 it 0,446 it 0,446 it 0,448 it<</td> 0,458</td> <td>Sitv 0,49 pssida 10,49 Strida 0,490 Strida 0,449 Strida 10,449 Strida 10,449 Viv 0,449 Strida 10,449 Viv 0,449 Viv 0,449 Viv 0,449 Viv 0,449 Strida 0,443 Old 0,443 Strida 0,443 Old 0,443 Strida 0,443 Old 0,433 Strida 0,443 Old 0,433 Old 0,433 Old 0,433 Old 0,433 Old 0,433 Old 0,433 Strida 0,455 Strida 0,455 Strida 0,455 Strida 0,455 Strida 0,455 Strida 10,455 </td>	No. No. <td>Siv 0,49 pssida 10,49 it 0,499 it 0,499 it 0,430 it 0,449 it 0,446 it 0,446 it 0,448 it<</td> 0,458	Siv 0,49 pssida 10,49 it 0,499 it 0,499 it 0,430 it 0,449 it 0,446 it 0,446 it 0,448 it<	Sitv 0,49 pssida 10,49 Strida 0,490 Strida 0,449 Strida 10,449 Strida 10,449 Viv 0,449 Strida 10,449 Viv 0,449 Viv 0,449 Viv 0,449 Viv 0,449 Strida 0,443 Old 0,443 Strida 0,443 Old 0,443 Strida 0,443 Old 0,433 Strida 0,443 Old 0,433 Old 0,433 Old 0,433 Old 0,433 Old 0,433 Old 0,433 Strida 0,455 Strida 0,455 Strida 0,455 Strida 0,455 Strida 0,455 Strida 10,455
T5U Ned T5U Ned T5U St	T5U Upp	T5U Upp: T5V Ned: T5V SI T5V Upp	T5U Upp T5V Ned: T5V St T5V Upp T6 Neds T6 St	T5U Upp T5V Ned: T5V St T5V Upp: T6 Neds T6 Neds T6 Upps T6 Upps T7 St	T5U Upp T5V Neds T5V St T5V Neds T5V Upp T6 Upps T7 Neds T7 St T7 Upps TA2 Ned	T5U Upp T5V Neds T5V Neds T5V Upps T6 Neds T6 Neds T7 Nets T7 Upps TA2 Nets TA2 Upp	T5U Upp T5V Nedd T5V Ubp T6 Nedd T6 Nedd T6 Nedd T6 Nedd T6 Nedd T7 Nedd T7 Nedd T7 Upps TA2 S T33 Ned T33 Nd	T5U Upp T5V Neds T5V Ubps T5V Ubps T6 Nubps T6 Nubps T6 Nubps T7 Nubps T72 S5 TA2 Nubps TA3 Nubps TA3 S TA3 Upp
····••	<u>.</u>	_		4 3 3 0 7 0 4 0 7 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40 40 7 97 97 987 985 985 985 995 995 995 995 995 995 995	87 1 87 1 87 1 887 1 885 1 753 1 714 1 886 1 886 1 167 1 177	2005 200 200 200 200 200 200 200 200 200
4895 4942 6288	4940	4940 4987 6307 4985	494(4987 6307 6307 4985 4985 5500	494 498 498 630 630 550 325 375 375	494 498 498 498 556 556 556 556 54 416	49 49 49 41 33 33 33 37 55 41 41 41	64 4 56 43 37 55 84 66 44 6 4 4 56 4 3 37 55 6 6 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 6 7 4 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6 7 6 6	4 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

Zone		-M5	PM5	⊃M5 ⊃M5	oM5 oM5 oM5	PM5 PM5 PM5 idpark
on	 					A A A
Descripti						
Q Shunt	MVar	0	0	00	000	0000
Q Gen	MVar	0	0	00	000	0000
P Gen	MM	0	 0	00	000	0000
Q Load	MVar	0	0	0 0,09	0 0,09 0	0,09
P Load	MM	0	0	0 0,12	0 0,12 0	0 0,12 0
U ang	•	-2,1	-2,6	-2,6 -2,6	-2,6 -2,6 -2,1	-2,6 -2,6 -2,1 -1,7
Þ	%	99,16	99,26	99,26 99,25	99,26 99,25 99,18	99,26 99,25 99,18 100,12
Þ	۶	10,412	1,496	0,496 0,496	i 0,496 0,496 10,414	10,496 0,496 10,414 10,513
Name		TA4 Uppsida	TA6 Nedsida	TA6 Nedsida TA6 Stv	TA6 Nedsida TA6 Stv TA6 Uppsida	TA6 Nedsida TA6 Stv TA6 Uppsida Vindpark
٩		4291	4084	4084 5940	4084 5940 4062	4084 5940 4062 7293
		152	153	153 154	153 154 155	153 154 155 156

Node results NEPLAN®

₽	Name	D	3	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
		×۲	%	•	MM	MVar	MM	MVar	MVar	-	
78	Alloys	10,485	99,86	-2,7	5	n	0	0	0		Alloys
174262	B-174262	0	0	0	0	0	0	0	0		Vindpark
174279	B-174279	0	0	0	0	0	0	0	0		Vindpark
174296	B-174296	0	0	0	0	0	0	0	0	0	Vindpark
174313	B-174313	0	0	0	0	0	0	0	0		Vindpark
174330	B-174330	0	0	0	0	0	0	0	0	0	Vindpark
174347	B-174347	0	0	0	0	0	0	0	0	0	Vindpark
174364	B-174364	0	0	0	0	0	0	0	0		Vindpark
174381	B-174381	0	0	0	0	0	0	0	0	•••••	Vindpark
174398	B-174398	0	0	0	0	0	0	0	0		Vindpark
5204	Gen Ut	10,428	99,32	-2,9	0	0	2	0	0		ÅKC
2923	Genomföring	10,428	99,31	-2,9	0	0	0	0	0		Hästskon
2920	Genomföring	10,423	99,26	-2,9	0	0	0	0	0		Hästskon
137	Hästskon A	10,427	99,3	-2,9	0	0	0	0	0		Hästskon
134	Hästskon B	10,421	99,25	-2,9	0	0	0	0	0		Hästskon
89	i Is-beg In	10,468	99,7	-2,7	0	0	0	0	0		Hästskon
113	Is-beg Ut	10,452	99,54	-2,8	0	0	0	0	0		Hästskon
2964	KBIn	10,485	99,86	-2,7	0	0	0	0	-14,683		Alloys
4748	KB PM5 In	10,404	99°09	-3,1	0	0	0	0	-3,436		PM5
5286	Kvarn 1 In	0,492	98,46	-4,2	0,5	0,3	0	0	0		Hästskon
5289	Kvarn 2 In	0,492	98,46	-4,2	0,5	0,3	0	0	0		Hästskon
174218	N174218	0	0	0	0	0	0	0	0		Vindpark
174681	Oansluten	6,058	95,39	-2,6	0	0	0	0	0		Alloys
69	OT92 Nollpu	10,493	99,94	-2,6	0	0	0	0	0		Alloys
37	OT92 Vatten	130	100	0	10	3	40,091	2,751	0		Alloys
3039	PM5 C	10,402	99,06	-3,1	0	0	0	0	0		PM5

	₽	Name	5	3	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			Ş	%	۰	MM	MVar	MW	MVar	MVar		
27	5004	PM5 D	10,395	66	-3 -3	0	0	0	0	0		PM5
28	4998	PM5 Ut	10,416	99,2	ې ۲	0	0	0	0	0		PM5
29	3192	Raff 5 In	10,425	99,29	-2,9	1,2	0,5	0	0	0		Hästskon
30	3233	Raff 6 In	10,425	99,29	-2,9	1,2	0,5	0	0	0		Hästskon
31	5530	Slipv 10 In	10,424	99,27	-2,9	1	0	0	0	0		Hästskon
32	5527	Slipv 10 Ut	10,424	99,28	-2,9	0	0	0	0	0		Hästskon
33	5810	Slipv 6 In	3,575	99,32	-6,9	2,5	0	0	0	0		Hästskon
34	5794	Slipv 7 In	6,153	97,67	-4,2	1,2	0,58	0	0	0		Hästskon
35	5660	Slipv 8 In	0,492	98,45	-5,1	1,3	0,63	0	0	0		Hästskon
36	5755	Slipv 9 In	10,418	99,22	-2,9	1	0	0	0	0		Hästskon
37	5576	Slipv 9 Ut	10,419	99,23	-2,9	0	0	0	0	0		Hästskon
38	3166	Slipv10 Upp	10,425	99,28	-2,9	0	0	0	0	0		Hästskon
39	3909	Slipv6 Nedsi	3,577	99,36	-6,9	0	0	0	0	0		Hästskon
40	3503	Slipv6 Upps	i 10,422	99,26	-2,9	0	0	0	0	0		Hästskon
41	3887	Slipv7 Neds	i 6,154	97,69	-4,2	0	0	0	0	0		Hästskon
42	3500	Slipv7 Upps	i 10,418	99,22	-2,9	0	0	0	0	0		Hästskon
43	3972	Slipv8 Neds	i 0,494	98,9	-5,1	0	0	0	0	0		Hästskon
44	3576	Slipv8 Upps	i 10,417	99,21	-2,9	0	0	0	0	0		Hästskon
45	3458	Slipv9 Upps	i 10,419	99,23	-2,9	0	0	0	0	0		Hästskon
46	5365	Sp-W 1 In	0,484	96,75	-4,6	0,3	0,18	0	0	0		Hästskon
47	5368	Sp-W 2 In	0,484	96,75	-4,6	0,3	0,18	0	0	0		Hästskon
48	5957	Sulzer In	0,485	97,04	-4	0,8	0,39	0	0	0		PM5
49	4128	Sulzer Neds	i 0,488	97,61	4	0	0	0	0	0		PM5
50	4126	Sulzer Upps	i 10,394	98,99	-3	0	0	0	0	0		PM5
51	3865	T07 Nedsida	a 0,49	98,06	-3,9	0	0	0	0	0		Hästskon

	₽	Name	D	n	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			۴۷	%	o	MW	MVar	MM	MVar	MVar		
	5775	T07 Stv	0,49	98,05	-3,9	0,56	0,32	0	0	0		Hästskon
8	3486	T07 Uppsida	10,424	99,27	-2,9	0	0	0	0	0	0	Hästskon
4	3843	T08 Nedsida	0,495	98,93	-3,1	0	0	0	0	0	•	Hästskon
2	5717	T08 Stv	0,495	98,93	-3,2	0,14	0,08	0	0	0	¢	Hästskon
6	3466	T08 Uppsida	10,426	99,3	-2,9	0	0	0	0	0	¢	Hästskon
7	3981	T09A Nedsid	0,5	99,94	-3,2	0	0	0	0	0	•	Hästskon
8	5679	T09A Stv	0,5	99,94	-3,2	0,14	0,06	0	0	0	¢	Hästskon
6	3601	T09A Uppsid	10,421	99,25	-2,9	0	0	0	0	0	¢	Hästskon
6	5180	T09B Nedsid	0,494	98,71	-3,2	0	0	0	0	0	•	ÅKC
1	5861	T09B Stv	0,494	98,71	-3,2	0,2	0,15	0	0	0	¢	ÅKC
2	5178	T09B Uppsid	10,427	99,3	-2,9	0	0	0	0	0	¢	ÅKC
3	5141	T09C Nedsid	0,495	98,9	-3,1	0	0	0	0	0		ÅKC
4	5845	T09C Stv	0,494	98,9	-3,1	0,15	0,1	0	0	0	0	ÅKC
5	5139	T09C Uppsid	10,427	99,31	-2,9	0	0	0	0	0	0	ÅKC
9	5095	T09D Nedsid	0,488	97,66	-3,9	0	0	0	0	0	¢	AKC
7	5822	T09D Stv	0,488	97,64	-3,9	0,6	0,4	0	0	0		ÅKC
8	5070	T09D Uppsid	10,426	99,29	-2,9	0	0	0	0	0		ÅKC
9	3633	T10 Nedsida	0,489	97,88	4	0	0	0	0	0		Hästskon
0	5544	T10 Stv	0,489	97,87	4	0,454	0,265	0	0	0	0	Hästskon
1	3108	T10 Uppsida	10,425	99,29	-2,9	0	0	0	0	0		Hästskon
2	3984	T1A Nedsida	0,492	98,34	-3,8	0	0	0	0	0		Hästskon
	5698	T1A Stv	0,491	98,27	-3,8	0,395	0,15	0	0	0		Hästskon
4	3604	T1A Uppsida	10,424	99,28	-2,9	0	0	0	0	0		Hästskon
2	3820	T26 Nedsida	0,497	99,5	-4,4	0	0	0	0	0		Hästskon
9	5248	T26 Stv	0,497	99,47	-4,4	0	0	0	0	0	•	Hästskon

	₽	Name	5	5	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			k۷	%	•	MW	MVar	MM	MVar	MVar		
77	3309	T26 Uppsida	10,419	99,22	-2,9	0	0	0	0	0		Hästskon
78	3931	T2A Nedsida	0,491	98,1	-3,6	0	0	0	0	0		Hästskon
79	5585	T2A Stv	0,49	98,09	-3,6	0,45	0,28	0	0	0		Hästskon
80	3537	T2A Uppsida	10,426	99,3	-2,9	0	0	0	0	0		Hästskon
81	3950	T2C Nedsida	0,496	99,29	-4,5	0	0	0	0	0		Hästskon
82	5638	T2C Stv	0,495	98,99	-4,5	0,8	0,5	0	0	0		Hästskon
83	3540	T2C Uppsida	10,426	99,29	-2,9	0	0	0	0	0		Hästskon
84	3684	T3A Nedsida	0,492	98,47	-4,1	0	0	0	0	0		Hästskon
85	5480	T3A Stv	0,492	98,46	-4,1	0,612	0,376	0	0	0		Hästskon
86	3294	T3A Uppsida	10,42	99,23	-2,9	0	0	0	0	0		Hästskon
87	3797	T3B Nedsida	0,484	96,81	-4,6	0	0	0	0	0		Hästskon
88	5348	T3B Stv	0,484	96,78	-4,6	0,05	0,031	0	0	0		Hästskon
89	3306	T3B Uppsida	10,424	99,28	-2,9	0	0	0	0	0		Hästskon
60	3730	T3C Nedsida	0,492	98,3	-4,2	0	0	0	0	0		Hästskon
91	5434	T3C Stv	0,491	98,28	-4,2	0,765	0,435	0	0	0		Hästskon
92	3300	T3C Uppsida	10,424	99,28	-2,9	0	0	0	0	0		Hästskon
93	3707	T4 Nedsida	0,497	99,47	-2,9	0	0	0	0	0		Hästskon
94	5455	T4 Stv	0,497	99,47	-2,9	0,03	0,01	0	0	0		Hästskon
95	3297	T4 Uppsida	10,427	99,3	-2,9	0	0	0	0	0		Hästskon
96	4251	T5E Nedsida	0,492	98,47	-4,9	0	0	0	0	0		PM5
97	6024	T5E Stv	0,492	98,45	-4,9	0,77	0,48	0	0	0		PM5
<u>8</u> 6	4249	T5E Uppsida	10,394	98,99	-3	0	0	0	0	0		PM5
66	4339	T5G Nedsid	0,394	98,43	-4,1	0	0	0	0	0		PM5
100	6062	T5G Stv	0,392	98,09	-4,1	0,6	0,384	0	0	0		PM5
101	4337	T5G Uppsid	10,401	99,06	-3,1	0	0	0	0	0		PM5

	₽	Name	5	3	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			k۷	%	•	MM	MVar	MM	MVar	MVar		
102	4412	T5H Nedsida	0,399	99,65	-3,3	0	0	0	0	0		PM5
103	6098	T5H Stv	0,398	99,59	-3,3	0,11	0,096	0	0	0		PM5
104	4410	T5H Uppsida	10,402	90,06	-3,1	0	0	0	0	0	¢	PM5
105	4457	T5K Nedsida	0,489	97,89	-3,9	0	0	0	0	0	•••••	PM5
106	6117	T5K Stv	0,489	97,88	-3,9	0,325	0,2	0	0	0	¢	PM5
107	4455	T5K Uppsida	10,401	99,05	-3,1	0	0	0	0	0		PM5
108	4502	T5L Nedsida	0,491	98,2	-4,3	0	0	0	0	0	¢	PM5
109	6136	T5L Stv	0,491	98,19	-4,3	0,325	0,2	0	0	0		PM5
110	4500	T5L Uppsida	10,401	99,05	-3,1	0	0	0	0	0	•••••	PM5
111	4549	T5M Nedsid	0,501	100,28	-3,9	0	0	0	0	0	¢	PM5
112	6155	T5M Stv	0,501	100,27	-3,9	0,325	0,2	0	0	0	·····	PM5
113	4547	T5M Uppsid	10,401	99,05	-3,1	0	0	0	0	0	•••••	PM5
114	4594	T5N Nedsida	0,396	98,9	-3,8	0	0	0	0	0	0	PM5
115	6174	T5N Stv	0,396	98,89	-3,8	0,11	0,068	0	0	0		PM5
116	4592	T5N Uppsida	10,401	90,06	-3,1	0	0	0	0	0		PM5
117	4639	T5P Nedsida	0,398	99,54	-3,4	0	0	0	0	0	0	PM5
118	6193	T5P Stv	0,398	99,53	-3,4	0,11	0,068	0	0	0		PM5
119	4637	T5P Uppsida	10,401	99,06	-3,1	0	0	0	0	0	0	PM5
120	4705	T5Q Nedsid	0,393	98,25	-5,2	0	0	0	0	0		PM5
121	6212	T5Q Stv	0,393	98,22	-5,2	0,616	0,384	0	0	0		PM5
122	4703	T5Q Uppsid	10,399	99,04	-3,1	0	0	0	0	0		PM5
123	4806	T5R Nedsida	0,393	98,31	-3,6	0	0	0	0	0		PM5
124	6231	T5R Stv	0,393	98,3	-3,6	0,15	0,094	0	0	0		PM5
125	4804	T5R Uppsida	10,401	99,06	-3,1	0	0	0	0	0		PM5
126	4851	T5S Nedsida	0,499	99,84	-3,2	0	0	0	0	0		PM5

	<u>0</u>	Name	∍	ŋ	U ang	P Load	Q Load	P Gen	Q Gen	Q Shunt	Description	Zone
			ş	%	•	MW	MVar	MW	MVar	MVar		
152	4291	TA4 Uppsida	10,393	98,98	ې ب	0	0	0	0	0		PM5
153	4084	TA6 Nedsida	0,495	99,08	-3,5	0	0	0	0	0		PM5
154	5940	TA6 Stv	0,495	99,07	-3,5	0,12	0,09	0	0	0		PM5
155	4062	TA6 Uppsida	10,395	66	-3	0	0	0	0	0	•••••	PM5
156	7293	Vindpark	0	0	0	0	0	0	0	0	•••••	Vindpark
157	3007	AKC	10,427	99,31	-2,9	0	0	0	0	0		ÅKC

			· · · · · ·		,			· · · · ·	· · · · · ·	
SC duration	s	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
ximum	urrent	\bowtie	\bowtie	X	X		\bowtie	\bowtie	\bowtie	\bowtie
Ma	Ū									
Method		IEC60909	IEC60909	IEC60909	IEC60909	IEC60909	IEC60909	IEC60909	IEC60909	IEC60909
Fault	type	3phase fau	3phase fau	3phase fau	3phase fau	3phase fau	3phase fau	3phase fau	3phase fau	3phase fau
AIK"(RST)	0	-74,80	-89,38	-80,14	-81,76	-76,99	-74,59	-79,66	-78,67	-77,51
lk"(RST)	kA	34,106	16,705	6,200	53,800	53,118	34,109	47,788	45,936	44,170
Un	k۷	10,500	130,000	6,300	10,500	0,500	10,500	10,500	10,500	0,500
Fault location		PM5 C	OT92 Vattenfa	Slipv7 Nedsid	Alloys	T26 Stv	PM5 D	Hästskon A	Hästskon B	T3C Stv
Q		3039	37	3887	78	5248	5004	137	134	5434
		,	2	3	4	5	9	7	8	6

	٩	Fault location	n	lk"(RST)	Alk"(RST)	Fault	Method	SC duration
			۴۷	kA	0	type		s
-	3039	PM5 C	10,500	0,034	89,93	1phase gro	IEC60909	1,000
2				0,000	180,00			
3				0,000	180,00			
4	37	OT92 Vattenfa	130,000	17,291	-89,30	1phase gro	IEC60909	1,000
5				0,000	-90,00			
9				0,000	-90,00			
7	3887	Slipv7 Nedsid	6,300	0,000	87,65	1phase gro	IEC60909	1,000
8				0,000	180,00			
6				0,000	180,00			
10	78	Alloys	10,500	0,034	89,94	1phase gro	IEC60909	1,000
11				0,000	-90,00			
12				0,000	-90,00			
13	5248	T26 Stv	0,500	0,000	89,95	1phase gro	IEC60909	1,000
14				0,000	-90,00			
15				0,000	-90,00			
16	5004	PM5 D	10,500	0,034	89,93	1phase gro	IEC60909	1,000
17				0,000	180,00			
18				0,000	180,00			
19	137	Hästskon A	10,500	0,034	89,94	1phase gro	IEC60909	1,000
20				0,000	-90,00			
21				0,000	-90,00			
22	134	Hästskon B	10,500	0,034	89,94	1phase gro	IEC60909	1,000
23				0,000	-90,00			
24				0,000	-90,00			
25	5434	T3C Stv	0,500	0,000	-45,00	1phase gro	IEC60909	1,000

	Γ	
s		
type		
٥	180,00	-90,00
kА	0,000	0,000
k٧		
	26	27
	kV kA ° type s	KV kA ° type s 26 0,000 180,00 180,00 s s

currei		type	0	k∕	k۷		
Maxim	Method	Fault	AIK"(RST)	Ik"(RST)	μIJ	Fault location	₽

	₽	Fault location	٩	lk"(RST)	AIK"(RST)	Fault	Method	Maximum	SC duration
			k۷	k۸	0	type		current	s
-	3039	PM5 C	10,500	32,879	-75,55	3phase fau	IEC60909	\bowtie	1,000
2	37	OT92 Vattenfa	130,000	16,595	-89,48	3phase fau	IEC60909	\bowtie	1,000
ę	3887	Slipv7 Nedsid	6,300	6,182	-80,18	3phase fau	IEC60909	\bowtie	1,000
4	78	Alloys	10,500	50,427	-82,49	3phase fau	IEC60909	\bowtie	1,000
5	5248	T26 Stv	0,500	53,003	-77,02	3phase fau	IEC60909	M	1,000
9	5004	PM5 D	10,500	32,881	-75,34	3phase fau	IEC60909		1,000
7	137	Hästskon A	10,500	45,391	-80,48	3phase fau	IEC60909	M	1,000
8	134	Hästskon B	10,500	43,622	-79,49	3phase fau	IEC60909		1,000
6	5434	T3C Stv	0,500	44,094	-77,53	3phase fau	IEC60909		1,000

	Q	Fault location	Un	Ik"(RST)	AIK"(RST)	Fault	Method	SC duration
			k۷	kА	0	type		S
-	3039	PM5 C	10,500	0,026	89,96	1phase gro	IEC60909	1,000
2				0,000	0,00			
с С				0,000	00,00			
4	3887	Slipv7 Nedsid	6,300	0,000	87,65	1phase gro	IEC60909	1,000
5				0,000	180,00			
9				0,000	180,00			
7	5004	PM5 D	10,500	0,026	89,96	1phase gro	IEC60909	1,000
8				0,000	-90,00			
6				0,000	-90,00			
10	137	Hästskon A	10,500	0,026	89,96	1phase gro	IEC60909	1,000
11				0,000	-90,00			
12				0,000	-90,00			
13	134	Hästskon B	10,500	0,026	89,96	1phase gro	IEC60909	1,000
14				0,000	-90,00			
15				0,000	-90,00			
16	5434	T3C Stv	0.500	0,000	-45,00	1 phase gro	IEC60909	1,000
17				0,000	180,00			
18				0,000	-90,00			

2008-11-20 19:56:45

87

t location Un
۴۷
PM5 C 10,500 30,
2 Vattenfa 130,000 16,
v7 Nedsid 6,300 6,1
Alloys 10,500 44,5
26 Stv 0,500 52,
PM5 D 10,500 30,
stskon A 10,500 39,1
stskon B 10,500 39,3
3C Stv 0,500 43,8

D5 Utan vind och utan mottryckskraft

	Q	Fault location	'n	lk"(RST)	AIK"(RST)	Fault	Method	SC duration
			ξ	kА	0	type		s
+	3039	PM5 C	10,500	0,026	89,96	1phase gro	IEC60909	1,000
2				0,000	0,00			
3				0,000	0,00			
4	37	OT92 Vattenfa	130,000	17,060	-89,38	1phase gro	IEC60909	1,000
5				0,000	180,00			
9				0,000	180,00			
7	3887	Slipv7 Nedsid	6,300	0,000	87,65	1phase gro	IEC60909	1,000
8				0,000	180,00			
6				0,000	180,00			
10	78	Alloys	10,500	0,026	89,97	1phase gro	IEC60909	1,000
11				0,000	0,00			
12				0,000	0,00			
13	5248	T26 Stv	0,500	0,000	89,95	1phase gro	IEC60909	1,000
14				0,000	0,00			
15				0,000	0,00			
16	5004	PM5 D	10,500	0,026	89,96	1phase gro	IEC60909	1,000
17				0,000	180,00			
18	_			0,000	180,00			
19	137	Hästskon A	10,500	0,026	89,97	1phase gro	IEC60909	1,000
20				0,000	180,00			
21				0,000	180,00			
22	134	Hästskon B	10,500	0,026	89,97	1phase gro	IEC60909	1,000
23				0,000	180,00			
24				0,000	180,00			
25	5434	T3C Stv	0,500	0,000	-45,00	1phase gro	IEC60909	1,000

SC duration	s		
Method			
Fault	type		
AIK"(RST)	0	00'0	00.00
Ik"(RST)	۲Y	000'0	0000
Un	kν		
Fault location			
Q			
		26	77

E Enlinjeschema Simpow

F Simpow-kod

WargonVind WargonVind LOADFLOW DATA CONTROL DATA H=0.5 !Default=0.5 !NPRD=10000 !GAM5=0.01 !Default=0.1 !N7=100 LOADM=YES END GENERAL SN=100 !NREF=2 FN=50 REF=OT92 G1 END NODES ! 130kV Stv OT92 UB=130 ! 10kV Stv T3SEK UB=10.5 NOLLPSEK UB=6.35 ALLOYS UB=10.5 NALHORSEA UB=10.5 NALHORSEB UB=10.5 HORSEA UB=10.5 HORSEB UB=10.5 PM5C UB=10.5 PM5D UB=10.5 AKC UB=10.5 VINDP UB=10.5 ! Stv och specialnoder NKBALLOYS UB=10.5 NKBPM5 UB=10.5 T26PRI UB=10.5 T26SEK UB=0.5 IZ65EK UB=0.5 NSLIP6PRI UB=10.5 NSLIP6SEK UB=3.6 NSLIP6 UB=3.6 NSLIP7PRI UB=10.5 NSLIP7PRI UB=6.0 NSLIP7 UB=6.0 NSLIP8PRI UB=10.5 NSLIP8SEK UB=0.5 NSLIPOSEK UB=0.5 NSLIPO UB=0.5 NSLIPO UB=10.5 NRAFF5 UB=10.5 NRAFF5 UB=10.5 NRAFF6 UB=10.5 NRAFF6 UB=10.5 NRAFF6FIKT UB=10.5 NLASTH1PRI UB=10.5 NLASTH1SEK UB=0.5 NLASTH2PRI UB=10.5 NLASTH2SEK UB=0.5 NLASTH3PRI UB=10.5 NLASTH3SEK UB=0.5 NLASTAKCPRI UB=10.5 NLASTAKCSEK UB=0.5 NSIU ZFRPRT UB=10.5 NSULZERPRI UB=10.5 NSULZERSEK UB=0.5 NSULZERSEK UB=0.5 NSULZER UB=0.5 NLASTPM1PRI UB=10.5 NLASTPM1SEK UB=0.4 NLASTPM2PRI UB=10.5 NLASTPM2SEK UB=0.5 NLASTPM3PRI UB=10.5 NLASTPM3SEK UB=0.5 ! Noder vindkraft WM1 UB=0.69 ! WM2 UB=0.69 ! WM3 UB=0.69

Sida 1

! WM4 UB=0.69 ! WM5 UB=0.69

END

WargonVind

LINES ! Givet i enhet per km ! Friledning 4//FERAL 592 ------T35EK ALLOYS NCON=0 NO=1 TYPE=2 R=0.0508 X=0.0912 B=210.4E-6 L=0.25 T35EK ALLOYS NCON=0 NO=2 TYPE=2 R=0.0508 X=0.0912 B=210.4E-6 L=0.25 T35EK ALLOYS NCON=0 NO=3 TYPE=2 R=0.0508 X=0.0912 B=210.4E-6 L=0.25 T35EK ALLOYS NCON=0 NO=4 TYPE=2 R=0.0508 X=0.0912 B=210.4E-6 L=0.25 ! Kablage mellan stationer ------ALLOYS NALHORSEA NCON=0 NO=1 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.45 ALLOYS NALHORSEA NCON=0 NO=2 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.45 ALLOYS NALHORSEA NCON=0 NO=3 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.45 NALHORSEA HORSEA NCON=0 NO=1 TYPE=2 R=0.067 X=0.167 B=192E-6 L=0.015 NALHORSEA HORSEA NCON=0 NO=2 TYPE=2 R=0.067 X=0.167 B=192E-6 L=0.015 \mathbbm{S} ALLOYS NALHORSEB NCON=0 NO=1 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.45 ALLOYS NALHORSEB NCON=0 NO=2 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.45 ALLOYS NALHORSEB NCON=0 NO=3 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.45 NALHORSEB HORSEB NCON=0 NO=1 TYPE=2 R=0.067 X=0.167 B=192E-6 L=0.015 NALHORSEB HORSEB NCON=0 NO=2 TYPE=2 R=0.067 X=0.167 B=192E-6 L=0.015 HORSEB PM5C NCON=0 NO=1 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.3 HORSEB PM5D NCON=0 NO=1 TYPE=2 R=0.081 X=0.17 B=164E-6 L=0.3 HORSEA AKC NCON=0 NO=1 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.1 HORSEA AKC NCON=0 NO=2 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.1 ! Vindpark

 ALLOYS VINDP NCON=0 NO=1 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.5

 ALLOYS VINDP NCON=0 NO=2 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.5

 ALLOYS VINDP NCON=0 NO=3 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.5

 ALLOYS VINDP NCON=0 NO=4 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.5

 ALLOYS VINDP NCON=0 NO=5 TYPE=2 R=0.1 X=0.082 B=148E-6 L=0.5

 ! Kablage laster -----ALLOYS NKBALLOYS NCON=0 NO=1 TYPE=2 R=0.07 X=0.10 B=110E-6 L=0.030 ALLOYS NKBALLOYS NCON=0 NO=2 TYPE=2 R=0.07 X=0.10 B=110E-6 L=0.030 1 --HORSEA NSLIP10 NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.1 HORSEA NSLIP6PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.095 NSLIP6SEK NSLIP6 NCON=0 NO=1 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.03 NSLIP6SEK NSLIP6 NCON=0 NO=2 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.03 HORSEA NRAFF5 NCON=0 NO=1 TYPE=2 R=0.125 X=0.097 B=132E-6 L=0.04 HORSEA NRAFF6 NCON=0 NO=1 TYPE=2 R=0.125 X=0.097 B=132E-6 L=0.04 HORSEA NLASTH1PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.097 B=132E-6 L=0.1 HORSEA NLASTH2PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.097 B=132E-6 L=0.1 I __ HORSEB NSLIP9 NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.1 HORSEB NSLIP7PRI NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.09 NSLIP7SEK NSLIP7 NCON=0 NO=1 TYPE=2 R=0.21 X=0.11 B=110E-6 L=0.025 sida 2

93

WargonVind

```
HORSEB NSLIP8PRI NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.095
 NSLIP8SEK NSLIP8 NCON=0 NO=1 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
 NSLIP8SEK NSLIP8 NCON=0 NO=2 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
NSLIP8SEK NSLIP8 NCON=0 NO=3 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
 NSLIP8SEK NSLIP8 NCON=0 NO=4 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
 NSLIP8SEK NSLIP8 NCON=0 NO=5 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
NSLIP8SEK NSLIP8 NCON=0 NO=6 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
 NSLIP8SEK NSLIP8 NCON=0 NO=7 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.025
 HORSEB T26PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.114
 HORSEB NLASTH3PRI NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.1
 ! --
 PM5C NKBPM5 NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.050
 PM5C NKBPM5 NCON=0 NO=2 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.050
 PM5C NLASTPM1PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.1
 PM5C NLASTPM2PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.1
 ! --
 PM5D NSULZERPRI NCON=0 NO=1 TYPE=2 R=0.263 X=0.094 B=119E-6 L=0.02
 NSULZERSEK NSULZER NCON=0 NO=1 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
 NSULZERSEK NSULZER NCON=0 NO=2 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
NSULZERSEK NSULZER NCON=0 NO=3 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
 NSULZERSEK NSULZER NCON=0 NO=4 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
NSULZERSEK NSULZER NCON=0 NO=5 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
 NSULZERSEK NSULZER NCON=0 NO=6 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
 NSULZERSEK NSULZER NCON=0 NO=7 TYPE=2 R=0.21 X=0.07 B=182E-6 L=0.05
 PM5D NLASTPM3PRI NCON=0 NO=1 TYPE=2 R=0.125 X=0.085 B=135E-6 L=0.05
 ! --
 AKC NLASTAKCPRI NCON=0 NO=1 TYPE=2 R=0.21 X=0.091 B=110E-6 L=0.1
FND
POWER CONTROL
 ! Swing bus
 OT92 TYPE=NODE RTYP=SW U=130 UMIN=125 UMAX=135 FI=0 NAME=OT92
 ! Övrig produktion (ÅKC)
 AKC TYPE=NODE RTYP=PQ P=2.0 Q=1.0 TOL=0.001 NAME=G1
END
TABLES
 1 TYPE=2 F 0.0073 0.007 1 0.019 !R2(s) Stor AM. Fr tabell i Neplan
 2 TYPE=2 F 0.0073 0.17 1 0.078 !X2(s) Stor AM. Fr tabell i Neplan
END
MLOADS
 !(Antaget utifrån medellast)
 1 K=0.43 N=2.0 TYPE=0 !K-Belastningsgrad enl T=K(1-s)^N
2 K=0.50 N=2.0 TYPE=0 !
 3 K=0.67 N=2.0 TYPE=0
4 K=0.80 N=2.0 TYPE=0
 5 K=0.87 N=2.0 TYPE=0
6 K=0.37 N=1.0 TYPE=0
                         1
 7 K=0.87 N=1.0 TYPE=0
```

8 K=0.65 N=1.0 TYPE=0

Wargonvind

LOADS ! Buntade laster OT92 P=10 0=3 ALLOYS P=5 Q=3! Laster med konstant effekt, tot P=2.6 Q=1.5 NLASTH1SEK NO=1 NCON=0 SW=1 P=2.6 Q=1.5 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 NLASTH2SEK P=2.6 Q=1.5 ! Laster med konstant effekt, tot P=0.75 Q=0.4 NLASTH3SEK NO=1 NCON=0 SW=1 P=0.75 Q=0.4 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 ! Laster med konstant ström, tot P=2.95 NLASTPM1SEK NO=1 NCON=0 SW=1 P=0.5 COSFI=0.90 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 NLASTPM1SEK NO=2 NCON=0 SW=1 P=0.5 COSFI=0.90 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 NLASTPM1SEK NO=3 NCON=0 SW=1 P=0.5 COSFI=0.90 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 NLASTPM1SEK NO=4 NCON=0 SW=1 P=0.5 COSFI=0.90 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 NLASTPM1SEK NO=5 NCON=0 SW=1 P=0.5 COSFI=0.90 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 NLASTPM1SEK NO=6 NCON=0 SW=1 P=0.5 COSFI=0.90 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 ! Laster med konstant effekt, tot P=2.7 NLASTPM2SEK NO=1 NCON=0 SW=1 P=0.54 COSFI=0.90 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 NLASTPM2SEK NO=2 NCON=0 SW=1 P=0.54 COSFI=0.90 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 NLASTPM2SEK NO=3 NCON=0 SW=1 P=0.54 COSFI=0.90 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 NLASTPM2SEK NO=4 NCON=0 SW=1 P=0.54 COSFI=0.90 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 NLASTPM2SEK NO=5 NCON=0 SW=1 P=0.54 COSFI=0.90 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 ! Laster med konstant ström, tot P=2.7 Q=1.7 NLASTPM3SEK NO=1 NCON=0 SW=1 P=2.7 Q=1.7 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 ! Laster med konstant effekt, tot P=0.95 Q=0.65 NLASTAKCSEK NO=1 NCON=0 SW=1 P=0.95 Q=0.65 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 END ASYNCHRONOUS MACHINES RAFF5 NRAFF5 NCON=0 TYPE=1 SN=2.3 UN=10.5 H=1.7 R1=0.06 X1S=0.105 X2S=0.19 C1=0.8 C2=0.7 DX=0.015 XM=4.35 RTAB=1 XTAB=2 LOAD=2 RAFF6 NRAFF6FIKT NCON=0 TYPE=1 SN=2.3 UN=10.5 H=1.7 R1=0.06 X1S=0.105 X2S=0.19 C1=0.8 C2=0.7 DX=0.015 XM=4.35 RTAB=1 XTAB=2 LOAD=2 Slipv7 NSLIP7 NCON=0 TYPE=1 SN=1.75 UN=6 H=4.7 R1=0.037 X1S=0.085 X2S=0.18 C1=0.8 C2=0.7 DX=0.015 XM=4.03 RTAB=1 XTAB=2 LOAD=3 Slipv8 NSLIP8 NCON=0 TYPE=1 SN=1.6 UN=0.5 H=5.0 R1=0.04 X1S=0.09 X2S=0.17 C1=0.8 C2=0.7 DX=0.015 XM=4.18 RTAB=1 XTAB=2 LOAD=4 Kvarn1 T26SEK NCON=0 TYPE=1 SN=0.99 UN=0.525 H=0.13 R1=0.058 X1S=0.1 X2S=0.24 C1=0.8 C2=0.7 DX=0.015 XM=3.5 RTAB=1 XTAB=2 LOAD=2 Kvarn2 T26SEK NCON=0 TYPE=1 SN=0.99 UN=0.525 H=0.13 R1=0.058 X1S=0.1 X2S=0.24 C1=0.8 C2=0.7 DX=0.015 XM=3.5 RTAB=1 XTAB=2 LOAD=2 Sulzer NSULZER NCON=0 TYPE=1 SN=1.6 UN=0.5 H=12 R1=0.05 X1S=0.1 X2S=0.18 C1=0.8 C2=0.7 DX=0.015 XM=4.18 RTAB=1 XTAB=2 LOAD=2 ! Vindkraftgeneratorer av typ DFIG VKV1 WM1 TYPE=DSLS/MACHOPT/ SN=2.5 UN=0.69 RS=0.01 RR=0.009 XS=0.18 XR=0.07 XM=4.4 PG=1.5 MODE=1 PFCMAX=0.4 A2=-0.631 A1=1.379 A0=0.524 ! VKV2 WM2 TYPE=DSLS/MACHOPT/ SN=2.5 UN=0.69 RS=0.01 RR=0.009 XS=0.18 ! XR=0.07 XM=4.4 PG=0.5 MODE=1 PFCMAX=0.4 A2=-0.631 A1=1.379 A0=0.524 ! VKV3 WM3 TYPE=DSLS/MACHOPT/ SN=2.5 UN=0.69 RS=0.01 RR=0.009 XS=0.18 XR=0.07 XM=4.4 PG=1.0 MODE=1 PFCMAX=0.4 A2=-0.631 A1=1.379 A0=0.524

END

WargonVind ! VKV4 WM4 TYPE=DSLS/MACHOPT/ SN=2.5 UN=0.69 RS=0.01 RR=0.009 XS=0.18 ! XR=0.07 XM=4.4 PG=1.0 MODE=1 PFCMAX=0.4 A2=-0.631 A1=1.379 A0=0.524
! VKV5 WM5 TYPE=DSLS/MACHOPT/ SN=2.5 UN=0.69 RS=0.01 RR=0.009 XS=0.18 ! XR=0.07 XM=4.4 PG=1.0 MODE=1 PFCMAX=0.4 A2=-0.631 A1=1.379 A0=0.524
END
! %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
TRANSFORMERS OT92 T3SEK TAPSIDE=2 SN=60 UN1=130 UN2=10.5 ER12=0.01 EX12=0.10 FI=0
NSLIP6PRI NSLIP6SEK TAPSIDE=2 SN=3 UN1=10.4 UN2=3.7 ER12=0.01 EX12=0.0796 PFE=0.002 FI=30 !STEP=
NSLIP7PRI NSLIP7SEK TAPSIDE=2 SN=3.15 UN1=10 UN2=6.3 ER12=0.01 EX12=0.06 PFE=0.002 FI=30 !STEP=
NSLIP8PRI NSLIP8SEK TAPSIDE=2 SN=2 UN1=10 UN2=0.525 ER12=0.01 EX12=0.059 PFE=0.002 FI=30 !STEP=
T26PRI T26SEK TAPSIDE=2 SN=2.5 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.063 PFE=0.002 FI=30 !STEP=
NLASTH1PRI NLASTH1SEK TAPSIDE=2 SN=3.2 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.07 PFE=0.002 FI=30 !STEP=
NLASTH2PRI NLASTH2SEK TAPSIDE=2 SN=3.2 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.07 PFE=0.002 FI=30 !STEP=
NLASTH3PRI NLASTH3SEK TAPSIDE=2 SN=1 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.06 PFE=0.002 FI=30 !STEP=
NSULZERPRI NSULZERSEK TAPSIDE=2 SN=2 UN1=10 UN2=0.5 ER12=0.01 EX12=0.049 PFE=0.002 FI=30 !STEP=
NLASTPM1PRI NLASTPM1SEK TAPSIDE=2 SN=3.7 UN1=10.5 UN2=0.4 ER12=0.01 EX12=0.08 PFE=0.002 FI=30 !STEP=
NLASTPM2PRI NLASTPM2SEK TAPSIDE=2 SN=3.4 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.07 PFE=0.002 FI=30 !STEP=
NLASTPM3PRI NLASTPM3SEK TAPSIDE=2 SN=3.4 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.07 PFE=0.002 FI=30 !STEP=
NLASTAKCPRI NLASTAKCSEK TAPSIDE=2 SN=2 UN1=10.5 UN2=0.525 ER12=0.01 EX12=0.05 PFE=0.002 FI=30 !STEP=
NRAFF6 NRAFF6FIKT TAPSIDE=2 SN=2.5 UN1=10.5 UN2=10.5 ER12=0.01 EX12=0.07 PFE=0.002 FI=30 !STEP=
! Nollpunktstrafo T3SEK NOLLPSEK SN=0.0953 UN1=11 UN2=6.35 ER12=0.01 EX12=0.03
! Vindk trafo VINDP WM1 TAPSIDE=2 SN=3 UN1=10.5 UN2=0.69 ER12=0.01 EX12=0.07 PFE=0.002 FI=30 !STEP=
! VINDP WM2 TAPSIDE=2 SN=3 UN1=10.5 UN2=0.69 ER12=0.01 EX12=0.07 ! PFE=0.002 FI=30 !STEP=
! VINDP WM3 TAPSIDE=2 SN=3 UN1=10.5 UN2=0.69 ER12=0.01 EX12=0.07 ! PFE=0.002 FI=30 !STEP=
! VINDP WM4 TAPSIDE=2 SN=3 UN1=10.5 UN2=0.69 ER12=0.01 EX12=0.07 ! PFE=0.002 FI=30 !STEP=
! VINDP WM5 TAPSIDE=2 SN=3 UN1=10.5 UN2=0.69 ER12=0.01 EX12=0.07 ! PFE=0.002 FI=30 !STEP=
END

WargonVind

```
SHUNT IMPEDANCES
NKBALLOYS NCON=0 TYPE=A R=0.1 XC=-7.7
NKBPM5 NCON=0 TYPE=A R=0.1 XC=-31.5
```

END

!SYNCHRONOUS MACHINES !ENDAST I DYNPOW
!Produktion.

!Motordrifter. !END

END

```
wargonvind
WargonVind DYNPOW DATA
CONTROL DATA
TEND=115 !Simuleringstid

PRD=1 !Def -1 Periodlängd försimulering

NPRD=8000 !Def =-1, Max antal perioder i försimulering

! DEND=0.1 !=0.08 Def 0.001
 !FREQ=YES !Yes om frekvensgenomsökning
LOADM=YES !Laster omdefinierade som shuntimpedanser i MASTA
  !ICDQ0=-1
END
GENERAL
 FN=50
 REF=OT92
END
GLOBALS
 ! Deklaration av variabler DFIG
 WM1PORD TYPE=REAL WM1QORD TYPE=REAL
 WM1DW TYPE=REAL
 WM1RCBIN TYPE=REAL
! WM2PORD TYPE=REAL
! WM2QORD TYPE=REAL
  WM2DW TYPE=REAL
Т
  WM2RCBIN TYPE=REAL
Ţ
! WM3PORD TYPE=REAL
! WM3QORD TYPE=REAL
Т
  WM3DW TYPE=REAL
1
  WM3RCBIN TYPE=REAL
! WM4PORD TYPE=REAL
! WM4QORD TYPE=REAL
  WM4DW TYPE=REAL
1
  WM4RCBIN TYPE=REAL
1
! WM5PORD TYPE=REAL
! WM5QORD TYPE=REAL
  WM5DW TYPE=REAL
1
! WM5RCBIN TYPE=REAL
END
NODES
 OT92 TYPE=1 NAME=OT92
END
LINES
! Friledning 4//FERAL 592 -----
T3SEK ALLOYS NO=1 R0=2.45 X0=0.34 B0=195E-6 L=0.25
T3SEK ALLOYS NO=2 R0=2.45 X0=0.34 B0=195E-6 L=0.25
T3SEK ALLOYS NO=3 R0=2.45 X0=0.34 B0=195E-6 L=0.25
T3SEK ALLOYS NO=4 R0=2.45 X0=0.34 B0=195E-6 L=0.25
 ! Kablage mellan stationer ------
 ALLOYS NALHORSEA NCON=0 1BREAKER=1 NO=1 R0=0.203 X0=0.636 B0=179E-6 L=0.45
ALLOYS NALHORSEA NCON=0 1BREAKER=1 NO=2 R0=0.203 X0=0.636 B0=179E-6 L=0.45
ALLOYS NALHORSEA NCON=0 1BREAKER=1 NO=3 R0=0.203 X0=0.636 B0=179E-6 L=0.45
 NALHORSEA HORSEA NCON=0 NO=1 R0=0.16 X0=0.624 B0=195E-6 L=0.015
NALHORSEA HORSEA NCON=0 NO=2 R0=0.16 X0=0.624 B0=195E-6 L=0.015
 ALLOYS NALHORSEB NCON=0 1BREAKER=1 NO=1 R0=0.203 X0=0.636 B0=179E-6 L=0.45
                                                            Sida 1
```

WargonVind ALLOYS NALHORSEB NCON=0 1BREAKER=1 NO=2 R0=0.203 X0=0.636 B0=179E-6 L=0.45 ALLOYS NALHORSEB NCON=0 1BREAKER=1 NO=3 R0=0.203 X0=0.636 B0=179E-6 L=0.45 NALHORSEB HORSEB NCON=0 NO=1 R0=0.16 X0=0.624 B0=195E-6 L=0.015 NALHORSEB HORSEB NCON=0 NO=2 R0=0.16 X0=0.624 B0=195E-6 L=0.015 HORSEB PM5C NO=1 R0=0.203 X0=0.636 B0=179E-6 L=0.3 HORSEB PM5D NO=1 R0=0.203 X0=0.636 B0=179E-6 L=0.3 HORSEA AKC 1BREAKER=1 NO=1 R0=2.5 X0=0.306 B0=162E-6 L=0.1 HORSEA AKC 1BREAKER=1 NO=2 R0=2.5 X0=0.306 B0=162E-6 L=0.1 ! Vindpark ALLOYS VINDP NO=1 R0=2.5 X0=0.306 B0=162E-6 L=0.5 ALLOYS VINDP NO=2 R0=2.5 X0=0.306 B0=162E-6 L=0.5 ALLOYS VINDP NO=3 R0=2.5 X0=0.306 B0=162E-6 L=0.5 ALLOYS VINDP NO=4 R0=2.5 X0=0.306 B0=162E-6 L=0.5 ALLOYS VINDP NO=5 R0=2.5 X0=0.306 B0=162E-6 L=0.5 ! Kablage laster -----ALLOYS NKBALLOYS NO=1 R0=1.27 X0=0.35 B0=115E-6 L=0.030 ALLOYS NKBALLOYS NO=2 R0=1.27 X0=0.35 B0=115E-6 L=0.030 1 ---HORSEA NSLIP10 NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.1 HORSEA NSLIP6PRI NO=1 R0=2.53 X0=0.32 B0=144E-6 L=0.095 NSLIP6SEK NSLIP6 NO=1 R0=2.53 X0=0.32 B0=144E-6 L=0.03 NSLIP6SEK NSLIP6 NO=2 R0=2.53 X0=0.32 B0=144E-6 L=0.03 HORSEA NRAFF5 1BREAKER=1 NO=1 R0=2.53 X0=0.36 B0=141E-6 L=0.04 HORSEA NRAFF6 1BREAKER=1 NO=1 R0=2.53 X0=0.36 B0=141E-6 L=0.04 HORSEA NLASTH1PRI NO=1 R0=2.53 X0=0.36 B0=141E-6 L=0.1 HORSEA NLASTH2PRI NO=1 R0=2.53 X0=0.36 B0=141E-6 L=0.1 ! --HORSEB NSLIP9 NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.1 HORSEB NSLIP7PRI 1BREAKER=1 NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.09 NSLIP7SEK NSLIP7 NO=1 R0=2.61 X0=0.38 B0=121E-6 L=0.025 HORSEB NSLIP8PRI 1BREAKER=1 NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.095 NSLIP8SEK NSLIP8 NO=1 R0=2.61 X0=0.26 B0=176E-6 L=0.025 NSLIP8SEK NSLIP8 NO=2 R0=2.61 X0=0.26 B0=176E-6 L=0.025 NSLIP8SEK NSLIP8 NO=3 R0=2.61 X0=0.26 B0=176E-6 L=0.025 NSLIP8SEK NSLIP8 NO=4 R0=2.61 X0=0.26 B0=176E-6 L=0.025 NSLIP8SEK NSLIP8 NO=5 RO=2.61 X0=0.26 B0=176E-6 L=0.025 NSLIP8SEK NSLIP8 NO=6 RO=2.61 X0=0.26 B0=176E-6 L=0.025 NSLIP8SEK NSLIP8 NO=7 RO=2.61 X0=0.26 B0=176E-6 L=0.025 HORSEB T26PRI 1BREAKER=1 NO=1 R0=2.53 X0=0.32 B0=144E-6 L=0.114 HORSEB NLASTH3PRI NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.1 ! --PM5C NKBPM5 1BREAKER=1 NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.050 PM5C NKBPM5 1BREAKER=1 NO=2 R0=2.61 X0=0.34 B0=121E-6 L=0.050 PM5C NLASTPM1PRI NO=1 R0=2.53 X0=0.32 B0=144E-6 L=0.1 PM5C NLASTPM2PRI NO=1 R0=2.53 X0=0.32 B0=144E-6 L=0.1

! --

Sida 2

99

WargonVind PM5D NSULZERPRI 1BREAKER=1 NO=1 R0=3.86 X0=0.35 B0=85E-6 L=0.02 NSULZERSEK NSULZER 1BREAKER=1 NO=1 R0=2.61 X0=0.26 B0=176E-6 L=0.05 NSULZERSEK NSULZER 1BREAKER=1 NO=2 R0=2.61 X0=0.26 B0=176E-6 L=0.05 NSULZERSEK NSULZER 1BREAKER=1 NO=3 R0=2.61 X0=0.26 B0=176E-6 L=0.05 NSULZERSEK NSULZER 1BREAKER=1 NO=4 R0=2.61 X0=0.26 B0=176E-6 L=0.05 NSULZERSEK NSULZER 1BREAKER=1 NO=5 R0=2.61 X0=0.26 B0=176E-6 L=0.05 NSULZERSEK NSULZER 1BREAKER=1 NO=6 R0=2.61 X0=0.26 B0=176E-6 L=0.05 NSULZERSEK NSULZER 1BREAKER=1 NO=7 R0=2.61 X0=0.26 B0=176E-6 L=0.05 PM5D NLASTPM3PRI NO=1 R0=2.53 X0=0.32 B0=144E-6 L=0.05 1 ---AKC NLASTAKCPRI NO=1 R0=2.61 X0=0.34 B0=121E-6 L=0.1 END ! Kommentera bort för körning 4.4.6 LOADS ! Laster med konstant effekt, tot P=2.6 Q=1.5 NLASTH1SEK NO=1 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S ! Laster med konstant effekt, tot P=0.75 Q=0.4 NLASTH3SEK NO=1 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S ! Laster med konstant ström, tot P=2.95 NLASTPM1SEK NO=1 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S NLASTPM1SEK NO=2 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S NLASTPM1SEK NO=3 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S NLASTPM1SEK NO=4 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S NLASTPM1SEK NO=5 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S NLASTPM1SEK NO=6 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S ! Laster med konstant effekt, tot P=2.7 NLASTPM2SEK NO=1 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S NLASTPM2SEK NO=2 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S NLASTPM2SEK NO=3 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S NLASTPM2SEK NO=4 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S NLASTPM2SEK NO=5 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S ! Laster med konstant ström, tot P=2.7 Q=1.7 NLASTPM3SEK NO=1 SW=1 DPC=1 DPI=0 DQC=1 DQI=0 USC=0.5 MODEL=S ! Laster med konstant effekt, tot P=0.95 Q=0.65 NLASTAKCSEK NO=1 SW=1 DPC=0 DPI=0 DQC=0 DQI=0 USC=0.5 MODEL=S **FND !ASYNCHRONOUS MACHINES** !Modell från Optpow !END TRANSFORMERS OT92 T3SEK CP1=Y CP2=D RN1=0.02 XN1=0 ! Ca Sohm jordres NSLIP6PRI NSLIP6SEK 1BREAKER=1 CP1=D CP2=Y RN2=30 XN2=30 NSLIP7PRI NSLIP7SEK 1BREAKER=1 CP1=D CP2=Y RN2=25 XN2=25 NSLIP8PRI NSLIP8SEK 1BREAKER=1 CP1=D CP2=Y RN2=25 XN2=25 T26PRI T26SEK CP1=D CP2=Y RN2=25 XN2=25 NLASTH1PRI NLASTH1SEK CP1=D CP2=Y RN2=25 XN2=25 NLASTH2PRI NLASTH2SEK CP1=D CP2=Y RN2=25 XN2=25 Sida 3
Wargonvind NLASTH3PRI NLASTH3SEK CP1=D CP2=Y RN2=25 XN2=25 NSULZERPRI NSULZERSEK 1BREAKER=1 CP1=D CP2=Y RN2=25 XN2=25 NLASTPM1PRI NLASTPM1SEK CP1=D CP2=Y RN2=25 XN2=25 NLASTPM2PRI NLASTPM2SEK CP1=D CP2=Y RN2=25 XN2=25 NLASTPM3PRI NLASTPM3SEK CP1=D CP2=Y RN2=25 XN2=25 NLASTAKCPRI NLASTAKCSEK CP1=D CP2=Y RN2=20 XN2=20 NRAFF6 NRAFF6FIKT CP1=D CP2=Y RN2=20 XN2=20 ! Nollpunktstrafo T3SEK NOLLPSEK CP1=Y CP2=Y RN1=0.333 XN1=5 RN2=15 XN2=15 ! Vindkraft VINDP WM1 1BREAKER=1 CP1=D CP2=Y !Direktjordat, RN2 o XN2 default=0 ! VINDP WM2 1BREAKER=1 CP1=D CP2=Y ! ! VINDP WM3 CP1=D CP2=Y ! VINDP WM4 CP1=D CP2=Y ! ! VINDP WM5 CP1=D CP2=Y ! END SYNCHRONOUS MACHINES !Produktion. Typ2 = En fältlindning samt en dämpl i d-led och en i g-led G1 AKC_TYPE=2 NCON=0 SN=12 UN=10.5 H=4 RA=0.006 XD=1.2 XQ=1.15 XDP=0.21 XQP=0.21 XDB=0.11 XQB=0.11 XA=0.09 TD0P=6 VREG=1 TURB=1 X0=0.05 R2=0.1 X2=0.15 TD0B=0.02 TQ0B=0.02 V1=1 V2=1.2 SE1=0.9 SE2=1 1BREAKER=2 !Produktion. TypST33 = Detaljmodell för analys av vinkelstabilitet (523) !G1 AKC TYPE=ST33 NCON=0 SN=12 UN=10.5 H=4 TURB=1 ISP=0 VREG=1 F0=50 ! UFI=1 TET0=0 STI=0 1BREAKER=2 FREEZE=YES R2=0.1 X2=0.15 RA=0.01 1 RFD=0.004 LA=0.1 LADU=0.6 LF12D=0.06 LF2D=0.01 LFD=0.3 DTAB=0
1 QTAB=0 LAQU=0.8 R1D=1.0 R2D=0.8 R1Q=0.9 R2Q=0.8 R3Q=0.1
1 L1D=0.4 L2D=0.9 L1Q=0.005 L2Q=0.5 L3Q=1 !Motordrifter. Typ4 = En konstant sp.källa bakom en transient reaktans Slipv6 NSLIP6 NCON=0 TYPE=4 1BREAKER=2 SN=2.8 UN=3.6 H=6 RA=0.01 XD=1.44 XQ=1.2 XDP=0.3 10AD=7Slipv9 NSLIP9 NCON=0 TYPE=4 1BREAKER=2 SN=2.2 UN=10.5 H=6 RA=0.01 XD=1.44 XQ=1.2 XDP=0.3 LOAD=6slipv10 NSLIP10 NCON=0 TYPE=4 1BREAKER=2 SN=2.2 UN=10.5 H=6 RA=0.01 XD=1.44 XQ=1.2 XDP=0.3 LOAD=6 END ASYNCHRONOUS MACHINES !Produktion vindkraft VKV1 TYPE=DSLS/MACHDYN/ H=4 R2=0.03 X2=0.25 PFCMAX=0.4 TFC=0.1 R0=1E9 X0=1E9 TDELAY=0.1 RCB=0.1 TURB=2 MODE=1 PORD=WM1PORD RCBIN=WM1RCBIN QORD=WM1QORD ! VKV2 TYPE=DSLS/MACHDYN/ H=4 R2=0.03 X2=0.25 PFCMAX=0.4 TFC=0.1 R0=1E9 X0=1E9 ! TDELAY=0.1 RCB=0.1 TURB=3 MODE=1 PORD=WM2PORD RCBIN=WM2RCBIN QORD=WM2QORD ! VKV3 TYPE=DSLS/MACHDYN/ H=4 R2=0.03 X2=0.25 PFCMAX=0.4 TFC=0.1 R0=1E9 X0=1E9 TDELAY=0.1 RCB=0.1 TURB=4 MODE=1 PORD=WM3PORD RCBIN=WM3RCBIN QORD=WM3QORD 1 ! VKV4 TYPE=DSLS/MACHDYN/ H=4 R2=0.03 X2=0.25 PFCMAX=0.4 TFC=0.1 R0=1E9 X0=1E9 TDELAY=0.1 RCB=0.1 TURB=5 MODE=1 PORD=WM4PORD RCBIN=WM4RCBIN QORD=WM4QORD ! VKV5 TYPE=DSLS/MACHDYN/ H=4 R2=0.03 X2=0.25 PFCMAX=0.4 TFC=0.1 R0=1E9 X0=1E9 sida 4

wargonvind TDELAY=0.1 RCB=0.1 TURB=6 MODE=1 PORD=WM5PORD RCBIN=WM5RCBIN QORD=WM5QORD 1 **END** REGULATORS l Magnetisering. Värden från verkligt system och IEEE 421.5 l TYPE=DSLS/EXST2A/ XC=-0.3 TR=0 KA=18 TA=0.15 VRMAX=1 VRMIN=0 !XC=-0.03 från underlag KE=1 TE=0.5 KF=0.05 TF=1 KP=4.88 KI=8 KC=1.82 EFDMAX=3.3 ! Statorströmsbegränsning !100 TYPE=SCL1 ISLIM=0.4 TC=0.025 KC=10 VCMAX=14 VCMIN=-14 !T1=0.2 T2=1000 ! Fältströmsbegränsning !200 TYPE=FCL1 IFLIM=2.5 TC=0.025 KC=30 VCMAX=14 VCMIN=-14 END TURBINES ! Tubinmodeller ! Mottryck 1 TYPE=ST2 GOV=10 K4=1 T4=0.3 !PNTURB= INER= ! Vindturbin (NOM_POWER=2.5x5 eftersom vindpark simuleras) ! WINDCURVE ej angiven ty vindprofil=konstant vind, P=PG ! CPCURVE=Default 2 TYPE=DSLS/WINDTURB/ NOM_POWER=2.5 NOM_TURBSPEED=18 BLADELENGTH=36 GOV=20 GEN=G1 ! 3 TYPE=DSLS/WINDTURB/ NOM_POWER=2.5 NOM_TURBSPEED=18 BLADELENGTH=36 GOV=30 GEN=G1 ļ ! 4 TYPE=DSLS/WINDTURB/ NOM_POWER=2.5 NOM_TURBSPEED=18 BLADELENGTH=36 GOV=40 GEN=G1 L 5 TYPE=DSLS/WINDTURB/ NOM_POWER=2.5 NOM_TURBSPEED=18 BLADELENGTH=36 Į. GOV=50 GEN=G1 ! 6 TYPE=DSLS/WINDTURB/ NOM_POWER=2.5 NOM_TURBSPEED=18 BLADELENGTH=36 GOV=60 GEN=G1 ł ! Regulator 10 TYPE=SG2 DF=0.05 SW=0 YMAX=1 YMIN=0 YPMAX=0.1 YPMIN=-0.1 K=25 T1=3 TY=0.15 20 TYPE=DSLS/PICON/ KPP=60 KPC=3 KIP=25 KIC=30 TP=0.5 BMAX=27 BMIN=0 DBDTMAX=5 DBDTMIN=-5 BLOCK=0 DW=WM1DW PORD=WM1PORD ! 30 TYPE=DSLS/PICON/ KPP=60 KPC=3 KIP=25 KIC=30 TP=0.5 BMAX=27 BMIN=0 DBDTMAX=5 DBDTMIN=-5 BLOCK=0 DW=WM2DW PORD=WM2PORD ļ ! 40 TYPE=DSLS/PICON/ KPP=60 KPC=3 KIP=25 KIC=30 TP=0.5 BMAX=27 BMIN=0 DBDTMAX=5 DBDTMIN=-5 BLOCK=0 DW=WM3DW PORD=WM3PORD Ţ 50 TYPE=DSLS/PICON/ KPP=60 KPC=3 KIP=25 KIC=30 TP=0.5 BMAX=27 BMIN=0 1 DBDTMAX=5 DBDTMIN=-5 BLOCK=0 DW=WM4DW PORD=WM4PORD I. ! 60 TYPE=DSLS/PICON/ KPP=60 KPC=3 KIP=25 KIC=30 TP=0.5 BMAX=27 BMIN=0 DBDTMAX=5 DBDTMIN=-5 BLOCK=0 DW=WM5DW PORD=WM5PORD 1 END MISCELLANEOUS

! Varvtalsreg vindkraftverk
SPC1 TYPE=DSLS/SPCON/ KS=0.6 TPC=0.05 KP=3 PMIN=0.1 PMAX=1 DPMIN=-0.45
DPMAX=0.45 WMIN=0.7 WMAX=1.5 A2=-0.631 A1=1.379 A0=0.524 DW=WM1DW
PORD=WM1PORD ASYN=VKV1
! SPC2 TYPE=DSLS/SPCON/ KS=0.6 TPC=0.05 KP=3 PMIN=0.1 PMAX=1 DPMIN=-0.45
! DPMAX=0.45 WMIN=0.7 WMAX=1.5 A2=-0.631 A1=1.379 A0=0.524 DW=WM2DW

PORD=WM2PORD ASYN=VKV2

sida 5

I

!	SPC3	WargonVind TYPE=DSLS/SPCON/ KS=0.6 TPC=0.05 KP=3 PMIN=0.1 PMAX=1 DPMIN=-0.45 DPMAX=0.45 WMIN=0.7 WMAX=1.5 A2=-0.631 A1=1.379 A0=0.524 DW=WM3DW PORD=WM3PORD ASYN=VKV3
!	SPC4	TYPE=DSLS/SPCON/ KS=0.6 TPC=0.05 KP=3 PMIN=0.1 PMAX=1 DPMIN=-0.45 DPMAX=0.45 WMIN=0.7 WMAX=1.5 A2=-0.631 A1=1.379 A0=0.524 DW=WM4DW PORD=WM4PORD ASYN=VKV4
! ! !	SPC5	TYPE=DSLS/SPCON/ KS=0.6 TPC=0.05 KP=3 PMIN=0.1 PMAX=1 DPMIN=-0.45 DPMAX=0.45 WMIN=0.7 WMAX=1.5 A2=-0.631 A1=1.379 A0=0.524 DW=WM5DW PORD=WM5PORD ASYN=VKV5
(! Crow CRC1 V F	bar-reglering vindkraftverk M1 TYPE=DSLS/CRCON/ N=1 UMIN=0.9 UMAX=1.05 INDELAY=0.01 BLOCK=0 CBIN=WM1RCBIN ASYN=VKV1
! !	CRC2	WM2 TYPE=DSLS/CRCON/ N=1 UMIN=0.9 UMAX=1.05 INDELAY=0.01 BLOCK=0 RCBIN=WM2RCBIN ASYN=VKV2
! !	CRC3	WM3 TYPE=DSLS/CRCON/ N=1 UMIN=0.9 UMAX=1.05 INDELAY=0.01 BLOCK=0 RCBIN=WM3RCBIN ASYN=VKV3
! !	CRC4	WM4 TYPE=DSLS/CRCON/ N=1 UMIN=0.9 UMAX=1.05 INDELAY=0.01 BLOCK=0 RCBIN=WM4RCBIN ASYN=VKV4
!	CRC5	WM5 TYPE=DSLS/CRCON/ N=1 UMIN=0.9 UMAX=1.05 INDELAY=0.01 BLOCK=0 RCBIN=WM5RCBIN ASYN=VKV5
!	Spär /CC1 W E	ningsreglering vindkraftverk M1 TYPE=DSLS/VCCON/ N=1 KA=4 TA=0.02 KP=10 QMAX=0.3 QMIN=-0.3 LOCK=1 QORD=WM1QORD ASYN=VKV1
! !	vcc2	WM2 TYPE=DSLS/VCCON/ N=1 KA=4 TA=0.02 KP=10 QMAX=0.3 QMIN=-0.3 BLOCK=1 QORD=WM2QORD ASYN=VKV2
!	vcc3	WM3 TYPE=DSLS/VCCON/ N=1 KA=4 TA=0.02 KP=10 QMAX=0.3 QMIN=-0.3 BLOCK=1 QORD=WM3QORD ASYN=VKV3
! !	vcc4	WM4 TYPE=DSLS/VCCON/ N=1 KA=4 TA=0.02 KP=10 QMAX=0.3 QMIN=-0.3 BLOCK=1 QORD=WM4QORD ASYN=VKV4
! !	VCC5	WM5 TYPE=DSLS/VCCON/ N=1 KA=4 TA=0.02 KP=10 QMAX=0.3 QMIN=-0.3 BLOCK=1 QORD=WM5QORD ASYN=VKV5

END

1 TYPE=0 RA=0.01 RB=0.01 RC=0.01

2 NPT=1 !Out of step - prot

END

PROTECTIONS

1 TYPE=19 TSET=80 !Trip om >80 deg

END

!FREQ-SCANNING !MASTA => CURR=ID ! 1 NODE=PM5C CURR=IPR START=20 STEP=2 STOP=3000 MAGN=0.018 ! 0.018 <=> 100A ! 2 NODE=PM5D CURR=IPR START=20 STEP=2 STOP=3000 MAGN=0.018 ! 3 NODE=AKC CURR=IPR START=20 STEP=2 STOP=3000 MAGN=0.018

! END

WargonVind

! SIMULERINGSFALL !----- 521b ------ Kondbatt ------!TRANSTA KÖr 180s DEND=0.08! !Kör med och utan G1 inkopplad **!RUN INSTRUCTION** ! AT=102.000 INST=DISCONNECT SHUN=NKBPM5 ! AT=107.000 INST=CONNECT SHUN=NKBPM5 ! AT=115.000 INST=DISCONNECT SHUN=NKBALLOYS ! AT=120.000 INST=CONNECT SHUN=NKBALLOYS ! AT=135.000 INST=DISCONNECT SHUN=NKBALLOYS ! AT=145.000 INST=DISCONNECT SHUN=NKBPM5 ! AT=160,000 INST=CONNECT SHUN=NKBALLOYS ! END !TRANSTA KÖr 140s DEND=0.1! !----**! FAULTS** ! FEL1 TYPE=1PSG NODE=OT92 !Enfasigt jordfel i matande nät, uppsida T3 ! FEL2 TYPE=1PSG NODE=T3SEK !Enfasigt jordfel i matande nät, nedsida T3 ! FEL3 TYPE=1PSG NODE=NLASTPM2SEK !Enfasigt jordfel lastsida, nedsida trafo 500V !END **!RUN INSTRUCTION** ! AT=20.000 INST=DISCONNECT SHUN=NKBPM5 !Har blivit direktjordad av misstag.. ! AT=102.000 INST=CONNECT FAULT=FEL1 ! AT=102.100 INST=DISCONNECT FAULT=FEL1 ! AT=116.000 INST=CONNECT FAULT=FEL2 ! AT=116.100 INST=DISCONNECT FAULT=FEL2 ! AT=126.000 INST=CONNECT FAULT=FEL3 ! AT=126.100 INST=DISCONNECT FAULT=FEL3 !END !----- 523b ----- Genfel/Urkoppling G1------!TRANSTA KÖr 150s DEND=0.08! _____ !----**!FAULTS** ! FEL1 TYPE=3PSG R=1 LINE=ALLOYS NALHORSEA NO=1 DELTA=0.9 !Trefasigt jordfel i matande kabel 45m(<=>0.9) utanför Hästskon
! FEL2 TYPE=3PSG R=1 LINE=ALLOYS NALHORSEA NO=2 DELTA=0.9
! FEL3 TYPE=3PSG R=1 LINE=ALLOYS NALHORSEA NO=3 DELTA=0.9 ! FEL4 TYPE=3PSG R=1 LINE=ALLOYS NALHORSEB NO=1 DELTA=0.9
! FEL5 TYPE=3PSG R=1 LINE=ALLOYS NALHORSEB NO=2 DELTA=0.9
! FEL6 TYPE=3PSG R=1 LINE=ALLOYS NALHORSEB NO=3 DELTA=0.9 ! FEL7 TYPE=3PSG NODE=ALLOYS Sida 7

WargonVind

! FEL1 TYPE=3PSG R=1 LINE=HORSEA AKC NO=1 DELTA=0.5 !Trefasigt jordfel matn ÅKC ! FEL2 TYPE=3PSG R=1 LINE=HORSEA AKC NO=2 DELTA=0.5

! FEL10 TYPE=3PSG R=1 NODE=AKC

! FEL7 TYPE=1PSG R=1 LINE=HORSEA AKC NO=1 DELTA=0.5 !Enfasigt jordfel matn ÅKC ! FEL8 TYPE=1PSG R=1 LINE=HORSEA AKC NO=2 DELTA=0.5

! FEL9 TYPE=3PSG R=1 NODE=NLASTPM3SEK !Trefasigt jordfel PM5 Lastsida

! END

!RUN INSTRUCTION

! AT=50 INST=OPEN SYNC=G1 1BREAKER PHASE=123 AT=50 INST=OPEN SYNC=Slipv6 IBREAKER PHASE=123 AT=50 INST=OPEN SYNC=Slipv9 IBREAKER PHASE=123 ! AT=50 INST=OPEN SYNC=Slipv10 1BREAKER PHASE=123 ! AT=150.000 INST=DISCONNECT SHUN=NKBALLOYS ! AT=202.000 INST=CONNECT FAULT=FEL1 ! AT=202.000 INST=CONNECT FAULT=FEL2 ! AT=202.000 INST=CONNECT FAULT=FEL3 AT=202.000 INST=CONNECT FAULT=FEL4 AT=202.000 INST=CONNECT FAULT=FEL5 ! AT=202.000 INST=CONNECT FAULT=FEL6 ! AT=102.00 INST=CONNECT FAULT=FEL7 ! AT=102.00 INST=CONNECT FAULT=FEL8 ! AT=102.00 INST=CONNECT FAULT=FEL10 ! AT=202.08 INST=DISCONNECT FAULT=FEL1 AT=202.08 INST=DISCONNECT FAULT=FEL2 AT=202.08 INST=DISCONNECT FAULT=FEL3 AT=202.08 INST=DISCONNECT FAULT=FEL4 AT=202.08 INST=DISCONNECT FAULT=FEL4 AT=202.08 INST=DISCONNECT FAULT=FEL5 ! AT=202.08 INST=DISCONNECT FAULT=FEL6 ! AT=102.08 INST=DISCONNECT FAULT=FEL7 ! AT=102.20 INST=DISCONNECT FAULT=FEL8 ! AT=102.20 INST=DISCONNECT FAULT=FEL10 ! AT=130.00 INST=OPEN SYNC=G1 1BREAKER PHASE=123 !Urkoppling G1 !END !----- 524b ------ Motstart -----!TRANSTA KÖr 300-700s DEND=0.08! !la Asynk **!RUN INSTRUCTION** ! AT=20.000 INST=DISCONNECT SHUN=NKBPM5 ! AT=2.0 INST=OPEN LINE=HORSEB NSLIP8PRI NO=1 1BREAKER PHASE=123 ! AT=200.0 INST=CLOSE LINE=HORSEB NSLIP8PRI NO=1 1BREAKER PHASE=123 ! AT=2.0 INST=OPEN LINE=HORSEB NSLIP7PRI NO=1 1BREAKER PHASE=123 ! AT=200.0 INST=CLOSE LINE=HORSEB NSLIP7PRI NO=1 1BREAKER PHASE=123

WargonVind ! AT=2.0 INST=OPEN LINE=HORSEA NRAFF5 NO=1 IBREAKER PHASE=123 ! AT=250.0 INST=CLOSE LINE=HORSEA NRAFF5 NO=1 1BREAKER PHASE=123 ! AT=2.0 INST=OPEN LINE=HORSEA NRAFF6 NO=1 1BREAKER PHASE=123 ! AT=200.0 INST=CLOSE LINE=HORSEA NRAFF6 NO=1 1BREAKER PHASE=123 ! AT=-40.0 INST=OPEN LINE=PM5D NSULZERPRI NO=1 1BREAKER PHASE=123 ! AT=600.0 INST=CLOSE LINE=PM5D NSULZERPRI NO=1 1BREAKER PHASE=123 !END !2a Synk **!RUN INSTRUCTION** ! AT=2.0 INST=DISCONNECT SYNC=SLIPV9 ! AT=200.0 INST=CONNECT SYNC=SLIPV9 ! END !----- 525b ------ Urkopp1 ------!TRANSTA KÖr 115s DEND=0.08! _____ RUN INSTRUCTION AT=104.0 INST=OPEN LINE=ALLOYS NALHORSEB NO=1 1BREAKER PHASE=123 AT=104.0 INST=OPEN LINE=ALLOYS NALHORSEB NO=2 1BREAKER PHASE=123 AT=104.0 INST=OPEN LINE=ALLOYS NALHORSEB NO=3 1BREAKER PHASE=123 AT=104.0 INST=OPEN LINE=ALLOYS NALHORSEA NO=1 1BREAKER PHASE=123 AT=104.0 INST=OPEN LINE=ALLOYS NALHORSEA NO=2 1BREAKER PHASE=123 AT=104.0 INST=OPEN LINE=ALLOYS NALHORSEA NO=3 1BREAKER PHASE=123 AT=104.1 INST=OPEN SYNC=G1 1BREAKER PHASE=123 AT=104.1 INST=OPEN SYNC=Slipv6 1BREAKER PHASE=123 AT=104.1 INST=OPEN SYNC=Slipv9 1BREAKER PHASE=123 AT=104.1 INST=OPEN SYNC=Slipv10 1BREAKER PHASE=123 AT=104.2 INST=OPEN LINE=HORSEA NRAFF5 NO=1 1BREAKER PHASE=123 AT=104.2 INST=OPEN LINE=HORSEA NRAFF6 NO=1 1BREAKER PHASE=123 AT=104.2 INST=OPEN LINE=HORSEB NSLIP7PRI NO=1 1BREAKER PHASE=123 AT=104.2 INST=OPEN LINE=HORSEB NSLIP8PRI NO=1 1BREAKER PHASE=123 AT=104.2 INST=OPEN LINE=PM5D NSULZERPRI NO=1 1BREAKER PHASE=123 END !----- 526b ------ Inkoppl -----!MASTA Kör 30s DEND=0.08 och använd optpow-fil WargonTomg! _____ | -- -- -**!RUN INSTRUCTION** ! AT=0.0 INST=OPEN LINE=HORSEA NRAFF5 NO=1 1BREAKER PHASE=123 ! AT=0.0 INST=OPEN LINE=HORSEA NRAFF6 NO=1 1BREAKER PHASE=123 ! AT=0.0 INST=OPEN LINE=HORSEB NSLIP7PRI NO=1 1BREAKER PHASE=123 ! AT=0.0 INST=OPEN LINE=HORSEB NSLIP8PRI NO=1 1BREAKER PHASE=123 ! AT=0.0 INST=OPEN LINE=HORSEB T26PRI NO=1 1BREAKER PHASE=123 ! AT=0.0 INST=OPEN LINE=PM5D NSULZERPRI NO=1 1BREAKER PHASE=123 ! AT=1.0 INST=OPEN SYNC=G1 1BREAKER PHASE=123 ! AT=1.0 INST=OPEN SYNC=Slipv6 1BREAKER PHASE=123 ! AT=1.0 INST=OPEN SYNC=Slipv9 1BREAKER PHASE=123 sida 9

WargonVind ! AT=1.0 INST=OPEN SYNC=Slipv10 1BREAKER PHASE=123 ! AT=1.0 INST=OPEN LINE=PM5C NKBPM5 NO=1 1BREAKER PHASE=123 ! AT=1.0 INST=OPEN LINE=PM5C NKBPM5 NO=2 1BREAKER PHASE=123 ! AT=2.0 INST=OPEN LINE=HORSEA AKC NO=1 1BREAKER PHASE=123 ! AT=2.0 INST=OPEN LINE=HORSEA AKC NO=2 1BREAKER PHASE=123 ! AT=5.0 INST=DISCONNECT LINE=ALLOYS NALHORSEB NO=1 ! AT=5.0 INST=DISCONNECT LINE=ALLOYS NALHORSEB NO=2 ! AT=5.0 INST=DISCONNECT LINE=ALLOYS NALHORSEB NO=3 ! AT=5.0 INST=DISCONNECT LINE=ALLOYS NALHORSEA NO=1 ! AT=5.0 INST=DISCONNECT LINE=ALLOYS NALHORSEA NO=2 ! AT=5.0 INST=DISCONNECT LINE=ALLOYS NALHORSEA NO=3 ! AT=6.0 INST=CLOSE LINE=PM5C NKBPM5 NO=1 1BREAKER PHASE=123 ! AT=6.0 INST=CLOSE LINE=PM5C NKBPM5 NO=2 1BREAKER PHASE=123 ! AT=20 INST=CONNECT LINE=ALLOYS NALHORSEB NO=1 ! AT=20 INST=CONNECT LINE=ALLOYS NALHORSEB NO=2 ! AT=20 INST=CONNECT LINE=ALLOYS NALHORSEB NO=3 ! AT=20 INST=CONNECT LINE=ALLOYS NALHORSEA NO=1
! AT=20 INST=CONNECT LINE=ALLOYS NALHORSEA NO=2
! AT=20 INST=CONNECT LINE=ALLOYS NALHORSEA NO=3 ! END !----- 527 ------ G1 Swing bus-----!TRANSTA Kör 400s DEND=0.08 och använd optpow-fil WargonG1SW! ______ ----**!FAULTS** !FEL1 TYPE=3PSG R=1 LINE=HORSEA AKC NO=1 DELTA=0.5 !FEL2 TYPE=3PSG R=1 NODE=AKC ! END **!RUN INSTRUCTION** ! AT=100.0 INST=OPEN LINE=HORSEB NSLIP8PRI NO=1 1BREAKER PHASE=123 ! AT=200.0 INST=CLOSE LINE=HORSEB NSLIP8PRI NO=1 1BREAKER PHASE=123 ! AT=300.00 INST=CONNECT FAULT=FEL2 ! AT=300.30 INST=DISCONNECT FAULT=FEL2 1 END !----- Övrigt -----!AT=2.040 INST=LOSSEXC SYNC=G1 !AT=2.050 INST=DISCONNECT SYNC=G1 !AT=40.0 INST=CLOSE LINE=HORSEA NRAFF5 NO=1 1BREAKER PHASE=123 !AT=-40.0 INST=OPEN LINE=PM5D NSULZERPRI NO=1 1BREAKER PHASE=123 !AT=600.0 INST=CLOSE LINE=PM5D NSULZERPRI NO=1 1BREAKER PHASE=123 !AT=1 INST=CONNECT ASYN=RAFF5 !AT=4 INST=CONNECT SYNC=SLIPV9 !AT=2.05 INST=CONNECT FAULT=FEL1 !AT=2.06 INST=DISCONNECT FAULT=FEL1 !AT=2.5 INST=DISCONNECT SHUN=ALLOYS

Sida 10

```
!AT=10.0 INST=CONNECT SHUN=NKBALLOYS
```

WargonVind

END

G Resultat Simpow lastflöde

1 1211 11	1	4.	1.	T	1	1	1 2 3 1221 1 1	1		00.00	02 1444	02.14
L	Name	Regior	Area	Up.u.	UKV	FI(u) Deg.	P1 MW	Q1 Mvar	P2 MW	Q2 Mvar	P3 MW	Q3 Mvar
1	0192	1	1	1	130	0						
2	TR2 OT92 T3SEK 0						-29.8171	-0.372798	29.5689	-1.1092	0	0
3	PROD OT92		1				29.8171	0 372798	0	0	0	0
	The second s		1.	0.0057.47	10 45 45			0.072750	·		<u> </u>	
4	1935N	1	1	0.995647	10.4545	-2.65/36						
5	LINE T3SEK ALLOYS 1						-7.41722	0.277299	7.41082	-0.283048	0	0
6	LINE T3SEK ALLOYS 2						-7.41722	0.277299	7.41082	-0.283048	0	0
7	LINE T3SEK ALLOYS 3						-7.41722	0.277299	7,41082	-0.283048	0	0
0						-	-7 41722	0.277200	7 41092	-0.283048	0	0
0	LINE ISSER ALLOIS 4		-	-			-7.41/22	0.277233	7.41002	0.2000 10	0	
9	TR2 OT92 T3SEK 0						-29.8171	-0.372798	29.6689	-1.1092	0	0
10	ALLOYS	1	1	0.994847	10.4459	-2.94793						
11	SHUN ALLOYS 0						1.31349E-008	14.609	0	0	0	0
12	LINE TISEK ALLOYS 1						-7 41722	0 277299	7 41082	-0.283048	0	0
							7.11762	0.277233	7.12002	0.200010	0	<u> </u>
13	LINE I JSEK ALLOYS 2		1	[0.277299	7.41082	-0.283048	<u> </u>	·
14	LINE T3SEK ALLOYS 3						-7.41722	0.277299	7.41082	-0.283048	0	0
15	LINE T3SEK ALLOYS 4		1				-7.41722	0.277299	7.41082	-0.283048	0	0
16	LINE ALLOYS NALHORSEA 1						-3.35269	-1.57504	3.3481	1.57345	0	0
17							2 25260	1.57504	2 2401	1 67246	0	<u> </u>
17	LINE ALLOTS NALHORSEA 2						-3.35209	-1.57504	3.3401	1.57545	0	
18	LINE ALLOYS NALHORSEA 3	İ					-3.35269	-1.57504	3.3481	1.57345	0	<u> </u>
19	LINE ALLOYS NALHORSEB 1						-4.86174	-1.91723	4.85261	1.9061	0	0
20	LINE ALLOYS NALHORSEB 2						-4.86174	-1.91723	4.85261	1.9061	0	0
21	LINE ALLOYS NALHORSEB 3						-4 86174	-1 91723	4 85261	1 9061	0	0
			+				-	2.54725		0		
22	LOAD ALLOYS U		<u> </u>				-5	-3	U	0	0	<u> </u>
23	NALHORSEA	1	1	0.992633	10.4226	-3.05262	-					L
24	LINE ALLOYS NALHORSEA 1						-3.35269	-1.57504	3.3481	1.57345	0	0
25	LINE ALLOYS NALHORSEA 2						-3.35269	-1.57504	3.3481	1.57345	0	0
26	LINE ALLOYS NALHORSEA 3						-3,35269	-1.57504	3.3481	1.57345	0	0
27	LINE NALLIOPERA LIOPERA		 				5.03245	2.0.017	E 02195	7 76077		0
27	LINE NALHOKSEA HORSEA 1						-5.02215	-2.3001/	3.02100	2.333//		
28	LINE NALHORSEA HORSEA 2						-5.02215	-2.36017	5.02186	2.35977	0	0
29	NALHORSEB	1	1	0.991895	10.4149	-3.10693						
30	LINE ALLOYS NALHORSEB 1	1					-4.86174	-1.91723	4.85261	1.9061	0	0
31		1					-4.86174	-1 91723	4 85261	1.9061	0	0
31 .	LINE ALLOIS NALHORSED 2			· · · ·			4.06174	1.91723	4.05261	1.00(1	0	0
32	LINE ALLOYS NALHORSEB 3					l	-4.86174	-1.91/23	4.85261	1.9001	U	0
33	LINE NALHORSEB HORSEB 1						-7.27891	-2.85915	7.27834	2.85805	0	0
34	LINE NALHORSEB HORSEB 2						-7.27891	-2.85915	7.27834	2.85805	0	0
35	HORSEA	1	1	0.992533	10.4216	-3.058						
26		-					-5.02215	-2 36017	5 02186	2 35977	0	0
30							5.02215	2.30017	5.02100	2,25037	0	0
37	LINE NALHORSEA HORSEA 2						-5.02215	-2.36017	5.02186	2.359/7	0	0
38	LINE HORSEA AKC 1						0.521284	0.65951	-0.521349	-0.657956	0	0
39	LINE HORSEA AKC 2						0.521284	0.65951	-0.521349	-0.657956	0	0
40	LINE HORSEA NSLIP10 1						-0.960005	-0.539601	0.95977	0.540693	0	0
41		-					-2 51622	-0 979466	2 51 54 3	0.980317	0	0
41							4.47252	0.575400	4.17244	0.54000	0	0
42	LINE HORSEA NRAFF5 1						-1.1/252	-0.540684	1.17244	0.541198	0	0
43	LINE HORSEA NRAFF6 1						-1.17252	-0.540684	1.17244	0.541198	0	0
44	LINE HORSEA NLASTH1PRI 1						-2.63251	-1.71907	2.63137	1.71962	0	0
45	LINE HORSEA NLASTH2PRI 1						-2.63251	-1.71907	2.63137	1.71962	0	0
46	Hope-pig and the second second	1	1	0.991763	10 41 35	-3 11504						
10	INCOMPANY AND A REAL PROPERTY		-	0.331/03	10,4100	5.11501	7.07001	2.05015	7 27034	2 95005	0	0
4/	LINE NALHORSEB HORSEB I						-7.27891	-2.00910	7.27834	2.05005	0	0
48	LINE NALHORSEB HORSEB 2						-7.27891	-2.85915	7.27834	2.85805	0	0
49	LINE HORSEB PM5C 1	ł					-5.73139	-0.662536	5.72393	0.652206	0	0
50	LINE HORSEB PM5D 1						-3.55951	-2.36482	3.55542	2.36155	0	0
F1							-0.960013	-0 538829	0.959778	0 530010	0	0
54						<u> </u>	1 10752	0.55002.5	1 10777	0 554176	-	0
52	LINE HORSEB NSLIP7PRI 1						-1.19/52	-0.553234	1.19/22	0.354170	0	0
53	LINE HORSEB NSLIP8PRI 1						-1.3197	-0.532347	1.31933	0.533318	0	0
54	LINE HORSEB T26PRI 1						-1.03053	-0.618212	1.03034	0.619751	0	0
55	LINE HORSEB NLASTH3PRI 1						-0.758026	-0.44613	0.757876	0.447257	0	0
56	PMSC	1	1	0.990187	10.3969	-3.26117						
57		<u> </u>	-				-1 40865-000	3 43161	0	0	0	0
5/			1				-1.10000-009	0.00101	5 30000	0 000000		
58	LINE HORSEB PM5C 1						-5.73139	-0.662536	5.72393	0.652206	U	<u> </u>
59	LINE PM5C NLASTPM1PRI 1						-2.98894	-2.14856	2.98737	2.14895	0	0
60	LINE PM5C NLASTPM2PRI 1						-2.73499	-1.93526	2.73369	1.93584	0	0
61	PMSD	1	1	0.989868	10 3936	-3,18068		1				
		<u> </u>	-	3.303000	-0.0000	5.20000	-2 55051	-2 36492	3 65542	2 26155	0	-
02	LINE HUKSEB MMISD 1						10000	-2.30402	3.33342	2.30133	0	-
63	LINE PM5D NSULZERPRI 1						-0.821071	-0.425961	0.82103	0.426203	U	U
64	LINE PM5D NLASTPM3PRI 1						-2.73435	-1.93559	2.7337	1.93588	0	0
65	AKC	1	1	0.99263	10.4226	-3.05922						
66			-				0 521284	0.65951	-0.521349	-0.657956	0	0
00							0.521207	0.00001	0.521313	0.057050		
67	LINE HORSEA AKC 2	ļ	L				0.521284	0.02321	-0.521349	-0.05/950	U	
68	LINE AKC NLASTAKCPRI 1						-0.957301	-0.684089	0.957033	0.685167	0	0
69	PROD AKC						2	2	0	0	0	0
70	TZ6PRI	1	1	0.991574	10.4115	-3,11566						
		-	-	5.5913/4		5.11.500	-1 02052	-0.618212	1 02024	0.610751		
/1	LINE HORSEB 126PRI 1						-1.03053	-0.016212	1.03034	0.013/21	U	
72	TR2 T26PRI T26SEK 0						-1.03034	-0.619751	1.02445	0.582698	0	0
73	T26SEK	1	1	1.02055	0.510277	-4.512						
74	TR2 T26PRI T26SFK 0						-1.03034	-0.619751	1.02445	0.582698	0	0
							0 512227	-0.201240	A	0	0	
/5			· · ·				-0.312222	-0.231343	•	0	v	<u> </u>
76	ASYN KVARN2					ļ	-0.512227	-0.291349	U	U	U	U
77	NSLIP6PRI	1	1	0.992188	10.418	-3.06258						[
78	LINE HORSEA NSLIP6PRI 1						-2.51622	-0.979466	2.51543	0.980317	0	0
70	TR2 NSI ID6001 NICI ID6554 0					[-2 51543	-0.980317	2.49122	0.787598	0	
1 ^{/3}	INZ INSUFUEN INSUFUEN U		l	0.0000	D. 00000	C C	1.31343	0.0001/		5	·	Ĕ
180 1	NOLIPOSEK	11	11	LU. 996394	5.58702	-0.81018		1			()	1

	Name	Regior	Area	Up.u.	U kV	FI(u) Deg.	P1 MW	Q1 Mvar	P2 MW	Q2 Mvar	P3 MW	Q3 Mvar
81	LINE NSLIP6SEK NSLIP6 1						-1.24561	-0.393799	1.24511	0.393513	0	0
82	LINE NSLIP6SEK NSLIP6 2						-1.24561	-0.393799	1.24511	0.393513	0	0
83	TR2 NSLIPERRI NSLIPESEK 0						-2 51543	-0.980317	2 49122	0.787598	0	0
0.0				0.005055	2 50544	6 01775	2.51515	0.500517				
84	22SUR	1	1	0.995955	3.58544	-0.81//5						
85	LINE NSLIP6SEK NSLIP6 1						-1.24561	-0.393799	1.24511	0.393513	0	0
86	LINE NSLIP6SEK NSLIP6 2						-1.24561	-0.393799	1.24511	0.393513	0	0
87	ASYN SLIPV6						-2.49022	-0.787026	0	٥	0	0
88	NSLIP/PRI	1	1	0.991514	10.4109	-3.11469	-					
89	LINE HORSEB NSUPZERI 1	1					-1.19752	-0.553234	1.19722	0.554176	0	0
00			· · · · ·				-1 10722	-0 554176	1 19212	0.52359	0	0
90	TRZ NSLIPPRI NSLIPPSLK U			4 07007	c 1500.4		-1,19/22	-0.334170	1.1.72.12	0.02.00.0	<u> </u>	<u> </u>
91	NSLIP/SEK	1	1	1.07887	6.4/324	-4.24195				0.000004		
92	LINE NSLIP7SEK NSLIP7 1						-1.19212	-0.52359	1.19191	0.523594	0	0
93	TR2 NSLIP7PRI NSLIP7SEK 0						-1.19722	-0.554176	1.19212	0.52359	0	0
94	NSDP7	1	1	1.07868	6.47206	-4.24268						
95	LINE NSLIPZSEK NSLIPZ 1						-1.19212	-0.52359	1.19191	0.523594	0	0
96	ASYN SI IPV7						-1 19191	-0.523594	0	0	0	0
07	INFORMATION AND A STATE OF A STAT			0.00148	10 4105	2 11545			·	-		· · · · · · · · · · · · · · · · · · ·
9/	INSUPORKLY REPORT	1	1	0.99140	10.4105	-3.11343			4.04000	0.50004.0		<u> </u>
98	LINE HORSEB NSLIPBPRI 1		ļ				-1.319/	-0.53234/	1.31933	0.533318	0	
99	TR2 NSLIP8PRI NSLIP8SEK 0						-1.31933	-0.533318	1.30999	0.478198	0	0
100	NISLIP8SEK +	1	1	1.07121	0.535605	-5.07159						
101	LINE NSLIP8SEK NSLIP8 1						-0.187141	-0.0683139	0.186415	0.0680731	0	0
102	LINE NSLIPSSEK NSLIPS 2						-0.187141	-0.0683139	0.186415	0.0680731	0	0
102	LINE NELIDREEK NELIDR 3						-0 187141	-0.0583139	0 186415	0.0680731	0	0
103	LINE NELTOSEN INSLEO 3						-0 197141	-0.0693130	0 186415	0.0680731	0	<u> </u>
104	LINE NSLIPOSEK NSLIP8 4						-0.10/141	-0.0003139	0.100415	0.0000731	<u> </u>	<u> </u>
105	LINE NSLIP8SEK NSLIP8 5						-0.187141	-0.0683139	0.186415	0.0680/31	U	·
106	LINE NSLIP8SEK NSLIP8 6						-0.187141	-0.0683139	0.186415	0.0680731	0	0
107	LINE NSLIP8SEK NSLIP8 7						-0.187141	-0.0683139	0.186415	0.0680731	0	0
108	TR2 NSLIP8PRI NSLIP8SEK 0						-1.31933	-0.533318	1.30999	0.478198	0	0
109	INSUTPR AND	1	1	1.06709	0.533547	-5.06535						
110	THE NO DOCEN NO TOP 1	1	-			5.55555	-0 187141	-0.0683139	0 186415	0.0680731	0	0
110				_			0.107141	0.0003133	0.100115	0.0000731	0	0
111	LINE NSLIP8SEK NSLIP8 2						-0.18/141	-0.0683139	0.166415	0.0660731	0	0
112	LINE NSLIP8SEK NSLIP8 3						-0.187141	-0.0683139	0.186415	0.0680731	0	0
113	LINE NSLIP8SEK NSLIP8 4						-0.187141	-0.0683139	0.186415	0.0680731	0	0
114	LINE NSLIP8SEK NSLIP8 5						-0.187141	-0.0683139	0.186415	0.0680731	0	0
115	LINE NSLIP8SEK NSLIP8 6						-0.187141	-0.0683139	0.186415	0.0680731	0	0
116	TINE NSLIPSSEK NSLIPS 7						-0.187141	-0.0683139	0.186415	0.0680731	0	0
117				-			-1 3049	-0 476512	0	0	0	n
11/	ASTN SUPV8					0.44047	-1.3049	-0.470312		· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · · · · · · · · · · · · · · · ·
118	NSLIP9 Constant and the second	1	1	0.991534	10.4111	-3.1136/				0.00004.0		
119	LINE HORSEB NSLIP9 1						-0.960013	-0.538829	0.959778	0.539919	0	0
120	ASYN SLIPV9						-0.959778	-0.539919	0	0	0	0
121	NSLIP10	1	1	0.992304	10.4192	-3.05663						
122	LINE HORSEA NSLIP10 1						-0.960005	-0.539601	0.95977	0.540693	0	0
123	ASYN SLIPV10						-0.95977	-0.540693	0	0	0	0
124	NBALLS BURNERS AND	1	1	0 00245	10.4208	-3.05898						
127		-	-	0.55210	10.1200	3.03070	1 17757	0 540694	1 17244	0 541109	0	0
125	LINE HORSEA NRAFFS 1						-1.1/232	0.540084	0	0.541155	0	0
126	ASYN RAFF5						-1.1/244	-0.541198	0	0	0	0
127	NRAFF6	1	1	0.99246	10.4208	-3.05898						
128	LINE HORSEA NRAFF6 1						-1.17252	-0.540684	1.17244	0.541198	0	0
129	ASYN RAFF6						-1.17244	-0.541198	0	0	0	0
130	NIASTHIPRI	1	1	0.99208	10.4168	-3.06013						
121	LINE HODSEN NIASTHIDDI 1	-	-				-2 63251	-1.71907	2.63137	1.71962	0	0
127							-2 63137	-1 71962	26	1.5	0	0
132	IKZ NLASIHIPKI NLASIHISEK U				0.40		-2.03137	1./1504	2.0	*	· · · · · · · · · · · · · · · · · · ·	
133	NLASTMISEK	1	1	0.994703	0.497351	-6.24332						
134	TR2 NLASTH1PRI NLASTH1SEK 0						-2.63137	-1.71962	2.6	1.5	0	0
135	LOAD NLASTH1SEK 0						-2.6	-1.5	0	0	0	0
136	NLASTH2PRI	1	1	0.99208	10.4168	-3.06013						
137	LINE HORSEA NLASTH2PRI 1						-2.63251	-1.71907	2.63137	1.71962	0	0
139				_			-2.63137	-1.71962	2.6	1.5	0	0
130	INC NENDITIZERA NUNDITIZZEN U		<u>.</u>	0.004700	0.407257	-6 24333						· · · ·
139	NERSITIESEN	1	1	J.994703	0.49/351	-0.24332	0.0005	1 71000	26	1.5		0
140	TR2 NLASTH2PRI NLASTH2SEK 0		<u> </u>				-2.63137	-1.71962	2.0	1.5	U	
141	LOAD NLASTH2SEK 0						-2.6	-1.5	0	0	0	0
142	NLASTHJPRI	1	1	0.99158	10.4116	-3.11373						
143	LINE HORSEB NLASTH3PRI 1						-0.758026	-0.44613	0.757876	0.447257	0	0
144	TR2 NLASTH3PRI NLASTH3SEK 0	-			-		-0.757876	-0.447257	0.75	0.4	0	0
145	NACTHICEL	1	1	1.00565	0 502827	-5 58804						
145		-	<u>*</u>	1.00303	J. JUZ027	5.55004	0 757976	-0.447257	0.75	0.4		0
145	IR2 NLASTH3PRI NLASTH3SEK 0						-0./5/8/0	-0.44/25/	0.75	0.4	<u>v</u>	×
147	LOAD NLASTH3SEK 0						-0.75	-0.4	U	U	U	<u>v</u>
148	NLASTAKOPRI	1	1	0.992389	10.4201	-3.05623						
149	LINE AKC NLASTAKCPRI 1						-0.957301	-0.684089	0.957033	0.685167	0	0
150	TR2 NLASTAKCPRI NLASTAKCSEK						-0.957033	-0.685167	0.95	0.65	0	0
151	NI ASTAKISEK	1	1	1.01905	0.509527	-4.27584						
152			·	2.02905			-0.957032	-0.685167	0.95	0.65	0	0
152	IKZ NLASTAKUPRI NLASTAKUSEK						-0.937033	-0.00010/	· · · ·	0.05		×
153	LOAD NLASTAKCSEK 0						-0.95	-0.65	U	U	U	U
154	NSULZERPRI	1	1	0.989821	10.3931	-3.18031		· · · _	· · ·			
155	LINE PM5D NSULZERPRI 1						-0.821071	-0.425961	0.82103	0.426203	0	0
156	TR2 NSULZERPRI NSULZERSEK 0						-0.82103	-0.426203	0.817069	0.406794	0	0
157	NSULZERSEK	1	1	1.02546	0.512731	-4.14719					_	
159	LINE NOU TEDCEY NOU TED		-				-0 116724	-0.0581134	0.116045	0.0578894	0	0
100							-0.116734	-0.0501134	0.116045	0.0578904	0	-
159	LINE NSULZERSEK NSULZER 2						-0.110/24	-0.0501134	0.110045	0.03/0894	×	<u> </u>
160	LINE NSULZERSEK NSULZER 3						-0.116724	-0.0581134	u.116045	0.0578894	U V	U I

	Name	Regior	Area	U p.u.	U kV	FI(u) Deg.	P1 MW	Q1 Mvar	P2 MW	Q2 Mvar	P3 MW	Q3 Mvar
161	LINE NSULZERSEK NSULZER 4						-0.116724	-0.0581134	0.116045	0.0578894	0	0
162	LINE NSULZERSEK NSULZER 5						-0.116724	-0.0581134	0.116045	0.0578894	0	0
163	LINE NSULZERSEK NSULZER 6						-0.116724	-0.0581134	0.116045	0.0578894	0	0
164	LINE NSULZERSEK NSULZER 7						-0.116724	-0.0581134	0.116045	0.0578894	0	0
165	TR2 NSULZERPRI NSULZERSEK 0						-0.82103	-0.426203	0.817069	0.406794	0	0
166	NSULZER.	1	1	1.01989	0.509944	-4.10299						
167	LINE NSULZERSEK NSULZER 1						-0.116724	-0.0581134	0.116045	0.0578894	0	0
168	LINE NSULZERSEK NSULZER 2						-0.116724	-0.0581134	0.116045	0.0578894	0	0
169	LINE NSULZERSEK NSULZER 3						-0.116724	-0.0581134	0.116045	0.0578894	0	0
170	LINE NSULZERSEK NSULZER 4						-0.116724	-0.0581134	0.116045	0.0578894	0	0
171	LINE NSULZERSEK NSULZER 5						-0.116724	-0.0581134	0.116045	0.0578894	0	0
172	LINE NSULZERSEK NSULZER 6						-0.116724	-0.0581134	0.116045	0.0578894	0	0
173	LINE NSULZERSEK NSULZER 7						-0.116724	-0.0581134	0.116045	0.0578894	0	0
174	ASYN SULZER						-0.812315	-0.405226	0	0	0	0
175	NLASTPMIPRI	1	1	0.989672	10.3916	-3.2604						
176	LINE PM5C NLASTPM1PRI 1						-2.98894	-2.14856	2.98737	2.14895	0	0
177	TR2 NLASTPM1PRI NLASTPM1SEK						-2.98737	-2.14895	2.95	1.85	0	0
178	NLASTPM1SEK	1	1	0.936451	0.374581	-6.89699						
179	TR2 NLASTPM1PRI NLASTPM1SEK						-2.98737	-2.14895	2.95	1.85	0	0
180	LOAD NLASTPM1SEK 0						-2.95	-1.85	0	0	0	0
181	NLASTPM2PRI	1	1	0.989718	10.392	-3.26067						
182	LINE PM5C NLASTPM2PRI 1						-2.73499	-1.93526	2.73369	1.93584	0	0
183	TR2 NLASTPM2PRI NLASTPM2SEK						-2.73369	-1.93584	2.7	1.7	0	0
184	NLASTPM2SEK	1	1	0.989847	0.494924	-6.36877						
185	TR2 NLASTPM2PRI NLASTPM2SEK						-2.73369	-1.93584	2.7	1.7	0	0
186	LOAD NLASTPM2SEK 0						-2.7	-1.7	0	0	0	0
187	INLASTPM3PRICE	1	1	0.989636	10.3912	-3.18043						
188	LINE PM5D NLASTPM3PRI 1						-2.73435	-1.93559	2.7337	1.93588	0	0
189	TR2 NLASTPM3PRI NLASTPM3SEK						-2.7337	-1.93588	2.7	1.7	0	0
190	NUASTPMBSEK	1	1	0.989756	0.494878	-6.28907						
191	TR2 NLASTPM3PRI NLASTPM3SEK						-2.7337	-1.93588	2.7	1.7	0	0
192	LOAD NLASTPM3SEK 0						-2.7	-1.7	0	0	0	0

H Tabeller över antagna värden samt utökad teori

H1 Komponenters impedans i osymmetriska system

H1.1 Kablar och linjer

För linjer är $Z^1=Z^2$ medan nollföljdsimpedansen kan beräknas ur

$$X^{0} = X^{1} + 3X^{n} \operatorname{där} X^{n} = 2\pi f \left(0, 2 \cdot \ln \left\{ \frac{D_{n}}{D} \right\} \right) [m\Omega / km]. \quad (H1.1, H1.2)$$

D_n är avståndet mellan linje och jord och D är avståndet mellan faserna [6].

För kablar gäller på samma sätt att om eventuella strömmar i skärmen försummas är plus- och minusföljdsimpedansen lika; $Z^1=Z^2$. I [8] ges ett uttryck för att beräkna nollföljdsimpedansen där Z_C är ledarimpedansen, Z_m den ömsesidiga impedansen mellan ledare och skärm samt Z_S som är skärmens impedans. Z^0 kan då beräknas som

$$Z^{0} = Z_{c} - \frac{Z_{m}^{2}}{Z_{s}} [\Omega / fas \ och \ längdenhet].$$
(H1.3)

Om data inte är kända kan de för en treledarkabel approximeras som $Z^0/Z^1 = 3 - 5$ [9]. Bäst uppgifter fås från respektive kabeltillverkare där värdena tas fram genom experiment.

H1.2 Synkronmaskin

Impedanserna kan approximeras enligt följande

$X^1 = X_d^{''}$ eller $X_d^{'}$ eller X_d beroende på aktuell beräkning	(H1.4)
$X^2 = X_d$	(H1.5)

 $X^0 = X_1$ (läckreaktansen) [6] (H1.6)

H1.3 Transformator

Följande gäller vid räkning per fas (vanligast).

$$Z^{1} = Z^{2} = Z^{0} = Z_{1}$$
(H1.7)

I ett symmetriskt uppstår ingen nollföljdskomponent vilket innebär att denna impedans representeras av en öppen krets i det ekvivalenta schemat. Dessa ekvivalenta scheman finns vanligt förekommande i litteraturen [6]

H2 Symmetriska komponenter vid olika typer av fel

Beräkning med hjälp av symmetriska komponenter kan åskådliggöras med kopplingsscheman där ett separat schema enligt figur 38 nedan svarar mot respektive plus-, minus- och nollföljdskomponent. För olika typer av fel kombineras dessa på olika sätt, figur 39-41.

Figur 38. Kretsschema över plus-, minus- och nollföljdssystemen.

Följande schema beskriver kopplingen för felberäkning då enfasigt jordfel föreligger med fel i fas a.

Figur 39. Kombinering av plus-, minus- och nollföljdssystemen vid enfasigt jordfel.

Nedanstående schema beskriver kopplingen för felberäkning vid tvåfasig kortslutning mellan fas b och c.

Figur 40. Kombinering av plus-, minus- och nollföljdssystemen vid tvåfasig kortslutning.

Slutligen används följande schema för tvåfasig kortslutning med samtidig jordslutning. Även här är fas b och c felbesatta.

Figur 41. Kombinering av plus-, minus- och nollföljdssystemen vid tvåfasig kortslutning med jordslutning.

Ur schemat kan ses att $I_f = I_b + I_c = 3 \cdot I0a$

H3 Bestämning av tröghetsmoment och H-värde

Vid modellering av elmaskiner och dess drivna objekt behöver drivsystemets tröghetsmoment alternativt dess H-värde anges. Tröghetsmoment, J, är ett mått på motståndet att accelerera/retardera en kropps rotation kring en given axel. Om aktuella motorlaster approximativt kan ses som ett massivt hjul gäller

$$J = \frac{1}{2}mR^2 \tag{H1.8}$$

där m är massan i kg och R radien i meter. H-värdet kan bestämmas som kvoten mellan systemets rörelseenergi och märkeffekt enligt

$$H = \frac{J\omega^2}{2 \cdot S_N} \tag{H1.9}$$

där rörelseenergin är

$$\frac{J\omega^2}{2}.$$
 (H1.10)

Om tröghetskonstanten GD^2 är känd kan istället tröghetsmomentet beräknas som

$$H = \frac{\left(\frac{GD^2}{4}\right) \cdot \omega^2}{2 \cdot S_N} \cdot \omega = \frac{2\pi}{60} \cdot f .$$
(H1.11)

En relation mellan teoretisk mekanisk startid och tröghetskonstanten lyder

$$T_m = 2H \tag{H1.12}$$

Vanliga värden på tröghetskonstanten H [3]:

Typ av generator	Н
Kondenskraft 2-polig 4-polig	2,5 - 6,0 4,0 - 10,0
Vattenkraft	2,0-4,0

H4 Typvärden för modellering av asynkronmotorer

För att upprätta ett ekvivalent schema behövs kännedom om ett antal parametrar. Dessa kan uppskattas (om inte tillverkarens data finns att tillgå) enligt följande [2]:

	Motor < 200kW	Motor $> 200 \text{kW}$
Relativ startström	7	6
Relativt startmoment	2,3	0,9
Relativt maxmoment "kipp"	2,8	2,7

Tabell 8. Användbara värden för modellering av asynkronmotorer.

Tabellvärdena är ungefärliga och kan variera åt båda håll! Bäst uppgifter fås givetvis från tillverkaren.

Rotorns tröghetsmoment, märkmoment etc kan som regel fås ur lättillgängliga datablad.

Där motorns effektfaktor vid start inte är känd har denna satts till 0,35.

H5 Parks modell och vanliga värden på synkronmaskiners reaktans

Parks modell syftar till att beskriva en synkronmaskin med ekvivalenta parametrar på ett sådant sätt att i maskinen ingående induktanser kan betraktas som konstanta vilket inte är fallet i en verklig maskin där induktanserna varierar beroende på rotorns position i förhållande till statorn [16]. Detta görs genom att de fysikaliska trefasvariablerna i statorn transformeras över till dq-variabler i ett koordinatsystem som roterar synkront med rotorn. Därmed blir dq-systemet i statorn stillastående i förhållande till rotorn och variablerna också konstanta. Statorns spänningar, strömmar och länkade flöden transformeras till ortogonala koordinater med rotorpositionen θ som variabel enligt

$$[P(\theta_r)] = \frac{2}{3} \begin{bmatrix} \cos(-\theta_r) & \cos\left(-\theta_r + \frac{2\pi}{3}\right) & \cos\left(-\theta_r - \frac{2\pi}{3}\right) \\ \sin(-\theta_r) & \sin\left(-\theta_r + \frac{2\pi}{3}\right) & \sin\left(-\theta_r - \frac{2\pi}{3}\right) \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
(H1.13)

och

$$\begin{vmatrix} V_{d} \\ V_{q} \\ V_{0} \end{vmatrix} = |P(\theta_{r})| \cdot \begin{vmatrix} V_{A} \\ V_{B} \\ V_{C} \end{vmatrix}$$
(H1.14)

Strömmar och länkade flöden bestäms på samma sätt.

På samma sätt möjliggör inverstransformering framräkning av fasströmmar etc. från givna dq-värden.

dq-transformationen kan visualiseras som en fiktiv synkrongenerator med ortogonala statoraxlar där d-axeln ligger i fältets riktning och q-axeln 90° före d-axeln enligt figur 42.

Figur 42. Grafisk åskådliggörning av dq-axlarna.

Med ett antal bakomliggande antaganden och med förutsättningen att variation i magnetisk mättning kan försummas kan ett ekvivalent schema upprättas varifrån följande uttryck för länkade flöden uttryckt i dq-värden tas fram

$$\Psi_{d}(s) = l_{d}(s) \cdot I_{d}(s) + g(s)v_{ex}(s)$$
(H1.15)
$$\Psi_{q}(s) = l_{q}(s) \cdot I_{q}(s)$$
(H1.16)

där ingående induktanser och g(s) uttrycks i Laplace-transformer med tidkonstanterna T_d ', T_d '', T_{d0} '', T_{d0} '', T_q ' och T_q ''. För att arbeta med standardiserade parametrar finns specifika maskiners värden att hitta som gränsvärden beräknade enligt [16]

$$l_{d}^{"} = \lim_{\substack{s \to \infty \\ t \to 0}} l_{d}(s) = l_{d} \frac{T_{d}^{'} T_{d}^{"}}{T_{d0}^{'} T_{d0}^{"}}$$
(H1.17)

och på samma sätt för $l_{d}^{'}, l_{d}^{'}, l_{q}^{''}$ och $l_{q}^{'}$.

Vanliga värden på några av dessa tidskonstanter och induktanser, omräknade till reaktanser, finns i tabellen nedan.

Medelvärden är	Turbomaskiner	Vattenkraft-	Synkrona	Synkronmaskiner
angivit i tabellen		maskiner (med	Kondensatorer	
		dämplindningar)		
Reaktanser [%]				
X _d	110	115	180	120
X _d	23	37	40	35
, X _d	12	24	25	30
X_2	12	24	24	35
X_0^{*}	(5)	(10)	(8)	(15)
Tidskonstanter [s]				
T _{d0}	5,6	5,6	9,0	
T _d	1,1	1,8	2,0	
T _d "	0,035	0,035	0,035	
T _a	0,16	0,15	0,17	

Tabell 9. Typvärden över reaktanser och tidskonstanter för synkronmaskiner.

* X_0 varierar mellan 0,15 - 0,60 av X_d " beroende av lindningens utförande.

 X_0 och X_2 är nollföljds- respektive minusföljdsimpedansen.

 T_{d0} gäller för öppen ankarlindning (ingen last ansluten) och definieras på vanligt sätt som kvoten mellan fältkretsens självinduktans och dess resistans. Spänningsamplituden på ankarlindningens terminaler är vid öppen krets direkt proportionell mot fältströmmen och ändras således med samma tidskonstant. Om ankarlindningen kortsluts antar tidskonstanterna värdena T_d respektive T_d . T_a är tidskonstanten för ankarlindningen och gäller för likström i ankarlindningen samt för växelström i fält- och dämplindningar i samband med kortslutning.

Även motsvarande q-värden etc. finns att tillgå i litteraturen. [4]

H6 Mer om kortslutningsberäkningar

H6.1 Olika typer av fel [10]

Enligt IEC 60909 [I uttrycks i kA, S i MVA, U i kV och Z i %/MVA]	
Tabell 10. Beräkning av ström vid olika typer av fel.	

Typ av fel	Begynnelseström
Trefasig kortslutning med eller utan	$ c \cdot U$
jordslutning	$I_{k3} = \frac{\pi}{\sqrt{3} \cdot \left \overline{Z_1} \right }$
Tvåfasig kortslutning	$I_{k2}^{"} = \frac{c \cdot U_n}{\left \overline{Z_1} + \overline{Z_2}\right }$
Tvåfasig jordslutning	$I_{kE2E}^{"} = \frac{\sqrt{3} \cdot c \cdot U_n}{\left \overline{Z_1} + \overline{Z_0} + \overline{Z_0} \frac{\overline{Z_1}}{\overline{Z_2}} \right }$
Enfasig jordslutning	$I_{k1}^{"} = \frac{\sqrt{3} \cdot c \cdot U_n}{\left \overline{Z_1} + \overline{Z_2} + \overline{Z_0}\right }$

H6.2 Stötström och kortslutningsström [10],[11]

Det finns ett förhållande mellan begynnelsekortslutningsströmmen I_k och stötströmmen I_s enligt

$$I_s = \kappa \cdot \sqrt{2} \cdot I_k^{"}$$
 där $\kappa = 1,02 + 0,98 \cdot e^{-3(R_X)}$ (H1.18)

 κ är ett värde mellan 1,05 och 2. Värdet 2 är endast teoretiskt begränsande, erfarenheter visar att en kortslutning direkt över generatorklämmorna inte ger ett κ som överstiger 1,8 ens på riktigt stora maskiner.

 I_{S} är kortslutningsströmmens största momentanvärde och blir således mekaniskt dimensionerande.

När det gäller termiska verkningar är det i stället strömvärmepulsen, I_k^2 t, som är dimensionerande vilket illustrerar en av anledningarna till varför bortkopplingstiden är en så kritisk parameter.

<u>H6.3 Motorbidrag [10],[12]</u>

Vid symmetrisk kortslutning av en asynkronmotor kommer kortslutningsförloppet att likna det hos en synkronmaskin med det undantaget att stationär kortslutningsström saknas. Detta kommer sig helt enkelt av att asynkronmaskinen inte har någon magnetiseringsström i kortslutet tillstånd. Begynnelsekortslutningsströmmen vid en trefasig kortslutning nära klämmorna på en asynkronmotor kan beräknas från

$$I_{k3M}^{"} = \frac{c \cdot U_n}{\sqrt{3} \cdot Z_M}.$$
(H1.19)

Z_M är asynkronmotorns kortslutningsimpedans och beräknas som

$$Z_{M} = \frac{U_{rM}^{2}}{I_{start}/I_{rM} \cdot S_{rM}}.$$
 (H1.20)

Den stationära kortslutningsströmmen saknas, det vill säga $I_{k3M} = 0$. Det finns även ett κ_m förknippat med storleken på motorn som gör det möjligt att beräkna motsvarande stötström enligt nedan.

Tabell 11. κ_m för olika motorer.

HV-motor, Motoreffekt per polpar < 1MW	$\kappa_{\rm m} = 1,65$
HV-motor, Motoreffekt per polpar ≥ 1 MW	$\kappa_{\rm m} = 1,75$
LV-motor	$\kappa_{\rm m} = 1,3$

Stötströmmen är då

$$I_{S3M}^{"} = \kappa_m \sqrt{2} \cdot I_{k3M}^{"} .$$
(H1.21)

H7 Beräkning av startspänningsfall

En approximation av spänningsfallet vid start kan fås som

$$\Delta U[\%] = \frac{U_N^2 I_{ST} \sqrt{3}}{S_K U_M} \cdot 10^2$$
(H1.22)

där storheterna är givna i kV, kA och MVA. U_N är nätspänningen, I_{ST} startströmmen, S_K nätets kortslutningseffekt och U_M motorns märkspänning. Approximationen bygger på att

$$\Delta U \approx \frac{X_N}{X_M} \quad [18] \tag{H1.23}$$

120

H8 Reglerteknik

I den här rapporten förekommande reglersystem används PI-regulatorer. En PI-regulator kan beskrivas med tidsuttrycket

$$u(t) = K_P \cdot e(t) + \frac{K_P}{T_i} \int_0^t e(\tau) d\tau$$
(H1.24)

där e(t) är regleravvikelsen, K_P den proportionella förstärkningen, T_i integraltidskonstanten och u(t) regulatorns utsignal [14].

Med införande av integralförstärkningen

$$K_i = \frac{K_P}{T_i} \tag{H1.25}$$

och Laplacetransformering av tidsuttrycket ovan fås överföringsfunktionen

$$F_{PI}(s) = K_P + K_i \frac{1}{s}.$$
 (H1.26)

Om en process har överföringsfunktionen G(s) kan ett blockschemaform ritas upp för systemet som i figur 43

Figur 43. Blockschema över ett grundläggande reglersystem.

där V är en eventuell störning i systemet.

Om processen ovan är en ångturbin skulle införande av statik resultera i ett blockschema, figur 44

Figur 44. Blockschema över ett reglersystem med statik.

där

$$R = \frac{\Delta f[\%]}{\Delta P[\%]} \cdot 100 \tag{H1.27}$$

Härutöver tillkommer i verkliga system vissa finesser för att till exempel förhindra integratoruppvridning (anti windup) m.m.

P-delens K_p -värde är en konstant som anger regleravvikelsens förstärkning. Ökad förstärkning innebär i allmänhet ökad snabbhet, minskade stabilitetsmarginaler, förbättrad kompensering av störningar i processen och ökad styrsignalaktivitet.

I-delens K_i-värde förbättrar kompenseringen av lågfrekventa störningar med ökande K_i. Det mest fundamentala med integralverkan är dess förmåga att motverka kvarstående fel efter stegstörningar. Ökad K_i försämrar dock stabilitetsmarginalerna.

H9 Om begreppet stabilitet

Stabilitet i kraftsystem definieras som kraftsystemets förmåga att återgå till ett jämviktsläge där fortsatt drift är möjlig efter att systemet utsatts för fysisk störning. Det är möjligt att klassificera och dela in stabilitet i olika typer enligt nedan vilket är en fri översättning av ett vedertaget IEEE-dokument [7]. I en verklig situation är dock typen av stabilitetsproblem som regel inte renodlad utan en kombination av flera typer. Uppdelningen är avsedd att underlätta förståelse och analys av problemen.

<u>H9.1 Vinkelstabilitet</u>

(Rotor)vinkelstabilitet refererar till synkronmaskiners förmåga att i ett hopkopplat system förbli synkroniserade efter att ett fel inträffat. Det beror i sin tur på förmågan att återfå jämvikt mellan elektromagnetiskt moment och mekaniskt moment i varje generator i nätet. Instabilitet som kan uppstå i det här fallet uppträder som ökande vinkelsvängningar hos någon eller några generatorer och som leder till förlorad synkronism med övriga generatorer i nätet. Vinkelstabilitetsproblem innefattar alltså studier av de elektromekaniska oscillationer som finns i kraftsystemet. En fundamental faktor med det här problemet är sättet på vilket uteffekten från generatorer ändras med deras respektive rotorvinkel. Om systemet utsätts för en störning rubbas jämviktsläget mellan in- och uteffekt vilket resulterar i acceleration eller retardation av generatorerna. Om en generator tillfälligt roterar snabbare än en annan kommer vinkelpositionen hos den snabbare generatorn att öka relativt den långsammare generatorn. Den resulterande vinkeldifferensen ger upphov till ett övertagande av last från den långsammare maskinen till den snabbare. Detta tenderar att reducera hastighetsdifferensen och således vinkelseparationen. Instabilitet uppstår då systemet inte förmår ta upp den till hastighetsdifferensen hörande kinetiska energin. För att underlätta analysering delas vinkelstabilitet in i ytterligare två underkategorier; *småsignalstabilitet* och *transient stabilitet*. I dagens kraftsystem förknippas småsignalstabilitet, även kallat dynamisk stabilitet, handlar om förmågan hos nätet att förbli synkroniserat efter en svår störning som till exempel en kortsluten linje. Den transienta stabilitet i sin helhet kategoriseras som kortvarig störning.

H9.2 Spänningsstabilitet

Spänningsstabilitet avser förmågan hos ett kraftsystem att bibehålla stabila spänningar på varje skena i systemet efter att det blivit utsatt för en störning. Det beror i sin tur på förmågan att bibehålla jämvikten mellan förbrukning och produktion i systemet. Instabiliteten som kan inträffa är minskande eller ökande spänning på någon eller några skenor. Möjlig konsekvens av spänningsinstabilitet är lastbortfall i ett område eller bortkoppling av transmissionslinjer som leder till kaskadbortkoppling. Begreppet spänningskollaps används ofta. Det är den följd av händelser som leder antingen till en total mörkläggning av stora områden ("blackout") eller till onormalt låga spänningar i en betydande del av systemet. Fortvarig drift med låg spänning kan inträffa efter att transformatorernas lindningskopplare nått deras ändläge. Den drivande kraften bakom spänningsinstabilitet är vanligtvis lasterna; i samband med en störning kommer effektförbrukningen hos lasterna vanligtvis att återställas genom eftersläpningsjustering hos motorer samt genom att lindningskopplare på transformatorerna och termostater arbetar. Återställda laster ökar påfrestningen på högspänningssidan av transformatorerna genom att det reaktiva effektbehovet ökar vilket ger vtterligare spänningsreduktion. När effektbehovet blir för stort är systemet inne i en "ond cirkel" och spänningsinstabilitet är ett faktum. Även om den vanligaste formen av spänningsinstabilitet är en tilltagande spänningssänkning i systemet förekommer även risk för spänningsinstabilitet orsakat av överspänning. Det här kommer sig av ett kapacitivt beteende hos nätet och kan orsakas av systemets oförmåga att fungera under en viss lastnivå. Då systemet försöker återställa lasten kommer lindningskopplarna att arbeta så att överspänning uppträder. En annan form av spänningsstabilitetsproblem, vars konsekvens är okontrollerad överspänning, är självmagnetisering hos synkronmaskiner. Detta kan inträffa om en generator har allt för stor last. Precis som i fallet med rotorvinkelstabilitet klassificeras kapacitiv även spänningsstabilitet två underkategorier; *storstörnings(-spänningsstabilitet)* i och *småstörnings*(*-spänningsstabilitet*). Det första avser systemets förmåga att upprätthålla stabil spänning efter en stor störning såsom produktionsbortfall eller kortslutning. Detta bestäms av systemet och dess lastkaraktäristik samt hur skydd och reglering interagerar i nätet. Det andra avser således systemets förmåga att upprätthålla stabil spänning efter mindre stegvisa förändringar i nätet. Spänningsstabilitet i sin helhet kan antingen vara kortvarig eller långvarig. Typiska kortvariga störningar kan vara de som uppkommer i samband med det dynamiska beteendet hos asynkronmaskiner medan långvariga störningar är mer kopplat till reglerande lindningskopplare och generatorer i strömbegränsning.

H9.3 Frekvensstabilitet

Frekvensstabilitet avser förmågan hos ett kraftsystem att bibehålla stabil frekvens efter en sådan störning att det föreligger en stor obalans mellan produktion och förbrukning. Detta beror av systemets förmåga att balansen mellan last och produktion kan upprätthållas utan oönskad förlust av produktion. Den typ av instabilitet som kan uppstå är i form av varaktiga frekvenssvängningar som i sin tur kan leda till bortkoppling av last eller generatorer. I större hopkopplade system är den här situationen mest förknippad med situationer då ett system av någon anledning delas upp i två delar som då plötsligt utgör två separata system (ödrift). Frekvensstabilitet kan vara kortvarig eller långvarig.