
Implementing a video decoder using
Feldspar

Master’s thesis in Computer science and engineering

Daniel Heurlin
Stanisław Zwierzchowski

Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
Gothenburg, Sweden 2020

Master’s thesis 2020

Implementing a video decoder using
Feldspar

Daniel Heurlin
Stanisław Zwierzchowski

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Implementing a video decoder using Feldspar
Daniel Heurlin, Stanisław Zwierzchowski

© Daniel Heurlin, Stanisław Zwierzchowski, 2020.

Supervisor: Thomas Hallgren, Department of Computer Science and Engineering
Examiner: K. V. S. Prasad, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A picture of the Statue of Liberty in New York City, heavily compressed
using MPEG-1.

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Implementing a video decoder using Feldspar
Daniel Heurlin, Stanisław Zwierzchowski
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In this project, we attempt to implement a decoder for the MPEG-1 video stan-
dard using Feldspar, an embedded domain specific language in Haskell. The idea is
to evaluate whether Feldspar is suitable for more advanced DSP applications and
whether it can result in simpler code compared to a lower level language like C while
maintaining similar performance. We succeed in implementing a functioning, albeit
limited and slow decoder which shows that Feldspar is capable of such a task. We
discover that some parts of the implementation are simpler compared to a low level
language while others are similar, if not more complicated. We also discuss the pros
and cons of Feldspar and suggest improvements that could be made to the language.

Keywords: video, video decoding, codec, DSP, functional programming, Haskell,
Feldspar, MPEG-1.

v

Acknowledgements
We would like to thank our supervisor Thomas Hallgren and our examiner K. V. S.
Prasad for their guidance and advice throughout this project. We would also like to
thank Emil Axelsson, one of the authors of the original Feldspar paper, for helping
us to get started by providing some resources related to Feldspar. Lastly, we would
like to thank our friends and family for their support and encouragement during
this project.

Daniel Heurlin & Stanisław Zwierzchowski, Gothenburg, June 2020

vii

Contents

1 Introduction 1
1.1 Purpose and Delimitations . 2

2 Background 3
2.1 MPEG-1 . 3

2.1.1 Compression methods . 3
2.1.1.1 Variable length coding 3
2.1.1.2 Run-length encoding 4
2.1.1.3 Chroma subsampling 4
2.1.1.4 Discrete cosine transform and quantization 5
2.1.1.5 Motion vectors . 5

2.1.2 Specifications . 6
2.1.2.1 Pictures . 7
2.1.2.2 Slices . 7
2.1.2.3 Macroblocks . 7
2.1.2.4 Blocks . 8

2.2 Feldspar . 9
2.2.1 Introduction . 9
2.2.2 Vectors . 10

3 Implementation 13
3.1 Maintaining a state . 14
3.2 Reading binary files . 15

3.2.1 Reading individual bits . 16
3.3 Decoding variable length codes . 17
3.4 Reading the bitstream syntax . 18
3.5 Inverse Discrete Cosine Transform . 18
3.6 Testing . 19

3.6.1 Creating test files . 19
3.6.2 Output file format . 20
3.6.3 Displaying the output files . 20
3.6.4 Comparing output files programatically 21
3.6.5 Performance measurement . 21

4 Results 23

ix

Contents

4.1 Performance . 24

5 Discussion 25
5.1 Feldspar . 25
5.2 Advantages of Feldspar . 28

5.2.1 Error recovery . 29
5.3 The decoder . 30
5.4 Performance . 31
5.5 Related work . 32
5.6 Conclusion . 32

Bibliography & bibliographic notes 33

x

1
Introduction

Video compression is essential for modern streaming services and local storage.
This is because uncompressed video would require not only an enormous amount
of storage, but also very high bandwidth for real time playback. Imagine stor-
ing a 1920x1080 video with 30 frames per second where each pixel is represented
by three 8-bit RGB values (for red, green and blue colors). This would require
8 · 3 · 1920 · 1080 · 30 ≈ 1.5Gb/s or about 190MB/s. A two hour long movie with
these specifications would occupy about 1.3TB of disk space. This would most likely
occupy a significant portion of a typical computer hard drive, if it would fit at all.
Modern optical media such as Blu-ray discs would also be insufficient to store such
a movie, with a four layer Blu-ray disc fitting only about 100GB per side [1]. The
bandwidth of 1.5Gb/s also greatly exceeds a typical home internet connection which
would make streaming of such a movie impossible. Video is therefore always encoded
into a compressed format, distributed and decoded during playback.

Because of the high compression ratio required, video encoding and decoding with
modern formats is a computationally intensive process. It is therefore often imple-
mented in hardware with the disadvantage of not being modifiable at a later point.
A more flexible approach is to use a low-level language like C to implement codecs
(video encoders and decoders) in software. This comes with the disadvantage that
the complex mathematical computations required are difficult to express because of
the imperative low-level programming style which hides the high-level logic. This
makes a C implementation time consuming, expensive and prone to bugs. It would
be easier using a more declarative language which is closer to the mathematical
notation.

Feldspar [2] is an embedded domain specific language (DSL) in Haskell, designed
for performing digital signal processing (DSP) computations on a high level while
generating C code. We propose to evaluate the extent to which Feldspar is an
appropriate tool for the above mentioned task by implementing a video decoder
compliant with a video coding standard. By doing so, we want to evaluate whether
Feldspar is appropriate for more advanced DSP applications, perhaps serving as a
superior alternative to C implementations.

1

1. Introduction

1.1 Purpose and Delimitations
The purpose of this project is to evaluate how well the Feldspar language is suited
for nontrivial signal processing applications, in our case video decoding. To do this
we will attempt to implement a video decoder compliant to the MPEG-1 standard
[3] using Feldspar. Based on our experiences from this process, we will discuss to
what extent Feldspar results in simpler code than a C implementation, as well as
how it compares in terms of performance.

Since video decoding is is a complex process, and the time frame for this project
is limited, we will not attempt to implement every aspect of the standard. For
instance, the decoder will be “offline” only, i.e. it will output a series of decoded
frames as raw image files rather than outputting a decoded stream in real time. It
will also not attempt to handle errors in the input video stream, instead exiting if
one were to be encountered. In spite of these delimitations, the decoder will still
implement the most essential parts of the standard, which should be more than
enough to answer the question at hand.

2

2
Background

2.1 MPEG-1
MPEG-1 is a video file format standardized in 1993 with the purpose of achieving
a high compression ratio while maintaining good picture quality on digital storage
media such as compact discs [3]. While the MPEG-1 standard also describes an
audio compression algorithm and a “container” file format for containing both audio
and video streams, this project only focuses on the video compression algorithm.

The decision to use MPEG-1 as the standard for this project was based on a few
criteria: The standard should be complex enough to pose a challenge and to prove
that Feldspar can be used for practical applications. At the same time it shouldn’t
be so complex that it would be unrealistic to implement within our time span.
We believe the MPEG-1 standard to be a good choice given these criteria; although
nowadays obsolete, it consists of the same basic building blocks as modern standards.
It should therefore serve as a good model for modern standards.

2.1.1 Compression methods
The MPEG-1 video compression algorithm is lossy, meaning that the exact original
data can’t be reconstructed from the compressed data. Rather, a “good enough”
picture can be reconstructed, ideally not distinguishable from the original data by
the human eye. This enables a higher compression ratio comparing to a lossless
compression algorithm as not all data has to be stored.

The following subsections introduce various compression methods used by MPEG-1,
some of which make it lossy.

2.1.1.1 Variable length coding

Variable length coding (VLC) is a lossless compression method based on assigning
shorter code words to more frequent values and longer code words for less frequent
values. MPEG-1 uses VLC for storing a variety of data. Such data can be decoded
using predefined tables that map a bit sequence of variable length to one or multiple
corresponding values. Such tables can be generated by statistical analysis of the
values to be represented, using a method such as Huffman coding [4].

3

2. Background

Table 2.1: Part of the VLC table for dct_coeff_next

VLC run level
10 end_of_block
1 s 0 1
011 s 1 1
0100 s 0 2
0101 s 2 1
00101 s 0 3
00111 s 3 1
00110 s 4 1
000110 s 1 2
...
0000000000011011 s 31 1

Table 2.1 shows an example VLC table from the MPEG-1 standard where each
binary VLC code is mapped to two integer values: run and level, except for “10”
which marks the end of a block (and signifies the end of a string of VLC codes).
The “s”-bit at the end of the VLC codes denotes the sign of the level value: 0
means positive and 1 means negative.

2.1.1.2 Run-length encoding

Run-length encoding is a lossless compression method based on describing recurring
data values by a single value and the number of its recurrences (the run-length). An
example with ASCII characters could be AAAAABAAAA encoded as A5BA4, where the
encoded version, although shorter, can be decoded back to the original string.

2.1.1.3 Chroma subsampling

MPEG-1 stores pixels in the YCbCr color space as opposed to the RGB (red, green,
blue) color space. The YCbCr color space consists of the luminance component Y,
denoting brightness of a pixel and two chrominance components Cb and Cr, denoting
color independently of the brightness [5]. The Cb component denotes the difference
between the intensity of blue color and the luminance while the Cr component
denotes the difference between the intensity of red color and the luminance. A
visualization of the YCbCr color space is shown in Figure 2.1. This method of
storing pixels takes the human vision system into account which is more sensitive
to details in the luminance component than the chrominance components. Using
YCbCr therefore allows for chroma subsampling – storing chrominance at a lower
resolution than luminance. This technique lowers the amount of data needed to
be stored for each pixel with minimal loss in the perceived quality of the image.
MPEG-1 uses 4:2:0 chroma subsampling which means that chrominance is stored
at half vertical and horizontal resolution compared to the luminance.

4

2. Background

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Cb

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Cr

Y = 0.5

Figure 2.1: An approximate chart of the Y CbCr color space with constant Y = 0.5.

2.1.1.4 Discrete cosine transform and quantization

The discrete cosine transform (DCT) is a representation of a discrete signal as a sum
of cosine functions at different frequencies, representing the frequency components
of the signal [6]. Its ability to separate a signal into separate frequency components
is heavily utilized in most image, video and audio compression formats, including
MPEG-1. This is due to the fact that high frequency components typically have
a low impact on perceived video quality and can therefore be discarded – reducing
data size.

Discarding or reducing the importance of different frequency components is done
using quantization. This involves division of each frequency component by a certain
quantization value and rounding the result down to an integer. The frequency
components can later be reconstructed by multiplication with the same value but
the result will have a loss in precision. High frequency components that have a small
impact on the perceived video quality will often be divided by a large number and
therefore rounded down to 0.

2.1.1.5 Motion vectors

It is common in video that a frame is similar to the frames preceding and succeeding
it. For example, in a video of a person speaking in front of a static background with
the camera on a tripod, the background will be identical for each frame with only
the person moving. In such a case, it is redundant to store the entire background
for each frame. Instead, it would be desirable to store it only once and recycle that

5

2. Background

information for every frame that uses it. In a similar video but with the camera
slowly panning, a large part of the background would still be identical – only in a
different position. In this case, it would also be desirable to recycle this information
but with the ability to describe movement of parts of the picture, from one frame
to the next.

In MPEG-1, this is accomplished using motion vectors which refer to a relative
coordinate in a reference frame. During decoding, the pixels at that coordinate can
be copied to the current coordinates in the current frame. Additionally, motion
vectors may be paired with DCT coefficients describing a so called prediction error
– the difference between the copied data and the current data to be reconstructed.
This is all done to reduce the amount of data needed to be stored for each frame.

2.1.2 Specifications
The standard divides the video stream into the following layers:

• Sequence layer: The start of a video sequence. It must contain at least one
sequence header, specifying values such as resolution and bit rate.

• Group of pictures (GOP) layer: Group of one or more pictures encoded
independently from other GOPs.

• Picture layer: A picture frame which after decoding results in three matrices:
one for luminance (brightness) and two for chrominance (color) values.

• Slice layer: A non-overlapping slice of a picture containing one or more
macroblocks.

• Macroblock: A 16x16 pixel rectangle of a picture. May contain up to six
blocks: four luminance and two chrominance blocks.

• Block: The lowest layer of a video stream with data needed to reconstruct
8x8 pixels of luminance or chrominance data.

Figure 2.2: A visual representation of the division of a picture. The colors represent
slices and each small square is a macroblock.

6

2. Background

2.1.2.1 Pictures

As previously mentioned, in order to achieve a high compression radio, MPEG-1
utilizes temporal compression between pictures. This means that parts of pictures
may contain references (motion vectors) to previous and/or future pictures and
store only the difference between them. The standard defines the following types of
pictures, differentiating how they use temporal compression.

• Intra-coded pictures (I-pictures) are self-contained and are only compressed
spatially within themselves.

• Predictive-coded pictures (P-pictures) also contain temporal compression
by including motion vectors pointing to previous I- or P-pictures.

• Bidirectionally predictive-coded pictures (B-pictures) contain temporal
compression by including motion vectors pointing to both future and previous
I- or P- pictures. However, no other pictures may contain references to B-
pictures.

• DC-coded pictures (D-pictures) are, like I-pictures, encoded independently
but contain only DC coefficients from the discrete cosine transform. This
makes them low quality but fast to decode which enables fast forward playback
with preview. These will be omitted in this report because of their rare usage.

2.1.2.2 Slices

Pictures are divided into slices, containing one or more macroblocks. They are
mostly used to mitigate the results of data corruption. If a part of a slice gets
corrupted or unreadable, it may be possible for the decoder to decode the next slice,
only discarding the corrupted slice as opposed to the entire picture. An example of
how a picture may be divided into slices is shown in Figure 2.2.

2.1.2.3 Macroblocks

A macroblock represents a 16x16 pixels rectangle of a picture. It may consist of up
to six 8x8 pixel blocks: four luminance blocks (making the luminance component full
16x16 resolution) and two chrominance blocks (one for each chrominance component,
making them half the resolution of the luminance component).

Depending on the picture type, a macroblock may contain different sets of data. For
example, macroblocks in P- and B-picture may have the following features:

• They may contain motion vectors pointing to a past or future frame.

• They may be intra-coded meaning that they are only compressed spatially
within themselves.

• They may be skipped entirely in which case they are copied from a previous
frame.

7

2. Background

• Some of their blocks may be skipped, in which case the skipped blocks are
copied from the previous frame.

2.1.2.4 Blocks

A block contains variable length encoded run-length values for quantized DCT co-
efficients describing 8x8 pixels of the final image. For chrominance blocks, these
are stretched to an area of 16x16 pixels during playback due to chroma subsam-
pling. The 8x8 pixel values can be reconstructed from a block by dequantizing and
performing an inverse DCT on these coefficients.

Dequantization is performed by multiplying the DCT coefficient matrix with a quan-
tizer matrix element-wise. The quantizer matrix may be specified by the encoder in
the sequence header, otherwise a standard quantizer matrix defined by the MPEG-1
standard is used.

The coefficients are stored in a zig-zag pattern beginning at the lowest frequency and
moving towards the highest, as seen in Figure 2.3. As previously mentioned, high
frequency components (towards the right bottom of Figure 2.3) are often rounded
to 0. This means that the sequence can be terminated with a specific VLC code
and the rest of the block values are assumed to be 0 – therefore saving space.

If the macroblock in which a block is located specifies a motion vector, the block is
first copied from the coordinates pointed at by the motion vector in the reference
picture. The 8x8 pixel values reconstructed by the above described process are then
added to the copied data.

0					1					5					6					14				15				27				28

2					4					7					13				16				26				39				42

3					8					12				17				25				30				41				43

9					11				18				24				31				40				44				53

10				19				23				32				39				45				52				54

20				22				33				38				46				51				55				60

21				34				37				47				50				56				59				61

35				36				48				49				57				58				62				63

Increasing	horizontal	frequency

In
cr
ea
si
ng
	v
er
tic
al
	fr
eq
ue
nc
y

Figure 2.3: Zig-zag scan pattern. The integer values represent the scanning order.

8

2. Background

2.2 Feldspar
Feldspar is an embedded domain specific language (EDSL), written in Haskell. Its
purpose is to enable high-level functional programming of digital signal processing
algorithms while generating C code. There are currently two implementations of
Feldspar: the original implementation as described in the Feldspar paper [2] and
“raw-feldspar” [7] – a new implementation currently recommended by the develop-
ers and therefore used in this project. The new implementation is based around the
idea of combining both deep and shallow embeddings of EDSLs [8]. Feldspar there-
fore consists of a shallow programming interface which is translated into a small,
deeply embedded core language, semantically similar to C. This approach gives the
programmer an expressive and extensible programming interface which can translate
to efficient core language while keeping the core language small.

2.2.1 Introduction
Similarly to Haskell with its IO monad [9] which represents a computation that may
have side effects [10], Feldspar programs are based around the Run monad which
provides basic I/O functionality and an interface for interacting directly with C, such
as including C-libraries and calling C-functions. For a more thorough explanation
of monads and the IO monad in particular, we recommend reading [9] and [10].

A “Hello World” program in Feldspar looks like this:

main Run ()
main = printf "Hello world!\n"

This program can be evaluated directly in Haskell by calling runIO main or com-
piled to C and then executed by calling runCompiled main. To output the gen-
erated C code only, one can call icompile main for which the result is shown in
Listing 1. All three functions mentioned above are a part of Feldspar.

#include <stdio.h>
int main()
{

fprintf(stdout, "Hello world!\n");
return 0;

}

Listing 1: A “Hello World” example program generated with Feldspar.

9

2. Background

2.2.2 Vectors
Feldspar contains its own vector library built on top of its array implementation.
Although one can use arrays directly, there are two main advantages of using the
vector library instead: code clarity and efficiency.

The vector library works similarly to Haskell’s lists in the sense that it contains
common list manipulation functions such as map and fold. By using these functions
on vectors (instead of loops and indexing into individual array items), one can
achieve higher code clarity.

Additionally, the vector library utilizes fusion [11, 8] which means that vector func-
tions don’t result in unnecessary intermediate arrays in memory. Consider the
following function taken from Feldspar’s examples:

sumSq Data Word32 Data Word32
sumSq n = sum $ map (\x x*x) (1 n)

The function’s argument and result type is a Feldspar data type for representing
32-bit unsigned integers. The function essentially consists of two vectors. The first
is constructed using the binary operator () which works similarly to Haskell’s
() operator, in this case constructing a vector with values from 1 to n. The
second vector is constructed upon using the map functions which consumes the first
vector and returns a vector of squared values. This vector is however also consumed
when applied to the sum function.

Let’s see what C code Feldspar generates for sumSq. Since sumSq is a pure function,
we must first define a runnable function of type Run () which prints the result.
Although we could supply sumSq with a constant argument n, this would cause
Feldspar to pre-compute the entire program which would result in a single fprintf
statement printing the result, in the generated code. To avoid this, we will read the
argument from stdin, run the function and then print the result.

runSumSq Run ()
runSumSq = fget stdin printf "%d" . sumSq

By running icompile runSumSq we can see the code shown in Listing 2. Although
fairly unreadable, we can see that Feldspar didn’t generate a single C array.

10

2. Background

#include <stdint.h>
#include <stdio.h>
int main() {

uint32_t v0;
uint32_t state1;
uint32_t v2;
fscanf(stdin, "%u", &v0);
state1 = 0;
for (v2 = 0; v2 < (uint32_t) (1 < v0 + 1) * v0; v2) {

uint32_t let3;

let3 = v2 + 1;
state1 = let3 * let3 + state1;

}
fprintf(stdout, "%d", state1)
return 0;

}

Listing 2: The generated C code from the sumSq function.

Feldspar provides (among others) the following vector types.

• Manifest vectors are equivalent to immutable arrays – a part of the Feldspar
core language – and translate directly into C arrays.

• Pull vectors have no runtime representation, they are implemented abstractly
as a function from an index to an element. They support many of the list
operations one would expect to see in functional programming, such as map
and fold.

• Push vectors, like Pull vectors, have no runtime representation. They are
also represented by a function, but this time the function is from an index
and the element at that index to a monadic computation. The fact that the
function is monadic means that it can be used to write to an array, i.e. storing
the values of these abstract vector types to a physical memory location. One
useful feature of Push vectors is that they can be concatenated.

When working with vectors, it is common to start with a Pull vector and perform the
necessary operations that it supports. The Pull vector can then be converted to a
Push vector when operations such as concatenation or monadic actions are needed.
Finally, the Push vector can be written to memory – turning it into a Manifest
vector. The fact that all computations are performed on Pull and Push vectors
means that no intermediate arrays have to be allocated since these are essentially
just functions, meaning the final value that gets written to memory is basically
computed by evaluating a function composition.

11

2. Background

12

3
Implementation

The implementation was accomplished by strictly following the MPEG-1 standard
which describes each step required to read and decode a video stream. A significant
part of this process consists of sequentially reading the different layers of a video
stream in chunks of data as small as individual bits. The standard describes how
each layer is structured using a so called bitstream syntax, describing what data each
layer consists of using a C-like pseudocode. An example of such syntax for the slice
layer can be seen in Listing 3. Lines marked with “No. of bits” represent variables
of the specified number of bits that need to be read. How this example is read using
Feldspar is described later in this chapter, after a few necessary mechanisms have
been introduced.

slice() { No. of bits
slice_start_code 32
quantizer_scale 5
while (nextbits() '1') {

extra_bit_slice 1
extra_information_slice 8

}
extra_bit_slice 1

do {
macroblock()

} while (nextbits() != "000 0000 0000 0000 0000 0000")

next_start_code()

}

Listing 3: Bitstream syntax for the slice layer from the MPEG-1 standard.

Each variable in the bitstream syntax is also described in a separate section of the
standard. Some are simply constants used for marking different parts of the video
stream such as a start code for a layer, while others are needed later in the decoding
process and thus have to be saved in some global state.

13

3. Implementation

This chapter highlights the most noteworthy parts of the implementation, describing
what challenges they posed and how these were solved.

3.1 Maintaining a state

Early in the implementation process, it became clear that maintaining a global state
would be necessary. Since Feldspar doesn’t provide any mechanism to handle this,
we decided to use the ReaderT monad transformer from Haskell’s Control.Monad
module. The idea was that the ReaderT monad transformer would encapsulate
Feldspar’s Run monad, allowing us to utilize all of Run’s functions such as while-
loops and reading files.

Using ReaderT instead of StateT may seem counterintuitive since ReaderT only
supports an immutable environment, but attempting to use StateT resulted in
some technical difficulties. Fortunately, we found that ReaderT was sufficient due
to Feldspar’s support for immutable references to mutable variables; instead of mu-
tating the values stored in the state, we could store references to those values in the
environment and modify them using the setRef and modifyRef functions.

In order for the ReaderT monad transformer to be used with the Run monad,
we needed to implement an instance of Feldspar’s MonadComp [12] for ReaderT.
MonadComp is a monad which supports mutable data structures and control flow
functions. This involved implementing the functions liftComp, iff, for and
while, describing how the environment should be handled in those functions.

instance (MonadComp m) MonadComp (ReaderT r m) where
liftComp = lift . liftComp
iff c t f = do

env ask
lift $ iff c (runReaderT t env) (runReaderT f env)

for rng body = do
env ask
lift $ for rng $ \n runReaderT (body n) env

while c body = do
env ask
lift $ while (runReaderT c env) (runReaderT body env)

Most of the functions in our decoder implementation are of type Decoder, a ReaderT
monad transformer with an environment record DecoderEnv and Feldspar’s Run
monad:

type Decoder = ReaderT DecoderEnv Run

14

3. Implementation

3.2 Reading binary files
Although Feldspar has built in functions to open and read files (fopen, fget, ...),
fget assumes that the file opened by fopen is a text file and returns a character
rather than an individual byte. For this reason, we had to define our own function
readData which reads a given number of bytes from a file by calling the C-function
fread:

readData (PrimType' a, Type a)
 FileHandle
 (Data Int8)
 Run (Data a)

readData (FH handle b w) typesize = do
ref Ref (Data a) newNamedRef "read_target"
callProc "fread"

[refArg ref
, valArg typesize
, valArg (1 Data Length)
, objArg handle
]

setRef b 0
getRef ref

The line setRef b 0 is used in the mechanism we use to read individual bits from
the file, which we describe later in this section.

Using readData, we could write helper functions, such as for reading a 32-bit word:

readWord32 Decoder (Data Word32)
readWord32 = do
fh@(FH _ b w) asks fileHandle
word liftRun $ readData fh 4 bswap
setRef w word
setRef b 0
pure word

Note that the results from readData are piped to the bswap function. This is
because MPEG-1 uses big-endian byte order while x86-processors (which this project
is developed for) use little-endian byte order. By swapping the byte order upon
reading from a file, we ensure that we can follow the MPEG-1 standard directly
since it’s also written using big-endian byte order.

15

3. Implementation

While swapping the byte order could be achieved with a pure Feldspar function, we
opted for the bswap C-function which can compile to a single instruction on x86-
processors. The following code snippet shows how bswap can be called in Feldspar:

bswap Data Word32 Run (Data Word32)
bswap w = do
addInclude "<byteswap.h>"
callFun "bswap_32" [valArg w]

3.2.1 Reading individual bits

The MPEG-1 standard requires us to read individual bits. Since the smallest unit
that can be directly read using fread is a byte, we implemented functions allowing
us to read single bits.

Our state contains of a FileHandle, consisting of a reference to a C file handle, the
index of the current bit to be read and the last 32-bit word that has been read.

data FileHandle = FH
{

fhl Object -- The file handle (FILE* in C)
, currentBit Ref (Data Int32) -- Reference to the current bit
, currentWord Ref (Data Word32) -- Reference to the last read word

}

With the FileHandle data type in our state, we could write the following func-
tion for reading a single bit. It works by keeping track of the last word that
was read using readWord32 (currentWord) and the last bit that was extracted
from that word (currentBit). When the next bit is requested, it increments
the currentBit counter and extracts that bit from currentWord, and then in-
crements the currentBit counter. If currentBit exceeds 31, meaning every bit
of currentWord has been read, it reads a new word and resets the bit counter to
zero.

nextBit Decoder (Data Word32)
nextBit = do
fh@(FH _ rbit rword) asks fileHandle
bit getRef rbit
if1 (bit > 31) (void readWord32)
word getRef rword
modifyRef rbit (+1)
pure $ testBit word (31 - bit)

16

3. Implementation

3.3 Decoding variable length codes
Some of the values specified in the MPEG-1 bitstream syntax are variable length
codes (VLC), as described in section 2.1.1.1. In order to decode VLC values, the
following points were taken into account:

• The ease of storing the VLC tables: Ideally, we wanted to store the
VLC in the same format as they are presented in the MPEG-1 standard, with
binary codes and their corresponding integer values written in plain text.

• The method of decoding the VLC values: This includes not only the
computational complexity of looking up which binary code corresponds to
which values but also the fact that our file reading library allows us to read a
single bit at a time. Ideally, we wanted to only read as many bits as necessary
to decode a certain VLC.

With this in mind, the following method was implemented. The VLC tables are
stored in plain text files with one row per VLC. Each row begins with the binary code
followed by the corresponding integer values, separated by a whitespace character.
These files are parsed by a Haskell program that generates a Haskell source file,
containing a binary VLC tree. The generated VLC trees are of the following data
type:

data VLC a = Node (VLC a) (VLC a)
| Leaf a
| End

Each node consists of two subtrees, the first being evaluated if the next read bit is
0 and the second if it’s 1. Each subtree may be another node, a leaf containing the
value which the binary code corresponds to or an End node which signifies that no
value exists for the binary code. Reaching an End node during decoding means that
the binary code is invalid.

This approach allowed us to implement the following recursive decoding function,
taking a VLC tree as an argument and returning the decoded value. Upon encoun-
tering a node, a single bit is read using the nextBit function and the corresponding
subtree is traversed.

getVLC (Syntax a) VLC a Decoder a
getVLC End = exit "getVLC reached `End`"
getVLC (Leaf v) = return v
getVLC (Node i o) = do
rbit nextBit
ifE (rbit 0) (getVLC o) (getVLC i)

Listing 4: Recursive function for decoding VLC values.

17

3. Implementation

3.4 Reading the bitstream syntax
With the above mechanisms in place, it is possible to read every part of the video
stream as described by the bitstream syntax. The slice layer, whose bitstream syntax
can be seen in Listing 3 can be read as shown in Listing 5. The loop function is an
infinite loop which repeats until the break function is reached, equivalent to
while (pure true).

1 readSlice Decoder ()
2 readSlice = do
3 slice_start_code nextBits 32
4 quantizer_scale nextBits 5
5

6 while ((1) (peekBits 1)) $
7 void $ nextBits 9
8

9 extra_bit_slice nextBit
10

11 loop do
12 readMBlock
13 peek peekBits 23
14 if1 (peek 0) (break)
15

16 nextStartCode

Listing 5: Simplified version of our slice parsing function.

3.5 Inverse Discrete Cosine Transform
As described in 2.1, blocks contain DCT (discrete cosine transform) coefficients.
Once these have been decoded, an inverse discrete cosine transform (IDCT) must
be performed in order to transform these into 8x8 pixel values.

The MPEG-1 standard [3] dictates that this IDCT conform to IEEE Draft Standard,
P1180/D2, July 18, 1990 [13], which gives the following definition of the IDCT:

x(i, j) = 1
4

7∑
u=0

7∑
v=0

C(u)C(v)X(u, v) cos
(

(2i + 1)uπ

16

)
cos

(
(2j + 1)vπ

16

)
(3.1)

where
x(i, j), i, j ∈ {0, ..., 7}

is the pixel value at coordinate i, j,

X(u, v), u, v ∈ {0, ..., 7}

18

3. Implementation

is the transformed coefficient at coordinate u, v within the block, and

C(0) = 1√
2

, and C(x) = 1, x ∈ {1, ..., 7}.

Equation 3.1 can be rewritten as a matrix equation as S = AFAT , where the matrix
Sij = x(i, j), Aux = η(u) cos((2x+1)πu/16), Fuv = X(u, v) and η(u) = C(u)/2 [14].
A direct translation of this definition can be implemented in Feldspar as shown in
Listing 6.

idct DPull2 Int32 DPull2 Int32
idct v = map2 round $ a `matMul` f `matMul` (transpose a)
where

f = map2 i2n v DPull2 Double
η u = cond (u 0) (1 / sqrt(8)) (1/2) Data Double
a = Pull2 8 8 $ \x u η u * cos ((i2n $ (2*x+1) * u) * π/16)

Listing 6: Inverse discrete cosine transform in Feldspar.

The type DPull2 Int32 represents a matrix of 32-bit integers using the Pull vector
type described in Section 2.2.2. The argument v of the function is a matrix contain-
ing each X(u, v) as described above, and the returned value is a matrix containing
each x(i, j) as described above. The use of round and i2n is to convert back and
forth between floating and integer types.

Also note how we perform rounding after computing the result. This is not a part
of [13] but is demanded by the MPEG-1 standard [3].

3.6 Testing
Once the decoder was able to produce an image output, we first inspected it visually
to confirm that no major graphical distortions were visible compared to the original
file. We also had access to the MPEG-1 reference video decoder [15] which by
definition produces a correctly decoded file. The reference decoder was later used to
programatically compare the output with our decoder. Both methods of comparison
are suggested by the MPEG-1 compliance testing document [16].

3.6.1 Creating test files
A typical MPEG-1 file is a “container” file containing a video and audio stream. The
video stream may contain any of the supported picture types described in Section
2.1.2.1. As input, our decoder needs a raw MPEG-1 video stream file containing only
I and P-pictures. Such test files were created using ffmpeg [17] with the following
command:

$ ffmpeg -i INPUT -f mpeg1video -an OUTPUT

19

3. Implementation

Y0 Y1 Y2 Y3

Cb0 Cb1 Cb2 Cb3

Cr0 Cr1 Cr2 Cr3

Figure 3.1: A visual representation of the YV12 video format where each group of
blocks represents a frame.

The input file INPUT can be any video file supported by ffmpeg. The -f mpeg1video
argument signifies that the output should be a raw MPEG-1 video stream. -an
means that no audio track should be present in the output. The resolution and
frame rate of the output will be the same as the input (unless otherwise specified)
and the output bitrate is automatically selected by ffmpeg. By default, ffmpeg only
outputs I- and P-pictures which are also the only picture types supported by our
decoder. During initial testing, when the decoder only supported I-pictures, the
-force_key_frames expr:1 arguments was used, forcing ffmpeg to only generate
I-pictures.

3.6.2 Output file format
When decoding a video file, our decoder decodes the luminance and chrominance
blocks as described in Section 2.1.2.4. The luminance (Y) and chrominance (Cb
and Cr) blocks are each stored in a corresponding 2D array at the appropriate
location. The three arrays are later written to a file in the YV12 format [18]. This
format was chosen because of its simplicity and since it seems to be a common
way of storing raw Y CbCr data. This is also a format that the reference MPEG-1
video decoder can ouput. A YV12 file simply consists of the luminance component
followed by the two chrominance components stored consecutively. Since MPEG-1
uses 4:2:0 chroma subsampling, the two chrominance components are stored at half
the resolution compared to the luminance component. This format allows storing
multiple frames in a single file by repeating the above pattern for each frame in
sequence as shown in Figure 3.1.

3.6.3 Displaying the output files
Since the YV12 format doesn’t contain any header information about its contents,
one needs to specify the resolution and frame rate (if the file contains multiple
frames) for correct playback. One tool we used to display our output files is ffplay
(a part of FFmpeg [17]), which we used in the following way:

$ ffplay -r FRAME_RATE -s WIDTHxHEIGHT INPUT.yuv

This method can also be used for displaying the output of the MPEG-1 reference
decoder.

20

3. Implementation

3.6.4 Comparing output files programatically
Since our decoder generates output in the same file format as the reference decoder,
we expect a decoded frame to be identical byte-for-byte between the two. In order
to programatically compare the output from our decoder with the output from the
reference decoder, the cmp Unix program was used as follows:

$ cmp -l ref.yuv comp.yuv

Where ref.yuv and comp.yuv is the output from the reference decoder and our
decoder respectively, and the -l argument sets the program to output the address
of each byte that differs along with the the two different values.

3.6.5 Performance measurement
The performance of our decoder was compared to the reference decoder by measuring
the time it took for both decoders to decode the same MPEG-1 video file, generated
according to Section 3.6.1.

21

3. Implementation

22

4
Results

This project has resulted in a functioning, albeit limited, MPEG-1 video decoder
written in Feldspar. The source code is freely available at https://github.com/
mightynerd/feldspar-mpeg1-decoder. The decoder should be seen as a proof
of concept rather than a usable decoder. The main reasons are the following:

• The decoder only supports decoding of I-frames and P-frames. This means
that an encoder used to produce the test files needs to only encode I- and
P-frames and therefore doesn’t utilize the full compression potential of the
format.

• The decoder works offline only, meaning that it does not support real time
decoding. This means that it can only be used for outputting decoded files
and not for playing back the video in real time while decoding.

• Although the output looks visually identical, the programmatic comparison
between the output of our and the reference decoder (described in Section
3.6) showed that our decoder does not produce identical output compared to
the reference decoder.

• Our decoder is severely lacking in performance and is many times slower than
the reference C-implementation [15]. This is described in more detail in Section
4.1.

During the course of developing the decoder, we have come to the following conclu-
sions regarding the Feldspar language:

• Based on our decoder implementation, we believe we have shown that Feldspar
is capable of more advanced DSP applications. The fact that our decoder
is incomplete is not due to limitations of the language but rather our time
constraint.

• We can however not confirm our hypothesis that implementing a video decoder
in Feldspar would be easier compared to a low level language. We found that
while some parts were in fact easier to implement in Feldspar, most parts
were comparable, if not more complex than using a low level language. Some
of these issues could be eliminated by extending the Feldspar language, as
discussed in section 5.1.

23

https://github.com/mightynerd/feldspar-mpeg1-decoder
https://github.com/mightynerd/feldspar-mpeg1-decoder

4. Results

• The areas where Feldspar turned out to be easier were those that could be ex-
pressed as pure functions. This turned out to be more rare than anticipated,
as much of the code had to be written in a more imperative style. Com-
ponents that could be expressed in a functional manner include the IDCT
implementation as well as traversing a binary tree for decoding VLCs.

• Another advantage of Feldspar is that being an EDSL, it can be extended by
using the rich functionality of its host language. This could be utilized to
define custom control structures, which would not be possible in a standalone
DSL or an existing imperative language.

4.1 Performance
The performance of our decoder is quite poor and not comparable with the reference
C-implementation [15]. Decoding the same 125-frame video at 640x360 resolution
takes our decoder around nine times longer than the reference decoder, as shown in
Table 4.1.

Since we suspected the IDCT might be a bottleneck, we tried replacing our IDCT
function with one that returns a constant value of zero. Doing so results in a speedup
by a factor of about 50, confirming that the IDCT is indeed the most time consuming
part of the code.

Reference Decoder 10.3s
Feldspar Decoder 88.7s

Table 4.1: The time required to decode a 125 frame 640x360 video by the reference
decoder and our decoder respectively.

Figure 4.1: An example frame decoded by our decoder.

24

5
Discussion

5.1 Feldspar

As described above, we have succeeded in implementing a partially functioning
MPEG-1 decoder using Feldspar. We believe this confirms that the language is
indeed capable of more advanced DSP applications, at least in principle. However,
we cannot confirm the hypothesis that using Feldspar would result in simpler code
compared to lower level languages. Below, we discuss some of the issues we have
encountered and possible solutions to them. If we were able to resolve these issues,
we believe we might come closer to confirming the aforementioned hypothesis.

In Chapter 3, we showed how the bitstream syntax for the slice layer (Listing 3) is
read using Feldpar (Listing 5). As clearly visible, the Feldpar function is fairly simi-
lar in structure to the bitstream syntax (albeit with a different syntax), since we are
unable to express this on a higher level in Feldspar. For example, the Feldspar func-
tion uses the C-like while-loop (see line 6) as in the bitstream syntax. This pattern
of writing code which is essentially a facsimile of imperative code occurs frequently
in our implementation. There are even cases where the Feldspar implementation
could be considered less clear, such as the boolean condition in the aforementioned
while loop. Since the peekBits function is monadic, we have to use the somewhat
cluttered functor syntax instead of the more straightforward expression seen in the
C-like code.

We believe that the issue above could be partially resolved by splitting up the
code into two parts: one for reading the bitstream syntax into data structures
corresponding to the different layers of the video stream, and another for decoding
those data structures. The reading part would place all values it read into the data
structure instead of writing them to the global state to be used deeper down in the
layer hierarchy, as is currently done. For instance, the slice slice layer could be read
according to the pseudo code in Listing 7.

This looks promising at a first glance, but this method would introduce a number
of difficulties: Firstly, the bitstream syntax is written in an imperative, C-like style,
where decoding is done “on the fly” while reading the video stream. The decoding
operations are also expressed in this imperative style. Converting this style to the
proposed one would therefore require a quite profound understanding of the standard

25

5. Discussion

data Slice = Slice { vPos Data Word32
, qScale Data Word32
, mBlocks DPull Word32
}

readSlice Decoder Slice
readSlice = Slice (getVPos nextBits 32)

 (nextBits 5)
 (skipExtra readMBlocks)

where
getVPos = splitBits [(0,8)]
skipExtra =

Listing 7: How reading the slice layer might look in a more functional style.

which we lacked when we started implementing the code, and probably still do.
Following the standard directly was therefore the only realistic option. Had the
standard expressed the decoding operations in a mathematical notation rather than
in pseudo C-code it would likely have been easier to express them functionally in
Feldspar. Secondly, there are many cases where certain values have to be decoded or
evaluated to determine how to proceed reading. This would require the use of iff
and while similarly to the current implementation, thus most likely not making
much difference. Finally, since certain layers such as blocks and macroblocks come
in multiple variants, it would probably be necessary to represent these using Haskell
sum types, e.g.

data Macroblock = IntraMBlock [Block]
| ForwardMBlock MotionVector [Block]
|

As will be discussed below, most Feldspar operations do not support sum types, and
functions defined by pattern matching are not supported by Feldspar. This means
that even if it were possible to read the video stream into data structures, it would
be impractical, if not impossible, to work with these during the decoding stage.

It is important to remember that this is an issue regarding reading binary files,
MPEG-1 in particular. This might not be an issue with other binary formats and
certainly doesn’t affect Feldspar’s DSP capability.

There are also other issues related directly to Feldspar. Although their main cause
might be the fact that Feldspar is still under development and its documentation
clearly states that some features are missing, they are still worth mentioning since
they were a significant part of this project. One such issue is the lack of essential
functions for reading files (described in Section 3.2) and maintaining a global state
(described in Section 3.1). We also encountered a lack of functions related to two-

26

5. Discussion

dimensional arrays and vectors which we had to implement ourselves. This was time
consuming, largely because of the lack of more advanced tutorials and the rather
sparse documentation.

There are however some limitations of Feldspar itself that can not be resolved with-
out modifying the language. One such limitation is the lack of support for Haskell
sum types, i.e. types of the form data D = A | B | C | . We found that
this forced us to use a more imperative programming style rather than a idiomatic
Haskell style. For example, decoding different block types requires slightly different
logic. We would ideally want to separate this logic in the following way:

data BlockType = YFstBlock | YBlock | CbBlock | CrBlock

decodeBlock BlockType Decoder ()
decodeBlock bt = case bt of

YFstBlock
YBlock
CbBlock
CrBlock

However, since it is not possible to use Haskell data types in this way, we were forced
to integers to differentiate the block types instead:

type BlockType = Data Word32

decodeBlock BlockType Decoder ()
decodeBlock bt = do
if1 (bt 0) $ do

if1 (bt > 0 && bt < 4) $ do

if1 (bt 4) $ do

This approach is essentially imitating C which in this case defeats the purpose of
using a functional language. Feldpar supports Haskell product types (records) by
translating every field of the record to a separate variable in C. We believe it should
in principle be possible to also support sum types by assigning a number to every
value the type supports and using those in the generated C code. For instance, in
the datatype data D = A | B | C | , A would be represented by the integer
1 in C, B by 2 and so on.

Another indication that Feldspar isn’t complete is the fact that it lacks support of
generating more than one C function. This means that an entire Feldspar program
will be compiled into a single (possibly huge) main-function in C. This leads to

27

5. Discussion

code repetition such as if we were to call our IDCT function twice, it would lead to
generation of the same code twice. This also makes generation of recursive functions
impossible – further forcing the programmer towards a more imperative style with
C-like loops. One exception to this are recursive functions for which the data the
function operates on is known at compile time, such as our VLC decoding function
seen in Listing 4. In this case, Feldspar is able to generate a series of nested if-
statements.

5.2 Advantages of Feldspar
The general advantage of Feldspar is that parts that can be written in a functional
manner are typically more expressive than in C. One major example is our IDCT
function seen in Listing 6. In our opinion, the Feldspar implementation is much
closer to the mathematical definition, consisting of operations on entire matrices.
The IDCT function in the reference C implementation [15] on the other hand ex-
presses these operations as a series of nested loops and array indexing which we
think hides the underlying meaning.

Another advantage is the strict typing that Feldspar inherits from Haskell. C is a
weakly typed language meaning that values can be cast into different types even
when doing so will break the program. Haskell and therefore Feldspar uses a strong
type system where this is not possible. This gives the programmer a stronger guar-
antee that their program will function correctly, given that it type checks. Although
understanding Feldspar’s types was quite difficult in the beginning, it later felt like
it prevented us from writing bad programs.

A third advantage of Feldspar is the ability to define custom control structures for
monadic actions, due to it being DSL embedded in Haskell and thus inheriting this
ability from the host language. This enabled us not only to implement functionality
that is present in most languages but missing from Feldspar, but also to create novel
functionality that many languages lack. An example of the former is the function
if1, an if statement without an else clause. Most imperative languages have such
a construct, but Feldspar by default only has the iff function which requires both
an if and an else clause. The construct can however easily be emulated in Feldspar
as shown in Listing 8.

if1 MonadComp m Data Bool m () m ()
if1 cond a = iff cond a (pure ())

Listing 8: An if statement without an else clause implemented in Feldspar.

28

5. Discussion

An example of a novel control structure is the for2 loop. Instead of having to do a
nested for loop, this construct allows us to iterate over two indices on a single line,
as such:

for2 (0, 1, Excl 8) (7, -1, Incl 0) $ \i j
printf "i + j = %d\n" (i + j)

This feature proved useful as we frequently traverse matrices during the decoding
process. Again, the implementation is quite simple, as shown in Listing 9.

for2 (Integral n, PrimType n, MonadComp m)
 IxRange (Data n)
 IxRange (Data n)
 (Data n Data n m ())
 m ()

for2 r1 r2 b = for r1 (\i1 for r2 (b i1))

Listing 9: A single statement for generating a nested for loop, implemented in
Feldspar. An IxRange is a triple describing the starting value, increment, and end
value of the loop index.

5.2.1 Error recovery
A feature that we chose not to implement in our decoder is the ability to recover
from errors if a video stream contains invalid data. Had we chosen to do so, however,
Feldspar contains a feature that we believe would have been useful for this purpose:
the OptionT monad transformer [19]. To handle errors in a language like C, it is
common for a function to return different status codes depending on whether it
succeeded or ran into an error. It is then the programmer’s job to make sure this
return code is propagated to the appropriate place where a possible error should be
handled. The OptionT monad transformer automates this process by the use of two
functions: some, which takes a return value as an argument, and none, which takes
an error message as an argument. Returning some will return the provided return
value as normal. However, if at any point in the computation none is returned,
this will override any subsequent return values and none will be the final result of
the entire computation. An OptionT computation can consist of arbitrarily deeply
nested functions and control structures, but the none will always propagate to the
top.

For example, consider the following scenario: As explained in Section 2.1.2, a picture
consists of a sequence of slices. If one of those slices were corrupt, we might want
to ignore it and skip ahead to the next slice. If we fail to process even a single slice,
we might opt to skip the entire picture and proceed to the next one. An outline of
what this process might look like using OptionT is shown in Listing 10. The function
caseOptionT chooses between different actions depending on whether the provided

29

5. Discussion

OptionT was successful or failed. If an error occurred anywhere in getSlices, a
none value would be produced and propagate all the way up to decodeFile, where
the error would be caught and handled. The same is true for decodeSlice, whose
error would be handled in decodePic.

decodeFile Run ()
decodeFile =
loop do

let pic = decodePic
caseOptionT pic (_ skipPic)

(_ writePic)
where
writePic Run ()
skipPic Run ()

decodePic OptionT Run ()
decodePic = do
slices exposeRows getSlices

for (0, 1, Excl numSlices) \i do
let decoded = decodeSlice (slices ! i)
lift $ caseOptionT decoded (_ skipSlice)

writeSlice
where

getSlices OptionT Run (DPull2 Word8)
skipSlice Run ()
decodeSlice DPull Word8 OptionT Run (DPull Word8)
writeSlice DPull Word8 Run ()

Listing 10: An outline of how error handling might have been implemented using
the OptionT monad transformer.

5.3 The decoder
As previously mentioned, although the output of our decoder looks visually identical
to the output of the reference decoder, it is not identical byte-for-byte. Upon further
inspection using a hex editor, we discovered that the values that differed did so only
by a value of 1 or 2. Since bytes in the output represent luminance and chrominance
values in the range [0...255], this difference is too small to be visible. We believe this
might be the result of different orders of rounding in the different implementations
and not necessarily a deviation from the standard on our part.

We also believe that this issue occurs in the IDCT since this is the only operation
which involves floating point numbers as opposed to integers. One way to prove that
out IDCT implementation is still correct would be to use the accuracy measurement
test proposed in IEEE standard for the IDCT [13].

30

5. Discussion

Finally, the reason for why the decoder only supports I- and P-pictures (and not
B- and D-pictures) is because of the project’s time constraint. Given more time,
support for the remaining picture types could most likely be implemented with no
significant difficulties. Doing so would however not impact the project’s conclusion
about Feldspar since the logic behind decoding the remaining picture types is similar
to the supported ones.

5.4 Performance
Part of the aim of this project was to see if a high-level language implementation
of a video decoder could achieve similar performance to a C implementation. As
shown in Section 4.1, we cannot confirm this to be the case based on our results.
Our decoder is almost an order of magnitude slower than the C reference decoder
[15], which is already quite slow; decoding video at around 12.5 frames per second,
it is not even fast enough to play back video in real time (typically between 24 and
60 frames per second).

As previously mentioned, the IDCT seems to be the main bottleneck in our decoder.
This is likely because our implementation is directly based on the definition of
the IDCT, which is rarely used in practice due to its inefficiency. A number of
fast algorithms for computing the IDCT have been developed over the years to
enable real time video decoding in software, such as [14]. It would be interesting
to implement such an algorithm in Feldspar and evaluate the effect it has on the
decoder’s performance, as well as whether it could be expressed in a functional way.
The C reference decoder [15] does use a faster IDCT algorithm, which we believe
explains why it is so much faster, but looking at the source code (which is under
copyright protection) it is hard to see how it could be expressed functionally.

The discovery that the IDCT seems to be the main bottleneck in our decoder was
based on solely a guess. To discover this in a more systematic way would be difficult,
if not impossible, since Feldspar only generates a single main function which in
our case contains over 80, 000 lines of code. This eliminates two possible ways of
discovering bottlenecks. Firstly, the use of profiling tools becomes useless since these
typically report the time spent in each function. Secondly, manually inspecting the
generated code is infeasible since it is impossible to locate any particular part of the
program and see how many times it is run. This problem could be solved if Feldspar
was able to generate more than one C function.

Another possibility to speed up performance would be to decode multiple parts of an
image in parallel. Since there is no sequential dependency between the macroblocks
within a picture it should in theory be possible to decode each one on a separate
thread without any data races. Feldspar has a concurrency library which allows
for task parallelism (but not data parallelism) which we did not explore during this
project due to time constraints, but could likely be used for this purpose. However,
decoding macroblocks in parallel would require some significant restructuring of our
code so that the whole frame is read into memory before any decoding is done,

31

5. Discussion

so that later parts of the image can be decoded in parallel with earlier ones. Our
current code does not work like this; rather, it decodes each macroblock right after
reading it from the file.

5.5 Related work
There are several projects trying to solve a similar problem to Feldspar – that is to
enable a high-level functional implementation of software that normally has to be
done using low-level imperative programming – but within a different domain. Such
examples include Futhark [20] – a language focused on data parallel computations on
GPUs, Obsidian [21] – an embedded DSL enabling high-level CUDA programming
in Haskell, and FAUST [22] – a purely functional audio processing language which
compiles to C++ (among others).

A somewhat related project is an encoder and decoder implementation of the JPEG
image format, written in pure Haskell [23]. It shows not only the possibility of image
signal processing in Haskell, but also demonstrates the simplicity of such processing
in a functional language, without the language limitations in our case imposed by
Feldspar.

5.6 Conclusion
• It is definitely possible to implement more advanced DSP applications in

Feldspar.

• We were not able to confirm our hypothesis that writing a video decoder
in Feldspar would be easier compared to a low level language. For some
parts, it did result in cleaner and more elegant code, specifically parts where
computations could be expressed as pure functions. Feldpar’s OptionT monad
transformer can also make error recovery more elegant than in C. For other
parts however, the code was similar of not less elegant compared to C.

• In order to confirm our aforementioned hypothesis, we believe it would be
necessary to extend Feldspar in the following ways:

– An extension for parsing binary data.

– The possibility to generate more than one C function, possibly including
recursive functions.

– The library should be extended to include operations for multidimen-
sional arrays and vectors.

– Support for Haskell sum types to be used in Feldspar code.

– More advanced tutorials and more complete documentation should be
written.

32

Bibliography

[1] Blu-ray Disc Association, “White Paper Blu-ray Disc™ Format,”
http://blu-raydisc.com/Assets/Downloadablefile/White_Paper_General_
5th_20180216.pdf, 2018.

[2] E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård,
A. Persson, M. Sheeran, J. Svenningsson, and A. Vajdax, “Feldspar: A domain
specific language for digital signal processing algorithms,” in Eighth ACM/IEEE
International Conference on Formal Methods and Models for Codesign (MEM-
OCODE 2010). IEEE, 2010, pp. 169–178.

[3] “Coding of moving pictures and associated audio for digital storage media
at up to about 1,5 Mbit/s — Part 2: Video,” https://www.sis.se/produkter/
informationsteknik-kontorsutrustning/kodning-av-information/ssiso111722/,
International Organization for Standardization, Geneva, CH, Standard, Aug.
1993.

[4] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–1101, 1952.

[5] E. Dumic, M. Mustra, S. Grgic, and G. Gvozden, “Image quality of 4:2:2 and
4:2:0 chroma subsampling formats,” in 2009 International Symposium ELMAR.
IEEE, 2009, pp. 19–24.

[6] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE
transactions on Computers, vol. 100, no. 1, pp. 90–93, 1974.

[7] A. Persson, A. Ekblad, E. Axelsson, K. Claessen, M. Aronsson, and M. Karác-
sony, “Resource-AWare feldspar,” https://github.com/Feldspar/raw-feldspar.

[8] J. Svenningsson and E. Axelsson, “Combining deep and shallow embedding
of domain-specific languages,” Computer Languages, Systems & Structures,
vol. 44, pp. 143–165, 2015.

[9] P. Wadler, “The essence of functional programming,” in Proceedings of the 19th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
1992, pp. 1–14.

[10] S. L. P. J. Philip Wadler, “Imperative functional programming,” in Proceed-

33

http://blu-raydisc.com/Assets/Downloadablefile/White_Paper_General_5th_20180216.pdf
http://blu-raydisc.com/Assets/Downloadablefile/White_Paper_General_5th_20180216.pdf
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/ssiso111722/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/ssiso111722/
https://github.com/Feldspar/raw-feldspar

Bibliography

ing of the 20th Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, 1993, pp. 71–84.

[11] A. Gill, J. Launchbury, and S. L. Peyton Jones, “A short cut to deforestation,”
in Proceedings of the conference on Functional programming languages and
computer architecture, 1993, pp. 223–232.

[12] E. Axelsson, “raw-feldspar documentation: MonadComp,” https://hackage.
haskell.org/package/raw-feldspar-0.3/docs/Feldspar-Frontend.html#t:
MonadComp, 2019.

[13] IEEE, “IEEE standard specifications for the implementations of 8x8 inverse
discrete cosine transform,” IEEE Std 1180-1990, pp. 1–12, 1991.

[14] A. C. Hung and T. H.-Y. Meng, “Statistical inverse discrete cosine transforms
for image compression,” in Digital Video Compression on Personal Computers:
Algorithms and Technologies, vol. 2187. International Society for Optics and
Photonics, 1994, pp. 196–207.

[15] “Coding of moving pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s — Part 5: Soft-
ware simulation,” Document: https://www.sis.se/produkter/
informationsteknik-kontorsutrustning/kodning-av-information/
kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/
isoiectr1117251998/, Software download: https://standards.iso.org/ittf/
PubliclyAvailableStandards/c025029_ISO_IEC_TR_11172-5_1998(E)
_Software_Simulation.zip, International Organization for Standardization,
Geneva, CH, Standard, Oct. 1998.

[16] “Coding of moving pictures and associated audio for digital storage media at
up to about 1,5 Mbit/s — Part 4: Compliance testing,” https://www.sis.se/
produkter/informationsteknik-kontorsutrustning/kodning-av-information/
kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/
isoiec111724/, International Organization for Standardization, Geneva,
CH, Standard, Mar. 1998.

[17] FFmpeg team, “FFmpeg, a suite of libraries and programs for encoding, decod-
ing and processing multimedia streams.” http://ffmpeg.org/.

[18] G. Sullivan and S. Estrop, “Recommended 8-Bit YUV Formats for Video
Rendering,” https://docs.microsoft.com/en-us/windows/win32/medfound/
recommended-8-bit-yuv-formats-for-video-rendering, 2018.

[19] E. Axelsson, “raw-feldspar documentation: OptionT,” https://hackage.haskell.
org/package/raw-feldspar-0.3/docs/Feldspar-Data-Option.html, 2019.

[20] T. Henriksen, N. G. Serup, M. Elsman, F. Henglein, and C. E. Oancea,
“Futhark: purely functional GPU-programming with nested parallelism and
in-place array updates,” in ACM SIGPLAN Notices, vol. 52, no. 6. ACM,

34

https://hackage.haskell.org/package/raw-feldspar-0.3/docs/Feldspar-Frontend.html#t:MonadComp
https://hackage.haskell.org/package/raw-feldspar-0.3/docs/Feldspar-Frontend.html#t:MonadComp
https://hackage.haskell.org/package/raw-feldspar-0.3/docs/Feldspar-Frontend.html#t:MonadComp
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiectr1117251998/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiectr1117251998/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiectr1117251998/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiectr1117251998/
https://standards.iso.org/ittf/PubliclyAvailableStandards/c025029_ISO_IEC_TR_11172-5_1998(E)_Software_Simulation.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c025029_ISO_IEC_TR_11172-5_1998(E)_Software_Simulation.zip
https://standards.iso.org/ittf/PubliclyAvailableStandards/c025029_ISO_IEC_TR_11172-5_1998(E)_Software_Simulation.zip
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiec111724/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiec111724/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiec111724/
https://www.sis.se/produkter/informationsteknik-kontorsutrustning/kodning-av-information/kodning-av-information-for-ljud-bild-multimedia-och-hypermedia/isoiec111724/
http://ffmpeg.org/
https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://docs.microsoft.com/en-us/windows/win32/medfound/recommended-8-bit-yuv-formats-for-video-rendering
https://hackage.haskell.org/package/raw-feldspar-0.3/docs/Feldspar-Data-Option.html
https://hackage.haskell.org/package/raw-feldspar-0.3/docs/Feldspar-Data-Option.html

Bibliography

2017, pp. 556–571.

[21] J. Svensson, “Obsidian: GPU kernel programming in haskell,” Ph.D. disserta-
tion, Chalmers University of Technology, 2011.

[22] Y. Orlarey, D. Fober, and S. Letz, “FAUST: an efficient functional approach to
DSP programming,” https://hal.archives-ouvertes.fr/hal-02159014/, 2009.

[23] J. Fokker, “jpeg: A library for decoding jpeg files written in pure haskell,”
https://hackage.haskell.org/package/jpeg.

35

https://hal.archives-ouvertes.fr/hal-02159014/
https://hackage.haskell.org/package/jpeg

Bibliography

Bibliographic notes
Blu-ray Disc Association. White Paper Blu-ray Disc™ Format [1] A
specification for the Blu-ray Disc format which specifies the maximum capacity of
Blu-ray discs.

E. Axelsson, K. Claessen, G. Dévai, Z. Horváth, K. Keijzer, B. Lyckegård,
A. Persson, M. Sheeran, J. Svenningsson and A. Vajdax. Feldspar: A
domain specific language for digital signal processing algorithms [2]
This is the original Feldspar paper and therefore the foundation of this project. It
describes the problem of implementing DSP applications in low level languages and
proposes Feldspar, a functional language for DSP which compiles to C as a solution.

ISO. Coding of moving pictures and associated audio for digital storage
media at up to about 1,5Mbit/s – Part 2: Video [3] This is an ISO standard
for the MPEG-1 video format. It is fundamental to the project as following this
specification is how we will produce a program which is compliant with the MPEG-
1 standard.

D. A. Huffman. A method for the construction of minimum-redundancy
codes [4] This paper introduces Huffman coding which can be used to construct
VLCs.

E. Dumic, M. Mustra, S. Grgic and G. Gvozden. Image quality of 4:2:2
and 4:2:0 chroma subsampling formats [5] This paper explains chroma
subsampling and compares the quality of different subsampling formats.

N. Ahmed, T. Natarajan and K. R. Rao. Discrete cosine transform
[6] This paper introduces the discrete cosine transform and explains some of its
applications.

A. Persson, A. Ekblad, E. Axelsson, K. Claessen, M. Aronsson and M.
Karác-sony. Resource-AWare feldspar [7] This is the GitHub page for the
Feldspar implementation used in this project.

J. Svenningsson and E. Axelsson. Combining deep and shallow embed-
ding of domain-specific languages [8] This paper explores the advantages of
combining shallow and deeply embedded domains specific languages. Feldspar is
based on the described principles to a great extent.

P. Wadler. The essence of functional programming [9] This paper explores
the use of monads in functional programming.

36

Bibliography

S. L. Peyton Jones and Philip Wadler. Imperative functional program-
ming [10] This paper describes different methods of handling side effects in
Haskell an proposes the IO monad as a solution to this problem.

A. Gill, J. Launchbury and S. L. Peyton Jones. A short cut to defor-
estation [11] This paper introduces fusion, meant for readers interested in the
topic.

E. Axelsson. raw-feldspar documentation: MonadComp [12] Documen-
tation of the MonadComp type class in the raw-feldspar library.

IEEE. IEEE standard specifications for the implementations of 8x8 in-
verse discrete cosine transform [13] A standard describing the 8x8 inverse
discrete cosine transform that is used by the MPEG-1 standard.

A. C. Hung and T. H.-Y. Meng. Statistical inverse discrete cosine trans-
forms for image compression [14] Describes a fast algorithm for the inverse
discrete cosine transform.

ISO. Coding of moving pictures and associated audio for digital storage
media at up to about 1,5Mbit/s – Part 5: Software simulation [15] This
is reference implementation of MPEG-1. This is used to programatically verify the
correctness of our decoder, by comparing the output of the former to the latter.

ISO. Coding of moving pictures and associated audio for digital storage
media at up to about 1,5Mbit/s – Part 4: Compliance testing [16] This
document describes procedures for testing whether an MPEG-1 implementation is
compliant with the standard.

FFmpeg team. FFmpeg, a suite of libaries and programs for encoding,
decoding and processing multimedia streams [17] FFmpeg is a compre-
hensive open-source multimedia framework. Among other things, it contains an
MPEG-1 decoder written in C to which our decoder can be compared. It also
includes the ffplay tool used to display raw video files.

G. Sullivan and S. Estrop. Recommended 8-Bit YUV Formats for Video
Rendering [18] An online document describing, among others, the YV12 raw
video format which our decoder outputs.

E. Axelsson. raw-feldspar documentation: OptionT [19] Documentation
of the OptionT monad transformer from the raw-feldspar library.

37

Bibliography

T. Henriksen, N. G. Serup, M. Elsman, F. Henglein and C. E. Oancea.
Futhark: purely functional GPU-programming with nested parallelism
and in-place array updates [20] Futhark attempts to solve a similar problem
to Feldspar, that is to enable highly performant functional programming.

J. Svensson. Obsidian: GPU Kernel Programming in Haskell [21] Ob-
sidian is a functional language for CUDA programming. It is another example of
high-level functional languages used for tasks usually programmed at a low level.

Y. Orlarey, D. Fober and S. Letz. FAUST: an efficient functional ap-
proach to DSP programming [22] This is another example of a functional
language for DSP applications.

Jeroen Fokker. jpeg: A library for decoding jpeg files written in pure
Haskell [23] This is an example of image processing in pure Haskell.

38

	Introduction
	Purpose and Delimitations

	Background
	MPEG-1
	Compression methods
	Variable length coding
	Run-length encoding
	Chroma subsampling
	Discrete cosine transform and quantization
	Motion vectors

	Specifications
	Pictures
	Slices
	Macroblocks
	Blocks

	Feldspar
	Introduction
	Vectors

	Implementation
	Maintaining a state
	Reading binary files
	Reading individual bits

	Decoding variable length codes
	Reading the bitstream syntax
	Inverse Discrete Cosine Transform
	Testing
	Creating test files
	Output file format
	Displaying the output files
	Comparing output files programatically
	Performance measurement

	Results
	Performance

	Discussion
	Feldspar
	Advantages of Feldspar
	Error recovery

	The decoder
	Performance
	Related work
	Conclusion

	Bibliography & bibliographic notes

