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Abstract

More cars are getting semi-automatic driving capabilities and on the way towards
full automation, the driver is still responsible for the car. An important aspect of
controlling the car is holding the steering wheel which is supposed to be done at all
times, even during semi-automatic driving. To check that the driver is controlling
the vehicle and holds the steering wheel, a system can be created using inputs from
the steering gear sensors or a camera. Two different solutions using these inputs
are implemented and tested to see if machine learning can be used to differentiate
between hands on and hands off situations. The systems are also evaluated running
online on a Raspberry Pi single board computer where the efficiency of the systems
is considered, as well as performance. The evaluation of the systems shows that
the sensor version can be updated frequently at 5 Hz, while being robust when the
driver is not intentionally tricking the system by hanging a weight on the steering
wheel. The camera model is limited in update frequency by the library used for
running the neural network in C++. The neural network had to be downsized in
order to make the system update frequently enough to detect change of state. This
meant that the system wasn’t able to detect some situations as well as the system
which was evaluated on offline data. Changing libraries for the neural network would
potentially solve this problem and make the online version perform more similarly
to the offline system.

Keywords: Hands-off detection, Machine learning, State-space model, Kalman filter,
Object classification
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1

Introduction

In today’s society, automation has been an ongoing process for many years and more
and more parts are likely heading in the same direction. Currently lawnmowers, de-
livery robots and entire warehouses are operated autonomously. The main thread
in automation involves monotonous tasks which we as humans find unfulfilling to
complete which often leads us to become distracted and increase the risk of making
errors. This is not so worrying when mowing a lawn perhaps, but there are other
situations where the consequences are higher. One such situation is driving a car.

Moving towards a world of autonomous mobility where predictions indicate self-
driving vehicles in the near future, the first step is to let an algorithm drive on
highways while the driver still ready to take control if something unexpected were
to happen. This is called semi-autonomous driving or driver assist. This type of
autonomous system, which is able to control the car for limited periods of time, is
classified as level two of the five levels of autonomous cars (Abraham et al., 2017).
There are already level two autonomous cars on the roads today and there are
several car manufacturers offering this kind of driver assist in their cars. Volvo’s
Pilot Assist, Tesla’s Autopilot and Audi’s Traffic jam assist are examples of such
systems. To make sure the driver is always ready to assume control over the vehicle
in an unexpected situation, it is important to always hold the hands on the steering
wheel. Besides making the driver be able to react faster, it also makes it more
difficult to focus on other distractions such as looking at one’s phone or similar
activities which puts the focus away from driving. There are legal requirements on
car manufactures for them to implement these systems which states that the driver
must at all times keep at least one hand on the steering wheel and always be ready
to take control. At this level of autonomy, the driver is responsible for the car even
though a driver assist is temporally driving the car. If a driver does not hold their
hand on the steering wheel, the regulations are to set an optical warning after at
most 15 seconds and to shut down the semi-automatic drive within a minute (United
Nations, 2017-11-30). The two most common methods to check for hands off driving
are either by a capacitive sensor in the steering wheel or by looking at the torque.
Lately, cameras have also been used to check if the driver is paying attention.

1.1 Purpose

The purpose of this thesis is to research and develop a system in combination with
machine learning which can detect if the driver is holding the steering wheel dur-
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ing semi-automatic driving. The system is based on a camera mounted above the
steering wheel and the steering gear sensors available in the car. The developed
system should be migrated to work on a single board computer to emulate the
computational power in a car for real-time detection.

1.2 Delimitations

The detection system will only consider all hands that are holding the steering wheel,
it will not matter if the hands belong to the driver or another passenger. The camera
based detection system will not be generalized and gloves and other accessories
affecting the view of the hands will not be considered. Solutions to overcome this
problem will be discussed. Lastly, the system is designed to work during semi-
automatic driving and no general cases outside of semi-automatic driving will be
considered.



2

Theory

In this chapter, necessary background theory in relation to the project is presented.

2.1 Neural Network

Neural network is a broad term including many different types of networks. De-
pending on what task you want the network to perform, you need to find a solution
fitting to that specific task. The most common network architecture is the fully
connected network (FCN). This network is built with layers of neurons where you
can have several layers stacked to produce a deeper network (Goodfellow, Bengio,
and Courville, 2016). These network consists of different amount of layers where
the first layer is called an input layer and the last layer is called the output layer.
The layers in the middle are called hidden layers and can in principle consist of any
number of layers. if a network has at least one hidden layer, it is referred to as a
deep neural network (Goodfellow, Bengio, and Courville, 2016). An example of a
deep fully connected network can be seen in Figure 2.1.

t . [Hidden| | |Hidden| . |Output
r v llayer1] & |layer2| layer

Inpu
laye
OO

Figure 2.1: Example of a fully connected network with two hidden layers.

2.1.1 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are development of the fully connected network.
Instead of connections between neurons being only in a forwards fashion, an RNN
has connections which create internal loops and cycles between neurons which en-
ables the exhibit of dynamic temporal behavior (Sherstinsky, 2020). This means
signals running through the network can travel both forwards and back which also

3
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means that information in the network is able to travel in different directions lead-
ing to RNNs having a short term memory (Hochreiter and Schmidhuber, 1997).
The network is able to process new information while taking previous information
into consideration. This feature has made RNNs common in language translations,
speech recognition and text generation which has been made popular by OpenATI’s
Generative Pre-trained Transformer (GPT) (Floridi and Chiriatti, 2020).

2.1.1.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) is an architecture belonging to the RNNs. LSTMs
were introduced by Hochreiter and Schmidhuber in 1997 as a way of taking care of
long-term dependencies (Hochreiter and Schmidhuber, 1997). The difference in the
LSTM module is the improved memory capabilities implemented using a memory
cell (Pulver and Lyu, 2016). The memory cells can be seen in Figure 2.2 for both
the vanilla RNN and the LSTM.

°t !
Ny e

ey (

Xt Xt

Figure 2.2: A visualization of the layout of a memory cell for the vanilla RNN
(left) and the LSTM (right).

This memory cell consist of several layers and the flow of data through this cell is
determined by gates consisting of sigmoid layers, which outputs a value between one
and zero (Pulver and Lyu, 2016). This value will determine how much information
should flow through this cell. If the value is zero, no information will be let through
the gate and if the value is one, everything will pass. An LSTM-module has three
gates of this kind which control the cell state. These gates are learnable parameters
which means that the LSTM module during training, learns how long it should
consider past information to be relevant (Pulver and Lyu, 2016). It is possible
to represent the passing of time by stacking one of the cell layouts in Figure 2.2
horizontally, where each cell represents one timestep. The output to the right of the
cell is used as the inputs to the left of the next cell module.

2.1.2 Convolutional Neural Network

Convolutional Neural Networks (CNN) is most often associated with image based
learning, but lately has gained more popularity for analysing time series data (Cali,
Pipattanasomporn, and Rahman, 2019). CNNs gained popularity in 2012 with
the introduction of AlexNet which was one of the first deep CNN (Alom et al.,
2018). AlexNet entered the ImageNet challenge which was a competition where

4
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different neural networks competed against each other in image classification. The
performance of the network was much better than the competition, leading to CNNs
becoming the standard of image based learning (Alom et al., 2018).

2.1.2.1 2D convolutional network

The most commonly used CNN is a network with a 2D input. This input is usually
an image of some kind, and if this image is in colour, the input is divided into three
channels for e.g RGB (Albawi, Mohammed, and Al-Zawi, 2017). What happens in
a convolutional layer is illustrated in Figure 2.3.

Feature map

... Kemel

0 1 1 o 0 o 0 3 3 1 1 0

1 1 o o 0 o 0

Figure 2.3: Example of a 3x3 kernel operating on a 7x7 input with stride 1. The
result is a feature map of size 5x5.

Looking at the figure above, there is a kernel which is a fixed size square matrix
with size smaller than the input image. The kernel holds the weights in a convolu-
tional layer, and these weights are operating on the image as the kernel moves over
the input (Albawi, Mohammed, and Al-Zawi, 2017). The weights of the kernel are
multiplied with the corresponding values of the input image, and the sum of these
operations are then the resulting value in the corresponding place in the feature
map. When this is done, the kernel moves to the next part of the image with a
step size called stride. When the kernel has moved over the entire input, all the re-
sulting values are saved in a feature map, which is then the output of the CNN layer.

If the input is an image the kernel would have three dimensions, one for each of the
colour channels. A collection of kernels is sometimes referred to as a filter and it’s
common to use several filters in a CNN layer since each filter learns one feature in
the image (Albawi, Mohammed, and Al-Zawi, 2017).

2.1.2.2 1D convolutional network

One variant of the CNN is operating the network on 1D inputs, or time series.
These kind of operations have previously been handled by RNNs and LSTMs, but
resent research has shown that CNNs in 1D can perform similarly, or even better
compared to the RNN models Cai, Pipattanasomporn, and Rahman, 2019. Even
if the networks are performing similarly, there are several advantages when using a
CNN. The greatest advantage is the ability to parallelize the training of a CNN on a
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GPU which greatly improves the training time, although there are some algorithms
to partly parallelize training RNN; it still isn’t as efficient (Hwang and Sung, 2017).
LSTMs are dependant on the previous output to calculate the next, leading to slower
processing. The CNN also has fewer parameters in general compared to a LSTM
which also help improve time spent training the network. CNNs also don’t suffer
from vanishing (or exploding) gradients, especially in combination with the rectified
linear unit (ReLU) activation function, making training and tuning the network less
challenging (Ide and Kurita, 2017).

2.1.3 Activation Functions

The activation functions are deciding whether the neuron in the network are acti-
vated (Sagar Sharma and Simone Sharma, 2017). This is based on the input, which
is the sum of the weights and biases which are related to that specific neuron. The
activation function is almost always set to be the same in a whole layer.

There are several different activation functions which are used for different purposes.
It is common to have different activation functions in different layers in a neural
network, and especially in the output layer which will provide the result of the
network. The main purpose of the activation functions is to provide non-linearities
in the network and help the network learn more complex tasks (Sagar Sharma and
Simone Sharma, 2017). Without activation functions, the networks would be a linear
regression model.

As mentioned before, there are several different activation functions. Some of the
commonly used function can be seen in table 2.1. The rectified linear unit (ReLU)
is currently one of the most popular activation function for use in most types of
networks, and this function is seen as a revolution in machine learning. The ReLLU
function returns the input if the input is larger than 0, otherwise it returns 0. This
function is linear for half of its domain and non-linear in the other half which still
will ensure that the network has complex learning abilities. The function is also
popular since it doesn’t get saturated like several other functions do. Such as the
tanh function which will return 1 for large positive inputs and -1 for large negative
inputs. This is a problem when training deep neural network and therfore, the ReLLU
function is a commonly used activation for hidden layers. Another advantage over
many other activation functions is that the ReLLU function doesn’t suffer from van-
ishing gradients. Again, comparing with the tanh function when close to saturation
will suffer from small gradients.

6
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Name Function Derivative Figure

Sigmoid  o(z) = = f'(@) = f2)(1 = f(x))? 4/

tanh o(r) = £ f(x)=1— f(x)? C

ez+eiz j
0 ifz<O 0 ifz<0
ReLU = "(z) =
’ ) {:c te>0 TN azo
- e et 2 T
Softmax  f(z) = S f(x) = S (z(j.e)w)Z

Table 2.1: Non-linear activation functions.

When back-propagating through the network to adjust for the error, the gradients
are multiplied with the error, and if the gradients are close to 0, the learning of the
network is very slow. However, since the ReLLU function is 0 for negative values, the
gradient would be 0 as well which means that no learning will occur after this level
is reached. This could be fixed using a ReLLU function with a small positive gradient
for negative vales, such as the leaky ReLU function. The drawback for using a
function like this is that it is more computationally expensive during training, and
is most often not used for that reason. The advantage gained is often deemed to
small to pay the price of more demanding calculations.

2.1.3.1 Output Layer

The choice of the activation function for the output layer is an important parame-
ter. The output from a neural network will be entirely dependant on the activation
functions of the output layer which means that it will be decided by the task in
question. For classification tasks, it is helpful if the output is a probability. This is
why the most common activation functions for classifications are the sigmoid func-
tion and the softmax function. The sigmoid function is used for binary classification
and will output a value between zero and one while the softmax function is used
for classifications with more than two classes. The softmax function will output a
probability for all classes in the dataset and the sum of these values is one. The
sigmoid function is a special case of the softmax function for two classes.

2.1.4 Loss Functions

Loss functions, or cost functions, are an important part of training a neural network.
The loss function gives a value of the prediction of the network and often, the goal
is to minimize this function. Since training a neural network is an optimization
problem, where the weights in the network are being optimized, it is necessary to
have a validation of the quality of the networks ability to make predictions. The
loss function is different from prediction accuracy, as in this case, it isn’t how many
of the guesses that are correct that is interesting, but how close the guesses are to

7
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the correct answer. A network could have high accuracy and at the same time have
a high loss. This usually indicates that the network is uncertain in its predictions.

There are several different loss functions depending on the purpose of the network.
If the intention is to make a regression neural network to make predictions, the most
commonly used loss function is the mean square error (MSE). The loss in this case
is calculated by taking the mean of squared differences between the prediction of
the network and the correct value, as can be seen in Equation 2.1.
1 n
MSE = > ( — i) 21)
i=1
Neural networks are often used to classify objects. For this scenario, it is common to
use the categorical cross-entropy (CCE). This loss function is used when there are
more than two classes to identify. The formula for this loss function can be observed
in Equation 2.2, where ¢ is the number of classes to be predicted.

CCE = =Y yilog(y;) (2.2)
i=1
If it is a binary classification, binary cross-entropy (BCE) is used which is a special
case of the categorical cross-entropy for only two classes.

1 & R R
BCE = “n ZyilOg(yi) + (1 —yi)log(1 — 4i) (2.3)
i=1
For the multiple classification network, it is important to use a Softmax layer as an
output layer since this will produce a probability off the prediction for each class.
For the binary classification, a Sigmoid function is common for the final layer in the
network since the output from this is a probability between zero and one.

2.1.5 Datasets - Training, Validation and Testing

When training networks, best practice is to use three different datasets: training,
validation and a test dataset. The training dataset is used for the training of the
network. When training a network, it is almost always possible to achieve a high
accuracy on the training dataset. The problem is that at some point, the network
isn’t learning general features but instead, focusing on the features of the training
dataset. This means that when this network is introduced to new data, it won’t
perform as well since the network hasn’t learned general features. This is known as
overfitting and is the reason why a validation dataset is important.

After each training epoch, the networks performance is validated using the valida-
tion dataset. This dataset is used to know when to stop training. Looking at the
validations loss, it is when this starts increasing that the network has stopped learn-
ing general features and starts overfitting.

When the network has finished its training, the test dataset is used as a final check
that the networks performance is as expected. The test dataset has not been involved

8



2. Theory

in the training process at all which is a good representation of the networks ability to
perform at the intended task. When creating the test dataset used for the network
evaluation, no timer is used and different lengths of hands off duration is registered
to emulate a real world situation as well as possible.

2.2 Car Model

To model the input signals from the car a 2 degree of freedom state-space model is
used. The model is the same reference model as in the paper (Chugh et al., 2020).
The figure 2.4 shows the model taken from figure 1b in (Chugh et al., 2020) and
uses two second order differential equations. The first one is a spring-damper model
for the steering wheel and the second one a spring-damper model for the pinion,

Jsgs(t) - _Mtb( ) SleC( ) + Ms(t)a

; (2.4)
innépin (t) b 5 ( ) - Mrack(t) - Mtb,fric(t) + Mtb(t) + Mmot,eff(t)'

From the equations, the motor torque M, fr and torsion bar torque My, can be
further simplified to,

Mtb = btb . (5 (.szn) + +Cip - (5 6pm)

2.5
Mmot,eff = _bbelt 6zn Z — Coelt * 5m Z ot ( )

from the equations a state-space model can be set up which is used in a Kalman
filter.

Mmot,eff(t)

< Mtb,fric(t)

< Mrack(t)

T

bpin

Figure 2.4: The used 2 degree of freedom spring-damper model used for the state-
space model. Figure taken from figure 1b in (Chugh et al., 2020).

2.3 Kalman Filter

The Kalman filter estimates the state in a system of linear difference equations.
Using the system from 2.2,

LTt = Apxy, + Buy, + wy, (26)
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and the output’s from the system being,
Yr = Crg + vy (2.7)

where v is gaussian with mean 0 and variance Q, and w is another gaussian with
mean 0 and variance R (Bishop, Welch, et al., 2001). A priori state estimate 7,
posterior state estimate ) and the true state z; from equation 2.6 are used to define
the error equations where the e, is the priori and e is the posterior,

e, =T, — &), and

. 2.
€L =T — Tk ( 8)
Afterwards covariance matrices can be constructed,
P =FEle e;’| and
k [ k €k } (2.9)

P.=F {ekeﬂ

The kalman filter is then built up by a predict stage which estimates the current
state and a correct stage which adjusts the prediction with the real measurement
(zr) (Bishop, Welch, et al., 2001). In the Kalman filter if the R variance goes towards
zero, the filter trusts the real measurments’ more and if the priori covariance (P )
goes towards zero, the estimation is trusted more (Bishop, Welch, et al., 2001).

2.3.1 Predict step

In the prediction step, the priori state and priori covariance is estimated. The next
state is estimated with equation,

and the covariance with,
Pr = AP AL + Q (2.11)

the covariance and state update uses the previous posterior state and covariance.
(Bishop, Welch, et al., 2001).

2.3.2 Correct step

The correct step uses the priori estimation from the predict step to calculate a
Kalman gain (K), and using that to compute a posterior state estimation, aswell
as a posterior covariance. The Kalman gain is calculated to minimize the error
covariance and derived from (Jacobs, 1993),

-1
Ky = Py Cl (CoPy CF + Ry,)
Py = (I — K;.Cy) Py

The updated posterior state and covariance are then used in the next predict step
and the Kalman filter runs recursively between the steps.
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2.4 Fast Fourier Transform

The fourier transform relates the time-domain signal to the frequency domain, and
in a computer the signal is sampled with distinct time-steps. A continous signal,
sampled can be seen as sequence of x(n) with N total samples and can be transformed
to the frequency domain X (k) using the discrete fourier transform (DFT),

N-1
X(k)= 3 a(n)e ™ (F)" k=0,1,2,3,.. . N-1 (2.13)
n=0

however the DFT is computationally expensive with a complexity of O(N?) (Zhang
and Jiang, 2021). using a fast fourier transform (FFT) instead, the coputational
time can be decreased to O(N log(N)), the FFT needs a signal length of 2 and if
that is not satisfied zeros can be added to satisfy the constraint (Zhang and Jiang,
2021). Nussbaumer writes in more detail about the FFT algorithm in (Nussbaumer,
1981) and works by splitting the discrete sequence into two N/2 sequences one with
the even samples (z3,) , the other with the odd samples (xg,.1) which turns the
DFT into,

X<k) = ZnNL%_l Lon * e_jk<%)n Z,{.LVL%_I Ton+1 * 6_]k(%>n

X(k+ N/2) =N 0, e (F)n _ o=ik(F) oLy o - e i) (2.14)
k=0,...,N/2—1.
the same principle can be used recursivly and splitting the equation 2.14 into two

new halfs of length N/4 leading to the computational time of O(N log(N)) for a
FFT (Nussbaumer, 1981).
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Related Work

Because of the severe consequences of car crashes previous work has been done
within the field of making sure the driver is paying attention and in control of the
vehicle while driving. Within hands on detection, literature focuses on the torque
sensor in the car because a driver cannot hold the steering wheel without generating
torque. For attention detection algorithms cameras have been used to monitor where
the hands are in relation to the steering wheel. This chapter provides a summary
on how sensor based and camera based approaches have been used. Secondary the
chapter introduces neural network prediction models within autonomous driving to
see how the two areas can be combined for this thesis.

3.0.1 Hands On/Off Detection Based on EPS Sensors

The paper (Moreillon, 2017) proposes that hands on/off detection in combination
with lane-keeping assistance are two aspects used in semi-automatic driving today
and the goal is to make sure the driver is always in control of the vehicle. For
further use when the car evolves and is more automatic, hands on/off detection
can be used for transition between automatic and manual driving, making sure the
driver is ready to take over control by placing the hands on the steering wheel. A
robust system avoids false positives; the scenario when the system assumes hands
are on the steering wheel while in reality the driver is not holding the steering wheel
(Moreillon, 2017). Furthermore, this can lead to situations when neither the semi-
automatic driving nor the driver is controlling the car, a hazardous situation. By
using sensors available in the car the paper proposes a state-space model with 1
degree of freedom based on one spring-damper model to estimate the torque from
the driver on the steering wheel (Moreillon, 2017). As the torque is the input in the
model, an extended state-space modification is made and a state observer is created
to estimate the driver torque. Since there is a large difference between hands on and
hands off states the paper puts a hysteresis level to determine if the driver is holding
the steering wheel. To avoid the false positive scenario the model only switches to
hands off when the torque is below the threshold for a certain time (Moreillon, 2017).

3.0.2 Learning-Based Approach for Online Lane Change In-
tention Prediction

There has been usage of machine learning algorithms for saftey predictions in au-
tonomous driving. One approch is to use a support vector machine (SVM) to classify
and predict upcoming lane changes (Kumar et al., 2013). A SVM maps a non-linear
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problem to a higher hyperspace to create a linear plane which separates the classes
for prediction. The lane change prediction is done by looking at features important
to lane changes such as the steering wheel angle and the car’s lateral position in
the lane (Kumar et al., 2013). Because a lane change is not instantaneous a sliding
window is used to capture the whole lane change. Ground truth is captured to make
sure the network has good data to classify on. To further improve the algorithm
a baysian filter (BF) is added after the SVM which increases computational time
slightly but improves accuracy (Kumar et al., 2013). The SVM with the BF in this
paper is able to predict a lane change on average 1.6 seconds before it happens but
has several false alarms and an accuracy of 71.5% (Kumar et al., 2013). This thesis
differs in classifying ground truth data instead of predicting what is going to happen
in the near future. The classification of this thesis is also if the driver is holding the
steering wheel versus the paper where the position of the car is predicted.

3.0.3 Distributed Sensor for Steering Wheel Grip Force-
Measurement in Driver Fatigue Detection

One way to detect if the driver is holding the steering wheel is through touch sensitive
sensors on the steering wheel (Baronti et al., 2009). The sensors then outputs if a
driver is holding the steering wheel based on the force put onto the steering wheel.
In the paper they use 15 sensors equally distributed around the steering wheel and
each is equipped with a micro controller to also know where the driver is putting
it’s hands (Baronti et al., 2009). The goal of the paper is not only to detect if the
driver is holding the steering wheel but also to understand if the driver is fatigued
and therefore the capactitve touch sensors are complimented with car sensors signals
such as steering angle and vehicle speed (Baronti et al., 2009). The difference from
this thesis is that the system will not be estimating fatigue of the driver, instead
only classifying whether the driver has their hands on the steering wheel while not
using touch sensors.

3.0.4 Development of a new capacitive matrix for a steering
wheel’spressure distribution measurement

The paper (Garinei and Marsili, 2014) shows different types of sensors used on
the steering wheel to detect if the driver is holding the steering wheel or not. One
drawback with the capacitive sensors is that when bending them around the steering
wheel, there are measurement inaccuracies because of non linearity’s in the sensor.
However, optimization techniques have been developed to counteract this. The
paper shows how drivers react in different scenarios such as fast acceleration or
steering but does not use the sensors for detecting if the driver is holding the steering
wheel (Garinei and Marsili, 2014).
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3.0.5 On Performance Evaluation of Driver HandDetection
Algorithms:Challenges, Dataset, and Metrics

The paper (Das, Ohn-Bar, and Trivedi, 2015) shows how different camera based
approaches can recognize the hands of the driver or passenger and also the steering
wheel. The paper introduces several camera angles to show which ones are good
respectively worse for detection (Das, Ohn-Bar, and Trivedi, 2015). All recorded
data is annotated with where the hands are and bounding boxes are created for this.
If the bounding boxes of the hands overlap the steering wheel, the driver is holding
the steering wheel. The camera takes as input all RGB colors and can miss-classify
red hues as a hand leading to false outputs. False outputs are also found when the
bounding boxes are poorly fitted something that is in the papers future work (Das,
Ohn-Bar, and Trivedi, 2015).

3.0.6 Hands on the wheel: a Dataset for Driver Hand De-
tection and Tracking

The paper (Borghi et al., 2018) creates an annotated dataset for detection of hands
on the steering wheel and an algorithm to detect where the hands are located. The
steering wheel detection works by fitting an ellipse with five points to the steering
wheel manually in the beginning. The image’s are then transformed from a ellipse to
a circular from through a homography matrix. Lastly, the image is unrolled to linear
space where overlapping hands with steering wheel can be mapped (Borghi et al.,
2018). However, the system is running on a real computer with a high performing
CPU to be a real time detection algorithm.
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Methods

This method is divided into two sections, the sensor based approach and the camera
based approach. The sensor method is presented first followed by the method for
the camera. In the end a description of the online system is presented.

4.1 Sensor based method

For this solution, the already existing sensors from the car are used to determine if
the state is either hands on or hands off. The cars all have some standard equipment
when it comes to sensor but most will not be of use in this project. Since the inter-
esting parts are the steering system, these are the sensors that will be investigated
to come up with a solution. The signals from these sensors can be accessed from the
Controller Area Network (CAN bus). Two different neural network architectures
are created to compare the results, both are using the same dataset and inputs.

4.1.1 Dataset

The data collection based on sensors are collected by driving a car with driving
assist and logging the sensor data through the software CANoe, which collects data
from the vehicles CAN-bus. The CANoe software samples the data at around 10
Hz depending on signal. However, a faster sampling frequency can be achieved on
the CAN-bus itself and therefore the CANoe data is interpolated to 1 kHz using
the previous value. Since it is important to accurately label the dataset, the ground
truth is also logged by the passenger pressing a key to switch between hands on
and hands off states. The states are represented as a zero for hands on and a one
for hands off. To make sure the ground truth label is accurate, 0.25 seconds are
removed from the dataset before and after the key is pressed.

When creating a training dataset, it is important that the data is balanced, meaning
that there should be similar amount of situations where hands are on the steering
wheel and when the hands are off. Otherwise the network will have a bias towards
one or the other which will affect the training off the neural network. This is solved
by having a timer set to fifteen seconds between switching states when collecting
data. The dataset is around 6 hours of logged highway data, with most of it from
a Volvo S60. For the testing dataset, the goal was instead to resemble a realistic
situation and is made up of both long and short hands off situations with varying
duration of hands on driving in between. To make sure the algorithm is generalized
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the test is instead from a Volvo XC90 and is in total just over 1.5 hours driving.
The test dataset includes a total of 5800 predictions spaced by 1 second.

4.1.2 Estimating the Driver Torque

Since the goal is to be able to differentiate between when the driver’s hands are on
the steering wheel and when they are off, it would be possible to look at the torque
applied to the steering wheel from the driver. Since the steering wheel will still
be moving from the autopilot system, other sensors will not be affected from this
change of state. The problem is that there is no torque sensor in the steering wheel.
However, there are other existing sensors which can be used to estimate the steering
torque by using a state-space model, including a torque sensor in the torsion bar
and steering angle sensors in the steering wheel and pinon below.

4.1.2.1 State-Space Model

in this thesis, the friction is ignored for an easier model and the goal is to model the
driver torque (M;), therefore Mj is converted to a state instead of an input. Doing so
produces an extended state-space model which cannot model high frequency changes
as there is no information about the extended state’s derivative. The extended state
space model is created using the following states ¥ and input w,

xl ds(t)
dos
x2 at
T = |23 = 6pin(t)
4 Loin (4.1)
xd M,

u = Mrack = Frack/'irp

The states are modeled with the following constants in the state-space model,

a2l = _Ctb/Js
a22 = —(bs + b/ J.

a23 = Ctb/Js
a24 = btb/Js
a24 = 1/J;

a4l = _Ctb/inn

a42 = by Jpin (4.2)

ad3d = _<Ctb + Cpelt * Z'%not)

add = _(btb + bbelt ' ifmt + bpzn)/me

chl = ¢y
cH2 = btb
ch3 = —Cyp
ch4d = _btb
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from the constants, the following matrices are set up in continuous time,

[0 1 0 0 0
a2l a22 a23 a24 a2b
A=10 0 0 1 0
a4l a42 a43 a44 O
| 0 0 0 0 0
0
0
B = 0 (4.3)
—1/Jpin
0
1 0 0 0 0
0 1 0 0 0
C=10 0 1 0 O
0 0 0 1 0
|c51 €52 B3 b4 0

the continuous state-space model is,

(4.4)
j=C-7

the output vector y contains and estimate of the states x1,x2,x3,x4 and My, which
can be compared to the car’s sensor values in order to estimate M, using a Kalman
filter. The model further has to be discrete to run online in the car and using the
known sample time T it is converted from the continuous state-space model using

the following,
F G A B

where F is the discrete version of A, G is corresponding to B and H is equal to C.
The discrete state-space model used is the following,

Fosr = F -0+ G- u
(4.6)
Jo=H @, =C-,

the equation 4.6 is used as the reference in a Kalman filter for estimating M, where
the output vector i is compared to sensor values in the car.

4.1.2.2 Kalman filter

The Kalman filter uses the state-space model’s y output and the sensor values corre-
sponding to the output to determine estimates of the states in the model. It is done
through a predict and update sequence as in section 2.3. The Kalman filter uses the
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state-space model. Because the model is extended and no information about the M,
derivative is known, a low R variance of 0.1 on the Gaussian distribution is chosen
as it gives higher trust towards the sensor measurements. The sensor measurements
are filtered through a Butterworth lowpass filter with a cutoff frequency of 25 Hz
to remove high frequency noise. Together with the Fourier transformed signal, the
driver torque (M) amplitude is used as input signal to the neural network, spaced
equally every twentieth value to get a total of 100 values for 2 seconds of data using
the 1 kHz sampling frequency.

4.1.2.3 Fourier transform

From the Kalman filter the estimated driver torque is converted to the frequency
domain using an FFT. Since only lower frequencies are sough after. The input
sequence of 2000 values is padded with zeros to 2048 values to be a power of two.
The output is truncated to the first 100 values to make it less computational intensive

for the neural network and because the relevant frequency information is below 5
Hz (Moreillon, 2017).

4.1.3 Neural Network

To use the collected data in training, the Keras architecture for Python is chosen
because of the easy implementation. In Keras, convolutional and LSTM layers can
be placed and built to a model, which is then trained by calling a fit method to
the model. Keras has several activation functions, regularizes and callbacks to save
model weights and history. The input to the neural network are the FFT vector of
100 values and the torque amplitude of 100 values in two separate channels.

4.1.3.1 Convolutional Neural Network model

For the Convolutional neural network (CNN) model, the network structure is shown
in Figure 4.1. Starting with a filter size of 64 in the first layer followed by max
pooling. There are two more convolutional layers with 128 and 256 respectively
filters. The network then goes through 2 fully connected layers with 512 and 1024
neurons. All convolutional layers have a kernel size of 3 and are zero padded to fit
the input. The fully connected layers have 20% dropout to combat overfitting.
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Figure 4.1: 1D convolutional network used for hands off classification. Input to
the network is the estimated driver torque and the corresponding FFT of 2 second
data. Five layers in total: First a convolutional layer with 16 filters, followed by a
max-pooling layer and two more convolutional layers with 32 respectively 64 filters.
Ended with two fully connected layers with 128 and 256 neurons.

4.1.3.2 LSTM Model

The LSTM architecture is implemented using Keras, using two LSTM layers with 64
neurons each followed by a fully connected layer with 128 neurons. The last step is
a sigmoid activation which gives an output between 0 and 1 and the full architecture
can be seen in figure 4.2. The LSTM architecture is smaller compared to the CNN
because the LSTM network cannot be parallelized, the current output depends on
a memory of previous outputs.

Sigmoid .

Hand
_»‘ an

Fully- ->
connected

Figure 4.2: The used LSTM architecture. Using two LSTM layers of 64 neurons
each, followed by a fully-connected layer of 128 neurons. The class is predicted

through the sigmoid activation function in the last layer, giving an output between
0 and 1.

4.1.3.3 Confidence Level Algorithm

To make sure outliers do not sway the results a leaky bucket algorithm is used to
keep a confidence level based on current output and the previous 2 outputs, giving
a total of 3 samples in the memory. The algorithm is designed so that the current
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output has a higher weight and each of the previous values are weighted with an
exponential decay, normalized to be between 0 and 1. Afterwards 7 confidence levels
are set as follows,

o Confidence below 0.2 = Network is certain of hands on scenario.

o Confidence between 0.2 and 0.4 = Network is quite certain of hands on sce-
nario.

o Confidence between 0.4 and 0.5 = Network is uncertain but leaning towards
hands on.

» Confidence between 0.5 and 0.6 = Network is very uncertain and no prediction
can be made.

o Confidence between 0.6 and 0.7 = Network is uncertain but leaning towards
hands off.

o Confidence between 0.7 and 0.9 = Network is quite certain of hands off sce-
nario.

o Confidence above 0.9 = Network is certain of hands off scenario.

The levels are set after testing different levels and promotes the algorithm to switch
quicker towards hands on compared to hands off. The quicker switch to hands on
is a wanted attribute for the driving experience. The confidence algorithm sets the
output hands on if the confidence is below 0.5 and hands off if the confidence is
above 0.6. It keeps the previous state if the confidence is in the middle.

4.2 Camera based method

For the camera approach, a MakerHawk Raspberry Pi camera was mounted in the
car and the dataset was created by collecting pictures while driving. Figure 4.3
is showing two images taken from the training dataset. Two methods are made
which will be compared in terms of performance. The methods differ in all aspects
from dataset to the execution and is therefore presented in two different sections.
The first method will be using object classification instead. This method works by
feeding images to a network which will then output one of two states. Either hands
on or hands off. The second method is object detection which will try to detect
hands in images which will then be compared to the position of the steering wheel
to determine if the hands are on the steering wheel.
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Figure 4.3: Sample images from the mounted camera. The camera is located in the
ceiling of the car behind the sun visor.

4.2.1 Object Classification

In object classification, a neural network takes an image as an input and outputs a
prediction of which class the network believes that the image belongs to. The out-
put is a probability that represents the certainty of the prediction from the neural
network.

When doing an object detection, the first step is to construct the dataset. Then,
a network model is created which will train on the dataset and later, be used for
making prediction using the image input from the camera in the online system in
the car.

4.2.1.1 Dataset

The dataset consists of images separated into the classes the network is supposed to
learn, hands on and hands off. There are no existing datasets which could be used
for this problem and therefore a dataset is created. A larger dataset means a better
result but there are other options as well for expanding a image dataset without
adding more images. This will be discussed in the next section.

It is important to add as much variation as possible to the dataset in order to force
the network to learn general features. If there is a large variation, the network will
focus on the important parts, such as the steering wheel and the arms and hand
instead of less important features such as the driver’s clothes. Other important as-
pects that are not included in the dataset includes gloves, different skin tones and
other steering wheel colors. If a situation that has not been trained on shows up it
could make the network less accurate and the more varied the dataset is, the better.
There are many ways one can hold a steering wheel so while making the dataset,
varied hand position are important.

The images used in the dataset where sampled from the camera once every third
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second and then manually labeled either on or off. The final dataset consists of over
8000 images which is divided into training, validation and test with a split ratio off
0.6/0.3|0.1. For the entire dataset, 52% of the images were hands on and 48% where
hands off, ensuring that the dataset is balanced. The file structure for the dataset
can be seen in figure 4.4. In the dataset, different sets of clothing were used for
training, validation and testing to make sure the images are not too similar and see
that the network learns the general features.

Dataset

Training Validation Testing

A 4 Y Y A 4 Y

Y
[ on ] | o | On off [ on | [ or |

Figure 4.4: Structure of the dataset used for training, validation and testing.

4.2.1.2 Data Pre-Processing

Before feeding an image to a network, the image needs to be processed to maximize
the networks ability to make valid predictions. The first step is to crop out unneces-
sary parts of the image which doesn’t add valuable information and only add noise.
In this case, the passenger side of the car is removed while keeping the driver and
the steering wheel, which are the interesting parts.

The number of parameters in a neural network is dependant on the size of the input
image. If a large image is to be fed through a network, it will demand more com-
putational resources compared to a smaller image. Depending on what features are
to be recognized, a larger resolution does not always mean better result. Since the
features of a hand on a steering wheel is not dependant on a high resolution, the im-
ages are resized before entering the network. A commonly used image size by several
established networks for images are 224x224, and this resolution will be used in this
project. This image size has been established as a valid size both in terms of keeping
most features in the image while also being small enough to use reasonable resources.

When training networks on images, it is common to use different transforms which
makes the network learn more general features and reduces overfitting. This is espe-
cially helpful if the goal is to recognise something which can be in a varied setting.
For this project, the setting is mostly constant and there are few thing changing be-
tween different situations. There will always be a driver seat and a steering wheel,
and the orientation is constant. Because of this, not all transforms will be of help in
this situation. For instance, it is unnecessary to apply a random horizontal flip on
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images since the camera will never be upside down. There are however some trans-
forms that will be used to apply different brightness, hue, saturation and parameters
which will emulate potential real world situations better and help generalize the net-
work.

The last step before feeding the image to the network is to normalize the inputs. The
network achieves better results and faster converging since the gradients are more
stable if the input has a smaller range. Also, features are equalized so one feature
is not dominating all others. A common normalization technique is to subtract the
mean and divide by the standard deviation of the images in the training dataset.
This is called a Z-score normalization. The same normalization is then applied to
the validation and test datasets, and also any future inputs to the network. If all
the available images in all datasets where used for normalization, some information
from theses dataset would leak into the training which is important to avoid. Also,
when using the system live, there are no datasets which means these values have to
be set before hand. The result of the normalization is that the pixel values will be
centered around zero with a standard deviation of one.

4.2.1.3 Neural Network Architecture

The neural network is built using Keras Tensorflow and consists of primarily two-
dimensional convolutional layers as can be seen in figure 4.5, where the design of the
neural network is presented. The last three layers are fully connected layers with
the output layer consisting of one neuron which will output the binary classification.
In order to achieve a network with a reasonable amount of parameters, max-pooling
layers are added to reduce the spatial size of the input. There are also some batch
normalization layers which can help the network decrease the number of epochs
needed to learn. These layers normalize the inputs in the batch to zero mean and
unit variance. The batch normalization layers are not shown in the figure below but
exists after each convolutional layer.

16@224x224 256@“1‘511

128@6x6

16@111x111 32@54x54  64@13x13 128@3x3
32@109x109 64@26x26 1x256
F |% 1x64
% \ Ix1

Conv Max-Pool  Conv Max-Pool Conv Max-Pool Conv Max-Pool Conv

Figure 4.5: Neural network structure used for object classification. Batch nor-
malization layers are not included in the image but exists after the convolutional
layers.
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4.2.2 Object Detection

The object detection model creates bounding boxes around the target with labels
showing which pixels in a picture that includes a certain object. The dataset cre-
ated includes hands from the dataset created for object classification and adds the
ergohands dataset (Bambach et al., 2015), which contains annotated hands from
people playing games to detect the general shape and feature of a hand. All data is
annotated with square bounding boxes through the software VGG Image Annotator
(Dutta and Zisserman, 2019). During training the dataset is extended by randomly
altering the images, including flip, rotation and scaling. Because finding the position
of hands is not enough to provide an output if the hands are on or off the steer-
ing wheel, another dataset and network is created to find the logo on the steering
wheel. The logo network is only run on initialization and afterwards the position of
the steering wheel assumed to stay constant.

4.2.2.1 Neural Network Architecture

For object detection a concept called transfer learning is commonly used because
the object detection models are often large, and takes lots of data to train from
the ground up. Instead a model already trained for general objects, often on the 80
general classes from the COCO dataset is used as a starting point. Transfer learning
then modifies the neuron weights to fit the classes provided by the user in a smaller
dataset and tweaks the network to fit the new situation. The advantage is that a
smaller dataset can be used and less training is necessary to get the network up
and running, with the disadvantage that a pre-trained network is needed. PyTorch
provides a model-zoo with these pre-trained networks and the ResNet-50 model (He
et al., 2015) was used as the starting point for both detecting the logo and hands.

4.2.2.2 Detecting the hands off state

The initial model finds the logo of the steering wheel, creating a bounding box with
a height and width. From the mid-point of the logo bounding box an ellipse is
created. As the camera is mounted manually each time, the ellipse is stretched out
and moved manually to match the steering wheel for each video sequence, one ex-
ample is seen in figure 4.6. The ellipse is made smaller then the real steering wheel
considering the bounding box for the hand when holding the steering wheel overlaps
quite well with the steering wheel.

The second model takes over, trained to find the position for the hands and predicts
bounding square boxes around them. Because the model finds several boxes that
could potentially be a hand, a built in PyTorch method is used to only keep the
box with highest score if two boxes have an overlapping area of 50% or more. If the
final bounding box overlaps with the ellipse of the steering wheel, it is considered
a hands on situation. The overlap is calculated as in the paper (Groves, 1963) to
see if the closest point to the middle of the ellipse is within the ellipse area. If no
bounding boxes overlaps with the ellipse, it is a hands off situation.

26



4. Methods

Figure 4.6: Algorithm to model the steering wheel, starting from the yellow bound-
ing box of the logo and extending the blue ellipse to be slightly smaller than the
steering wheel.

4.3 Implementing the model for online usage in a
car

The models are implemented on a Raspberry Pi model 3b for online usage in the
car. The Raspberry Pi emulates the processing power available in a car, and can be
powered through a usb port. Because of the lower computational power, both the
sensor solution with a CNN and the camera object classification solution is ported
to C++. The library Frugally-deep is used to run both trained neural network
models in C+4. A matrix multiplication package emulating Matlab commands in
C++, Eigen is used for the state-space model and Kalman filter. OpenCV is used
for image processing and feeding the image in the right size and crop to the object
classification model. The camera model and sensor model are running in parallel as
two separate solutions.

4.3.1 Sensor solution

The signals are extracted from the CAN-bus using a PiCan board and the included
python script for finding the correct signals, the signals are then sent to the C+-+
script through local UDP. The sampling frequency on the CAN-bus is 100 Hz, and
is interpolated to 1 kHz to match previous work. The update frequency is set to 5
times per second to catch the switch between hands off and hands on quicker. The
data is kept in a rolling vector that always contains the last 2 seconds of data. The
result is sent through UDP from the Raspberry Pi for visualization.
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4.3.2 Camera solution

The image consists of three channels and these three channels are each transformed
in the same way as the training dataset using the z-score transformation. The z-
score transformation variables are saved from the training set and are applied to
each of the images so they are as close to the images from the dataset as possible.
The image is then fed through the network which is built using the same package
as in the sensor solution, but some packages are removed as they are not included
in frugally-deep. The result is sent through UDP from the Raspberry Pi for visual-
ization.

In the car, the camera is mounted behind the sunscreen which we can see in figure
4.7 below. The camera is connected through a 15 pin flex cable which is setup in
the roof of the car, which is then connected to the Raspberry Pi.

Figure 4.7: The camera can be seen in the left figure. It is mounted above the steering
wheel and behind the sun visor. In the right figure, the flex cable from the camera is
connected to the Raspberry Pi.
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Results

The results are presented as how the algorithm works online with both solutions
running in parallel followed by the different network performances in both the sensor
and camera solution.

5.1 Final product

The final prototype runs the C++ script in real-time on the raspberry pi and detects
hands off situations from the car’s sensors and the camera. The sensor solution indi-
cates hands off after 3 +1 seconds while reacting on in 1 second when going towards
the hands on state. The sensor solution gives updates on average at 4.96 Hz, where
each each calculation takes on average 0.032 seconds to complete and the update
frequency could be increased. The computational time disregards the overhead of
saving new sensor signal values which are done in another thread to not lose any
information during the calculation of hands on or off. It keeps the hands off state
for the full duration, but sometimes jumps to hands off during hands on driving for
a short duration. The approach is sensitive to breaking for a car in front and some-
times jumps to a single hands off sample during these situations before returning to
hands on.

The camera approach works as a separate solution with an average update frequency
of 0.37 Hz indicating the hands on/off switch after 2 £ 1 sample. The camera is
very good at finding hands off situations and therefore the decision boundary is set
to 0.8, where a score higher than 0.8 is hands off and below is hands on. Because
of the high decision boundary it shows some wrongful classifications for hands on
during hands off driving.

A qualitative figure can be seen in figure 5.1 where the final selection is showed
in figure 5.1a and 5.1b for both the camera and sensor version. The sensor version
is updated frequently showing a short delay compared to the ground truth. The
camera is updated slower but still predicts most situations correctly in figure 5.1a
where the driver is holding the steering wheel with two hands at 10 to 2. The camera
shows some problems in figure 5.1b, where the wrong state is predicted for longer
time, here the driver is instead holding the steering wheel with only one hand, at
the bottom of the steering wheel and 3 fingers at 3 o’clock.

In the figure 5.2 the neural network prediction is showed for both versions when the
system is fooled when a weight of 350g is hung on the steering wheel. The sequence
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Figure 5.1: Two situations captured live in a Volvo V90 on the Raspberry Pi. The
first one shows a situation where the algorithm performs well and the second one
shows a situation where the algorithm does not perform well. The second situation

Ground truth + Camera solution
+ Sensor solution

hands off - -

hands on + +

d 25 5‘0 7‘5 1(‘)0 12‘5 15‘0 17"5 260
(a) A good sequence. The sensor algorithm in blue shows a delay of
a around 2 seconds compared to the ground truth moving towards
hands off and 1 second moving back to hands on. There are some
errors where the prediction is hands off during hands on driving.
The camera version in red is updated slower and has a couple of
errors showing hands on driving during hands off

Ground truth + Camera solution
+ Sensor solution

L

hands off - 1 + +

hands on - + -
6 5‘0 1(‘)0 15‘0 260 25‘0 30‘0

(b) A sequence where it does not work as intended. The sensor

algorithm in blue is quite robust with few wrong classifications and

a delay of a around 2 seconds compared to the ground truth moving

towards hands off. The red camera solution shows some errors for

quite long periods of time, when the driver is only using one hand.

is due to the driver only holding the steering wheel with one hand

shows sensor solution being uncertain, fluctuating between hands on and hands off
predictions. Compared to the following hands on scenarios where the hand is the
weight, a difference in the predictions can be noticed. The camera on the other hand
solves all hands off situations. A similar pattern can be found in figure 5.1b when
the driver is holding the steering wheel with one hand, the camera predicts hands
off while the sensor shows hands on. In general the camera predicts high for hands

on, and close to 1 for hands off leading to the high decision boundary.
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—— Ground truth - Confidence algorithm
Neural network prediction + Camera prediction
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Figure 5.2: A situation where a weight of 350g is hung from the steering wheel in
the first sequence followed by 2 normal driving sequences. The camera shows hands
off in the first sequence while the sensor version fails. One thing to notice is that
the camera predicts high numbers for hands on and almost 1 for hands off, leading
to a high decision boundary for the camera approach.

5.2 Evaluating the Sensor Based Method

The first step towards a prediction is to use the signals from the car in a Kalman
filter to estimate the driver torque and feed it through an FFT. In figure 5.3 a
comparison of the estimated driver torque is shown versus a measured torque from
a robot, driving at 60 km/h. The estimated driver torque does not handle high
frequency shifts in the beginning but models the lower frequency in the end well.

Kalman estimation compared to reference

—— Robot measured driver torque
—— Kalman estimated driver torque

20-

10-

Amplitude Torque (Nm)
(=)

0 2 4 6 8 10
Time (s)

Figure 5.3: The Kalman filter estimation of driver torque (red) compared to a
robot measured driver torque(blue). Varying torque applied over the duration.

To further evaluate if the Kalman filter is applicable to determine hands off situations
during semi-automatic driving a 2 second sequence for hands on and one for hands
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off is shown in figure 5.4 with both the amplitude and FFT. From the figure 5.4a it
is a clear distinction between the torque for hands on and hands off, with the hands
off situation being almost constant torque while the hands on situation is a signal
with a period time. The difference between the period of both signals can be found
in the frequency domain, using a FFT as in figure 5.4b. In the figure the hands on
sequence shows the periodic behaviour with frequency spikes at around 2 and 4 Hz
while the hands off situation has no frequency information.

Torque amplitude

0.6- —— handson
—— Hands off

0.4

0.2
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(a) Estimated torque amplitude for (b) Hands off scenario in blue, and
hands off in blue and hands on in red. hands on scenario in red. The plot
For hands on driving a curve with fre- shows frequency spikes at around 2
quency information can be approxi- and 4 Hz for hands on and no fre-
mated, while the hands off scenario quency information for hands off

looks almost constant over time.

Figure 5.4: Estimated torque and the corresponding frequency information for one
hands on sequence and one hands off sequence using two seconds of data.

5.2.1 Convolutional network architecture

The first model created is the convolutional one explained in section 4.1.3.1 using
both the amplitude and FFT in two separate channels to provide a prediction of
the hands on or off state. The model is trained and the training epochs are seen in
figure 5.5. The network learns general features of the situations where the hands
are on and off, as the loss of the validation data decreases steadily. The accuracy of
the validation set increases with the training set and over time the network is learn-
ing. The validation loss is lower then the training loss because of the dropout layer,
which limits usage of neurons in the fully-connected layers during training but uses
all of them during validation. In general there is only a small gap between validation
and training so the network is working as expected and is generalized towards the
amplitude and FFT features of each class. The built in evaluation tool in Keras
shows and accuracy of 95,2% accuracy and a loss of 0.196 on the test dataset. The
test loss is higher compared to both the training and validation, because the test
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—— Training accuracy —— Training loss
—— Validation accuracy —— Validation loss
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Figure 5.5: Learning curve of the model during training for 60 epochs. Validation
loss is dropping together with the training loss while the accuracy’s are following
each other.

dataset includes more varying situations and short hands off situations. Most errors
can be traced to the switching flank between hands on and off states, where the
predictions are quite far off leading to a high loss for the initial samples after such
a switch. The model performs well after the initial wrong classification and keeps
the hands off classification throughout the full duration, switching quickly back to
hands off.

—— Ground truth + Neural network prediction

Hands on/off detection

hands on -ttt ta bk i it

3500 3520 3540 3560 3580 3600 3620
Time (s)

Figure 5.6: A short sequence from the test set highlighting the initial wrong
classification when the flank moves from hands on to hands off and the opposite,
which decreases accuracy of the model in the Keras evaluation tool.

Adding the confidence algorithm explained in section 4.1.3.3 to the neural network
prediction to achieve a final selection of state, either hands on or off which is robust
to single outliers. From a test of 10 minutes in figure 5.7 only two samples are out-
liers where both of them being a classification of hands off during hands on driving.
The wrong classification of hands off during hands on driving is seen as less critical
compared to the opposite and is an acceptable trade off to having an algorithm that
is robust during hands off driving.

For a sequence where the driver is either holding the hands on or off, an error
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— Ground truth + Neural network prediction

Hands on/off detection
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Figure 5.7: Confidence algorithm with selection of state using the CNN architec-
ture. Most samples are classified correctly, with two outliers predicting hands off
during hands on driving. A delay of a couple of samples are seen when the driver
stops holding the steering wheel

is if one sample during the sequence is classified wrong. In the total test there are
251 sequences with one more hands on situation because the test starts and ends
with hands on driving. In the table 5.1 all sequences are summarized, the accuracy
is 98.8 % Over the sequences there are in total 3 outliers classified wrongly, all clas-
sifying hands off when it should be hands on. In the 3 outliers, there is 1 single
sample wrong before returning to the correct label. It does not show any problems
dropping hands off classifications during hands off driving.

Table 5.1: Confusion table using the CNN architecture. Three sequences includes
a missed sample, where all missed samples are a prediction of hands off when the
true label is hands on.

Predicted class Hands on | Hands off
True class
Hands on 123 ;
Hands off 0 125

5.2.2 LSTM network architecture

Another network based on the LSTM architecture was also created for comparison,
using the same inputs and data as the CNN. The training and validation loss is in
figure 5.8, the validation accuracy and loss is higher than in the CNN model. There
is also a larger generalization gap, where the LSTM validation cannot quite reach the
training loss even after several epochs and training for longer results in overfitting
5.8. Compared to the CNN, the LSTM model moves quickly from a hands on to
off classification without the couple of samples prior to the switch, often taking 1
sample until the prediction is switched to hands off. The LSTM works as good as
the CNN switching from hands off to hands on, reacting directly on the next sample.
The figure 5.9 shows predictions for a short sequence in the test dataset highlighting
the quick reaction time in a couple of samples between hands on and off, while the
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—— Training accuracy —— Training loss
—— Validation accuracy —— Validation loss
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Figure 5.8: LSTM: Learning curve of the model during training for 60 epochs.

Validation loss is dropping together with the training loss. The validation loss does
not quite reach the training loss

predictions are very close to 0 during hands on driving and very close to 1 during
hands off driving.

—— Ground truth + Neural network prediction

Hands on/off detection
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Time (s)

Figure 5.9: LSTM: A short sequence from the test set highlighting the initial wrong
classification when the flank moves from hands on to hands off and the opposite,
which decreases accuracy of the model in Keras evaluation tool.

Over the same sequence of 10 minutes driving using the confidence algorithm the
LSTM performance is the same as the CNN with two outliers seen in figure 5.10.
In total the LSTM performance can be seen in table 5.2. A wrong classification is if
1 or more samples are classified wrong during the hands off or hands on sequence,
giving an accuracy of 97.2% over the testing data. The LSTM shows one critical
error where the output is hands on during hands off driving. A total of 8 samples
are predicted wrong out of the 5800 total as there are 2 samples in a row predicting
hands on driving during the critical error.
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—— Ground truth + Neural network prediction

Hands on/off detection
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Figure 5.10: A sequence over 10 minutes driving using the confidence algorithm
and the underlying LSTM network. The output shows two wrong classifications
over the duration.

Table 5.2: Confusion table using the LSTM architecture. The LSTM architecture
shows one error predicting hands on during hands off driving, and 6 errors predicting
hands off during hands on driving.

Predicted class Hands on | Hands off
True class
Hands on 120 0
Hands off 1 12

5.3 Evaluating the Camera Based Method

This section shows the results of the two separate camera based solutions. First,
the results from the object classification is presented and then the object detection
method.

5.3.1 Object Classification

The neural network was trained on the dataset for 300 epochs and the result of
the training can be seen in figure 5.11. Here, both accuracy and loss is represented
for both training dataset and validation dataset for each epoch. The accuracy is
quickly rising for the early epochs before converging slowly towards a steady state.
The behaviour of the loss is opposite, where it quickly goes down before converging
to a steady state as well. When the loss is not getting lower for some number of
epochs, as in figure 5.11, training is complete.
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model accuracy

epoch

model loss

Figure 5.11: Accuracy and loss for the training and validation datasets for the
training of the neural network for 300 epochs. The above figure presents the accuracy
of the model and the bottom figure presents the loss.

After every epoch, the network is saved only if the loss is lower compared to the
last saved network. This ensures that after 300 epoch, the best model is saved and
available to . The best model during this training occurred at epoch 258. This
network model with the lowest loss had a value off 0.034 for training and 0.046 for
the validation loss. The accuracy of the network was 99.7% for training and 99.3%
for validation. The test set had an accuracy of 97.9% and a loss of 0.079.

5.3.1.1 Classification of Images

On the entire test dataset, which consists of 528 images, there were a total of 11
classifications that the network predicted wrong. There were 5 misclassifications
from the off-class and 6 wrong from the on-class which can be seen in table 5.3.

Table 5.3: Confusion table for the test dataset using the object classification
method. The system misclassifies 6 hands on images and 5 hands off images.

Predicted class

Hands on | Hands off
True class
Hands on 267 6
Hands off H 273
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In figure 5.12 below, some sample images are shown which the network had trouble
predicting.

(b)
True label: On True label: On
Network prediction: Off Network prediction: Off

(c) (d)
True label: Off True label: Off
Network prediction: On Network prediction: On

Figure 5.12: Some examples of images that were misclassified by the neural network
that represents the general problems for the system to classify. Images (a) and (b) are
often misinterpreted as hands off and image (b), when the hand is covered by the steering
wheel can be misinterpereted as hands on. Image (d) is between states and therefore
difficult to classify.
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5.3.2 Object Detection

The object detection method uses a pre-trained ResNet-50 model from PyTorch
and is trained for 30 epochs to fine tune it into detecting hands instead of the pre-
trained classes. The network achieves a precision of 89% when accepting bounding
box predictions that are overlapping with ground truth of 50% or more, but only
a precision 20% when the overlap has to be above 75%. In general the network
has problems detecting hands below the steering wheel, and holding the bottom of
the steering wheel seen in figure 5.13a where only one hand is found, with a low
score. When tested on a subset of 166 pictures from the object classification test,
consisting of only one video because the ellipse is matched to the steering wheel
manually. The test results can be seen in table 5.4. There is one misclassification
for hands on during hands off and 6 misclassifications for hands off during hands
on. A total of 95.7% accuracy. The downside is that the ellipse is matched to the
steering wheel for each run and not generalized.

Table 5.4: Confusion table for the test dataset.

Predicted class Hands on | Hands off
True class
Hands on 93 0
Hands off 1 07
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(a) hands on scenario where the network
only finds one hand, and the prediction
for that hand is very low. A common
problem is to detect hands low on the
steering wheel

(b) hands off scenario where the bound-
ing box for the hand is large enough to
overlap with the steering wheel resulting
in a wrong classification

Figure 5.13: The most common errors for wrong classifications. In 5.13a the hands
are on the steering wheel but the detection model has a hard time finding the hands.
In 5.13b the network finds the hand with a high prediction, but the bounding box

overlaps with the steering wheel slightly.
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Discussion

This section includes the discussion of the two solutions. First is the sensor based
solution where the different neural network are compared. Following is an evaluation
of the performance between the two camera based method. The online versions of
the sensor method and the camera method are compared as two completely separate
solutions as well as a potential solution involving both sensors and camera.

6.1 Sensor Solution

The sensor based solution was successfully implemented as an online version capable
of running directly in the cars. The system is able to detect the state of the drivers
hand for most situation and the performance on the Raspberry pi ensures that the
update rate is sufficient to comply with the current laws regarding semi-autonomous
cars. The sensor solution is a robust solution when the driver does not intentionally
fool the system.

However, it is possible to mislead the system into thinking the hands are on the
steering wheel. Since the system uses the force applied to the torsion bar to decide
between states, any force should in theory work if applied to the steering wheel.
It is possible to hang something from the steering wheel of appropriate mass to
mislead the system into thinking that the driver has control of the vehicle. As seen
in figure 5.13 the predictions from the network are not necessarily hands on all the
time and instead fluctuates, so there could be information in the frequency domain
to differentiate between a static object and a hand applying the same amount of
force. Another solution is to use a camera which will not be disoriented by similar
methods and ensures that hands are on the steering and harder to mislead.

6.1.1 Approximating the Driver Torque

When approximating the driver torque, some data gets lost in the process. The
model is done using an extended state space model of two degrees which has some
limitations. Ome such limitation is that the estimation works well for lower fre-
quencies but is struggling when it comes to higher frequencies. Since the system
is mainly to be used at highway driving, there should not be any situations that
need the higher frequency from the steering. However, some frequencies may be lost
which are not related to the steering itself but from vibrations which are present in
the entire steering system generated from the car driving at high speeds on the road

41



6. Discussion

and the friction which is disregarded. These frequencies might help the network
to recognize hands of or hands on situations. Especially since the solution involves
using an FFT which is dependant on the frequency. It is possible that using a more
advanced state space model to get more information about the estimated driver
torque, could help the network perform better at separating between the two states
and even help with differentiating static objects and hands.

6.1.2 Network Architecture

This project featured two different network architectures which were the two most
commonly used for analysing time series; LSTM and CNN. Looking at the result
presented earlier, both networks performs well in most situations. The LSTM had
one situation where it dropped the hands off predcition and a couple more situations
where it predicted hands off during hands on, but gave a quicker switch towards
hands on and hands off. In the thesis emphasis was put on recognizing situations of
hands off driving and not to make the quickest reaction, as 15 seconds are allowed
according to regulations United Nations, 2017-11-30. In general both the LSTM
and CNN detects hands off situations in most cases, but the CNN has a slight edge
on accuracy with the trade-off being slightly slower at detecting the switch. As both
solutions uses the same dataset and inputs, it is possible to make the switch to a
LSTM solution in the online version, if a quicker reaction time is necessary.

6.2 Camera Solution

For the camera solution, it is also implemented to the Raspberry pi running online
but with a slower update frequency. The average update frequency of 0.37 Hz, yields
a new state every 2.7 seconds and in theory it indicates hands off driving within the
15 seconds time limit set by the regulations. However, there is an inconvenience for
the driver waiting 2.5 to 3 seconds on average for the system to react.

The camera solution is more robust against fooling the system by hanging something
on the steering wheel, but more sensitive to the training data. If a situation that is
not trained on shows up, the camera solution gives a less accurate result compared
to similar situations in the training data.

6.2.1 Limitations of the Dataset

Perhaps the larges limitation when it comes to the object classification solution is
the lack of variations in the dataset. Due to the limited time and resources during
the project, the dataset had to be quite small compared to what is normally used
in projects. The dataset is built up from over 8000 images using two people with
fifteen different outfits.

The solution is a proof of concept and if the system were to be implemented in a
car, the dataset has to be extended by a large margin. There are a lot of other body
types, clothes, accessories and even weather conditions can confuse the algorithm in
the current implementation. If one were to use gloves or a wheel cover, the system
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would not be able to differentiate between states nearly as well as without them.
Extending the dataset is the most important and time consuming part of the camera
based solutions and especially for object classification.

For object detection, the state of the dataset is better. This is due to the many al-
ready existing datasets which includes labeled hands for using in detection networks.
This solution is not dependant on the environment as much as object classification
since the focus is on finding hands in images. This means that object detection
would be simpler to use when it comes to the dataset, and not as many situations
has to be accounted for.

6.2.2 Object Detection or Object Classification

For the camera based solution, two different approaches were tested; object detec-
tion and object classification. Both solutions provided a working system but each
one has some limitations and challenges.

Object detection is a more complex solution since the network is only detecting
hands in the images, leading to more subsystems for it to work as a hands on de-
tection system. For instance, a second neural network is used in order to find the
steering wheel based on the logotype in the center of the wheel. This check is
done at the startup of the system and the ellipse matching the steering wheel is
not generalized. With a more similar position for the camera in each car, the same
parameters for the ellipse could possibly be used but there might also be problems
with field of view differences when moving the steering wheel position for different
drivers. Another issue is that a square bounding box does not always match the
hand very well, especially when the fingers are stretched out and away from each
other, making a large hand and an even larger bounding box. There is possibilities
to use similar networks with keypoints or polygon bounding boxes to fit the hand
even better. The two biggest downsides for object detection at the moment is to
make a general steering wheel bounding box and the computational time to have it
running in real-time.

Object classification is only dependant on the neural network to function. The neu-
ral network takes an input in the form of an image and outputs a classification
directly. The problem with such a solution is that the system itself acts as a black
box with an input and an output. Unlike object detection, which is detecting hands
which are then set in proportion to the location of the steering wheel, object clas-
sification are looking at features which are unknown outside of the neural network.
This uncertainty could potentially make the network in object classification misclas-
sify images due to unforeseen content. The dataset is therefore extremely important
and the biggest downside for object classification.

In terms of performance, object classification is more computationally efficient since
the neural network is smaller and therefore has less parameters, meaning less cal-
culations. However, even the more computationally efficient object classification is
too slow to run as a solution on it’s own with an update frequency of 0.37 Hz on
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average. There is possibility to move away from the current C++ package Frugally-
deep to a more efficient neural network package. Object classification has a higher
accuracy compared to object detection, and seems to be the better method to use,
but further research has to be made with an extended dataset to see how robust it
is in all situations.

6.3 Online Implementation

The sensor solution and the object classification method where successfully ported
C++ and were able to run on the Raspberry Pi simultaneously. The update fre-
quency for the systems were limited by the computational power of the Raspberry
Pi to update the sensor solution at around 5 Hz with an average calculation time
on the Raspberry of 0.032 seconds making it possible to double the frequency if
necessary.

The camera at averaged an update frequency of 0.37 Hz, limited partly by the usage
of the C++ library frugally-deep. This library has limitations since it is written as
a hobby project and contains some bugs. For instance, when using a dilation rate in
the neural networks for object classification slowed down the network by a factor of
twenty. There were other features that were causing the networks to slow down by
an unreasonable amount which had to be removed and worked around. This could
be solved by changing to a more C++ friendly machine learning package. A native
C++ machine learning library could also contain the possibility of using more than
one core in the CPU, further accelerating the process.

6.3.1 Performance online

Both solutions perform slightly worse online compared to the testing offline. The
sensor solution is made for a system with 1 Hz update frequency offline and the
confidence algorithm keeps the current sample and previous 2 samples, giving a 3
second memory. The online implementation uses the same confidence algorithm with
3 samples but has an update frequency close to 5 Hz, meaning that after 0.6 seconds
it can switch state leading to a short set of outliers promotes a switch wrongfully.
The problem is solved by keeping a longer memory in the confidence algorithm which
corresponds to the update frequency used. To further reduce the false positives an
even longer memory can be used since the solution should warn within 15 seconds.
The camera solution is sensitive to situations that are not trained on, and depends
on the dataset as seen in 6.2.1. The neural network used in the live camera method
does not match the training network because of limitations in the C++ package.

6.3.2 Sensor Based or Camera Based Solution

Both methods have their respective strengths and weaknesses. The sensor solution
is the most simple option due to being only a software implementation using only
existing sensors fitted in all cars. In order to implement the system, it would only
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need computational resources from the core system. The sensor system also only
depends on the steering gear in the car, and does not depend on any outside modifi-
cations the user does. However, although the system is fairly general when it comes
to different models of cars, the system has trouble when changing to another plat-
form because of the difference in the state-space model constants and inputs. This
means that in order to fit the sensor based system for other platforms, it would be
necessary to train the neural network on the new platform, which includes a new
dataset. With the current implementation on the Raspberry Pi, the computational
time for the sensor system is 0.032 per update making the system a fully functional
real-time system.

The camera based solution on the other hand would work well on all models, regard-
less of platform. Although, there exists other variations in the cars which will make
the system perform less well. Another problem is that all variations that does not
work well depends on outside variations that the car manufacturer did not foresee
beforehand, such as the owner using a steering wheel cover. The camera version is
also more computational heavy with updates on average every 2.7 seconds using the
same machine learning package as the sensor version.

Looking at object classification, this solution is susceptible to variations in the in-
terior of the car. Specifically the steering wheel which comes in a variety of colors.
The training of the object classification network only includes black steering wheels
which consequently means that other colors does not work for the detection system.
There are several ways of solving this issue. One way is to extend the dataset with
all different colored wheels to make sure the detection algorithm learns that not all
steering wheels are black. For this solution, it would be important to balance the
dataset to not get a bias in the detection system. Another potential solution would
be to make different networks for different steering wheels. Although this would be
more time consuming, the result could potentially be a more robust system.

6.4 Future Work

For both the camera solution and the sensor solution, there are improvements to
be done to further increase the performance the systems. For the camera solution,
the most important improvement would be to extend the dataset by a large margin.
The dataset would have to include a large variation in people and clothing and it
would need to have more variation in ways of holding a steering wheel. This would
lead to a more general system which are aware of the the boundaries between states.
The detection systems could be more efficient by using a faster library for the neural
networks in C+4. A limitation with the current library is the ability to only use
one CPU-core which slows down execution which is especially seen in the camera
solution as it is more computationally extensive. The library also includes some
bugs which slows down execution. A change to PyTorch might solve the issue since
their C++ library supports all modules for the neural network currently used.

For the sensor solution, the state-space model for the Kalman filter can be extended
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to a 3 degree of freedom model and the friction coefficients can be used to model
the driver torque even better. A slight difference is seen between a hand holding the
steering wheel and a static object, which could be trained on to make the system un-
derstand the difference. Further, the confidence algorithm can be tuned to decrease
the number of false positives, and reduce the delay going from hands off to hands on.

6.4.1 Combining Solutions

In this project, the sensor solution and the camera solution were evaluated as to
separate systems. In the future it would be possible to combine both solutions to
make a decision based on the output for both systems. In the ideal case it would
reduce the drawbacks from both solutions and the functionality would become more
robust. The system would not be misled by hanging a weight on the steering wheel
as with the sensor solution, or trying to fool it some other way. However, with the
current implementation it would be hard to differentiate between the driver holding
the steering wheel on the bottom with one hand or if the driver purposely hangs
a weight from the steering wheel. In both situations the sensor predicts hands on
while the camera is leaning towards hands off.

If the two systems are to work together, a confidence level could be set which takes
the predictions from each of the systems and makes a decision. The different pre-
dictions from both systems has to weighted to get the best possible prediction. It
would be possible to weight the systems differently for different speeds since the
sensor based system performs less well during slower velocities. For higher speeds,
if both systems have opposite predictions where the camera predicts hands off and
the sensor system predicts hands on, the camera should be weighted higher since
there may be an object on the wheel which is applying force.

The main problem with a combination of systems is the cost of implementing both
a sensor solution and a camera solution. Only installing a camera in a car would
increase production expenses for each car built. While the sensor solution relies on
already existing sensors, the cost would instead be of extra computational power to
run the system on the car’s on-board computer.
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Conclusion

For detection of hands on or off states, machine learning can be used to determine if
the driver is holding the steering wheel. The solutions explored are using a camera
or the steering gear sensors as inputs to the machine learning algorithm and are
running on Raspberry Pi to emulate the computational power in a car for real-time
detection. Both the created sensor system and camera solution can detect hands
off situations within the regulations of 15 seconds when running in parallel on the
Raspberry Pi.

The sensor based solution provides faster updates at 5 Hz and can be further in-
creased as the computational time on the Raspberry Pi is not the limiting factor.
The sensor provides a robust output that catches hands off situations within a cou-
ple of seconds, but has a delay of up to two seconds when the driver goes back
to holding the steering wheel. It has some short sequences of predicting hands off
during hands on driving which can be traced to the confidence algorithm that is
made for a 1 Hz update frequency instead of 5 Hz. In the end, the system can be
mislead by hanging a weight on the steering wheel which is something to look into
for a future version.

The camera solution has an average update time of 2.7 seconds and detects the
switch between hands on and hands off within 2 samples. In the online version the
camera is more robust when holding the steering wheel with 2 hands compared to
holding it with 1 hand. The network manages to classify 1 handed driving better in
the offline test because of a different neural network structure with parts that are
not available in the online migration package. A switch towards a more dedicated
C++ neural network package, that includes all parts could increase both accuracy
and speed together with a larger dataset is a future improvement.
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