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Abstract

In this bachelor thesis we have studied a technique of generating solu-
tions for the curvature of black holes. In order to understand the
underlying theory of this method we have studied the fundamentals of
general relativity and group theory. The technique utilizes dimensional
reduction to expose hidden symmetries of black holes, which enables
us to find new solutions. This type of solution-generating technique
is currently subject to heavy research, with hope of exposing deeper
symmetries of spacetime and black holes.

Sammandrag

I det här kandidatarbetet har vi studerat en metod att generera lös-
ningar för rumtidens krökning kring ett svart h̊al. För att först̊a den
bakomliggande teorin har vi studerat allmän relativitet samt grupp-
teori. Metoden nyttjar dimensionell reduktion för att upptäcka gömda
symmetrier hos svarta h̊al, vilket gör det möjligt att hitta nya lös-
ningar. Den här sortens lösningsgenererande teknik är just nu ett stort
forskningsomr̊ade, med vilken man hoppas kunna avkoda djupare sym-
metrier hos rumtid och svarta h̊al.
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Avgränsningar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Metod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Resultat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi
Slutsats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

II Report 1

1 Introduction 3
1.1 Reading guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 General Relativity 7
2.1 Special Relativity and Minkowski Space . . . . . . . . . . . . . . . 7

2.1.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Important Objects of General Relativity . . . . . . . . . . . . . . . 13

2.3.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Covariant Derivative and the Affine Connection . . . . . . . 15
2.3.3 Parallel Transport and Geodesics . . . . . . . . . . . . . . . 17
2.3.4 Riemann Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.5 Ricci Tensor and Ricci Scalar . . . . . . . . . . . . . . . . . 20

2.4 Einstein’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Einstein’s Equations From an Ansatz . . . . . . . . . . . . . 22
2.4.2 The Action Principle . . . . . . . . . . . . . . . . . . . . . . 24
2.4.3 An Action Principle for Einstein’s Equations . . . . . . . . . 25

vii



CONTENTS viii

2.5 Black Hole Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 A Derivation of the Schwarzschild Metric . . . . . . . . . . . 30

3 Group Theory and Symmetries 33

3.1 Basic Theory and Definitions . . . . . . . . . . . . . . . . . . . . . 34

3.2 Lie Groups and Lie Algebra . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Matrix Lie Groups and Algebras . . . . . . . . . . . . . . . . . . . . 41

3.4 Important Concepts of Lie Groups and Lie Algebra . . . . . . . . . 47

3.4.1 SL(2,R) and SL(n,R) . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Iwasawa Decomposition . . . . . . . . . . . . . . . . . . . . 52

3.4.3 Maurer-Cartan Form . . . . . . . . . . . . . . . . . . . . . . 53

3.4.4 Killing Form . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Generating Black Hole Solutions From Group Theory 57

4.1 Dimensional Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Invariance of L(χ,φ) Under SL(2,R) . . . . . . . . . . . . . 59

4.2 Equations of Motion on the Coset Space . . . . . . . . . . . . . . . 62

4.2.1 Variation with Respect to V . . . . . . . . . . . . . . . . . . 62

4.2.2 Variation with Respect to the Metric gµν . . . . . . . . . . . 66

4.2.3 Geodesic on the Coset Space . . . . . . . . . . . . . . . . . . 67

4.3 Solutions to the Equations of Motion . . . . . . . . . . . . . . . . . 69

4.4 Generalization to Reissner-Nordström Black Holes . . . . . . . . . . 73

4.5 Further Use of Dimensional Reduction . . . . . . . . . . . . . . . . 77

5 Conclusion 79

References 83

A Transformations 85

A.1 Transformation of the Partial Derivative . . . . . . . . . . . . . . . 85

A.2 Transformation of the Affine Connection . . . . . . . . . . . . . . . 86

A.3 Deriving the Affine Connection From the Metric . . . . . . . . . . . 87

A.4 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B Newtonian Limit Approximation 91

C Manifolds 95

D Variation of a Determinant 97

E Geodesic Equation 99



ix CONTENTS

F Equivalencies of Equations 101

G Exponential of the Generators of SL(2,R) 103



CONTENTS x



Part I

A Swedish Summary of the
Project

xi





xiii BAKGRUND

Bakgrund

När Albert Einstein i början av 1900-talet utvecklade sin relativitetsteori revolu-
tionerade den fysiken. Den gav ett nytt sätt att beskriva världen vi lever i och
öppnade upp ett enormt forskningsomr̊ade. Det mest revolutionerande med den
allmänna relativitetsteorin var att den till skillnad fr̊an Newtons teori inte beskrev
gravitation som en kraft, utan som en krökning av rumtiden. Tidigare hade man
dessutom betraktat tiden som absolut, att tiden gick lika fort i alla delar av uni-
versum, men Einsteins teorier visade att s̊a inte är fallet. Hur tid upplevs är helt
enkelt relativt.

En astrofysiker vid namn Karl Schwarzschild satte sig in i Einsteins teorier och
lyckades härleda en lösning till rörelseekvationerna för objekt i närheten av ett
massivt sfäriskt objekt i vakuum, till exempel hur jorden roterar runt solen. Sch-
warzschildlösningen har egenskaperna att den är oladdad, sfäriskt symmetrisk och
statisk, det vill säga tidsoberoende. Lösningen visade sig även ha en del märkliga
egenskaper i vissa speciella fall. Om det massiva objektet har tillräckligt hög densi-
tet överg̊ar det till vad vi idag kallar för ett svart h̊al. Den höga densiteten innebär
att all massa ligger innanför radien för händelsehorisonten, vilket resulterar i ett
omr̊ade där n̊agot som kommit in aldrig kan återvända ut.

Ett kraftfullt verktyg för att beskriva symmetrier är gruppteori. I gruppteori
betraktar man grupper av element, som inom gruppen delar vissa egenskaper. Om
detta sammanförs med en alternativ lösning till Schwarzschild kan detta resultera
i en ny lösningsg̊ang som kan utnyttjas till att bland annat härleda andra, lik-
nande lösningar. För att härleda den alternativa lösningsg̊angen till Schwarzschild
utförs, i denna rapport, först en reduktion av den fyrdimensionella rumtiden till
tre dimensioner. Genom att använda sig utav gruppteori p̊a den tredimensionella
verkan kan man upptäcka vissa tidigare dolda symmetrier. Denna kompaktifiering
utvecklades av den tyske matematikern Theodore Kaluza och den svenske fysikern
Oscar Klein. I stora drag g̊ar deras kompaktifiering ut p̊a att man betraktar en
dimension som obereonde för lösningen och p̊a s̊a sätt kan omformulera problemet
till att ha en lägre dimension. Motsatsen, d̊a man g̊ar till en högre dimension,
kallas dekompaktifiering.

En stor anledning till varför det är intressant med svarta h̊al är bland annat
att Einsteins teori bryter ihop i singulariteten i det svarta h̊alets mitt. Genom att
studera detta beteende kan man förhoppningsvis f̊a större först̊aelse för de extrema
omständigheter som omger ett svart h̊al. Genom att kunna härleda lösningen, inte
bara fr̊an ett fysikaliskt perspektiv som Schwarzschild, utan även ur ett matema-
tiskt perspektiv med gruppteori, erh̊aller man ytterligare en infallsvinkel för en
först̊aelse av svarta h̊al.
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Syfte

Syftet med det här projektet är att härleda en alternativ lösningsg̊ang för ett svart
h̊al, samt att finna vidare användning av en s̊adan metod och hitta andra lösningar.
Projektet delas därmed i tv̊a delm̊al:

• Bekanta oss med allmän relativitetsteori och gruppteori, för att f̊a en basal
först̊aelse inför nästa steg.

• Härleda Schwarzschildlösningen för ett svart h̊al genom att först utföra en
dimensionell reduktion p̊a den fyrdimensionella verkan i vakuum, och där-
efter beräkna de resulterande rörelseekvationerna med hjälp av bland annat
gruppteori.

Detta innebär att man först studerar Schwarzschildlösningen ur ett fysikaliskt per-
spektiv, för att sedan ur ett matematiskt perspektiv härleda samma lösning genom
en dimensionsreduktion. Resultatet, som redovisas i en rapport, är tänkt att kunna
hjälpa studenter och intresserade som vill lära sig om allmän relativitetsteori och
gruppteori, men framför allt hur man kan förena dem. Vi vill d̊a visa hur dimen-
sionell reduktion kan användas för att skapa familjer av svarta h̊al, härledda fr̊an
en ursprungslösning.

Problem

Vanligen när man tar fram Schwarzschildlösningen s̊a löser man Einsteins ekvatio-
ner utifr̊an en ansats. Genom att istället använda gruppteori och utnyttja lösning-
ens symmetrier hittar man en alternativ lösningsg̊ang, som resulterar i nya sätt att
hitta mer allmänna lösningar. Fokus har därför legat mer p̊a lösningsg̊angen snara-
re än Schwarzschildlösningen i sig. Målet var att producera explicita beräkningar
som, med utg̊angspunkt i verkansteori, n̊ar en lösning till Einsteins rörelseekvatio-
ner för ett svart h̊al. Vi avs̊ag även att erh̊alla tillräckligt god först̊aelse för att
kunna förklara detta för n̊agon med förkunskaper liknande de vi hade d̊a projektet
började.

För att uppn̊a detta var det nödvändigt att sätta sig in i grunderna för allmän
relativitetsteori och gruppteori genom att börja projektet med litteraturstudier.
Inom allmän relativitetsteori behövds först̊aelse för grundläggande begrepp, s̊a som
tensorer och krökta rum, samt mer avancerade begrepp som Einsteins ekvationer
och hur dessa ger Schwarzschildlösningen. För gruppteorin behövdes först̊aelse för
grundläggande begrepp s̊asom Liegrupper och Liealgebra.
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Avgränsningar

Allmän relativitetsteori och gruppteori är tv̊a enorma ämnes- och forskningsom-
r̊aden, vilket gjorde att man med den knappa tiden var tvungen att h̊alla sig till
vissa avgränsningar.

Vad gäller allmän relativitet l̊ag intresset i specialfallet för rumtidens krökning
i vakuum, vilket är en kraftig avgränsning och förenkling fr̊an det generella fallet.
D̊a Schwarzschildmetriken var vad som skulle genereras krävdes det en kunskap
om just detta: den sfäriskt symmetriska rumtidskrökningen kring en singularitet.
Gruppteori är en väldigt omfattande gren inom matematiken, vilket gjorde att
inriktningen var tvungen vara tydlig mot den teori som var relevant för projektet.
Utöver en mycket grundläggande diskussion om gruppteori i allmänhet l̊ag fokus p̊a
Liegrupper och Liealgebror. Inom Liegrupper begränsade vi oss även till de enklare
symmetrigrupperna SL(2,R), SO(2) och SO(1,1), d̊a dessa hade störst koppling till
v̊art problem, samt att vi beskrev ett f̊atal relevanta koncept för rapporten.

Metod

Alla medlemmar i kandidatgruppen hade innan arbetets början läst v̊ar handle-
dare Daniel Perssons kurs i speciell relativitetsteori, vilket innebar att alla hade
en grundläggande först̊aelse för delar av rapportens ämne. För att utvidga v̊ar
kunskap tog vi del av litteratur p̊a ämnet allmän relativitetsteori, vilka fanns till-
gängliga för gruppen p̊a v̊ar projekthemsida.1 Som komplettering till detta höll
Daniel Persson ett flertal mindre föreläsningar, med fokus p̊a de delar som var
viktiga för just v̊ar rapport. Daniel Persson höll även i kursen “Gravitation and
Cosmology”, där ett antal föreläsningar var av relevans för v̊art arbete, och som
vi därför tog del av. Hälften av gruppen valde dessutom att läsa hela kursen ut-
över ordinarie poäng. För att befästa all inlärning fördes även diskussioner och
höll föreläsningar inför varandra p̊a valda ämnesomr̊aden, samtidigt som ett ut-
kast till rapporten p̊abörjades. Parallellt med detta räknade vi p̊a olika begrepp
inom teorin, för att f̊a bättre först̊aelse och för att p̊a detta sätt komma fram till
Schwarzschildlösningen p̊a ett traditionellt vis. Räkningarna samlades i en TEX-
fil p̊a www.sharelatex.com s̊a att alla kunde jämföra resultat och komma med
kommentarer.

Vidare handlar arbetet mycket om användning av gruppteori inom fysiken.
Därför tog vi oss an grunderna av gruppteori p̊a liknande sätt som vi gjort med
allmän relativitetsteori. Speciellt när det gällde gruppteori var det viktigt att vi
avgränsade oss till just den information som skulle visa sig vara viktig för att utföra
dimensionell reduktion p̊a v̊art problem.

1http://www.danper.se/Daniels_homepage/GroupTheory_2.html

www.sharelatex.com
http://www.danper.se/Daniels_homepage/GroupTheory_2.html
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D̊a större insikt i ämnet hade uppn̊atts kunde Daniel Perssons exjobbare Axel
Radnäs och Erik Widén h̊alla föreläsningar för oss om vad de höll p̊a med, för att p̊a
s̊a sätt se problemet fr̊an andra synvinklar. Detta blev en del av introduktionen till
hur gruppteori och allmän relativitetsteori kan förenas. D̊a det finns lite litteratur
som explicit g̊ar igenom de beräkningar fram till v̊ar lösning l̊ag det stor fokus p̊a
att vi själva utförde dessa beräkningar. Slutligen presenterades litteraturstudierna
och beräkningarna i en sammanställd rapport.

Resultat

Målet att generera en lösningsmetod för Schwarzschildlösningen n̊addes under ar-
betets g̊ang. Detta användes sedan för att diskutera vidare möjliga lösningar och
även specifikt för att lösa Reissner-Nordströms problem med ett laddad, statiskt
och sfäriskt symmetriskt svart h̊al. Arbetet har resulterat i en rapport som är tänkt
att kunna hjälpa studenter att först̊a relativitetsteori, gruppteori och hur man för
dem samman. Rapporten är därför uppdelad i tre huvudkapitel:

1. introduktion till allmän relativitetsteori,

2. introduktion till gruppteori,

3. en härledning av Schwarzschildlösningen ur ett gruppteoretiskt perspektiv,
samt vidare applikation p̊a bland annat Reissner-Nordströmlösningen.

Uppdelningen speglar inlärningsprocessen och upplevdes därför som passande för
rapporten.

I kapitel 4 sammanfogas de tv̊a teorierna, vilket resulterade i en metod för att
finna Schwarzschildlösningen utifr̊an dimensionell reduktion. Kärnan i detta var
att metoden som använts sedan kunde modifieras p̊a olika sätt för att hitta andra
lösningar till svarta h̊al. Resultatet av en s̊adan modifikation kan ses i avsnitt 4.4.

Slutsats

V̊ar förhoppning är att rapporten kommer att kunna ge ett stöd för de som är
intresserade av lösningsmodeller för olika typer av svarta h̊al. Utifr̊an den metod
som presenterats i rapporten kan man finna vidare användningar för andra pro-
blem. Metodens bredd och allmänna tillämpningsmöjligheter är vad som gör den
s̊a kraftfull. Metoden presenterar b̊ade en inspiration till lösningsvägar för liknan-
de rörelseekvationer med liknande variation, samt ett sätt att fr̊an Schwarzschild
direkt generera andra lösningar i Schwarzschildfamiljen.
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1
Introduction

Albert Einstein’s theory of relativity revolutionized the world of physics and cre-
ated a new paradigm in terms of how we describe space and time. The theory
of special relativity that Einstein published in 1905, building on the groundwork
of many other physicists, unified space and time in the special case of no gravity.
Due to the complicated nature of generalizing this special case to also describe
gravity it would take another eleven years until he published his geometric theory
of gravity, known as the theory of general relativity. The theory is geometric in
the sense that gravity is not a force, rather it is an effect of a spacetime manifold
curved by mass.

The theory of relativity has been proven empirically sound. Predictions such
as the bending of light by gravity, time dilation for particles moving close to the
speed of light, and the red shift from stars drifting away from us, have all been
observed to correlate with the theory.

The most central equations in relativity are Einstein’s equations. Einstein’s
equations describe motion in a curved spacetime. Using tensor formalism they can
be written as

Rµν −
1

2
gµνR = 8πGTµν . (1.0.1)

In four-dimensional spacetime this amounts to ten equations1.
In 1931 an astrophysicist called Karl Schwarzschild derived a solution to Ein-

stein’s equations now known as the Schwarzschild solution. The solution describes
the geometry of the space around a massive spherical object in vacuum. The
Schwarzschild solution can be used to describe how the earth orbits the sun or
how a satellite orbits the earth and is actually used to compensate for relativistic
effects in GPS-satellites to make them precise in pinpointing a location.

1The equation and tensor formalism will be explained in chapter 2.

3
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The Schwarzschild solution also describes the geometry of a more exotic massive
object, that of a black hole. For black holes the Schwarzschild solution yields
some interesting differences from other objects due to its dense mass. From the
Schwarzschild solution we find the Schwarzschild radius at r = 2GM , and for
most massive objects this radius falls within the objects perimeter. For a black
hole however, all the mass lies within the Schwarzschild radius, which gives rise to
the event horizon along the sphere of the Schwarzschild radius. The event horizon
is what gives the blackness of a black hole, as essentially nothing can escape from
within this horizon, not even light.

The Schwarzschild solution involves a lot of symmetries as it is both static and
rotationally invariant. An important and powerful tool for describing symmetries
in a compact and general way is group theory. A group is a set of transformations
that obey certain axioms (see chapter 3). If we have something that is rotationally
invariant and act on it with a transformation that is also invariant, the result is also
rotationally invariant. This property is very useful when working with symmetries
and is one of the strengths of group theory. When working with groups it is possible
to derive very general and applicable solutions to problems involving some kind
of symmetry. In chapter 3 some basics of group theory will be presented, with a
focus on Lie groups and their applications.

Using group theory, one can derive the Schwarzschild solution in an alternative
way to the more hands on physics approach. This approach is of interest as the
solution is more general and the symmetries and characteristics of the solution
are more apparent. This way of finding the Schwarzschild solution also presents a
process that can be slightly altered to generate solutions to other types of black
holes. For example the solution for a charged black hole, the Reissner-Nordström
solution, can be found using the same techniques as for the Schwarzschild solution.
In this text we will derive both the Schwarzschild and the Reissner-Nordström
solutions. However, as the processes are analogous, the focus lies primarily on the
simpler Schwarzschild solution.

An action is a functional and describes the characteristics of a system. The
action principle says that by varying the action it is possible to derive the equations
of motion for the system, as the action is assumed to be stationary. In this text
we find the Schwarzschild solution by examining the action of gravity in four
dimensions.

The black holes considered herein are static and spherically symmetric. This
means that there is an amount of redundancy when treating it in four dimensions,
as for instance nothing changes in time. The same hold true for the angular co-
ordinates and one can reduce the dimension of the problem by mathematically
removing one dimension. The dimensional reduction in this paper was developed
by the German mathematician Theodore Kaluza and the Swedish physicist Os-
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kar Klein. Reducing one dimension is not as easy as it may sound, and we do
not discuss in detail how this works. The action in four dimensions is replaced
by a corresponding action in three dimensions. Solving this problem and then
performing a decompactification gives the solution in four dimensions.

The solution generating techniques described in this thesis are useful when
developing a theory of quantum gravity, the combination of quantum mechanics
and general relativity. To construct quantum gravity, it is necesary to understand
the solutions predicted by gravity. Black holes are among the most interesting
solutions as Einstein’s theories break down into a singularity. To describe black
holes in a completely satisfactory way, quantum gravity is needed. Black hole
solutions are therefore of great interest, and dimensional reduction is a powerful
tool when obtaining these solutions since hidden symmetries in four dimensions
may revealed in three or two dimensions. Using these symmetries, it is possible to
classify black holes and derive entire families of black holes from one solution.

Dimensional reduction is useful, not only to derive solutions of black holes, but
also in constructing the theory of quantum gravity itself. These theories, such as
supersymmetry and string theory, describe a world of ten or eleven dimensions
and dimensional reduction is therefore necessary to describe our four-dimensional
world.

In dimensional reduction, more terms are added to the action as the number
of dimensions is reduced. Physical theories that seem different in four dimensions
can be unified in ten or eleven dimensions. On the other hand, the different
action obtained when four-dimensional Einstein gravity is reduced to three or two
dimensions reveal hidden symmetries and can be analyzed in the framework of
group theory to obtain the four-dimensional solution.

The purpose of this thesis was to show how it is possible to derive the Schwarz-
schild solution with the hidden symmetries of a black hole revealed with the dimen-
sional reduction from four to three dimensions. To do this we first present a short
introduction to general relativity and group theory and then combine the two to
arrive at the Schwarzschild solution. We succeed in reaching our goal by looking at
the action of the given system, then performing a Kaluza-Klein compactification
on the four-dimensional spacetime to solve the problem in three dimensions. By
performing a decompactification we then obtain the solution in four dimensions.
We also reach beyond Schwarzschild and derive the solution of a charged black
hole, the Reissner-Nordström solution.

To conclude, in this thesis we first study the Schwarzschild solution with Ein-
stein’s theory. Then we perform a dimensional reduction to three dimensions to
derive the same solution using group theory. After that we go beyond the Schwarz-
schild solution and look at the Reissner-Nordström solution as well as other solu-
tions in the Schwarzschild family.
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1.1 Reading guide

The report is divided into three major parts. Chapter 2 and 3 are meant to work
as an introduction to general relativity and group theory respectively. Some of the
subjects to be discussed in chapter 2 are metrics, proper time, transformations,
tensors, Einstein’s equations and the Schwarzschild solution while chapter 3 treats,
among other things, the definition of a group, Lie groups and Lie Algebras as well
as some important concepts like the Iwasawa decomposition and the Killing form.

As the two first parts are supposed to serve as introductions the reader can, if
already acquainted with general relativity and group theory, go directly to chapter
4. Chapter 4 discusses the dimensional reduction and uses what is discussed in
earlier chapters to derive the Schwarzschild solution using group theory.



2
General Relativity

The intention of this chapter is to present an introduction of general relativity that
is terse but adequate in reaching our prime objective of describing the spacetime
singularity of a black hole. To achieve this we need to go over the basics of special
relativity, discuss some technicalities of general relativity (such as metric, tensors,
affine connection, covariant derivative, etc), derive Einstein’s equations and finally
find the Schwarzschild solution of a black hole, as well as the Reissner-Nordström
solution.

The main sources of reference in this chapter are Carrol’s ”Lecture Notes on
General Relativity” [1] and Weinberg’s book ”Gravitation and Cosmology” [2],
which can be studied for further information on the subject.

2.1 Special Relativity and Minkowski Space

Before trying to describe how gravity works in Einstein’s theory of general relativity
we need talk about special relativity, which is the simple case without gravity, what
one would call flat spacetime.

Newton’s theory of motion, published in 1687, is in itself a theory of relativity,
in the sense that motion is relative and what one considers to be at rest is arbitrarily
chosen. In more technical terms, Newton’s laws are invariant under so called
Galilean transformations. Given two inertial systems that have a velocity v with
respect to each other, we can relate the coordinates of one to the other according
to the transformation

7
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x′ = x− vt
y′ = y

z′ = z

t′ = t.

(2.1.1)

This is what we are used to in every day life. A passenger on a train does not
feel that he is moving, if he closes his eyes he has the experience of standing still.
A bystander on the other hand, that is standing still in his own inertial system,
would say that the train is moving. With Galilean transformations one can have
relative velocities in between inertial systems in any combination of the x-y-z-
directions. One cannot, however, have different perceptions of time in different
inertial systems. In Newton’s theory of motion time is absolute. This might seem
a superfluous statement, because how could it be otherwise? Well, we shall see.

Newtonian mechanics are invariant under these transformations. However,
Maxwell’s equations are not. The magnetic force depends on velocity, so that
a particle that experiences a magnetic force in one inertial system does not ex-
perience any magnetic force at all in its own its rest frame, the inertial system
in which it is standing still. This led Einstein to believe that Newton’s theory of
motion with its Galilean transformations could not be the whole truth.

Einstein based his theory of special relativity on two postulates:

1. the speed of light is the same in all inertial systems, and

2. the outcome of any experiment is independent of the inertial frame.

Given these postulates, Einstein started to explore what happened when things
moves at a speed close to the speed of light. He found that we can no longer
talk about a three-dimensional world with time as a separate parameter, but a
four-dimensional spacetime where time and space intertwine. Galilean transfor-
mations were replaced by Lorentz transformations, formulated by Hendrik Antoon
Lorentz.1 A Lorentz transformation from one inertial system to another with a
relative velocity v along their x-axes, known as a standard configuration, looks like

x′ = γ(x− vt)
y′ = y

z′ = z

t′ = γ(t− vx

c2
)

(2.1.2)

1Lorentz, understandably, did not take his own equations literally enough. He merely stated
that Maxwell’s equation were invariant under these coordinate transformations without drawing
the conclusion that space and time are intertwined.[3]
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where

γ =
1√

1− v2

c2

, (2.1.3)

called the gamma factor. The standard configuration transformation is a special
case; Lorentz transformations include transformations with respect to velocities v
in any spatial direction, spatial rotations, and any combination thereof.

We see that when moving close to the speed of light the transformations of x
and t start to interfere, creating relativistic effects like time dilation and length
contraction. Note that the idea of absolute time no longer holds, because the
passage of time is dependent on the gamma factor.

A classic example of this is the twin paradox, which goes as follows. A pair
of twins of the same age are separated. One stays on earth, while the other gets
into a spaceship and travels to a nearby star and back again close to the speed of
light. While the twin on earth ages many years, the twin in the spaceship does
not experience a very long passage of time and hardly ages at all. In fact the time
experienced by the traveling twin can be made arbitrarily short in our thought
experiment if we do not limit the force by which he is accelerated.

None of this means that Newton’s laws of motion are obsolete, they still hold
for objects moving slowly relative to the speed of light. Comparing Galilean
and Lorentz transformation, equations (2.1.1) and (2.1.2), they are asymptotically
equal in the limit of low velocities, when

v → 0⇒ γ(v)→ 1. (2.1.4)

The geometry of special relativity, which is flat four-dimensional spacetime, is
known as Minkowski space. The Minkowski space is flat for the same reason
special relativity is special: we have no gravitation. Later, the introduction of
gravity will produce the curved spacetime of general relativity. Before we get
there we need to discuss a couple of other concepts in greater detail.

2.1.1 Metric

A metric is basically an abstract way to define distance within a geometry. For
example, in Euclidean space, the infinitesimal distance ds between two points
would be given by

ds2 = dx2 + dy2 + dz2. (2.1.5)

A translation or rotation of the coordinate system (what would be a Galilean
transformation) result in the same distance between the two points, given by the
new coordinates according to

ds2 = dx′2 + dy′2 + dz′2 (2.1.6)
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Note that the way of calculating the distance are precisely the same in the two
cases.

The metric of the Minkowski space is

ds2 = −dt2 + dx2 + dy2 + dz2 (2.1.7)

or
ds2 = dt2 − dx2 − dy2 − dz2. (2.1.8)

They describe the same Minkowski space but they are not the same. Choosing one
or the other is merely a matter of preference. In this thesis we mostly use the one
defined in equation (2.1.7), known as the (−+++)-convention. (We also make use
of natural units where the speed of light is c = 1. Not using natural units would
mean a factor c2 in front of the first term dt2.)

The (−+ ++)-metric can also be written as a matrix,

η =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.1.9)

Given a vector

l =


t

x

y

z

 , (2.1.10)

with its length sl given by the expression

s2
l = l>ηl = −t2 + x2 + y2 + z2. (2.1.11)

The distance between two points correspond to the proper time, which is
the time experienced by a particle that travelled this distance. In the (− + ++)-
metric the proper time ∆τ experienced along a straight line in Minkowski space is
calculated as

∆τ =
√
−l>ηl. (2.1.12)

Considering the proper time experienced by something traveling at the speed
of light (remember we are using natural units where c = 1), we see that ∆τ = 0. It
would seem that in the inertial system of something traveling at the speed of light,
it arrives instantly and the distance travelled was zero. Considering even faster
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x

t

Causal past

y

Causal future

Figure 2.1: The light-cone stretching out into causal past and future from a point
in spacetime.

speeds leads to this important point: something traveling faster than the speed
of light, could in another inertial system (after Lorentz transformation) be said to
travel the other way, backwards in time. In that case causality would be broken,
because observers would disagree which one of the connected events happened
first. In this sense the speed of light is a cosmic speed limit, the maximum speed
at which information can travel. The speed of light defines the edges of a light
cone, whose inside encapsulates events causally connected to that point (see figure
2.1).

2.2 Tensors

When talking about special and general relativity there is a convention of using
tensor notation to describe the relations between spacetime coordinates, such as
when calculating the proper time of a curve through spacetime. The tensor for-
malism enables us to describe mathematical relations in a compact and clear way
that will prove indispensable for calculations in general relativity. Tensors can be
scalars or vectors, but they can also represent matrices or objects of an arbitrary
number of dimensions. For example, a coordinate vector is written xµ, where µ
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represent the four coordinates of spacetime so that

xµ = (t,x,y,z). (2.2.1)

A tensor is defined as an object that transforms in a certain way during a
general transformation from one coordinate system to another, xα → x′α. For a
tensor with an upper index V α and a tensor with a lower Vα the coordinate change
to V ′α and respectively V ′α is written

V ′α =
∂x′α

∂xβ
V β (2.2.2)

V ′α =
∂xβ

∂x′α
Vβ (2.2.3)

or more generally

T ′α1···αk
β1···βl =

∂x′α1

∂xλ1
· · · ∂x

′αk

∂xλk
∂xζ1

∂x′β1
· · · ∂x

ζl

∂x′βl
T λ1···λkζ1···ζl . (2.2.4)

In special relativity this coordinate transformation is always a Lorentz transfor-
mation.

The distinction between upper and lower indices, also known as contravariant
and covariant indices, becomes important when we consider summation. When
two indices are the same they are summed over according to

TαSα =
∑
α

TαSα, (2.2.5)

just like in a normal scalar product of vectors. Summation over two upper indices,
or two lower, is not allowed, so an expression such as TαSα or TαSα would be
nonsense. An index that is not summed over is a free index. Respectively, an
index that is summed over is a contracted index or a dummy index. The
name of a dummy index can be arbitrarily changed, as it is “invisible” after the
summation.

The contravariant and covariant forms are related through the metric. The
Minkowski metric ηαβ has components

ηαβ =


0 α 6= β

−1 α = β = 0

1 α = β = 1,2,3.

(2.2.6)

A lower index is produced from an upper index according to

ηαβT
β = Tα, (2.2.7)
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and vice versa
ηαβTβ = Tα. (2.2.8)

Because lowering an index and then raising it should leave a tensor unchanged,
ηαβ must be the inverse metric and fulfill that

ηαγηγβ = δαβ , (2.2.9)

δαβ is known as the Kronecker delta and is the tensor equivalent of the identity
matrix. It is defined as

δαβ =

{
0 α 6= β

1 α = β.
(2.2.10)

Thus, when raising and then lowering the same index, the effect is only to change
the name of that index.

The way we calculated the length of a four-vector in Minkowski spacetime, see
equation (2.1.11), can now be written more concisely. The squared length of a
vector lβ, where β = t,x,y,z, can now be expressed as

ηαβl
αlβ = lβlβ, (2.2.11)

which is a scalar because it has no free indices. A scalar is a tensor with no indices
and is always invariant with respect to coordinate transformations.

Especially when a tensor has several indices this formalism is very concise. As
an example we might have Tαβλζε and Sβξ that could be contracted into another
tensor Uα

λζεη according to

TαβλζεSβη =
∑
β

TαβλζεSβη = Uα
λζεη . (2.2.12)

Note that a contraction causes two of the same indices to cancel each other out,
leaving a tensor with two less indices. The number of free contravariant indices are
added up in tensor multiplication, as does the number of free covariant indices. A
sum of tensors is itself a tensor, if the terms added have the same upper and the
same lower indices.

When referring to the symmetric or antisymmetric part of a tensor, there is
the convention of writing T(ij) and T[ij] respectively. For example, if the tensor is
strictly antisymmetric, we can write this as T(ij) = 0.

2.3 Important Objects of General Relativity

The next step in approaching the description of a black hole, or the Schwarzschild
solution in particular, is the introduction of a series of objects specific to the the-
ory of general relativity. To approach the formulation of Einstein’s equations,
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we will further expand the concept of the metric, to then move on to describe
affine connection, covariant derivative, parallel transport, Riemann ten-
sor, Ricci tensor and Ricci scalar.

There is also the concept of a manifold, which is briefly explained in appendix
C. What is necessary to understand is simply this: a manifold is a geometry that
is locally flat. Spacetime is a manifold and in every point it has a tangent space
(a choice of coordinate system) that locally reduces to the Minkowski metric.

In special relativity the symmetries are independent of the coordinates. This
is not the case for general relativity where these symmetries are only local, be-
cause any point in spacetime looks locally flat. What used to be a simple Lorentz
transformation in flat Minkowski spacetime, is in general relativity some function
of our general coordinates ∂x′µ

∂xν
.

2.3.1 Metric

In special relativity the metric is constant, i.e. independent of coordinates. This
is not the case of the curved spacetime of general relativity. To emphasize this
difference the metric of general relativity is given a new symbol: gµν . Analogous
to the Minkowski metric, the infinitesimal distance is related to the metric and the
generalized coordinates xµ by

ds2 = gµνdx
µdxν . (2.3.1)

The inverse metric gµν , as described in section 2.2, is given by the relation

gµνgνσ = δµσ . (2.3.2)

From this it also follows that the metric and its inverse, gµν and gµν , are symmetric
(gµν = gνµ or equivalently g[µν] = 0).

The components of the metric vary with the coordinates but it is always possible
to choose a coordinate system in which the metric locally takes the form of the
Minkowski metric ηαβ to a first order approximation. This is the meaning of
spacetime being locally flat.

Example 2.1. The simplest possible example of a metric on a curved manifold
would be the metric of a unit 2-sphere (meaning the two-dimensional surface of
a sphere with radius r = 1). Unlike spacetime that has four coordinates, the 2-
sphere only has two. From basic calculus we know that the squared infinitesimal
length between two points on the unit 2-sphere is given by

ds2 = dθ2 + sin2 θdϕ2. (2.3.3)
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Because the infinitesimal length is also given by ds2 = gµνdx
µdxν , we see that the

components of the metric on a 2-sphere should be

gθθ = 1 gθϕ = 0

gϕϕ = sin2 θ gϕθ = 0.
(2.3.4)

Here we see that the metric is not a constant, rather it is a function of one of the
coordinates, namely θ. The inverse metric, given by the relation gµνgνρ = δµρ , is
simply the diagonal components inverted, according to

gθθ = 1 gθϕ = 0

gϕϕ = sin−2 θ gϕθ = 0.
(2.3.5)

The 2-sphere manifold has two coordinates, which resulted in the metric having
four different components. Spacetime, on the other hand, has four coordinates
and given the two indices of the metric we have 4 · 4 = 16 different components
(although because of its symmetry there are actually ten different independent
components).

We come back to this example as we discuss other mathematical objects related
to a curved manifold.

2.3.2 Covariant Derivative and the Affine Connection

As has been mentioned before, not everything that looks like a tensor is a tensor.
The partial derivative, for example, is not a tensor, because when subject to a
coordinate transformation xµ → x′µ it becomes

∂′νV
′µ =

∂V ′µ

∂x′ν
=
∂xρ

∂x′ν
∂x′µ

∂xρ
∂V ρ

∂xρ
+
∂xρ

∂x′ν
∂2x′µ

∂xρ∂xτ
V τ . (2.3.6)

A detailed derivation of this result can be found in appendix A. This does not fulfill
the definition of a correct tensor transformation, see equation (2.2.4), because of
the additional term on the right hand side.

As a consequence, we define a derivative that is a tensor, the covariant deriva-
tive,

∇µV
ν ≡ ∂µV

ν + ΓνµλV
λ, (2.3.7)

where Γνµλ is the affine connection, defined as
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Γρµλ ≡
1

2
gρν (∂µgνλ + ∂λgµν − ∂νgλµ) . (2.3.8)

The affine connection is not itself a tensor, because it transforms according to

Γ′µνλV
′λ =

∂x′µ

∂xρ
∂xσ

∂x′ν
ΓρσκV

κ − ∂xρ

∂x′ν
∂2x′µ

∂xτ∂xρ
V τ . (2.3.9)

Note that the right hand term is precisely the extra term produced when trans-
forming the partial derivative (equation (2.3.6)), but with opposite sign. When
added together to form the covariant derivative, see equation (2.3.7), we see that
the sum of the two non-tensor elements does transform like a tensor.

A derivation of these results concerning the affine connection can be found in
detail in appendix A.

For a tensor with a lower index, the covariant derivative is the same except for
a change of the sign in front of the affine connection. For a general mixed tensor,
this equates a covariant derivative as defined by

∇µV
ν1,ν2,···νk

µ1,µ2,···µl ≡∂µV
ν1,ν2,···νk

µ1,µ2,···µl

+ Γν1µλV
λ,ν2,···νk

µ1,µ2,···µl + · · ·+ ΓνkµλV
ν1,ν2,···λ

µ1,µ2,···µl

− Γλµµ1V
ν1,ν2,···νk

λ,µ2,···µl − · · · − ΓλµµlV
ν1,ν2,···νk

µ1,µ2,···λ
(2.3.10)

In flat space the affine connection is zero and the covariant derivative reduces to
the partial derivative. The covariant derivative of a scalar always reduces to the
partial derivative of a scalar.

Example 2.2. Going back to the example of the unit 2-sphere, we can calculate
the affine connection from the metric. As the only coordinate dependent com-
ponent of the metric is gϕϕ (and its inverse gϕϕ), the symmetries of the affine
connection tells us that its non-zero components must have at least two indices
which are ϕ. It turns out that the only non-zero components are Γθϕϕ, Γϕϕθ and
Γϕθϕ. They are

Γθϕϕ =
1

2
gθθ(∂ϕgϕθ + ∂ϕgθϕ − ∂θgϕϕ) +

1

2
gθϕ(∂ϕgϕϕ + ∂ϕgϕϕ − ∂ϕgϕϕ)

=
1

2
(0 + 0− 2 sin θ cos θ) +

1

2
· 0 · (. . .)

= − sin θ cos θ (2.3.11)

Γϕϕθ =
1

2
gϕθ(∂ϕgθθ + ∂θgθϕ − ∂θgϕθ) +

1

2
gϕϕ(∂ϕgθϕ + ∂θgϕϕ − ∂ϕgϕθ)

=
1

2
· 0 · (. . .) +

1

2
sin−2 θ(0 + 2 sin θ cos θ − 0)

= cot θ (2.3.12)
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Figure 2.2: Two initially parallel vectors are parallel transported along a spherical
manifold until they meet. This illustrates how parallel transport does not necessarily
preserve the angles between vectors.

Γϕθϕ = {symmetry of the lower indeces}
= cot θ. (2.3.13)

2.3.3 Parallel Transport and Geodesics

In flat Minkowski spacetime a vector behaves in a uncomplicated manner. Moving
a vector around in flat space will not change its size or direction, and vectors that
are initially parallel will remain so during translation. A comparison of vectors
at different points in space (such as when calculating a relative velocity) is trivial
and uniquely defined. For a curved manifold, however, this is not the case. This
is illustrated in figure 2.2.
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To compare vectors at different points in a curved geometry, we define what is
known as parallel transport. The equation of parallel transport describes what
a tensor looks like after being transport along a chosen path, according to

dxµ

dλ
∇µV

ν = 0. (2.3.14)

Note that both the tangent vector dxµ/dλ to the curve and the covariant derivate
∇µV

ν are tensors, which makes this a tensor equation. As we parallel transport a
tensor along a chosen curve, the tensor will change according to the curvature of
the manifold. Depending on the path chosen this outcome will vary. If we parallel
transport two vectors V µ and W µ along the same curve, the product gµνV

µW µ is
preserved.

We are now well equipped to introduce the important concept of a geodesic.
A geodesic is the equivalent of a “straight line”, it is the path of a freely moving
particle (massive or massless) and a shortest distance between two points in space-
time. The geodesic equation is a second order differential equation that traces
a geodesic xµ(λ), according to

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 0. (2.3.15)

If the geodesic is time-like, meaning that it describes a causal path, then the
parameter λ is proportional to the proper time. The proper time is maximized
along a geodesic. Going back to the twin paradox, it is the twin on earth that
moves along a geodesic and therefore experiences the most proper time.

Example 2.3. The geodesics of the 2-sphere are quite simple. Equation (2.3.15)
results in the following system of differential equations,

d2θ

dλ2
+ (− sin θ cos θ)

(
dϕ

dλ

)2

= 0 (µ = θ)

d2ϕ

dλ2
+ 2 cot θ

(
dϕ

dλ

dθ

dλ

)
= 0 (µ = ϕ)

. (2.3.16)

They result in equator-like lines around the spherical surface, which means that
two geodesics on this manifold always meet.
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B

A

Figure 2.3: Above, the loop through which we parallel transport V µ is shown, with
Aν and Bρ as infinitesimally small vectors.

2.3.4 Riemann Tensor

The Riemann tensor is an important object in our geometrical theory of gravity.
It can be described as follows: Consider parallel transporting a vector V µ in an
infinitesimally small loop along vectors Aν and Bρ, as illustrated in figure 2.3.
The curvature will result in an infinitesimal change in V µ, that we call δV λ. The
Riemann tensor Rλ

µνρ then relates, according to

δV λ = AνBρRλ
µνρV

µ. (2.3.17)

The Riemann tensor has four indices because it relates three spacetime vectors
(Aν , Bρ and V µ) to a fourth one (δV λ).

The strict definition of the Riemann tensor, expressed in terms of the affine
connection, is given by

Rλ
µνρ ≡

∂Γλµρ
∂xν

−
∂Γλµν
∂xρ

+ ΓλνκΓ
κ
µρ − ΓλρκΓ

κ
µν . (2.3.18)

It follows from the definition that the Riemann tensor fulfills some symmetries,
such that it is antisymmetric with respect to its two last indices, which equates to

Rλ
µνρ = −Rλ

µρν . (2.3.19)

The Riemann tensor, after lowering its first index, also fulfills symmetries

Rρσµν = −Rσρµν (2.3.20)
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Rρσµν = Rµνρσ. (2.3.21)

If it is possible to find a coordinate system for which the metric is constant
with respect to its coordinates, the Riemann tensor is zero, and vice versa. This
is the case because they are both equivalent with the manifold being globally flat.

Example 2.4. Given the affine connection of the unit 2-sphere from example 2.2,
we can calculate the Riemann tensor using equation (2.3.18). This gives us a
component

Rθ
ϕθϕ = ∂θΓ

θ
ϕϕ − ∂ϕΓθθϕ + (ΓθθθΓ

θ
ϕϕ + ΓθθϕΓϕϕϕ)− (ΓθϕθΓ

θ
θϕ + ΓθϕϕΓϕθϕ)

= ∂θ(− sin θ cos θ)− 0 + (0 + 0)− (0 + (− sin θ cos θ) cot θ)

= − cos2 θ + sin2 θ + cos2 θ

= sin2 θ. (2.3.22)

The other three non-zero components of the Riemann tensor can be calculated
in the same way from equation (2.3.18) or reached through the Riemann tensor’s
symmetries by lowering and raising indices. The components are

Rθ
ϕϕθ = − sin2 θ (2.3.23)

Rϕ
θθϕ = −1 (2.3.24)

Rϕ
θϕθ = 1. (2.3.25)

2.3.5 Ricci Tensor and Ricci Scalar

While the Riemann tensor itself will only be implicitly applied, its direct cousins,
the Ricci tensor and Ricci scalar, are explicit component of Einstein’s equations.
The Ricci tensor Rµν is found by contracting the first and third indices of the
Riemann tensor, according to

Rµν = Rλ
µλν . (2.3.26)

The Ricci tensor is symmetric with respect to its two indices.
The Ricci scalar R is given by a further contraction, according to

R = Rµ
µ = gµνRµν . (2.3.27)

The Ricci scalar describes the magnitude and type of curvature. If the Ricci scalar
is positive the curvature is positively definite. If it is negative the curvature is
negatively definite, which would correspond to a saddle point on the manifold.
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Example 2.5. We now calculate the Ricci tensor and scalar of the unit 2-sphere
from equation (2.3.26) and the Riemann tensor of the manifold, see example 2.4.
This gives us

Rϕϕ = Rλ
ϕλϕ = Rθ

ϕθϕ = sin2 θ (2.3.28)

Rϕθ = Rλ
ϕλθ = 0 (2.3.29)

Rθϕ = Rλ
θλϕ = 0 (2.3.30)

Rθθ = Rλ
θλθ = Rϕ

θϕθ = 1. (2.3.31)

We now calculate the Ricci scalar with equation (2.3.26), which results in

R = gµνRµν = gϕϕRϕϕ + gθθRθθ = sin−2 θ sin2 θ + 1 · 1 = 2. (2.3.32)

The Ricci scalar is positive and independent of its coordinates, which signifies that
we have a curvature that is positive definite everywhere on the manifold.

2.4 Einstein’s Equations

Einstein’s equations are the set of equations that describe how space is curved due
to gravity. The solution to these equations will be a metric.

Einstein’s equations are

Rµν −
1

2
gµνR = 8πGTµν , (2.4.1)

where G is the gravitational constant and Tµν is the stress-energy tensor, to be
introduced in section 2.4.1.

One way to derive Einstein’s equations is to make a qualified ansatz based
on a combination of relevant physical quantities and an analogy to Maxwell’s
equations. Constants can be determined by taking the Newtonian limit; general
relativity must be consistent with Newtonian gravity where the latter agrees with
experimental results. How the Newtonian limit is used practically will be explained
in better detail later on.

Another method to find Einstein’s equations is based on the action principle
and variational calculus. Deriving Einstein’s equations from the action principle
will be useful later on. Variational calculus is used to obtain the Schwarzschild
solution in chapter 4, but is also an important tool when calculating geodesics as
it is often easier than solving the geodesic equation.
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2.4.1 Einstein’s Equations From an Ansatz

In order to describe how spacetime is effected by matter, we first need to describe
matter and spacetime. To describe spacetime, the Riemann tensor and the metric
are natural ingredients. For matter, we first need to introduce the stress-energy
tensor.

The stress-energy tensor is a tensor describing the properties of matter, such
as density, flux and pressure. It is symmetric and of rank two (it has two indices).
A special case, and commonly used in for example cosmology, is a perfect fluid. A
perfect fluid can be completely described by its pressure p and its energy density
ρ, thus having no heat conduction and no viscosity. Radiation and, in the large
scale, dust (ordinary matter) are examples of perfect fluids. A perfect fluid has
the stress tensor

Tµν = (p+ ρ)UµUν + pgµν , (2.4.2)

where Uµ is the four-velocity of the matter. For dust in the local rest frame, the
stress-energy tensor takes the form

T µν =


ρ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 . (2.4.3)

Now we have the ingredients for Einstein’s equations. To get some more sub-
stance to the ansatz, an analogy to Maxwell theory is useful. General relativity
and electromagnetic theory share several fundamental properties.

In Maxwell theory, there is the electromagnetic tensor F µν . It describes the
field from electric and magnetic charges and is composed of the components of the
electric and magnetic fields. F µν fulfills the Bianchi identity, which means that

∂[µFνρ] = 0, (2.4.4)

where [ ] is the antisymmetric part of a tensor.
In Maxwell theory, there is a four-current Jµ which is a four-vector consisting

of the current as well as the electric charge. The four-current is conserved, so that

∂µJ
µ = 0. (2.4.5)

As for general relativity, the analogy to the electromagnetic tensor is the Rie-
mann tensor, the tensor that describes the gravitational field and how space is
affected by matter. The Bianchi identity for the Riemann tensor is

∇[λRµν]ρσ = 0. (2.4.6)
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The analogy to the four-current is the the stress-energy tensor T µν . Just like
Jµ, T µν is conserved:

∇µT
µν = 0. (2.4.7)

With so many similarities, there must certainly also be some similarities re-
garding these equations. As for electromagnetic fields, Maxwell’s equations are
equivalent to the Bianchi identity together with the following equation2

∂νF
µν = Jµ. (2.4.8)

Since the Ricci tensor is a tensor with the right rank, a first guess of Einstein’s
equations might be

Rµν
?
= κTµν κ const. (2.4.9)

Both sides of this equation are symmetric, which is a good sign. Recalling covariant
conservation however, we see that the right-hand side is conserved while the left-
hand side is not. To find something that is conserved, the Bianchi identity can be
rewritten as

∇µ

(
Rµν −

1

2
gµνR

)
= 0. (2.4.10)

A reasonable modification to the initial ansatz would therefore be

Rµν −
1

2
gµνR = κTµν . (2.4.11)

In order to determine κ it is convenient to have some reference where we know
what the equations will look like. In our case, this reference is the Newtonian
limit. We do not go through all the calculations here (a more detailed discussion is
provided in appendix B) but the main idea is instructive. The key points are that
the gravitational field is weak and static while velocities are low, implying that the
rest energy component of the stress-energy tensor is much greater than the other
components. We may therefore restrict our analysis to this component, Ttt. For
a weak field, we expect only small deviations from the Minkowski metric, but we
cannot set the metric equally to Minkowski as it would yield no new information.
The most simple small deviation from Minkowski would be a constant:

gtt = −1 + htt. (2.4.12)

Neglecting all higher-order terms, we get (after some calculations)

Rtt −→
weak field

∇2htt = κTtt. (2.4.13)

2Just plug in the definition of the electromagnetic stress tensor and write out the components;
the equations will be identical to Maxwell’s equations.
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Comparing with Newtonian gravity, we have

∇2φ = 4πGρ, (2.4.14)

where φ is the gravitational potential. Taking the Newtonian limit yields

htt = −2φ. (2.4.15)

We sum everything up into Einstein’s equations:

Rµν −
1

2
gµνR = 8πGTµν . (2.4.16)

As elegant and comprehensive these might look, we should remember that the
Ricci tensor in four dimensions has 42 = 16 components, of which (from symme-
try) 10 are independent. Einstein’s equations are therefore 10 coupled differential
equations and an analytic solution is not always possible to obtain.

2.4.2 The Action Principle

An action is a functional, meaning that it takes a function φ(x) and returns a scalar
S[φ]. The action principle states that the function φ(x) must give a stationary
action. In variational calculus, stationary means that the action remains constant
under a perturbation δφ to the first order. It can thus be used to derive equations
of motion.

The action is typically an integral over time, for a system from one point in
time to another,

S[x] =

∫
dtL. (2.4.17)

with L being the Lagrangian. As the Lagrangian is an energy, the unit is found to
be [energy] · [time]. When concerning fields, as is studied in this report, the integral
includes the space variables as well, implying a replacement of the Lagrangian with
a Lagrangian density.

When saying that an action is stationary we mean that its functional derivative,
δS
δx(t)

, is zero. Functional derivatives are much like partial derivatives, ∂
∂xi

, except
that instead of an index taking discrete values, there’s a continuous ‘‘index’’ t.
They can therefore be treated much like such derivatives; using the chain rule,
product rule, etc.

It is also worth noting that much like

∂xj

∂xi
= δji (2.4.18)
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we have
δx(t′)

δx(t)
= δ(t′ − t), (2.4.19)

an observation that will be useful when integrating by parts and evaluating inte-
grals.

2.4.3 An Action Principle for Einstein’s Equations

In this section, Einstein’s equations will be derived from the action principle.

The solution to Einstein’s equations is the metric, and therefore we will vary
the action with respect to the metric. The action is written as

S[gµν ] =
1

8πG

∫
d4x
√
gR, (2.4.20)

where g is the absolute value of the determinant of gµν . Neither
√
g nor d4x are

tensors in and of themselves3, but transform as a tensor together, thus making the
volume element invariant.

The action being stationary with respect to small variations of the metric means
that

0 = δS, gµν → g′µν + δgµν . (2.4.21)

To find the variation of
√
gR =

√
ggµνRµν , we must describe δ

√
g, δgµν and δRµν .

With gµν being the inverse of gµν , one gets

0 = δ(gµρgρν) = δgµρgρν + gµρδgρν

⇒
δgµσ = −gµρδgρνgνσ, (2.4.22)

which holds for arbitrary tensors.

The variation of
√
g can be found using the following statement which is proved

in appendix D:

δ(DetA) = DetATr(A−1δA). (2.4.23)

From this statement and the chain rule we can finally obtain the variation of
√
g.

Note how easily the trace of a product of two matrices is expressed in tensor
formalism: after writing out the product the two indices are set equal to produce

3Strictly speaking,
√
g and d4x are actually tensor densities and transform as tensors except

for a weight of proportionality.
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a sum over all diagonal elements. Thereby,

δ
√
g =

1

2

1
√
g
δg

=
1

2

√
ggµνδgµν . (2.4.24)

Lastly for the variation of the Ricci tensor, we start from the Riemann tensor.
Adding and subtracting the same connection yields

Rρ
νµσ = ∂µΓρνσ − ∂σΓρµν + ΓρµλΓ

λ
νσ − ΓρσλΓ

λ
νµ (2.4.25)

⇒
δRρ

νµσ = ∇µδΓ
ρ
νσ −∇σδΓ

ρ
µν . (2.4.26)

The variation of the Ricci tensor will be the contraction

δRνσ = ∇µδΓ
µ
νσ −∇σδΓ

µ
µν . (2.4.27)

If the action is given by equation (2.4.20), the variation will be:

δS =
1

8πG

∫
d4x (δ

√
ggµνRµν +

√
gδgµνRµν +

√
ggµνδRµν)

=
1

8πG

∫
d4x

(
1

2

√
ggρσδgρσg

µνRµν −
√
ggµρδgρσg

σνRµν +

+
√
ggµν

(
∇ρδΓ

ρ
µν −∇µδΓ

ρ
ρν

))
(2.4.28)

The contribution of the δΓ-terms is zero, as will be shown below. Due to these
terms beeing zero, the variation will then be

δS = − 1

8πG

∫
d4x
√
g

(
Rρσ − 1

2
gρσR

)
δgρσ. (2.4.29)

To prove that the terms containing the affine connection vanish, we start with
some simplification. As the difference between two connections is a tensor, we can
write the integrand as the covariant derivative of some tensor V ρ.∫

d4x
√
ggµν

(
∇ρδΓ

ρ
µν −∇µδΓ

ρ
ρν

)
≡
∫

d4x
√
g∇ρV

ρ. (2.4.30)

Expanding the covariant derivative, using equation (2.3.8) for the affine connection
and noting that the results from variation, in particular (2.4.24), are valid for
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partial derivatives as well, yields∫
d4x
√
g∇ρV

ρ =

∫
d4x
√
g

(
∂ρV

ρ +
1

2
gµλ∂ρgµλV

ρ

)
(2.4.31)

=

∫
d4x
√
g

(
∂ρV

ρ +
1
√
g
∂ρ
√
gV ρ

)
=

∫
d4x
√
g

(
1
√
g
∂ρ (
√
gV ρ)

)
=

∫
d4x∂ρ (

√
gV ρ) .

The divergence theorem and the fact that variations vanish at infinity makes this
term zero, giving the variation of equation (2.4.29). This result emphasizes why
the factor

√
g must be added to make an invariant.

For the action to be stationary with respect to small changes in the metric, the
integrand of equation (2.4.29) needs to be zero, that is

Rµν − 1

2
gµνR = 0, (2.4.32)

equal to Einstein’s equations in vacuum.

For the vacuum case, Einstein’s equations can be simplified by multiplying with
the inverse metric. Since gµνgµν is the trace of the identity matrix which is the
number of dimensions, we get

gµν
(
Rµν −

1

2
gµνR

)
= 0

⇒
R− 1

2
gµνgµνR = 0

⇒
R = 0. (2.4.33)

and (2.4.32) can therefore be simplified to

Rµν = 0. (2.4.34)

Einstein’s equations not restricted to the case of vacuum can be obtained by
adding a matter term to the action. This would yield
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S =
1

8πG

∫
d4x
√
g(R + Smatter)

⇒
δS

δgµν(x)
= −

√
g

8πG

(
Rµν − 1

2
gρσR

)
+
δSmatter
δgµν(x)

⇒

0 = − 1

8πG

(
Rµν − 1

2
gρσR

)
+

1
√
g

δSmatter
δgµν(x)

⇒

Rµν − 1

2
gµνR = 8πG

1
√
g

δSmatter
δgµν(x)

⇒

Rµν − 1

2
gµνR = 8πGT µν , (2.4.35)

where we have defined

T µν(x) =
1
√
g

δSmatter
δgµν(x)

. (2.4.36)

In the action of equation (2.4.20) we could also have added a constant. That
would have yielded the full Einstein field equations including a cosmological con-
stant:

Rµν − 1

2
gµνR + gµνΛ = 8πGT µν . (2.4.37)

The cosmological constant has an interesting history. It was initially intro-
duced by Einstein to prevent the theory from describing an expanding universe.
When observations showed that the universe is expanding, Einstein rejected the
suggestion of the cosmological constant and called it the biggest mistake of his life
[1]. However, decades later observations indicated the reintroduction of a cosmo-
logical constant, for example in terms of the accelerating universe. Nevertheless,
observations show that it must be very small, actually much smaller than particle
physics would predict[4]. Therefore, we assume the cosmological constant to be
zero throughout this text.

2.5 Black Hole Solutions

The Schwarzschild solution or Schwarzschild metric describes the curved
spacetime around a static, spherically symmetric, non-charged, non-rotating mass
distribution in vacuum. The metric is given by
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ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2, (2.5.1)

where G is the gravitational constant and M is the mass, or total energy of the
mass distribution. The coordinates used are spherical, where dΩ2 is short for the
angular distance, such that

dΩ2 = dθ2 + sin2 θdφ2. (2.5.2)

Note that some interesting things are happening, especially at the radius rs =
2GM . This is the famous event horizon, the point of no return that not even
light can escape. The event horizon looks like it could be a singularity but is
actually not, because we can choose a coordinate system in which the event horizon
takes a non-singular expression. This is, on the other hand, not possible for the
singularity in the center. Observed from the outside, a particle falling into a
black hole never actually reaches the event horizon. What is observed is that the
particle slows down, becomes red-shifted (due to Doppler effect) and fades away.
From the particles perspective however, it does reach both the event horizon and
the singularity at r = 0, and it does so quite quickly in terms of proper time. In
this sense, from the perspective of a particle on the outside there is no past inside
the event horizon. Likewise, from the perspective of a particle inside the event
horizon there is no future on the outside.

The spacetime of the Schwarzschild solution satisfies the condition of vacuum,
which is that the Ricci vector is zero, Rµν = 0. The most straight forward way
to arrive at this solution is to make an ansatz and adjust it to fulfill the vacuum
condition and Newtonian limit at infinity.

For a charged, static, spherically symmetric mass distribution the spacetime
geometry in vacuum is described by the Reissner-Nordström solution. This is
given by

ds2 = −
(

1− 2MG

r
+
Q2

r2

)
dt2 +

(
1− 2MG

r
+
Q2

r2

)−1

dr2 + r2dΩ2, (2.5.3)

whereQ is the charge and when this is zero the metric is precisely the Schwarzschild
metric.

There will be a event horizon where the radial component of the metric is
singular. We can find where this is by solving the following equation,

1− 2MG

re
+
q2

r2
e

= 0 (2.5.4)

⇒
r±e = MG±

√
(MG)2 −Q2. (2.5.5)
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Thus we have two event horizons, both closer to the centrum of the black hole
then the event horizon of the Schwarzschild solution at 2MG, for Q > 0 . For an
outside observer the event horizon at r+

e has the same effect as the Schwarzschild
event horizon. For the observer, nothing will ever reach r = r+

e as anything falling
towards the black hole slows down and becomes all the more redshifted. For
the object falling into the black hole the situation is the same at r+

e as for the
Schwarzschild event horizon; after passing this radius the only possible future is
towards the center of the black hole. Therefore there is no possibility of turning
back again after passing r = r+

e , as this would violate causality. Not until the
object passes the second event horizon, at r−e , can it turn back, because causality
does not force it towards the center anymore. This is contrary to the Schwarzschild
solution, where the future of any object inside the event horizon is always towards
r = 0. In theory an object inside r−e could return and escape the charged black
hole. More discussion about this can be find in chapter 7 in Carroll [1].

For this to be a realistic solution we can assume that MG > Q. For MG = Q
the event horizons would coincide and this would give a so called extremal black
hole. This would require that all the energy would come from charge and nothing
from rest mass. Particles with this property, zero rest mass and non-zero net
charge, have never been detected. The extremal black hole solution is, however,
of much interest in theoretical work. Particularly, due to the cancellation of the
gravitational and electromagnetic force at r = MG where an object would not feel
any pull from the black hole.

2.5.1 A Derivation of the Schwarzschild Metric

To derive the Schwarzschild metric we start off with the assumptions of spherical
symmetry and that the metric is static, meaning that the metric is invariant with
respect to a translation in time. Because of these symmetries, the components of
the metric will depend on the radial component only.

Since the sphere is maximally symmetric we can use a theorem in chapter 13.5
in Weinberg’s book [2] stating that it is possible to choose a metric without mixed
terms containing angular coordinates, such as drdθ. The only possible mixed term
is therefore dtdr. To have the same signature as for Minkowski metric (−+ ++),
a minus sign is added to the time term. The ansatz would be

ds2 = −a(r)dt2 + b(r)dr2 + c(r)dtdr + d(r)dΩ2, (2.5.6)

where a(r), b(r), c(r) and d(r) are arbitrary functions.
In Euclidean geometry, there is a factor of r2 before the angular components.

It would certainly facilitate the derivation if we could have this factor r2. Another
desirable simplification would be to get rid of the mixed term. In fact, both these
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features can be achieved by the same argument; to redefine the coordinates.
This leads to the final, simplest possible ansatz satisfying the assumption of

spherical symmetry and stationarity:

ds2 = −A(r)dt2 +B(r)dr2 + r2dΩ2. (2.5.7)

So far, only geometry has been used. To begin with the physics, we want the
solution in vacuum. The equation to solve is therefore, according to (2.4.34),

Rµν = 0. (2.5.8)

To explicitly write out these equations, we have to calculate each term in the
affine connection, then form the Riemann tensor and finally the Ricci tensor. All
details will not be presented here since the methods are analogous to those of the
examples of sections 2.3.2 through 2.3.5.

The Riemann tensor is easiest calculated using the covariant form so that all
symmetries can be used. After some analysis, we find that the only possible non-
zero components are

Rrtrt, Rrθrθ, Rrϕrϕ, Rθtθt, Rtϕtϕ, Rθϕθϕ and Rrϕθϕ. (2.5.9)

After having calculated the Riemann tensor, it can be contracted to the Ricci
tensor. The Ricci tensor will be diagonal and (2.4.34) will be the following coupled
differential equations:

0 = Rrr = −A
′′

2A
+

1

4

(
A′

A

)(
A′

A
+
B′

B

)
+

1

r

(
B′

B

)
, (2.5.10)

0 = Rθθ = 1− r

2B

(
−A

′

A
+
B′

B

)
− 1

B
, (2.5.11)

0 = Rϕϕ = sin2 θRθθ, (2.5.12)

0 = Rtt =
A′′

2B
− 1

4

(
A′

B

)(
A′

A
+
B′

B

)
+

1

r

(
A′

B

)
. (2.5.13)

We now form

0 =
Rrr

B
+
Rtt

A
=

1

rB

(
B′

B
+
A′

A

)
. (2.5.14)

This implies that the factor AB must be constant since

B′

B
= −A

′

A
∂r lnB = −∂r lnA

AB = const. (2.5.15)
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The limit r →∞ should result in the Minkowski metric, so that

lim
r→∞

A = lim
r→∞

B = 1. (2.5.16)

Therefore, the constant should be equal to one and A is the inverse of B. Rein-
serting into Einstein’s equations yields

B = 1 +
γ

r
, γ const. (2.5.17)

To determine the constant γ, we require the solution to be consistent in the New-
tonian limit, which is explained in more detail in appendix B. For large radii, gtt
must then satisfy

gtt → −1− 2φ, (2.5.18)

where the gravitational potential is φ = −MG
r

. This gives B(r) =
(
1− 2GM

r

)
and

the Schwarzschild metric is

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2. (2.5.19)



3

Group Theory and Symmetries

In the previous chapter we introduce tensors and use these to describe physics
in a consistent way, regardless of the choice of coordinate system. The tensors
are not invariant under coordinate transformation, but transform in a well-known
manner. The next natural step is to find transformations that leave the physics,
or rather the expressions derived, unchanged. If such transformations exists, we
say that the system has certain symmetries. There are many different kinds of
possible symmetries, but they can mainly be divided into geometrical symmetries
and field symmetries. As an example of a geometrical symmetry, consider an
equilateral triangle. If you rotate it 60◦ you end up with something identical to
what you started with. As an example of a field symmetry there is Maxwell theory,
where there is a degree of freedom in choosing the potential without affecting the
electromagnetic fields at all.

An important and powerful tool for describing symmetries in a compact and
general manner is group theory. In section 3.1 we go through the axioms of groups
and some important definitions. Thereafter, in section 3.2 we study continuous
and differentiable groups, called Lie groups, and their important algebras. After
establishing the groundwork of group theory, we consider groups that can be rep-
resented with matrices which are important for the project. Finally, in section
3.4 we introduce some miscellaneous theorems of group theory that are also of
importance in the next chapter.

This chapter is mainly based on the texts by Hall [5] and Cahn [6], which
the interested reader may find useful to obtain a deeper knowledge in the large
mathematical field that is group theory. Some specific definitions and properties
have been gathered from a wide array of other texts [7–11].

33
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3.1 Basic Theory and Definitions

Group theory is a large field of mathematics and impossible to cover in its entirety
in a text such as this. We therefore instead focus on the parts needed for the
outcome of this project. In this section we regard the axioms of a group, and
basic properties of groups. We also define some relations between groups, such
as isomorphisms and subgroups as well as means to generate other manifolds as
cosets.

The core of group theory relies on four axioms which at a first glance may seem
quite simple.

Definition 3.1. A group G is a set of elements {gi} that together with an operation
* satisfies the following axioms:

(i) Closure
If gi,gj ∈ G there uniquely exists an element gk ∈ G such that

gi ∗ gj = gk. (3.1.1)

(ii) Unit element
There exists a unit element e ∈ G which for all g ∈ G satisfies

e ∗ g = g ∗ e = g. (3.1.2)

(iii) Inverse element
For every g ∈ G there exists an inverse element denoted g−1 ∈ G where

g ∗ g−1 = g−1 ∗ g = e. (3.1.3)

(iv) Associativity
It holds true that for all sets of elements gi,gj,gk ∈ G,

gi ∗ (gj ∗ gk) = (gi ∗ gj) ∗ gk. (3.1.4)

The operator symbol “∗” is often omitted in writing. There is a number of
basic properties of groups whose proofs will not be included here for brevity. Some
of these are: the uniqueness of unit element, the uniqueness of inverses and that
there cannot exist an inverse only from one side. To clarify these axioms we can
use the following example.

Example 3.1. The real numbers form a group, R, under addition. The unit
element is 0 and the inverse element to any x ∈ R is −x. Let us show that this is
the case:

(i) Closure: the sum of two real numbers is a real number.
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(ii) Unit element: 0 + x = x+ 0 = x, and 0 ∈ R.
(iii) Inverse element: x+ (−x) = (−x) + x = 0, and if x ∈ R⇒ −x ∈ R.
(iv) Associativity: Addition is associative.
It is worth noting that the axioms do not require the operation to be commu-

tative, although in this case it is. Groups where the elements commute under the
operator are important and thus given their own name.

Definition 3.2. An abelian or commutative group is a group where gi,gj ∈
G⇒ gi ∗ gj = gj ∗ gi.

Sometimes it might be of interest to examine a smaller part of a group, which
naturally leads to defining the subgroups.

Definition 3.3. S is a subgroup to a group G if s ∈ S ⇒ s ∈ G and S is a
group under the same operator as G.

Although a group can have many subgroups, every group has at least two
subgroups: the unit element and the group itself.

Example 3.2. The set of all integers form a subgroup Z of R in Example 3.1.
The set of all natural (non-negative) numbers however do not.

Both the integers and natural numbers are subsets to R. The unit element
is in both sets, and closure is fulfilled. Associativity follows from the sets being
subsets to a group, and left is only to show existence of an inverse. The inverse
has to once again be −x, which is an integer if x is an integer. However if x is a
natural number greater than zero, the inverse will be negative and not a natural
number. We have thus proven our claim.

Note that the associativity axiom is always true for any subset of any group, as
any three elements chosen from the subset lie in the group, and are associatively
related from the group axiom.

Now let us look at an example where some of the usefulness of group theory
regarding symmetries may be discerned in a simple fashion.

Example 3.3. An equilateral triangle has certain rotational symmetries which
form a group T.

The elements in T are the rotations in its plane that keep the triangle looking
the same, as shown in figure 3.1. So, as an example we can have three elements
a, b, c in the group T. Here a represents no rotation at all, i.e θ = 0, b is a
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Figure 3.1: An equilateral triangle.

rotation of θ = 2π/3 and c a rotation of θ = 4π/3. The operator * in this case
is gi ∗ gj ⇒ θi + θj. All of these elements fulfill the requirement of keeping the
triangle looking as it is. The group axioms are fulfilled: any combination of the
elements keep the triangle looking the same, the rotations are associative, there
exists a unit element and there exists a complement to make a full turn rotation -
an inverse.

The symmetries of the triangle, the transformations that leave it the same,
thus form a group. Of course there are additional symmetries one could add, such
as the reflection symmetries, but they would still together be a group. The proof
of this is left to the reader.

The previous example was an example of a group with a finite number of
elements and we have previously seen groups with countably or uncountably
infinite elements. The first two typically represent discrete symmetries whereas
the latter a continuous symmetry. Both these kinds of symmetries are of im-
portance when describing nature, although only continuous symmetries will be
discussed in this work. An example of a continuous symmetry could be the rota-
tions of a sphere. These are described by the uncountably infinite group SO(3).
SO(3) is a member of a large family of groups we will get to know better in section
3.3.

As we have so far only defined properties of groups, the next step is to act on
groups to generate new manifolds and in the best scenarios even groups. There
are a few ways to accomplish this, here we will consider the cosets and the quo-
tient spaces. These are roughly “element-wise multiplication” and “element-wise
modulus”.

Definition 3.4. A group G and a subgroup H, combined with an element g ∈ G
can be used to form the left and right coset of H. Here left and right respectively
denoting which side of H the element g is applied:

gH = {gh : h ∈ H}, (3.1.5)
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Hg = {hg : h ∈ H}. (3.1.6)

These, however, are generally not groups.

Definition 3.5. A quotient space or quotient set, denoted G/N, where N is
a subgroup to G, is the set of all left cosets {gN : g ∈ G}. Similarly N\G the set
of right cosets. Sometimes the quotient spaces are also called coset spaces.

If N in the last definition is a normal subgroup, that is

gng−1 ∈ N, ∀n ∈ N,∀g ∈ G, (3.1.7)

then the quotient space forms a group. This follows as for instance

(aN)(bN) = a(Nb)N = a(bN)N = (ab)N (3.1.8)

ensures closure. Similar calculations ensure unit element, inverses and associativ-
ity, the details around those calculations are omitted for brevity.

From the definition, the resulting quotient group might seem obscure, but you
may think of it almost as a modulus. If you can obtain an element of G from
another by multiplying with an element of N, then both elements can be regarded
as equal under such an equivalence relation. This means that the quotient set is
an equivalence class under this relation and every element of it is actually a set
of equivalent elements. Each of these sets can then be identified with a single
element: Suppose there exists a set of elements P , such that for any g ∈ G there
exists unique elements p ∈ P and n ∈ N such that g = pn. Then we can say
that P is a quotient set, which can explain why we can think of it as a quota or
modulus. Similarly we have g = np when considering right cosets.

Example 3.4. We study the twelfth roots of unity. Together, these form a group
R12 under multiplication. If we look at the fourth roots instead, we find that these
form a normal subgroup R4 to R12. These form three different cosets, which can
be seen as the three different colors in figure 3.2. The three cosets are the elements
of R12/R4.

Lastly in this section, we introduce a relation between different groups.

Definition 3.6. A map φ : G 7→ H is called a homomorphism if

gi ∗ gj = gk

⇒
φ(gi) ∗ φ(gj) = φ(gk), (3.1.9)

with gi,gj,gk ∈ G. If φ is bijective and a homomorphism it is an isomorphism,
denoted as G∼=H.
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Figure 3.2: The cosets of the twelfth and fourth roots of unity.

If there exists an isomorphism between two groups, they can in practice be seen
as equal, and are said to be isomorphic.

The expressions isomorphic and isomorphism are not restricted to groups only.
As we see later, isomorphism is a concept that has significance for Lie algebra as
well.

3.2 Lie Groups and Lie Algebra

After learning the basics of group theory we move on to a type of group that will
be very helpful in our report. A Lie group is in short a continuous group that
is also a differentiable manifold1. Many important Lie groups can be represented
with matrices (then called matrix Lie groups) and so these are the focus of the
next section. First, let us make a brief introduction to the more general Lie groups
in this section.

Lie groups have the important property that they are generated by Lie algebras.
Lie groups are manifolds with associated operators and similarly Lie algebras are
vector spaces with associated bracket operators. A Lie algebra is a set of operations
that represent infinitesimal transformations around the unit element of a Lie group.
The Lie algebra takes the manifold of a group and expresses it as a tangent vector
space around the unit element, and can in a sense be seen as a linearisation of the
group. Exponentiating the elements of the Lie algebra then return elements of the
Lie group representing finite transformations. However, the Lie algebra has the
restriction that it only yields group elements that can be reached by infinitesimal
transformations. Just like a group, there are some criteria that have to be satisfied

1It should also have a differentiable operator and inverse. The meaning of this is discussed
briefly in Def 2.14 in Hall [5].
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for an algebra to be a Lie algebra. First the effects of a Lie algebra will be discussed,
followed by a strict, mathematical definition.

For clarity, let us make the following example:

Example 3.5. Let us study the Lie algebra of the Unitary group U(1). This
continuous group is defined by

U(1) = {eiθ ∈ C|θ ∈ R} (3.2.1)

and might be recognized as isomorphic to S1; that is a circle in the complex plane
with a radius of 1. Note that the elements generate finite rotations around S1.

Looking at this group around θ = 0 we can expand the elements as

eiθ = 1 + iθ +O(θ2) (3.2.2)

and find that iθ generates infinitesimal translations at the identity. From this, the
Lie algebra u(1) for this group can be defined

u(1) = {iθ ∈ C|θ ∈ R}. (3.2.3)

In general a Lie group G and a Lie algebra g can be related via the exponential
equation

etX ∈ G ⇔ X =
d

dt
etX |t=0 ∈ g. (3.2.4)

With a base understanding of Lie algebra and how it works, a definition of why
a Lie algebra works the way it does is now called for.

Definition 3.7. A real or complex finite-dimensional Lie algebra g is a real
or complex finite-dimensional vector space with an associated map called the Lie
bracket: [ , ], g× g 7→ g, that satisfies the following axioms:

(i) Bilinearity

[ax+ by,z] = a[x,z] + b[y,z] (3.2.5)

[z,ax+ by] = a[z,x] + b[z,y] (3.2.6)

x,y,z ∈ g, ∀a,b ∈ R

(ii) Anticommutativity

[x,y] = −[y,x], ∀x,y ∈ g (3.2.7)

(iii) Jacobi identity
For x,y,z ∈ g [

x,[y,z]
]

+
[
y,[z,x]

]
+
[
z,[x,y]

]
= 0. (3.2.8)
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Additionally it is worth noting that from (ii) follows

[x,x] = 0, ∀x ∈ g. (3.2.9)

In the case of when the elements of a Lie algebra can be represented with
matrices, the Lie bracket is defined as the commutator, i.e [X,Y ] = XY − Y X for
two matrices X and Y. This comes in handy as many of the commonly used Lie
groups and their algebras can be expressed with matrices.

You may have noticed that definition 3.7 does not mention any Lie groups. Lie
algebras can be treated without connecting them to Lie groups, although tradi-
tionally that is not the case. The tangent space of a Lie group at the identity
element forms a Lie algebra but proof of this is left out2.

As with groups, there are a few useful definitions and properties to algebras,
many of these mirrored for groups.

Definition 3.8. s is a subalgebra to an algebra g, if s is a Lie algebra under the
same bracket as g and is a subspace to g.

Definition 3.9. Consider a Lie algebra g and a subalgebra j. j is called ideal or
invariant if ∀x ∈ j, y ∈ g, [x,y] ∈ j.

If for a Lie algebra there exists no non-trivial, ideal subalgebras, it is called
simple.

Definition 3.10. A Lie algebra is abelian if

[x,y] = 0 ∀x,y ∈ g (3.2.10)

(compare this to the definition of abelian groups).

If a Lie algebra has no abelian, ideal subalgebras it is called semi-simple, a
weaker condition compared to a simple Lie algebra. However, a semi-simple Lie
algebra can be expressed as the direct sum of simple algebras.

Recalling the definition of isomorphisms for groups, there is a similar defini-
tion for Lie algebras. If there exists a linear, bijective map φ : g 7→ j, x,y ∈ g it has
to satisfy φ([x,y]) = [φ(x)φ(y)] for g and j to be isomorphic, once again denoted
as g ∼= j.

For some computations writing the Lie bracket as [x,y] can become clumsy and
arduous, so therefore there exists an alternative way to write it as

adx(y) = [x,y]. (3.2.11)

2Such a proof can be found briefly described in H. Georgi’s “Lie Algebras in Particle Physics”
[7]
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If we wanted to use the expression

[x,[x,[x,[x,y + z]]]] (3.2.12)

it might be easy to at a glance miss how many brackets there are, while

adx(adx(adx(adx(y + z)))) = (adx)
4(y + z) (3.2.13)

is more compact and easier to read. adx is called the adjoint representation or
adjoint action.

Under the operator adx(y) we see that all commuting elements will be zero.
Other elements may not commute with each other, but can be combined with the
adjoint action to become zero. So for example a, b and c may not commute but
adaadb(c) could be zero. From this concept we can define a type of algebra called
nilpotent.

Definition 3.11. A nilpotent Lie algebra g is defined by the adjoint action as

adx1adx2 · · · adxn(y) = 0 ∀xi,y ∈ g (3.2.14)

for a certain n for the algebra g.

3.3 Matrix Lie Groups and Algebras

As stated, many Lie groups can be represented with matrices. There are some
major benefits of working with matrix Lie groups, most importantly the fact that
so much of matrix algebra is familiar. When working with matrix Lie algebra,
some of the abstract concepts can be expressed more explicitly.

With the group operator defined as matrix multiplication, we find that the sets
must only consist of invertible matrices. This leaves what is called the general
linear group (closure, unit element, inverse and associativity is given from ele-
mentary linear algebra) as the largest possible group. All matrix Lie groups are
subgroups of the general linear group. This follows as all elements of a group need
to be invertible and thus forms a subset and as the subset is a group, it is also a
subgroup.

Definition 3.12. The general linear group, GL(n) is the set of invertible n×n-
matrices under matrix multiplication. The group may be specified further by writing
GL(n,R) for real and GL(n,C) for complex matrices.

By representing groups with matrices, the Lie bracket becomes the commutator,

[X,Y ] = XY − Y X, (3.3.1)



CHAPTER 3. GROUP THEORY AND SYMMETRIES 42

which fulfills the necessary axioms of definition 3.7.
For matrices, eX can be defined by the Taylor expansion

eX =
∞∑
k=0

Xk

k!
. (3.3.2)

Unfortunately eX is not always easy to calculate. Using group theory however,
many matrices can easily be written as exponentiated matrices, as we soon see.

The general linear group is called general, as it includes all matrices with non-
zero determinants. The most intuitive matrix group to consider next is the special
linear group, SL(n), which is a subgroup to GL(n) of matrices with determinant
one. Closure is given from Det(AB) = DetADetB. The unit matrix has deter-
minant one, and thus it follows that the inverse of a matrix with determinant one
also has determinant one, which makes this a group. SL and its Lie algebra will
be more extensively examined in the next section.

A subgroup to SL(n) is the special orthogonal group, SO(n), which consists
of all orthogonal matrices with determinant one. These may be more commonly
known as all rotational matrices. SO(n) is also a subgroup of O(n), the orthogonal
matrices, which are rotational matrices with or without a reflection and thus have
a determinant of ±1.

Let us stop and study these groups for a while to showcase some of the previous
definitions and make some new.

The elements of SO(2) are traditionally written on the form

A(θ) =

(
cos θ − sin θ

sin θ cos θ

)
θ ∈ R. (3.3.3)

It is thus a continuous group. Every element can be uniquely determined with one
continuous parameter, making it a one parameter group3. This implies that
the Lie algebra is one-dimensional and spanned by one element. This element is
given from (3.2.4), as

T =
d

dθ
eθT |θ=0 =

d

dθ
A(θ)|θ=0 =

(
− sin θ − cos θ

cos θ − sin θ

)∣∣∣∣∣
θ=0

=

(
0 −1

1 0

)
. (3.3.4)

The elements of O(2) can be written as either

A+(θ) =

(
cos θ − sin θ

sin θ cos θ

)
(3.3.5)

3The definition of a one-parameter group also requires A(α)A(β) = A(α + β) which is more
of a constraint on the parametrization than on the group.
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or

A−(θ) =

(
cos θ sin θ

sin θ − cos θ

)
. (3.3.6)

The second set of matrices is not however“close” to the unit element, no matter
which θ is chosen. As the Lie algebra represents infinitesimal transformations at
the unit element, the Lie algebra is given from A+ and thus the same as for SO(2).

The first set, A+, has determinant one and the second, A− has determinant
minus one. The determinant is continuous under continuous transformations, so
the two sets must be disconnected. If a group is made from n disconnected sets,
we say that it has n components. The Lie algebra is therefore always given from
only one of these components, the component with the unit element.

There are a few equivalent properties of orthogonal matrices, with different
implications. For instance we have that AA> is the identity matrix. Another is
that the bilinear form < x,y >= x1y1 + x2y2 + . . . + xnyn is preserved, that is:
< Ax,Ay >=< x,y >. The second property is of particular interest. This is a
preserved form in Euclidean space. If we recall the metric in Minkowski space,
where the preserved form had alternating signs, this intuitively leads to defining
new groups; the generalized orthogonal groups and their special equivalents.
These are defined as the sets of matrices B ∈ GL(m+k) that preserves the bilinear
form <>m+k with m positive terms and k negative, called O(m,k) and SO(m,k).
These bilinear forms can be written as

< x,y >m+k= x>gy, (3.3.7)

where g is a signature matrix; diagonal with the first m entries = 1 and the next
k entries = −1. Specifically O(3,1) is also known as the Lorentz group, having the
same signature as spacetime in special relativity, preserving the same form and
with Lorentz-transformations as elements.

Example 3.6. SO(2) and SO(1,1): The elements of SO(2) can be written as in
equation 3.3.3.

For SO(1,1) we look for matrices B that preserve the scalar product with
signature “+−”. Such matrices can be found by the same process as for ordinary
orthogonal matrices:

B =

(
a b

c d

)
. (3.3.8)
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Generally for (S)O we have

(Bx)>gBy = x>gy

⇒
B>gB − g = 0 (3.3.9)

where g is the signature matrix. In our case we have

(
a c

b d

)(
1 0

0 −1

)(
a b

c d

)
−

(
1 0

0 −1

)
= 0

⇒(
a2 − c2 ab− cd
ab− cd b2 − d2

)
−

(
1 0

0 −1

)
= 0

⇒
a2 − c2 = 1

d2 − b2 = 1

ab− cd = 0

. (3.3.10)

Using the hyperbolic identity the first two yield that a = ± cosh θ, b = sinhϕ,
c = sinh θ and d = ± coshϕ with θ, ϕ ∈ R. Observe the ± in front of cosh,
as it otherwise only takes positive values. If all entries are to be real, a and d
cannot possibly have absolute values less than zero, thus we need no special case
for a ∈ (−1,1).

The last equation is equivalent to

sinh (θ ± ϕ) = 0

⇒
θ = ±ϕ, (3.3.11)

where we have a plus sign if a and d are of different signs. From this we find four
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Table 3.1: Multiplicative relations between components of O(1,1).

B∗B∗ + − ↑ ↓

+ + − ↑ ↓
− − + ↓ ↑
↑ ↑ ↓ + −
↓ ↓ ↑ − +

different cases,

B+ =

(
cosh θ sinh θ

sinh θ cosh θ

)

B− =

(
− cosh θ sinh θ

sinh θ − cosh θ

)

B↑ =

(
− cosh θ − sinh θ

sinh θ cosh θ

)

B↓ =

(
cosh θ sinh θ

− sinh θ − cosh θ

)
. (3.3.12)

These are disconnected and thus the group has four different components.
These sets of matrices fulfill the multiplicative relations of table 3.1. In this

table we read out that an element from B↑ multiplied by an element from B− ends
up in B↓ and so on. Let us validate that these indeed make groups. We see closure
and that the unit element lies in B+. Matrix multiplication is associative, so left
to do is to find the inverses. The latter two sets of matrices (↑↓) can be noted
to have determinant minus one, meaning that they are not in SO(1,1) but rather
O(1,1). The inverses of all these sets are given as

B−1
+ (θ) = Bτ

+(θ) =

(
cosh θ − sinh θ

− sinh θ cosh θ

)
= B+(−θ) (3.3.13)

B−1
− (θ) = Bτ

−(θ) =

(
− cosh θ − sinh θ

− sinh θ − cosh θ

)
= B−(−θ) (3.3.14)

B−1
↑ (θ) = Bτ

↑ (θ) =

(
− cosh θ − sinh θ

sinh θ cosh θ

)
= B↑(θ) (3.3.15)
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B−1
↓ (θ) = Bτ

↓ (θ) =

(
cosh θ sinh θ

− sinh θ − cosh θ

)
= B↓(θ). (3.3.16)

We note that the inverses of a set lie in the same set. Thus B+ and B+ ∪ B− =
SO(1,1) form two subgroups of SL(2,R) and B+ ∪B− ∪B↑ ∪B↓ = O(1,1) form a
subgroup of GL.

There is an important difference between O(2) and O(1,1). The entries of O(2),
sin θ and cos θ, are bounded, whereas the entries of O(1,1), sinh θ and cosh θ, are
unbounded.

Definition 3.13. A group that is bounded, meaning that there exists a supremum
and infimum that any matrix element of any matrix in the group lies between, is
called compact4. If a subgroup is the largest possible compact subgroup, it is called
maximally compact.

We defined the generalized orthogonal group from preserved bilinear forms,
which is equivalent to having the transpose as inverse. Using that for O we have
B>gB = g (done generally in Example 3.6) we get

gB>gB = gg = I, (3.3.17)

and a way to define a generalized transpose.

Definition 3.14. The generalized transpose is given as

BT = gB>g (3.3.18)

where g is the signature matrix.

The generalized transpose has the neat property that it works much like the
ordinary transpose unless you look at specific elements of a matrix. For instance
we have

(AB)T = g(AB)>g = gB>A>g = gB>ggA>g = BTAT , (3.3.19)

which is important for many calculations.
The complex version of orthogonal matrices are the unitary matrices U(n), with

A∗A = I, where A∗is the conjugate transpose. The previous concepts also apply
to these and we will for instance see groups such as SU(2,1) which are unitary
matrices under signature “+ +−” and with determinant one.

4It is also required that any sequence of matrices in the group that converges, converges to
an element in the group
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3.4 Important Concepts of Lie Groups and Lie

Algebra

After going through the basic idea of group theory, with a focus on Lie groups
and algebras, there are certain concepts that can be of use to explore further.
The special linear group SL(2,R) plays a central role in group theory, as it can
among other things be used to generate other groups. Therefore we will delve
into SL(2,R), as well as the more general group SL(n,R). Additionally, there are
certain operations on Lie groups and their algebras that can be used during the
calculations presented herein. The Iwasawa Decomposition is used to split a Lie
algebra into subalgebras, while the Maurer-Cartan form presents an alternative
way to obtain a Lie algebra element from its respective Lie Group. Furthermore
the Killing Form is presented as a way to describe a certain relationship between
the elements of a Lie algebra. With these additional concepts we can acquire a
broader spectrum of tools to make use of group theory.

3.4.1 SL(2,R) and SL(n,R)

To understand the group SL(2,R) and its uses, we begin with the definition of its
elements.

Definition 3.15. The Lie group SL(2,R) is comprised of all the real 2×2 matrices
with determinant one. Accordingly, for S ∈ SL(2,R)

S =

(
a b

c d

)
ad− bc = 1 a,b,c,d ∈ R. (3.4.1)

Groups of the type SL(n,R) and their algebras have dimension 2n−1, meaning
that all elements of the group can be generated by 2n− 1 matrices and the vector
space of the algebra can be spanned by 2n−1 elements. Consequently, this means
that for SL(2,R) three matrices are needed to generate the group.

The Lie algebra sl(2,R) of the group SL(2,R) is a simple and real algebra. As
the elements in SL(2,R) can be generated by three matrices with determinant one,
the Lie algebra must be spanned by a set of three traceless matrices, to preserve
the determinant of the group elements. These could be found from the matrix S
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through differentiating by a, b and c. This gives three elements

h =
d

da
S|a,b,c=0 =

(
1 0

0 −1

)

e =
d

db
S|a,b,c=0 =

(
0 1

0 0

)

f =
d

dc
S|a,b,c=0 =

(
0 0

1 0

)
(3.4.2)

that span the algebra by the direct sum of the real vectorspaces Rh,Re and
Rf as follows,

sl(2,R) = Rf ⊕Rh⊕Re. (3.4.3)

However, an alternative way to arrive at these elements will be shown here, as
it is of relevance for understanding how the groups SU(2), SL(2,C) and SL(2,R)
relate. A visual representation of this process is shown in figure 3.3. These gener-
ators present the specific set h, e and f that can be used to further compose other
groups, like SL(n,R).

Real Form

i

Figure 3.3: The two groups SU(2) and SL(2,R) are real forms of the group SL(2,C).
Using the Lie algebra of su(2) the algebra sl(2,R) can be constructed via sl(2,C).

To find a way to construct generators of sl(2,R) that can express an infinitesi-
mal transformation on the complex upper half-plane, we begin with the generators
of su(2). The group to this algebra is SU(2), representing all unitary 2×2 matrices
with determinant one. These generators are in some ways easier to understand and
construct, and from them the algebra sl(2,R) can be found. The two groups SU(2)
and SL(2,R) are connected by the group SL(2,C) as they are both real forms of
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this group, with their respective Lie algebras sl(2,R) and su(2) as real forms of
sl(2,C).

Finding the elements of the algebra, we begin with the group SU(2) and observe
that its elements can additionally be seen as rotations in three dimensions. The
elements in SU(2) can therefore be written as

∀ U ∈ SU(2), ai ∈ R ⇒ U = eiaxσx+iayσy+iazσz , (3.4.4)

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
. (3.4.5)

To obtain the elements of the Lie algebra su(2), the principle of equation (3.2.4)
can be used. This results in elements made up of direct sums of the vector spaces
comprised iR, times a Pauli matrix σi. The span of these elements can be written
as

su(2) = span
R
{iσx, iσy,iσz} = Riσx ⊕Riσy ⊕Riσz. (3.4.6)

From this span we take the next step to find the generators of sl(2,C). This is
found by expanding su(2) to complex, and not only strictly imaginary combinations
of the Pauli matrices. To make the next step slightly smoother, new generators
are defined as

Tx =
1

2
iσx Ty =

1

2
iσy Tz =

1

2
iσz, (3.4.7)

where every element in sl(2,C) can now be constructed as a complex linear com-
bination of these generators, written as

sl(2,C) = span
C
{Tx, Ty,Tz} = CTx ⊕CTy ⊕CTz. (3.4.8)

This takes us one step closer to defining sl(2,R). At this point, the generators
e,f and h are defined from Tx,Ty,Tz by the relations

e = T2 − iT1, f = −(T2 + iT1), h = −2iT3

e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
. (3.4.9)

Redefining the generators like this may seem arbitrary, but it has the effect
of creating two triangular matrices, and one diagonal matrix. This proves to be
important when constructing other Lie algebras, as will be shown later. We can
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also recognize these as the same matrices that resulted from differentiating the
matrix S in respect to a, b and c, as in equation (3.4.2). Since these are only
linear combinations of the previous generators they also span sl(2,C), which can
be written as

sl(2,C) = Cf ⊕Ch⊕Ce. (3.4.10)

Finally, to arrive at sl(2,R) we replace every C with a R, giving us a completely
real Lie algebra, spanned as in equation (3.4.3), where the real combinations of h
will span all the diagonal matrices. This abelian subalgebra can also be referred to
as Cartan subalgebra. Commuting the generators e, f and h gives the following
commutation relations

[e,f ] = h [h,e] = 2e [h,f ] = −2f. (3.4.11)

As e is upper triangular, f lower triangular and h is diagonal, this way of
constructing the span is referred to as a triangular decomposition.

The triangular decomposition of the group SL(2,R) into upper triangular ma-
trices, lower triangular and diagonal matrices is a trait that holds for sl(n,R) for
all n. The span for this algebra can similarly be written as

sl(n,R) = Rn− ⊕Rh⊕Rn+ (3.4.12)

where the elements of n− are lower triangular matrices and the elements of n+

are upper triangular matrices. Lastly h has diagonal matrices as elements that
represent the Cartan subalgebra spanned by the diagonal elements hi, written as

h =
n−1∑
i

Rhi. (3.4.13)

The Lie algebra sl(n,R) is spanned by n− 1 triples of the generators (hi,ei,fi)
for i = 1,...,n− 1, called the Chevalley generators. Every triple of these gener-
ators span sl(2,R)i and therefore satisfy the same criteria as the generators in the
equation (3.4.11). sl(n,R) is then constructed by taking all the algebras sl(2,R)i
as a direct sum

⊕ni sl(2,R)i (3.4.14)

and additionally linking them together by using the following rules, called the
Chevalley relations,
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[ei,fj] = δijhj (3.4.15)

[hi,ej] = Aijej (3.4.16)

[hi,fj] = −Aijfj (3.4.17)

[hi,hj] = 0 (3.4.18)

A =



2 −1 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 0
...

...
. . .

...

0 · · · −1 2


. (3.4.19)

The matrix A is the Cartan matrix, and the diagonal values represent the gen-
erators from the same sl(2,R)i acting upon each other according to (3.4.11) . The
values of −1 next to the diagonal show us that only elements from subsequent
sl(2,R)i have a connection that results in something other than zero. All other
combinations with the matrix A in (3.4.16), (3.4.17) will result in zero. However
we have so far put no other constraints on the generators ei with other ej, nor fi
with fj. Without further rules the generators ei and fi could, by commutation as
follows

[ei,ej], [ei,[ej,ek]], ... [fi,fj], [fi,[fj,fk]], ..., (3.4.20)

generate an infinite amount of new elements. To see to it that the n − 1 triples
generate a finite Lie algebra, the following Serre relations are added

(adei)
1−Aij(ej) = 0, (adfi)

1−Aij(fj) = 0, ∀i 6= j. (3.4.21)

Finally, with these generators, relations and restraints we now arrive at all the
generators for sl(n,R).

Example 3.7. As an example of this way of building sl(n,R) from sl(2,R)i we
can look at sl(3,R). Here the number of generators should in total be 2n− 1 = 8.
We begin with n − 1 triples, resulting in the pair (e1,f1,h1) and (e2,f2,h2) that
produce the first six elements needed to span the Lie algebra. The remaining two
elements can be found from the matrix A

A =

(
2 −1

−1 2

)
. (3.4.22)
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and 1 − A12 = 1 − A21 = 2. From equation (3.4.21) we find that [e1,[e1,e2]] =
[f1,[f1,f2]] = 0. This gives us the only two possible new elements spanning the
algebra [e1,e2] = e3 and [f1,f2] = f3, adding up to all eight elements needed for
sl(3,R).

It is worth noting that this way of constructing sl(n,R) can be used when
constructing other Lie algebras. By using sl(2,R)i with other values for A and the
same Chevalley relations, another Lie algebra can be constructed. For sl(n,R),
specifically, A will be as in equation (3.4.19).

3.4.2 Iwasawa Decomposition

It may sometimes prove necessary to split a group into several different subgroups.
One such decomposition is the Iwasawa decomposition. This decomposition
makes the claim that every semi-simple Lie group G can be decomposed into
three parts, each part having a specific requirement

G=NAK, (3.4.23)

where N, A and K are Lie subgroups to G, with the respective Lie algebras n, a
and k. K will be the maximal compact group of G, as defined for matrix groups
in definition 3.13. For N the matrix representation of the elements must be upper
triangular matrices with determinant one, while for the subgroup A, the matrices
are all diagonal matrices.

The proof of this claim will not be presented herein for a general group, but
the Iwasawa decomposition for the Lie group SL(2,R) will be shown in detail. As
SL(2,R) is a simple Lie algebra, and thereby also a semi-simple Lie algebra, there
exists an Iwasawa decomposition where the maximal compact group K for SL(2,R)
is SO(2). This means that SL(2,R) can be separated into the parts

SL(2,R) = NA SO(2) =

{(
1 ∗
0 1

)}{(
∗ 0

0 1/∗

)}
SO(2) (3.4.24)

where the matrices preserve the property of SL(2,R) that the determinant is equal
to one, and the diagonal of the matrices in A is restricted to only positive values.
Now we have one subgroup to SL(2,R) of elements that are represented by upper
triangular matrices and one subgroup of diagonal matrices, with algebras that
likewise are represented by upper triangular and traceless matrices respectively.
To compare this to the definition of an element S of the group SL(2,R), we create
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an element through the Iwasawa decomposition as follows, and relate (r,x,θ) to
(a,b,c,d)

S =

(
1 x

0 1

)(
r 0

0 1/r

)(
cos θ − sin θ

sin θ cos θ

)

=

(
r cos θ + x/r sin θ x/r cos θ − r sin θ

1/r sin θ 1/r cos θ

)
=

(
a b

c 1+bc
a

)

⇒ 1/r2 = c2 + d2, x =
a− d
c

cos θ =

√
1

c2/d2 + 1
(3.4.25)

sl(2,R) = k⊕ h⊕ n (3.4.26)

where k represents the maximal compact subalgebra to the Lie algebra in question,
which means k = so(2), h is all the non-compact elements of the Cartan subalgebra
and lastly n is a nilpotent subalgebra as defined in definition 3.11.

3.4.3 Maurer-Cartan Form

In section 3.2 it is shown how to find an element in a Lie algebra from an element
of its respective Lie group with the equation (3.2.4). However, the Maurer-Cartan
form presents an alternative way of finding the Lie algebra to a group. For an
element U in a group G, an element on the Cartan-Form of the Lie algebra g can
be found as

U−1∂tU. (3.4.27)

We can see that this yields the Lie algebra element ∂µX ∈ g

U = eX

⇒ U−1∂µU = e−XeX∂µX = ∂µX, (3.4.28)

which normally is not the same as the Lie algebra element X, as found in equation
(3.2.4).

3.4.4 Killing Form

For Lie algebras it would be beneficial to find something like a scalar product.
The Killing form is a product between elements in an algebra that shares some
similarities with a scalar product and help to compare elements.
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Definition 3.16. Killing Form is the product between the adjoint representa-
tions of a,b ∈ g defined by

K(a,b) = Tr(adaadb) (3.4.29)

with ada as in equation (3.2.11).

This product has the benefit of being bilinear and symmetric, that is

K(a,b) = K(b,a)

K(a,b+ c) = K(a,b) +K(a,c). (3.4.30)

So far, the Killing form is a lot like a scalar product. Although, just like the
metric described in section 2.1.1, it is an object that is similar to a scalar product,
but is not necessarily positive definite.

Example 3.8. As an example of this, we examine the group SL(2,R) and how the
Killing form acts on the elements of its Lie algebra. Firstly we need to calculate
what ade, adh and adf are. For sl(2,R) any element will here be written as v =
v1e + v2h + v3f = (v1,v2,v3), ∀ v ∈ sl(2,R), vi ∈ R. From their commutation
relations in equation (3.4.11) we get

v = (v1,v2,v3) u = (u1,u2,u3)

[e,f ] = h, [e,h] = −2e [h,e] = 2e, [h,f ] = −2f [f,h] = 2f, [f,e] = −h

ade =

0 −2 0

0 0 1

0 0 0

 adh =

2 0 0

0 0 0

0 0 −2

 adf =

 0 0 0

−1 0 0

0 2 0


⇒

K(e,e) = Tr(adeade) = 0 K(h,h) = Tr(adhadh) = 8

K(f,f) = Tr(adfadf ) = 0 K(e,f) = Tr(adeadf ) = 4

K(h,e) = Tr(adhade) = 0 K(f,h) = Tr(adfadf ) = 0

⇒
K(u,v) = Tr(aduadv) = u>Kv, (3.4.31)

where K is the following matrix

K =

K(e,e) K(e,h) K(e,f)

K(e,h) K(h,h) K(h,f)

K(e,f) K(h,f) K(h,f)

 =

0 0 4

0 8 0

4 0 0

 . (3.4.32)

From here we can see that depending on u and v, K(u,v) can be either positive or
negative.
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As seen above, calculating the Killing form explicitly is not always quick and
smooth. However, the Killing form has several handy traits that can be used during
implicit calculation. Such a trait is that the Killing form is invariant during cyclic
permutation, meaning that

K(a,[b,c]) = K([a,b],c). (3.4.33)

This can be shown by firstly expressing the following relation

ad[ab] = [ada,adb], (3.4.34)

that can be proven by

ad[ab](c) =
[
[a,b],c

] ?
= [ada,adb](c) =

[
a,[b,c]

]
−
[
b,[a,c]

]
⇔

0
?
=
[
a,[b,c]

]
+
[
b,[c,a]

]
+
[
c,[a,b]

]
. (3.4.35)

This means that the equivalency at
?
= holds true, as equation (3.4.35) is the third

axiom, the Jacobi identity, in the definition 3.7 of a Lie algebra.
Another important step can also be shown with the Jacobi identity[

[a,b],c
]

= −
([
b,[c,a]

]
+
[
c,[a,b]

])
= −(bca− bac− cab+ acb+ cab− cba− abc+ bac)

= abc− acb+ cba− bca = a[b,c]− [b,c]a

=
[
a,[b,c]

]
. (3.4.36)

These can now be used to show that

K([a,b],c) = Tr(ad[a,b]adc) = Tr ([ada,adb]adc)

= Tr (ada[adb,adc]) = Tr
([
a,[b,c]

])
(3.4.37)

= K(a,[b,c]). (3.4.38)

Expressing the Killing form with different representations of the elements may
result in a scalar difference,

K(a,b) = C Tr(ab), (3.4.39)

where the constant C depends on the algebra and representation. An example
of this constant for some common algebras and their fundamental representations
can be seen in table 3.2. From this we find that for sl(2,R) the Killing form can
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Table 3.2: The table above presents three Lie algebras and how their Killing forms
are expressed for their fundamental representation.

Algebra C

sl(n,R) 2n

su(n) 2n

so(n) n− 2

also be written as K(a,b) = 4Tr(a,b). For sl(n,R) the fundamental representation
is comprised of elements of n × n-matrices, which for sl(2,R) is spanned by real
combinations of the matrices e,f and h in (3.4.2). Comparing this to what was
previously calculated in equation (3.4.32) we can see that C must indeed be 4, as

4 Tr(ee) = 4 Tr(eh) = 4 Tr(hf) = 4 Tr(ff) = 4 · 0 = 0

4 Tr(hh) = 4(1 + 1) = 8 4 Tr(ef) = 4(1 + 0) = 4. (3.4.40)



4
Generating Black Hole Solutions

From Group Theory

In this chapter we arrive at the Schwarzschild solution by a different method than
in section 2.5.1. This different approach requires a bit more work, but the reward
is that from this method we can find symmetries of the solution which can be
hidden and very hard to see using the previous method. These symmetries can,
with group theory, be used to generate new solutions with similar symmetries,
effectively expanding a solution into a family of solutions. The method used in
this chapter can also be used to find other families of solutions, in principle by
using the same steps presented here. We go through these steps in detail for the
Schwarzschild solution, and the Reissner-Nordström solution is found mostly by
using what we did for Schwarzschild. The main line of this chapter will follow two
articles of Breitenlohner et al. More information can be found in [12] and [13].

To do this we start by performing a dimensional reduction of a dimension
that the solution is symmetric with respect to. This will give a new effective
action in three dimensions originating from the original action in four dimensions.
The dimensional reduction and the symmetries that manifest afterwards will be
discussed in section 4.1. By use of group theory and the action principle we find
the equations of motion for the three-dimensional action in section 4.2. These
equations are solved in section 4.3 to find the Schwarzschild solution. Thereafter
the Reissner-Nordström solution in section 4.4 will be derived using the same
method as the Schwarzschild solution. Lastly, how to generate new solutions in
the same solution family is discussed in section 4.5, along with some generalizations
of the concepts and further uses of the method.

Throughout this whole chapter indices in four dimensions will be written as µ̂,
ν̂,... and indices in three dimensions will be µ, ν,...

57
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4.1 Dimensional Reduction

In four-dimensional spacetime the action from gravity in vacuum is given by

S4[gµ̂ν̂ ] =

∫
R4

d4x
√
gR, (4.1.1)

where we have omitted a factor 1
8πG

from the expression presented in section 2.4.3.
Since the action in vacuum only has one term, this factor does not effect the
stationary point of the action.

Many interesting solutions have symmetries so that the metric is independent
of one or more dimensions1. Such a dimension is assumed to be compact, so that it
can be seen as to parametrize a circle. If it in addition is small, the metric ansatz
will only contain zero-order terms2. The ansatz for the four-dimensional metric
can then be written be on the form

gµ̂ν̂ =

(
e−φgµν + eφAµAν eφAµ

eφAν eφ

)
, (4.1.2)

where gµν is a three-dimensional metric, Aµ is a vector field and φ is a scalar field.
These three objects, gµν , Aµ and φ are functions of the remaining dimensions. So
for a timelike reduction, the three-dimensional metric is a function of the space
coordinates. The parameterization of the ansatz in (4.1.2) is used because it turns
out to be convenient during calculations. By convention, the coordinate reduced
is placed to be the last index.

By integrating the action S4[gµ̂ν̂ ] with respect to the reduced dimension, as
well as calculating the three-dimensional Ricci scalar R and the determinant of
the metric g, an effective three-dimensional action can be derived. This action
contains the vector field Aµ, which can be simplified by dualizing to a scalar field
χ:

∂µχ = εµνσ∂[νAσ] (4.1.3)

Dualization is a property that all Maxwell and gravitational theories share, and
is linked to the Bianchi identity, see equation (2.4.6). By dualizing a field, both
the original field and the dual fields will contain the same information. It should
be noted that in the general case, the dual to a tensor could have a higher as well

1A mathematical description of symmetries allowing for dimensional reduction would be that
there exist spacelike and timelike Killing vectors [12], objects which in themselves we do not treat
in this text. Killing vectors are described in Weinberg [2]

2In fact, in the real world, the compactified dimension is not a microscopic; all four dimensions
are indeed macroscopic and observable. Nevertheless, the method of dimensional reduction can
be used to obtain solutions to Einsteins equations, even though the three-dimensional action is
in some sense unphysical.
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as lower rank. Which rank that is obtained, depends on the rank of the dualized
tensor and the dimension, since the rank of the Levi-Civita tensor is equal to the
number of dimensions. [14]

The processes of dimensional reduction and dualization are rather complicated.
Therefore, the action will simply be stated without proof. More information about
dimensional reduction can be found in Pope [15]. The action, when reduced from
four to three dimensions, becomes∫

R4

d4x
√
gR (4.1.4)

⇓∫
R3

d3x
√
gR−

∫
R3

d3x
√
gL(χ,φ). (4.1.5)

In the expression for the three-dimensional action the first term will be referred to
as S3 and the second as SG/K. L(χ,φ) is the sigma model and is given by3

L(χ,φ) =
1

2
(∂µφ∂

µφ± e2φ∂µχ∂
µχ). (4.1.6)

The plus sign in L is obtained when the reduction is done with respect to a space
coordinate and the minus sign when it is done with respect to a time coordinate. As
the Schwarzschild solution is both static and spherically symmetric, either a time
coordinate or an angular coordinate can be reduced. The mathematical formalism
will here be more thorough when reducing a spatial coordinate, but in order to
later obtain the Schwarzschild solution it will be easier if the time coordinate is
reduced. Since both spatial and timelike reduction are important for further use,
both will be presented.

4.1.1 Invariance of L(χ,φ) Under SL(2,R)

The aim of this section is to show that the sigma model is invariant under SL(2,R).
Using this invariance, it is possible to generate families of solutions from a single
solution. This will be discussed further in section 4.5. Another important result
from this section is that χ and φ parametrize SL(2,R)/K, where K depends on the
type of reduction; for spacelike reduction the coset space will be SL(2,R)/ SO(2)
and for timelike it will be SL(2,R)/ SO(1,1). The fact that χ and φ parametrize
SL(2,R)/K enables us to express the Lagrangian in a convenient way, to be used
when deriving the Schwarzschild solution.

3See eq. (1.80) in Pope [15]. A discussion on signs depending on the reduced coordinate can
be found in Persson [16].



CHAPTER 4. GENERATING BLACK HOLE SOLUTIONS... 60

We show this invariance by creating an object that is invariant and show that
this is precisely our Lagrangian. To do this we use the Killing form, defined in
section 3.4.4. The calculations for a timelike and a spacelike reduction are almost
identical. The only difference will be that different generalized transposes are used,
the choice of which depends on the group K, see section 3.3 for further disussion
on generalized transpose. It will be pointed out where the differences arise.

From the Iwasawa decomposition, found in 3.4.2, we know that any element
g ∈ SL(2,R) can be uniquely factorized into

g = nak = eχee−φ/2hk =

(
1 χ

0 1

)(
e−φ/2 0

0 eφ/2

)
k, (4.1.7)

where k ∈ SO(2). If k ∈ SO(1, 1) the decomposition will not be unique. In
addition, it will not work for all elements. Therefore the composition is not math-
ematically stringent, although it will work for all cases of physical interest.4 The
factorization can be used with k being an element of either SO(2) or SO(1, 1), thus
for both spacelike and timelike reductions.

Because of the factorization, elements in the coset space SL(2,R)/K can be
written on the form

V = na =

(
1 χ

0 1

)(
e−φ/2 0

0 eφ/2

)
. (4.1.8)

As this is a left coset, V transforms with elements in SL(2,R) from the left and
with elements in K from the right,

V → gVk g ∈ SL(2,R), k ∈ K. (4.1.9)

By definition, any two elements in the coset space that just differ with an
element k ∈ K from the right, are treated as equivalent elements. Thus one can
always find a representation of an element in the coset space that is on the form
of V in (4.1.8), by setting k in (4.1.7) to be identity. When V transforms with g
from the left it can be quite difficult to find the right k that acts from the right to
make the new V again on the form (4.1.8). Instead we create an object that does
not transform at all under K by defining

M = VVT , (4.1.10)

where T is the generalized transpose, see definition 3.14, which is defined by re-
quiring

kT = k−1, k ∈ K. (4.1.11)

4A detailed discussion can be found in section 5.2 in [17].



61 4.1. DIMENSIONAL REDUCTION

This requirement is useful since M will then transform as

M → (gVk)(gVk)T = gVkkT VT gT = gVkk−1VT gT = gMgT . (4.1.12)

When K= SO(2) we can say that the generalized transpose T is just the normal
transpose > since this then has the desired property of (4.1.11). If we instead would
have a timelike reduction, k would be an element in SO(1,1) and for T to have
the property kT = k−1 the normal transpose does not suffice. The generalized
transpose of SO(1,1) is gT = cg>c where c = diag{1, − 1}. This generalized
transpose has the effect of switching the sign of the non-diagonal elements. M
expressed in φ and χ will then be

M = VVT

=

(
1 χ

0 1

)(
e−φ/2 0

0 eφ/2

)(
e−φ/2 0

0 eφ/2

)>(
1 ±χ
0 1

)>

=

(
e−φ ± χ2eφ χeφ

±χeφ eφ

)
. (4.1.13)

To be able to calculate the Killing form we go to sl(2,R), the Lie algebra of
SL(2,R), and we do this via the Maurer-Cartan form,

M−1∂µM ∈ sl(2,R), (4.1.14)

which becomes

M−1∂µM =

(
−∂µφ± χ∂µχe2φ ∂µχe2φ

±2χ∂µφ± ∂µχ− χ2∂µχe2φ ∂µφ∓ χ∂µχe2φ

)
. (4.1.15)

Our Killing form will then be

4 Tr
(

(M−1∂µM)(M−1∂µM)
)
, (4.1.16)

which is manifestly invariant under SL(2,R). We show this, keeping in mind
that M → gMg>. By restriction g to be a constant, the derivative only acts
on M. By expanding the parentheses and recalling from elementary algebra that
Tr(AB) = Tr(BA), we see that

Tr
(

(M−1∂µM)(M−1∂µM)
)
→

→ Tr

((
(gMg>)−1∂µ(gMg>)

)(
(gMg>)−1∂µ(gMg>)

))
(4.1.17)

= Tr
(

(M−1∂µM)(M−1∂µM)
)
. (4.1.18)
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Next we calculate the explicit expression of the Killing form. After some work
we arrive at

4 Tr
(

(M−1∂µM)(M−1∂µM)
)

= 8(∂µφ∂
µφ± ∂µχ∂µχe2φ). (4.1.19)

We see that this is the same as the expression for the Lagrangian in equation
(4.1.6) apart from a factor 16. The factor 16 does not make any difference since if
the Killing form is invariant under SL(2,R) then so is any multiple of it. Therefore
we have proven that our Lagrangian is indeed invariant under SL(2,R). Because of
the restriction that g should be independent of the spacetime coordinates, transfor-
mations under SL(2,R) will represent global symmetries. On the other hand there
where no restrictions on k, so transformations under K represent local symmetries.

4.2 Equations of Motion on the Coset Space

In this section we derive the equations of motion by using variational calculus
on the action in equation (4.1.4). We do this by varying the action, first with
respect to the fundamental object V and then with respect to the metric gµν .
These two equations of motion will not describe motion in the spacetime, rather
they are equations of motion in a more abstract sense on the coset space where
coordinates are the parameters χ and φ. One of these equations can be expressed
on an alternative form as a geodesic equation (this is further discussed in section
4.2.3).

These two equations of motion are used to derive the metric. To express one of
the equations as a geodesic equation is not necessary when deriving the Schwarz-
schild solution, although in other cases it can be a central part of finding the
solution.

4.2.1 Variation with Respect to V
The action from equation (4.1.4) is

S3 − SG/K =

∫
R3

d3x
√
gR−

∫
R3

d3x
√
gL(χ,φ). (4.2.1)

When we vary V this will only affect the second term, which can be written using
the Killing form as

SG/K =
1

4

∫
R3

d3x
√
gTr

(
(M−1∂µM)(M−1∂µM)

)
. (4.2.2)

First we write the action on another form, which makes the calculations easier.
The Cartan involution states that we can always expand any element in a Lie
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algebra in one symmetric part and one antisymmetric. Therefore we can expand
the Maurer-Cartan form of the element V , which lies in the Lie algebra sl(2,R) as

V−1∂µV = Qµ + Pµ, (4.2.3)

where Qµ is antisymmetric and Pµ is symmetric with respect to the generalized
transpose. When we have a matrix representation of an algebra this is always true
due to the fact that you can always write a matrix A as the sum of its symmetric
and antisymmetric part:

A =
1

2
(A− AT ) +

1

2
(A+ AT ). (4.2.4)

This gives expressions for Qµ and Pµ:

Qµ =
1

2

(
V−1∂µV − (V−1∂µV)T

)
(4.2.5)

Pµ =
1

2

(
V−1∂µV + (V−1∂µV)T

)
(4.2.6)

To be able to express the Killing form in terms of Qµ and Pµ, the Maurer-Cartan
form of M = VVT is expanded. Note that the derivative will act element-wise
on the matrix V , and therefore the differentiation and transposition may change
order, so that ∂µ(VT ) = (∂µV)T . When expanding, multiplying with (VT )−1VT
makes it possible to simplify the expression:

M−1∂µM = (VVT )−1∂µ(VVT )

= (V−1)T
(
V−1∂µVVT + ∂µVT ((VT )−1VT )

)
= (V−1)T (2Pµ)VT . (4.2.7)

The next step is to insert this expression into the Lagrangian of the action in
(4.2.2). Expanding and utilizing that Tr(AB)=Tr(BA), the factors of V cancel,
and the Lagrangian becomes

L(χ,φ) =
1

4
Tr

((
(V−1)T 2PµVT

)(
(V−1)T 2P µVT

))
= Tr(PµP

µ), (4.2.8)

which gives the action in equation (4.2.2) as

SG/K =

∫
R3

d3x
√
gTr(PµP

µ). (4.2.9)
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To arrive at the equations of motion this should be stationary with respect to a
small perturbation of V , thus δVSG/K = 0. We begin by looking at the variation
of Pµ. From equation (2.4.22), the variation of the inverse of V will be δ(V−1) =
−V−1δVV−1. Utilizing this in the variation of Pµ results in

δVPµ =
1

2

(
− (V−1δVV−1)∂µV + V−1∂µδV+

+
(
− (V−1δVV−1)∂µV

)T
+ (V−1∂µδV)T

)
. (4.2.10)

Because V−1δV is a Lie algebra element, we can expand it into one antisymmetric
and one symmetric part,

V−1δV = Σ + Λ. (4.2.11)

The antisymmetric part Σ will not have any effect as the Lagrangian only depends
on the symmetric part Pµ and not on Qµ. Therefore we can freely set Σ = 0, which
results in

Λ =
1

2

(
V−1δV + (V−1δV)T

)
= V−1δV . (4.2.12)

Thus V−1δV is symmetric, which will be useful in further calculations. To simplify
equation (4.2.10) we start by calculating the derivative of Λ,

∂µΛ =
1

2
∂µ

(
V−1δV + (V−1δV)T

)
=

1

2

(
∂µV−1δV + (∂µV−1δV)T + V−1∂µδV + (V−1∂µδV)T

)
. (4.2.13)

Comparing with equation (4.2.10) gives

δVPµ = ∂µΛ− 1

2

(
∂µV−1δV + (∂µV−1δV)T + (V−1δVV−1)∂µV+

+
(

(V−1δVV−1)∂µV
)T)

(4.2.14)

Once again using equation (2.4.22), which holds for derivatives as well as variations,
the variation is

δVPµ = ∂µΛ− 1

2

(
(−V−1∂µVV−1)δV +

(
(−V−1∂µVV−1)δV

)T
+

+ (V−1δVV−1)∂µV +
(

(V−1δVV−1)∂µV
)T)

(4.2.15)
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Simplifying the expression shows that the last terms can be expressed with Qµ and
Λ:

δVPµ = ∂µΛ +QµΛ− ΛQµ

= ∂µΛ + [Qµ,Λ] (4.2.16)

Because Λ is a scalar, its partial derivative and covariant derivative are equal,
we can write ∇µΛ instead of ∂µΛ. Next we look at the variation of the action
from equation (4.2.9) and set this to zero to arrive at our equations of motion.
The action contains two elements depending on V ; Pµ and its contravariant form
P µ. From the product rule we get two terms that contribute to the variation. By
raising and lowering the index of the terms, these terms are equal. The variation
can therefore be written as

δV

∫
R3

√
gd3xTr(PµP

µ) = 0 (4.2.17)

⇒

2

∫
R3

√
gd3xTr(P µδVPµ) = 0 (4.2.18)

⇒∫
R3

√
gd3xTr

(
P µ(∇µΛ + [Qµ,Λ])

)
= 0 (4.2.19)

To continue we use the following relation, Tr(A[B,C]) = Tr([A,B]C) which is true
for arbitrary matrices. Also, we integrate the first term by parts,

0−
∫
R3

√
gd3xTr(∇µP

µΛ) +

∫
R3

√
gd3xTr([P µ,Qµ]Λ) = 0 (4.2.20)

⇒∫
R3

√
gd3xTr

(
(−∇µP

µ + [P µ,Qµ])Λ
)

= 0. (4.2.21)

If this is going to be zero for an arbitrary perturbation δV , thus an arbitrary Λ,
the following must be true,

∇µP
µ − [P µ,Qµ] = 0 (4.2.22)

which are then the equations of motion. We can also express this in terms of a
different covariant derivative which we define as

DµPν ≡ ∇µPν + [Qµ,Pν ]. (4.2.23)

Then the equations of motion can be expressed as

DµPµ = 0. (4.2.24)
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4.2.2 Variation with Respect to the Metric gµν

When varying the action with respect to the metric we must take both terms from
the dimensional reduction into account,

S3 − SG/K =

∫
R3

d3x
√
gR−

∫
R3

d3x
√
gTr(PµP

µ). (4.2.25)

The variation will be done exactly as when we derived Einstein’s equations in
section 2.4.3, but here there will be another term from

√
gL(χ, φ). For details

compare with the calculations in section 2.4.3. The result is

δg(S3 − SG/K) = 0 (4.2.26)

⇒∫
R3

d3x
√
gδgρσ

(
1

2
gρσ(R− Tr(PµP

µ))− (Rρσ − Tr(P ρP σ))

)
= 0. (4.2.27)

Since the action must be stationary for an arbitrary variation of the metric, the
expression inside the parentheses must be zero. Gathering terms with the Ricci
tensor and Ricci scalar to the left, and terms containing Pµ to the right, the
requirement for stationary action is

Rρσ − 1

2
gρσR = Tr(P ρP σ)− 1

2
gρσ Tr(PµP

µ) (4.2.28)

To simplify this equation we multiply both sides with gρσ and use that the trace
of this is three, since it is the three-dimensional metric,

R− 1

2
3R = Tr(PµP

µ)− 3

2
Tr(PµP

µ) (4.2.29)

⇒

−1

2
R = −1

2
Tr(PµP

µ). (4.2.30)

This makes the terms with R and Tr(PµP
µ) cancel each other out in (4.2.28) and

we arrive at the expression for the second equation of motion:

Rµν = Tr(P µP ν) (4.2.31)

⇒
Rµν = Tr(PµPν) (4.2.32)

From Einsteins equations in section 2.4, the right hand side of (4.2.32) can
be seen as a stress-tensor. So we see that these equations are not just three-
dimensional general relativity in vacuum, but the dimension that was reduced will
still have a noticeable effect on the solution.
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4.2.3 Geodesic on the Coset Space

In this section we show that the equations of motion from the dimensional reduc-
tion actually give a geodesic equation on the coset space SL(2,R)/K, where K
is SO(2) for a spacelike reduction and SO(1,1) for a timelike reduction. Because
we in the end want to arrive at the Schwarzschild solution, we here work with a
timelike reduction as this simplifies the calculations. For a spacelike reduction the
result is the same and the calculations are very similar. The Lagrangian L(χ,φ)
from equation (4.1.6) can be rewritten as

L(Φ) = γij(Φ)∂µΦi∂µΦj, (4.2.33)

where Φ = (χ,φ) are the coordinates and γij is the metric of the coset space
SL(2,R)/ SO(1,1)5. The second term from the action in equation (4.1.4) is then
given by

SG/K =

∫
R3

d3x
√
gL(Φ)

=

∫
R3

d3x
√
gγij(Φ)∂µΦi∂µΦj

=

∫
R3

d3x
√
ggµνγij(Φ)∂µΦi∂νΦ

j. (4.2.34)

If our solution is going to be spherically symmetric we can make the following
ansatz for the three-dimensional metric6:

ds2 = −dr2 − f 2(r)(dθ2 + sin2 θdϕ2) (4.2.35)

⇒

gµν =

 −1 0 0

0 −f 2 0

0 0 −f 2 sin2 θ

 (4.2.36)

Using this in equation (4.2.34) with the fact that Φ only depends on r leads to

SG/K =

∫
R3

d3x
√
ggµνγij(Φ)∂µΦi∂νΦ

j

=

∫
R3

d3xf 2 sin θγij(Φ)∂rΦ
i∂rΦ

j

= 4π

∫ ∞
0

drf 2γij(Φ)∂rΦ
i∂rΦ

j (4.2.37)

5The components of the metric γij can be identified directly from (4.1.6).
6The minus sign is needed to obtain the correct signature of the four-dimensional metric.
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To get rid of the factor f 2 in the integral we make the substitution

τ(r) = −
∫ ∞
r

1

f 2(s)
ds (4.2.38)

⇒
∂τ

∂r
=

1

f 2(r).
(4.2.39)

The action then becomes

SG/K = 4π

∫ ∞
0

drf 2γij(Φ)∂rΦ
i∂rΦ

j

= 4π

∫ 0

τ(0)

∂r

∂τ
dτf 2γij(Φ)∂τΦ

i∂τΦ
j

(
∂τ

∂r

)2

= 4π

∫ 0

τ(0)

dτγij(Φ)∂τΦ
i∂τΦ

j. (4.2.40)

Variating with respect to Φ gives

δΦSG/K = 4π

∫ 0

τ(0)

dτ

(
δΦ

(
γij(Φ)

)
∂τΦ

i∂τΦ
j + 2γij(Φ)∂τΦ

i∂τδΦ
j

)
. (4.2.41)

Given that this is going to be zero for an arbitrary perturbation δΦi yields the
equation

∂2
τΦ

m + Υm
ij∂τΦ

i∂τΦ
j = 0, (4.2.42)

where Υ is the affine connection on the coset space. The specific calculations that
give this result are given in appendix E.

Looking back at the geodesic equation that was introduced in the text about
general relativity, equation (2.3.15), we see that this equation is really a geodesic
on the coset space. Actually the geodesic equation of (4.2.42) expresses the same
thing as equation (4.2.24), DµPµ = 0, from the variation of V . Therefore the
equation DµPµ = 0 can also be seen as a geodesic equation. We state this without
proof.

In some cases, the geodesic can be used to obtain the solution for the metric.
Otherwise, it will provide some interesting information about the solutions.

As geodesics in spacetime have been thoroughly analyzed, this theory can be
used for geodesics on the coset space as well. A geodesic is described by the
geodesic equation and two parameters; the starting point on the coset space and
the initial velocity. In four-dimensional spacetime, the initial velocity corresponds
to conserved charges [18]. The geodesic equation can thus be used to analyze
general properties of possible solutions. This will be further discussed in section
4.5.
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4.3 Solutions to the Equations of Motion

To obtain the Schwarzschild solution, we use the equations of motion (4.2.24) and
(4.2.32). These are {

DµPµ = 0

Rµν = Tr(PµPν).
(4.3.1)

From equation (4.2.8) we see that second equation of motion is equal to

Rµν =
1

4
Tr
(

(M−1∂µM)(M−1∂νM)
)
, (4.3.2)

while the first equation of motion can be rewritten as

∇µ(M−1∂µM) = 0. (4.3.3)

The proof of this is given in appendix F. Our equations of motion are then{
∇µ(M−1∂µM) = 0

Rµν = 1
4

Tr((M−1∂µM)(M−1∂νM)).
(4.3.4)

This result holds both for a spacelike and timelike dimensional reduction, though
we will in this chapter work only with a timelike reduction. To arrive at the
Schwarzschild solution, which is spherically symmetric, we write the three-dimen-
sional metric in the same way as in the ansatz of equation (4.2.36), which is
the most general form for a spherically symmetric metric. This then gives the
components of the affine connection and the Ricci tensor. The only non-zero
components of the connection are

Γrθθ sin2 θ = Γrϕϕ = −f ′f sin2 θ

Γθ(rθ) = Γϕ(rϕ) =
f ′

f

Γθϕϕ = − sin θ cos θ

Γϕ(θϕ) = cot θ

(4.3.5)

and the Ricci tensor becomes

Rµν =


−2

f ′′

f
0 0

0
d

dr

(
ff ′
)
− 1 0

0 0 sin2 θ

(
d

dr

(
ff ′
)
− 1

)


(4.3.6)
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From the spherical symmetry we also know that ∂µM is only non-zero when
µ = r. Because of this, we can simplify the equations of (4.3.4) further. Inserting
the definition of the covariant derivative into the first of the equations of (4.3.4),
we note that there are only three non-zero terms:

∇µ(M−1∂µM) = grr∂r(M
−1∂rM)− gθθΓrθθM−1∂rM − gϕϕΓrϕϕM

−1∂rM. (4.3.7)

Inserting the affine connections and the metric components gives

0 = −∂r(M−1∂rM) +
1

f 2
(−f ′f)M−1∂rM (4.3.8)

+
1

f 2 sin2 θ
(−f ′f sin2 θ)M−1∂rM (4.3.9)

= −∂r(M−1∂rM)− 2
f ′

f
M−1∂rM. (4.3.10)

Multiplying by −f 2 we obtain the following equation:

f 2∂r(M
−1∂rM) + 2ff ′M−1∂rM = 0 (4.3.11)

⇒
∂r(f

2M−1∂rM) = 0 (4.3.12)

If we once again introduce the parameter τ(r) from equation (4.2.38) we get

∂τ (M̂
−1∂τM̂) = 0 (4.3.13)

where M̂(τ(r)) = M(r). Looking back at the equations in (4.3.4) we see that we
have the four equations,

∂τ (M̂
−1∂τM̂) = 0

Rrr = 1
4

Tr
(

(M−1∂rM)2
)

Rθθ = 0

Rϕϕ = 0

(4.3.14)

The two last equations actually says the same thing as Rϕϕ = sin2 θRθθ. Now
using what we know about the components of the Ricci tensor the equations of
motion become 

∂τ (M̂
−1∂τM̂) = 0

−2f
′′

f
= 1

4
Tr
(

(M−1∂rM)2
)

d
dr

(ff ′)− 1 = 0

(4.3.15)
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The solution to the last equation will be

f 2 = (r + b)2 + c. (4.3.16)

where b and c are constants of integration. Let us then solve the first equation
from (4.3.15):

∂τ (M̂
−1∂τM̂) = 0 (4.3.17)

⇒
M̂−1∂τM̂ = Q (4.3.18)

⇒
∂τM̂ = M̂Q (4.3.19)

⇒
M̂ = M0 exp(τQ). (4.3.20)

where Q and M0 are some constant matrices yet to be determined. At infinity we
want our solution to be flat, and when looking back at the original four-dimensional
metric, equation (4.1.2), we see that this boundary conditions makes M go to
identity when r goes to infinity. That r goes to infinity is the same as τ goes to
zero. Therefore M0 must be identity if M̂ is to be identity when τ is zero.

From the spherical symmetry we also know that we can make our metric di-
agonal and therefore set Aµ to zero, which forces χ to be constant. This constant
can be arbitrarily chosen since χ describes a potential. Setting χ to zero, makes
M diagonal and from equation (4.3.20) we see that the same is true for Q. The
definition of M states that M = VVT and because V ∈ SL(2,R) the determinant
of M is one, therefore the trace of Q must be zero. If Q is diagonal and traceless
we can write Q as a multiple of the generator h, which is one of the generators of
sl(2,R) and is given by diag{1,− 1}. Therefore we can write,

M̂ = exp(ταh). (4.3.21)

We have one equation left: number two in (4.3.15). We solve this by using our
previous results that M̂−1∂τM̂ = Q = αh,

− 2
f ′′

f
=

1

4
Tr
(

(M−1∂rM)2
)

(4.3.22)

Making the same parameter substitution again we can simplify this to

−8
f ′′

f
=

1

f 4
Tr
(

(M̂−1∂τM̂)2
)

(4.3.23)

⇒

−8f 3f ′′ = Tr
(

(αh)2
)

(4.3.24)
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And since Tr(h2) = 2,

−4f 3f ′′ = α2. (4.3.25)

In the previous calculations we found that f 2 = (r+ b)2 + c, see equation (4.3.16).
From this we see that

f 3 = ((r + b)2 + c)3/2 (4.3.26)

f ′′ =
c

((r + b)2 + c)3/2
(4.3.27)

⇒
f 3f ′′ = c. (4.3.28)

Equation (4.3.25) then relates the constant as −4c = α2. Since f is known we can
calculate τ explicitly using partial fraction decomposition:

τ(r) = −
∫ ∞
r

1

f 2(s)
ds (4.3.29)

=
1

α
ln

(
r + b− α/2
r + b+ α/2

)
. (4.3.30)

Putting this into equation (4.3.21) gives the final form of M ,

M = exp

(
ln

(
r + b− α/2
r + b+ α/2

)
h

)
. (4.3.31)

From the definition of M and the fact that χ = 0 we can relate this to φ. We find
that

φ = − ln

(
r + b− α/2
r + b+ α/2

)
(4.3.32)

Looking back at the metric that we started with from the dimensional reduc-
tion,

gµ̂ν̂ =

(
e−φgµν + eφAµAν eφAµ

eφAν eφ

)
, (4.3.33)

where gµν is the three-dimensional metric, diag{−1,−f 2,−f 2 sin2 θ} and Aµ is now
zero. When inserting this into the metric we arrive at

gµ̂ν̂ = diag

{
−
(
r + b− α/2
r + b+ α/2

)
,−(r + b− α/2)2,−(r + b− α/2)2 sin2 θ,(

r + b+ α/2

r + b− α/2

)}
. (4.3.34)
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In order to compare this to Schwarzschild, we want there to be a factor r2 in front
of the angular components. This can be done by setting b = α/2, which then gives

gµ̂ν̂ =


−
(
r+α
r

)−1
0 0 0

0 −r2 0 0

0 0 −r2 sin2 θ 0

0 0 0
(
r+α
r

)

 . (4.3.35)

If this metric is going to fulfill the Newtonian limit when r >> 1 then α must be
equal to −2MG. We end up at

gµ̂ν̂ =


−
(
1− 2MG

r

)−1
0 0 0

0 −r2 0 0

0 0 −r2 sin2 θ 0

0 0 0
(
1− 2MG

r

)

 , (4.3.36)

where the order of the coordinates are r,θ,φ,t. We see that this is really the
Schwarzschild metric with signature (− − −+). That the signature is different
from the metric in section 2.5.1 has no physical implications, it is just a matter of
choice which one you use.

4.4 Generalization to Reissner-Nordström Black

Holes

In this section we go beyond the Schwarzschild solution and look at black holes
that also carry charge. The metric that describes these black holes is called the
Reissner-Nordström metric. Instead of starting with just the action as in the
previous chapter,

S4[gµ̂ν̂ ] =

∫
R4

d4x
√
gR (4.4.1)

we also require a component that is the stress-energy tensor from Maxwell theory,7

S4[gµ̂ν̂ ] + SMaxwell[gµ̂ν̂ ] =

∫
R4

d4x
√
gR− 1

4

∫
R4

d4x
√
gF µ̂ν̂Fµ̂ν̂ , (4.4.2)

where
Fµ̂ν̂ = ∂[µ̂Aν̂] (4.4.3)

7This can be found in section 2.1 in [19].
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and Aµ is the 4-potential. We perform a dimensional reduction with respect to
time and therefore we once again separate the time-component from the others,
defining

Aµ̂ ≡ (Aµ, V ). (4.4.4)

Here V is the electric potential and Aµ the three dimensional magnetic vector
potential. After the dimensional reduction, Aµ can just like Aµ in section 4.1, be
dualized and represented with a scalar Ṽ , where ∂µṼ = εµνσ(∂νAσ − ∂σAν). To-
gether with the two previous scalars from the metric, we end up with a Lagrangian
dependent on four scalar fields, φ, χ, Ṽ and V :∫

R4

d4x
√
gR− 1

4
F µ̂ν̂Fµ̂ν̂ (4.4.5)

⇓∫
R3

d3x
√
gR−

∫
R3

d3x
√
gL(φ, χ, Ṽ , V ). (4.4.6)

With the same reasoning as when we derived the Schwarzschild solution, we
know that the metric is diagonizable, and thus we can again set χ = 0. The scalar
from the magnetic vector potential, Ṽ , can be set to zero if we assume that no
magnetic monopoles exist and the solution is static. The four dimensional metric
is then

gµ̂ν̂ =

(
gµνe

2φ 0

0 e−2φ

)
(4.4.7)

and the explicit Lagrangian becomes:8

L(φ, V ) = 2(∂µφ∂
µφ− e2φ∂µV ∂

µV ). (4.4.8)

We then make use of the same fundamental object M as in equation (4.1.13), with
a minus sign since we are now working with a timelike reduction and V instead of
χ. After inserting a spherically symmetric metric, the equations of motion will be
similar to those in the solution for Schwarzschild, and from equation (4.3.15) we
see that these are 

∂τ (M̂
−1∂τM̂) = 0

−2
f ′′

f
= Tr

(
(M−1∂rM)2

)
d

dr

(
ff ′
)
− 1 = 0

. (4.4.9)

8Equation (2.32) in [19]
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Note the difference of a factor four in the second equation, which comes from
that the Lagrangian in (4.4.8) is four times the Lagrangian we had when deriving
the Schwarzschild solution. The first and last equation yields identical results as
those in equation (4.3.16) and (4.3.20) respectively. Thus M = M0 exp(τQ) and
f 2 = (r+ b)2 + c, where M0, Q, b and c are constants of integration. If the solution
should be asymptotically flat at infinity, then φ and V must go to zero when r
goes to infinity. When r goes to infinity τ goes to zero and from this we see that
M0 = I. As M is an element of SL(2,R), Q can be written as a linear combination
of the generators of SL(2,R): h, e and f , defined in section 3.4.1. The explicit

expression for exp
(
τ(αh+βe+γf)

)
is derived in appendix G. For this to be equal

to M in (4.1.13), that is antisymmetric in its off-diagonal elements, we see that
γ = −β. M then becomes

M = exp
(
τ(αh+ βe− βf)

)
(4.4.10)

=

 cosh
(√

Eτ
)

+
α sinh(

√
Eτ)√

E

β sinh(
√
Eτ)√

E

−β sinh(
√
Eτ)√

E
cosh

(√
Eτ
)
− α sinh(

√
Eτ)√

E

 , (4.4.11)

where E ≡ α2 − β2. Comparing with M expressed with φ and V we find that

eφ = M22 = cosh
(√

Eτ
)
−
α sinh

(√
Eτ
)

√
E

, (4.4.12)

V =
M12

M22

=
β sinh

(√
Eτ
)

√
E cosh

(√
Eτ
)
− α sinh

(√
Eτ
). (4.4.13)

From the second equation in (4.4.9) we can determine the constant c in f 2. We do
this precisely as in section 4.3 and find that

c = −1

2
Tr
(

(M−1∂τM)2
)

(4.4.14)

= −1

2
Tr(Q2) (4.4.15)

= −(α2 − β2) (4.4.16)

= −E. (4.4.17)

This E is actually equal to the rest mass energy of the black hole, which we soon
will see, thus we can say that c < 0.9 As in section 4.3, τ can then be found to be

τ =
1

2
√
E

ln

(
r + b−

√
E

r + b+
√
E

)
. (4.4.18)

9More about this can be found in section 2.5
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To find the constants α and β we use the newtonian limit with e−2φ as the
gravitational potential and V as the electromagnetic potential. We therefore have
the following conditions

lim
r→∞

e−2φ(r) = 1− 2MG

r
, (4.4.19)

lim
r→∞

V (r) =
Q

r
. (4.4.20)

To do this we calculate the derivative of these potentials with respect to x ≡ 1
r
:

∂

∂x

(
e−2φ(x)

)∣∣∣∣
x=0

=
∂

∂τ

(
e−2φ(τ)

)∣∣∣∣
τ=0

∂τ

∂x

∣∣∣∣
x=0

= (2α)(−1), (4.4.21)

∂V (x)

∂x

∣∣∣∣
x=0

=
∂V (τ)

∂τ

∣∣∣∣
τ=0

∂τ

∂x

∣∣∣∣
x=0

= (β)(−1). (4.4.22)

From this we can directly say that α = MG and β = −Q by using the Newtonian
limit. Also we see that E = (MG)2 − Q2 and that this truly represents the rest
mass energy. What is left is now to insert τ into e−2φ and use this to find the
metric in (4.4.7). After some work we find that,

e−2φ =

cosh
(√

Eτ
)
−
α sinh

(√
Eτ
)

√
E

−2

(4.4.23)

= 4


(
r + b−

√
E

r + b+
√
E

)
+ 1√

r + b−
√
E

r + b+
√
E

−
α
√
E

(
r + b−

√
E

r + b+
√
E

)
− 1√

r + b−
√
E

r + b+
√
E


−2

(4.4.24)

=
(r + b)2 − E
(r + b+ α)2

. (4.4.25)

The numerator is precisely f 2 in (4.3.16) and if the angular components in the
metric are going to be r2 and r2 sin2 θ the denominator must be r2, thus b = −α.
Finally we arrive at,

e−2φ =
(r − α)2 − E

r2
(4.4.26)

=
r2 − 2MGr +Q2

r2
. (4.4.27)
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Consequently f 2 is

f 2 = r2 − 2MGr +Q2. (4.4.28)

Inserting this into the original four-dimensional metric,

gµ̂ν̂ =

(
gµνe

2φ 0

0 e−2φ

)
(4.4.29)

then gives the Reissner-Nordström metric,

gµ̂ν̂ =


−
(

1− 2MG
r

+ Q2

r2

)−1

0 0 0

0 −r2 0 0

0 0 −r2 sin2 θ 0

0 0 0
(

1− 2MG
r

+ Q2

r2

)

 , (4.4.30)

where the order of the coordinates are r,θ,φ,t. A discussion on the Reissner-
Nordström metric is found in section 2.5.

4.5 Further Use of Dimensional Reduction

In the previous sections, we have shown how a sigma model can be used to obtain
the Schwarzschild and the Reissner-Nordström black hole solution. Compared to
the simple derivation of the metric of section 2.5.1, the method presented prior in
this chapter required significantly more work, even though many important steps
were only mentioned briefly. However, the sigma model is very powerful as it
provides a general tool to derive black hole solutions. In addition, it provides a
framework to obtain entire classes of black hole solutions from a single solution [12].
Sigma models also play an important role in the discussion of uniqueness of black
hole solutions [20]. In the following paragraphs, three main paths of developing
different types of solutions will be discussed.

Firstly, other kinds of black hole solutions can be obtained using the the same
method, but a different action. Alternatively, the dimensional reduction can be
performed on another dimension. The more general the action, the larger the class
of solutions will be. This will affect the Lagrangian after the dimensional reduction,
which results in other quotient groups than SL(2,R)/SO(2) or SL(2,R)/ SO(1,1),
as used in the Schwarzschild example. Otherwise, the method is similar. After
obtaining the Schwarzschild and Reissner-Nordstöm solutions, a natural next step
is to find the solutions to the axially symmetric, rotating Kerr (uncharged) or
Kerr-Newman (charged) black holes.
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Another path to follow from the Schwarzschild solution is to generate other so-
lutions of the Schwarzschild family. Here, a few words about the geodesic equation
obtained in section 4.2.3 is appropriate. All spherically symmetric black holes have
geodesic equations of the coset space G/K.10 Apart from sometimes being useful
for finding the solution, the geodesic equation allows for an analysis of the general
properties of the metric without explicitly finding it[12]. Of the two characteristics
of a specific geodesic, the starting point and the initial velocity, the initial velocity
corresponds to conserved charges in four dimensions. Since K is the subgroup of
G that corresponds to a fixed starting point, the set of conserved charges is gener-
ated by transformations of K[18]. All spherically symmetric non-extremal11 black
holes can be generated using K-transformation starting from Schwarzschild.[18]
[12]. The principle of generating new solutions is as follows: starting with the
parameter Vseed defined as in equation (4.1.8), corresponding to one solution, we
can form

Mseed = VseedVTseed. (4.5.1)

Mseed will then, according to (4.1.12), transform as

Mseed →Mg = gMseedg
T , g ∈ G (4.5.2)

If we can factorize Mg :
Mg = VgVTg , (4.5.3)

the new solution Vg is obtained. Though simple in principle, solutions are not
generated too easily [21]. Especially the factorization is often very complicated.

A third possibility to continue exploring dimensional reduction is to reduce
on one more dimension, to the two-dimensional case. This path is however much
more complicated than the previous two, both regarding dimensional reduction
and factorization when classifying solutions. In return, it is very rewarding as
it is possible to obtain all solutions with two independent spacetime symmetries
from Minkowski metric. This technique is therefore still object to intense research.
[14, 21]

10This is however not true for other symmetries; for example an axially symmetric black hole
will not have such a geodesic.

11Extremal black holes have a nilopotent conserved charge, see [18].



5
Conclusion

In this thesis, we have described a general method of dimensional reduction from
four to three dimensions that reveals hidden symmetries of black hole solutions.
Using this technique, we have obtained the simplest possible form of a black hole,
the Schwarzschild solution. Using the same technique, we have also presented how
to derive the Reissner-Nordström black hole and thus demonstrated the method’s
power of versatility. Thereby, the aim of the project was achieved. By this manner
of coding and utilizing symmetries we have paved a way to finding more com-
plicated and exotic metrics that could perhaps not have been found with a less
sophisticated method.

A next step to continue the work of this thesis is to generate other solutions
belonging to the Schwarzschild or Reissner-Nordström families, as discussed in
section 4.5. Alternatively, dimensional reduction can be performed on a more
general action resulting in an larger class of solutions. These solutions can then
be generated by acting with elements belonging to the coset group of the relevant
action.

Although dimensional reduction was used to derive the Schwarzschild and
Reissner-Nordström solutions decades ago, it is still subject to intense research.
Among the topics of recent research we find the use of sigma models to investigate
black hole solutions in supersymmetric theories of gravity [18, 22]. Another cur-
rent field of research is on five-dimensional supergravity, see for example [18], and
studies of dimensional reduction to two dimensions [21].

When performing a dimensional reduction on multiple dimensions or a more
complicated action, the resulting Lagrangian becomes all the more complicated and
contains all the more terms. The merit of this is exposing even deeper symmetries.
There is hope of reducing the eleven-dimensional super-gravity to two dimensions,
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which would expose the full set of symmetries.1 Thereby one could generate any
black hole solution simply from the Minkowski metric.

Hopefully, this paper has provided a first glance into the fascinating theory of
dimensional reduction and given some indication as to its strengths, its implications
and its possibilities.

1This set is infinite-dimensional and is described by a Kac-Moody algebra, which is a Lie
algebra defined by generators and relations of a generalized Cartan matrix. [16]
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A
Transformations

For the sake of brevity, this appendix adheres to the convention of denoting coor-
dinates of flat Minkowski space as ξα with indices α, β, γ. General coordinates of
curved spacetime are written as xµ with indices µ, ν, σ, ρ...

A.1 Transformation of the Partial Derivative

In chapter 2.3.2 the covariant derivative is presented, as the partial derivative ∂µ
does not transform lika a tensor. The transformation of ∂νV

µ can be calculated
by use of the chain rule, according to

∂′νV
′µ =

∂V ′µ

∂x′ν
=

∂

∂x′ν

(
∂x′µ

∂xτ
V τ

)
=

∂xρ

∂x′ν
∂

∂xρ

(
∂x′µ

∂xτ
V τ

)
=

∂xρ

∂x′ν
∂x′µ

∂xρ
∂V ρ

∂xρ
+
∂xρ

∂x′ν
∂2x′µ

∂xρ∂xτ
V τ . (A.1.1)
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A.2 Transformation of the Affine Connection

Here we make use of an alternative and equivalent definition of the affine connection
compared to the previous definition of (2.3.8), which can also be written as

Γνµλ ≡
∂xν

∂ξα
∂2ξα

∂xµ∂xλ
. (A.2.1)

It transforms according to

Γ′µνλ =

∂x′µ

∂ξα
∂2ξα

∂x′ν∂x′λ
=(

∂x′µ

∂ξα

)
∂

∂x′ν

(
∂ξα

∂x′λ

)
=(

∂x′µ

∂xρ
∂xρ

∂ξα

)
∂xσ

∂x′ν
∂

∂xσ

(
∂xκ

∂x′λ
∂ξα

∂xκ

)
=(

∂x′µ

∂xρ
∂xρ

∂ξα

)
∂xσ

∂x′ν

(
∂2xκ

∂xσ∂x′λ
∂ξα

∂xκ
+
∂xκ

∂x′λ
∂2ξα

∂xσ∂xκ

)
=

∂x′µ

∂xρ
∂xρ

∂ξα
∂xσ

∂x′ν
∂2xκ

∂xσ∂x′λ
∂ξα

∂xκ
+
∂x′µ

∂xρ
∂xρ

∂ξα
∂xσ

∂x′ν
∂xκ

∂x′λ
∂2ξα

∂xσ∂xκ
=

∂x′µ

∂xρ
∂xσ

∂x′ν
∂

∂xσ

(
∂xκ

∂x′λ

)(
∂xρ

∂ξα
∂ξα

∂xκ

)
+
∂x′µ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′λ

(
∂xρ

∂ξα
∂2ξα

∂xσ∂xκ

)
=

∂x′µ

∂xρ
∂

∂x′ν

(
∂xκ

∂x′λ

)
δρκ +

∂x′µ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′λ
Γρσκ =

∂x′µ

∂xρ
∂2xρ

∂x′ν∂x′λ
+
∂x′µ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′λ
Γρσκ. (A.2.2)

When coupled with a vector, the affine connection transforms according to

Γ′µνλV
′λ =(

∂x′µ

∂xρ
∂2xρ

∂x′ν∂x′λ
+
∂x′µ

∂xρ
∂xσ

∂x′ν
∂xκ

∂x′λ
Γρσκ

)(
∂x′λ

∂xτ
V τ

)
=

∂x′µ

∂xρ
∂2xρ

∂x′ν∂x′λ
∂x′λ

∂xτ
V τ +

∂x′µ

∂xρ
∂xσ

∂x′ν
ΓρσκV

τ ∂x
κ

∂x′λ
∂x′λ

∂xτ
=

∂x′µ

∂xρ
∂2xρ

∂x′ν∂x′λ
∂x′λ

∂xτ
V τ +

∂x′µ

∂xρ
∂xσ

∂x′ν
ΓρσκV

τδκτ =

∂x′µ

∂xρ
∂2xρ

∂x′ν∂x′λ
∂x′λ

∂xτ
V τ +

∂x′µ

∂xρ
∂xσ

∂x′ν
ΓρσκV

κ. (A.2.3)
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Using the following relation,

∂

∂xρ
(δρτ ) = 0

⇒
∂

∂xτ

(
∂xρ

∂x′ν
∂x′µ

∂xρ

)
= 0

⇒
∂x′λ

∂xτ
∂2xρ

∂x′λ∂x′ν
∂x′µ

∂xρ
+
∂xρ

∂x′ν
∂2x′µ

∂xτ∂xρ
= 0

⇒
∂x′λ

∂xτ
∂2xρ

∂x′λ∂x′ν
∂x′µ

∂xρ
= − ∂x

ρ

∂x′ν
∂2x′µ

∂xτ∂xρ
(A.2.4)

we arrive at

Γ′µνλV
′λ =

∂x′µ

∂xρ
∂xσ

∂x′ν
ΓρσκV

κ − ∂xρ

∂x′ν
∂2x′µ

∂xτ∂xρ
V τ (A.2.5)

where the last term is exactly the same as in the transformation for ∂′νV
′µ.

A.3 Deriving the Affine Connection From the

Metric

As discussed in chapter 2.3.2, the affine connection does not transform as a tensor,
but coordinate transformation result as in equation (2.3.6). To show this we begin
by observing that a derivate of the metric becomes

∂µgνλ =
∂

∂xµ

(
∂ξα

∂xν
∂ξβ

∂xλ
ηαβ

)
=

∂2ξα

∂xν∂xµ
∂ξβ

∂xλ
ηαβ +

∂ξα

∂xν
∂2ξβ

∂xλ∂xµ
ηαβ. (A.3.1)

This shows some similarities with the affine connection, with some modification.
One thing to note is the following relation

∂ξβ

∂xµ
Γµνλ =

∂ξβ

∂xµ
∂xµ

∂ξα
∂2ξα

∂xν∂xλ
= δβα

∂2ξα

∂xν∂xλ
=

∂2ξβ

∂xν∂xλ
, (A.3.2)

where, by replacing these terms in equation (A.3.1) for ξβ and ξα respectively, the
relation can be written as



APPENDIX A. TRANSFORMATIONS 88

∂µgνλ =
∂ξα

∂xρ
Γρνµ

∂ξβ

∂xλ
ηαβ +

∂ξβ

∂xρ
Γρλµ

∂ξα

∂xν
ηαβ = Γρνµgρλ + Γρλµgρν . (A.3.3)

From here terms are taken as they are in equation (A.3.3), then added with the
indices switched µ ↔ λ, to lastly be subtracted where the indices have been
switched like µ ↔ ν. This, with the affine connection’s symmetric properties,
gives

∂µgνλ + ∂λgµν − ∂λgνµ
=

Γρνµgρλ + Γρλµgρν + Γρνλgρµ + Γρµλgρν − Γρµνgρλ − Γρλνgρµ

= {Γρνµ = Γρµν} =

2Γρµλgρν . (A.3.4)

This leads us to this very important results, which relates the affine connection to
the metric according to:

Γρµλ =
1

2
gρν (∂µgνλ + ∂λgµν − ∂νgλµ) . (A.3.5)

A.4 Geodesics

Here the concept of a geodesic, as presented in section 2.3.3, will be further dis-
cussed, as well as explicitly calculated. Initially we observe what would constitute
a “straight line” on a curved manifold. In flat space a straight line fulfills the
relation

d2ξα

dτ 2
= 0, (A.4.1)

where ξα are the Cartesian coordinates of the curve, dependent on a parameter τ .
Expressed in the general coordinates of a differentiable curved manifold, we have
that

d2ξα

dτ 2
=

d

dτ

(
dξα

dτ

)
=

d

dτ

(
∂ξα

∂xµ
dxµ

dτ

)
=

(
d

dτ

∂ξα

∂xµ

)
dxµ

dτ
+
∂ξα

∂xµ
d2xµ

dτ 2

=

(
dxν

dτ

∂ξα

∂xν∂xµ

)
dxµ

dτ
+
∂ξα

∂xµ
d2xµ

dτ 2
. (A.4.2)
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Analogous to equation (A.4.1) in flat space, this expression should be equal to
zero. By multiplying both sides with ∂xσ

∂ξα
and using the fact that ∂xσ

∂ξα
∂ξα

∂xµ
= δσµ , we

have that (
dxν

dτ

∂ξα

∂xν∂xµ

)
dxµ

dτ
+
∂ξα

∂xµ
d2xµ

dτ 2
= 0

⇒
∂xσ

∂ξα

((
dxν

dτ

∂ξα

∂xν∂xµ

)
dxµ

dτ
+
∂ξα

∂xµ
d2xµ

dτ 2

)
= 0

⇒
∂xσ

∂ξα
∂ξα

∂xν∂xµ
dxµ

dτ

dxν

dτ
+ δσµ

d2xµ

dτ 2
= 0

⇒
d2xσ

dτ 2
+
∂xσ

∂ξα
∂ξα

∂xν∂xµ
dxµ

dτ

dxν

dτ
= 0

⇒
d2xσ

dτ 2
+ Γσνµ

dxµ

dτ

dxν

dτ
= 0. (A.4.3)
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B
Newtonian Limit Approximation

The Newtonian limit approximation states what requirements the metric must have
far from the source to not disagree with Newtonian gravity. In the Newtonian limit
the particle that is affected by the field must be moving slowly, the field must be
weak and it also has to be static with respect to time. These three properties
will be strictly defined later on and are used in sections 2.4, 2.5 and throughout
chapter 4.

To start with, we know that for a free particle that is not affected by gravity,
the equations of motion is just as for a straight line,

d2xµ

dτ 2
= 0. (B.0.1)

In the presence of gravity, space will be curved and the equations of motion for
a free particle will be that of a straight line in curved spacetime. This is then
represented by the geodesic equation (2.3.15),

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0. (B.0.2)

As the particle is supposed to be moving slowly the space coordinates must be
changing much slower than the time coordinate, therefore,∣∣∣∣dxidτ

∣∣∣∣� ∣∣∣∣ dtdτ

∣∣∣∣ (B.0.3)

where xi are the space coordinates. From this the geodesic equation can be ap-
proximated by,

d2xµ

dτ 2
+ Γµtt

(
dt

dτ

)2

= 0. (B.0.4)
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The relevant components of the connection can be found from,

Γµtt =
1

2
gµν(∂tgνt + ∂tgtν − ∂νgtt). (B.0.5)

Since the field is static the metric cannot be time dependent and therefore the
terms with time derivatives in the connection disappear. These components of the
connection result in,

Γµtt = −1

2
gµν∂νgtt. (B.0.6)

The last requirement for the Newtonian limit was that the field would be weak.
This is the same as saying that the metric is equal to the flat metric, plus a small
perturbation,

gµν = ηµν + hµν , |hµν | � 1. (B.0.7)

From the fact that gµνg
µσ = δσν , see equation (2.3.2), we then find that gµν =

ηµν − hσρη
µσηνρ. Inserting this into equation (B.0.6) and only keeping the first

order terms of the perturbation hµν we find that,

Γµtt = −1

2
ηµν∂νhtt. (B.0.8)

Continuing with the equations of motion, (B.0.4), these become

d2xµ

dτ 2
=

1

2
ηµν∂νhtt

(
dt

dτ

)2

. (B.0.9)

To be able to compare with Newtonian gravity, we look at the equations for the
time and space coordinates separately. These are then,

d2t

dτ 2
= 0

d2xi

dτ 2
=

1

2
∂ihtt

(
dt

dτ

)2 (B.0.10)

The first equation, which states that dt
dτ

is constant, is consistent with Newton.

Dividing the second equation with

(
dt

dτ

)2

leeds to,

d2xi

dt2
=

1

2
∂ihtt (B.0.11)

and we see that this very much looks like the Newtonian equation of motion for
gravity, which says that the acceleration of a particle is equal to the divergence
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of the gravitational potential, ~a = −∇V . To arrive at this, the time component
of the small perturbation must be htt = −2V and therefore the time component
of the metric will be gtt = −(1 + 2V ). The gravitational potential in Newtonian
theory is V = −GM

r
so in the Newtonian limit gtt must asymptotically approach

−(1− 2GM
r

) when r →∞.
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C
Manifolds

Manifolds are mathematical constructs used to describe the curved spacetime of
general relativity, as presented in chapter 2. In short, manifolds describe com-
plicated geometries by a collection of overlapping coordinate systems. To give
a somewhat more detailed definition we need to start with some basic concepts:
map, chart, atlas.

Map

A map is a relationship between two sets for which the each element in one set M
is assigned one element in another set N . The map φ is a function on the form

φ : M → N. (C.0.1)

A map has an inversion φ−1 if it is both onto and one-to-one, meaning that the
map assigns each element in N and does so for only one element in M . This is
analogous to an invertible function in one-dimensional calculus.

The two sets are diffeomorphic if there exists a map that satisfies that it and
its inversion are infinitely differentiable, also known as smooth.

Chart

A chart or coordinate system φ is an invertible map between an open subset U of
a set M to an open set of coordinates in Rn.

φ : U → R
n. (C.0.2)
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The trouble with complicated geometries, such as spacetime in the vicinity of
a black hole, is that it is not always possible to describe the whole geometry, the
whole set, with a single coordinate system. This necessitates the use of overlapping
charts to describe the whole geometry. A simple one-dimensional example would
be describing the geometry of a circle. Using a single chart, where each point
on the circle is assigned an angle coordinate, one wouldn’t be able to represent
all of the points on the circle without having an overlap (given that the chart’s
coordinates are an open set) and thus losing the criterion of inversion.

Atlas

An atlas is an indexed collection of charts φi on subsets Ui of the set M that fulfills
two criterion.

1. Firstly, the charts cover the totality of M , meaning that the subgroups Ui
must overlap.

2. Secondly, the charts are smoothly sown together, meaning the overlaps be-
have in a reasonable manner. More specifically, if two subsets Ua and Ub
overlap in a subset Uab, then the chart φb ◦ φ−1

a takes a point from φa(Uab)
to φb(Uab).

Manifold

Finally, a manifold is a set M with a maximal atlas, meaning one that contains
every possible chart. The point of defining it as with a maximal atlas is so that
equivalent spaces described with different coordinate systems don’t count as dif-
ferent manifolds.

An important consequence of the definition is that a manifold always looks
flat locally. This means that geometries that cannot be regarded as locally flat
everywhere are not manifolds, such as a non-smooth curve.

The precise definition is not very important in this matter. The important
thing to remember from this section is as follows. The description of spacetime
of general relativity is a manifold. Sometimes one cannot describe the complete
geometry of a curved spacetime with a single coordinate system, instead one has
to use a collection of overlapping coordinate systems.



D
Variation of a Determinant

The following calculations är used for the variation of the Schwarzschild action in
section 2.4.3. The variation of a determinant is given by

δ(DetA) = DetATr(A−1δA). (D.0.1)

To show this, we start by writing out the variation:

δ(ln DetA) = ln Det(A+ δA)− ln DetA

= ln
Det(A+ δA)

DetA
= ln DetA−1(A+ δA)

= ln Det(1 + A−1δA). (D.0.2)

Recall from linear algebra that the trace of a matrix equals the sum of it’s eigen-
values, the determinant of a matrix equals the product of it’s eigenvalues, and that
the exponential of a matrix has the exponentials of the eigenvalues as eigenvalues,
thus

Det(expA) = exp(TrA). (D.0.3)

We can also note that (1 + A−1δA) is the first order approximation of the
expression exp(A−1δA), so (D.0.2) can be written as

δ(ln DetA)→ ln Det exp(A−1δA)

= ln exp(Tr(A−1δA))

= Tr(A−1δA). (D.0.4)
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By the chain rule one also acquire

δ(ln DetA) =
1

DetA
δDetA. (D.0.5)

Together the result is

δ(DetA) = DetATr(A−1δA), (D.0.6)

which trivially holds also for the absolute value of the determinant.



E
Geodesic Equation

We want to derive the equation (4.2.42) from the variation of the action,

S ′G = 4π

∫ 0

τ(0)

dτγij(Φ)∂τΦ
i∂τΦ

j. (E.0.1)

Variating with respect to Φ results in,

δΦS
′
G = 4π

∫ 0

τ(0)

dτ(δΦ(γij(Φ))∂τΦ
i∂τΦ

j + 2γij(Φ)∂τΦ
i∂τδΦ

j), (E.0.2)

see equation (4.2.41). For the first term we use the fact that the derivative of the
metric with respect to coordinates is given as,

∂µgνλ = Γρνµgρλ + Γρλµgρν

⇒
δgνλ = (Γρνµgρλ + Γρλµgρν)δx

µ. (E.0.3)

Here we remember that the coordinates, metric and affine connection are in regards
to the coset space and therefore we write this as,

δΦγij = (Υm
ikγmj + Υm

jkγmi)δΦ
k, (E.0.4)

where Υk
ij is the affine connection for the group. Using this in equation (E.0.2),

along with partial integration, the second term equates,

δΦS
′
G = 4π

∫ 0

τ(0)

dτ(δΦ(γij(Φ))∂τΦ
i∂τΦ

j + 2γij(Φ)∂τΦ
i∂τδΦ

j)

= 4π

∫ 0

τ(0)

dτ((Υm
ikγmj + Υm

jkγmi)δΦ
k∂τΦ

i∂τΦ
j − 2∂τ (γij(Φ)∂τΦ

i)δΦj)

(E.0.5)
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Because the indices k and j for the first and second term are only dummy indices
we can change these and pull out the factor δΦk from both terms,

δS ′G = 4π

∫ 0

τ(0)

dτδΦk((Υm
ikγmj + Υm

jkγmi)∂τΦ
i∂τΦ

j − 2∂τ (γik(Φ)∂τΦ
i)) (E.0.6)

If this is going to be zero for all δΦk then we must have that

(Υm
ikγmj + Υm

jkγmi)∂τΦ
i∂τΦ

j − 2∂τ (γik(Φ)∂τΦ
i) = 0

⇒
2∂τ (γik(Φ)∂τΦ

i)− (Υm
ikγmj + Υm

jkγmi)∂τΦ
i∂τΦ

j = 0

⇒
2∂τγik(Φ)∂τΦ

i + 2γik(Φ)∂2
τΦ

i − (Υm
ikγmj + Υm

jkγmi)∂τΦ
i∂τΦ

j = 0

⇒

2

(
∂γik
∂Φj

∂τΦ
j

)
∂τΦ

i + 2γik(Φ)∂2
τΦ

i − (Υm
ikγmj + Υm

jkγmi)∂τΦ
i∂τΦ

j = 0

⇒
2(Υm

ijγmk + Υm
kjγmi)∂τΦ

j∂τΦ
i + 2γik(Φ)∂2

τΦ
i − (Υm

ikγmj + Υm
jkγmi)∂τΦ

i∂τΦ
j = 0

⇒
2γik(Φ)∂2

τΦ
i + (2Υm

ijγmk + 2Υm
kjγmi −Υm

ikγmj −Υm
jkγmi)∂τΦ

i∂τΦ
j = 0

(E.0.7)

To calculate the sum of the affine connections we first notice that it is symmetric
in its two lower indices, which can be used to sum the second and fourth term.
This means that,

2γik(Φ)∂2
τΦ

i + (2Υm
ijγmk + Υm

kjγmi −Υm
ikγmj)∂τΦ

i∂τΦ
j = 0 (E.0.8)

The sum of the two last connections are antisymmetric in i and j, so they will not
contribute because they are contracted with the symmetric tensor ∂τΦ

i∂τΦ
j. This

gives us,

2γik(Φ)∂2
τΦ

i + (2Υm
ijγmk + Υm

kjγmi −Υm
ikγmj)∂τΦ

i∂τΦ
j = 0

⇒
2γik(Φ)∂2

τΦ
i + 2Υm

ijγmk∂τΦ
i∂τΦ

j = 0

⇒
γmk(Φ)(∂2

τΦ
m + Υm

ij∂τΦ
i∂τΦ

j) = 0

⇒
∂2
τΦ

m + Υm
ij∂τΦ

i∂τΦ
j = 0 (E.0.9)

This is then the geodesic equation on the coset space.



F
Equivalencies of Equations

We want to prove the following:

DµPµ = 0⇒ ∇µ(M−1∂µM), (F.0.1)

from section 4.3, where DµPµ = ∇µ + [Qµ,Pµ]. We start by expanding the com-
mutator and writing Aµ for V−1∂µV ,

gµν [Pν ,Qµ] = (F.0.2)

=gµν(PνQµ −QµPν)

=
1

4
gµν
(
(Aν + ATν )(Aµ − ATµ )− (Aµ − ATµ )(Aν + ATν )

)
=

1

4
gµν
(
(Aν + ATν )(Aµ − ATµ )− (Aν − ATν )(Aµ + ATµ )

)
=

1

4
gµν
(
AνAµ + ATν Aµ − AνATµ − ATν ATµ − AνAµ − AνATµ + ATν Aµ + ATν A

T
µ

)
=

1

2
gµν
(
ATν Aµ − AνATµ

)
(F.0.3)

Using this in the original equation leads to

0 = ∇µPµ + [Qµ,Pµ]

= ∇µP
µ − [P µ,Qµ]

= ∇µ(gµνPν)− gµν [Pν ,Qµ]

= gµν∂µPν − Γνµλg
µλPν − gµν [Pν ,Qµ]

= gµν∂µPν − Γνµλg
µλPν −

1

2
gµν
(
ATν Aµ − AνATµ

)
. (F.0.4)
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Comparing this to the other end of the relation that we wish to prove this gives

∇µ(M−1∂µM) = ∇µ(gµνM−1∂νM)

= ∇µ

(
gµν(V−1)T 2PνVT

)
= gµν∂µ

(
(V−1)T 2PνVT

)
− Γνµλg

µλ
(
(V−1)T 2PνVT

)
= gµν(−V−1∂µVV−1)T 2PνVT + gµν(V−1)T 2∂µPνVT

+ gµν(V−1)T 2Pν∂µVT − Γνµλg
µλ
(
(V−1)T 2PνVT

)
. (F.0.5)

Multiply by (V−1)T from the right and (V−1)T from the left, and divide by 2

1

2
(V−1)T∇µ(M−1∂µM)(V−1)T =

= −gµν(V−1∂µV)T Pν + gµν∂µPν + gµνPν∂µVT (V−1)T − Γνµλg
µλPν

= gµν∂µPν − Γνµλg
µλPν + gµν

(
−(V−1∂µV)T Pν + Pν(V−1∂µV)T

)
= gµν∂µPν − Γνµλg

µλPν +
1

2
gµν
(
−ATµ (Aν + ATν ) + (Aν + ATν )ATµ

)
= gµν∂µPν − Γνµλg

µλPν +
1

2
gµν
(
−ATν (Aµ + ATµ ) + (Aν + ATν )ATµ

)
= gµν∂µPν − Γνµλg

µλPν −
1

2
gµν
(
ATν Aµ − AνATµ

)
. (F.0.6)

Comparing these to results we arrive at

∇µ(M−1∂µM) = 2VT (DµP
µ)(V−1)T (F.0.7)

and therefore
DµPµ = 0⇒ ∇µ(M−1∂µM). (F.0.8)



G
Exponential of the Generators of

SL(2,R)

In this appendix we calculate

exp
(
τ(αh+ βe+ γf)

)
, (G.0.1)

for arbitrary α, β and γ and where h, e and f are given as

h =

(
1 0

0 −1

)
e =

(
0 1

0 0

)
f =

(
0 0

1 0

)
. (G.0.2)

The matrix in the exponent is therefore,

A = τ(αh+ βe+ γf) =

(
ατ βτ

γτ −ατ

)
. (G.0.3)

To be able to perform the exponential of this matrix we want to diagonalize it and
for this we need its eigenvalues and eigenvectors. These are

λ1,2 = ±
√
α2 + γβτ v1,2 =

 α±
√
α2+γβ

γ

1

 . (G.0.4)

The matrix is diagonalizable for E = α2 + γβ > 0 and as this quantity is found to
be the rest mass energy of the black hole in section 4.4, it is valid to assume that
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this is greater than zero. With the eigenvalues and eigenvectors the matrix can be
written as,

A =
(
v1 v2

)( λ1 0

0 λ2

)(
v1 v2

)−1

=

(
α+
√
E

γ
α−
√
E

γ

1 1

)( √
Eτ 0

0 −
√
Eτ

) γ

2
√
E

√
E−α

2
√
E

− γ

2
√
E

√
E+α

2
√
E

 . (G.0.5)

The exponential of the matrix then becomes,

exp(A) =
(
v1 v2

)( exp(λ1) 0

0 exp(λ2)

)(
v1 v2

)−1

=

(
α+
√
E

γ
α−
√
E

γ

1 1

)(
exp(
√
Eτ) 0

0 exp(−
√
Eτ)

) γ

2
√
E

√
E−α

2
√
E

− γ

2
√
E

√
E+α

2
√
E


=

(
α+
√
E

γ
α−
√
E

γ

1 1

) γ

2
√
E

exp(
√
Eτ)

√
E−α

2
√
E

exp(
√
Eτ)

− γ

2
√
E

exp(−
√
Eτ)

√
E+α

2
√
E

exp(−
√
Eτ)


=

 cosh(
√
Eτ) + α√

E
sinh(

√
Eτ) β√

E
sinh(

√
Eτ)

γ√
E

sinh(
√
Eτ) cosh(

√
Eτ)− α√

E
sinh(

√
Eτ)

 .

(G.0.6)
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