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Blade Element Momentum Method for a Counter-Rotating Pump-Turbine
Study of applicability
CRISTÓBAL IBÁÑEZ URIBE
Department Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Blade Element Momentum (BEM) methods are widely used for initial aerodynamic
analysis of wind and tidal turbines, as well as aircraft and marine propellers. Mainly
because they use less computational resources and can give fairly accurate results.
This thesis studies the applicability of such method for load prediction on the runner
blades of a model scale axial shaft-driven Counter-Rotating Pump-Turbine (CRPT).

One of the main assumptions and modifications adopted in the BEM method was
to omit the axial induction factor, a ,and let the axial velocity be constant. This
considering that the volumetric flow rate, q, and cross-sectional area, A, must remain
unchanged throughout the turbomachine. Additionally, an attempt to include the
constant pressure difference across the rotors as extra loading being exerted on the
blade, as well as a suggestion on how to apply the BEM method on the downstream
rotor are presented and evaluated.

The data needed to implement the BEM method is created by running several
CFD simulations using OpenFOAM. These simulations produce 2D aerodynamic
airfoil-like characteristics of lift and drag coefficients, Cl and Cd, at different angles
of attack (AoA) and Re numbers in both pump and turbine mode for different
blade profiles along the radial direction. Furthermore, validation cases at different
operating conditions are also simulated with OpenFOAM assuming steady-state
flow. This is done for different geometries. One of them considers the turbomachine
with both runners operating simultaneously and the other geometries isolate each
runner individually.

It is concluded that it is possible to use the BEM method with a reasonable amount
of error for certain operating conditions. Most importantly the behaviour of the
dimensionless thrust and power coefficients, CT and CP at different tip speed ratios,
TSR, tends to follow the same trend as CFD. Further work needs to be done in
order to fully validate such a method for this type of turbomachine.

Keywords: BEM, CFD, Counter-Rotating, Pump-Turbine, Hydro-power, Open-
FOAM.
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Preface
This projects evaluates the applicability of the classical Blade Element Momentum
(BEM) method, widely used in wind turbine industry, to calculate the thrust and
torque loadings on both runners of a model scale Counter-Rotating Pump-Turbine
(CRPT) machine. The objective is to develop a BEM-based MATLAB routine that
could eventually be incorporated to a predictive system control that keeps track of
the reference power. Several CFD simulations with OpenFOAM were carried out
to create the data necessary to run and also validate the BEM-method proposed.
The examiner was Håkan Nilsson, full professor at the Department of Mechanics
and Maritime Sciences, Division of Fluid Dynamics at Chalmers.
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Nomenclature

Abbreviations
ALPHEUS Augmenting Grid Stability Through Low Head Pumped

Hydro Energy Utilization and Storage
BEM Blade Element Momentum
CFD Computational Fluid Dynamics
CRPT Counter-Rotating Pump Turbine
MRF Multiple Rotating Frames of reference
OpenFOAM Open Source Field Operation And Manipulation
RANS Reynolds Averaged Navier Stokes
RPT Reversible Pump-Turbine

Dimensionless Quantities
Cd Drag coefficient
Cl Lift coefficient
Cn Axial force coefficient
CP Power coefficient
CQ Torque coefficient
CT Thrust coefficient
Ct Tangential force coefficient
J Advance ratio
TSR Tip speed ratio

Greek Letters
α, AoA Angle of attack
β Twist angle
η Efficiency
ν Kinematic viscosity
Ω Runner rotational speed
φ Flow angle
ρ Density
σ Solidity
F Prandtl loss factor

Roman Letters
ṁ Mass flow
A Area
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Nomenclature

a Axial induction factor
a′ Tangential induction factor
a′d Tangential induction downstream runner
a′u Tangential induction upstream runner
Fn Axial (normal) force component
Ft Tangential force component
H Head difference
P Power
p Pressure
ptot Total pressure
Q Torque
q Volumetric flow
T Thrust
U0 Freestream incoming axial velocity
uR Axial velocity at the rotor plane
uθ Tangential velocity
Z Number of rotor blades
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1
Introduction

1.1 Background
Electric load balance when there is high electrical power demand and low supply
can be obtained by means of pumped-storage hydroelectricity. In this sense the
EU-project ALPHEUS [1], where Chalmers is one of the academic partners, was
conceived. Its main purpose is to improve reversible water pump-turbine (RPT)
technology, as well as the civil infrastructure needed to make pumped hydro-storage
economically viable in shallow coastal environments and places with flat topography,
like e.g. Belgium or the Netherlands.

Given that a CFD simulation of the flow through the RPT is computationally ex-
pensive and a time consuming process, the purpose of this thesis is to develop a
faster method that can be incorporated to a multi-dimensional model-based predic-
tive control system that will keep track of the reference power. The Blade Element
Momentum (BEM) method, widely used in wind power assessment, fulfills this re-
quirement and can be implemented in a simple MATLAB routine. Adaptations to
the classical BEM method can be tested to try and make it adequate to the current
turbomachine.

1.2 Aim
The aim of this thesis is to develop and validate a BEM-based code in MATLAB for
a Counter-Rotating Pump-Turbine (CRPT) design. The code will output the total
thrust, T , torque, Q, and power, P , for any combination of incoming volumetric
flow, q, and rotational speed of the rotors, Ω.

The validation is carried out using the open source CFD software OpenFOAM. The
intention is to evaluate and assess the validity of implementing a BEM method
for the current turbomachine. No such efforts are known to have been carried out
for either a water pump or a turbine configuration. Hopefully this effort could be
reviewed in the future, or serve as inspiration to fully validate such a method that
can save a lot of computational resources and be coupled to a predictive control
system of a turbomachine.
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1. Introduction

1.3 Limitations
In this work only the current design in model scale will be used to carry out the
BEM-based code and the validation. No focus will be put in optimizing the existing
design in terms of improving its efficiency or performance.

In-depth analysis of the flow through the CRPT and full flow characterization are
not the main purpose of the turbomachine’s CFD simulations. The post-processing
of these simulations is focused on extracting what is needed to compare and validate
the BEM calculations at different operating conditions. Namely the loadings on the
rotor blades.
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2
Theoretical Framework

2.1 Counter-Rotating Pump-Turbine
Reversible Pump-Turbine designs used in pumped-storage schemes are generally
based on the Francis turbine design [4]. However these have limited performance
under low-head scenarios when there is a small height difference between both reser-
voirs. A shaft-driven axial CRPT configuration becomes a promising alternative
[10]. In pump mode it can operate at lower rotational speeds, preferable head char-
acteristics and at high efficiency for a wider range of operating conditions than a
conventional single rotor configuration [5].

Figure 2.1: Schematic view of the CRPT geometry. Runner 1 in blue and
Runner 2 in green color.

Figure 2.1 shows a schematic view of both counter-rotating runners inside the guid-
ing pipe where water flows through in any given direction depending on which oper-
ating mode the machine is working on. In this sense, when the machine is operating
in pump mode the flow goes from left to right according to the figure, where Run-
ner 1 (blue) comes first upstream and Runner 2 (green) comes after downstream.
In turbine mode the flow goes from right to left according to the picture and the
upstream rotor becomes Runner 2 (green), therefore Runner 1 (blue) becomes the
downstream rotor.

The current geometry is in reduced model scale and the runners’ diameter is 276 mm.
Runner 1 contains 8 blades and Runner 2 is comprised of 7 blades. Furthermore,

3



2. Theoretical Framework

both rotors are independently driven and can therefore rotate at different rotational
speeds. This feature gives a wide range of possible operating conditions where the
ratio between both runners’ rotational speeds can be adjusted.

2.2 CRPT Efficiency
The power that the pump can deliver to the flow, or the power the turbine can
extract, can be defined as the total torque exerted on the rotor blades by the flow,
Q in [Nm], multiplied by the rotational speed of the runner, Ω in [rad/s] as

P = QΩ. (2.1)

Here P is the power in [W]. The pressure head, ∆H, is the difference in total pressure
across the rotor, ∆ptot, expressed in units of meters [m] and is expressed as

∆H = ∆ptot

ρg
. (2.2)

Here ρ is the water density and g is gravity acceleration. A hydraulic pump efficiency
is defined as the ratio between the power imparted on the fluid and the power
supplied to drive the pump. On the other hand, a hydraulic turbine efficiency is
defined as the ratio between power extracted and the total power available. These
can be written as

ηpump = qρg∆H
P

and ηturb = P

qρg∆H . (2.3)

Here q represents the volumetric flow rate in [m3/s]. The head jump across the rotors
can be non-dimensionalized as the head coefficient. This coefficient is commonly
used for turbomachines and is defined as

ψ = gH

Ω2D2 . (2.4)

2.3 Simplified Axial Momentum Theory
A wind turbine extracts the kinetic energy in the wind and converts it to useful
mechanical power. This energy extraction can be modelled by an idealized repre-
sentation of the rotor plane as an actuator disk. In 1D axial momentum theory the
static pressure drop across the rotor and the axial velocity are considered uniform
over the rotor area. Furthermore, there is no rotational velocity in the wake and the
static pressure far upstream and far downstream are thought as equal and equivalent
to the ambient pressure.

Figure 2.2 displays a one-dimensional model for the streamtube that encloses the
rotor. The streamtube expands as the axial velocity decelerates because of the
presence of the actuator disk that extracts energy at the rotor plane.

4



2. Theoretical Framework

Figure 2.2: Control volume 1D actuator disk. Inspired by Sørensen [12].

From the continuity equation it is required that the mass flow remains constant at
each cross section: upstream, rotor and downstream planes. The mass flow through
these cross-sections is given by

ṁ =
∫
ρudA = ρU0A0 = ρuRA = ρu1A1. (2.5)

Here, u is the velocity component normal to the cross-section area and U0 is the
mean of u at the cross-section area far upstream A0; uR and A are the respective
mean axial velocity and cross-section area at the rotor plane and u1 and A1 the
same variables at the far downstream plane.

Since the static pressure in the wake far downstream is equal to the one far upstream,
then, from an axial momentum balance in the given streamtube control volume, the
thrust can be expressed as

T = ṁ (U0 − u1) = ρuRA (U0 − u1) . (2.6)

By applying the Bernoulli equation from far upstream until right before the rotor
plane and similarly from right after the rotor plane until far downstream in the
wake, we obtain

Upstream: p0 + 1
2ρU

2
0 = p+ + 1

2ρu
2
R (2.7)

Downstream: p− + 1
2ρu

2
R = p1 + 1

2ρu
2
1. (2.8)

Since p1 = p0, then Eq. 2.7 and 2.8 can be combined to obtain the pressure drop
∆p = p+ − p− across the rotor plane, yielding

∆p = 1
2ρ
(
U2

0 − u2
1

)
. (2.9)

The thrust force in the streamwise direction originates from the pressure drop at
the rotor and can be expressed using Eq 2.9, as

T = ∆pA = 1
2ρ
(
U2

0 − u2
1

)
A. (2.10)

5



2. Theoretical Framework

Equating both thrust expressions in Eq. 2.10 and Eq. 2.6 shows that the axial fluid
velocity at the rotor plane can be expressed as the arithmetic average between the
axial velocity far upstream and far downstream as

uR = U0 + u1

2 . (2.11)

The axial induction factor can be defined as the percentage the axial flow is being
decelerated at the rotor plane in relation with the incoming velocity. It is expressed
as

a = U0 − uR
U0

. (2.12)

From Eq. 2.12 we get that the axial velocity at the rotor plane can be expressed as
uR = U0(1 − a). Replacing uR in Eq. 2.11 we get that the velocity far downstream
can be written as u1 = U0(1 − 2a). Replacing both these expressions in Eq. 2.6
yields

T = 2ρAU2
0a(1 − a). (2.13)

2.4 Blade Element Theory
The blade element theory considers the local events taking place at the actual rotor
blade profiles. Figure 2.3a displays the resultant force and its components induced
on a blade airfoil profile at a given radius from the center of rotation. Figure 2.3b
shows where the blade element would be located at a given radius from the center
of rotation.

(a) (b)

Figure 2.3: Cross sectional airfoil element and three-bladed rotor with radius R.
Inspired by Hansen [6].

The axial and tangential force coefficients on the blade profile can be defined as

Cn = Fn
1/2ρcV 2

rel

and Ct = Ft
1/2ρcV 2

rel

. (2.14)
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2. Theoretical Framework

Here c corresponds to the chord length of the airfoil profile and Fn and Ft are
expressed in force per length. These coefficients are composed by the projections of
lift and drag coefficients to the respective directions. These can be expressed as

Cn = Cl cosφ+ Cd sinφ (2.15)
Ct = Cl sinφ− Cd cosφ. (2.16)

The thrust and torque on the control volume of thickness dr (Figure 2.3b) can be
expressed as

dT = ZFndr (2.17)
dQ = rZFtdr. (2.18)

Here Z is the number of blades. Replacing Fn and Ft, an expression for the thrust
and torque on the blade element is obtained as

dT = 1
2ρZcV

2
relCndr (2.19)

dQ = 1
2ρZcV

2
relCtrdr. (2.20)

Figure 2.4 shows in detail the velocity triangle formed locally on a blade profile for
the turbine configuration. The axial velocity at the rotor plane is U0(1 − a) as the
flow decelerates when it passes through the rotor. The tangential velocity of the flow
can be expressed with the tangential induction factor a′ as Ωra′. In this sense the
fluid has gained some tangential velocity which points in the opposite direction of
rotation. This because the tangential force exerted on the blade by the flow points
in the direction of rotation (Figure 2.3a), therefore, by reaction, the same force is
exerted back on the flow by the blade.

Figure 2.4: Turbine velocity triangle at the rotor plane. Inspired by Hansen [6].

The angle between the incoming relative velocity and the rotor plane is defined as
the flow angle φ. The angle between the chord line and the rotor plane is known as
the twist of the blade profile, β. Finally the local angle of attack, α becomes

α = φ− β. (2.21)
The Re number of the airfoil profile is defined as

Re = Vrelc

ν
. (2.22)

7



2. Theoretical Framework

Here ν is the fluid’s kinematic viscosity and c the chord length of the airfoil. From
the velocity triangle, the incoming relative velocity as seen by the moving rotor
blade can be defined be either

Vrel = U0(1 − a)
sinφ or Vrel = Ωr(1 + a′)

cosφ . (2.23)

Therefore, by taking these expressions and replacing in Eqs. 2.19 and 2.20, the
thrust and torque at the blade element can be related to the induction factors a and
a′ as

dT = 1
2ρZc

U2
0 (1 − a)2

sin2 φ
Cndr (2.24)

dQ = 1
2ρZc

U0(1 − a)Ωr(1 + a′)
sinφ cosφ Ctrdr. (2.25)

2.5 Classical Blade Element Momentum (BEM)
Theory

As the name suggest, the BEM theory combines both momentum theory (section 2.3)
and blade element theory (section 2.4) to come up with expressions for the induction
factors a and a′. These factors are used to express the velocity components of the
flow at the rotor plane.

Eq. 2.13 can be expressed as a thrust differential considering an annular area within
the actuator disk, where dA = 2πrdr. These translates to

dT = 4πρU2
0a (1 − a) rdr. (2.26)

From an angular momentum balance in an annular ring and replacing uθ, which is
the tangential velocity the flow has gained after the rotor plane, by 2a′Ωr we get an
expression for the differential torque as

dQ = ruθdṁ = ruθ

dṁ︷ ︸︸ ︷
ρuR2πrdr = 4πρU0Ωa′ (1 − a) r3dr. (2.27)

The differential power is defined as the torque multiplied by the rotational speed

dP = ΩdQ. (2.28)
Equating Eq. 2.26 with Eq. 2.24 and Eq. 2.27 with Eq. 2.25 we are able to write
and expression for the axial and tangential induction factors respectively, as

a = 1
4 sin2 φ

σCn
+ 1

and a′ = 1
4 sinφ cosφ

σCt
− 1

. (2.29)
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Here, σ is the solidity which is defined as the ratio of the annular area covered by
the blade profile,

σ = Zc

2πr . (2.30)

Dimensionless coefficients
Commonly for wind turbine application the thrust and power can be non-dimensionalized
as thrust and power coefficients. For power coefficient, CP , the denominator repre-
sents the maximum power the wind turbine can extract from the available kinetic
energy. This coefficients are defined as

CT = T
1
2ρAU

2
0

and CP = P
1
2ρAU

3
0

. (2.31)

Additionally, the tip speed ratio is defined as the ratio between the tangential ve-
locity of the tip of the blade and the incoming farfield axial velocity. It is expressed
as

TSR = ΩRtip

U0
. (2.32)

2.5.1 Prandtl Hub/Tip Correction
The basic momentum theory ignores the hub and tip vortices that occur due to the
presence of limited number of blades. Various correction methods exist. Here the
simple analytical expression developed by Prandtl is used. The correction factor can
be composed by both the tip and hub correction factors. These are defined as

Ftip = 2
π

arccos (exp (−ftip)) and Fhub = 2
π

arccos (exp (−fhub)). (2.33)

Here the auxiliary functions are defined as

ftip = Z

2

(
Rtip − r

r sinφ

)
and fhub = Z

2

(
r −Rhub

Rhub sinφ

)
. (2.34)

The total Prandtl correction factor is defined as

F = FtipFhub. (2.35)
This factor is applied directly to the thrust and torque equations from the momen-
tum theory as

dT = 4FπρU2
0a (1 − a) rdr (2.36)

dQ = 4FπρU0Ωa′ (1 − a) r3dr. (2.37)

This inclusion translate to that the induction factors (Eq. 2.29) will carry the
correction factor as

9
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a = 1
4F sin2 φ

σCn
+ 1

and a′ = 1
4F sinφ cosφ

σCt
− 1

. (2.38)

2.5.2 Propellers
In the case of propellers the BEM theory follows the same steps to reach an expres-
sion for the axial and tangential induction factors, a and a′, as described so far. But
as contrary to the effect of the turbine, in a propeller the the axial flow velocity U0
accelerates as it passes through the rotor and the tangential speed induced after it
points in the same direction of the blade rotation. Furthermore, as opposed to a
turbine configuration, the static pressure increases after the rotor plane.

Figure 2.5 exhibits the velocity triangle encountered in a propeller airfoil section. As
described the axial flow accelerates and the induced tangential velocity points in the
same direction of rotation. The local angle of attack α is now defined as α = β − φ
instead.

(a)
(b)

Figure 2.5: Propeller velocity triangle at the blade element
.

This configuration will only change some signs in the BEM equations that were
derived for turbine mode. By introducing C as a variable that takes the value of 1
for a propeller and -1 for a turbine, the BEM equations can be written for any of
propeller or turbine mode. The local angle of attack α can be written as

α = C(β − φ). (2.39)
The velocity triangle for both modes can be expressed as

tan(φ) = U0(1 + Ca)
Ωr(1 − Ca′) . (2.40)

The force coefficients can be written as

Cn = Cl cosφ− CCd sin(φ) (2.41)
Ct = Cl sinφ+ CCd cos(φ). (2.42)

10
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Finally the induction factors expressions for any mode become

a = 1
4F sin2 φ

σCn
− C

and a′ = 1
4F sinφ cosφ

σCt
+ C

. (2.43)

For propeller applications [3], results for different operating conditions are usually
expressed with the advance ratio J which is defined as

J = U0

NRPSD
. (2.44)

The dimensionless coefficients of thrust and torque for propeller applications are
defined as

CT = T

ρN2
RPSD

4 and CQ = Q

ρN2
RPSD

5 . (2.45)

From where the power coefficient and efficiency of the propeller can be expressed as

CP = 2πCQ and η = CT
CP

J. (2.46)

2.5.3 Iteration Procedure
Since each control volume along the blade is assumed to be independent from the
other, the solution at different blade elements are solved separately. For each blade
element the classical fixed point iteration procedure follows these steps:

1. Initialize the induction factors a and a′.
2. Compute the flow angle φ from Eq. 2.40
3. Calculate the angle of attack α (Eq. 2.39) and the Re number (Eq. 2.22).
4. Read Cl(α,Re) and Cd(α,Re) from table lookup
5. Compute Cn and Ct from Eq 2.41.
6. Calculate a and a′ with Eq. 2.43
7. Go back to Step 2 if a and a′ have changed more than a certain tolerance

value. Else stop iterating.
8. Calculate the loadings in the blade element Eq. 2.19 and 2.20

A faster and more reliable way of solving the BEM equations is rearranging the
problem into a root-finding problem. In MATLAB the function fzero can be used
for this purpose. According to Ning [9] a good choice to form the residual function
for the root-finding problem is

f(φ) = sin(φ)
(1 + Ca) − U0 cos(φ)

Ωr(1 − Ca′) = 0. (2.47)

Therefore the roots of this function can be found by varying the flow angle φ.
Appendix A.2 displays the script used to perform this procedure. The sequence
that is being followed internally with the help of fzero is:
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1. Specify a flow angle φ Eq. 2.40
2. Calculate the angle of attack α (Eq. 2.39) and the Re number (Eq. 2.22).
3. Read Cl(α,Re) and Cd(α,Re) from table lookup
4. Compute Cn and Ct from Eq 2.41.
5. Calculate a and a′ with Eq. 2.43.
6. Check the residual function Eq. 2.47
7. Go back to Step 1 if the residual function is not close enough to zero. Else

stop.
8. Calculate the loadings in the blade element Eqs. 2.19 and 2.20.

The function fzero uses the Brent method as a root-finding algorithm to vary φ
and reach the solution.

2.6 BEM Method Modifications
Applying the BEM method to the current axial CRPT configuration does require
certain modifications. The main one given because the rotors are enclosed in a
confined tunnel or pipe. In this case the cross sectional area, as well as the incoming
volumetric flow, q, must remain constant. A good assumption in order to maintain
this requirement is that, since q = U0/A, the axial velocity will also remain constant
and will not be accelerated nor slowed down as it results in a wind turbine (Figure
2.2) or propeller configuration.

In this sense the BEM method is reduced to solving only for the tangential induction
factor a′, whereas the axial induction factor a becomes zero. This wat the axial
velocity at the rotor plane (as well as everywhere else) is constant and equal to the
incoming axial velocity U0.

From an angular momentum balance and from the blade element theory, the differ-
ential torque expressions considering a = 0 become

dQ = 4FπρU0Ωa′r3dr (2.48)

dQ = 1
2ρZc

U0Ωr(1 − Ca′)
sinφ cosφ Ctrdr. (2.49)

Equating both this results together gives an expression for the tangential induction
factor, which turns out to be the same as in equation 2.43, yielding

a′ = 1
4F sinφ cosφ

σCt
+ C

. (2.50)

Since the axial velocity remains constant, the resultant velocity triangle in both
pump and turbine mode can be written as

tanφ = U0

Ωr (1 − Ca′) . (2.51)
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Therefore the residual function, as proposed by Ning [9], becomes

sinφ− cosφ U0

Ωr(1 − Ca′) = 0. (2.52)

2.6.1 Velocity Triangles
Figure 2.6 exhibits the velocity triangles for the current blade profiles of the CRPT
runners in pump mode. As seen the flow encounters Rotor 1 first and Rotor 2
after. As discussed in the previous section the incoming axial velocity U0 is assumed
constant.

Figure 2.6: Schematic view velocity triangles pump mode.

Figure 2.7 shows the velocity triangles of the profiles for both runners in turbine
mode. Here Rotor 2 comes first, Rotor 1 after and the flow is reversed as compared
to pump mode.

Figure 2.7: Schematic view velocity triangles turbine mode.

It is worth noticing that the rotational speeds, in both modes, are different from each
other (Ω1 and Ω2) as the turbomachine allows this to happen. Furthermore both
rotor planes have different tangential induction factors (a′1 and a′2), which become
the unknowns of this problem.
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2.6.2 Additional Pressure Correction
The classical BEM method considers there is a static pressure discontinuity across
the rotor plane. Nevertheless, this pressure drop (turbine) or jump (propeller) re-
covers back to the same ambient pressure as the far upstream as it happens for wind
turbines or propeller configurations. For the case of an axial water pump or turbine
the static pressure discontinuity that happens across the runner is maintained and
does not recover to ambient pressure. Therefore different static pressure values can
be measured far upstream and downstream, creating a constant pressure difference.

For the case of a single rotor pump enclosed in a pipe, the total pressure before and
after the rotor, Ptot,0 and Ptot,1, can be written as

Upstream: Ptot,0 = p− + 1
2ρU

2
0 (2.53)

Downstream: Ptot,1 = p+ + 1
2ρU

2
0 + 1

2ρu
2
θ. (2.54)

Here, uθ is the tangential velocity the flow has gained after the rotor plane and U0 is
maintained constant. The radial component of velocity is thought to be negligible.
Subtracting these expressions, yields

Ptot,1 − Ptot,0 = ρg(H1 −H0) = ∆p+ 1
2ρu

2
θ. (2.55)

Here, ∆p = p+ − p−. Therefore, the static pressure difference across the rotor plane
in pump mode can be written as

∆p = ρg∆H − 1
2ρu

2
θ. (2.56)

Here ∆H represents the total head difference. By performing the same balance
before and after a rotor in turbine mode, the static pressure difference across the
runner is expressed as

∆p = ρg∆H + 1
2ρu

2
θ. (2.57)

By applying the extra pressure difference on the twisted blade element we get an
extra contribution for thrust and torque, as

dT = ∆prot cos β dA = ∆p cos β c dr (2.58)
dQ = ∆prot sin βr dA = ∆p sin β c r dr. (2.59)

Here c is the chord length of the blade element and β the twist angle.

2.6.3 Downstream Rotor
In BEM theory the induced tangential velocity on the flow experiences a sudden
jump that goes from uθ = 0 before the rotor to uθ = 2a′Ωr right after it, independent
of the operational mode. Therefore, as seen in the velocity triangles at the rotor
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plane (Figures 2.6 and 2.7), the tangential velocity of the flow is thought to be
uθ = a′Ωr in between. This represents a linear interpolation approach.

Unlike for the upstream runner where the flow does not come with any swirl, for the
downstream runner the flow will come with the tangential velocity that has been
induced by the previous upstream rotor. In order to find an expression for the down-
stream induction factor a′d, that will let us calculate the loadings at the downstream
rotor, we can linearly interpolate using the information from the upstream swirl.

Recalling the interpolation formula for a value y(x), where xa < x < xb, yields

y = ya + (yb − ya)
x− xa
xb − xa

. (2.60)

Replacing the y values with the tangential velocities before, after and at the rotor
plane (uθ,u, uθ,d and uθ,R), and assuming equidistant length between this locations,
gives

uθ,R = uθ,u + (uθ,d − uθ,u)
2 . (2.61)

The tangential velocity after the downstream rotor can be expressed as the tangential
velocity upstream of that rotor plus some differential that will be induced by that
runner, uθ,d = uθ,u + ∆uθ. Replacing in the previous equation, gives

uθ,R = uθ,u + ∆uθ
2 . (2.62)

Replacing the upstream tangential velocity by uθ,u = −2a′uΩur and the tangential
velocity at the downstream rotor by uθ,R = a′dΩdr the following is obtained:

a′dΩdr = −2a′uΩur + ∆uθ
2 . (2.63)

Solving for the tangential velocity differential across the rotor ∆uθ leads to

∆uθ = 4a′uΩur + 2a′dΩdr. (2.64)
Using this tangential velocity differential in the balance of angular momentum of an
annular ring element, yields

dQd = r∆uθdṁ = r (4a′uΩur + 2a′dΩdr) ρU02πrdr︸ ︷︷ ︸
dṁ

. (2.65)

Equating this expression with the blade element theory, gives

4ρπU0 (2a′uΩu + a′dΩd) r3dr︸ ︷︷ ︸
Momentum balance

= ρσπr
U0Ωdr(1 − Ca′d)

sinφ cosφ Ctrdr︸ ︷︷ ︸
Blade Element

. (2.66)

Solving for the induction factor of the downstream rotor, yields

a′d =
2k′a′u Ωu

Ωd
− 1

−k′ − C
. (2.67)
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Here C = 1 for pump mode and C = −1 for turbine mode, with the auxiliary term
being

k′ = 4F sinφd cosφd

σCt
. (2.68)

The pressure correction proposed in section 2.6.2 needs to take into account the
upstream swirl in the Bernoulli equation.

∆pd = ρg∆Hd − C
1
2ρ
(
u2
θ,u − u2

θ,d

)
, (2.69)

where
u2
θ,u − u2

θ,d = u2
θ,u − (uθ,u + ∆uθ)2 = 2uθ,u∆uθ + ∆u2

θ. (2.70)

2.7 Polar Curve Extrapolation
In order to implement the BEM method, airfoil characteristics of Cl and Cd need to
be computed. The CFD simulations would only provide this coefficient for a limited
range of AoA, therefore it is necessary to extrapolate the initial data in order to
obtain the lift and drag coefficients for the whole spectrum of angles of attack, AoA.
This is necessary in order to allow the BEM-code to eventually access this data if
needed during the iteration procedure.

In the present study the Viterna method is used for data extrapolation. The method
uses the following formulation to extrapolate lift and drag coefficients after stall,
where

Cl = A1 sin 2α + A2
cos2 α

sinα (2.71)

Cd = B1 sin2 α +B2 cosα. (2.72)

This particular formulation is used from the stalling angle of attack up until α = 90º
to extrapolate. To complete the values at α > 90 and α < αmin the extrapolation
performed is reflected. According to Mahmuddin et al. [8], even though the method
computation results are not an accurate representation of the true physics, it pro-
vides a reasonable estimate for early in the design process.

2.8 Turbulence Model
The turbulence model used for the simulations of the flow past the 2D blade profiles
is Spalart - Allmaras one equation model. This model can be represented by

∂ν̃

∂t
+uj

∂ν̃

∂xj
= cb1(1−ft2)S̃ν̃+ 1

σ

[
∂

∂t

(
(ν + ν̃) ∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
−
[
cw1fw − cb1

κ
ft2

] (
ν̃

d

)2
.

(2.73)
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According to the turbulence modelling resource from NASA [14], the boundary
conditions for the viscosity-like variable ν̃ and turbulent kinematic viscosity ν at
the wall and farfield are

ν̃wall = 0 ν̃farfield = 3 ν∞ to 5 ν∞ (2.74)
νwall = 0 νfarfield = 0.210438 ν∞ to 1.294234 ν∞. (2.75)

Here ν∞ is the water kinematic viscosity at the farfield. In this case the lowest range
values for ν̃ and ν at the farfield boundary were chosen as boundary conditions for
the steady-state flow simulations past the blade profiles.

The turbulence model used for the CFD simulations of the turbomachine is the two
equation model SST k − ω. This model is represented as

∂k

∂t
+ uj

∂k

∂xj
= Pk − β∗ω + ∂

∂xj

[
(ν + σkνT ) ∂k

∂xj

]
(2.76)

∂ω

∂t
+ uj

∂ω

∂xj
= αS2 − βω2 + ∂

∂xj

[
(ν + σωνT ) ∂ω

∂xj

]
+ 2(1 − F1)σω2

1
ω

∂k

∂xi

∂ω

∂xi
.

(2.77)

Here the kinematic eddy viscosity is: νT = a1k

max(a1ω, SF2) .

No changes are made in any of the turbulence models coefficients default values.

2.9 OpenFOAM
As its name indicates OpenFOAM (Open Source Field Operation And Manipula-
tion) is an open source software mainly used for CFD applications.

The blade profile simulations that create the data of Cl and Cd needed for the BEM
method are performed with OpenFOAM v1912. The CRPT validation cases are run
using FOAM-extend-4.1. This version of the software has some features that are not
available in other OpenFOAM versions, such as e.g. GGI interface, mixingPlane,
among others.

2.9.1 simpleFoam solver
This is a RANS solver for incompressible steady-state simulations of turbulent flow.
The pressure-velocity coupling is solved using the SIMPLE algorithm. This solver
is the one used to simulate the flow around the given rotor blade profiles to obtain
lift and drag coefficients.
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2.9.2 MRFSimpleFoam solver
This solver is for steady-state, incompressible flows with multiple rotating frames of
reference regions. It is a much faster and less complex approach than to solve using
a moving mesh in a transient-state. MRFSimpleFoam is used for the CFD simulations
that serve as validating cases for the BEM method.

2.9.3 profile1DfixedValue boundary condition
This boundary condition implements a cylindrical field defined by a 1D fixed value
profile that could be along the radial or vertical direction for a typical RANS com-
putation [11]. In the current study, this boundary condition is used to define the
inlet of the downstream rotor in both operating modes for the individual geome-
tries (described later) of both runners. Appendix C.2 shows the inputs used for this
boundary condition. Appendix C.3 displays how the boundary conditions assigned.
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3.1 Blade Profile Representation
For the BEM method to be implemented it is necessary to characterize the rotor
blades as a collection of 2D profiles stacked at different radial positions. Figure 3.1
shows both rotor individual blades in a 3D view representation.

Figure 3.1: View of individual rotor blades.

The only blade geometric data available are input files that the meshing software
Ansys TurboGrid reads to create the shape of the blades, hub and shroud. These are
.crv files that separate each individual rotor blade into 9 different profiles along the
radial direction. Profile 1 is located close to the hub and profile 9 close to the shroud.
Figure 3.2 displays the profiles shapes that are formed from the points contained
in the .crv files mentioned. The geometric information is in cartesian coordinates.
The front view shows how the blades sit on the cylindrical hub and how the profiles
are stacked one on top of the other from hub to shroud. The top view shows how
each profiles has a different shape, chord length and is twisted differently.
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y

x

Rotor 1

Rotor 2

(a) Front view
z

y

Rotor 1

Rotor 2

(b) Top view

Figure 3.2: Rotor blades profiles different views, cartesian coordinates.

As seen in Figure 3.2a the different profiles have a curved shape. Also both blades
are not aligned at the same azimuth angle on top of the hub. This is why obtaining
2D profiles along the radial direction becomes a bit more cumbersome. Projecting
the curved shapes as they are already shown in Figure 3.2b would result in a less
accurate 2D representation than if the blade would be aligned at the zero azimuth
angle. Therefore, it is necessary first to rotate both blades around its rotation axis,
before taking the 2D projections in the yz axis.

By keeping the z-coordinate intact the cartesian coordinates from Figure 3.2a can
be transformed to cylindrical coordinates. Then, all blade profiles can be rotated a
certain angle around the rotation axis to align them better with the zero azimuth
angle. Figure 3.3 displays both runner blades profiles rotated and in cylindrical
coordinates.

-60

-30

0

30

60

(a) Rotor 1

-60

-30

0

30

60

(b) Rotor 2

Figure 3.3: Rotated blade profiles, front view, cylindrical coordinates.

To project the profiles and obtain the 2D representations as seen from a top view
like in Figure 3.2b it is necessary to transform the coordinates from cylindrical back
to cartesian. The projected profiles are shown in Figure 3.4.
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z

y

Hub

Shroud

Figure 3.4: Profiles shapes 2D representations

It is seen that each blade profile is twisted differently along the radial direction. The
twist, β, as mentioned previously is the angle between the chord line that unites the
leading edge with the trailing edge of the 2D profile, and the plane of rotation. In
this case the profiles are more twisted towards the hub and less twisted towards the
shroud. It is also shown how the profiles have different chord lengths.

3.1.1 Blade Profiles Mesh
Next step is to transfer the profile shapes to a meshing software, but before that these
need to be normalized by their chord length and untwisted so they look horizontal.
The software used to create a mesh around each profile is Ansys ICEM CFD. Given
that each blade is characterized by 9 different profiles the current effort required
creating 18 different grids. Luckily, ICEM CFD allows to record a meshing session
that outputs a script of the process. This fact allowed to partially automate the
meshing procedure. Nevertheless, since each profile is slightly different, a lot of
manual intervention was needed.

Given that the current turbomachine accepts flow in both axial directions, it is
necessary to have a computational domain which allows the same level of detail
irrespective of the flow direction.
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(a) Rotor 1 (b) Rotor 2

Figure 3.5: Computational domain for simulation of profile characteristics.

Figure 3.5 shows the computational domain chosen to mesh the different blade
profiles. The circular shape of the grid allows for equal mesh density regardless
of the flow direction. The radius of the circular domain is 20 times the chord
length of the profile, which is 1 because they are normalized. This ensures that the
farfield remains distant from the airfoil-like profile to avoid suppressing the flow field
variations induced by the body.

Figure 3.6 displays a detail of the grid around the mid-height profile of both runner
blades. The last step in the meshing process was to apply a Laplace smoothing
procedure to the grid so non-orthogonality could be improved as well as other quality
factors.

(a) Rotor 1 (b) Rotor 2

Figure 3.6: Mesh detail of mid-height profiles (profiles 5)

The number of cells in each mesh for each profile is ∼ 55500. The y+ value varies
according to each simulation. Nevertheless by looking at a high AoA and Re number
simulation it can be said that overall the average of this value is not larger than
y+ ∼ 4 for every simulation.
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3.1.2 Blade Profiles Polar Curves
Usually a wind turbine blade is composed by previously known 2D airfoil shapes
(e.g. NACA type airfoil). Since the current blade profiles are not documented
airfoils shapes, it is necessary to create the information of Cl and Cd at different
AoA needed in BEM for each one of the 9 profiles conforming each blade.

Figures 3.7 and 3.8 show the aerodynamic characteristics of the airfoil-type blade
profiles. Each point in those curves represents one CFD steady-state simulation,
where the incoming flow has a certain angle of attack, AoA, with respect to the
chord line of the profile as shown in Figure 3.6. This effort required heavy scripting
to create, organize and post-process each case.
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Figure 3.7: Rotor 1 profile characteristics in pump mode

As the angle of attack goes to the extremes of high and low values, the steadiness of
the solution from the CFD simulations decreases. For higher or lower AoA the lift
and drag coefficients values oscillate around a certain value. Therefore, AoA higher
or lower than shown in Figures 3.7 and 3.8 cannot be simulated as unsteadiness of
the coefficients throughout the iterations is encountered.

The total lift and drag coefficients from the resultant pressure and viscous forces
exerted on the blade profiles by the flow were obtained by using the OpenFOAM
function object forceCoeffs. For every different angle of attack, there is a different
lift and drag direction that needs to be modified in the controlDict file, where
the function object inputs are specified. An example of a script that performs this
procedure is shown in Appendix C.1.
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Figure 3.8: Rotor 2 profile characteristics in pump mode

As mentioned, the same kind of information shown in Figures 3.7 and 3.8 needs to
be obtained for when the flow comes in the other direction, i.e in turbine mode.
If the airfoil-type profiles were precisely symmetric it would not be necessary to
revert the flow because the Cl and Cd curves would be the same. All results in both
operating modes are shown in Appendix B. In total 3 different Re numbers where
run, Re = 0.5e− 6, Re = 1.0e− 6 and Re = 2.0e− 6, which represent 2538 different
single simulations.

In order to implement the BEM method it is desirable to have the complete range
of Cl and Cd for all possible AoA. This is needed mainly so the BEM-code can
work for any input of incoming velocity and rotation speed of the rotor like e.g.
off-design conditions were high AoA above stall or low AoA may be encountered.
The extrapolated curves are also shown in Appendix B.

3.2 Working BEM Code
The BEM-based algorithm is written in MATLAB. Validating examples of both
turbine and propellers are carried out to ensure that the code works properly. These
validating cases do not implement the modifications proposed to the BEM method
in section 2.6 since they are not required.

The first validation case correspond to data from a very precise BEM simulation of
the NREL 5 MWwind turbine machine. This machine corresponds to a conventional
3 bladed offshore wind turbine. Its detailed specifications are well documented and
the case is often used as a baseline to investigate a representative typical multi
megawatt land- or sea-based wind turbine [7].

Figure 3.9 displays the results obtained by the written BEM code for the NREL
5 MW wind turbine as compared to the validation data. The first figure shows
the total power obtained vs the different freestream incoming axial velocities. The
second figure exhibits the total power and thrust coefficient as expressed in Eq.

24



3. Methodology

2.31. It is shown that the simulated cases (circle marker) agree very well with the
validation data.
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Figure 3.9: Power generated and thrust and power coefficient vs incoming air
velocity, NREL 5MW wind turbine.

Another validation case for the BEM-based code was performed on a marine tidal
turbine. The available validating results were obtained from measurements per-
formed in a towing tank [2]. Furthermore the code was assessed for a propeller
configuration, where the validating data was also obtained from experiments [13].
Both comparisons are displayed in Figure 3.10. For the tidal turbine the thrust and
power coefficient, and the tip speed ratio are defined in Eqs. 2.31 and 2.32. For the
propeller configuration the advance ratio J goes in the x-axis and the dimensionless
coefficients from Eqs. 2.45 and 2.46 are used.
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Figure 3.10: Air propeller validation [13]. Marine tidal turbine validation [2]

Since the validation cases from Figure 3.10 correspond to experimental data obtained
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from experimental measurements it can be said that the BEM method provides a
reasonable amount of error and a good approximation.

3.3 CRPT Validation Cases
As mentioned previously validation data for the loadings on the CRPT blades is
obtained by means of CFD simulations using OpenFOAM. The version used for
these cases is FOAM-extend 4.1. As said this version allows for the use of e.g
mixingPlane interface. The solver used is MRFSimpleFoam for steady-state.

For validation 3 different geometries were provided. One corresponds to a coupled
case set-up were both runners are placed together as the real CRPT would be. The
solution of this case would be coupled and the blade loadings would be additionally
affected by the other runner operation. The other two geometries are individual
case set-up were both Runner 1 and Runner 2 are placed individually in a guiding
pipe or tunnel.

Coupled runners set-up
Figure 3.11 displays the full case geometry with both runners placed next to the other
and separated by a given distance. The interface located in-between both rotors is
a mixingPlane interface. This interface computes and transfers circumferential
average values. Since Rotor 1 has 8 blades and Rotor 2 has 7 blades periodicity of
the runners requires a cyclic GGI type of boundary conditions on the sides. This way
one blade passage can be simulated for each runner in order to save computational
resources.

Figure 3.11: Runner 1 and 2 in a coupled case set-up

Individual runners set-up
Given that the BEM method implementation does not differentiates if the upstream
rotor has a coupled downstream counter-rotating rotor after it or not, it is decided
that in order to better compare and analyse results with the BEM method, indi-
vidual rotor geometries would be of use. Figure 3.12 shows both individual runners
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computational domain. Similar to the coupled set-up only one blade passage is
simulated with cyclic boundary conditions.

(a) Runner 1 (b) Runner 2

Figure 3.12: Runners individual case set-up geometry

3.4 Blade Element Radial Positions
The BEM method needs to be applied at certain radial locations on the blade which
will define the blade elements. Figure 3.13 displays the radial positions along the
blades of the CRPT runners in the radial direction. The blade is divided into ten
equally distributed blade elements for BEM simulation purposes. The dashed red
lines represent the limits of each blade element which in turn are defined by the
radial points locations.
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Figure 3.13: Radial points and blade elements for both rotor blades of the CRPT
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Results and Discussion

In the this chapter a comparison between the blade loadings obtained from the
CRPT steady-state simulations in OpenFOAM and the blade loadings predicted
by BEM is shown. The operating conditions ran consider that Runner 1 rotates
faster than Runner 2 in both pump and turbine mode. Specifically, Runner 2 has
a rotational speed that represents 75% of the rotational speed of Runner 1 in all
different cases simulated.

Positive values of torque, Q, and thrust, T , in any operating mode and in any runner
represent the direction that loading should have in a normal operating condition.
If for example, the torque is negative (i.e. negative power) in one of the runners in
turbine mode, this means that runner requires power instead of generating it. This
would of course be an inefficient operating condition. Same principle applies for
pump mode, were a negative torque implies power generated instead of required.

Results in this chapter for both pump and turbine mode are expressed in the dimen-
sionless coefficients commonly used in wind industry. These correspond to thrust
and power coefficient, CT and CP from Eq. 2.31. The tip speed ratio, TSR, (Eq.
2.32) is depicted in the graphs’ x-axis. This type of representation allows for an
easier way of visualising and comparing the data obtained.

The BEM results shown have different labels. BEM label stands for the regular
BEM-equations applied including the Prandtl correction factor regularly used for
tip and hub vortex losses. The label CORR represents the results of the extra
loading (on top of the BEM results) due to the pressure difference as proposed
in section 2.6.2. In a similar way label BEM_noF omits the F correction factor
(section 2.5.1) in order to understand the implications of this factor on the results.
Lastly, CORR_noF, represents the extra loading on the blade due to the pressure
difference over the BEM_noF results. The _noF subscript for the downstream rotor
means deactivating F factor for that rotor, but also using the upstream information
with no F factor from the upstream rotor.

28
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4.1 Pump Mode
As mentioned previously, in pump mode the flow faces Runner 1 first and Runner 2
second. Figure 4.1 displays an schematic representation where the flow direction and
rotation direction of the runners is shown. In this mode, the flow goes in the positive
direction of the z-axis. Furthermore, Runner 1 rotates clockwise and Runner 2 in
the counterclockwise direction around z-axis.

Figure 4.1: Flow direction and direction of rotation of runners in pump mode

4.1.1 Coupled runners set-up
Table 4.1 displays the values obtained for individual pressure head drop ∆H and
efficiencies, η, for both rotors in a coupled set up in pump mode. It can be seen
that for some operating conditions the head drop across the downstream Runner 2
is negative which means that rotor would be acting as a pump. These cases can be
regarded as non-feasible.
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Table 4.1: Individual head rise and efficiencies in pump mode

q N1 N2 dH1 dH2 η1 η2
[m3/s] [RPM] [RPM] [m] [m] [%] [%]
0.296 1200 900 5.22 3.31 90.87 79.78
0.296 1300 975 6.51 4.59 89.68 77.86
0.296 1400 1050 7.94 5.96 87.94 74.15
0.296 1500 1125 9.47 6.97 86.23 67.85
0.37 1200 900 3.84 0.21 89.11 17.54
0.37 1300 975 5.23 1.91 91.01 68.01
0.37 1400 1050 6.65 3.6 91.34 78.37
0.37 1500 1125 8.18 5.2 90.97 79.92
0.44 1200 900 2.19 -4.23 78.5 -
0.44 1300 975 3.5 -2.19 84.4 -
0.44 1400 1050 5.03 -0.24 88.81 -
0.44 1500 1125 6.64 1.79 90.64 58.11

Rotor 1 upstream
Figure 4.2 displays the thrust and power coefficients, CT and CP , vs the tip speed
ratio, TSR, obtained from results for the upstream Rotor 1. As mentioned, this
coefficients are the ones usually used for wind turbines (section 2.5). It can be seen
that there is certain tendency or behaviour where for high TSR there is larger blade
loading. A high TSR value means the rotor is rotating fast as compared to the
incoming freestream velocity.
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Figure 4.2: CT and CP vs TSR Rotor 1 pump mode

In both figure a better agreement for total thrust and power can be seen for BEM
simulations which use the correction factor F . Furthermore omitting this correction
factor increases the total loading on the blade.
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Rotor 2 downstream
Figure 4.3 displays the thrust and power coefficients, CT a CP , vs TSR for the
downstream Rotor 2 in pump mode. It can be seen that all different BEM simulation
over-predict thrust and torque (i.e. power) as compared to the CFD results. Also no
major difference between omitting or maintaining the F factor is seen. It is worth
recalling that for the downstream rotor the proposed Eq. 2.67 is being used. Good
agreement with the trend of results is seen.
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Figure 4.3: CT and CP vs TSR Rotor 2 pump mode

Case: q = 0.37 m3/s, N1 = 1500 RPM, N2 = 1125 RPM
Figure 4.4 displays the torque, dQ ,and thrust, dT , at the blade elements (Fig.
3.13) of the upstream Runner 1 computed by BEM for the specific case. It is worth
mentioning that the total thrust and torque on the blade is equal to the sum of all
blade element contributions. It is shown that the larger load contributions comes
from the blade elements close to the tip of the blade as compared to close to the
hub. Also there is a decline in loading as the blade element gets closer to the tip.
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Figure 4.4: dQ and dT contribution along upstream Rotor 1 blade calculated by
BEM, pump mode, specific case

Furthermore, it can be seen that when the F correction factor is active both dQ
and dT are smaller in comparison to when no F factor (i.e. F = 1 everywhere)
is present. Figure 4.5 shows the same blade element contribution as the previous
figure, but for the downstream Rotor 2. A smaller difference can be seen between
deactivating or maintaining the F factor for the downstream Rotor 2.
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Figure 4.5: dQ and dT contribution along downstream Rotor 2 blade calculated
by BEM, pump mode, specific case

Figure 4.6 displays the angle of attack, α, computed by BEM in each blade ele-
ment along the radial direction for both rotors. Figure 4.6a shows a comparison
between AoA obtained for Rotor 1 and Rotor 2 with the F factor active. Figure
4.6b shows the same variable with no F factor considered. It is shown that for this
particular operating condition the angle of attack calculated by BEM is lower in the
downstream rotor than in upstream one.
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Figure 4.6: AoA along rotor blades predicted by BEM, pump mode, specific case

Total power comparison
Table 4.2 exhibits the individual power for each runner (P = ΩQ) and the sum of
both these contributions as calculated by CFD. The tip speed ratio, TSR, in the
last column makes use of the averaged rotational speed of both runners. It is worth
noticing that some operating conditions produce negative power in the downstream
runner. This means that runner is somehow acting as a turbine instead. Despite
this fact, the total power still remains positive.

Table 4.2: Individual and total power in pump mode

q N1 N2 P1,CFD P2,CFD Ptot,CFD TSR
[m3/s] [RPM] [RPM] [kW] [kW] [kW] [-]
0.296 1200 900 16.642 12.033 28.674 2.43
0.296 1300 975 21.02 17.087 38.107 2.63
0.296 1400 1050 26.161 23.279 49.44 2.83
0.296 1500 1125 31.834 29.76 61.594 3.04
0.37 1200 900 15.605 4.402 20.007 1.94
0.37 1300 975 20.801 10.197 30.998 2.11
0.37 1400 1050 26.389 16.629 43.019 2.27
0.37 1500 1125 32.557 23.551 56.108 2.43
0.44 1200 900 12.037 -8.075 3.962 1.63
0.44 1300 975 17.845 -1.672 16.173 1.77
0.44 1400 1050 24.412 5.425 29.838 1.91
0.44 1500 1125 31.568 13.282 44.85 2.04

Figure 4.7a shows the total power coefficient (i.e. using the total power) from CFD
as compared to the total power coefficient from BEM. Figure 4.7b displays the
relative error of the calculated total power value from BEM as compared to CFD. It
can be seen that that the trend of results is being followed and that for higher TSR
the relative error is lower. Overall this variable is being overestimated by BEM.
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Figure 4.7: Total CP and relative error of the total power pump mode

4.1.2 Individual runners set-up
The reason behind setting up an individual mesh for a single runner is that the BEM
method does not differentiates if the upstream runner is coupled with a counter-
rotating rotor downstream or if it is alone. Even though good agreement between
BEM and the validating data for the upstream Runner 1 can be obtained for the
couple case set-up in the previous section, a more accurate validation would use an
individual geometry set-up to compare with BEM.

Rotor 1 upstream
Figure 4.8 displays the efficiency, η, and the head difference, ∆H, obtained in the
coupled case set-up for upstream Rotor 1 as compared with the same values obtained
in individual runner geometry set-up. It can be seen that the individual set up gives
lower values of η and ∆H than the coupled case for the same operating conditions
of Rotor 1.
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Figure 4.8: η1 and ∆H1 for R1 coupled set-up vs individual set-up, pump mode
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Figure 4.9 shows the same results displayed previously in Figure 4.2 plus the results
obtained from the single case CFD simulation for Rotor 1 in pump mode. It can
be seen that the thrust and torque (i.e. power) are lower than the same loadings
obtained from the coupled CFD simulation, and that the BEM results are in less
agreement now for larger TSR.
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Figure 4.9: CT and CP upstream Runner 1, pump mode, single set-up
comparison

Tangential and axial velocities after Rotor 1 from CFD
Figure 4.10 displays the circumferential averaged tangential velocities induced on the
flow right after Runner 1 in pump mode. The vertical axis represents the dimen-
sionless radius r/R where 1 represents the shroud. It can be seen that a larger swirl
magnitude is being induced towards the tip and the hub, whereas for the mid-radius
the tangential velocity magnitude is smaller.
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Figure 4.10: Tangential velocities along the radial direction from CFD right after
Runner 1 individual set-up, pump mode

Figure 4.11 displays the axial velocity right after Runner 1 for the individual case
set-up in pump mode. It is shown that very close to the shroud this velocity lowers
as it approaches the wall. Furthermore, the profiles are close to the upstream axial
velocity U0 except from very close to the shroud. This is important as one main
assumption is that the axial velocity remains constant throughout the turbomachine.
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Figure 4.11: Axial velocities along the radial direction from CFD right after
Runner 1 individual set-up, pump mode

These results were obtained by post-processing the CFD simulations with probe
points. These points were located at certain radii and around the axis of rotation.
The profiles in Figures 4.10 and 4.11 represent the circumferential average profiles.
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CFD velocities replaced into BEM equations Rotor 1
The tangential and axial velocities displayed in the preceding section can be used
to obtained the induction factors a and a′ at the rotor plane that would induce
those velocities. According to BEM uθ = 2a′Ωr and uz = U0(1 + a) in the case of
a pump. The induction factors are used to compute the angle of attack, α from
the velocity triangles and the corresponding loadings on the blade directly using
the BEM equations and corresponding Cl and Cd. In this case there is no iteration
procedure since a and a′ are given and only need to be evaluated to obtain thrust
and torque in the blade element, dT and dQ.

Figure 4.12 shows a comparison between the results obtained by CFD and the results
obtained by BEM when the velocities after Rotor 2 are transformed to induction
factors and replaced in the BEM equations.
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Figure 4.12: CT and CP calculated from replacing a and a′ deduced from CFD
upstream Runner 1, pump mode

As seen, performing this procedure with the velocity profiles obtained after Rotor
1 from CFD does not give the same thrust and torque (i.e power) results obtained
from CFD. Overall these results are over-predicting the CFD values, especially at
higher TSR.

Rotor 2 downstream profile1DfixedValue boundary condi-
tion
The following results were obtained by making use of profile1DfixedValue bound-
ary condition. The tangential velocity profiles used as inlet condition are the ones
obtained right after Runner 1 in pump mode individual geometry and shown in
Figure 4.10. No axial velocity profile is implemented, instead the constant value
U0 = q/A was used. The idea is to compare the BEM code for downstream Runner
2 with the same input as in OpenFOAM. This is done specifically to test the validity
of the derived Eq. 2.67 for the downstream tangential induction factor a′d.
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Figure 4.13: CT and CP downstream Runner 2 obtained with
profile1DfixedValue, pump mode

It can be seen that for this case BEM results that include the F correction factor
accommodate the CFD results better than no F factor. Overall this results are
overestimating the CFD values.

38



4. Results and Discussion

4.2 Turbine Mode
In turbine mode the flow faces Runner 2 first and Runner 1 second. In this mode,
the flow goes in the negative z-direction. Furthermore, Runner 2 rotates clockwise
and Runner 1 in the anti-clockwise direction around z-axis if looked from left to
right. Figure 4.14 depicts this situation.

Figure 4.14: Flow direction and direction of rotation of runners in turbine mode

4.2.1 Coupled runners set-up
Table 4.3 shows the results obtained for individual pressure head drop, ∆H, and
efficiencies, η, for both rotors in a coupled set up in turbine mode. It can be seen that
for one operating condition the head drop across downstream Runner 1 is negative
which means that rotor would be acting as a pump. These case can be regarded as
non-feasible for the individual rotor. Furthermore, some upstream efficiencies are
larger than 100%. In this cases even though the solution is converged, the available
hydraulic power, qρg∆H2, is not well represented by the individual head drop ∆H2
in this off-design condition for the coupled solution.
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Table 4.3: Head rise and efficiency coupled set up turbine mode

q N1 N2 dH1 dH2 η1 η2
[m3/s] [RPM] [RPM] [m] [m] [%] [%]
0.224 850 637.5 0.77 1.6 59.05 89.19
0.224 1000 750 -0.3 0.66 - 121.69
0.24 700 525 2.29 2.37 92.08 87.85
0.24 850 637.5 1.39 2.07 85.13 88.18
0.24 1000 750 0.16 1.33 - 96.43
0.28 700 525 3.7 3.27 74.35 88.07
0.28 850 637.5 2.98 3.18 92.74 88.01
0.32 700 525 7.08 3.46 38.86 106.89
0.32 850 637.5 4.42 4.26 83.73 88.32
0.32 1000 750 3.71 4.09 92.92 88.15
0.336 700 525 8.8 3.8 35.05 106.36
0.336 850 637.5 5.23 4.71 76.62 88.21
0.336 1000 750 4.43 4.61 92.59 88.06

Rotor 2 upstream
Figure 4.15 displays a comparison of the thrust and power coefficients obtained from
CFD and BEM for the upstream Runner 2 in turbine mode. It is shown that overall
the BEM solution underestimates both values of thrust and power (i.e. torque), but
when the pressure correction is implemented these loadings increase as expected.
Furthermore, the F correction factor was both applied and deactivated (_noF) to
check the effect on the results. No F correction factor increases both thrust and
torque as expected.
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Figure 4.15: CT and CP vs TSR Rotor 2 turbine mode
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Rotor 1 downstream
Figure 4.16 shows CT and CP for the downstream Rotor 1 in turbine mode. A larger
disagreement can be seen for low TSR when it comes to thrust, but overall the BEM
result follow the same trend as CFD. It is worth noting that when the power or thrust
becomes negative for the downstream runner, i.e. the operating condition can be
regarded as non feasible, the BEM-method still captures this trend.
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Figure 4.16: CT and CP vs TSR Rotor 1 turbine mode

Case: q = 0.28 m3/s, N1 = 850 RPM, N2 = 637.5 RPM
Figure 4.17 displays the blade elements torque, dQ ,and thrust, dT , at the upstream
Runner 2 computed by BEM for the particular operating condition. It is worth
recalling that the total thrust and torque on the blade is equal to the sum of all
blade element contributions. Same as for pump mode, it is shown that the larger load
contribution comes from blade elements close to the tip of the blade as compared
to close to the hub. The same decline in loading as the blade element gets closer to
the tip can be seen as compared to pump mode.
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Figure 4.17: dQ and dT contribution along upstream Rotor 2 blade calculated
by BEM, turbine mode, specific case

Furthermore, it can be seen that when the F Prandltl correction factor is active both
dQ and dT are smaller in comparison to when no F factor is present. Figure 4.18
shows the blade element contribution as the previous figure, but for the downstream
Rotor 1. Less of a difference is perceived with respect to deactivating the F factor
in the downstream Rotor 1 for turbine mode.
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Figure 4.18: dQ and dT contribution along downstream Rotor 1 blade calculated
by BEM, turbine mode, specific case

Figure 4.19 displays the angle of attack, α, computed by BEM in each blade element
along the radial direction for both rotors. Figure 4.6b shows that when deactivating
the F factor for upstream Rotor 2 the angles of attack towards the hub and tip are
increased in relation to the middle.
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Figure 4.19: AoA along rotor blades predicted by BEM, turbine mode, specific
case

Total power comparison
The total power extracted by the turbomachine in turbine mode is the sum of the
individual power of each runner. The individual power is calculated as P = ΩQ. In
this sense if one of the runners gives a negative torque (i.e: power required), but
the other runner does not, the total contribution could still be positive representing
extracted power. Table 4.4 displays the total power of the combined runners from
the CFD simulation.

Table 4.4: Individual and total power turbine mode

q N1 N2 P1,CFD P2,CFD Ptot,CFD TSRavg
[m3/s] [RPM] [RPM] [kW] [kW] [kW] [-]
0.224 850 637.5 1.001 3.138 4.139 2.27
0.224 1000 750 -3.54 1.753 -1.787 2.68
0.24 700 525 4.963 4.897 9.86 1.75
0.24 850 637.5 2.772 4.288 7.059 2.12
0.24 1000 750 -1.635 3.02 1.384 2.5
0.28 700 525 7.547 7.893 15.44 1.5
0.28 850 637.5 7.565 7.67 15.234 1.82
0.32 700 525 8.617 11.589 20.206 1.31
0.32 850 637.5 11.602 11.788 23.39 1.59
0.32 1000 750 10.805 11.305 22.11 1.87
0.336 700 525 10.152 13.292 23.445 1.25
0.336 850 637.5 13.177 13.653 26.83 1.52
0.336 1000 750 13.502 13.367 26.87 1.78

Figure 4.20 displays the total power coefficient CP at different TSR. To calculate
the TSR the rotational speed used is the average between both rotational speeds Ω1
and Ω2. Figure 4.20b displays the relative error encountered if the values of total
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power are compared with the obtained total power from CFD. Larger relative error
is perceived for higher TSR values. At these TSR the power extracted is also a
small or even negative values. It is worth recalling that a high TSR means that the
incoming flow is small as compared to the rotational speed of the runner.
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Figure 4.20: Total CP and relative error of the total power turbine mode

4.2.2 Individual runners set-up
Same as in pump mode, by setting up individual geometries a more accurate com-
parison can be made with BEM for the upstream runner. Also for the downstream
runner the same inlet conditions can be simulated individually in CFD and in BEM
with the help of profile1DfixedValue boundary condition.

Rotor 2 upstream
Figure 4.21 shows a comparison between the individual efficiency η and head coeffi-
cient ψ obtained from the coupled geometry and the individual setup for upstream
Runner 2 in turbine mode. It can be seen that for the particular operating con-
ditions the efficiency goes over 100% for low and high values of TSR as seen in
last column of Table 4.3. This individual efficiency from the coupled set-up is not
completely reliable as the available hydraulic power for that individual runner is not
well captured if ∆H2 is used.
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Figure 4.21: η2 and ∆H2 R2 coupled set-up vs individual set-up turbine mode

Figure 4.22 depicts the same results displayed in Figure 4.15 but with the additional
CT and CP values obtained from the single geometry setup. It can be seen that thrust
and torque (i.e. power) do not considerably differ from the values obtained in the
coupled geometry for the upstream Runner 2. This fact is in contrast with what
it was obtained for upstream Runner 1 in pump mode for both coupled and single
geometries (Figure 4.9), where the difference was larger.
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Figure 4.22: CT and CP upstream Runner 2 in turbine mode single case
comparison

Tangential and axial velocities after Rotor 2 from CFD
Figure 4.23 shows the tangential velocities induced on the flow right after Runner 2 in
turbine mode. This values were obtained from the single geometry setup simulations.
Unlike the previous Figure 4.10 the current operational conditions induce higher
tangential velocities towards the hub.
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Figure 4.23: Tangential velocities along the radial direction right after Runner 2
in turbine mode

Figure 4.24 shows the circumferential average of the axial velocity right after Runner
2 for the individual case set-up in turbine mode. It is shown that the average profiles
are not strictly uniform along the axial direction. For some operating conditions
a lower axial velocity is perceived close to the shroud and a higher one occurs
approaching towards the hub, as compared to the incoming axial velocity U0.
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Figure 4.24: Axial velocities along the radial direction right after Runner 2 in
turbine mode

CFD velocities replaced into BEM equations Rotor 2
Tangential and axial velocities displayed in Figures 4.23 and 4.24 can be used to
obtained the induction factors a and a′ at the rotor plane. This because according
to BEM uθ = 2a′Ωr and uz = U0(1 − a) in turbine mode. The induction factors
are used to compute the angle of attack, α and the corresponding loadings on the
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blade directly. In this case there is no iteration procedure since a and a′ are given
and only need to be evaluated to obtain thrust, dT , and torque, dQ, at each blade
element.

Figure 4.25 shows a comparison between the results obtained from CFD and the
results given by BEM when the velocities after Rotor 2 are transformed to induction
factors and replaced in the BEM equations. As seen, better agreement is obtained
when the axial induction factoris set to zero (a = 0), i.e: when U0 remains constant.
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Figure 4.25: CT and CP as calculated from replacing a and a′ deduced from
CFD upstream Runner 2 turbine mode

Rotor 1 downstream profile1DfixedValue boundary condi-
tion
Same as with the downstream rotor in pump mode, the following results were ob-
tained using the profile1DfixedValue boundary condition. The tangential velocity
profile used are the ones obtained right after upstream Runner 2 in turbine mode
individual geometry (Figure 4.23). For axial velocity the constant value U0 is con-
sidered. In a similar manner, the BEM code was run using the same tangential
velocity profiles and constant axial velocity as inputs for the downstream Rotor 1.
It is shown that there is a better agreement for a certain range of TSR, whereas for
low TSR the trend is not being completely followed.
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Figure 4.26: CT and CP downstream Runner 1 obtained with
profile1DfixedValue, turbine mode
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5
Conclusion

The present work represents a first attempt to characterize the rotor blades of a
Counter-Rotating Pump-Turbine (CRPT) to implement the classical BEM method
in order to obtain the total thrust, T , torque, Q, and power, P , on the rotor blades.
It is concluded that it is possible to use the BEM method with a reasonable amount
of error, but most importantly that the trend seen for thrust and power coefficient,
CT and CP at different TSR is being followed. Therefore, further work is required
for full validation of the current methodology.

For pump mode the loadings in upstream Runner 1 predicted by BEM maintaining
the F factor agree well with CFD data from the coupled case set-up (Figure 4.2).
Nevertheless, when the individual CFD simulations were compared they differed
from the loadings obtained from the coupled CFD for this rotor, especially as the
TSR increases (Figure 4.9). Therefore, even though good agreement can be obtained
for the coupled case, an individual geometry analysis raised up more uncertainty.

For the downstream Runner 2 in pump mode the formula proposed gives results that
are overestimating the values obtained from CFD with a certain offset. Nevertheless,
the same trend is being followed (Figure 4.3). Furthermore, no major difference is
perceived when the F factor is deactivate.

In turbine mode the BEM results underestimate the loadings on the upstream Run-
ner 2, but by deactivating the loss correction factor, F , the loadings can raise up
to match the validation data, with the exception of extreme values of TSR (Figure
4.15). The CFD individual set up simulations gave similar results of CT and CP as
the coupled CFD simulation for Runner 2 in turbine mode (Figure 4.22). Therefore,
it can be said that in this mode the upstream runner is less sensitive to the operation
of the downstream runner. Results for the downstream Runner 1 in turbine mode
(Figure 4.16) are better captured for a certain TSR range by the different BEM
simulations.

Comparing the total power coefficient in pump mode (Figure 4.7) it is concluded
that overall the BEM calculations overestimate this variable as compared to CFD.
Less relative error of the total power value is obtained for higher TSR. For turbine
mode, the total power (Figure 4.20) is mainly being underestimated, and for a
certain range of TSR the values are well captured.

The Prandtl correction factor F can be used to adjust the results. The omission of
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5. Conclusion

this factor in the BEM equations increases the total blade thrust, T , and torque,
Q, (i.e. power), while its presence decreases them. Generally, this effect is more
notorious in the upstream runner than in the downstream runner. It is thought that
this factor that could be of good use for future result tuning.

The extra loadings due to pressure correction use the head drop across the rotor ∆H
as a known information to compute the static pressure difference ∆p. The individual
∆H is taken as an input from the CFD simulations. This is used in combination
with the tangential velocity, uθ, before and after each runner as predicted by BEM
to compute ∆p thanks to the Bernoulli equation. In reality ∆H for each rotor is not
previously known if not for CFD. Therefore, the pressure difference across the rotor
remains unknown and the extra loading proposed becomes impractical to apply.
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Further Work

Further work needs to be done to fully validate such a method for this type of
turbomachine. For example, further investigation and comparison with individual
rotor geometries could be done to better understand what kind of corrections are
needed for the upstream runners. This given that it becomes inappropriate to isolate
the effect of one runner in a full case geometry because the solution is coupled by
the operation of both runners. It could be useful to further characterize the flow to
understand where separation or secondary flows occur and that might be affecting
the load distribution on the blade.

In order to make the current BEM-code faster it would be appropriate to reduce the
levels of interpolation being carried out in the procedure. In this work the structural
information of each blade is given at certain radii. Each one of this profiles has a
different Cl and Cd curve for different Re numbers. The interpolation procedure
first interpolates according to the radial location of the blade element and then by
the Re number. It would be interesting to compare the BEM method results by the
profile characteristics of these profiles at only Re = 1 × 106. It is thought that there
is no significant difference between the different Re of one profile characteristic. If
no significant difference is observed, this simplification could save computation time
if necessary.

In this work, the Viterna extrapolation method is used over the Montgomerie method
because is the only method available in the the Python tool AirfoilPrep.py at the
moment. Even though for the current operating conditions the upstream rotors
do not present stall conditions, or out-of-range AoA, this might be the case for a
different operating condition or even for the downstream rotor. For this cases it
would be interesting to compare the different extrapolation methods and see how
the results differ.

In the present work the profile characteristics for different AoA were obtained with-
out any consideration of the proximity or spacing between blades. If such cascade
effect were to be considered the Cl and Cd curves would need to be corrected ac-
cordingly. By knowing the spacing between rotor blades a cascade representation for
different profiles could be obtained and simulated in a similar way as the individual
profiles has been simulated in this thesis.

Additionally, different configurations of radial locations and blade elements along the
blade could be tried out. As seen from the detailed information of thrust and torque
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contributions, dT and dQ, along the rotor blades, larger contributions come from
locations closer to the tip. It is thought that changing the radial points distributions
to a denser configuration towards the tip could improve the level of detail of the
loadings at this location.

Lastly, the current turbomachine geometry is in a reduced model scale. Therefore, a
comparison of the implementation of the BEM method in prototype scale size could
be implemented and the differences in relation with model scale could be assess in
the future.
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A
BEM code

A.1 Example of a main file

1 %% running pump mode rotor 1 and rotor 2 afterwards
2 clc
3 clear
4 close all
5 %%
6 % fluid data
7 fluid .( ’rho ’) = 998; %m3/s
8 fluid .( ’nu ’) = 1e -6; %
9

10 % structural data
11 arr1 = readmatrix (’structData / R1geom .txt ’);
12 blade1 .( ’r’) = arr1 (: ,1) *1e -3;
13 blade1 .( ’c’) = arr1 (: ,2) *1e -3;
14 blade1 .( ’beta ’) = arr1 (: ,3);
15 blade1 .( ’Rhub ’) = arr1 (1 ,1) *1e -3;
16 % blade1 .(’Rtip ’) = arr1(end ,1) *1e -3;
17 blade1 .( ’Rtip ’) = 137.3*1e -3;
18 blade1 .( ’z’) = 8;
19
20 arr2 = readmatrix (’structData / R2geom .txt ’);
21 blade2 .( ’r’) = arr2 (: ,1) *1e -3;
22 % blade2 .(’c ’) = arr2 (: ,2) *1e -3;
23 blade2 .( ’c’) = [77.1463; 81.7824; 85.4908; 88.3614; 90.4867; 91.9801; 92.9745;

93.6490; 93.6666]*1e -3;
24 blade2 .( ’beta ’) = arr2 (: ,3);
25 blade2 .( ’Rhub ’) = arr2 (1 ,1) *1e -3;
26 % blade2 .(’Rtip ’) = arr2(end ,1) *1e -3;
27 blade2 .( ’Rtip ’) = 137.3*1e -3;
28 blade2 .( ’z’) = 7;
29
30 % radial positions
31 r = linspace (64 ,136 ,10) *1e -3;
32
33 array = readmatrix (’validation / pumpModeData ’);
34
35 % input velocity and rot speed
36 Qflow = array (: ,1);
37 A = ((138e -3) ^2 -(62.3e -3) ^2)*pi; %[m2] annulus area model scale
38 v = Qflow ./A;
39 N1 = array (: ,2);
40 N2 = array (: ,3);
41 omega1 = N1*pi /30;
42 omega2 = N2*pi /30;
43 pitch = 0;
44
45 T1val = -( array (: ,16));
46 T2val = -( array (: ,17));
47 Q1val = -( array (: ,14));
48 Q2val = ( array (: ,15));
49 % P1val = array (: ,9);
50 % P2val = array (: ,10);
51 P1val = Q1val .* omega1 ;

I



A. BEM code

52 P2val = Q2val .* omega2 ;
53
54 eff1 = array (: ,12);
55 eff2 = array (: ,13);
56
57 dH1 = array (: ,6);
58 dH2 = array (: ,7);
59
60 setting .( ’machine ’)=’CRPT ’;
61 setting .( ’flag ’)=’pump ’;
62
63 %%
64 T2 = zeros ( length ( Qflow ) ,1); T2corr = T2; T1 = T2; T1corr =T2;
65 Q2 = zeros ( length ( Qflow ) ,1); Q2corr = Q2; Q1 = Q2; Q1corr =T2;
66 P2 = zeros ( length ( Qflow ) ,1); P2corr = P2; P1 = P2; P1corr =T2;
67
68 % R1 --> R2 (pump)
69 for i=1: length ( Qflow )
70 % i=8
71 setting .( ’downstream ’) = ’no ’;
72 setting .( ’rot ’) = 1;
73 [ dataR1 ] = BEM_fzero_mod2 (v(i),N1(i),pitch ,r,setting ,blade1 , fluid );
74 T1(i) = dataR1 .T; Q1(i) = dataR1 .Q; P1(i) = dataR1 .P;
75 fprintf ("U = %.2f, Power = %.2f [kW], Thrust = %.2f [N], Torque = %.2f [Nm ]\n",

v(i),P1(i)*1e-3,T1(i),Q1(i))
76 [ T1corr (i),Q1corr (i),P1corr (i)] = dPcorr2 (dH1(i),fluid ,dataR1 , setting );
77 fprintf ("U = %.2f, Power = %.2f [kW], Thrust = %.2f [N], Torque = %.2f [Nm ]\n",

v(i),P1corr (i)*1e-3, T1corr (i),Q1corr (i))
78 fprintf (" Reference :\n")
79 fprintf ("U = %.2f, Power = %.2f [kW], Thrust = %.2f [N], Torque = %.2f [Nm],

Eff = %.2f [%%] \n",v(i),P1val (i)*1e-3, T1val (i),Q1val (i),eff1(i))
80
81 dataR1 . Tcorr = T1corr (i);
82 dataR1 . Qcorr = Q1corr (i);
83 dataR1 . Pcorr = P1corr (i);
84 varName = sprintf (" q_%.0 f_N1_ %.0f", Qflow (i)*1000 , N1(i));
85 pR1 .( varName ) = dataR1 ;
86
87 setting .( ’downstream ’) = ’yes ’;
88 setting .( ’rot ’) = 2;
89 setting .( ’ap_up ’) = dataR1 .ap;
90 [ dataR2 ] = BEM_fzero_mod2 (v(i),N2(i),pitch ,r,setting ,blade2 , fluid );
91 T2(i) = dataR2 .T; Q2(i) = dataR2 .Q; P2(i) = dataR2 .P;
92 fprintf ("U = %.2f, Power = %.2f [kW], Thrust = %.2f [N], Torque = %.2f [Nm ]\n",

v(i),P2(i)*1e-3,T2(i),Q2(i))
93 [ T2corr (i),Q2corr (i),P2corr (i)] = dPcorrDown (dH2(i),fluid ,dataR1 ,dataR2 , setting

);
94 fprintf ("U = %.2f, Power = %.2f [kW], Thrust = %.2f [N], Torque = %.2f [Nm ]\n",

v(i),P2corr (i)*1e-3, T2corr (i),Q2corr (i))
95 fprintf (" Reference :\n")
96 fprintf ("U = %.2f, Power = %.2f [kW], Thrust = %.2f [N], Torque = %.2f [Nm],

Eff = %.2f [%%] \n",v(i),P2val (i)*1e-3, T2val (i),Q2val (i),eff2(i))
97
98 dataR2 . Tcorr = T2corr (i);
99 dataR2 . Qcorr = Q2corr (i);

100 dataR2 . Pcorr = P2corr (i);
101 varName = sprintf (" q_%.0 f_N2_ %.0f", Qflow (i)*1000 , N2(i));
102 pR2 .( varName ) = dataR2 ;
103 end
104 % Uncomment to save
105 % save(’ variables / pR1_noF .mat ’,’-struct ’,’pR1 ’);
106 % save(’ variables / pR2_down_noF .mat ’,’-struct ’,’pR2 ’);
107
108 %% write into a file
109 % This is one way to write results into a txt file
110
111 % relative error [%]
112 e_T1 = (-( T1val - T1)./ T1val ) .*100;
113 e_T1corr = (-( T1val - T1corr )./ T1val ) .*100;
114
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115 e_Q1 = (-( Q1val - Q1)./ Q1val ) .*100;
116 e_Q1corr = (-( Q1val - Q1corr )./ Q1val ) .*100;
117
118 e_P1 = (-( P1val - P1)./ P1val ) .*100;
119 e_P1corr = (-( P1val - P1corr )./ P1val ) .*100;
120
121 e_T2 = (-( T2val - T2)./ T2val ) .*100;
122 e_T2corr = (-( T2val - T2corr )./ T2val ) .*100;
123
124 e_Q2 = (-( Q2val - Q2)./ Q2val ) .*100;
125 e_Q2corr = (-( Q2val - Q2corr )./ Q2val ) .*100;
126
127 e_P2 = (-( P2val - P2)./ P2val ) .*100;
128 e_P2corr = (-( P2val - P2corr )./ P2val ) .*100;
129
130 % upstream
131 header = ’Q[m3/s] \t N1[RPM] \t dH1[m] \t Eff1 [%%] \t T1val [N] \t T1 \t error \t

T1corr \t error \n’;
132 values = [ Qflow N1 dH1 eff1 T1val T1 e_T1 T1corr e_T1corr ];
133 fid = fopen (’results / pR1R2_noF_T1 .txt ’, ’w’);
134 fprintf (fid , header );
135 fprintf (fid , ’%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n’, values ’);
136 fclose (fid);
137
138 header = ’Q[m3/s] \t N1[RPM] \t dH1[m] \t Eff1 [%%] \t Q1val [Nm] \t Q1 \t error \t

Q1corr \t error \n’;
139 values = [ Qflow N1 dH1 eff1 Q1val Q1 e_Q1 Q1corr e_Q1corr ];
140 fid = fopen (’results / pR1R2_noF_Q1 .txt ’, ’w’);
141 fprintf (fid , header );
142 fprintf (fid , ’%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n’, values ’);
143 fclose (fid);
144
145 header = ’Q[m3/s] \t N1[RPM] \t dH1[m] \t Eff1 [%%] \t P1val [W] \t P1 \t error \t

P1corr \t error \n’;
146 values = [ Qflow N1 dH1 eff1 P1val P1 e_P1 P1corr e_P1corr ];
147 fid = fopen (’results / pR1R2_noF_P1 .txt ’, ’w’);
148 fprintf (fid , header );
149 fprintf (fid , ’%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n’, values ’);
150 fclose (fid);
151
152 % downstream
153 header = ’Q[m3/s] \t N2[RPM] \t dH2[m] \t Eff2 [%%] \t T2val [N] \t T2 \t error \t

T2corr \t error \n’;
154 values = [ Qflow N2 dH2 eff2 T2val T2 e_T2 T2corr e_T2corr ];
155 fid = fopen (’results / pR1R2_noF_T2 .txt ’, ’w’);
156 fprintf (fid , header );
157 fprintf (fid , ’%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n’, values ’);
158 fclose (fid);
159
160 header = ’Q[m3/s] \t N2[RPM] \t dH2[m] \t Eff2 [%%] \t Q2val [Nm] \t Q2 \t error \t

Q2corr \t error \n’;
161 values = [ Qflow N2 dH2 eff2 Q2val Q2 e_Q2 Q2corr e_Q2corr ];
162 fid = fopen (’results / pR1R2_noF_Q2 .txt ’, ’w’);
163 fprintf (fid , header );
164 fprintf (fid , ’%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n’, values ’);
165 fclose (fid);
166
167 header = ’Q[m3/s] \t N2[RPM] \t dH2[m] \t Eff2 [%%] \t P2val [W] \t P2 \t error \t

P2corr \t error \n’;
168 values = [ Qflow N2 dH2 eff2 P2val P2 e_P2 P2corr e_P2corr ];
169 fid = fopen (’results / pR1R2_noF_P2 .txt ’, ’w’);
170 fprintf (fid , header );
171 fprintf (fid , ’%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\t%f\n’, values ’);
172 fclose (fid);

A.2 BEM solver
The axial induction factor a is omitted in this script.
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1 function [data] = BEM_fzero_CRPT (v,n,pitch ,r,set ,blade , fluid )
2 % BEM function for the machine CRPT
3 %
4 % inputs
5 % v [mx1 double ] = freestrem incoming velocity [m/s]
6 % n [mx1 double ] = rotational speed rotor [RPM]
7 % r [mx1 array ] = radial points to perform BEM [m]
8 % blade [1 x1 struct ] = rotor geometric data
9 % fluid [1 x1 struct ] = fluid properties data

10 %
11 % outputs
12 % data [1 x1 struct ] = output data packed in a structure
13
14 %% Input data
15 % interpolate structural properties at radial points
16
17 % chord length at every radial position [m]
18 c = interp1 ( blade .r, blade .c,r); % array with length (r1)
19
20 % twist angle ( pitch ) for every profile [ degrees ]
21 beta = interp1 ( blade .r, blade .beta ,r);
22 beta = beta + pitch ;
23
24 % rotational speed [rad/s]
25 omega = n*pi /30;
26
27 % solidity [-]
28 sigma = blade .z*c ./(2* pi*r);
29
30 % initialize variables
31 elem= length (r);
32
33 a= zeros (elem ,1); ap= zeros (elem ,1);
34 F=ones(elem ,1); U=ones(elem ,1); Re=ones(elem ,1); cn=ones(elem ,1); ct=ones(elem ,1);
35 alpha =ones(elem ,1);
36
37 % defining inputs
38 machine = set. machine ;
39 flag = set.flag;
40
41 % define coefficient C depending on mode
42 if strcmp (flag ,’turbine ’); C= -1; elseif strcmp (flag ,’pump ’); C = 1;
43 else; error (" flag must be ’turbine ’ or ’pump ’"); end
44
45 %% rotor
46
47 for j=1: length (r)
48 x0 = 50;
49 phi = fzero (@(phi) func(phi ,v, omega ),x0);
50
51 fprintf (’Radius %.4f, F=%.2f, phi =%.2f, alpha =%.2f, Re =%.2g ,[a,ap ]=[%.4f ,%.4f]\

n’,r(j),F(j),phi , alpha (j),Re(j),a(j),ap(j));
52 end
53
54 %% differential load calculations
55 % blade elements span dr [m]
56 if isrow (r); r=r ’; sigma =sigma ’; end
57
58 dr = zeros ( length (r) ,1);
59 aux=diff(r);
60
61 dr (1) = aux (1) /2 + (r(1) - blade .Rhub);
62 dr(end) = aux(end)/2 + ( blade .Rtip - r(end));
63 for i=2: length (dr) -1
64 dr(i) = aux(i -1) /2 + aux(i)/2;
65 end
66
67 %% Thrust and torque
68
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69 % blade element theory
70 % thrust [N]
71 dT = sigma .* pi* fluid .rho .*U .^2.* cn .*r.* dr;
72 T = sum(dT);
73
74 % torque [Nm]
75 dQ = sigma .* pi* fluid .rho .*U .^2.* ct .*r .^2.* dr;
76 Q = sum(dQ);
77
78 % power [W]
79 P = omega .*Q;
80
81 % output into a structure
82 data .( ’T’) = T;
83 data .( ’Q’) = Q;
84 data .( ’P’) = P;
85 data .( ’dT ’) = dT;
86 data .( ’dQ ’) = dQ;
87 data .( ’ap ’) = ap;
88 data .( ’r’) = r;
89 data .( ’dr ’) = dr;
90 data .( ’beta ’) = beta;
91 data .( ’c’) = c;
92 data .( ’omega ’) = omega ;
93 data .( ’alpha ’) = alpha ;
94 data .( ’Re ’) = Re;
95 data .( ’F’) = F;
96 data .( ’Uaxial ’) = v;
97
98 %% Nested functions (used by fzero )
99

100 function res = func(phi ,v, omega )
101 [ap(j)] = induc_factors (phi);
102 res = sind(phi)-cosd(phi)*v/((1 -C*ap(j))*( omega *r(j)));
103 end
104
105 function [ap] = induc_factors (phi)
106 [cn(j),ct(j)] = force_coeff (phi);
107
108 % manually uncomment and comment if no F factor
109 F(j) = lossCorr (phi ,r(j),blade );
110 % F(j) = 1;
111
112 % tangential induction factor a’ and auxiliary term k’
113 kp = 4*F(j)*sind(phi)*cosd(phi)./( sigma (j)*ct(j));
114 ap = 1./( kp+C);
115
116 % downstream runner
117 if strcmp (set. downstream ,’yes ’)
118 if strcmp (flag ,’pump ’)
119
120 ap_up = set .( ’ap_up ’);
121 kp = 4*F(j)*sind(phi)*cosd(phi)./( sigma (j)*ct(j));
122 ratio = 0.75; % Omega2 / Omega1
123 ap = (2* ap_up (j)*kp ./ ratio - 1) ./( -kp -C);
124
125 elseif strcmp (flag ,’turbine ’)
126
127 ap_up = set .( ’ap_up ’);
128 kp = 4*F(j)*sind(phi)*cosd(phi)./( sigma (j)*ct(j));
129 ratio = 0.75; % Omega2 / Omega1
130 ap = (2* ap_up (j)*kp .* ratio - 1) ./( -kp -C);
131
132 end
133 end
134 end
135
136 function [cn ,ct] = force_coeff (phi)
137 alpha (j) = C*( beta(j) - phi);
138
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139 % Reynolds number [-]
140 Ux = v;
141 Uy = omega *r(j)*(1 -C*ap(j));
142 U(j) = sqrt(Ux ^2 + Uy ^2);
143 Re(j) = U(j)*c(j)./ fluid .nu;
144
145 % [cl ,cd] = tableLookup_oneRe ( alpha (j), Re(j), r(j), flag , machine ,set.rot)

;
146 [cl ,cd] = tableLookup_allRe ( alpha (j), Re(j), r(j), flag , machine ,set.rot);
147
148 cn = cl*cosd(phi) - C*cd*sind(phi);
149 ct = cl*sind(phi) + C*cd*cosd(phi);
150 end
151
152 end

A.3 Interpolation

1 function [cl ,cd] = tableLookup_allRe (alpha , Re , r, flag , machine ,rot)
2 % [cl ,cd] = tableLookup (alpha , Re , r, flag , machine ,rot)
3 % For the CRPT this function computes cl and cd from the two closest Re numbers

and radiuses
4 % and returns the interpolation for the given Re and r. In this case it uses
5 % the auxiliary function auxInterp for the radial interpolation .
6 % For the other machines there is no Re interpolation .
7
8
9 if machine == "CRPT"

10 if Re <= 0.5 e6
11 Re_file = ’0.5 e6 ’;
12 [cl ,cd] = auxInterp (flag ,rot ,r,Re_file , alpha );
13
14 elseif Re > 0.5 e6 && Re <= 1e6
15 Re_file1 = ’0.5 e6 ’;
16 Re_file2 = ’1.0 e6 ’;
17
18 [cl1 ,cd1] = auxInterp (flag ,rot ,r,Re_file1 , alpha );
19 [cl2 ,cd2] = auxInterp (flag ,rot ,r,Re_file2 , alpha );
20
21 cl = interp1 ([0.5 e6 ,1 e6], [cl1 ,cl2],Re);
22 cd = interp1 ([0.5 e6 ,1 e6], [cd1 ,cd2],Re);
23
24 elseif Re > 1e6 && Re <= 2e6
25 Re_file1 = ’1.0 e6 ’;
26 Re_file2 = ’2.0 e6 ’;
27
28 [cl1 ,cd1] = auxInterp (flag ,rot ,r,Re_file1 , alpha );
29 [cl2 ,cd2] = auxInterp (flag ,rot ,r,Re_file2 , alpha );
30
31 cl = interp1 ([1e6 ,2 e6], [cl1 ,cl2],Re);
32 cd = interp1 ([1e6 ,2 e6], [cd1 ,cd2],Re);
33
34 elseif Re > 2e6
35 Re_file = ’2.0 e6 ’;
36 [cl ,cd] = auxInterp (flag ,rot ,r,Re_file , alpha );
37 end
38
39 elseif machine == " NREL_5MW "
40 % struct data
41 array = readmatrix (’structData / distBladeProp .txt ’);
42 R = array (: ,1);
43
44 airfoil = cell( length ( array ) ,1);
45 airfoil (1:3 ,1) = {’Cylinder1 ’};
46 airfoil (4 ,1) = {’Cylinder2 ’};
47 airfoil (5 ,1) = {’DU40 ’};
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48 airfoil (6:7 ,1) = {’DU35 ’};
49 airfoil (8 ,1) = {’DU30 ’};
50 airfoil (9:10 ,1) = {’DU25 ’};
51 airfoil (11:12 ,1) = {’DU21 ’};
52 airfoil (13:19 ,1) = {’NACA64 ’};
53
54 for i=1: length (R) -1
55 if r >= R(i) && r <= R(i+1)
56 f1 = sprintf ([ airfoil {i ,1} ’%s’],’L.txt ’);
57 f2 = sprintf ([ airfoil {i+1 ,1} ’%s’],’L.txt ’);
58 path_f1 = [’tables / NREL_5MW /’ f1 ];
59 path_f2 = [’tables / NREL_5MW /’ f2 ];
60 A1 = readmatrix ( path_f1 );
61 A2 = readmatrix ( path_f2 );
62 cl1 = interp1 (A1 (: ,1) ,A1 (: ,2) ,alpha );
63 cl2 = interp1 (A2 (: ,1) ,A2 (: ,2) ,alpha );
64 cl = interp1 ([R(i), R(i+1) ],[cl1 , cl2],r);
65
66 f1 = sprintf ([ airfoil {i ,1} ’%s’],’D.txt ’);
67 f2 = sprintf ([ airfoil {i+1 ,1} ’%s’],’D.txt ’);
68 path_f1 = [’tables / NREL_5MW /’ f1 ];
69 path_f2 = [’tables / NREL_5MW /’ f2 ];
70 A1 = readmatrix ( path_f1 );
71 A2 = readmatrix ( path_f2 );
72 cd1 = interp1 (A1 (: ,1) ,A1 (: ,2) ,alpha );
73 cd2 = interp1 (A2 (: ,1) ,A2 (: ,2) ,alpha );
74 cd = interp1 ([R(i), R(i+1) ],[cd1 , cd2],r);
75 end
76 end
77
78 elseif machine == " tidal "
79
80 path_f = ’tables / Tidal / NACA_63815 .dat ’;
81 A = readmatrix ( path_f );
82
83 cl = interp1 (A(: ,1) ,A(: ,2) ,alpha );
84 cd = interp1 (A(: ,1) ,A(: ,3) ,alpha );
85
86 elseif machine == " propeller "
87
88 path_f = ’tables / Propeller / CLARKY .dat ’;
89 A = readmatrix ( path_f );
90 A = [A(1: end -1 ,1) A(1: end -1 ,5) A(1: end -1 ,9) ];
91 A = [A; 180 A(end ,2) A(end ,3) ];
92
93 cl = interp1 (A(: ,1) ,A(: ,2) ,alpha );
94 cd = interp1 (A(: ,1) ,A(: ,3) ,alpha );
95
96 else
97 error (" pick a valid machine : ’NREL_5MW ’, ’tidal ’, ’propeller ’ or ’CRPT ’")
98 end
99

100 end

A.4 Pressure Correction

1 function [T,Q,P] = dPcorr (dH ,fluid ,data , setting )
2 % Extra thrust and torque due to the pressure difference .
3 % applied after BEM is implemeneted
4 %
5 % inputs
6 % dH [1 x1 double ] = Head drop across rotor [m]
7 % fluid [1 x1 struct ] = fluid properties
8 % data [1 x1 struct ] = output structure from BEM function
9 % setting [1 x1 struct ] = setting .flag -> "pump" or " turbine "

10 %
11 % outputs
12 % T [1 x1 double ] = Thrust after pressure load [N]
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13 % Q [1 x1 double ] = Torque after pressure load [Nm]
14 % P [1 x1 double ] = Power after pressure load [W]
15
16 ap = data.ap;
17 r = data.r;
18 dr =data.dr;
19 beta = data.beta;
20 c = data.c;
21 omega = data. omega ;
22
23 beta = beta ’;
24 c = c ’;
25
26 g = 9.81;
27 rho = fluid .rho;
28 u_theta = 2.* ap .* omega .*r; % tangential velocity
29
30 if strcmp ( setting .flag ,’pump ’)
31 dp_static = dH*rho*g - 0.5* rho *( u_theta ).^2; % [Pa]
32 elseif strcmp ( setting .flag , ’turbine ’)
33 dp_static = dH*rho*g + 0.5* rho *( u_theta ).^2; % [Pa]
34 end
35
36 dT_pcorr = dp_static .* cosd(beta).* dr .*c;
37 dQ_pcorr = dp_static .* sind(beta).* dr .*c.*r;
38
39 Tcorr = sum( dT_pcorr );
40 Qcorr = sum( dQ_pcorr );
41
42 T = data.T;
43 Q = data.Q;
44
45 T = T + Tcorr ;
46 Q = Q + Qcorr ;
47
48 P = omega .*Q;
49
50 end

A.5 Pressure Correction Downstream

1 function [T,Q,P] = dPcorrDown (dH ,fluid ,dataUp ,dataDown , setting )
2 % Extra thrust and torque due to the pressure difference .
3 % For downstream rotor applied after BEM is implemented
4 %
5 % inputs
6 % dH [1 x1 double ] = Head drop across rotor [m]
7 % fluid [1 x1 struct ] = fluid properties
8 % dataUp [1 x1 struct ] = output structure from BEM function upstream
9 % dataDown [1 x1 struct ] = output structure from BEM function downstream

10 % setting [1 x1 struct ] = setting .flag -> "pump" or " turbine "
11 %
12 % outputs
13 % T [1 x1 double ] = Thrust after pressure load [N]
14 % Q [1 x1 double ] = Torque after pressure load [Nm]
15 % P [1 x1 double ] = Power after pressure load [W]
16
17 ap_up = dataUp .ap;
18 omega_up = dataUp . omega ;
19
20 ap_down = dataDown .ap;
21 omega_down = dataDown . omega ;
22
23 r = dataDown .r; % same r upstream and downstream runner
24 dr = dataDown .dr;
25 beta = dataDown .beta;
26 c = dataDown .c;
27

VIII



A. BEM code

28
29 beta = beta ’;
30 c = c ’;
31
32 g = 9.81;
33 rho = fluid .rho;
34 u_theta_up = 2.* ap_up .* omega_up .*r; % tangential velocity
35
36 du_theta = 4.* ap_up .* omega_up .*r + 2.* ap_down .* omega_down .*r;
37 if strcmp ( setting .flag ,’pump ’)
38 dp_static = dH*rho*g - rho* u_theta_up .* du_theta - 0.5* rho .* du_theta .^2; % [Pa]
39 elseif strcmp ( setting .flag , ’turbine ’)
40 dp_static = dH*rho*g + rho* u_theta_up .* du_theta + 0.5* rho .* du_theta .^2; % [Pa]
41 end
42
43
44 dp_static (1) = 0; dp_static (end) = 0; %skip close to tip and hub
45
46 dT_pcorr = dp_static .* cosd(beta).* dr .*c;
47 dQ_pcorr = dp_static .* sind(beta).* dr .*c.*r;
48
49 Tcorr = sum( dT_pcorr );
50 Qcorr = sum( dQ_pcorr );
51
52 T = dataDown .T;
53 Q = dataDown .Q;
54
55 T = T + Tcorr ;
56 Q = Q + Qcorr ;
57
58 P = omega_down .*Q;
59
60 end
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Lift and Drag Tables

B.1 Polar curves
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Figure B.1: Rotor 1 profile characteristics in pump mode Re = 0.5e6
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Figure B.2: Rotor 2 profile characteristics in pump mode Re = 0.5e6
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Figure B.3: Rotor 1 profile characteristics in turbine mode Re = 0.5e6
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Figure B.4: Rotor 2 profile characteristics in turbine mode Re = 0.5e6
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Figure B.5: Rotor 1 profile characteristics in turbine mode Re = 1.0e6
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Figure B.6: Rotor 2 profile characteristics in turbine mode Re = 1.0e6

Re = 2.0e6
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Figure B.7: Rotor 1 profile characteristics in pump mode Re = 2.0e6
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Figure B.8: Rotor 2 profile characteristics in pump mode Re = 2.0e6
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Figure B.9: Rotor 1 profile characteristics in turbine mode Re = 2.0e6
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Figure B.10: Rotor 2 profile characteristics in turbine mode Re = 2.0e6

B.2 Polar curves extrapolated

Re = 0.5e6
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Figure B.11: Rotor 1 profile characteristics in pump mode extrapolated
Re = 0.5e6
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Figure B.12: Rotor 2 profile characteristics in pump mode extrapolated
Re = 0.5e6
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Figure B.13: Rotor 1 profile characteristics in turbine mode extrapolated
Re = 0.5e6
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Figure B.14: Rotor 2 profile characteristics in turbine mode extrapolated
Re = 0.5e6
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Re = 1.0e6
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Figure B.15: Rotor 1 profile characteristics in pump mode extrapolated
Re = 1.0e6
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Figure B.16: Rotor 2 profile characteristics in pump mode extrapolated
Re = 1.0e6
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Figure B.17: Rotor 1 profile characteristics in turbine mode extrapolated
Re = 1.0e6
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Figure B.18: Rotor 2 profile characteristics in turbine mode extrapolated
Re = 1.0e6

Re = 2.0e6
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Figure B.19: Rotor 1 profile characteristics in pump mode extrapolated
Re = 2.0e6
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Figure B.20: Rotor 2 profile characteristics in pump mode extrapolated
Re = 2.0e6
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Figure B.21: Rotor 1 profile characteristics in turbine mode extrapolated
Re = 2.0e6
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Figure B.22: Rotor 2 profile characteristics in turbine mode extrapolated
Re = 2.0e6
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C.1 createCases.py
This python script creates all the different individual simulations for a given AoA,
Re number and operating mode. It changes the drag and lift directions respectively
from the function object forceCoeff in controlDict, according to the AoA and
therefore the flow direction.

1 import math
2 import numpy as np
3 import os
4 from shutil import copyfile
5
6 cwd = os. getcwd ()
7
8 pi = math.pi
9 Re_vect = np. array ([2 e6 ]);

10 lRef = 1; nu = 1.0533e -6;
11
12 createdCases = " createdCases_ "+ str( round ( Re_vect [0]/1 e6 ,1)) + "e6"
13 f = open( createdCases , "w")
14 f. close ()
15
16 for r in range (2):
17 if r +1==1:
18 AoA_vect_pump = np. linspace ( -30.0 , 20.0 , num =26) #pR1 [ -30...20]
19 AoA_vect_turb1 = np. linspace ( -180.0 , -150.0 , num =16) #tR1 [ -30...0]
20 AoA_vect_turb2 = np. linspace (160.0 , 180.0 , num =10 , endpoint = False ) #tR1

[0...20]
21 AoA_vect = np. concatenate (( AoA_vect_pump , AoA_vect_turb1 , AoA_vect_turb2 ));
22 elif r +1==2:
23 AoA_vect_pump = np. linspace ( -12.0 , 12.0 , num =21) #pR2 [ -12...12]
24 AoA_vect_turb1 = np. linspace ( -180.0 , -168.0 , num =11) #tR2 [ -12...0]
25 AoA_vect_turb2 = np. linspace (168.0 , 180.0 , num =10 , endpoint = False ) #tR2

[0...12]
26 AoA_vect = np. concatenate (( AoA_vect_pump , AoA_vect_turb1 , AoA_vect_turb2 ));
27 for p in range (9):
28 RPname = "R"+str(r+1)+"P"+str(p+1)
29 sourceFolder = RPname + "/ cleanCase /"
30 for k in range (len( Re_vect )):
31 Re = Re_vect [k]
32 runFolder = RPname + "/ runFolder_ " + str( round (Re /1e6 ,1)) + "e6/"
33 Umag = Re*nu/lRef;
34 if not os.path. exists ( runFolder ):
35 os. makedirs ( runFolder )
36 for i in range (len( AoA_vect )):
37 AoA_orig = AoA_vect [i]
38 Ux = np.cos( AoA_orig *pi /180) *Umag
39 Uy = np.sin( AoA_orig *pi /180) *Umag
40
41 if AoA_orig < -90: # turbine angles
42 AoA_eq = -180.0 - AoA_orig
43 p_or_t = ’t’
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44 elif AoA_orig > 90:
45 AoA_eq = 180.0 - AoA_orig
46 p_or_t = ’t’
47 else: #pump angles
48 AoA_eq = AoA_orig
49 p_or_t = ’p’
50
51 folder = runFolder + p_or_t + "AoA_" + str( round (AoA_eq ,1)) + "_Re_" + str(

round (Re /1e6 ,1)) + "e6" + "/"
52
53 os. system ("cp -r " + sourceFolder + " " + folder )
54
55 os. chdir (cwd + ’/’ + folder )
56 os. system ("sed -i s/’ Uinlet ( ’.*/ ’ Uinlet (" + str(Ux) + " " + str(Uy) + "

0);’/g 0/U")
57 os. system ("sed -i s/’ dragDir ( ’.*/ ’ dragDir (" + str(Ux) + " " + str(Uy) +

" 0);’/g system / controlDict ")
58 os. system ("sed -i s/’ magUInf ’.*/’ magUInf " + str(Umag) + ";’/g system /

controlDict ")
59 if np.abs( AoA_orig ) <90:
60 os. system ("sed -i s/’ liftDir ( ’.*/ ’ liftDir (" + str(-Uy) + " " + str(Ux)

+ " 0);’/g system / controlDict ")
61 elif np.abs( AoA_orig ) >90:
62 os. system ("sed -i s/’ liftDir ( ’.*/ ’ liftDir (" + str(Uy) + " " + str(-Ux)

+ " 0);’/g system / controlDict ")
63
64 os. system (" touch ./"+ p_or_t + RPname +"_"+str( round (AoA_eq ,1))+".foam")
65
66 os. system ("echo case " + folder + " created ")
67 os. chdir (cwd)
68
69 f = open( createdCases , "a")
70 f. write ( folder + "\n")
71 f. close ()
72
73 f = open( createdCases ,"r")
74 lines = f. readlines ()
75 numCases = len( lines )
76
77 os. system ("echo "+ str( numCases ) +" cases created ")
78 """
79 # submit job
80 os. system (" sbatch --array =0 -"+ str(numCases -1) +"%60 batchFile2 ")
81 os. system (" echo all "+ str( numCases ) +" cases submitted ")
82 """
83
84
85

C.2 profile1D.csv
Example of .csv formate file located in constant/ with radial profiles used as inlet
for the downstream runner.

1 # volFlow = 370.0 l/s, upstream N1 = 1300.0 rpm , downstream N2 =975 rpm
2 # axial velocity = 7.773109243697478
3 #
4 [Data]
5 R [ m ], Velocity Axial [ m s^-1 ], Velocity Radial [ m s^-1 ], Velocity

Circumferential [ m s^-1 ], Pressure [ Pa ], Turbulence Kinetic Energy [ m^2 s
^-2 ], Turbulence Eddy Dissipation [ m^2 s^-3 ], Turbulence Specific
Dissipation Rate [ s^-1 ]

6 0.0623 , 7.773109243697478 , 0.0 , 5.994472 , 0.0 , 0.0 , 0.0 , 0.0
7 0.064 , 7.773109243697478 , 0.0 , 5.994472 , 0.0 , 0.0 , 0.0 , 0.0
8 0.0721 , 7.773109243697478 , 0.0 , 4.725521 , 0.0 , 0.0 , 0.0 , 0.0
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9 0.0802 , 7.773109243697478 , 0.0 , 4.109743 , 0.0 , 0.0 , 0.0 , 0.0
10 0.0883 , 7.773109243697478 , 0.0 , 3.711677999999999 , 0.0 , 0.0 , 0.0 , 0.0
11 0.0964 , 7.773109243697478 , 0.0 , 3.5989599999999995 , 0.0 , 0.0 , 0.0 , 0.0
12 0.1046 , 7.773109243697478 , 0.0 , 3.4128689999999997 , 0.0 , 0.0 , 0.0 , 0.0
13 0.1127 , 7.773109243697478 , 0.0 , 3.336417 , 0.0 , 0.0 , 0.0 , 0.0
14 0.1208 , 7.773109243697478 , 0.0 , 3.156816 , 0.0 , 0.0 , 0.0 , 0.0
15 0.1289 , 7.773109243697478 , 0.0 , 3.0693310000000005 , 0.0 , 0.0 , 0.0 , 0.0
16 0.137 , 7.773109243697478 , 0.0 , 4.280380999999999 , 0.0 , 0.0 , 0.0 , 0.0
17 0.138 , 7.773109243697478 , 0.0 , 4.280380999999999 , 0.0 , 0.0 , 0.0 , 0.0

C.3 profile1DinletValue at 0/U
How the boundary condition is called from in O/U

1 boundaryField
2 {
3 lowPressure
4 {
5 type profile1DFixedValue ;
6 fileName " profile1D .csv";
7 fileFormat " turboCSV ";
8 interpolateCoord "R";
9 fieldName " Velocity ";

10 fieldScaleFactor 1;
11 }
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