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Development of a software for tracking plankton based on predictions from neural
networks
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Abstract

The goal of this project is to develop a software that can be used to study swim-
ming patterns of marine microorganisms. The software is based on a neural network,
which is trained to recognise different types of plankton. The predictions from the
network are then used to find the positions of the plankton and track their move-
ments.

The project is divided into two parts. First, videos containing only one type of
plankton, Lingulodinium polyedra and Alexandrium tamarense, respectively, are an-
alyzed. A type of neural network, called U-net, is trained to segment the input
images into background and plankton sections. From the segmented images, posi-
tions can be obtained and then connected to form a trajectory for each plankton.
The drift of the plankton movements is calculated and subtracted from the trajec-
tories, and finally the speed and net displacement are calculated. The results from
the single plankton experiments are compared to a previous analysis that was made
using an algorithmic method.

Secondly, videos containing two types of plankton are analyzed containing the phy-
toplankton Strombidium arenicola and Rhodomonas baltica. The segmented images,
obtained from the U-net, consists of an additional plankton section for the second
type of plankton present in the experiment.

The analysis of the single plankton experiments yields longer and fewer trajectories
using the U-net method, compared to the previous results using the algorithmic
method. This indicates that the U-net method detects plankton at more positions,
and is therefore able to track each plankton for a longer time, compared to the
algorithmic method. The multi-plankton experiments prove the network’s ability to
distinguish and track multiple plankton at the same time.

Keywords: deep learning, U-net, plankton, tracking, drift compensation.
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1

Introduction

Being able to understand and predict how things move is an important part of many
sciences, in everything from nanotechnology to astrophysics. To track and follow
something may seem like a simple task for the brain; one can easily imagine a cat
staring at a moving laser dot on the wall, or a human following the path of a bird in
the sky. Such tasks do not pose much problem for our brains. However, if we ask a
computer to simulate this action, it turns out it is not that simple. "How do we tell
the computer what to follow?” and "How will it identify the same element when it
is moving between frames?” These are just two of the many questions we need to
answer before we proceed.

Fortunately, there have been great progress in this field. A method developed by
Crocker and Grier in 1995 [1], locates particles by finding local maxima in an im-
age. The method TrackMate, developed by Tinevez et al.[2], is more reliant on the
user finding the right filters to distinguish the particles. However, what these, and
other frequently used methods, have in common is their algorithmic approach. As a
consequence, these do not work well when perfect conditions, such as homogeneous
lighting, spherical particles and no drifting in and out of focus, do not apply. This
is especially a problem at low signal-to-noise ratios.

In the field of biology, the limits of the algorithmic tracking methods becomes ap-
parent (3, 4]. As an example, marine microorganisms, such as plankton, quite often
need to be tracked in large volumes, which makes them drift in and out of focus.
Tracking different kinds of plankton in a shared volume also present a challenge.

What if the computer could learn how to recognise certain elements in an image?
What if there was a way to make the computer act as a brain? Deep learning is
a novel approach to the tracking problem which does not rely on algorithms. In-
stead of us humans giving the computer the rules for finding plankton, the computer
teaches itself. The deep learning approach has previously been used with great suc-
cess in the field of particle tracking [5-7].

The purpose of this project is to develop a software which, based on the predictions
obtained from a deep learning network, can track different types of plankton. The
predictions are obtained from the Deeptrack 2.0 framework [8], which is developed
by a student at the Soft Matter Lab, University of Gothenburg. Deeptrack 2.0 makes
it possible to simulate images of particles resembling plankton and train a network
to recognise them. The tracking software is developed with the future users, the De-
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partment of Marine Science at University of Gothenburg, in mind, who also carried
out the experiments used in this project. These experiments produced several videos
of different plankton under different circumstances. The goal is to be able to anal-
yse the swimming pattern of the plankton, such as their speed and net displacement.

The project is divided into two parts; single and multiple plankton tracking. Both
experiments focused on the effects copepodamides had on the swimmingbehaviour of
different phytoplankton. Copepodamides are polar lipids emitted by a group of zoo-
plankton, copepods, which the phytoplankton can detect. The single plankton ex-
periments uses phytoplankton, Lingulodinium polyedra and Alexandrium tamarense
respectively, exposed to different concentrations of copepodamides. A network is
trained on simulated images of the plankton and the predictions from the network
are then used to find positions and build traces for each plankton present in the
experiment. The single particle experiment had previously been analyzed using an
algorithmic method and these results are compared with the ones obtained through
the deep learning method.

The multiple plankton experiments uses two types of phytoplankton, Strombidium
arenicola and Rhodomonas baltica. The different plankton are simulated simultane-
ously by the network, and traces can be built for the two species separately. The
software also incorporates a drift compensation feature.
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Theory

2.1 Machine learning

Traditionally, humans provide a computer with a set of rules, algorithms, to solve
problems. Imagine the box in Figure 2.1 to be a computer with a set of algorithms.
When feeding an input to the box, it will perform some tasks defined by the al-
gorithms and produce an output. This works well when we already know how a
system behaves, or if a task is simple. As an example, algorithmic approaches work
well for detecting spherical particles in the same focal plane under homogeneous
lighting conditions. However, when the problem becomes more complicated, like
finding particles in low signal-to-noise ratios or finding non-spherical particles, it
can be simpler to have the computer make its own rules [9)].

input output

Figure 2.1: A simplified image of how an algorithm works. An input is first sent
in to a box. The box, or algorithm, applies some function on the input and returns
an output.

In machine learning, the box in Figure 2.1 is practically empty to start with. How-
ever, we already know the inputs and outputs for a number of cases. By letting the
computer guess the output from each input and correcting its mistakes, the com-
puter will learn more and more about how the input and output are connected. The
goal is to provide the computer with enough known inputs and outputs such that
it is finally able to understand a system well enough to predict how it will behave.
Simply put, machine learning is letting the computer learn from its mistakes.

2.1.1 Neural networks

A neural network is a type of machine learning algorithm which takes inspiration
from the biological networks of neurons found in the brain [10]. Just like a brain,
a neural network consists of several neurons that are connected. An example of
a neuron in a neural network can be seen in Figure 2.2. Each input is weighted
differently and the output is a function of the weighted sum of the inputs, which
can be written as the function below. A bias is also included in the output. The
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purpose of the bias is to allow the model to be more flexible in its predictions. The
bias is usually set to 1.

output = f(w; - input, + wy - input, + ws - 1)
input;

N

2

inputy f output
/W/'U

1

Figure 2.2: Schematics of a neuron with inputs, bias, weights w, activation function
f and output. The output is the function f of the weighted sum of the input and
bias.

The function f inside the neuron is called an activation function. The purpose of
an activation function is to add a non-linearity to the network [11]. The operations
executed by the network, like the weighted sum, are linear. However, most real
world problems are not. It is therefore necessary to use a non-linear activation func-
tion since we are trying to get the network to recognise realistic problems. There
are several different activation functions, some of the most used are Sigmoid, tanh
and rectified linear unit (ReLU). The related functions can be seen below together
with the associated curve in Figure 2.3. Note that the bias in the input allow the
activation function to move right or left.

Sigmoid tanh ReLU
1 r _ -z
flx)=0(x) = T tanh(z) = ijL% R(z) = max(0,x)
Sigmoid tarl1h RePU

Figure 2.3: The curves of some of the most commonly used activation functions
Sigmoid, tanh and rectified linear unit, ReLLU.



2. Theory

In a neural network, there are several neurons which are connected through layers.
Figure 2.4 shows a network with three layers. The input layer and the hidden layer
have three neurons each, while the output layer have two neurons. The input, out-
put and activation function are all fixed, which means that the only variables that
can be trained by the network are the weights, which connects the neurons.

Input layer Hidden layer Output layer

Y

/
/

\

Figure 2.4: The forward feeding step of the neural network. An input X is sent into
the input layer. Every neuron in the input layer is connected to every neuron in the
hidden layer. Every neuron in the hidden layer has an activation function and will
return the function of the weighted sum from the input layers and the connected
weights to the output layer. The output layer finally returns an output ¥.

The learning of the network is done in two steps, which are repeated multiple times.
In the beginning, the weights connecting the neurons are randomly assigned. An
input vector x is fed forward through the network, as seen in Figure 2.4. Note that
the input layer does not perform any operations, but is simply passing the input
through to the hidden layer. The nodes in the hidden layer each have an activation
function and will preform this operation on the weighted sum from each of the input
nodes. The hidden layer passes the new values through to the output layer, which
will give an output vector §. Because the weights are assigned randomly, we expect
the first output to be very far some the true target yo.

The next step is to calculate the total error by comparing the output § to the target
V9. The total error is then propagated back through the network, as seen in Figure
2.5. During the back propagation, the weights are adjusted to reduce the error.
The adjustment is done through gradient descent to minimize the error. After the
weights are adjusted, a new input and output pair will be used. The new input and
output will go through the same process as the first example, but the weights will be
the ones adjusted from previous examples. This way, the error will slowly decrease
while the network learns more and more.
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Input layer Hidden layer Output layer

<« § < target o

Figure 2.5: The back propagation step in the neural network. The total error is
calculated by comparing the output ¥ and the target ¥5. The error is then propagated
back through the network adjusting the weights connecting the neurons to reduce
the error.

2.1.2 Convolutional neural networks

A convolutional neural network has proven to work well for image recognition and
classification [12, 13]. An example of a convolutional neural network can be seen in
Figure 2.6. This network consists of four operations which take us from an image
to a label, these steps are explained in this section.

Figure 2.6: An example of a simple convolutional neural network consisting of
two convolutional steps with three layers. Two ReLU steps, which introduces a
non-linearity to the network. Two maxPooling layers downsamples the network
and finally there are two fully connected layers which returns an output vector
representing the labels. Original image from [14].

The first step in a convolutional neural network is a convolution. A convolution acts
as a type of filter that runs over the input image to extract different features from
the image [10]. There are different kinds of filters, such as edge detection filters or
filters which sharpens the image. Examples of filters and their effects on the image
can be seen in Figure 2.7 [15]. The filter is run over the the image with a specific

6
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step size. The size of the filter and its step size is defined by the user. However, the
matrix values of the filter is learnt by the network through training.

Sharpen

Box blur

Edge detection

Figure 2.7: Examples of different filters and their effects on the original image.
The sharpen filter sharpens the features of an image. The box blur filter takes a
pixel and average it to the neighbouring pixels. The edge detection filter extracts
edge features from an image. Original image from [15].

The next step is the introduction of non linearity, which comes in the form of an
activation function. In the example in Figure 2.6, this step comes directly after each
of the convolutional steps. The activation function used in this example, ReLU,
replaces all the negative values in the image matrix with zeros. The effects a con-
volution and a ReLU can have on an image can be seen in Figure 2.8[14].

Convolution

Figure 2.8: Example of the effects of a convolution filter on an image, followed by
the effects of the activation function ReLU, which replaces all negative values with
zeros. Original image from [14].

After each convolution and ReLU layers, a max pooling layer is introduced. A max

7
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pooling layer downsamples the image, an example of which can be seen in Figure
2.9. In this example, a 2x2 matrix is moving over the image with a step size of two,
returning the largest number of the four numbers affected by the filter. The max
pooling layer reduces the dimension of the image while keeping the most important
information [10].

Figure 2.9: An example of how a max pooling layer of size 2x2 and step size 2
works on a 4x4 matrix. The maxpooling layer takes the maximum value of the 2x2
matrix as a new value.

The last steps in the convolutional neural network are the fully connected layers
and the output predictions. These steps are equivalent to the fully connected layers
described in section 2.1.1. In the example in Figure 2.6, the output is a vector with
predictions for each label.

The trainable values in a convolutional neural network are the weights, but also the
values of the elements in the convolutional filters. However, the user will have to
specify the number of filters. In the example in Figure 2.6, there are three convolu-
tional filters in each convolution step. The size and the step size of the filters will
also have to be determined by the user, as well as the overall architecture of the
network, i.e. how many layers there are and where to put each layer.

A convolutional neural network is trained by feeding it some known input images
and output vectors. It works the same way as a simple neural network does, as
described in section 2.1.1. However, when back propagating, both the weights and
the matrix values in the convolutions will be adjusted to compensate for the errors.
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2.1.3 U-net

As stated in section 2.1.2, the convolutional neural network works well for recognition
and classification of images. However, a limitation with this network is segmentation
[16]. In several fields, such as biology, diagnostics and self driving cars, not only
the classification of the image is of interest, but also exactly where in the image
an object is present [17]. In semantic segmentation, each pixel is labeled with its
associated object. In Figure 2.10, every pixel is labeled with either a cat label or a
background label.

Original image Semantic segmentated image

Figure 2.10: An image of a cat and the same image segmented into background
and cat pixels. Original image from [18].

Even though there have been some success in segmentation using convolutional neu-
ral networks [19], a network that handles segmentation better than the convolutional
neural network is a U-net [16]. A convolutional neural network takes an image and
downsamples it to a vector, which does not necessarily give any information about
the exact position of the object. A U-net, on the other hand, takes and image,
converts it into a small 2D array and then converts that array back to an image.
This means that every pixel in the image will be assigned a label.

The U-net has a downsampling part and an upsampling part, which are symmetri-
cal. This gives the U-net a u-shaped architecture, hence the name. The upsampling
and downsampling parts are also connected through bridges. Consequently, infor-
mation earned through each downsampling step is used to upsample the image and
the spatial information is maintained. An image of a U-net can be seen in Figure
2.11, where the u-shaped architecture is apparent. The left side of the network is
downsampling the image, just like a convolutional neural network does. It consists
of several convolutional layers, followed by ReLLU functions and max pooling layers.

The upsampling part of the U-net, the right side, consists of several upsampling
steps, which are followed by convolutions. An example of an upsampling process
can be seen in Figure 2.12. In this example, a 2x2 image is upsampled to a 3x3
image. First, the smaller image is padded, which means that the original image is
extended by adding extra elements or pixels. Usually, this is done by adding zeros
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Figure 2.11: The U-net architecture. The left side contracts the image in the
same way as a convolution network does, while the right side expands the image.
The output of the U-net is one or several segmented versions of the original image.
Original image from [16].

in the padding spots. Then the convolution filter is ran over the padded image and
each step produces a value in the output. It is important to note that the convo-
lutional filter used in the upsampling is the same filter used in the corresponding
downsampling step. This way, the important features that were found in the down-
sampling are used to reconstruct the image. The last step in the U-net upsampling
path is to make sure that the number of segmented images matches the number of
labels.

To train the U-net, images and their known segmentation are used as inputs and
outputs, respectively. To calculate the errors, each pixel is considered individually.
For every pixel, we want to know the probability of it belonging to each class. Every
pixel needs to lie in a class, i.e. the total probability needs to be equal to 1, and to
force this, a soft max function is used. This function takes a vector, i.e the value of
that pixel in each class, and normalize it into a probability distribution. The values
of the vector have values within [0,1] and the total sum of the values is 1. This gives
us a probability of each class for every pixel.

To calculate the total error we use a weighted cross entropy loss function:

WCE(p,p) = —(p- Bilog(p) + (1 —p) - Balog(1 — p))
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Figure 2.12: Upsampling of an image. This upsampling takes a 2x2 matrix and
upsamples it to a 3x3 matrix by first padding it and then running a 3x3 convolution
over it with a step size of one. Each step the convolution results in a new value in
the final upsampled image.

In this function, p is the true output, p is the predicted output, and ; and Sy are
the weights. This loss function is used because different classes may be more present
than others, i.e. there is usually more background than objects in an image. To
make sure that the network does not label all pixels as one, the network is punished
differently for different predictions. For example, the punishment, or the total error,
for labeling an object pixel as background is worse than labeling a background pixel
as an object. Especially when segmenting images of particles, the background pixels
are over represented compared to the particle pixels. To avoid the network averaging
every pixel to background, we use a weighted cross entropy loss function and the
weights decide how important each of the classes are.

2.2 Plankton

The primary movements of the plankton, on a grander scale, comes from the ocean
currents. Nevertheless, this does not mean that plankton have no local movement.
On the contrary, most plankton have the ability to swim and research their environ-
ment, although be it quite a limited area. The swimming pattern of the plankton
can be quantified by analyzing the gross and net displacement, as well as the speed
[20]. Figure 2.13 shows the gross displacement as L, and the net displacement as L.
Plankton can recycle the water area they roam by reducing the net displacement of
their movements, thereby reducing the rate at which predators may be encountered.
However, this also means that the encounter rate of food or potential mates is also
reduced. Increased swimming speed also increase the risk of running into predators
[21].

Plankton can be divided into two groups, phytoplankton, the primary energy source
of which is photosynthesis, and zooplankton, which survive by eating other plank-
ton. A large group of zooplankton that preys on phytoplankton is called copepods.
Copepods are blind, except for light detection, so in order to find prey and mates,

11
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Figure 2.13: Net displacement, [, and gross displacement, L, of a plankton trajec-
tory. Image from [20].

they rely on non-visual senses [22]. To find mates, Baggien et al. [22] showed that
the females send chemical signals for the males to track.

Another chemical that the copepods, both male and female, emit is a group of
polar lipids called copepodamides [23]. However, the objective for emitting copepo-
damides is still unclear. Selander et al. speculated that the copepodamides might
have something to do with the metabolism of the copepod, since the concentration
of copapodamides lowered when the copepods were starved [23].

Furthermore, the phytoplankton, preys of the copepods, can detect the copepo-
damide and adapt their behavior to avoid getting eaten. In 2011 Selander et al.
showed that the phytoplanktons changed their chain lengths when detecting cope-
podamides [21]. The longer the chain, the faster they can swim, which increases the
risk of encountering a copepod. The longer the chain also means a larger mass of
preys in the same place, which increases the risk of detection.

Phytoplankton can increase their production of algal toxins when detecting cope-
pods, as shown by Selander et al. [23, 24]. Lindstrom et al. also showed the increase
of bioluminescens in certain phytoplankton when exposed to copepodamides [25].
This study also showed a tendency towards longer net displacements and higher
swimming velocities in single phytoplankton, when subjected to copepodamides.
However, the result was not statistically significant.

It is important to note that the photosynthesis in phytoplankton is responsible for
about 50% of the worlds oxygen production [26]. Algal toxins are also something
that can greatly affect humans, both directly but also through our fish and shellfish
consumption [27]. An understanding of how phytoplankton behave when threaten
is therefore of great importance.

12



3

Methods

3.1 Training the network

A network with a U-net architecture is trained to recognise different types of plank-
ton. In order to provide sufficient data for the training process, the training is
performed on simulated images of particles, made to resemble plankton as closely as
possible. The following sections will describe how these images are simulated and
how the model is evaluated on both simulated and experimental data.

3.1.1 Simulating images

In the real images, the plankton are blurry and out of focus. This makes them look
like dots, as seen in Figure 3.1. This is used to our advantage, because it is easier to
simulate a geometric dot than it is to simulate an organism with legs and internal
structures. The simulated images are generated through several steps, which are
explained in this section. Both the simulations and the training of the network are
done using the software Deeptrack 2.0 [§].

The first step is to define what we want to simulate. This is done by specifying sev-
eral parameters about the particle or plankton. The particle is assigned a random
position, x and y coordinates, withing the range of the size of the image plane. This
gives each particle a new, random position on the image. A distance from the focal
plane is defined, which makes the model able to recognise particles, even if they are
not at the perfect distance from the camera. This distance is given as a range, above
and below the focal plane. The plankton are simulated as ellipses with two radii,
which are both given as ranges, to simulate different sizes and shapes of the same
type of plankton. This is especially important for plankton, which are naturally
more elliptically shaped, because if they are swimming towards or away from the
camera, the shape will change. They are also given a random rotation, as to simulate
different angles the particle can be viewed from. A refractive index is defined, which
should be the difference between the medium in which the plankton is emerged,
usually water, and the plankton itself. An absorption coefficient is also defined. Fi-
nally, the simulated particle is assigned a type to make it easier to distinguish them
later on. Two types of particles can be simulated in the same image at the same time.

The second step is to define the optics. This includes defining the resolution of the

camera, to simulate the one used in the real experiment. The magnification and
the numerical aperture, NA, is also specified and included in the image simulation.
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Real image Simulated image
one type one type

" Real image Simulated image
two types two types

Figure 3.1: Examples of real and simulated images of plankton with one type of
plankton and two types of plankton, respectively. All of the images are 128x128
pixels in size.

The wavelength of the light illuminating the particle is specified. However, because
visible light has a range of wavelengths, the simulations are a combination of wave-
lengths within a range of A=[400nm, 700nm|. These are all combined in a later step.
Finally, an illuminating gradient is included, to simulate different inhomogeneous
lightning, that could be present in the real images.

The third step is to add some noise. Noise with a Poisson distribution is therefore
added to the image. The signal-to-noise ratio of the noise can be simulated as a
range, to be able to distinguish particles in many different noise conditions.

The three steps described above are combined to form an image, which should in-
clude everything the model needs to learn how to recognise a specific particle type.
A sample is defined as the number of small particles and the number of large par-
ticles that should be present in each image. For each step in wavelength range, the
optics is incorporated into the sample. When the whole wavelength range has been
assessed, the individual sample-optics parts are summed together to form an image
that should represent particles illuminated by real light.

The last step is to create the target images, which are segmented versions of the
simulated image. These are the outputs from the model, and also serve as the target
which the network should predict. Each simulated image is segmented into three
parts: the background, particle 1 and 2, as seen in Figure 3.2. Every pixel is as-
signed a label, according to its associated layer, and each pixel can only be assigned
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one of the three labels.

Examples of the real images and simulated versions can be found in Figure 3.1. To
save time, each simulated image is re-used 8 times by flipping it right to left, up
and down and diagonally. Each pixel is also normalized. The model is then trained
by giving the network batches of 8 images (or one image flipped around 8 times),
the number of batches is defined by the stepsize, i.e 20 steps equals 160 images in
total. The total number of images the model needs to be trained depends on the
difficulty of the image we want to simulate. However, the images are not given all at
once, but in batches, to keep the network from averaging them all and not learning
anything.

For images in which the particles are very densely positioned, it is possible to up-
sample the images to twice, or even four times the size of the original. This makes
it possible for the network to distinguish particles that are very close to each other.
Because of the padding in the extra upsamling step, there are simply more pixels
present between each of the particles, which makes it easier for the network to dis-
tinguish them.

It is important to note that the simulated particles are in a size range of a few
hundred nanometer, while the real plankton are of 20-40 micrometer. It is therefore
not the actual size of the plankton that should be simulated, but the number of
pixels occupied by the plankton in the real image.

(a) Simulated image (b) Background (c) Particle 1 (d) Particle 2

Figure 3.2: Example of a simulated image with two kinds of plankton. The simu-
lated image is segmented into three layers, the background, particle 1 and particle
2. The white areas are the pixels that belong to the corresponding class.
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3.2 Tracking

The tracking of the particles is divided into two steps. First, finding the particle po-
sitions in each frame using a connected component algorithm. Secondly, connecting
the positions between each frame, and building a trace using linear sum assignment.
Both are described in this section.

3.2.1 Finding the positions

By feeding the video to the trained network, three lists of predicted images are
obtained. One containing the segmented background layer, one containing the seg-
mented particle 1 layer and containing the segmented particle 2 layer. For the
network targeted at the single plankton type experiments, the particle 2 list will
only contain black images since there are only one type of plankton present in the
experiment. In the network targeted at the multiple plankton type experiments,
both the particle 1 list and the particle 2 list contained plankton.

To find the position of the plankton in each frame, a connected component algorithm
is used. This algorithm was designed by Rosenfeld and Pfaltz in 1966 [28] and
connects neighbouring pixels of the same values. In this case, the algorithm connects
pixel values which are all above a specific limit. The center of each connected
patch is found using the Python function "regionprops” together with the attribute
“centroid”. The algorithm returns a list of every plankton’s positions in each frame.

Algorithm 3.1 Positions. An algorithm, which uses the Python function ”label” to
label each connected region in the image with pixel values above a specific limit. The
function "regionprops”, used with the attribute ”"centroid”, will return the positions
of the center of each connected region.

1: function GET__POSITIONS(image, limit)
2: blobs = image pixels > limit
all_labels = label(blobs)
regions = regionprops(all_labels)
create empty list of positions
for probs in regions do

y, X = probs.centroid

add y and x to list of positions
end for
10: return positions
11: end function
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3.2.2 Building traces frame by frame

The next step in the tracking process is to connect the positions in each frame to the
positions in the next frame, thereby building a trace. This is done using algorithms
3.2 and 3.3.

The positions are connected using a linear sum assignment algorithm [29]. This
algorithm is built on minimizing a cost matrix. An example of a cost matrix, and
how it works, can be seen in 3.3. In this example, the rows of the cost matrix (a,
b, ¢, d) are called the workers, while the columns (p, q, r, s) are called jobs. The
aim is to connect the workers and the rows so that the sum of the elements, the
total cost, is minimized. In the example in Figure 3.3, the sum of the highlighted
elements gives a total cost 23. This is, however, not minimized, since it is possible
to choose a better worker-job combination, which yields a lower cost. The purpose
of the linear sum assignment is to give the combination of rows and columns which
yields a minimized cost.

P q r s
al 1 2 3 4
bl 2 4 6 8

C(i,7) =
(i) cl3 6 9 12
dl4 8 12 16

Figure 3.3: Demonstration of linear sum assignment. The matrix C is the cost
matrix which consists of workers (a,b,c,d) and jobs (p,q,r,s) with their corresponding
values. Each worker is connected to one job. In this example, the total cost of the
worker-job combination (highlighted in blue) is 23. The linear sum assignment will
combine the workers and the jobs to minimize this sum. Example from [30].

In our case, the cost matrix is a matrix with the position of frame i as rows, and the
positions in frame ¢ + 1 as columns. The elements in the matrix are the distances
between each of the positions in the different frames. The linear sum assignment
therefore gives a minimized cost of distances.

Algorithm 3.3 uses the linear sum assignment to connect positions in one frame with
the next, making sure that the positions are not too far away. Distances longer than
20 pixels are replaced by a large number, to make sure that these are not connected
to any positions later. Connections that exceeds a certain threshold are deleted.

The two algorithms 3.2 and 3.3 are used together. Algorithm 3.3 decides which
positions are to be connected and returns the built-on-traces to Algorithm 3.2. Al-
gorithm 3.2 checks which traces are continuing to be built upon, and sends those
back into Algorithm 3.3. The finished traces are saved for later. After all frames
have been run through, Algorithm 3.2 returns a list of all traces found in the video.
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Algorithm 3.2 This algorithm is to be used together with algorithm 3.3. It takes
positions, traces and frame number. It starts new traces, or adds new positions to
already begun traces. The traces are built according to certain conditions, such as
the proximity of the new position to the old one and the speed of the object from
one frame to another.

1: function TRACE(new positions, trace, frame)
2: if length of trace > 0 then

3: create list of trace positions

4: for trace in traces do

5: last position = list of positions in previous frame
6: if len(trace) > 2 then

7 last positions += mean(diff(trace[position i, position i+1])
8: end if

9: add last positions to list of trace positions

10: end for

11: distance matrix = distance(new positions, trace positions)
12: distance mattrix[distance mat > 20] = 100000

13: row, col = linear sum assignment(distance mat)

14: isinf = nonzero(distance mat[row, col] > 10000)

15: row = delete(row, isinf)

16: col = delete(col, isinf)

17: for ¢, r in (col, row) do

18: add frame and new positions to traces

19: end for

20: new positions = delete(new positions, row)

21: end if

22: for i in range(len(new positions)) do

23: add frame and new positions|i] to traces

24: end for
25: end function
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Algorithm 3.3 An algorithm, which uses both algorithm 3.1 and 3.2 to build a
trace. It takes a video as a list and a limit and returns a list of traces, one for each
object traced in the video.

1: function GET__PARTICLE_ TRACE(video, limit)

2: create list of lists for begun traces

3 create list of completed traces

4 for frame in video do

5: new particles = get_ positions_ video frame(frame, limit), from 3.1
6: trace(new particles, begun traces, frame), from 3.2

7 for trace in begun traces do

8 if current frame not in trace and length of trace >= 10 then

9: add trace to list of completed traces

10: end if

11: end for

12: keep updated traces in begun traces list and re-run trace function
13: end for

14: return list of competed traces + begun traces

15: end function

3.2.3 Optimization of limit

The limit, or threshold, introduced in the connective components algorithm, can
be set to anything the user finds suitable. However, to reduce the user bias, an
optimized limit is introduced. The goal is to get as long particle traces as possible,
while introducing few new traces. The number of traces is compared to the average
length of all traces. Both values are normalized and the limit, which gives the largest
difference between the two, is used. A pseudo code of the algorithm, which gives
the optimized limit, can be found in Algorithm 3.4.

19



3. Methods

Algorithm 3.4 Limit. An algorithm, which takes a list of traces as input and
returns the optimized limit. The number of traces and the average length of all the
traces is calculated and normalized. When no average value can be calculated, i.e.
no traces were found, the algorithm will throw an exception. The optimized limit
is given as the one that gives the largest difference between both of the normalized
values.

1: function GET__LiMIT(list of traces)

2: create two empty lists for x and y

3: limit_ test = value of limits you want to test
4: for i in limit test do

5: try y= mean length of particle traces

6: except IndexError break

7 add y to y-list

8: x = number of particle traces

9: add x to x-list
10: normed_ x = i/sum(x) for i in x
11: normed_y = i/sum(y) for i iny

12: end for

13: limit = limit_test(argmax(normed y-normed_x))
14: return limit

15: end function

3.3 Drift compensation

To avoid edge effects in the experiments, the plankton need to be observed in a
relatively large container. This might lead to unwanted drift in the trajectories,
which will interfere with the speed and displacement calculations. To reduce the
drift effects, we use the drift compensation function developed by Allan et al. for
the TrackPy package in Python [31]. This function computes an overall ensemble
drift function for all plankton in the experiment. This is done by calculating the
displacement of each plankton between each frame and thereby create a function of
the overall drift. This drift function is subtracted from the original tracks to obtain
a drift compensated dataset. A pseudo code of how this function works can be found
in Algorithm 3.5.
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Algorithm 3.5 Drift. A function which takes a dataframe with x, y, frame and
particle as columns and computes an overall ensemble drift of the trajectories.

1: function COMPUTE_ DRIFT(dataframe)

2: for p, t in dataframe.groupby(’particle’)]) do
3: delta = difference in distance between frames in dataframe
4 end for

5: delta = keep only delta where frame difference = 1

6: dx = mean(delta)

7 x = cumulative sum (dx[’x’; 'y’])

8: return x

9: end function

3.4 Calculations for swimming behaviours

The most important features to consider when analyzing the swimming behaviour
of the plankton are the speed and the net displacement. The following sections
describe how these can be calculated from the positions.

3.4.1 Speed

From the positions and traces of the plankton, found in section 3.2, the speed of
each of the plankton can be calculated. The dataframe is first split into smaller
dataframes, one for each plankton. The distance between the position in the current
and the previous frame is calculated. To get the speed in millimeter per second,
instead of pixels per second, the distance is divided by the number of pixels per
millimeter. Finally, the distance is divided with the number of frames per second.
The distance is then appended to the dataframe as a column named "speed [mm/s]”.
A pseudo code can be found in Algorithm 3.6.

Algorithm 3.6 Speed. An algorithm which calculates the speed of a plankton from
the positions x and y in each frame.
fps = frames per second, ppmm = pixels per mm.

1: function GET SPEED(dataframe, fps, ppmm)

2: create empty list of speed

3 for particle in dataframe, split dataframe into separate particle frames do
4 xy = particle frame[['x’, 'y’]]

5: a = xy[:-1]

6: b = roll(xy, -1, axis=0)[:-1]

7 dxy = linalg.norm(a - b)/ppmm

8 speeds = divide(dxy, fps)

9: convert speed list to dataframe and add as column to particle frame
10: end for

11: concatenate particle frames to one

12: return dataframe with speed

13: end function
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3.4.2 Net displacement

The net displacements of the plankton trajectories are found from the positions of
each trace. As seen in Figure 2.13 in section 2.2, the net displacement is the straight
line distance from the start position to the end position of the trace.

To find the net displacement for each plankton at all times, the input dataframe is
first split into smaller dataframes, one for each plankton. The distance between a
plankton at frame j and a plankton at frame ¢ — j are calculated and added to an
empty list. The mean value of this list is then added to a list of distances. This is
to make sure that the frame difference is the same for all plankton. The distance
list is then converted and appended to the original dataframe.

Algorithm 3.7 Net displacement. This algorithm takes a dataframe with columns
'x’, 'y’ 'frame’ and 'particle’ and returns the original dataframe with the added
column 'net displacement’. The net displacement is calculated by calculating the

distance between positions in frame j and frame i-j.

1: function GET__NET_ DISPLACEMENT(dataframe, ppmm)
2: create empty list of net displacements

3: for particle in dataframe, split dataframe into separate particle frames do
4: create empty list of distances
5: for j in particle frame do
6: create empty, temporary list
7: for i in particle frame - j do
8: x0 = particle frame['x’].valuesli]
9: y0 = particle frame[’y’].values][i]
10 x1 = particle frame[’x’].values|i+j]
11: y1 = particle frame[’y’].values[i+j]
12: dist = sqrt((z1 — 20)? + (y1 — y0)?)/ppmm
13: add dist to temporary list
14: end for
15: add mean of temporary list to distance list
16: end for
17: convert distance list to dataframe and add as column to particle frame
18: end for
19: concatenate particle frames to one
20: return dataframe with net displacement

21: end function

3.5 Plankton experiments

The details of the experiments conducted on single type plankton by the the De-
partment of Marine Science can be found in the paper Lindstrém et al. from 2017
[25]. In short, two types of phytoplankton, Lingulodinium polyedra and Alexandrium
tamarense, were exposed to different amounts of copepodamides and 4 replicates of
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each experiment were conducted. Each experiment was filmed for 1 minute with
5 frames per second. There was one control group, one exposed to 10pM copepo-
damide and one exposed to 100pM copepodamide.

Furthermore, an experiment with multiple types of plankton was carried out, con-
taining pythoplankton Strombidium arenicola and Rhodomonas baltica, the latter in
a high concentration. Two experiments were conducted, with and without exposure
to copepodamides. These were recorded for 1 minute with a frame rate of 10 frames
per second, and with 6 replicates of each experiment.

3.5.1 Previous analysis using TrackMate

The swimming pattern of the single type plankton was analyzed using TrackMate
plugin for Fiji ImageJ [2]. The net displacement was calculated using all traces. The
mean speed of the plankton were analyzed using only traces longer than 5 seconds.
The same parameters was used when analyzing the speed and displacement when
using the Deeptrack method [§].

3.6 Testing the model

Before the model can be tested on experimental data, it is first tested on simulated
images to evaluate its ability to find and distinguish different particles. The model is
tested in five different categories. First, how much training is needed for acceptable
results. Secondly, how much noise can be added. Thirdly, how large an illumination
gradient the image can have. Finally, how large of a difference between sizes of
particles and how big of a shape difference the network can distinguish between.
For each of the tests, one, or several, new networks are trained. The parameters of
each of the models trained can be found in table 3.1.

Table 3.1: Parameters for each model. The amount of training is set in batches, 1
batch has 8 simulated images. The noise is the signal-to-noise ratio. The gradient
is a range of 0 increases with higher numbers. If only one number, the particles are
spherical, if two, the particle is elliptical. The unit of the particle size is in pixels.

Training | Noise | Gradient | particle 1 particle 2
Training - 50-100 0-0.2 8 4
Noise 4000 3-100 0-0.2 8 4
Gradient 4000 50-100 0-1.5 8 4
Size 4000 50-100 0-0.2 8-12 4-8
Shape 4000 50-100 0-0.2 8 r1=8, ro=4-8

Other parameters, such as the depth of the particle and the refractive index, were
kept constant or in the same range.
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The model is also evaluated on experimental data. It is tested on the multi type
plankton experiment containing both Strombidium arenicola and Rhodomonas baltica.
However, only a single frame is used to test the model. Because there is no ground
truth available to compare the models ability to find particles with, the different
particle types are counted manually. The image used for this is a cropped version
of the whole video frame and can be seen in Figure 3.4. The network is trained
using two types of simulated particles that are made to resemble the two plankton
present in the experiment. Since the presence of the smaller plankton Rhodomonas
baltica is so dense, the network is upsampled to twice the size of the original image.
The model is trained using 4000 batches of images. The number of correct particle
positions is compared to the number of incorrect positions, found by the model.

Figure 3.4: A cropped version of the frame used to evaluate the model on exper-
imental data. The larger dots are Strombidium arenicola, and the smaller dots are
Rhodomonas baltica.
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Results

4.1 Model evaluation

The model was evaluated by testing its capability to find and distinguish different
particles under different conditions, as described in section 3.6. The results of the
different assays can be found in the following sections.

4.1.1 Amount of training

To test the amount of training needed for acceptable results, the same network
was trained using different number of input images. Each network was trained by
simulating two types of particles. The larger simulated particle was twice as big as
the small, and there were 3-5 particles of each type in each image. A signal-to-noise
ratio in a range of 50-100 and a light gradient of 0-0.2 was also added to the image,
the details of the network can be found in table 3.1. The results from training on 100,
400 and 2000 batches of images can be seen in Figures 4.1, 4.2 and 4.3, respectively.
One batch of images equals 8 single images, which are fed to the network at the
same time. All results shown in Figures 4.1, 4.2 and 4.3, used constant parameters;
a gradient of 0.1, a signal to noise ratio of 100 and constant particle sizes.
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Training - Ground truth Prediction

with 100 batches particle 1 particle 1
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Ground truth Prediction

particle 2 particle 2

Figure 4.1: Input image of two spherical particle types where the larger was twice
as big as the smaller one. The true and predicted segmented images of particle 1
and 2. The predicted images were obtained from 100 batches of training images.
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Figure 4.2: Input image of two spherical particle types where the larger was twice
as big as the smaller one. The true and predicted segmented images of particle 1
and 2. The predicted images were obtained from 400 batches of training images.
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Figure 4.3: Input image of two spherical particle types where the larger was twice
as big as the smaller one. The true and predicted segmented images of particle 1
and 2. The predicted images were obtained from 2000 batches of training images.

4.1.2 Noise

To test the model’s capability to find particles under different noise conditions, a
new network was trained. This network was trained with two types of spherical
particles, the larger twice the size of the small. The signal-to-noise ratio was in a
range of 3-100 and lighting gradient in a range of 0-0.2 was added to the simulated
images. The network was trained with 4000 batches of image and the details can be
found in table 3.1. The trained network was tested on signal-to-noise ratios 25, 10
and 5. The results of these tests can be found in Figure 4.4, 4.5 and 4.6, respectively.
In these results, only the noise was varied and the particle size was kept constant,
the large at a radius of 8 and the small at a radius of 4 pixels. The light gradient of
the images was also kept constant at 0.1.
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Figure 4.4: Input image with two types of particles with a signal-to-noise (SNR)
ratio of 25. The true segmentation of the image and the predicted segmentation of
each of the two particles.
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Figure 4.5: Input image with two types of particles with a signal-to-noise (SNR)
ratio of 10. The true segmentation of the image and the predicted segmentation of
each of the two particles.
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Figure 4.6: Input image with two types of particles with a signal-to-noise (SNR)
ratio of 5. The true segmentation of the image and the predicted segmentation of
each of the two particles.

4.1.3 Inhomogeneous lighting conditions

The model’s capability to find and distinguish particles in inhomogeneous lighting
conditions, a new network was trained using 4000 batches of images. This network
was trained using images with two different types of particles, a large and a small,
with the larger being twice the size of the small. A signal-to-noise ratio, in a range
of 50-100, was added to the images. The gradient used on the training images was in
a range of 0-1.5. The details of this network can be found in table 3.1. The results
presented in this section had constant noise parameters, signal to noise ratio 50, and
constant particle sizes, 8 and 4 pixels. Lighting gradients with intensity 0.5, 0.9 and
1.5 were tested, and the results can be found in Figure 4.7, 4.8 and 4.9 respectively.
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Ground truth Prediction

Gradient 0.5-0.5 particle 1 particle 1

Ground truth Prediction
particle 2 particle 2

Figure 4.7: Input image with two types of particles with lighting gradient of 0.5-
0.5. The true segmentation of the image and the predicted segmentation of each of
the two particles. The noise is kept constant at a signal-to-noise ratio of 50.
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Figure 4.8: Input image with two types of particles with lighting gradient of 0.9-
0.9. The true segmentation of the image and the predicted segmentation of each of
the two particles. The noise is kept constant at a signal-to-noise ratio of 50.
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Figure 4.9: Input image with two types of particles with lighting gradient of 1.5-
1.5. The true segmentation of the image and the predicted segmentation of each of
the two particles. The noise is kept constant at a signal-to-noise ratio of 50.

4.1.4 Size difference

The capability of the model to distinguish between different particle sizes was tested
by simulating spherical particles of different sizes. A new network was trained, which
parameters can be found in table 3.1. Summarizing, the network was trained using
4000 batches of simulated images. Fach simulated image had two types of spherical
particles present. The larger particle was simulated with a radius in a range of 8-12
pixels, while the small particle was simulated with a radius of 4-8 pixels. Other
parameters regarding the particles were kept the same and constant for both types
of particles. A signal-to-noise ratio of 50-100 was added to the images, as well as a
lighting gradient of 0-0.2. Differences of 25%, 15% and 5% between the large and
the small particles were tested. The result of these analyses can be found in Figure
4.10, 4.11 and 4.12 respectively.
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Figure 4.10: Input image with two types of particles with a size difference of 25%.
The true segmentation of the image and the predicted segmentation of each of the
two particles. The noise is kept constant at a signal-to-noise ratio of 50.
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Figure 4.11: Input image with two types of spherical particles with a size difference
of 15%. The true segmentation of the image and the predicted segmentation of each
of the two particles.
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Ground truth Prediction
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Figure 4.12: Input image with two types of spherical particles with a size difference
of 5%. The true segmentation of the image and the predicted segmentation of each
of the two particles.

4.1.5 Shape difference

To test the model’s ability to distinguish different shapes of particles, a new network
was trained using the parameters found in table 3.1. In short, two types of particles
were simulated. Spherical particles with a radius of 8 pixels, and elliptical particles
with a length of 8 and a width 4-8 pixels were present in each simulated image. The
network was trained using 4000 batches of images. A signal-to-noise ratio of 50-100
was added to the images, as well as a lighting gradient of 0-0.02. The network was
tested on two different cases. The first with particle 1 as a spherical particle with a
radii of 8 pixels and particle 2 as an elliptical particle with radii of 8 and 2 pixels.
The second case had the same shape of particle 1 but particle 2 was elliptical with
radii 8 and 4 pixels. The results of these assays can be found in Figure 4.13 and
4.14.

33



4. Results

Ground truth Prediction
particle 1 particle 1

elliptical 8 - 2 P

Input

Ground truth Prediction
particle 2 particle 2

Figure 4.13: Input image of two types of particles with different shapes. Particle
1 is spherical and particle 2 is elliptical with radii 8 and 2 pixels.
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Figure 4.14: Input image of two types of particles with different shapes. Particle
1 is spherical and particle 2 is elliptical with radii 8 and 4 pixels.
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4.2 Evaluation of model on experimental data.

The results from the evaluation of the model on experimental data can be found
in Figure 4.15. In Figure 4.15a, we see the positions of the larger plankton, Strombid-
ium arenicola, and in Figure 4.15b, the positions of the smaller plankton, Rhodomonas
baltica. To find the positions, the connected components algorithm was used, as seen
in algorithm 3.1. The limit described in this algorithm was for this experiment set
to 0.99 for both plankton.

(a) Positions of the larger plankton (b) Positions of the smaller plankton
Strombidium arenicola, found through Rhodomonas baltica, found through the
the network. network.

Figure 4.15: The model’s predicted positions of particle 1 and 2 at a limit of 0.99.

Comparing the network’s positioning and labeling of the plankton with the manually
labeled plankton, gave the results seen in table 4.1. Summarizing the results, the
network managed to find 100% of large Strombidium at the correct positions. The
network found 415 the smaller Rhodomonas, of which 245 were correctly labeled and
positioned, and 170 incorrectly labeled. These 170 were labeled as Rhodomonas by
the network, while the manual labeling had labeled those positions as background.
The manually labeling had 120 Rhodomonas, which the network labeled as back-
ground.
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Table 4.1: The model’s predictions of the plankton compared to the manually
labeled plankton. SM, RM and BM are manually labeled Strombidium, Rhodomonas
and background respectively. SN, RN and BN are the networks labeling of the same
classes.

SN | 4/4 0 0

RN | 0 |245/365 | 170

BN | - 120 -
SM| RM | BM

4.3 Testing software on experimental data

There were two experiment used to test the softwares capability to track plank-
ton. The first experiments contained only one type of plankton, Lingulodinium and
Alexandrium respectively, and an example of a frame from these experiments can
be seen in Figure 4.16a. The second experiment contained two types of plankton
Strombidium arenicola and Rhodomonas baltica, an example of a frame from these
experiments can be seen in Figure 4.16b.

(a) Frame from experiments containing (b) Frame from experiments contain-
only Lingulodinium ing both Strombidium arenicola and
Rhodomonas baltica.

Figure 4.16: Examples of frames from the experiments used to analyze the swim-
ming behaviour of different types of plankton.

4.3.1 Single type plankton tracking

The experiments containing only one type of plankton were analyzed in two parts.
First, the two methods TrackMate and Deeptrack were compared. Secondly, the drift
compensated tracks were analyzed. The results from both queries can be found in
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the sections below.

The number of particle traces, as well as the average length of the traces, were cal-
culated for both the TrackMate and the Deeptrack method. The calculations were
executed using all four replicates for each experiment. The number of traces can
be found in table 4.2, and the average length in table 4.3. There were on average
32% fewer traces and the length of the traces were on average 10.6% longer using

the Deeptrack method, compared to TrackMate.

Table 4.2: A table which displays the number of plankton traces present during
each experiment. The number is the sum of four replicates for each experiment.

Copepodamides [pM] | TrackMate | Deeptrack
100 321 270
Lingulodinium 10 460 398
0 241 222
100 706 367
Alexandrium 10 587 399
0 5938 346

Table 4.3: A table which displays the average length of all traces during each
experiment. Each experiment was 300 frames long and the length is the average
number of frames each plankton was tracked.

Copepodamides [pM] | TrackMate | Deeptrack
100 177.84 188.70
Lingulodinium 10 193.12 208.65
0 180.32 205.53
100 167.23 194.22
Alexandrium 10 169.08 188.47
0 171.82 199.88

The mean net displacement and standard deviation for both the previous Track-
Mate analysis and the Deeptrack analysis can be found in figure 4.18. A histogram
comparing the average speed for the traces found with TrackMate and Deeptrack
can be found in figure 4.17.
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Figure 4.17: The average speed calculated from traces longer than 5 seconds from
both TrackMate and Deeptrack. The black bars represent the standard deviation.
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Figure 4.18: The net displacement of the different plankton types using the Track-
Mate and Deeptrack method. The average net displacement for each plankton was
calculated from the first frame the plankton is present in the video. The lines

represent the mean net displacement and the shaded areas represent the standard
deviations.

Drift compensated traces

The traces found using Deeptrack were analyzed both in their original state and
when drift compensated. An example of traces in both original and drift compen-
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sated state can be found in figure 4.19.
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Figure 4.19: Examples of original traces and drift compensated traces. The right
figure (green tracks) is the drift compensated version of the left (blue tracks). This
is replicate 2 of the Lingulodinium control experiment.

The net displacement of the plankton, as well as the speed, were analyzed. A figure
showing the average net displacement for the first 30 seconds of the traces can be
found in figure 4.21. A histogram, comparing the average speed of the original and
the drift compensated tracks, can be found in figure 4.20.
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Figure 4.20: A histogram representing the mean speed of the trajectories from the
different experiments. The original traces (green) and the drift compensated traces
(blue). The black bars represent the standard deviation.
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Figure 4.21: The net displacement of the different plankton types for both the orig-
inal and the drift compensated traces. The solid lines are the mean net displacement
calculated from all four replicates. In each subplot, the three lines correspond to the
different amount of copepodamides the two plankton types were exposed to. The
shaded areas represent the standard deviation.
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4.3.2 Multiple type plankton tracking

An example of a frame from the videos from the multi type plankton experiments
can be seen in Figure 4.16b. Only the larger plankton, Strombidium, was tracked.
The net displacement of both the original and the drift compensated traces can be

seen in Figure 4.22. The result of the analysis of the average speed can be seen in
Figure 4.23.
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Figure 4.22: Net displacement of Strombidium with and without the additions of

copepodamides (CA). The left figure shows the original tracks and the right the drift

compensated. The solid lines represent the mean net displacement and the shaded
areas represent the standard deviation.
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Figure 4.23: The mean speed of Strombidium with and without the addition of
copepodamides (CA) on both the original and the drift compensated traces. The
black bars represent the standard deviation.
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Discussion

Model evaluation

The model was evaluated by testing its capability to find and distinguish particles
under difficult imaging conditions.

Section 4.1.1 describes the result from the training evaluation, where the same net-
work was trained using different number of input images. Comparing the results
from the 2000 batch training in Figure 4.3 and the 100 batch training in Figure 4.1,
we can see a significant difference in the predictions of the two particles. In the 2000
batch training, the network manages to label each particle correctly with a high
prediction. However, in the 100 batch training, the predictions for particle 1, which
is the larger of the two particles present, are still correct, though not as accurate as
the longer trained network. Particle 2, the smaller of the two particles present, is
not given correct labels. Ergo, the predictions after 100 batches of input data is not
accurate enough to be able to correctly distinguish between the small and the large
particle.

Considering the 400 batch training results in Figure 4.2, we can see that the results
have dramatically improved. The network’s learning rate is not linear and during
the first batches of input data, the loss decreases the most, as described in section
2.1.1. This raises a question; how much training is enough? Which brings us to the
importance of avoiding overfitting the model. The goal is to train the model enough
to recognise the particles, but not too much so that the model won’t recognise a
particle if it is slightly outside the range on which the model was trained. This
becomes even more important for experimental data, which will be discussed more
in detail later on.

The networks capability to distinguish particles in difficult noise and lightning condi-
tions were tested and the result can be found in sections 4.1.2 and 4.1.3, respectively.
What is worth noting is that the network is able to predict the larger particle, par-
ticle 1, correctly in all of the signal-to-noise ratios. However, at a signal-to-noise
ratio of 5, seen in Figure 4.6, the particle 2 predictions are too far from the truth,
to the point that they are no longer useful. In Figure 4.5, we can see that, even
though there are some false predictions, the highest predictions matches the truth.
The result in Figure 4.5 can therefore be used, if the limit is chosen accordingly.
The network performance on images with inhomogeneous lighting conditions were
also successful in the cases wth lower gradients found in Figure 4.7 and 4.8. When
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the gradient became larger, see Figure 4.9, the network had difficulties both finding
the positions and distinguish the particles in the darkest part of the image.

The network successfully distinguishes particles of different sizes, as long as the size
difference is sufficiently large. The evaluation of the network’s capability to dis-
tinguish particles of different sizes was made on spherical particles with 25%, 15%
and 5% size difference. As seen in Figure 4.10, a 25% size difference between the
particles was an easy task for the network, and all particles were labeled correctly.
However, the predictions for the particles with a 15% difference had some of the
particles labeled incorrectly, as seen in Figure 4.11. A smaller size difference proved
even more difficult and at a 5% difference the network could not tell the two particle
types apart, as seen Figure 4.12.

Similarly, the network managed to correctly label the particles with a shape differ-
ence of a spherical particle with a radius of 8 pixels and an elliptical particle with
radius 8 and 2 pixels, as seen in Figure 4.13. When the elliptical particle became
more rounded, with radii of 8 and 4 pixels, the network could no longer tell them
apart, as seen Figure 4.14.

It is worth noting that the particles were not all located at the focal plane, but could
be randomly placed 10 pixels above or below it. When the particles are very similar
and further form the focal plane, they are hard to distinguish, which is proven by
the results from the size and shape difference. The more similar they are, the harder
they are to distinguish, but when the particles are also out of focus, it is an even
bigger challenge. When simulating the particles, one have to consider how much the
real particles are placed above and below the focal plane to reduce the risk of false
predictions of the experimental data.

It is important to note that to quantitatively simulate experimental images of plank-
ton, the detailed internal structure of the plankton needs to be incorporated into
the simulation. Further, since the plankton are significantly larger than the wave-
length of the illuminating light, the light propagation through this complex structure
would have to be simulated. In this project, the approach has been to generate im-
ages which resemble the experimental images of plankton, rater than to provide
exact simulations. Generalizing the larger plankton with the synthetic simulations
provides the model with enough input data for training, but this also presents a user
bias. Firstly, making the simulations look as much as the original image as possible
puts more pressure on the user to make sure that the same number of pixels are
occupied as a plankton in both the real and simulated image. Instead of giving the
model the exact size of the plankton to be simulated, the user have to manually
count pixels and then tweak the simulations accordingly.

Secondly, we are trying to simulate a plankton, which has a size much larger than
the light propagating through it. However, what we are actually simulating are
particles, which are in the same size range as the light’s wavelength. Since the light
is not going to be propagated the same way through both of the particle types, it

44



5. Discussion

puts a larger responsibility on the user to fine-tune the parameters to make the sim-
ulated image resemble the real one as much as possible. This also present a user bias.

This leads us to the next problem; overfitting. As stated previously, it is easy to
assume that the longer a network is trained, the better it will perform. However, we
are not simulating the exact versions of the plankton in the images, but synthetic
versions that do not scatter light the same.

If we train the network too much, it may stop to recognise the plankton, since they
are not perfectly represented by the simulated images. Even though the user is
able to tweak the parameters very well, it is still not going to be the exact replica.
In Figure 3.1, we can see that the simulations does not exactly match the real
image. These simulations gave a good result after being trained with 4000 batches
of images. The results might not have been the same if the model was trained for a
longer period of time. Another problem with overfitting is that the user have to be
careful and include a quite broad range of particle sizes to account for the fact that
plankton, from a viewers perspective, will change size. An elliptical plankton will
look elliptical when viewed from above, but viewed from the front, it might look
spherical. This has to be included in the simulations, and the risk of overfitting the
model has to be considered. Unfortunately, too wide a range of particle sizes might
affect the model’s ability to distinguish the different types.

Evaluation on experimental data

The evaluation of the model on experimental data yielded some very good results
when it came to finding and labeling the larger plankton Strombidium arenicola
correctly. In table 4.1 and Figure 4.15a, we saw that the network managed to cor-
rectly label all of the Strombidium. This indicates that the network can be used to
specifically track one, larger subspecies despite the presence of a large amount of
smaller plankton of a different species. This made it possible for us to obtain the
results from the multiple plankton experiment described in section 4.3.2.

The network did not perform as well when it came to the detection of Rhodomonas
baltica. Because the Rhodomonas were very densely dispersed in the volume, the
network struggled to detect each single plankton. In cases where there were two,
or more, smaller plankton very close together, the network would label all of them
as only one particle. In some cases, the network would also label part of the back-
ground as a particle.

It is important to note that the "correct” positions are determined manually. In
Figure 3.4, it is easy to see which dots are the larger Strombidium, but to manually
distinguish and label the small Rhodomonas is difficult. The network found 415
positions belonging to Rhodomonas. Of these 415 positions, 245 were "correct”,
according to the manual labeling. Furthermore, 170 of the positions, found by the
network were manually labeled as background. Even though it was easy to spot
where the network failed, in the cases where it labeled many particles as one, there
is no real way for us to see if a position manually labeled as background is correct
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or not. Furthermore, the network labeled 120 of the manually labeled Rhodomonas
as background. Most of these lables came from positions where the density of the
plankton was high and only one of the plankton were labeled. The manual labeling
was done before the networks predictions were seen, to limit the bias.

Testing software on experimental data

The tracking software was tested on two experiments containing different types of
plankton. This section will discuss the results from the single type plankton exper-
iment, which had already been analyzed using the algorithmic method TrackMate,
and the multiple type experiment.

From the single type plankton experiment, both the number of traces and the mean
length were obtained using both the previously used TrackMate method, and the
Deeptrack method. The analysis of the number of traces, as seen in table 4.2, showed
that the Deeptrack method had 32% fewer traces. The average length of the traces,
as seen in table 4.3, was 10.6% longer, the traces was otherwise the same. Longer,
but fewer traces suggest that the Deeptrack method is more capable to keep tracking
the plankton and not lose them, when they swim slightly out of focus.

Figure 4.18 shows the net displacement, where we can see that the results obtained
from both methods, for both of the plankton types Lingulodinium and Alexandrium,
are very similar. The mean speed obtained from the same queries, seen in Figure
4.17, shows that the Deeptrack method results in a lower mean speed, compared
to the TrackMate results. The speed was only calculated on traces longer than 5
seconds. Since the Deeptrack method got more traces that exceeded this length, the
mean speed was calculated on more traces using this method. This might be the
reason for lower mean speeds in this case, simply because it is more accurate. Note
that this is not the case for the control group of the Alexandrium experiment.

The single type plankton experiments had a lot of drift in them, meaning that the
medium, in which the plankton were suspended, had a large movement, causing
more drift. To compensate for this, the software included a drift compensating fea-
ture, as described in section 3.3. In Figure 4.19, the original traces can be seen to the
left (blue) and the drift compensated tracks to the right (green). The mean speed
of the original and the drift compensated traces can be seen in Figure 4.20. Not
surprisingly, the subtracted drift reduces the average speed of the plankton. The
net displacement of the traces are also lowered, as seen in Figure 4.21. The original
traces showed a tendency for the plankton to have a longer net displacement the
more copepodamides were present in the experiment. However, in the drift com-
pensated Alezandrium, this is not the case. Instead of the experiments with 100pM
copepodamides having the longest net displacement, the 10pM experiment tends to
have a longer net displacement.

In the multiple type plankton experiment, containing both Strombidium arenicola

and Rhodomonas baltica, only Strombidium was analyzed. This was because of the
networks inability to correctly label the smaller Rhodomonas.
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In Figure 4.16b, the larger dots are Strombidium and the smaller dots are Rhodomonas.
The net displacement of the traces for both the experiment, with and without cope-
podamides, can be seen in Figure 4.22. Both the original and the drift compensated
traces can be seen in this figure. Surprisingly, the drift compensation resulted in
a longer net displacement, especially for the experiment without copepodamides.
In the single plankton experiments, the drift compensation yielded a shorter net
displacement. The larger Strombidium arenicola were not the only plankton present
in the experiments, but they were the only ones used for the drift compensation cal-
culations. If the movements of the plankton were random, the drift compensation
would have been none. The drift function, which is subtracted from the traces, is cal-
culated on the average movement of each particle between each frame, as described
in section 3.3. Nevertheless, the net displacement figures suggest that the move-
ment is not random, since the two figures in 4.22 are different. To acquire a more
accurate drift function, both the larger Strombidium and the smaller Rhodomonas
should have been included in the calculations. However, because of the high density
of the Rhodomonas plankton in the experiment, it was not possible to get accurate
traces from these.

As discussed in the evaluation of the model on experimental data, the model man-
aged to label 67% of the small plankton correctly, according to the manual labeling.
However, 40% of the total positions found by the network were false predictions.
We therefore decided to only track the larger Strombidium in this experiment, and
the movements of the Rhodomonas were not included in the drift calculations. As a
result, the mean speed of the experiment showed very little difference between the
drift compensated and the original traces. There was also a very small difference
between the experiment with and without copepodamides, as seen in Figure 4.23.

The optimized limit was chosen as the one which provided the longest traces, while
also providing as few traces as possible. By choosing the limit in this way, we ensure
that the detections are robust to small changes in particle position relative to the
focal plane, while minimizing the number of false predictions by done the network.
On the other hand, this choice of limit may introduce a bias toward the particle
sizes chosen in the simulations. As discussed previously, the simulations are not
always the truth. Nevertheless, when looking at the results from the single plank-
ton experiment, we see that the results are improved using Deeptrack compared to
TrackMate. The traces we get from Deeptrack are longer and less prone to lose
detections. However, the final results on the speed and the net displacement were
marginal.

With results so similar, a new question is raised: is the Deeptrack method worth
it? Both the Deeptrack and the TrackMate method took approximately the same
time to analyze a video. Not including the training of a network, which has to be
done for Deeptrack. When a network has been trained, it can be used for all the
experiments, making the training a one time obstacle. The results yielded from the
single plankton experiments might not have been superior enough to make it worth
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the endeavor of training. However, the possibilities of tracking multiple particles in
much worse conditions is an ability which most algorithmic methods are unable to
do. The difficulties of simulating the particles correctly is also a task that, similar
to most other methods, becomes easier with practice.

This project has proven that the deep learning approach to tracking plankton is a
successful method to use. Nonetheless, the results in this project gives rise to further
questions. The network was not able to correctly label all of the smaller plankton
in the dense, multiple type plankton experiment. In this project, the image was
only successfully upsampled to twice the original size. It could be interesting to see
if the network would have a greater success rate on labeling the smaller plankton,
if the images were upsampled even more. Previous trials with upsamplings showed
the greatest success with an upsampling of 4 times the original size. Unfortunately,
this was not tried in this project, due to limited computer capacity.

Another interesting aspect to consider for future projects, is to implement another
type of network to find the particles. A recurrent neural network, RNN, could be
something to consider for tracking plankton. This network is able to consider the
movement of the object simulated, which would be helpful when trying to track and
predict the movement of plankton.

Furthermore, it is possible that the results could have been further improved, had
the training images captured the light scattering properties of the plankton more
precisely. An interesting future project could therefore be to see if this type of
network could be trained using real images of plankton, instead of simulated ones.
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Conclusion

In this project, a network with a U-net architecture was used to track and distin-
guish plankton of different types. The network was trained on simulated images
of plankton. The output from the network were segmented images of the different
plankton species present in the input image. These segmented maps were used to
find the positions of the plankton with a connected components algorithm and the
positions were connected between frames using a linear sum assignment algorithm.

Evaluation of the performance of the network on simulated images demonstrated the
capability to find and distinguish different particles in difficult situations, such as low
signal-to-noise ratios and similar particle sizes. Even the evaluation on experimental
data showed the model’s capability to distinguish particles. However, pinpointing
the exact positions of individual particles in dense particle images proved difficult.

The tracking software was tested on a single type plankton experiment and the traces
obtained from the analysis were compared with previous result using an algorithmic
method. We could conclude that the Deeptrack method was slightly superior, yield-
ing longer, but fewer tracks. The multiple type plankton experiment was successful
and the software managed to trace large plankton in a sea of smaller ones. However,
this assay also showcased the drift compensation complications which might occur
if not enough particles are considered in the drift calculation.

The limitations of the model were discussed and an important point to be made is
the complications of simulating larger plankton as small particles. One obstacle is
for the user to tweak the simulations so that they resemble the plankton as much
as possible. However, there will always be differences, so avoiding overfitting of the
model is crucial.

Some ideas for future projects were discussed. Using a recurrent neural network,
RNN;, to track particles would be an interesting future project since this network
also incorporates the movements of the particles when training. Another interesting
project could be to expand the U-net so that it could be trained on real images of
plankton, since the synthetic simulations caused some limitations with the current
version.

49



6. Conclusion

50



Bibliography

J. C. Crocker and D. G. Grier, “Methods of digital video microscopy for col-
loidal studies”, Journal of colloid and interface science 179, 298-310 (1996).

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E.
Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: an

open and extensible platform for single-particle tracking”, Methods 115, 80-90
(2017).
G. Bianco, M. T. Ekvall, J. Backman, and L.-A. Hansson, “Plankton 3d track-

ing: the importance of camera calibration in stereo computer vision systems”,
Limnology and Oceanography: Methods 11, 278-286 (2013).

J. C. Ho and A. M. Michalak, “Challenges in tracking harmful algal blooms:
a synthesis of evidence from lake erie”, Journal of Great Lakes Research 41,
317-325 (2015).

J. M. Newby, A. M. Schaefer, P. T. Lee, M. G. Forest, and S. K. Lai, “Con-
volutional neural networks automate detection for tracking of submicron-scale

particles in 2d and 3d”, Proceedings of the National Academy of Sciences 115,
9026-9031 (2018).

S. Helgadottir, A. Argun, and G. Volpe, “Digital video microscopy enhanced
by deep learning”, Optica 6, 506-513 (2019).
M. D. Hannel, A. Abdulali, M. O’Brien, and D. G. Grier, “Machine-learning

techniques for fast and accurate feature localization in holograms of colloidal
particles”, Optics express 26, 15221-15231 (2018).

B. Midtvedt, Soft matter lab/deeptrack 2.0, 2020.

I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, http : / /www .
deeplearningbook.org (MIT Press, 2016).

A. Karpathy et al., “Cs231n convolutional neural networks for visual recogni-
tion”, Neural networks 1, 1 (2016).

A. Oppermann, Activation functions in neural networks, (2019) https://wuw.
deeplearning-academy . com/p/ai-wiki-activation-functions (visited
on 05/13/2020).

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards real-time object
detection with region proposal networks”, in Advances in neural information
processing systems (2015), pp. 91-99.

51


http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.deeplearning-academy.com/p/ai-wiki-activation-functions
https://www.deeplearning-academy.com/p/ai-wiki-activation-functions

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE 86, 2278-2324
(1998).

U. Karn, A quick introduction to neural networks, (2016) https://ujjwalkarn.
me/2016/08/09/quick-intro-neural-networks/ (visited on 05/13/2020).

Wikipedia, Kernel (image processing) — Wikipedia, the free encyclopedia, (2020)
https://en.wikipedia.org/wiki/Kernel_(image_processing) (visited on
05/18/2020).

O. Ronneberger, P. Fischer, and T. Brox, “U-net: convolutional networks for
biomedical image segmentation”; in International conference on medical image
computing and computer-assisted intervention (Springer, 2015), pp. 234-241.

H. Lamba, Understanding semantic segmentation with unet, (2019) https :
/ / towardsdatascience . com/understanding - semantic - segmentation -
with-unet-6be4f42d4b47 (visited on 05/14/2020).

H. Sankesara, Unet, introducing symmetry in segmentation, (2019) https :
//towardsdatascience. com/u-net-b229b32b4a71 (visited on 05/15/2020).

D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep neu-
ral networks segment neuronal membranes in electron microscopy images”; in
Advances in neural information processing systems (2012), pp. 2843-2851.

A. W. Visser and T. Kigrboe, “Plankton motility patterns and encounter
rates”, Oecologia 148, 538-546 (2006).

E. Selander, H. H. Jakobsen, F. Lombard, and T. Kigrboe, “Grazer cues in-
duce stealth behavior in marine dinoflagellates”, Proceedings of the National
Academy of Sciences 108, 4030-4034 (2011).

E. Bagoien and T. Kiorboe, “Blind dating—mate finding in planktonic cope-
pods”, I. tracking the pheromone (2005).

E. Selander, J. Kubanek, M. Hamberg, M. X. Andersson, G. Cervin, and H.
Pavia, “Predator lipids induce paralytic shellfish toxins in bloom-forming al-
gae”, Proceedings of the National Academy of Sciences 112, 6395-6400 (2015).

E. Selander, E. Berglund, P. Engstrom, F. Berggren, J. Eklund, S. Hardardot-
tir, N. Lundholm, W. Grebner, and M. Andersson, “Copepods drive large-
scale trait-mediated effects in marine plankton”, Science advances 5, eaat5096
(2019).

J. Lindstrom, W. Grebner, K. Rigby, and E. Selander, “Effects of predator
lipids on dinoflagellate defence mechanisms-increased bioluminescence capac-
ity”, Scientific reports 7, 1-9 (2017).

P. G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical controls and
feedbacks on ocean primary production”; Science 281, 200-206 (1998).

J. H. Landsberg, “The effects of harmful algal blooms on aquatic organisms”,
Reviews in Fisheries Science 10, 113-390 (2002).

A. Rosenfeld and J. L. Pfaltz, “Sequential operations in digital picture pro-
cessing”, Journal of the ACM (JACM) 13, 471-494 (1966).


https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://en.wikipedia.org/wiki/Kernel_(image_processing)
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/understanding-semantic-segmentation-with-unet-6be4f42d4b47
https://towardsdatascience.com/u-net-b229b32b4a71
https://towardsdatascience.com/u-net-b229b32b4a71

Bibliography

[29]
[30]

[31]

R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems, revised
reprint, Vol. 106 (Siam, 2012).

R. A. Pilgrim, Munkres’ assignment algorithm, (2018) http://csclab.murraystate.
edu/~bob.pilgrim/445/munkres.html (visited on 05/18/2020).

D. Allan, C. van der Wel, N. Keim, T. A. Caswell, D. Wieker, R. Verweij,
C. Reid, Thierry, L. Grueter, K. Ramos, apiszcz, zoeith, R. W. Perry, F.
Boulogne, P. Sinha, pfigliozzi, N. Bruot, L. Uieda, J. Katins, H. Mary, and A.
Ahmadia, Soft-matter/trackpy: trackpy v0.4.2, version v0.4.2, Oct. 2019.

53


http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html
http://csclab.murraystate.edu/~bob.pilgrim/445/munkres.html

	List of Figures
	List of Algorithms
	Introduction
	Theory
	Machine learning
	Neural networks
	Convolutional neural networks
	U-net

	Plankton

	Methods
	Training the network
	Simulating images

	Tracking
	Finding the positions
	Building traces frame by frame
	Optimization of limit

	Drift compensation
	Calculations for swimming behaviours
	Speed
	Net displacement

	Plankton experiments
	Previous analysis using TrackMate

	Testing the model

	Results
	Model evaluation
	Amount of training
	Noise
	Inhomogeneous lighting conditions
	Size difference
	Shape difference

	Evaluation of model on experimental data. 
	Testing software on experimental data
	Single type plankton tracking
	Multiple type plankton tracking


	Discussion
	Conclusion
	Bibliography

