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Abstract 
 

This report deals with the idea of Functional System Safety (FUSS), which is a part of the 

DFEA2020 project. This DFEA2020 project is a joint effort between several actors of the 

automotive industry, including Mecel, to oversee car technologies by 2020. FUSS is building 

knowledge on the basis of AUTOSAR – an open automotive software architecture and ISO 

26262 – an ISO safety related standard for passenger cars. The project aims to develop a 

steer-by-wire application for a car simulator. To achieve that, MATLAB/Simulink has been 

chosen by Mecel as the application development tool, in which we designed the steer-by-wire 

application. We used the state-of-the-art safety mechanisms from the latest AUTOSAR 

release for data flow protection within the steer-by-wire application. Model-based design 

allowed us to test the logic of our steer-by-wire application very early in the development 

process. A first comprehensive set of tests was done in the Simulink simulation environment 

with the help of recent Mathworks tools; a second test was done post – code generation when 

the developed software had been integrated to the AUTOSAR platform. This two level testing 

process proved to be a valuable development asset with respect to ISO 26262 because it 

allows for early error detection and correction. We documented the lessons learnt regarding 

the impact of ISO 26262 and AUTOSAR development on the Mecel development processes. 

Some limitations that we were able to point out include the fact that the ISO 26262 standard 

leaves room for interpretation. Companies cannot rely on standard metrics to evaluate the 

relevance of their processes with regard to ISO 26262. Moreover, the tools around ISO 

26262, recently pushed to the market, lack maturity. Combined with the fact that the 

abstraction layer of AUTOSAR brings a lack of global control over the overall system, we felt 

that a significant effort is needed from the automotive companies in order to tailor their 

existing processes to be in line with ISO 26262 specifications. 
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1. Introduction 

This chapter gives an overview of the project background, purpose and objectives along with 

its scope. 

1.1  Background 

To improve the driver’s safety and comfort, car manufacturers are increasing the usage of 

electric and electronic (E/E) functionalities (or components) in the place of mechanical 

applications. Until recently, each manufacturer and automotive tool developer were using 

different standards and implementation procedures in designing these E/E architectures. This 

remained challenging to test and integrate different standards by one OEM. To overcome this 

problem, leading OEMs and Tier 1 suppliers formed a group called AUTOSAR, an open 

standard for automotive E/E architecture [1] that led the way to innovative electronic systems 

with safety and environmental friendliness.   

From the past few years, one of the intensively developing fields at many OEMs has been 

Drive-By-Wire systems.  Among Drive-By-Wire systems, Steer-By-Wire has been the most 

challenging integration for the automotive industry. Although this technology has been 

integrated in airplanes for more than a decade, integration on cars and trucks is just rising up. 

This is due to the fact that the automotive industry faces the need to deploy low cost E/E 

systems to remain competitive in their market segment. 

Numerous benefits that come with Steer-By-Wire over classical mechanical steering systems 

include: improved space utilization near engine compartment, reduced manufacturing costs, 

better shock absorption in case of a crash and the possibility to implement driving assistance 

mechanisms. 

On the other hand, undetected systematic faults and hardware failures can potentially cause 

significant harm to the driver and his environment. To override this, the ISO 26262 standard 

has been designed to guide actors of the automotive industry throughout their product’s 

development processes in order to improve driver’s safety and reach an appropriate level of 

functional safety by handling safety requirements in the early phase of development. 

‘‘The increased complexity of the electrical system is a consequence from the evolving 

functional growth of the vehicles’’ [2]. The research project DFEA2020 funded by 
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VINNOVA addresses this issue from different perspectives. Mecel’s quick adaptation to 

AUTOSAR and ISO 26262 standard, made them to be a partner company for DFEA 2020 

project. Volvo Car Corporation leads the project and cooperates with partner companies and 

academia. The partner companies are Mecel, Semcon EIS, and KnowIT Technology 

Management. Chalmers University of Technology and KTH Royal Institute of Technology 

are the academic partners in the DFEA2020 project [2]. As part of this project, this master 

thesis ‘Steer-By-Wire applications in Simulink’ was proposed by Mecel and we are working 

closely with that application using the guidelines of AUTOSAR and ISO 26262 safety 

concepts under the supervision of Håkan Sivencrona, Johan Svärd, Pontus Henningsson, Erik 

Hesslow and Marcus Larsson. 

1.2  Purpose 

The purpose of this thesis work is to investigate how the new standard for vehicle safety-

related applications, ISO 26262 affects the development within Mecel. Evaluation on how 

Mecel’s development processes can best be adapted to MATLAB/Simulink for the 

integration, verification and validation of a distributed hardware and software platform. 

Suggestions will be made on how the MATLAB / Simulink platform can serve as a step to 

improve chances for early verification and simulation in accordance with ISO 26262. 

1.3  Objective  

The main goal of the thesis work is to develop a Steer-By-Wire system in accordance with the 

requirements of AUTOSAR and ISO 26262 standards. In order to achieve this, the following 

tasks should be performed: 

• Designing the functionalities of a Steer-by-Wire system using Simulink 

• Verification and Validation of the Steer-by-Wire application using Simulink 

Verification Tools 

• Designing an End-to-End (E2E) protection wrapper for the SWCs as per 

AUTOSAR standard.  

• Code generation and Integration on Mecel’s AUTOSAR product PICEA. 

• Verification and Validation of the Steer-By-Wire application in the Virtual 

Function Bus (VFB) 
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• Documentation of conclusions and lessons regarding the impact of ISO 26262 on 

Mecel development methodology and process 

 

 

 

 

Figure 1: System Overview of the FUSS Project. 
Source: Mecel AB internal docs 

This master thesis will focus on the “Steery” subsystem that is the control subsystem. Other parts include: 
-“Simmy”, the simulation environment  

-“Protty” that contains front wheels, actuators and sensors 
-“Conny” that handles system monitoring and faults injection 
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1.4  Scope 

Mecel’s SBW prototype consists of four subsystems that interact with the simulator – Live for 

Speed, to provide real sense of driving environment. The four subsystems are:  

 “Simmy” – contains complete driving simulator including steering wheel, pedals and 

driver display. 

 “Steery” – contains ECUs that manages the steering function 

 “Conny” – provides fault injection  and system monitoring 

 “Protty” – contains the actuators to control the front wheel prototype (Fig.18) and also 

provides corresponding sensor information to Steery and Simmy.  

The work within this thesis will focus on the “Steery” safety-related subsystem of the overall 

simulator. Fig.1 gives a clear picture of the scope. 
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2. Overview of the Standards 

This project was developed in combination of two new automotive standards that will be used 

in commercial passenger cars in a very near future. A brief introduction of those standards 

will be seen in this section. 

2.1  AUTOSAR 

AUTOSAR is an open standardized automotive software architecture, developed in 

cooperation with different automobile manufacturers, suppliers and tool developers. It is a 

vital technology to cope with the growing electrical/electronic complexity in future vehicles. 

It aims to be prepared for the upcoming technologies and to improve cost-efficiency without 

making any compromise with respect to quality. One of the main purposes in implementing 

this standard was to “Cooperate on standards, compete on implementation” [3]. This jointly 

developed standard has led to four releases. Based on the most recent specifications 

(AUTOSAR Release 4.0) our application on steer-by-wire is developed. 

2.1.1 Motivation 

AUTOSAR’s strategy is to standardize the software architecture to encourage the 

exchangeability and reuse of software components. This solution effectively reduces 

development cost, makes the management of complexity of E/E systems smoother, reduces 

time to market and enhances the quality, flexibility, scalability and reliability of E/E systems. 

The exchangeability and reuse of software can be found on several levels, namely between 

supplier’s solutions, manufacturer’s applications and between vehicle platform. In the defined 

standardized software architecture, hardware and software parts are widely independent of 

each other as explained in the following section [4]. 

2.1.2 Key concepts 

AUTOSAR defines four key concepts [4]: 

 Software components (SWC): A piece of software to be run in an AUTOSAR system 

 Virtual Function Bus (VFB): High – level communication abstraction 

 Run Time Environment (RTE): Implements the VFB on one ECU 
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 Basic Software (BSW): Standard software for standard ECU functionality (OS, 

communication, memory, hardware drivers, diagnostics) 

A SWC has no means of knowing where in the system it is located, i.e. in which ECU. The 

RTE is thus the only interface for the SWCs to communicate with each other. The RTE uses 

CAN, LIN and Flex-Ray buses for inter-ECU communication via the BSW as depicted in 

Figure 2. 

 

Figure 2: View of inter – ECU communication 
Source: Mecel AB internal Docs 

The SW-C 1 situated in ECU 1 communicates to SW-C 3 situated on ECU 2 through the RTE and BSW layer. There is 
no communication setup on SW-C level (as there would be in a client/server HTTP session). The communication is 

handled by RTE+BSW which form an abstract communication layer called VFB. 
 

The implementations of the RTE and BSW modules are specified by AUTOSAR but they 

must be configured by the integrator. In the context of this master thesis, this has been the 

responsibility of Marcus Larsson, member of Mecel System team. This task includes for 

example the configuration of the CAN frames and channels, the flash memory blocks and the 

OS tick time of the ECU power states. 

The SWC developer has some degree of configuration too, for example data types on input 

and output ports, communication signals, scheduling and inter-task communication, but these 

properties mainly focuses on the logic of the SWC. It is thus a radically different approach 

from a classical waterfall development process since the SWC developer does not care about 

how data travel outside the boundaries of the AUTOSAR interfaces and does not need to 

implement any hardware support or bus communication setup. The RTE will provide the 

necessary APIs. The source code for the SWCs can be implemented manually (C/C++) or can 
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be automatically generated from a Simulink model, as is the case in this master thesis. Finally, 

to specify SWCs, connect them and integrate them with the BSW layer an AUTOSAR 

Authoring Tool (AAT) must be used. For this entire tool chain, one can choose between 

different vendors (Vector, Greensoft, dSpace, Mecel). In this project a product from Mecel, 

“Mecel Picea Suite” [5] was used. 

2.2  ISO 26262 

2.2.1 Motivation 

Until recent times, all automotive industries were following the IEC 61508 standard, which 

was not fully adapted to the automotive E/E systems. In order to make a standard dedicated to 

automotive industry, ISO 26262 was created. This ISO 26262 is Functional Safety standard 

which came to presence with the title ‘‘Road vehicles – Functional safety’’. This standard is 

an adaption of IEC 61508 that provides an automotive Safety lifecycle, functional safety 

aspects of the entire development process, scaling of risk based approach using ASIL’s 

(Automotive Safety Integrity Level) and measures to ensure a sufficient and acceptable level 

of safety [6]. Because of these incentives many automotive industries are adapting their 

development process to this new standard in order to be competitive in the market. As for ISO 

9000, which relates to quality management systems, that is a must have certification required 

by OEMs nowadays, we foresee that ISO 26262 certification will open up an entirely new 

business opportunities for automotive tiers when it comes to safety – related development. 

Automotive tier suppliers therefore understand that an early adoption of this standard means a 

technological edge within the market. 

2.2.2 Safety Process 

To achieve an acceptable residual risk for each of the E/E vehicle functions regardless of the 

initial potential risk, ISO 26262 defines a safety process. This process addresses the 

prevention of systematic faults, the detection, control and handling of the inevitable remaining 

faults or failures. All the necessary activities to ensure the required functional safety of an E/E 

system are defined in the standard. The basic flow is as follows [7]: 

 Identify the potential hazards and risks of a vehicle function 

 Define acceptable risk goals and establish safety requirements 

 Define and implement measures to avoid risks 
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 Verify that the safety goals are met and validate that they are satisfying an acceptable 

level of safety 

The following figure gives an overview of the ISO 26262 safety process. 

 

 

A first impression one has when looking at this process is that it seems quite complex and 

heavy. We need to remember that ISO 26262 leaves room to tailoring of the company 

established processes. It does not aim at defining a whole new complex process with which 

companies are not familiar with, rather it more generally gives guidelines on what activities to 

perform and how to adapt the company processes to satisfy ISO 26262 Functional Safety 

requirements. 

During the concept phase, the item definition (part 3 of Figure 3) is performed. An item 

represents a system, an array of systems or a function to which ISO 26262 is applied. Based 

on the particular item, a hazard analysis and risk assessment is done in which each hazard is 

Figure 3: Overview of ISO 26262 Safety Process, spreading over all the common phases of SW 
development [8] 

In this master thesis our focus was on part 6: Product development: software level 



 

9 

 

classified and assigned an Automotive Safety Integrity Level (ASIL) depending on its 

severity [8]. This hazard analysis needs to treat the system as a whole, particularly the system 

within its environment and the worst case failures need to be identified [9]. Identifying all the 

possible failures of an E/E function under every single driving scenario and environment 

could take months and is therefore not an easy task to manage. The challenge here is thus to 

keep the analysis realistic without scarifying safety of the vehicle. 

Based on the Hazard Analysis, safety goals are determined and each safety goal is assigned 

the same ASIL level as the corresponding hazard. Functional Safety Requirements (FSRs) are 

then derived from the safety goals inheriting the same ASIL level and allocated to different 

parts of the system based on a preliminary architectural assumption of the item [8]. 

During further development Technical Safety Requirements are specified based on the 

refinement of the hardware and software modules. After specification, implementation and 

integration on hardware and software level, hardware and software components are integrated 

step by step [8]. 

In the product development phase, TSRs help to describe how to implement the functional 

safety concept on a technical level. During this phase, the system gets more and more refined 

by partitioning into sub-systems structures. TSRs must be specified on each level of system 

and sub-system granularity [8]. 

Finally, the compliance of the developed system to ISO 26262 lies in the responsibility of the 

safety manager. ISO 26262 gives guidelines on what safety activities to conduct in order to 

achieve a reasonable residual risk. Proof and relevance of such activities must be defended to 

an external audit authority in order to fully comply with the standard. 

We have seen that ISO 26262 leaves room to interpretation and tailoring of the company 

established processes. This is of course a good thing as it is not too invasive but on the other 

hand it opens up for misinterpretation. Consequently, the functional safety management team 

must make a real effort here to successfully perform the required activities and be able to 

motivate their choices when the audit is performed. If an X-by-wire system were to fail the 

consequences can be disastrous in real life. The impact on the society is thus great and the 

reputation of the automotive industry is at stake when it comes to such safety critical systems. 

The standard is a first step to safety – critical system development, processes and use of the 
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tool chain (especially the AUTOSAR platform) must be refined according to it and maturity 

must be gained before we see such applications as X-by-wire being commercialized. 
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3. System Architecture and Design Decisions 

This section briefly introduces basic system architecture of this project and also its data flow 

is explained. 

Before starting this section, we recommend readers to have a look in APPENDIX D – 

Software and Hardware Specifications for a better understanding of the simulator setup. 

3.1  Existing Design 

Before this project was started, the system architecture of the simulator resembled the one 

shown in Figure 4. Here, the FUSS application will receive the steering wheel data, which is 

also called a steering angle, through DirectInput drivers and passes it to the Steery model 

through a CAN interface. Originally, both the FUSS application and the Steery Model were 

Microsoft VC++ project modules, which in other words, mean that they were hand – written 

C/C++ code. The output of the Steery Model is then passed to the Basic Stamp 

microcontroller, which converts the Wheel Angle Command into a timing signal, PWM. 

Based on this timing sequence the servo motor moves the front wheel position with respect to 

the steering wheel. As in Figure 4, the sensor (S1) detects the position of the front wheels and 

passes it to the Velleman Board, which converts Analog data to the discrete values. These 

discrete values represent the Wheel Position of the front wheels, which will be retrieved by 

FUSS application. Based on those values, by using DirectInput drivers in FUSS application 

force feedback was sent to the Steering Wheel. In order to change the Wheel Position in the 

game (Live for Speed), PPJoy- a virtual joystick is used by the FUSS application.  

The main function here to be modeled into Simulink is the Steery Model, transforming a 

steering angle into a steering wheel command to the front wheel’s actuator. At this point of 

the project, after having explored the existing system and understood the different 

communication mechanisms, we decided to model Steery and explored the possibilities on 

how to connect the resulting model with the existing interfaces of the simulator. Our findings 

are presented in the following subsection and highlight the pros and cons of each method as 

well as justifying the retained design. It is to be noted that this modeling and integration was 

not intended to be kept as a final design but was done as an initial way to explore the tool 

chain, understanding the flow of the whole project and give us positive feedbacks on how to 

proceed with the final design. 
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Figure 4: Simulator Architecture used in PC Environment in the early stage of the project. 
Simulink model design was done for Steery model and integrated into the above architecture to have a first look of the 

system behavior. Later on it is updated to advanced Arch as like in Section 3.3 

 

 

3.2  Interfacing the first Simulink model with the Simulator: Exploration of 

methods and Design Decisions. 

 

We will see in more details in Section 4 how the exact implementation is done, but so far we 

can assume that it is rather straightforward to implement the transfer function in 

MATLAB/Simulink
®
 to convert the steering angle received from the Logitech G25 Race 

wheel to a timing to control the servo motor in the front wheels. However, when dealing with 

the external environment of the model, namely receiving the steering angle through a CAN 

bus and commanding the Basic Stamp microcontroller through a serial communication, things 

get a little more complex. This section will describe some of the common methods used in 

MATLAB/Simulink
©
 to integrate a model to its environment and present their pros and cons 

in relation to the thesis project. 

xPC Target 

xPC Target
®

 is a Mathworks
®
 product that enables users to execute Simulink models on a 

target computer for rapid control prototyping and Hardware-In-the-Loop (HIL) testing. It 
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comes with a library of I/O device drivers, a real-time kernel, and an interface for real-time 

monitoring, parameter tuning, and data logging. 

When searching for a solution to deploy our Simulink model to the simulator described in 

Section 3.1, xPC Target® appeared to us as a de-facto response to our needs. It would allow 

us to manage external communication with the simulator using the I/O device driver library 

and run our model in real-time on a target computer connected to the simulator. This solution 

is very flexible, effectively allowing to tune up the model (could it be changing a parameter or 

testing an algorithm over another) and directly check the performance in real time on the 

target computer. 

 However, the Kvaser
©
 USB to CAN adapters are used to set up the CAN bus between the 

computer running the FUSS application and the computer running the Steery model.  But 

Kvaser USB to CAN adapter is not supported by xPC Target. xPC Target currently supports 

only CAN-AC2-ISA and CAN-AC2-PCI boards from Softing
®
 GmbH (Germany) [26]. The 

fact that PCI and ISA communication buses are not available on laptops used in this project 

was a first argument against using xPC target
®
 for that matter. Moreover, one of the technical 

requirement states that the USB to CAN adapters should support multi-threaded applications, 

a characteristic that is not supported by Softing CAN cards. Consequently, even if xPC 

Target
®
 appeared like a very good approach at first sight we decided to drop that option for 

lack of devices support. 

If the project requirements do allow the use of xPC Target-friendly I/O device we strongly 

recommend using that concept since it is a fast, flexible and reliable mean test the behavior of 

a model. It is to be noted that it is a great tool for development of fast prototypes but is 

unsuitable for production code since it runs on a computer as opposed to an embedded system 

and that easiness of the concept does restrict the performance. 

 

Integrating C code for the communication purpose 

The Kvaser USB to CAN adapter is provided with a CANLIB SDK that allows us to create 

our own applications. Since xPC Target proved unsuitable for the thesis’s project we 

anticipated the possibility to integrate C/C++ code from the kvaser CANLIB SDK to manage 

the CAN communication within Simulink. Some of the common methods to do so are 
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described in more details in APPENDIX A. To put it in a nutshell, the handbook methods of 

associating the CANLIB files with Simulink were proven too much of manual work and deep 

knowledge of the core Matlab programming is required, which is not the focus of our thesis 

work. 

We later discovered that MathWorks’ Vehicle Network Toolbox fully supports Kvaser 

Controller Area Network (CAN) hardware interfaces, enabling direct connection between 

MATLAB or Simulink and the CAN bus [17]. However this tool-box is not included in the 

licensed version of Matlab/Simulink that is assigned to our thesis project. 

Simulink Coder and manual tweaking 

Simulink Coder generates C/C++ code from Simulink and Stateflow models. This generated 

code can be used for real-time and non-real-time applications including simulation 

acceleration, rapid prototyping, and hardware-in-the-loop testing. This is the solution we 

retained as we could generate C/C++ code for the model presented in Section 4.1.2 and 

tweaked that code so that it can be integrated in the Steery Model application developed 

during the previous Master Thesis on the simulator. The Steery Model application already 

implemented the methods to manage the CAN bus from Kvaser’s CANLIB SDK and the 

serial communication to the Basic Stamp microcontroller. More details on the generated code 

and the tweaking are in Section 4.1.3. 

Embedded coder 

Embedded Coder™ generates readable and compact C/C++ code to use on embedded 

processors, on-target rapid prototyping boards, and microprocessors used in mass production. 

Embedded Coder enables additional Simulink Coder™ (Real-Time-Workshop) configuration 

options and advanced optimizations for fine-grain control of the generated code’s functions, 

files, and data. These optimizations improve code efficiency and facilitate integration with 

legacy code, data types, and calibration parameters used in production [26]. 

Furthermore, Embedded Coder offers built-in support for AUTOSAR software platform and 

will be used in generating the codes for Steery application with Tricore hardware, where we 

split the model into two Software Components (SWCs) or ECUs. 
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3.3  Improved Design 

In the improved design of system architecture as shown in Figure 5, most of the data flow 

remains identical as before (Figure 4). The changes are explained below. Instead of using a 

laptop for the execution of the Steery application, the Tricore Hardware is used. In addition, 

previously, the force feedback was calculated in the FUSS application; instead, the formerly 

designed Simulink model is extended to calculate the offset, which is used for force feedback. 

The input for this force feedback was obtained from sensor S1, and the output of the force 

feedback is given to DirectInput via FUSS application. Another sensor S2 is used to update 

the wheel position in the game; Live for speed through PPJoy. The reason for an extra sensor 

in this design was that we wanted to be able to simulate errors in the system where the actual 

position of the front wheel are not aligned with the steering wheel command thus the position 

of the front wheel in the car racing simulation game Live for speed. Overall, in this format, the 

Steery application was designed using standard AUTOSAR interfaces. 

Front wheels
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Figure 5: Simulator Architecture for Real Time Environment (using Tricore Board Hardware) 
Here we can see the newly added sensor as well as the control algorithm being now implemented in an embedded 

system. Not only can the generated code from the Simulink model be optimized for this embedded system, the overall 

platform is now based on standardized AUTOSAR interfaces. 
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4. Implementation 

This chapter describes the exploration and modeling of the SBW system as when the master 

thesis was started (without support for the Tricore hardware), the extended and improved 

model to be deployed on the Tricore hardware and implementation of AUTOSAR End-To-

End library (E2E) for safety-related data. 

In the following Sections 4.1 and 4.2, i.e., in the Steery application with and without Tricore 

hardware (TriBoard), the Steery application receives a steering angle from the FUSS 

application through a CAN bus (it also receives the speed of the vehicle which is not used in 

the present work). The Steering angle is polled from the Logitech G25 Racing wheel that has 

a numerical value range from -10,000 to 10,000. The received steering angle must then be 

converted to a wheel angle command that will be sent as an input to the microcontroller. 

4.1  Steery Application without Triboard 

This section explains the study of previous design and its corresponding modeling for the 

existing system with code generation methodology.  

4.1.1 Exploration of previous system 

This master thesis is an extension of a previous Chalmers University thesis work at Mecel – 

“Functional System Safety – Simulator Environment” [29] by Petter Gustavsson and Henrik 

Roslund. Therefore the first step of the project was to explore the formerly designed system 

for the complete understanding of the system architecture. As a result, various project 

requirements and their constraints of implementation were categorized in the early stage. 

Though there were few changes on the project specification, corresponding changes were 

made in the design and its documentation was updated subsequently. 

4.1.2 Simulink Modeling 

As explained in Section 3.1, a simple Steery model/application was designed using Simulink, 

which converts the input steering angle into a wheel angle command that is given to the Basic 

Stamp microcontroller. This is shown in the following Figure 6, with SteeringAngle as input 

port and WheelAngleCommand as output port, which feeds the basic stamp.   
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The main functions to be performed by this Steery application are: 

• Implementing the Transfer Function that calculates the wheel angle command for a 

given steering angle. 

• Managing the CAN communication with the FUSS application. 

• Managing the serial communication with the Basic Stamp. 

The Transfer Function that calculates the wheel angle command is passed to the Basic Stamp, 

which is the core function of the Steery model and is rather straightforward to implement in 

MATLAB/Simulink. However, managing CAN and serial communications within or outside 

MATLAB/Simulink was not an obvious decision and each of the methods has its own 

constraints that are explained in section 3.2. 

In order to develop the application with the available resources, a decision was made to 

design the Transfer Function alone in the Simulink by managing the CAN and serial 

communications outside the boundaries of the Steery model.  

The detailed reasoning of the logic implemented in the transfer function is discussed in 

APPENDIX B, where as its Simulink design is shown in the following Figure 6. 

 

 

 

Figure 6: Steery Application without TriBoard 
This view represents the top view of the simulink model. We can see the main input being the steering angle coming 

from the steering wheel being converted to a wheel angle command based on several different parameters. 
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4.1.3 Code Generation and Tweaking 

The code generation of the model presented in Section 4.1.2 starts with the choice of a Target 

Language Compiler (TLC) file. The TLC files are ASCII files that explicitly control the way 

code is generated by Simulink Coder or Embedded Coder. Simulink comes with some generic 

TLC files for generic real-time target (grt.tlc) that will generate code (as in Figure 7). This 

runs on any computer that has an Intel x86 architecture. As stated before, the generated code 

will be integrated to the Visual C++ project containing a Graphical User Interface (GUI) and 

the code to manage the communications with the rest of the prototype (more details in section 

3.2). Consequently, for compatibility purposes, Visual C++ compiler is used by Simulink 

Coder while generating the code. 

Figure 7: Simulink Coder Configuration Parameter Settings for auto code generation 
The different system target files (.tlc) represent the different variants for which the generated code can be oprimized. 
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Unlike Embedded Coder, Simulink Coder does not offer optimized code depending on the 

target the user chooses. Consequently, the generated code contains methods for all the 

functionality that a user might use in the design of a Simulink model. That leads to a 

somehow non optimized generic code. The generated code basically simulates an embedded 

version of the Simulink environment. 

 Thus, the first step was to go through the generic code and identify methods that were 

important for steer-by-wire application. Those included mainly the function related to the 

initialization of the model and the loop through the Step and Update functions. The Step and 

Update functions implement together one execution of the whole model. The second step was 

to make the code lighter, and effectively removing portions of code that were not relevant for 

the Steery application. A third step was to modify the structure declarations so that:  

• Steery could access the result of the Transfer Function outside the boundaries of the 

generated code i.e. retrieve it in the VC++ project that implements communication 

methods 

• Pass the steering angle input from the VC++ project (received through CAN) to 

update the step function of the generated code. 

Once that is done, the next phase was combining and compiling the two parts of the project. 

All the header and library files related to the generated code must be referenced in the VC++ 

project as well as the linkage paths. One of the steps that we failed to understand for a 

significant amount of time was to include the preprocessor definitions related to the generated 

code into the VC++ project. Those include the name of the Simulink model, if the application 

is running in Real-Time (RT) or Non-Real-Time (NRT), the number of sample times 

(NUMST) and the number of continuous steps (NCSTATES). 

This would lead to a fail while building the project as some checks included in generated-code 

related headers would fail. When it was fixed, the solution was ready to be tested on the 

simulator. During the first tests, while the result was fruitful, it was noticed that a significant 

delay was induced by the execution time of the generated code, which lead to the regular loss 

of steering angle data. The requirement was set so that when a steering angle is received by 

the application through the CAN bus, it is queued and when the data is going to be treated i.e. 

sent to the generated code, the timestamp is checked. If it is older than 10ms then the data is 

ignored and the queue is flushed. This is to prevent an “avalanche effect” where a slight delay 
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would accumulate up to a point where the synchronization between the steering wheel and the 

front wheels is totally lost. 

The delay induced by the generated code caused the receiving queue to be flushed regularly 

so it was decided to inspect using execution time control markers to find out which portion of 

the generated code induced the most delay. It was found out that the 6ms delay was induced 

by the data logging function which was of absolutely no use in our case, so that function was 

excluded from the project. Later tests verified and validated the model successfully. 

4.2  Steery application with Triboard 

In this section modeling of updated Simulink model and its code generation process is 

explained. 

4.2.1 Simulink Modeling 

In TriBoard the Steery application is designed as one ECU that holds two SWC’s (software 

components) namely: Steering Wheel SWC and Front Wheel SWC, which are shown in 

Figure 8.  The functionality of the Front Wheel SWC is almost the same as the one from 

Steery application without Tricore (as in Section 4.1.2). Here, in addition, the Front Wheel 

SWC passes the front wheel sensor information to the Steering Wheel SWC. Previously, in 

the Steery application without Tricore, this sensor information was maintained only by FUSS 

application. On the other hand, the Steering Wheel SWC serves two functionalities: It passes 

the Steering Wheel information (G25 Racing Wheel- Steering angle) to the Front Wheel SWC 

and calculates the force feedback that will be given to Steering Wheel in order to maintain 

front wheels position with respect to Steering Wheel.  

When the Steery application was moved to Tricore hardware, Steery application will have 

support from Picea; Mecel’s AUTOSAR product. As a result, only the core application is 

developed with proper interfaces, which later on will be connected to BSW and hardware 

through RTE by Picea team – this process was defined in AUTOSAR specifications. In this 

stage of the project, the basic stamp microcontroller is replaced with an inbuilt 

microcontroller of the TriBoard. During this process to maintain the servo motor resolution 

with respect to Steering Wheel, both appropriate operating frequency and Time Duration 

(duty cycle) information should be sent to the microcontroller or an updated Transfer 

Function should be made in Front Wheel SWC. Since the servo motor which is used in this 

project was operated around 50Hz with an operating positive duty cycle range from 1.0ms to 



 

21 

 

2.0ms (front wheel movements from Left to Right), calculation of Time Duration and 

converted resolution can be done easily. For details of this calculations please refer 

APPENDIX B. 

 

 

 

 

 

 

 

 

 

 

 

 

Coming back to the Front Wheel SWC, once the wheel angle command is passed to the 

microcontroller, microcontroller generates the corresponding PWM signal. Based on that 

PWM value, the front wheels will respond through the servomotors. Relating to these front 

wheel moments, the corresponding wheel sensor information is passed to the Steering Wheel 

SWC. Then this Steering Wheel SWC calculates the force feedback, which will be delivered 

to FUSS application through a CAN bus. Figure 9, shows the logic of the Force Feedback 

calculation. 

 

Figure 8: Software Components in Steery Application that can be integrated   to the 

TriBoard Hardware 
This again represents the top view of the model. We can see here that the SW-C handles the force 
feedback fed to the steering wheel. There are additional inputs on FrontWheelSWC which are the 

sensor data coming from the front wheels that are necessary to calculate the force feedback. 
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Figure 9: Calculation of Force Feedback 
This represents the lower view of the force feedback calculation that is located in the SteeringWheelSWC. 

This mainly is a quotient of the front wheel range and the steering wheel range. 

 

 

4.2.2 Code Generation with AUTOSAR interfaces 

The Simulink model in Section 4.2.1 is designed using AUTOSAR interfaces. As explained in 

Section 2.2.2, the input and output data of the SWCs’ will be through RTE for which 

Figure 10: Defining AUTOSAR Interfaces in Embedded Coder 
Since the communication setup is not handled on the application level, the SW developper must specify the input and 

output port (receive and send as well as interface and port) so that the RTE and BSW can route it to the intended 
recipient. 
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corresponding interfaces should be defined accordingly. For that reason, as like in Section 

4.1.3, instead of generic TLC, an autosar TLC (autosar.tlc) is used here. During this stage of 

the project, since Simulink Coder does not have support for autosar.tlc, Embedded Coder was 

used. Figure 10 shows the way of defining the AUTOSAR interfaces for one of the SWC.  

All the input ports of the SWC have a data access mode as Explicit Receive, which can also 

be represented as RTE_Read interface. This interface is used to get the input data from the 

external environment; which can be either intra ECU communication or inter ECU 

communication through RTE. Similarly, all the output ports have the data access mode as 

Explicit Send, which can also be represented as RTE_Write interface. This interface is used to 

transmit the data from the application level to lower levels of the AUTOSAR architecture in 

inter or intra ECU communication (See Figure 2). Figure 11 explains in detail one of the 

RTE_Read and RTE_Write data flow from one SWC to another.  

The interface ‘a’ refers to Explicit Receive interface, which is the input from the G25 Racing 

Wheel that transmits the steering angle. This steering angle is received by the Steering Wheel 

SWC through RTE. Since this steering angle is used to calculate the wheel angle command, 

which is input to the microcontroller, the received steering angle must be sent to the Front 

Wheel SWC as it is responsible for the wheel angle command calculations. So, interface ‘b’ is 

used to send the steering angle data from Steering Wheel SWC via RTE. Then Front Wheel 

SWC receives this steering angle at interface ‘c’ and transmits the wheel angle command to 

the microcontroller though interface ‘d’, which is RTE_Write or Explicit Send.  

Once the AUTOSAR interfaces are configured properly, then by choosing appropriate solver 

and end target options in the configuration parameters of the Embedded Coder, the 

corresponding code will be generated for their equivalent SWC’s. Then this generated code 

can be built along with the Middle Software and be deployed on the suitable hardware.  
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Figure 11: Data Flow between SWCs through RTE 
Intra-ECU communication does not go down all the way to the Basic SoftWare but CAN communication or 

communication to sensors/actuators is handled in lower layers of the AUTOSAR topology. 

 

4.3  AUTOSAR End-To-End protection library 

4.3.1 Key Concepts 

The concept of End-to-End (E2E) protection assumes that safety-related data exchange shall 

be protected at runtime against the effects of faults within the communication link. Those 

include random HW faults (e.g. corrupt registers of a CAN transceiver), interference (e.g. due 

to EMC), and systematic faults within the software implementing the VFB (e.g. RTE, IOC, 

COM and network stacks) [18]. 

The E2E Library provides mechanisms for E2E protection, adequate for safety-related 

communication having requirements up to ASIL D (related to ISO26262 standard). 

The E2E protection allows the following: 

• It protects the safety-related data elements to be sent over the RTE by attaching 

control data, 

• It verifies the safety-related data elements received from the RTE using this control 

data, and 
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• It indicates that received safety-related data elements faulty, which then has to be 

handled by the receiver SW-C. 

To provide the appropriate solution addressing flexibility and standardization, this document 

[18] specifies a set of flexible E2E profiles that implement an appropriate combination of E2E 

protection mechanisms. Each specified E2E profile has a fixed behavior, but it has some 

configuration options by function parameters (e.g. the location of CRC in relation to the data, 

which are to be protected). 

At runtime each caller (e.g. via E2E protection wrapper or a callout) calls the functions of an 

E2E profile including their function parameters (the configuration options are not defined 

statically e.g. at pre-compile time or post-build time). To ease their usage there is a 

recommended configuration (variant) for each E2E profile. 

Figure 12: Overview of E2E Protection Wrapper [18]  

This figure represents the communication between two SW-Cs that implement E2E protection library 
mechanisms. This takes place in four steps, from the production of safe data elements (on the application 

level) to the invocation of the rte_write() operation. The receiving SW-C will in turn read the data packet, 
check the content against E2E library mechanisms and consume the data. 
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The E2E Library can be invoked at the level of Data Elements (SWC) or at the level of COM 

I-PDUs. In the former approach, every safety-related SW-C has its own additional sub-layer 

(which is a .h/.c file pair) called E2E Protection Wrapper, which is responsible for marshaling 

of complex data elements into the layout identical to the corresponding I-PDUs (for inter-

ECU communication), and for correct invocation of E2E Library and of RTE [18]. 

As shown in Fig.12, the first step is for the SWC to produce the data element to be sent 

through the RTE. A call to the wrapper is then made that acts as a transmission request. The 

wrapper calls a protection library function from the E2E library that essentially attaches the 

control data to the data. Finally, an rte_write() call (as explained in section 4.2) is made 

transmitting the produced <data, control_data> pair. 

4.3.2 Implementation 

Each E2E Profile shall use a subset of the following data protection mechanisms [18]: 

 A CRC, provided by CRC library; 

 A Sequence Counter incremented at every transmission request, the value is checked 

at receiver side for correct incrementation; 

 An Alive Counter incremented at every transmission request, the value checked at the 

receiver side if it changes at all, but correct incrementation is not checked 

 A specific ID for every port data element sent over a port (global to system, where the 

system may contain potentially several ECUs). 

 Timeout detection: 

o Receiver communication timeout 

o Sender acknowledgement timeout 

 Double inverse data, as an alternative to CRC. 

Depending on the used communication and network stack, appropriate subsets of these 

mechanisms are defined as E2E communication profiles. Some of above mechanisms are 

implemented in RTE, COM and/or communication stacks. However, to reduce or avoid an 

allocation of safety-requirements to these modules, they are not used: E2E Library provides 

all mechanisms internally (only with usage of CRC library). The E2E Profiles can be used for 

both inter and intra ECU communication. The E2E Profiles 1 and 2 are optimized for 

communication over CAN, FlexRay and can be used for LIN whereas the E2E Profile 3 is 

optimized for intra-ECU communication. Depending on the system, the user selects which 



 

27 

 

E2E Profile is to be used, from the E2E Profiles provided by E2E Library. For the application 

developed within the thesis work, FlexRay buses will be used on target. Moreover [19] advise 

the use of Profile 2 for applications designed with safety requirements of ASIL D so profile 2 

was naturally chosen. 

The following table summarizes the detectable failure modes with respect to the mechanisms 

of Profile 2: 

Mechanism Detected failure modes 

Counter 
Unintended message repetition, message 

loss, insertion of messages, re-sequencing 

Data ID Insertion of messages, masquerading 

 

CRC 

Message corruption, insertion of messages 

(masquerading) 

Timeout 

(detection & handling implemented by SW-C) 

Message loss, message delay 

 

Table 1: Detected failure modes using E2E Profile 2 [18] 
The mechanism that is the most useful to our application is the CRC checksum because it is very critical for a steer-by-
wire application to receive correct steering angle otherwise the front wheel get desynchronized with the steering wheel 

of the driver. Data ID would be less valuable because we can assume that the automotive manufacturer will isolate the 
steer-by-wire application on an ECU and a CAN network that is not shared with potential dangerous applications. 

The application must call the E2E protection wrapper each time data is to be sent or received. 

In order to keep an automated tool chain and avoid generating code with Simulink embedded 

coder and tweak it to include the call to the wrapper, the developer can use custom coding 

offered by MATLAB/Simulink. Custom coding allows SWC developers to specify a function 

to call to replace another. As explained in Section 4.2, an output port in Simulink will 

generate an rte_write(). However, implementing E2E library on top, an output port shall now 

commit a call to the wrapper that will protect the data and then only make a call to rte_write(). 
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5. Results and Tool Chain 

In this Chapter, a brief introduction of different MathWorks products is given, which were 

used during the process of Steery application design. In addition to it, we also discussed about 

different testing options that are available during this stage and gave the corresponding 

reasoning for choosing one particular testing method. In the end we documented related test 

results. 

5.1  Testing Methodologies  

In this section we describe about different testing methods that were accessible during the 

time of our project. Then we chose one of the following methods to obtain our final results 

after doing some analysis as explained below. 

5.1.1 Modeling Tools 

We designed the Steery application using basic Simulink library blocks. As described in 

Section 4.2.1, the Steery application consists of two software components, in the sense, two 

individual Simulink model files designed separately. To test the algorithm of these models, 

we used model referencing methodology, in which both the models are connected together as 

shown in Figure 13. 

 

On the other hand, to test the designed application within Simulink (assuming without using 

any testing tools), a simulator environment has to be designed with the help of some 

Mathworks tools that falls under Physical Modeling (Simulink Products). Some of the tools 

available from the Physical Modeling are Simscape, SimMechanics and SimDriveline. Using 

these three tools, we made a test environment, which gives sensor information corresponding 

to front wheel position, and a replica of microcontroller that can activate the servomotors. 

Figure 13: Steery Application with both the SWCs connected together 
This view specifies the linkage of the two SW-Cs in Simulink mainly for testing purposes, In that way the SW developer 

can specifies the input data (by taking real life expected values) and assert the outputs to verify that the calculated 
steering wheel command and force feedback match expected results. 
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Since the simulator environment design is out of the scope in thesis description, the 

development was not made to larger extent. Instead, a basic study was prepared with the 

following conclusion: by using the physical modeling tools and Simulink 3D animation, we 

can model a test environment for the Simulink models that are presented in Section 4.2.1. A 

direct added benefit is that changes can be easily implemented and tested directly in the 

Simulink environment without having to generate any code. Once the final application is 

verified then the corresponding code can be generated and tested in the AUTOSAR VFB or in 

the target hardware. The first test phase within Simulink gives a positive confidence for 

smooth integration of generated code into the hardware. 

Pros and Cons (Merits and Demerits): 

1. Cost of the modeling tools package is lower than for the Design Verifier tool. 

2. Once the test environment is done it can be used for different projects that have similar 

applications. 

3. Since the test environment must be designed using Simulink modeling tools it’s a bit 

more time consuming compared to Design Verifier. 

4. Verification of the test environment itself is required in this method before verifying 

the core application. 

 

5.1.2  Testing Tools 

Description of the Tools: 

To test the application at the model level, two Simulink products are available from 

Mathworks: Simulink Verification and Validation and Simulink Design Verifier. A brief 

summary of these tools are given below: 

Simulink verification and validation [20]: 

To associate, navigate and review of Simulink models and generated code with the design 

requirements could be done using this tool along with corresponding report generation. From 

this generated report highlighting and tagging helps to link the Simulink models or generated 

code to the requirement documents. For this there are many compatible software’s that are 

available in the market like: Microsoft Word, Excel, IBM Rational Doors, PDF, etc. In 

addition to this, compliance checking with modeling standards is available. In addition to that, 

MAAB (Mathworks Automotive Advisory Board) checks like: Naming Conventions, Model 

Architecture, Block parameter checks, etc., are possible.  
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Pros and Cons: 

1. Verification of the model can be done just by marking few check boxes in the tool. 

2. Logical design of the model can’t be verified here.  

 

Simulink Design Verifier [21]:  

In this tool Simulink model verification can be done by formal analysis that describes desired 

and undesired system behavior using different test scenarios and verification objectives. Here, 

verification of application or system logic at model level can be done using three different 

modes of the tool. They are: Design Error Detection, Test Generations and Property Proving. 

Using these three modes we can find dead logics, integer overflow, and division by zero 

errors and including violations of design properties. Once the model level verification is done, 

the same test vectors or test cases can also be used for generated code to verify the generated 

code. In addition to this detail report generation is possible at each level of verification, which 

can be used for later documentation procedures.  

Pros and Cons: 

1. Not much test design is required to verify the models. In one of the testing mode; Test 

generations: Just by providing the input range the tool will generate all the possible 

test vectors to find the division by zeros and integer overflow errors. 

2. The blocks that are used during the testing can be excluded from the code generation 

automatically. 

3. A detailed generated report at each stage of the test gives a clear picture of 

functionality or test coverage. 

4. Though this tool is new to the market, the present price is little expensive than others. 

Unit Testing 

In this method using C/C++ programming specific entity of the source code can be verified 

automatically using CppUnit testing methodology. 

Pros and Cons: 

1. Generated code can be verified by this method. 

2. These tests can be implemented only after code generations.   

3. For each part of the function or specific entity a CppUnit test is required to verify the 

functionality.   
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IEC Certification Kit for ISO 61508 and ISO 26262 [22] 

IEC Certification Kit follows an in-context approach to IEC 61508 certification that is based 

on a specific workflow or set of workflows used when the applicant applies specific tools to 

develop or verify software for IEC 61508–compliant or IEC 61508–certified applications. The 

applicant must ensure that the tools are used within the referenced workflows and within the 

constraints specified in their respective certificates. 

 

5.1.3 Conclusion 

It will be harder to use a general tool, such as Simulink Modeling Tools, to develop or to 

design a test environment for a specific application, than to use a dedicated tool for the 

verification, such as Simulink Design Verifier. On the other hand, both the Verification and 

validation tool and the IEC certification kit are limited in their scope to verify some modeling 

standards and integers overflow errors. These verification tools cannot verify the designed 

logic of the core application.  Similarly, although unit tests are useful for functionality 

verification, they can be performed only after code generation, which prevents us from testing 

the functions at the model level. To overcome these limitations we chose the Design Verifier 

as our main testing tool in this project. The detailed analysis of using Design verifier is 

explained in Section 5.2. 

5.2  Results 

As highlighted from the previous section, Simulink Design Verifier is mainly used to test the 

logic of the Steery application. The following sub-sections explain different modes that are 

used in Simulink Design Verifier and the corresponding results are shown. 

Simulink Design Verifier has three different testing modes, each with its own features that are 

explained below: 

1. Detect Design Errors:  

Using this mode of operation, integer overflow and division by zero errors can be identified 

easily. Based on the warnings generated by the tool, an application designer can rectify 

corresponding errors before code generation. In APPENDIX C, under the subsections of Front 

Wheel SWC and Steering Wheel SWC, Design Verifier Report for Design Error Detection is 
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presented. The key point to observe in that report is: based on the Design Min Max 

Constraints, Design Error Detection objectives were proven valid for both the SWCs’. Based 

on this, we can verify that the present version of SWCs’ is safe from integer over flow errors. 

In the present version of Simulink Design Verifier, for division by zero errors the tool is not 

generating test cases to prove in which scenario the error is arising.  As per the information 

from Mathworks support team, this will be updated in the future versions of 

MATLAB/Simulink (R2011b or above).    

2. Generate Tests / Test Generations:  

In this mode, Test Generations can be achieved in three ways:  

i. By defining Model Coverage Objectives in the configurations parameters  

ii. By using Test Condition and Test Objective blocks from the Simulink Library 

Browser.  

iii. By using the combination of both above techniques. 

The generated report in APPENDIX C is based on the third method. In Test Generation, the 

tool will generate different test cases to show that the given test objective and coverage 

objectives can be achieved. These test cases will be generated based on the given test 

conditions by the user. For instance, by considering the case that is used in the generated 

report: using Model Coverage Objective with MCDC (Modified Condition/Decision 

Coverage) and Test Condition values with the corresponding SWCs, Design Verifier 

generated one test case proving that the requested test objective can be achieved. The detailed 

report of this Test Generation can be seen in APPENDIX C. In many cases, this mode of 

testing can be viewed as similar to Unit Testing. In unit testing, an output is asserted based on 

a given well-known input. The expected output is then compared to the asserted output, 

verifying the proper implementation of the logic. Whereas here, using the verifier tool, unit 

testing is achieved semi-automatically, the user having to specify a set of input-range as test 

conditions and output-range data as test objectives, the corresponding assertion being done by 

the tool. These assertions are referred as Test Cases or Test Harness Models. Along with this, 

a coverage report will be generated at the end, which shows the total coverage of the test 

objectives. Since for the Steery model, only one test condition was chosen, 100% coverage is 

achieved and feasible. 

3. Property Proving: 
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Property proving is another testing mode to investigate the logic of the Simulink models. In 

this mode by providing Proof Objective and Assumption blocks from the library browser and 

the type of strategy to use for proving the property in the configuration parameters, Design 

Verifier can perform Property Proving operations. Three types of strategies can be used here: 

Prove, Find Violation and Prove with Violation Detection. For this model, Prove with 

Violation Detection strategy was used. This strategy helps in two ways: 

 1. It proves the values given at proof objective are valid 

2. It will try to generate test cases to show different possibilities that may objective as 

falsified. 

For example, as in APPENDIX C under Front Wheel SWC of Property Proving subsection, 

based on Analysis Constraints and Design Min Max Constraints, the Objective was fulfilled. 

To see it in detail, the values ranging from -10,000 to 10000 under Analysis Constraints are 

the input to Front Wheel SWC. For this input range the output at Wheel Angle Command 

should be in the range of 1500 to 2400. So, this range is given as Proof Objective at the 

corresponding output port. Now, the tool will try to generate test cases to prove the range of 

values between 1500 and 2400 can be invalid at some input. If that is the case, then it can be 

consider as if the logic of the Simulink model is wrong for some input condition. Since the 

tool was not able to find any test case for that scenario it can be marked as verified system.  

5.3  Virtual Function Bus 

The previous section presented activities conducted during the model development phase to 

ensure that the model complies with the requirements from the item definition. These 

activities represent a first mean to verify the logic and robustness of the model within the 

Simulink environment. However, within Simulink, the model is isolated from its 

environment, meaning that all the inputs and outputs are managed within the simulating 

environment. For example, the interface of the Simulink model corresponding to the receipt of 

the steering angle from steering wheel via a CAN message is defined in Simulink as an input 

port. All the CAN communication is handled by the VFB so one can easily see that further 

verification is needed. 
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To further verify the integration of the generated code for the SWCs, the developer must 

make a build of the SWCs code generated from Simulink along with the middle software (The 

VFB). This effectively verifies the interaction between the SWCs and the RTE. 

For testing purposes, inputs and outputs of the system have been configured by the VFB 

integrator as one CAN message respectively. This is because full integration of the PWM 

signal generator and A/D converter was not available at the time. The byte positioning of the 

different inputs and outputs, is presented in the following table. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2: Byte positioning of I/O as implemented in the VFB 

 

Based on this implemented CAN message structure, the proper behavior of the generated code 

from the Simulink model was verified in the Mecel Picea TestBench. This tool is part of the 

Mecel Picea Suite [5] and allows interaction with the application (the final build of VFB and 

SWCs) through inter-process communication in the PC environment. This allows setting up a 

CAN message with some well-known input values SteeringAngleJoystick, 

WheelSensorMax_in,  WheelSensorMin_in and WheelSensorData_in for which expected 

ouptut values SteeringWheelCommandToMicrocontroller and ForceFeedbackToFussApp are 

verified. 

 

Input   

Byte position Signal 

0 Not used in FUSS 

1 SteeringAngleJoystick 

2 SteeringAngleJoystick 

3 WheelSensorMax_in 

4 WheelSensorMin_in 

5 WheelSensorData_in 

    

Output   

Byte position Signal 

0 Not used in FUSS 

1 Not used in FUSS 

2 SteeringWheelCommandToMicrocontroller 

3 SteeringWheelCommandToMicrocontroller 

4 ForceFeedbackToFussApp 

5 ForceFeedbackToFussApp 
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Figure 14 shows the CAN log within Picea TestBench for input values set up to simulate the 

vehicle steering in the maximum right direction. 

 
Figure 14: Overview of the Mecel Picea TestBench tool 

The CanLog captures the input and output data going to the SW-Cs. This is a good tool to verify the functionality, this 

time not on the model level but on the system level. The application is still not deployed to the embedded system but 
simulated in a PC environment.  

 

The described process during this chapter highlights one of the advantages of model-based 

design which is that a first verification and validation is made in the Simulink environment, 

validating the logic of the model. Then a second verification and validation is done when the 

final build of the application (VFB+SWCs) is performed thus improving the chances of error 

detection which is obviously a good thing with regard to ISO 26262. 
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6. Discussions 

6.1  Model-based design in relation to ISO 26262 

Model-Based Design (MBD) is a visual method of designing complex applications, which are 

presently used in many areas where embedded software is mostly used. The main aim is to 

have an agile design process during the entire development cycle. In MBD, early error 

detection and correction is more feasible than in a traditional approach, which is one of the 

critical aspects with respect to ISO 26262. Unlike traditional text – based designs, MBD is 

less prone to errors and much easier to debug. Since the MBD tools provide a standard 

environment where even the complex logics or models can be broken down into small 

hierarchal systems (we referred to them previously as views, i.e top view in Figure 6 and 

Figure 8), it helps to conceptualize the entire system.  In other words, it helps understanding 

the system architecture from a very high level (i.e two SW-Cs communicating through several 

given interfaces) down to a very low level (calculating a force feedback based on sensor 

values and steering wheel command). 

As outlined in Section 1.2, one of the purposes of this master thesis was to make suggestions 

on how MATLAB/Simulink can serve as a step to improve chances for early verification and 

simulation in accordance with ISO 26262. To fulfill this goal we used a testing tool, Design 

Verifier, introduced in Section 5.2. In this section, we present our thoughts gathered 

throughout the duration of the project on how design verifier tool can be used to fulfill the 

ISO 26262 requirements in some aspects.  

Originally, it was intended for this master thesis project to receive early inputs regarding 

Technical Safety Requirements, as explained in Section 2.2. However, due to an early change 

in the supervising team at Mecel that has not been possible. Instead we focused on the 

AUTOSAR E2E library for safety-related data. 

Nevertheless, during the duration of the project we gained insights on the understanding of 

the ISO 26262 standard and on how MATLAB/Simulink tools could be used accordingly. 

Two TSRs are presented here to support the concept. Those TSRs are made up but realistic. 

TRS1 - The wheel angle command to the PWM signal generator shall never have a value out 

of the range [1500; 2400]. 
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For TSR1, the MATLAB/Simulink tool chain actually provides different complementary 

mechanisms to ensure the Technical Safety Requirements with a high degree of confidence. 

First, the modeling tool itself can be used as a first barrier with the saturation block. This 

block will ensure that when a value out of range is received (may it be via a CAN message or 

from another sub-system within the same SWC), said values are saturated to the desired 

range. 

Secondly, as described in Section 5.2.2, Simulink Design Verifier presents an interesting 

approach named property proving. This tool actually tries to violate a strong design property 

such as the one here and presents violation examples to the developer for analysis and 

debugging purposes. Since the tool is based on a strong, robust algorithm [21], if the tool is 

not able to violate the tested TSR, the developer can be fairly confident that no out-of-range 

value is possible within the model. Finally, if the steering angle was calculated in SWC1 and 

passed through a Flex-Ray bus to SWC2, errors can be induced by the communication link. 

By using an adequate E2E profile as described in Section 4.3.2 implementing particularly a 

CRC checksum, the developer can detect an erroneous value on the receiving SWC and take 

action accordingly (retransmit or drop value for instance). 

TSR2 – The end-to-end timing of the system shall never exceed 100ms. 

Unfortunately, for this TSR the MATLAB / Simulink tool chain is of little help. If one knows 

the execution time of the system, the main delay that can be induced [23] is through network 

failures or congestion. In AUTOSAR development, this is out of scope for the SWC 

developer as communication is handled by the VFB. However, the recent FlexRay digital 

serial bus is deterministic and [24] presents a SBW using FlexRay communication between 

nodes that proves to be accurate and real-time. Attention to the setup of the FlexRay bus must 

then be paid by the VFB integrator to validate that particular TSR. 

6.2  Lessons learnt 

We have seen that model-based design can effectively help development of safety critical 

systems in accordance to ISO 26262. However, the standard is recent and the tools previously 

described are quite young. Mathworks felt the business opportunity and pushed those tools 

into the market. We lack feedback on the robustness of the tools consequently one must be 

aware that the tool chain helps deploying the safety process but using the tool is far from 

being enough when it comes to ISO 26262 requirements. The standard does not present any 
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metric one can use to justify ISO 26262 compliance. Focus must therefore be put on 

systematic functional safety planning, tailoring of well proven company processes and 

extensive testing procedures to achieve a residual acceptable risk for a given safety related 

E/E function. 

ISO 26262 brings a new complexity layer to the development process. The most important 

challenge that we were able to recognize is the impact of the AUTOSAR platform on the 

functional safety concept defined by ISO 26262. AUTOSAR splits the functionality into 

different independent layers.  There is therefore a lack of global control of the overall system 

and even if focus is put on safety in each layer (namely BSW, RTE and SWC); our conclusion 

is that this split makes it gets harder to predict what happens when everything is plugged back 

together. This particular feature of AUTOSAR is there to promote software reuse and 

interoperability between different vendors. However, small incompatibilities that were 

acceptable for non-safety related applications become really critical for system such as X-by-

wire. 

6.3  Future work 

The design of the Steer-By-Wire application developed within the context of this master 

thesis could be refined with respect to one or several Technical Safety Requirements. This 

would more than likely involve the development of some new logic within the Simulink 

model based on the TSR themselves. 

In the original item description of the Steer-By-Wire application appears a sub-system called 

“Conny” [25]. The “Conny” sub-system is described as an application running on PC that has 

fault-injection capabilities to the “Simmy” sub-system. This was thought for “Simmy” to 

handle such faults thus showing the integration of a safe state within the Simulator. The 

handling of faults is closely related to the implementation of the Technical Safety 

Requirements. Once the TSRs are defined by the Safety Team at Mecel and further 

implemented into the existing logic of the Simulink model, “Conny” could be designed in 

order to verify and validate the proper implementation of the TSRs, effectively highlighting 

the ISO 26262 functional safety concept. 

Finally, as explained in the Section 5.3, some configuration work is still to be done in the 

Virtual Function Bus to integrate support for PWM signal generation (signal command of the 

front wheel) and the A/D converter (sensor position of the wheel to calculate the force 
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feedback). This step is necessary in order to fully integrate the application on the Tricore 

hardware. However, during the time lap of this master thesis, lot of interaction took place with 

Daniel and Erik, two Chalmers students doing their master thesis at Mecel on a topic very 

close to this one (although more hardware oriented) and they were able to successfully use the 

PWM and A/D modules of the Tricore hardware. The next step is thus the configuration of 

those modules using Mecel Picea Workbench [5]. 
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7. Conclusion 

E/E systems integration on personal cars is on the rise. It started out with systems such as 

Electronic Stability Control (ESC) and modern versions of the anti-lock braking system 

(ABS) and has proven not only to increase driver’s safety and comfort but to create extra 

value to personal cars for manufacturers to compete around. Although the advantages offered 

by Steer-By-Wire are numerous and attractive, its implementation on personal cars has been 

limited so far for reliability issues. 

We believe the new ISO 26262 standard for functional safety on road vehicles is a great 

cradle for a technology such as SBW to emerge; it will without a doubt impose itself as soon 

as car manufacturers gain enough maturity in their development process in accordance to ISO 

26262. 

Throughout this thesis, insight on model-based development for the AUTOSAR platform was 

gained. We believe that model-based development is not just a trend and is about to impose 

itself for the automotive industry. In Simulink, the model is directly linked to the generated 

code, which permits making real-time off-line simulations. Due to these real-time simulations, 

early error detection makes the process of debugging and correcting defects smoother and 

more efficient which goes hand – in – hand with the safety activities of ISO 26262. The tool 

chain itself is continuously evolving and aims to be closely coupled to the AUTOSAR 

platform and more recently to the ISO 26262 standard. However, both the concepts of the 

standard and related tools used for these areas are quite new. Consequently, we observed a 

lack of feedback on the maturity and robustness of the tools and how to use them. We believe 

that it is a major challenge for the automotive companies to tailor and refine their 

development processes in accordance to ISO 26262 especially since we felt that the standard 

leaves a lot of room for interpretation. However, similarly to ISO 9000 standard on quality, 

we believe that ISO 26262 will become a must-have certification when it comes to safety 

related system development to OEMs. This naturally explains the recent craze from the 

automotive companies to early embrace ISO 26262 functional safety concept to their 

processes. As Mecel is looking to stay at the “forefront of the automotive industry” and to 

keep a competitive edge on its competitors this master thesis was put together as mean of 

early investigation along with leading experts on the field. 
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APPENDIX A – Manual Code integration into Simulink 

In section 3.2 we anticipated the possibility of integrating C/C++ code managing I/O 

communications directly into the Simulink model for purpose of further integration to the 

simulator. This section reviews our findings on the code integration methods offered within 

Matlab/Simulink and rates them in accordance to the relevance, with our project. 

Manual CMEX S-function  

In Simulink, we have the option to write C-code wrapper that will allow Simulink to call 

external code i.e C code managing CAN communication in our case. This approach has the 

benefits of allowing full control over application, including how the external code should be 

called by Simulink [27]. However, it also requires a much higher degree of knowledge of the 

inner workings of Simulink and would have been a too much time-consuming task 

considering time limits of this Master Thesis work. As we are going to see the Legacy Code 

Tool provides an automated mean of generating S-functions. 

Legacy code tool 

The Legacy Code Tool is a utility that generates an S-function automatically from existing C 

code by using the specifications that the user supply using Matlab code. It effectively 

transforms C functions into C-MEX S-functions for inclusion in a Simulink model. Legacy 

Code Tool is the quickest method of bringing C code into Simulink models, the S-function 

generation can even be scripted and the tool will automatically create a S-function block that 

can be directly used in models. 

However there is no automated method of adding code around the external routine call from 

the Matlab code interface. The tool allows very little control over the appearance of 

automatically generated S-function, which proved to be a big drawback for our project. 

Moreover, the tool does not support simulating continuous or discrete states which prevents 

us from using the mdlUpdate() callback function. This function is an absolute must have for 

us as it is the function that will be called every time we probe our model with a new steering 

angle value. 
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State flow 

Stateflow
®
 extends Simulink

®
 with a design environment for developing state charts and flow 

diagrams [28]. In its recent 2.0 release, Stateflow allows very simple user-defined C routines 

integration into Stateflow charts. However, that solution was not envisioned simply because 

the Steery model presented in Section 4.1.2 does not make use of the Stateflow product. 
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APPENDIX B – Reasoning behind usage of constant 

values in Steery Application 

The steering angle data received from the Logitech G25 steering wheel ranges from -10,000 

(min – Steering Wheel value) to 10,000 (max – Steering Wheel value).  

In APPENDIX D, the servo motor specifications were given, in which it states that 1.0ms of 

input timing sequence will gives full scale in one direction and 2.0ms in other direction. 

Based on those values and input resolution, minimum duty cycle or minimum timing (minT) 

and maximum duty cycle or maximum timing (maxT) should be considered as per the 

microcontroller specifications.  

To calculate the timing within the boundaries of the servo motor, TimeDuration is defined as: 

 

Steering Wheel input resolution is defined as:  

 

Thus the conversion factor is calculated as  

 

Finally for any steering angle received from the CAN bus through FUSS application, 

corresponding wheel angle command is send to the microcontroller that provides a timing 

sequence, which will be given as an input to the servo motor. 

 

The average of maxT and minT (Avg of TimeDuration) corresponds to the neutral position 

(steering rack or front wheels are in 0 degrees position). 

Steery Application without Tricore: 

Here, based on Basic Stamp microcontroller, for better resolution, a manual test is performed 

with front wheel prototype and microcontroller to choose minT and maxT as 1500 and 2400. 

Based on these values, the wheel angle command will get a range of values between 1500 and 

2400. By sending these wheel angle command values to the microcontroller it will gives a 
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timing sequence (positive PWM signal) that varies from 1.0ms to 2.0ms. This PWM signal is 

given as an input to the Servo Motor that helps the Front Wheel Rack/Prototype to react 

accordingly. 

Steery Application with Tricore: 

After Steery application is moved to Tricore hardware, instead of basic stamp microcontroller 

an inbuilt microcontroller is used. Since the hardware specifications are controlled by Picea 

team, the output of Front Wheel SWC and Steering Wheel SWC are given to the hardware 

through Picea Work bench. Since the Picea workbench is not ready during the time of our 

application design, we assumed the microcontroller inside the Tricore will also support as 

similar to basic stamp microcontroller. Based on this, minT and maxT were chosen same as 

before. Since this is documented in the M-file of FussSBWconfig.m; the major changes will 

be just changing the values of minT and maxT in M-fle with the corresponding hardware 

values. Once microcontroller receives a value from the converted range it generates a 

corresponding PWM signal that can transmit to the Servo Motor. On the other hand, if the 

Tricore hardware’s microcontroller needs the information of duty cycle and operating 

frequency instead of passing the values given at minT and maxT frequency and duty cycle 

values can be transmitted. This can also be done with ease, since the operating frequency is 

constant (50 Hz), based on that duty cycle can be calculated, since it is just the ratio between 

duration of the input timing with entire time period (entire time period T is the reciprocal of 

servo operating frequency). But in this method there will be slight modifications in the 

Simulink design. 
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APPENDIX C – Design Verifier Report 

This chapter is separated in two parts with the following titles: Steering Wheel SWC and 

Front Wheel SWC. Under these, there will be three sections named with Detect Design 

Errors, Test Generations and Property Proving. In each section an auto generated Simulink 

Design Verifier Report is accessible, whose explanation is given in Section 5.2.2.  

 
 

a)  
 

 
 

 
- -  

 
Innehållsförteckning 

1. Summary 

2. Analysis Information 

3. Design Error Detection Objectives Status 

4. Signal Bounds 

 

Kapitel 1. Summary 

Analysis Information   

Model: SteeringWheelSWC 

Mode: DesignErrorDetection 

Status: Completed normally 

Analysis Time: 25s 

Objectives Status   

Number of Objectives:  6 

Objectives Proven Valid:  6 
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Kapitel 2. Analysis Information 

Innehållsförteckning 

Model Information 

Analysis Options 

Constraints 

Model Information 

 

File: SteeringWheelSWC 

Version: 1.103 

Time Stamp: Thu Aug 04 09:46:02 2011 

Author: AjayN 

Analysis Options 

 

Mode: DesignErrorDetection 

Detect integer overflow: on 

Detect division by zero: on 

Maximum Processing Time: 300s 

Block Replacement: off 

Parameters Analysis: off 

Save Data: on 

Save Harness: off 

Save Report: off 

Constraints 

Design Min Max Constraints 

Name Design Min Max Constraint 

WheelSensorMax  [211, 211] 

WheelSensorMin  [41, 41] 

JoystickResolution  [20000, 20000] 

WheelSensorData  [41, 211] 

MinSteerAngle  [-10000, -10000] 

Kapitel 3. Design Error Detection Objectives Status 

Innehållsförteckning 

Objectives Proven Valid 

 

Objectives Proven Valid 

# Type Model Item Description 
Test 

Case 

2 Overflow SteeringWheelSWC/Offset_ForceFeedback/WheelSensorR Overflow n/a 

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A26'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A33'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A120'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A4'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A119'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A105'),%20urldecode('SteeringWheelSWC'));
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# Type Model Item Description 
Test 

Case 

esolution  

4 
Division 

by zero 

SteeringWheelSWC/Offset_ForceFeedback/SensorToJoysti

ck  

Division by 

zero 
n/a 

5 Overflow 
SteeringWheelSWC/Offset_ForceFeedback/SensorToJoysti

ck  
Overflow n/a 

7 Overflow SteeringWheelSWC/Offset_ForceFeedback/WheelPostion  Overflow n/a 

9 Overflow 
SteeringWheelSWC/Offset_ForceFeedback/WheeltoSteerin

gConversion  
Overflow n/a 

11 Overflow 
SteeringWheelSWC/Offset_ForceFeedback/SteeringWheel

Position  
Overflow n/a 

Kapitel 4. Signal Bounds 

Signal Bounds 

SteeringAngle- outport 1  [-32768, 32767] 

SteeringWheelSWC/Offset_ForceFeedback/WheelSensorResolution- 

outport 1  
170 

SteeringWheelSWC/Offset_ForceFeedback/SensorToJoystick- outport 1  118 

SteeringWheelSWC/Offset_ForceFeedback/WheelPostion- outport 1  [0, 170] 

SteeringWheelSWC/Offset_ForceFeedback/WheeltoSteeringConversion- 

outport 1  
[0, 20060] 

SteeringWheelSWC/Offset_ForceFeedback/SteeringWheelPosition- 

outport 1  
[-10000, 10060] 

 

b)  

 
 

 
 

- -  

 

Innehållsförteckning 
1. Summary 

2. Analysis Information 

3. Test Objectives Status 

4. Model Items 

5. Test Cases 

Kapitel 1. Summary 

Analysis Information   

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A105'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A101'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A101'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A101'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A101'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A103'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A100'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A100'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A104'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A104'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A10'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A105'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A105'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A101'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A103'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A100'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A100'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A104'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A104'),%20urldecode('SteeringWheelSWC'));
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Model: SteeringWheelSWC 

Mode: TestGeneration 

Status: Completed normally 

Analysis Time: 0s 

Objectives Status   

Number of Objectives:  1 

Objectives Satisfied:  1 

Kapitel 2. Analysis Information 

Innehållsförteckning 

Model Information 

Analysis Options 

Constraints 

Model Information 

File: SteeringWheelSWC 

Version: 1.107 

Time Stamp: Thu Aug 04 10:07:37 2011 

Author: AjayN 

Analysis Options 

Mode: TestGeneration 

Test Suite Optimization: CombinedObjectives 

Maximum Testcase Steps: 500 time steps 

Test Conditions: EnableAll 

Test Objectives: EnableAll 

Model Coverage Objectives: MCDC 

Maximum Processing Time: 300s 

Block Replacement: off 

Parameters Analysis: off 

Save Data: on 

Save Harness: on 

Save Report: on 

Constraints 

Design Min Max Constraints 

Name Design Min Max Constraint 

WheelSensorMax  [211, 211] 

WheelSensorMin  [41, 41] 

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A26'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A33'),%20urldecode('SteeringWheelSWC'));
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Name Design Min Max Constraint 

JoystickResolution  [20000, 20000] 

WheelSensorData  [41, 211] 

MinSteerAngle  [-10000, -10000] 

Kapitel 3. Test Objectives Status 

Innehållsförteckning 

Objectives Satisfied 

Objectives Satisfied 

Simulink Design Verifier found test cases that exercise these test objectives.  

# Type Model Item Description Test Case 

1 Test objective Test Objective1  Objective: [-10000, 10060] 1  

Kapitel 4. Model Items 

Innehållsförteckning 

Test Objective1 

This section presents, for each object in the model defining coverage objectives, the list of 

objectives and their individual status at the end of the analysis. It should match the coverage 

report obtained from running the generated test suite on the model, either from the harness 

model or by using the sldvruntests command.  

Test Objective1 

View  

#: Type Description Status Test Case 

1 Test objective Objective: [-10000, 10060] Satisfied 1  

Kapitel 5. Test Cases 

Innehållsförteckning 

Test Case 1 

This section contains detailed information about each generated test case.  

Test Case 1 

Summary   

Length: 0 Seconds (1 sample periods) 

Objective Count: 1 

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A120'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A4'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A119'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A133'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A133'),%20urldecode('SteeringWheelSWC'));
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Objectives   

Step Time Model Item Objectives 

1 0 Test Objective1  
 

Objective: [-10000, 10060] 
 

Generated Input Data   

Time 0 

Step 1 

SteeringAngle_Joystick - 

WheelSensorData 128 

WheelSensorMax 211 

WheelSensorMin 41 

MinSteerAngle -10000 

JoystickResolution 20000 

Expected Output Inputs that do not affect the test objectives (- in the table above) were given 

random values.  

Time 0 

Step 1 

SteeringAngle -18220 

ForceFeedbackToFussApp 266 

 

 

c)  
 

 
 

 
- -  

 

Innehållsförteckning 

1. Summary 

2. Analysis Information 

3. Proof Objectives Status 

4. Properties  

Kapitel 1. Summary 

Analysis Information   

Model: SteeringWheelSWC 

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A133'),%20urldecode('SteeringWheelSWC'));
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Mode: PropertyProving 

Status: Completed normally 

Analysis Time: 1s 

 

 

Objectives Status   

Number of Objectives:  1 

Objectives Proven Valid:  1 

Kapitel 2. Analysis Information 

Innehållsförteckning 

Model Information 

Analysis Options 

Constraints 

Model Information 

File: SteeringWheelSWC 

Version: 1.110 

Time Stamp: Thu Aug 04 10:20:45 2011 

Author: AjayN 

Analysis Options 

Mode: PropertyProving 

Proving Strategy: ProveWithViolationDetection 

Maximum Violation Steps: 20 time steps 

Proof Assumptions: UseLocalSettings 

Test Objectives: EnableAll 

Assertions: UseLocalSettings 

Maximum Processing Time: 300s 

Block Replacement: off 

Parameters Analysis: off 

Save Data: on 

Save Harness: on 

Save Report: on 

Constraints 

Analysis Constraints 

Name Analysis Constraint 

Assumption  [41, 211] 

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A139'),%20urldecode('SteeringWheelSWC'));
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Design Min Max Constraints 

Name Design Min Max Constraint 

WheelSensorMax  [211, 211] 

WheelSensorMin  [41, 41] 

JoystickResolution  [20000, 20000] 

WheelSensorData  [41, 211] 

MinSteerAngle  [-10000, -10000] 

Kapitel 3. Proof Objectives Status 

Innehållsförteckning 

Objectives Proven Valid 

Objectives Proven Valid 

# Type Model Item Description Counterexample 

1 Proof objective Proof Objective  Objective: [-10000, 10060] n/a 

Kapitel 4. Properties  

Innehållsförteckning 

Proof Objective 

Proof Objective 

Summary   

Model Item: Proof Objective  

Property: Objective: [-10000, 10060] 

Status: Proven valid 

 

 

 

 

 

 

 

 

 

 

  

matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A26'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A33'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A120'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A4'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A119'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A138'),%20urldecode('SteeringWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('SteeringWheelSWC%3A138'),%20urldecode('SteeringWheelSWC'));
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a)  
 

 
 

 
- -  

 

Innehållsförteckning 
1. Summary 

2. Analysis Information 

3. Design Error Detection Objectives Status 

4. Signal Bounds 

Kapitel 1. Summary 

Analysis Information   

Model: FrontWheelSWC 

Mode: DesignErrorDetection 

Status: Completed normally 

Analysis Time: 46s 

Objectives Status   

Number of Objectives:  6 

Objectives Proven Valid:  6 

Kapitel 2. Analysis Information 

Innehållsförteckning 

Model Information 

Analysis Options 

Constraints 

Model Information 

File: FrontWheelSWC 

Version: 1.97 
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Time Stamp: Tue Aug 02 09:05:44 2011 

Author: AjayN 

Analysis Options 

Mode: DesignErrorDetection 

Detect integer overflow: on 

Detect division by zero: on 

Maximum Processing Time: 300s 

Block Replacement: off 

Parameters Analysis: off 

Save Data: on 

Save Harness: off 

Save Report: off 

Constraints 

Design Min Max Constraints 

Name Design Min Max Constraint 

SteeringAngle  [-10000, 10000] 

WheelSensorData_in  [41, 211] 

WheelSensorMax_in  [211, 211] 

WheelSensorMin_in  [41, 41] 

Kapitel 3. Design Error Detection Objectives Status 

Innehållsförteckning 

Objectives Proven Valid 

Objectives Proven Valid 

# Type Model Item Description 
Test 

Case 

11 
Division 

by zero 

FrontWheelSWC/Microcontroller_Resolution/TransferFunct

ion/SteeringDataToTimeConvertion  

Division by 

zero 
n/a 

12 Overflow 
FrontWheelSWC/Microcontroller_Resolution/TransferFunct

ion/SteeringDataToTimeConvertion  
Overflow n/a 

14 Overflow 
FrontWheelSWC/Microcontroller_Resolution/ConversionFa

ctor/SteeringPosition  
Overflow n/a 

16 
Division 

by zero 

FrontWheelSWC/Microcontroller_Resolution/ConversionFa

ctor/DownScaling  

Division by 

zero 
n/a 

17 Overflow 
FrontWheelSWC/Microcontroller_Resolution/ConversionFa

ctor/DownScaling  
Overflow n/a 

19 Overflow 
FrontWheelSWC/Microcontroller_Resolution/ConversionFa

ctor/Add  
Overflow n/a 

Kapitel 4. Signal Bounds 

matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A7'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A41'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A43'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A42'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A25'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A25'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A25'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A25'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A14'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A14'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A87'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A87'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A87'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A87'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A12'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A12'),%20urldecode('FrontWheelSWC'));
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Signal Bounds 

FrontWheelSWC/Microcontroller_Resolution/MinTimeDuration- outport 

1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/MaxTimeDuration- outport 

1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/TotalTim

e- outport 1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/Avg- 

outport 1  
[-128, 127] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/AvgTime

- outport 1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/TimeReso

lution- outport 1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/MaxSteeringAngle- outport 

1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/UpScalin

g- outport 1  

[-2147483648, 

2147483647] 

FrontWheelSWC/Microcontroller_Resolution/MinSteeringAngle- outport 

1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/SteeringR

esolution- outport 1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/TransferFunction/SteeringD

ataToTimeConvertion- outport 1  
[-32768, 32767] 

FrontWheelSWC/Microcontroller_Resolution/ConversionFactor/SteeringP

osition- outport 1  

[-4500000, 

4500000] 

FrontWheelSWC/Microcontroller_Resolution/ConversionFactor/DownSca

ling- outport 1  
[-451, 450] 

FrontWheelSWC/Microcontroller_Resolution/ConversionFactor/Add- 

outport 1  
[1499, 2400] 

WheelSensorData- outport 1  [41, 211] 

WheelSensorMax- outport 1  211 

WheelSensorMin- outport 1  41 

MinSteerAngle- outport 1  -10000 

JoystickResolution- outport 1  20000 

 

 

b)  
 

 
 

 
- -  

matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A18'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A18'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A16'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A16'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A69'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A69'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A71'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A71'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A70'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A70'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A26'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A26'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A15'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A15'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A81'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A81'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A17'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A17'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A27'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A27'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A25'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A25'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A14'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A14'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A87'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A87'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A12'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A12'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A46'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A44'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A45'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A80'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A79'),%20urldecode('FrontWheelSWC'));
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Innehållsförteckning 

1. Summary 

2. Analysis Information 

3. Test Objectives Status 

4. Model Items 

5. Test Cases 

Kapitel 1. Summary 

Analysis Information   

Model: FrontWheelSWC 

Mode: TestGeneration 

Status: Completed normally 

Analysis Time: 3s 

Objectives Status   

Number of Objectives:  1 

Objectives Satisfied:  1 

Kapitel 2. Analysis Information 

Innehållsförteckning 

Model Information 

Analysis Options 

Constraints 

Model Information 

File: FrontWheelSWC 

Version: 1.102 

Time Stamp: Thu Aug 04 11:07:57 2011 

Author: AjayN 

Analysis Options 

Mode: TestGeneration 

Test Suite Optimization: CombinedObjectives 

Maximum Testcase Steps: 500 time steps 

Test Conditions: EnableAll 

Test Objectives: EnableAll 
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Model Coverage Objectives: MCDC 

Maximum Processing Time: 300s 

Block Replacement: off 

Parameters Analysis: off 

Save Data: on 

Save Harness: on 

Save Report: on 

Constraints 

Design Min Max Constraints 

Name Design Min Max Constraint 

SteeringAngle  [-10000, 10000] 

WheelSensorData_in  [41, 211] 

WheelSensorMax_in  [211, 211] 

WheelSensorMin_in  [41, 41] 

Kapitel 3. Test Objectives Status 

Innehållsförteckning 

Objectives Satisfied 

Objectives Satisfied 

Simulink Design Verifier found test cases that exercise these test objectives.  

# Type Model Item Description Test Case 

1 Test objective Test Objective  Objective: [1500, 2400] 1  

Kapitel 4. Model Items 

Innehållsförteckning 

Test Objective 

This section presents, for each object in the model defining coverage objectives, the list of 

objectives and their individual status at the end of the analysis. It should match the coverage 

report obtained from running the generated test suite on the model, either from the harness 

model or by using the sldvruntests command.  

Test Objective 

View  

#: Type Description Status Test Case 

1 Test objective Objective: [1500, 2400] Satisfied 1  

Kapitel 5. Test Cases 

matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A7'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A41'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A43'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A42'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A96'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A96'),%20urldecode('FrontWheelSWC'));
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Innehållsförteckning 

Test Case 1 

This section contains detailed information about each generated test case.  

Test Case 1 

Summary   

Length: 0 Seconds (1 sample periods) 

Objective Count: 1 

Objectives   

Step Time Model Item Objectives 

1 0 Test Objective  
 

Objective: [1500, 2400] 
 

Generated Input Data   

Time 0 

Step 1 

SteeringAngle -156 

WheelSensorData_in 121 

WheelSensorMin_in 41 

WheelSensorMax_in 211 

 

c)  
 

 
 

 
- -  

 

Innehållsförteckning 

1. Summary 

2. Analysis Information 

3. Proof Objectives Status 

4. Properties  

Kapitel 1. Summary 

Analysis Information   

matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A96'),%20urldecode('FrontWheelSWC'));
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Model: FrontWheelSWC 

Mode: PropertyProving 

Status: Completed normally 

Analysis Time: 7s 

Objectives Status   

Number of Objectives:  1 

Objectives Proven Valid:  1 

Kapitel 2. Analysis Information 

Innehållsförteckning 

Model Information 

Analysis Options 

Constraints 

Model Information 

File: FrontWheelSWC 

Version: 1.101 

Time Stamp: Thu Aug 04 10:38:13 2011 

Author: AjayN 

Analysis Options 

Mode: PropertyProving 

Proving Strategy: ProveWithViolationDetection 

Maximum Violation Steps: 20 time steps 

Proof Assumptions: EnableAll 

Test Objectives: EnableAll 

Assertions: EnableAll 

Maximum Processing Time: 300s 

Block Replacement: off 

Parameters Analysis: off 

Save Data: on 

Save Harness: on 

Save Report: on 

Constraints 

Analysis Constraints 

Name Analysis Constraint 

Assumption  [-10000, 10000] 

Design Min Max Constraints 

Name Design Min Max Constraint 

SteeringAngle  [-10000, 10000] 

matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A95'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A7'),%20urldecode('FrontWheelSWC'));
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Name Design Min Max Constraint 

WheelSensorData_in  [41, 211] 

WheelSensorMax_in  [211, 211] 

WheelSensorMin_in  [41, 41] 

Kapitel 3. Proof Objectives Status 

Innehållsförteckning 

Objectives Proven Valid 

Objectives Proven Valid 

# Type Model Item Description Counterexample 

1 Proof objective Proof Objective  Objective: [1500, 2400] n/a 

Kapitel 4. Properties  

Innehållsförteckning 

Proof Objective 

Proof Objective 

Summary   

Model Item: Proof Objective  

Property: Objective: [1500, 2400] 

Status: Proven valid 

 

  

matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A41'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A43'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A42'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A94'),%20urldecode('FrontWheelSWC'));
matlab:sldv_hilite('hilite_sid',%20urldecode('FrontWheelSWC%3A94'),%20urldecode('FrontWheelSWC'));
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APPENDIX D – Software and Hardware Specifications 

This chapter explains concisely the different software applications and hardware products that 

are used in this project. 

 

Development Tools 

a) MATLAB/Simulink 

This project is based on model based design for which MATLAB/Simulink was chosen as 

developing tool to design Steery application.  

b) Microsoft Visual Studio 

To tweak the generated code of the Steery application or to link that generated code with the 

FUSS application, Microsoft Visual Studio was chosen.  

Application Software 

a) Live for speed 

In this project to test the performance of the Steer-By-Wire application a simulator 

environment, Live for Speed is used. Its appearance as a real environment with a good visual 

quality and tranquil control over its interfaces and vehicle actions complemented the project 

requirements. In addition, this simulator has a virtuously active community with continuous 

updates to the product.  

Live for Speed uses InSim to communicate with other external interfaces. This interface 

supports various data to be sent to any external software from simulator and vice-versa [10]. 

Any information from the external software or applications was fed to the simulator through 

PPJoy, a virtual joystick.  

b) FUSS Application 

Fuss application is a Microsoft VC++ project developed by Mecel AB. This application 

controls three main applications: Live for speed, DirectInput and Virtual Joystick. 
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Direct Input 

DirectInput is an add-on to Windows Application Programming Interface (Windows API) that 

can control the I/O ports of the input device connected externally, in this context it’s a game 

control devices [11]. In this project, we use this application to retrieve data from the external 

Logitech Racing Wheel and also to introduce the force feedback from the Steery model.   

Virtual Joystick 

A virtual joystick is used to manipulate the data of the external devices without using 

hardware. Since it is detectable by the operating system, using IOCTL (input/output control 

system calls) function calls, it is easy to implement. In this case, PPJoy is used as a virtual 

joystick, in order to update the front wheel position of the vehicle in the simulator (Live for 

Speed game) [12]. 
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This section explains briefly various significant hardware components that are used in this 

project work. 

Logitech G25 Racing Wheel 

Logitech G25 Racing wheel, as in Figure 15, contains three main parts: Steering Wheel, 

Pedals and Shifter. In the Simulator only Steering Wheel and Pedals are used, since the game 

is programmed as gears shifts automatically. G25 Racing Wheel supports 810 degrees of 

wheel rotation with a resolution of 20,000 steering values from -10,000 to 10,000. This 

resolution can be altered according to the application, for better visualization. In this project; 

these steering values are considered as steering input. Pedals are used to throttle, brake and 

clutch.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Logitech G25 Racing Wheel with Force Feedback 
Source: http://www.hellas.rs/index.php?action=opis&q=5047 
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Microcontroller 

During the first stage of the project (before using Tricore Board), in order to convert the 

steering wheel data into a control signal for the front wheels, a Parallax Basic Stamp 

Microcontroller, as in Figure 16, is used [13]. This microcontroller converts any input voltage 

signal into a timing sequence (PWM). Then, this output timing sequence is given to a 

servomotor that controls the front wheel position accordingly. Later on, while using the 

Tricore Board, an inbuilt microcontroller will be used for the same application, such that 

Basic Stamp Microcontroller can be detached.  

 

 

 

 

 

 

 

 

 

 

 

Servo Motor 

Figure 17 shows, a Hitec 55.2g HS-645MG High Torque Metal Gear High Performance RC 

Servo motor. It has high performance servos for radio control of model demo cars. It is 

controlled by positive Pulse Width Modulated (PWM) train pulse that comes from 

microcontroller. Its operating frequency is 50 Hz, with 1.0 ms pulse gives full scale in one 

direction and 2.0 ms pulse gives full scale in other direction, with 1.5 ms as straight position 

[14]. In other words, the servomotor has a range of 1.0 ms to 2.0 ms that controls the front 

wheels from one extreme direction to other. 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: BS2e Parallax Basic Stamp 
Source:http://www.parallax.com/Store/Microcontrollers/BASICStampModules/ 

Figure 17: HS-645MG - Three Pole Servo 
Source: http://www.servocity.com/html/hs-645mg_ultra_torque.html 

 

http://www.parallax.com/Store/Microcontrollers/
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Front Wheel Prototype 

Figure 18 shows, a front wheel rack system designed and contributed by Torgny Carlsson, a 

Mecel employee. This prototype is activated and controlled using two servo motors as shown 

in Figure 17, which is shown in the figure below. It has three potentiometer sensors that detect 

the position of the front wheels and send it to the FUSS application via the Velleman Board.  

 

 

Velleman Board 

Shown in Figure 19, is a Velleman USB interface Board, which contains five digital inputs 

and two analog inputs with attenuation and amplification options. It has eight digital output 

switches and two analog outputs: one with 0 to 5 V and the other with PWM as output [15]. 

This board is used to detect the values of the potentiometer sensors that are located on the 

front wheel prototype. It will quantize or digitize the continuous analog signal that comes 

from the wheel sensors (potentiometer sensors) and give those discrete values to the FUSS 

application.  

Figure 18: Front Wheel Rack / Prototype 
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Infineon TriBoard 

The Infineon TriBoard, as shown in Figure 20, has a 32 - bit architecture with 180 MHz CPU 

clock frequency and 4MB of embedded program on-chip memory along with 4 kB of data 

cache and 16 kB of instruction cache [16]. In this project this board is part of the Steery sub-

system hardware. In other words, the Steery application will run on the TriBoard, which 

receives an input steering angle through one of the CAN interface. This input is converted 

into a timing sequence to generate the PWM signal using internal clock on the board. This 

generated PWM is then fed back to the servo motors that move the front wheels accordingly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CAN / LIN / Flexray 
Figure 19: K8055 Interface Board – Velleman 

Source: http://www.velleman.eu/distributor/products/view/?country=be&lang=en&id=351346 

 

Figure 20: Starter Kit TC 1797 TriBoard 
Source: http://www.infineon.com/cms/en/product/microcontrollers/ 



 

69 

 

USB to CAN converter 

In common, since CAN interfaces are not available in laptops, a Kvaser Leaf Professional 

CAN to USB adapter, as in Figure 21, is used to communicate with CAN bus via USB 

connection. The speed of this CAN bus ranges from 5 Kbps to 1 Mbps. Kvaser delivers all 

essential drivers and CAN library SDK for creating specific applications [17]. In this project 

the FUSS application and the Steery model were connected using this Kvaser Leaf 

Professional USB-to-CAN converter. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 21: Kvaser Leaf Professional USB to CAN converter 
Source:http://www.kvaser.com/index.php?option=com_php&Itemid=258&eaninput=7330130002432 

 


