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Sweden
Telephone: +46 (0)31-772 1000

Cover:
Volvo V40 trim body with front and rear subframes.

Chalmers Reproservice
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Abstract

Nowadays in engineering problems the use of finite element models is a common rule and the use of analysis
tools in predicting the dynamic behavior of a structure is a common practice. Specifically, in the automotive
industry the level of details included in a full model has been increased constantly followed by the need for
higher computational power capable in order to handle such huge models and to keep the simulation time on
a reasonable level. To fight this trend many di↵erent techniques exist in order to fill the need for detailed
dynamic analysis and short analysis time.

In this thesis the Dynamic Substructuring (DS) approach will be proposed with a focus on noise and vi-
bration analysis within the automotive engineering field. Dynamic subtracting is based on the principle
of dividing our large model in smaller subsystems, easier to study and analyze. Then the total structure
dynamics is calculated assembling all the small components dynamics. Since this topic is very broad, the
thesis will focus on one theory of Component Mode Synthesys (CMS), one of the many techniques within the DS.

The thesis in divided into three main parts: firstly, the theory behind the DS is covered. From the analysis of
linear dynamic systems to the two CMS reduction methods (Craig-Bampton and Craig-Cang methods) that
are compared in the next parts. Secondly a dynamic substructuring analysis is performed on a simple model,
where both reduction methods are applied and compared. Finally a deeper analysis of a real passenger car, in
this case a Volvo V40, is carried out. The influence of the reduction basis, of connections type on the response
accuracy and simulation time are studied.

From the results obtained it is possible to asses the powerfulness of the Dynamic Substructuring approach. The
reduction method that performed better is the Craig-Chang method when modes are retained up to one time
and a half (1.5) the maximum frequency response studied. For this method the error between the response of
the full model and the response of the CMS model was less than 5%. Moreover no particular influence of the
connection, bolt or bushings, have been found in choosing one or the other method. Finally the simulation
time has been reduced by 1/3 if comparing the the response of the full model using a modal approach and the
the response of the CMS model.

Keywords: Dynamic Substructuring, Component Mode Syntesis, Craig-Bampton, Craig-Chang.
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1
Introduction

I
n complete vehicle noise and vibration (NVH) analysis modal sub-structuring or
Component Mode Synthesis is commonly used at Volvo Cars. The benefit of using
modal sub-structuring is to reduce the number of degrees of freedom for a complete
vehicle FE-model and by doing that to reduce the analysis time.

1.1 Purpose

Dealing with a complete vehicle FEM model requires high computational power and
time, since a full model usually is made up of millions of degrees-of-freedom. The thesis
that will be presented focuses on Component Mode Synthesis, a modal sub-structuring
technique aimed to reduce the full set of DoF into a smaller one and in doing that to
reduce the simulation time and the computational power required. Two CMS methods
(Craig-Bampton and Craig-Chang) will be applied to the V40 trim-body, front and rear
subframes. The influence of reduction basis, connections type with respect the two
methods will be investigate to find criteria when di↵erent techniques should be used.

1.2 Approach

First of all the theory behind the vibration of dynamic system, the sub-structuring
dynamics (DS) approach and the component mode synthesis (CMS) methods will be
covered in order to have a theoretical background. Then a very simple system will be
analyzed. The e↵ect of modes truncation will be studied, then a comparison between
the two methods and the influence of di↵erent connections will be performed. Finally a
deeper analysis of a full trim vehicle body with front and rear subframes will be carried
out.
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2
Theory Background

I
n this chapter the theory behind the thesis will be covered. The first part con-
cerns vibrations in linear dynamic systems. After a general introduction, the
basic properties will be explained starting with the simplest linear dynamic sys-
tem,the mass-damper-spring system with 1-DoF. The free and forced response for

damped/undamped system will be examined. The same analysis will be performed for
the most general case of n-DoF.

In the second part the Dynamic Substructuring will be introduced. The basic idea
behind the sub structuring technique will be highlighted with a focus on the component
mode synthesis (CMS). Two reduction methods will be examined: the Craig-Bampton
method and the Craig-Chang method. For each method the type of modes used in the
reduction will be discussed and it will be shown how to calculate the transformation
matrix for both methods. Finally a comparison between the two methods will be carried
out and di↵erences and similarities will be discussed.
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Vibration Theory

The vibration phenomenon is usually related to oscillations in mechanical dynamic sys-
tems. Vibratory systems comprises elements for storing potential energy (spring), ele-
ments for storing kinetic energy (mass) and elements that can dissipate energy (damper).
The chapter consider only lumped elements, hence ideal elements and rigid bodies (no
deformations occur) are considered. Vibrations occur any time there is an alternating
transfer of kinetic energy into potential energy and viceversa. In damped systems a
part of the energy is dissipated and then an external force must be applied in order to
have a steady vibration. Mainly two type of vibrations exist: free and forced vibrations.
Free vibration occurs when a mechanical system is displayed from its equilibrium point
and allowed to vibrate freely. This system will vibrate at one or more of its natural
frequencies. Forced vibrations occurs when a time-variant force, also called disturbance,
is applied to a mechanical system. The force can be periodic, steady-state, transient
or random. If we consider a linear dynamic system excited by a steady-state harmonic
force, it will vibrate at the same frequency of the applied force but the amplitude of the
response depend on the system characteristics.

2.1 1-DoF System

A dynamic system can be described as a system with a mass m, a spring with a sti↵ness
k and a damper with a damping coe�cient c, figure 2.1.

Figure 2.1: 1-DoF mass-spring-damper sys-
tem.

The spring is considered to have no
mass, the mass is a rigid body and for the
damper we consider a viscous damping,
proportional to the velocity of its connec-
tion point. This system can move just in
one direction and for this reason usually it
is called single degree-of-freedom system.

F (t) = mẍ(t) (2.1)

3



2.1. 1-DoF System 2. THEORY BACKGROUND

F (t) = kx(t) (2.2)

F (t) = cẋ(t) (2.3)

Then, considering the resultant of all the forces acting on the system shown in figure
2.1, it is possible to derive the linear dynamic equation 2.4 representing the evolution
over time, since the state x and its derivative are functions of time.

mẍ(t) + cẋ(t) + kx(t) = F (t) (2.4)

As stated previously, this system can experience free vibration if the mass is displaced
from its equilibrium point or forced vibration if the mass is excited by an external force.
Next it will be discussed free and force vibration for an undamped and damped system.

2.1.1 Free Respone

Undamped System

Starting with the simplest system consisting of a mass constrained to a rigid support by
means of a spring, figure 2.2.

Figure 2.2: 1-DoF mass-spring system

The equation 2.4 can be simplified,
taking into account the absence of the
damper and the external force, leading to
the equation 2.5, where the force extorted
by the mass is balanced by the force ap-
plied by the spring.

mẍ+ kx = 0 (2.5)

The solution for the di↵erential equa-
tion 2.5 is:

x(t) = Acos

r
k

m
t+Bsin

r
k

m
t (2.6)

where wn =
p
k/m is the the natural frequency and the term A and B are defined from

the initial conditions of the system. Indeed A is equal to the initial mass displacement x0
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2.1. 1-DoF System 2. THEORY BACKGROUND

at time t0, while B is equal to the initial mass speed divided per the natural frequency,
B = ẋ0/wn at time t0. Therefore the motion of the system is a consequence of the
initial conditions. If the system is in the equilibrium point then no motion occurs, i.e.
x0 = 0, ẋ0 = 0.

Figure 2.3: Free evolution, undamped system. (m=100 kg, k=20 Nm, x0 = 0.5 m, ẋ0 = 0.3
m/s, wn = 0.4472 rad/s.

Damped System

Di↵erent type of damping model can be used to describe the damping of a dynamic
system.

Figure 2.4: 1-DoF mass-spring-damper system

In this case it has been used a viscous
damping, i.e. proportional to the veloc-
ity, to show the e↵ect of the damping in a
free-evolution motion. The equation 2.4 in
absence of external force become simply:

mẍ(t) + cẋ(t) + kx(t) = 0 (2.7)

An important parameter for a damped
system is the critical damping coe�cient
cc:

cc = 2
p
km (2.8)

The ratio ⇣ = c/cc between the actual damping and the critical is called damping
ratio or damping factor. Depending on the value of ⇣ the equation of motion of the
free-evolution of a damped system varies.
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2.1. 1-DoF System 2. THEORY BACKGROUND

Less-than-critical Damping. If the actual damping of the system is less than the
critical, i.e. ⇣ < 1, then the solution of the equation 2.7 is:

x(t) = e�ct/2m(Asin!dt+Bcos!dt) (2.9)

where !d is called damped natural frequency and is linked to the undamped natural
frequency by the equation 2.10.

!d = !n(1� ⇣2)1/2 (2.10)

Critical Damping. If the actual damping of the system is equal to the critical, i.e.
c = cc, no oscillations occur in the response and the solution of the equation of motion
2.7 is:

x(t) = e�ct/2m(A+Bt) (2.11)

Greater-than-critical Damping. If the actual damping is greater than the critical,
i.e. ⇣ > 1, then the solution of the equation of motion 2.7 is:

x(t) = e�ct/2m(Ae!n
p
z2�1t +Be�!n

p
z2�1t) (2.12)

Figure 2.5: Free evolution, damped system. (m=100 kg, k=20 Nm, c=10 m/s, x0 = 0.5
m, ẋ0 = 0.3 m/s, wn = 0.4472 rad/s, ⇣ = 0.11 (less-than-critical).
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2.1. 1-DoF System 2. THEORY BACKGROUND

2.1.2 Forced Response

Undamped System

Considering a harmonic force, F = F0cos(w0t), the equation 2.4 can be simplified in the
following:

Figure 2.6: 1-DoF mass-spring system, with
external force.

mẍ+ kx = F0cos(w0t) (2.13)

The solution of this equation is made
up of a transient solution, the same
as the free response, plus a steady-
steady oscillation at the forcing frequency
!0.

x(t) = X0 +Xp = (Acos!nt+Bsin!nt) +
F0(cos!0t� cos!nt)

m(!2
n � !2

0)
(2.14)

Figure 2.7: Forced evolution, undamped system. (m=100 kg, k=20 Nm, x0 = 0.5 m,
ẋ0 = 0.3 m/s, wn = 0.4472 rad/s, F=100cost(2t).

7



2.1. 1-DoF System 2. THEORY BACKGROUND

Damped System

Finally including the viscous damping the general equation stated at the beginning of the
chapter, equation 2.4, will be analyzed. In this case, figure 2.1, the solution is described
by a transient term and a steady-state term as descried in equation

x = X0 +Xp (2.15)

The terms X0 is exactly the same solution of homogeneous equation 2.7 that depends
on the damping factor. The particular solution Xp is the solution of the full non-
homogeneous equation and then represent the response od the system due to the external
force.

Xp =
F0

(k �m!2
0)

2 + c2!2
0)
(k �m!2

0)cos(!0t) + c!0sin(!0t) (2.16)

Figure 2.8: Forced evolution, undamped system. (m=100 kg, k=20 Nm, cc = 10 m/s,
x0 = 0.5 m, ẋ0 = 0.3 m/s, ⇣ = 0.11, wn = 0.4472 rad/s, F = 100cost(2t)).

Transfer function

Since the transient response decay after a while, it assumes a particular importance the
steady-state amplitude of the response due to a unit harmonic excitation. In this sense
it is possible to plot this factor as a function of the excitation frequency. This is called
frequency response function or steady-state amplification factor or transfer function in
most of the cases.

8



2.2. Modal Analysis Method 2. THEORY BACKGROUND

H(!) =
F (!)

X(!)
(2.17)

Considering the system shown in figure 2.6, made of a mass and a spring excited by
a harmonic force and recalling equation 2.14, it is possible to derive the amplification
factor:

H(!) =
1

m(!2
n � !2)

(2.18)

Figure 2.9: Magnitude and phase. (m=100 kg, k=20 Nm, wn = 0.4472 rad/s.

It possible to notice that at ! = 0 ! H(!) = 1/k, for ! = 1 ! H(!) = 0. At
! = !n a particular behavior occurs, the response is amplified and this phenomenon is
called resonance.

2.2 Modal Analysis Method

In the previous chapter the solution of the dynamics of the single DoF system has been
derived analytically, i.e. solving directly the di↵erential equation of motion and in doing
so no particular e↵ort has been put into. When dealing with multi DoF systems solving
the set of equations analytically and directly can require high computational power and
time. For this reason lots of powerful methods exist to derive the dynamics in a more
e�cient way. One of those methods is the Modal Analysis Method. This method is based
on the superposition principle, i.e. the response of a n-DoF system can be decomposed
into n modal responses, each of them representing a single DoF system.
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2.3. Eigenvalue problem 2. THEORY BACKGROUND

Recalling the equation of motion of a multi DoF system, equation 2.19, where [M] is the
mass matrix, [C] is the damping matrix, [K] is the sti↵ness matrix and {x} is the set of
nodal or physical DoF.

[M ]{ẍ}+ [C]{ẋ}+ [K]{x} = {F} (2.19)

Equation 2.21 is the modal equation of motion, where [M̄ ] is the modal mass matrix,
[C̄] is the modal damping matrix, [K̄] is the modal sti↵ness matrix and {q} is the set of
modal DoF.

[M̄ ]{q̈}+ [C̄]{q̇}+ [K̄]{q} = {F̄} (2.20)

As stated at the beginning the physical set of DoF can be expressed as a superposition
of modal contributions:

{u(t)} =
NX

i=1

[�n]i{q(t)}i (2.21)

where N is the total number of DoF, [�n] is the natural modes matrix of vibration of
the multi-DoF system.

2.3 Eigenvalue problem

In order to perform the modal analysis, as stated previously, is necessary to calculate
natural frequencies and vibration modes of the system we want to analyze. Starting, for
simplicity, from the EOM of the free undamped system:

[M ]{ẍ}+ [K]{x} = 0 (2.22)

Considering the physical response as a linear combination of modes and modal response:

{u(t)} = [�n]{q(t)} (2.23)

and assuming the modal response to be a harmonic function of the type:

{q(t)} = Acos!nt+Bsin!nt (2.24)

It is possible to combine equation 2.23 and 2.24, so that:

{u(t)} = [�n](Acos!nt+Bsin!nt) (2.25)

10



2.4. n-DoF System 2. THEORY BACKGROUND

imposing {�} = {!2
n} and substituting this equation into the EOM 2.22 gives:

([K]� �[M ])�n = 0 (2.26)

The equation 2.25 represent our Eigenvalue Problem and the solution is a set of of eigen-
values {�} and eigenvectors [�n].

From the eigenvalues is possible to derive a diagonal matrix of natural frequencies, since
{�} = {!2

n}:

[!2
n] =

2

664

!2
1 · · · 0
...

. . .
...

0 · · · !2
N

3

775 (2.27)

The eigenvectors [�n] are the modes of vibrations and they can be represent in a modal
matrix:

[�n] =

2

666664

�11 �12 · · · �1r
...

... · · ·
...

...
... · · ·

...

�N1 �N2 · · · �Nr

3

777775
(2.28)

where each column or eigenvector represent a vibration mode.

2.4 n-DoF System

Increasing the level of complexity of a linear dynamic system the 2-DoF system can
be used to gain a better understanding about vibrations modes, natural frequencies,
transfer function and other important properties related to a dynamic system.

Figure 2.10: 2-DoF mass-spring system, with
external force.

For simplicity in this section only mass-
spring systems excited by a harmonic force
will be considered and the excitation fre-
quency is considered the same for both
masses.

Physical representation. In figure
2.10 is shown a 2-DoF system, made of
series of masses and elastic elements or
springs. This configuration is called fixed-
free since at one end the system is fixed to

11



2.4. n-DoF System 2. THEORY BACKGROUND

a rigid support, while the other end is free to move. Each mass has just one DoF, i.e. it
can move only horizontally. It is clear that the dynamic of each mass is influenced by the
dynamic of the other mass and this lead to a n EOM coupled to each other, equation 2.29

8
>>>>><

>>>>>:

m1ẍ1(t) + (k1 + k2)x1(t)� k2x2(t) = F1cos!(t)

m2ẍ2(t)� k2x1(t) + (k2 + k3)x2(t) = F2cos!(t)
...

mnẍn(t)� knxn�1(t) + knxn(t) = Fncos!(t)

(2.29)

This system of equations can be rewritten in a matrix form, shown by equation 2.19,
into equation 2.30.

2

666664

m1 0 · · · 0

0 m2 · · · 0
...

...
. . .

...

0 0 · · · mn

3

777775
·

8
>>>>><

>>>>>:

ẍ1

ẍ2
...

ẍn

9
>>>>>=

>>>>>;

+

2

666664

(k1 + k2) �k2 · · · 0

�k2 (k2 + k3) · · · 0
...

...
. . . �kn

0 0 �kn kn

3

777775
·

8
>>>>><

>>>>>:

x1

x2
...

xn

9
>>>>>=

>>>>>;

=

8
>>>>><

>>>>>:

F1cos!(t)

F2cos!(t)
...

Fncos!(t)

9
>>>>>=

>>>>>;

(2.30)

It can be seen that the sti↵ness matrix [K] is not diagonal and this derive from the fact
that the dynamic of mass 1 is influencing and is influenced by the dynamics of mass
2 and the other way around. In order to obtain also a diagonal sti↵ness matrix the
modal analysis can be applied, solving first the eigen-problem and deriving the modes
and natural frequencies, apply the transformation from the physical representation into
the modal, solving each single-DoF system and then retrieving the physical solution from
the modal using the superposition principle.

Eigen-Problem. It is possible to calculate natural frequencies and the modes matrix
solving the equation ([K] � �[M ])�n = 0. Natural frequencies and natural modes will
be computed:

[!2
n] =

2

666664

!2
1 0 · · · 0

0 !2
2 · · · 0

...
...

. . .
...

0 0 0 !2
n

3

777775
(2.31)

And the modes matrix is:

12



2.4. n-DoF System 2. THEORY BACKGROUND

[�n] =

2

666664

8
>>>>><

>>>>>:

�11

�21
...

�n1

9
>>>>>=

>>>>>;

8
>>>>><

>>>>>:

�12

�22
...

�n2

9
>>>>>=

>>>>>;

· · ·

8
>>>>><

>>>>>:

�1n

�2n
...

�nn

9
>>>>>=

>>>>>;

3

777775
(2.32)

Modal representation. In order to transform the equation 2.19 into the equation
2.21 it is necessary to apply the following transformation:

8
>><

>>:

[M̄ ] = [�n]T [M ][�n]

[K̄] = [�n]T [K][�n]

[F̄ ] = [�n]T [F ]

(2.33)

Equation 2.30 is transformed into:

2

666664

m̄1 0 · · · 0

0 m̄2 · · · 0
...

...
. . .

...

0 0 · · · m̄n

3

777775
·

8
>>>>><

>>>>>:

q̈1

q̈2
...

q̈n

9
>>>>>=

>>>>>;

+

2

666664

k̄1 0 · · · 0

0 k̄2 · · · 0
...

...
. . .

...

0 0 · · · k̄n

3

777775
·

8
>>>>><

>>>>>:

q1

q2
...

qn

9
>>>>>=

>>>>>;

=

8
>>>>><

>>>>>:

F̄1cos!(t)

F̄2cos!(t)
...

F̄ncos!(t)

9
>>>>>=

>>>>>;

(2.34)

where both the mass matrix and the sti↵ness matrix are diagonal, i.e. the system is
made up of n uncoupled equations that can be solved separately.

Superposition principle. It is possible to calculate the n modal displacements by
solving the equations 2.34. Again the solution means of two parts: a transient part due
to initial conditions and a steady-state solution due to the external force, q = q0 + qp:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

q1 = (A1cos!n1t+B1sin!n1t) +
F̄1(cos!t� cos!n1t)

m̄1(!2
n1

� !2)

q2 = (A2cos!n2t+B2sin!n2t) +
F̄2(cos!t� cos!n2t)

m̄2(!2
n2

� !2)
...

qN = (Ancos!nN t+Bnsin!nN t) +
F̄N (cos!t� cos!nN t)

m̄N (!2
nN

� !2)

(2.35)

where A1, A2, B1 ,B2 are constants related to the initial conditions of each mass. Ap-
plying the superposition principle expressed in equation 2.21 it is possible to calculate
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2.4. n-DoF System 2. THEORY BACKGROUND

the physical displacement, using the modes matrix, as shown in equation 2.36.

8
>>>>><

>>>>>:

x1 = ⌘11st + ⌘12nd = �11q1 + �12q2 + · · ·+ �1nqn

x2 = ⌘21st + ⌘22nd = �21q1 + �22q2 + · · ·+ �2nqn
...

xN = ⌘n1st + ⌘n2nd = �n1q1 + �n2q2 + · · ·+ �nnqn

(2.36)

where ⌘1st is the displacement due to the first mode and ⌘2nd id the displacement due
to the second mode.

Initial conditions. In order to calculate the constants A1, A2 ..., B1 ,B2 ... that
depend on the physical initial condition of our system, it is necessary to follow some steps.
First the physical initial conditions have to be transformed into a modal initial conditions.
Assuming X0 and V0 respectively the physical initial displacement and velocity vectors:

(
X0 = {x01 , x02 , · · · , x0n}
V0 = {ẋ01 , ẋ02 , · · · , ẋ0n}

(2.37)

where x0 is respectively the initial displacement of the mass, while ẋ0 is the initial
velocity of the mass. Second it is necessary to apply a transformation from the physical
domani to the modal:

(
X̄0 = [�n]

T [M ]X0 = {x̄01 , x̄02 , · · · , x̄0n}
V̄0 = [�n]

T [M ]V0 = {¯̇x01 ,¯̇x02 , · · · , ¯̇x0n}
(2.38)

where X̄0 and V̄0 are respectively the initial modal displacement and velocity. Finally it
is possible to calculate the constants as shown:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

A1 = x̄01

A2 = x̄02
...

An = x̄0n

B1 = ¯̇x01/!n1

B2 = ¯̇x02/!n2

...

Bn = ¯̇x0n/!nn

(2.39)
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Dynamic Substructuring Theory

D
ynamic Substructuring (DS) is based on the principle of dividing a struc-
ture into smaller sub-structures. Evaluate the dynamic behavior for each sub-
structure and then assemble all those substructure to compute the dynamics
of the initial structure. It is possible to study each substructure in the time

domain using a physical or a modal representation, or it is possible to study the dynamic
behavior in the frequency domain using a frequency response function (FRF). Moreover
there are di↵erent possibilities to assemble the substructures, using a primal assembly
where the substructures are assembled using the interface displacements i.e. the two
substructure must have the same set of interface DoF. Or a dual approach that uses the
interface forces, i.e. the connection forces on both sides of the interface have to be in
equilibrium. Figure fig 2.11 resumes what it has been said until now.

Figure 2.11: Dynamic dynamic representations (time and frequency domain) and their
possible assembly methods. [1]
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2.5. Component Mode Synthesis 2. THEORY BACKGROUND

The Dynamic Substructuring approach has sereval advantages:

- It allows to study structures with a high number of DoF. In our case a full vehicle
model can contain about 40 millions of DoF. With this approach it is easier to study
such a very detailed model.
- FEM components and experimental data can be combined in order to study the dy-
namic of the whole structure.
- It allows model simplification since it is possible to get rid of those subsystems that
don’t contribute on the total dynamic behavior and moreover local dynamic behavior
and its influence on the gobal behavior can be determined easily.
- Using reduction techniques within the substructuring approach allows to reduce the
total number of DoF and then reducing the simulation time drastically, moreover a re-
duced system needs less computational power and it is easier to be handled.

2.5 Component Mode Synthesis

This chapter focuses on the Component Mode Synthesis that uses modes to represent the
dynamic behavior of the system. In the time domain the CMS approach uses a certain
type of modes to derive the dynamic behavior of the system by dissecting the system
into small sub-system and analyzed the dynamics of each sub-system and then try to
deduce the behavior of the complete structure from this information. CMS it is very
e�cient for large eigenvalue problems when just few modes are retained from the full set.

Two methods will be discussed: The Craig-Bampton and the Craig-Chang method.
The Craig-Bampton uses fixed-interface and constraint modes, while Craig-Chang uses
free-interface, rigid body and residual attachment modes. The next section will try to
explain the modes used for each method, how to calculate those modes, how to compute
the reduction matrix and how to reduce the original system. Finally di↵erences between
the two methods will be discussed.

2.6 The Craig-Bampton Method

The first method it will be discussed is the Craig-Bampton method. This reduction
method includes two type of modes in the reduction basis: the fixed-vibrations modes
and the constraints modes.

2.6.1 Fixed-Interface vibration modes.

These modes contain vibrational informations of the structure kept fixed at its bound-
ary DoF. In order to calculate these modes it’s necessary to partition the system into
boundary DoF (xb) and internal DoF (xi).
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2.6. The Craig-Bampton Method 2. THEORY BACKGROUND

"
[Mii] [Mib]

[Mbi] [Mbb]

#
·
(
ẍi

ẍb

)
+

"
[Kii] [Kib]

[Kbi] [Kbb]

#
·
(
xi

xb

)
=

(
[Fi]

[Fb]

)
(2.40)

Then it is necessary to constrain the boundary DoF, i.e. ({xb} = 0),

[Mii]{ẍii}+ [Kii]{xii} = 0 (2.41)

And finally solving the eigenvalue problem, described previously by equation 2.26,
but related to the internal constrained DoF:

([Kii]� !2
i [Mii]){�i} = 0 (2.42)

The result are the eigenmodes and eigenfrequencies of the system constrained at its
boundary DoF. The full matrix of eigenmodes [�i] = [{�i1}{�i2} . . . {�in}] represents
the fixed-interface vibration modes.

2.6.2 Constraint Modes.

These modes are the static deformation due to a unit displacement applied to one of
the boundary DoF, while the others boundary DoF are restrained and no forces are
applied to the internal DoF. Thus, the constraint modes are nothing else than the static
response of the structure resulting from a unit deflection imposed at the interface DoF.
To calculate the constraint modes it is necessary again to divide the DoF in internal
and boundary as shown in equation 2.40. Expanding the first equation in 2.40 and
considering no forces applied at the internal DoF, i.e. [Fi] = 0, then:

[Mii]{ẍi}+ [Mib]{ẍb}+ [Kii]{xi}+ [Kib]{xb} = 0 (2.43)

Since the static response has to be calculated, it is possible to neglect the inertia forces
and than the remaining terms can be rearranged in:

{xistat} = �[Kii]
�1[Kib]{xb} (2.44)

where the term�[Kii]�1[Kib] is the static modes matrix. Finally it is possible to write the
constraint modes matrix considering that the original set of DoF {x} has been divided
into internal and external:

"
{xi}
{xb}

#
= [�C ]{xb} =

"
[�[Kii]�1[Kib]

[I]

#
{xb} (2.45)

where [�C ] are the constraint modes matrix.
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2.7. The Craig-Chang Method 2. THEORY BACKGROUND

2.6.3 Reduction Matrix.

Once the free interface modes [�i] and the constraint modes [�C ] have been calculated,
it is possible to compute the reduction matrix [R]CB in order to reduce the structure.
Recalling equation equation 2.40, where the DoF have splitted in internal and external
DoF and considering that now the internal DoF are described in terms of fixed-interface
modes [�i] and constraint modes [�C ]:

{xi} = [�i]{⌘i}+ [�C ]{xb} (2.46)

and the reduction basis in matrix form will be:

"
{xi}
{xb}

#
=

"
[�i]{⌘i}+ [�C ]{xb}

{xb}

#
=

"
[�i] [�C ]

0 [I]

#"
{⌘i}
{xb}

#
= [R]CB

"
{⌘i}
{xb}

#
(2.47)

Using the reduction matrix [R]CB it is possible to reduce the original mass and
sti↵ness matrices:

8
<

:
[M̃ ]CB = [R]TCB[M ][R]CB

[K̃]CB = [R]TCB[K][R]CB

(2.48)

2.7 The Craig-Chang Method

The reduction basis is made of free-interface modes, i.e. the component is considered un-
constrained at its interface DoF, rigid-body modes and residual inertia relief attachment
modes.

2.7.1 Free-Interface vibration modes.

These vibration modes are simply the structure modes if the boundary or interface DoF
are unconstrained. They can be computed by solving the eigen-problem for the full mass
and sti↵ness matrix as mentioned early in this chapter. Recalling the equation 2.26:

([K]� !2
f [M ]){�f} = 0 (2.49)

where, {�f} is the free vibration mode linked to its eigenfrequency !2
f . Thus these

modes contains the full vibration content of the system and since now it will be used the
notation [�f ] to relate to the free-interface modes set.
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2.7. The Craig-Chang Method 2. THEORY BACKGROUND

2.7.2 Rigid-Body modes.

These modes can be considered a special type of free-interface vibration modes. They
are the vibration modes of the structure if it would not be fully constrained and then
it can displace without deformations, i.e. as a rigid body. Since the eigenfrequencies
associated to these modes are zero, recalling equation 2.49 and setting !2

f = 0, then it
is possible to derive:

[K][�r] = 0 (2.50)

where [�r] represent the set of rigid body modes.

2.7.3 Residual Inertia Relief Attachment modes.

[�am] = [G]am[F ] (2.51)

2.7.4 Reduction Matrix.

Finally the physical set of DoF can be calculated as the sum of the three di↵erent
contributions of free, rigid and attachment modes as shown by equation 2.52.

{xi} = [�f ]{⌘f}+ [�r]{⌘r}+ [�am]{⌘am} (2.52)

Putting together all the sets of modes it is possible to compute the reduction matrix
[R]CC for the Craig-Chang method.

{xi} =
h
[�f ] [�r] [�am]

i
2

664

{⌘f}
{⌘r}
{⌘am}

3

775 = [R]CC

2

664

{⌘f}
{⌘r}
{⌘am}

3

775 (2.53)

Using the reduction matrix [R]CC it is possible to reduce the original mass and sti↵ness
matrices:

8
<

:
[M̃ ]CC = [R]TCC [M ][R]CC

[K̃]CC = [R]TCC [K][R]CC

(2.54)
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2.8. Di↵erences between methods 2. THEORY BACKGROUND

2.8 Di↵erences between methods

The main di↵erence between the Craig-Bampton method and the Craig-Chang is that the
Craig-Bampton is a fixed-interface method while the Craig-Chang uses a free-interface
condition. So in choosing one method rather than the other the interface condition of
the component has to be analyzed. If the fixed condition more represents the real con-
dition then the Craig-Bampton should be used, if the free condition more represents the
interface condition then the Craig-Chang method should be used.

In the Craig-Bampton method if the interface changes, for example di↵erent number
of connections or di↵erent number of interface DoF keeping the same interface points,
than all the reduction basis has to be calculated again. Indeed both fixed-modes and
contraint-modes are directly linked to the interface configuration. In the Craig-Chang
free-modes and rigid-modes are not dependent from the interface configuration, only the
residual attachment modes have to be recomputed.

In Craig-Bampton fixed-modes and constraint-mode are very easy to compute and more-
over the original interface DoF are retained and it is easy to assembly the reduced sub-
structure. In Craig-Chang the residual attachment modes require intensive calculation
compared to the constraint modes. But an advantage to use residual attachment modes
is that they may improve convergence and they account for the elasticity of the deleted
free modes.
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3
First Study Case

I
n this first study case the reduction methods discussed in chapter 2 will be applied
to a very simple structure. This model is made of a box, relatively more flexible, a
frame and a rigid element that simulate the sti↵ness of a very sti↵ subsystem (for
example the and engine case).The purpose of this study is to:

• study the e↵ect of the modal truncation;

• compare Craig-Bampton and Craig-Chaing methods;

• study the influence of the connection type;

• compare the solution time for unreduced and reduced system.

Figure 3.1: Frame-Box system, FEM model.
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3.1. Simulation set-up: 3. FIRST STUDY CASE

Table 3.1: Material Properties.

Properties Symbol Value

Density ⇢ 2700 [kg/m3]

Modulus of elasticity E 69 [GPa]

Poisson Coe↵ ⌫ 0.3

Material Damping ⌘ 0.06

Thickness t 0.5 mm

The finite element model has been created in HyperWorks and has 114000 degree
of freedom, figure 3.1. There are four connections between the box and the frame and
three connections between the frame and the rigid element. Both frame and box have
the same material properties and also the thickness is the same, as shown in table 3.1.

3.1 Simulation set-up:

Usually in NVH problems we are interested in frequencies up to 300-350 Hz, but for this
specific case, since this system is very sti↵ it has been necessary to study the dynamic
behavior up to 1000 Hz in order to include some flexible modes. As shown figure 3.2 it
has been applied a load in the rigid element that simulate the engine and the response
has been taken at the centre of the bottom face of the box. In this way the excitation
has to travel through all the components and all the connections, so that it is possible
to see the e↵ect of both reduction type and connection type.

Figure 3.2: Load and Response points.
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3.2. Method. 3. FIRST STUDY CASE

3.2 Method.

Reduction basis comparison: Firstly, the e↵ect of including a di↵erent number of
modes will be carried out. Considering that the solution is up to 1000 Hz, di↵erent cases
will be studied that include a di↵erent number of modes considering di↵erent cut-o↵
frequency for the reduction (modes up to 500Hz, up to 1000Hz, up to 1500Hz and so
on), as shown in table 3.2. For this first analysis the connections have been considered
rigid.

Table 3.2: Comparison between di↵erent reduction basis for a specific reduction method.

Method Cut-o↵ Hz Total DoF

Full model - 114 000

Craig-Bampton

500 Hz 120

1500 Hz 214

2000 Hz 279

3000 Hz 433

5000 Hz 736

Craig-Chang

500 Hz 196

1500 Hz 301

3000 Hz 526

5000 Hz 834

Craig-Bampton and Craig-Chang comparison: Once the best reduction basis will
be found out, a comparison between Craig-Bampton and Craig-Chang will be performed.
Again, the connection are kept rigid.

Table 3.3: Comparison between di↵erent reduction methods.

Method Cut-o↵ Hz Total DoF

Full model - 114 000

Craig-Bampton 3000 Hz 433

Craig-Chang 3000 Hz 526
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3.2. Method. 3. FIRST STUDY CASE

Connections comparison: Finally the influence of connections, soft and hard bush-
ings, will be examined in order to understand if the connections a↵ect the choice of the
reduction method.

Table 3.4: Comparison between di↵erent connection types (rigid-bushing).

Connection Type Method Cut-o↵ Hz Total DoF

Bushing (K=200 Nmm, G=0.1)
Full model - 114 000

Craig-Bampton 3000 Hz 433

Craig-Chang 3000 Hz 526

Bushing (K=2 Nmm, G=0.1)
Full model - 114 000

Craig-Bampton 3000 Hz 433

Craig-Chang 3000 Hz 526

Solution and reduction time comparison: The reduction time for di↵erent reduc-
tion basis and methods will be compared. Moreover the solution time for the reduced
models will be compared with respect the full model. It will be taken into account also
the solution method, direct or modal.

Table 3.5: Reduction basis, number of DoF, solution method for di↵erent reduction meth-
ods.

Method Modes up to (Hz) Total DoF Solution Method

Full model (Direct) - 114000 direct

Full model (Modal) 1500 Hz 114000 modal

Craig-Bampton 1500 Hz 214 modal

Craig-Bampton 3000 Hz 433 modal

Craig-Chang 1500 Hz 301 modal

Craig-Chang 3000 Hz 526 modal
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3.3. Results. 3. FIRST STUDY CASE

3.3 Results.

Reduction basis comparison: In the first graph in figure 3.3 has been plotted the
direct response for the full model with FE components (back line) and the modal response
for the model reduced with Craig-Bampton considering di↵erent reduction basis, i.e.
keeping modes up to 500Hz, 1500Hz, 2000Hz, 3000Hz and 5000Hz for each subsystem.
In the second graph in figure 3.3 the response has been discretized into 1/3 octave bands
and the error between the full model solution and the reduced ones has been plotted.
The error has been calculated only for the most significant curves.

Figure 3.3: Response and Error for Craig-Bampton method.
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3.3. Results. 3. FIRST STUDY CASE

In the first graph in figure 3.4 has been plotted the direct response of the full model
and the modal response for the model reduced with the Craig-Chang method with dif-
ferent reduction basis, i.e. keeping modes up to 500Hz, 1500Hz, 3000Hz and 5000Hz for
each subsystem. In the second graph in figure 3.4 again the response has been discretized
into 1/3 octave bands and the error between the full model solution and the reduced
ones has been plotted.

Figure 3.4: Response and Error for Craig-Chang method.
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3.3. Results. 3. FIRST STUDY CASE

Craig-Bampton and Craig-Chang comparison: For this analysis it has been cho-
sen the same reduction basis for both reduction methods, i.e. it has been kept modes
up to 3000Hz. Moreover the subsystems are connected using rigid elements. In the first
graph in figure 3.5 is shown the response for the full model, i.e. the reference response,
and the response for the reduced model with Craig-Bampton and Craig-Chang. In the
second graph in figure 3.5 is shown the error between the reference response and the
response using Craig-Bampton (red boxes) and the error between the reference response
and the response using Craig-Chang as reduction method (green boxes).

Figure 3.5: Craig-Bampton and Craig-Chang comparison, same reduction basis (up to
3000Hz).
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3.3. Results. 3. FIRST STUDY CASE

Connections comparison: For this comparison the reduction basis for both method
as been kept constant, i.e. modes up to 3000Hz has been retained. While it has been
varied the connections sti↵ness, from 200Nmm (first graph in figure 3.6) to 2Nmm (sec-
ond graph in figure 3.6). This represents an extreme case but it has been performed
in order to check if a limit exist in choosing the Craig-Chang method with respect the
Craig-Bampton and the other way around.

Figure 3.6: Craig-Bampton and Craig-Chang comparison, same reduction basis (up to
3000Hz), with di↵erent connections sti↵ness.
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3.3. Results. 3. FIRST STUDY CASE

Solution and reduction time comparison: In table 3.6 are shown reduction times
and solution times for di↵erent method as discussed above. It must be pointed out the
big potential o↵ered by the reduction method in general since it takes just 5-12 seconds
to compute the response with respect 12 minutes for the full model with the modal
method.

Table 3.6: Reduction time, simulation time for di↵erent reduction methods and reduction
basis.

Reduction Method Reduction Time Solution Time Total Time

Full model (Direct) - 136 min 136 min

Full model (Modal) - 12 min 12 min

Craig-Bampton (up to 1500Hz) 14 min 5 sec 14 min 5 sec

Craig-Bampton (up to 3000Hz) 17 min 12 sec 17 min 12 sec

Craig-Chang(up to 1500Hz) 12 min 6 sec 12 min 6 sec

Craig-Chang(up to 3000Hz) 12 min 8 sec 12 min 8 sec
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3.4. Discussions. 3. FIRST STUDY CASE

3.4 Discussions.

At this point it is possible to make some conclusions about what has been done until
now:

• the Craig-Bampton method, with fixed-interface condition, shows the best com-
promise when modes up to 3000Hz are retained for both sub-system;

• the Craig-Chang method, with free-interface condition, shows the best compromise
already when modes up to 1500Hz are retained.

• comparing Craig-Bampton and the Craig-Chang method, with the same reduction
basis, i.e. modes kept up to 3000Hz, than from figure 3.5 it is possible to see that
the Craig-Chang shows better results, even if the last frequency band has an error
higher than the average.

• connections properties have a little influence on the choice of the reduction method,
since from what can be seen in figure 3.6 in all the frequency bands the error is less
than 5%. An exception can be done for the last frequency band (1000Hz) since for
this frequency range, for very low values of the connection sti↵ness, is advisable to
use the Craig-Chang method with free- interface conditions, since the subsystems
behave more free.

Considering the reduction time, the solution time, the solution error with respect the
full model, it is possible to asses that the Craig-Chang reduction performs better than
Craig-Bampton. In these cases it has been necessary to keep modes up to 3 times the
highest response frequency since the sub-systems are quite poor from a vibrational point
of view. It means it is necessary to go very high in frequency in order to find some
flexible modes that contribute in enriching the reduction basis.
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4
Application to the Volvo V40

T
his study case will analyze a real vehicle structure. It has been chosen the
the Volvo V40 full trim body, with its front and rear subframes as show in
figure 4.1. The full finite element model has more than 13 millions of degree of
freedom. The load is applied in the front subframe and the di↵erent response

points are taken, from the front and rear subframes and di↵erent responses of the body.

Figure 4.1: Volvo V40 trim body and subframes, FEM model.

As for the previous study case the purpose of the study is to:

• study the e↵ect of the modal truncation;

• compare Craig-Bampton and Craig-Chaing methods;

• study the influence of the connection type;

• compare the solution time for unreduced and reduced system.
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4.1. Simulation set-up. 4. APPLICATION TO THE VOLVO V40

The front subframe is attached to the body through 4 connections, while the rear
subframe is connected to the body through 6 connections. In the production series
the front subframe is connected to the body through very sti↵ bushings, while the rear
subframe is directly bolted to the body. In our study case, first both subframes will be
considered bolted, i.e. rigidly connected to the body, and di↵erent reduction method
with di↵erent reduction basis will be compared. Then both subframes will be connected
to the body through bushings and di↵erences with respect the previous cases, if any, will
be highlighted.

4.1 Simulation set-up.

The frequency range of interest, as it has been said in the previous chapter, in NVH
matter is up to 300-375 Hz and so the response will be computed just up to 350Hz. As
shown in figure 4.2 it can be seen that a load is applied to the front subframe and the
responses are taken respectively from the front subframe, from the body floor and from
the rear subframe. It has been chosen this configuration because:

• since the load is applied to the front subframes, its dynamic depends barely on the
dynamic of the body;

• the rear subframe dynamic strongly depends on the dynamic of the body.

In this way it is possible to understand the e↵ect of the mutual modal truncation for
the two di↵erent situations, considering also di↵erent type of connections.

Figure 4.2: Load, response points and connections.

From a software side for the simulation has been used Hyperwork and MatLab for the
post-processing. From the hardware side it has been used 10 cpu’s and all the memory
needed for the calculation without any constraints.
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4.2. Method. 4. APPLICATION TO THE VOLVO V40

4.2 Method.

CMS reduced components: The first step was to reduced all the single components
with the two di↵erent reduction methods, i.e. Craig-Bampton and Craig-Chang, consid-
ering di↵erent reduction basis, i.e. modes up to di↵erent frequencies has been calculated.
In figure 4.1 it is possible to see the number of modes relative to di↵erent reduction basis
for the Craig-Bampton method. In figure 4.2 the number of modes are shown for the
Craig-Chang reduction method. It can be noticed that the subframes have few vibration
modes with respect the body, that accounts for the most vibrational content in the full
system.

Table 4.1: Number of modes for Craig-Bampton reduction.

Craig-Bampton Reduction - FIXED-interface condition

Component
Modes up to Modes up to Modes up to

350 Hz 525 Hz 700 Hz

Trim Body 4362 7834 11834

Front Sub. 31 40 46

Rear Sub. 48 54 60

Table 4.2: Number of modes for Craig-Chang reduction.

Craig-Chang Reduction - FREE-interface condition

Component
Modes up to Modes up to Modes up to

350 Hz 525 Hz 700 Hz

Trim Body 4429 7908 11919

Front Sub. 41 48 55

Rear Sub. 59 66 74
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4.2. Method. 4. APPLICATION TO THE VOLVO V40

E↵ect of modal truncation: The aim of this first analysis is to understand which
is the best reduction basis for each reduction method, it means to find out up to which
frequency modes have to be retained in order to satisfy some constraints:

• Error between FEM full model response and CMS model response less than 5%;

• Reduction time as short as possible;

• Solution time as short as possible ;

• CMS file size as smallest as possible.

To calculate the error between the responses, first the continuous response in frequency
domain has been discretized into 1/3 octave bands. For each band the mean value has
been computed and then the percentage error has been calculated between each relative
frequency band between the FEM full model and the CMS model.

In table 4.3 are resumed all the cases for the Craig-Bampton method that have been
studied. In table 4.4 are resumed all the cases for the Craig-Chang and in table 4.5
are resumed all the cases for the Mixed reduction, i.e. some components reduced with
Craig-Bampton and others with Craig-Chang. As aforementioned at the beginning of
the chapter, for this analysis the subframes were considered bolted rigidly to the body.

Table 4.3: Study cases for Craig-Bampton reduction.

Craig-Bampton Study Cases - Modes kept up to Hz.

Component Case 1 Case 2 Case 3 Case 4 Case 5

Trim Body 350 Hz 700 Hz 350 Hz 700 Hz 525 Hz

Front Sub. 350 Hz 350 Hz 700 Hz 700 Hz 525 Hz

Rear Sub. 350 Hz 350 Hz 700 Hz 700 Hz 525 Hz

Table 4.4: Study cases for Craig-Chang reduction.

Craig-Chang Study Cases - Modes kept up to Hz.

Component Case 1 Case 2 Case 3 Case 4 Case 5

Trim Body 350 Hz 700 Hz 350 Hz 700 Hz 525 Hz

Front Sub. 350 Hz 350 Hz 700 Hz 700 Hz 525 Hz

Rear Sub. 350 HZ 350 Hz 700 Hz 700 Hz 525 Hz
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4.2. Method. 4. APPLICATION TO THE VOLVO V40

Table 4.5: Study cases for Mixed reduction.

Mixed reduction Study Cases - Modes kept up to Hz.

Component Case 1 Case 2 Case 3 Case 4 Case 5

Trim Body 350 Hz (CC) 525 Hz (CC) 350 Hz (CC) 350 Hz (CB) 525 Hz (CC)

Front Sub. 350 Hz (CB) 700 Hz (CB) 700 Hz (CB) 700 Hz (CC) 525 Hz (CB)

Rear Sub. 350 Hz (CB) 700 Hz (CB) 700 Hz (CB) 700 Hz (CC) 525 Hz (CB)

Craig-Bampton and Craig-Chang comparison: Once the best case for each re-
duction method has been found then a comparison between each other will be performed
in order to understand which reduction method performs better than the others. After
a focused analysis on reduction time, solution time, cmd files size and solution error,
It has been decided to compare case 4 for the Craig-Bampton method, case 5 for the
Craig-Chang and case 2 for the Mixed method, as shown in table 4.6.

Table 4.6: Study cases for reduction method comparison.

Reduction Method Component Modes up to Hz

Craig-Bampton

Trim Body 700 Hz

Front Sub. 700 Hz

Rear Sub. 700 Hz

Craig-Chang

Trim Body 525 Hz

Front Sub. 525 Hz

Rear Sub. 525 Hz

Mixed

Trim Body 525 Hz (CC)

Front Sub. 700 Hz (CB)

Rear Sub. 700 Hz (CB)
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4.2. Method. 4. APPLICATION TO THE VOLVO V40

Influence of Connections type: Finally the influence of the connection property
on the reduction method and basis will be carried out. For this analysis the subframes
were considered attached to the body using bushings. In table 4.7 the properties for the
bushing used in the simulation have been reported.

Table 4.7: Bushing Property.

Connection Property X-dir Y-dir Z-dir

Sti↵ness [N/mm] 1000 2000 1000

Damping [N/mm/s] 0.1 0.1 0.1

In tables 4.8, 4.9, 4.10 resumes all the cases studied for di↵erent reduction method
and basis, as it has been done previously with rigid connections.

Table 4.8: Study cases for Craig-Bampton reduction.

Craig-Bampton Study Cases - Modes kept up to Hz.

Component Case 1 Case 2 Case 3

Trim Body 350 Hz 525 Hz 700 Hz

Front Sub. 350 Hz 525 Hz 700 Hz

Rear Sub. 350 Hz 525 Hz 700 Hz

Table 4.9: Study cases for Craig-Chang reduction.

Craig-Chang Study Cases - Modes kept up to Hz.

Component Case 1 Case 2 Case 3

Trim Body 350 Hz 525 Hz 700 Hz

Front Sub. 350 Hz 525 Hz 700 Hz

Rear Sub. 350 Hz 525 Hz 700 Hz
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4.2. Method. 4. APPLICATION TO THE VOLVO V40

Table 4.10: Study cases for Mixed reduction.

Mixed reduction Study Cases - Modes kept up to Hz.

Component Case 1 Case 2

Trim Body 525 Hz (CC) 525 Hz (CC)

Front Sub. 700 Hz (CB) 525 Hz (CB)

Rear Sub. 700 HZ (CB) 525 Hz (CB)

Reduction and Solution time comparison: Finally a comparison between the full
model solution time, direct and modal method, and the cms reduced model with Craig-
Chang, with modes up to 525Hz, will be compared in order to show what actually will
be gained in terms of time.

Table 4.11: Reduction basis, required memory (RAM), number of DoF and solution
method.

Method Modes up to Hz Required Memory Total DoF Solution Method

Full model - 180 Gb 13 millions direct

Full model 525 Hz 13 millions modal

Craig-Chang 525 Hz 800 Mb 8154 modal
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4.3 Results.

CMS reduced components: In tables 4.1 and 4.2 the number of modes kept for each
reduction basis have been reported, i.e. 350Hz, 525Hz, 700Hz. Here will be reported only
the reduction time and the size of the CMS file for the body using di↵erent reduction
methods and basis. It has been chosen to show only the results for the body since for the
subframes both reduction time and file size didn’t show particular behavior that should
be underlined moreover no changes in terms of time and size were found in increasing the
reduction basis. in figure 4.3 data are shown, it is possible to notice the increment in the
file size and in the reduction time if the higher number of modes are kept. The Craig-
Bampton takes a little more time to perform the reduction with respect Craig-Chang
for the same reduction basis.

Figure 4.3: CMS file size and reduction time for Craig-Bampton and Craig-Chang, di↵erent
reduction basis.
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E↵ect of modal truncation: For this analysis only few cases of the Craig-Bampton
cases will be shown. Looking at table 4.3, will be reporter the response error for case 1,
2 and 3. Case 1 includes modes up to 350Hz for all the components. In Case 2 modes
up to 700Hz only for the body are retained. In Case 3 mode up to 700Hz only for the
subframes. From figure 4.4 it is possible to notice that increasing the reduction basis for
the body improve the solution especially at the highest frequency band. Increasing the
reduction basis for the subframes instead improve the solution at the mid frequencies.
The same behavior has been found if the Craig-Chang reduction is applied.

Figure 4.4: Craig-Bampton: Case 1, 2, 3 response error comparison.
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Craig-Bampton and Craig-Chang comparison: Comparing the two methods Craig-
Bampton and Craig-Chang, an important result has been found . The Case 4 for
Craig-Bampton include modes up to 700Hz for all components, while the Case 5 for
Craig-Chang just up to 525Hz. As it can be seen in figure 4.5 the Craig-Chang method
performs better since for all the frequency bands the error is less than 5%. It means the
free-modes, rigid-modes and attachment-modes better describe the dynamic of the full
system rather then fixed-modes and constraint-modes. This is due to the presence of
the attachment-modes in the Craig-Chang reduction, since those mode account for the
elasticity of the truncated free-modes [2].

Figure 4.5: Craig-Bampton Case 4 and Craig-Chang Case 5 response error comparison.
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Influence of Connections type: Previously in table 4.7 the bushing property have
been showed. Indeed for this part bushing have been used instead of rigid connections.
Two of all the cases shown in tables 4.8, 4.9, 4.10 will be proposed here for a comparison,
from table 4.9 the Case 2 with a Craig-Chang reduction (modes kept up to 525 Hz) and
from 4.10 Case 1 with a Mixed reduction (body reduced with Craig-Chang up to 525Hz
and subframes with Craig-Bampton up to 700Hz.

In table 4.6, it is possible to notice the the Craig-Chang reduction performs better
than the mixed reduction, especially in describing the dynamic of the subframes. It
means that for the mixed reduction keeping modes up to 700 Hz for the subframes is
not enough.

Figure 4.6: Mixed Case 1 and Craig-Chang Case 2 response error comparison with bushing
connections.

Reduction and Solution time comparison: In the introduction it has been stated
that one of the benefit of using modal sub-structuring techniques is to reduce the total
number of degree of freedom of our model and the simulation time. In table 4.11 it has
been reported the number of degree of freedom of the model reduced using Craig-Chang
up to 525Hz and it easy to see how powerful is this techniques since the model is reduced
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from 13 millions of DoF to just almost 8 thousands. Here, in table 4.12, are shown the
reduction time and simulation time. Although the reduced model required time to reduce
all the components, the solution time goes from 16 hours for the full model with direct
method to only 29 minutes using the reduced model with Craig-Chang, hence both the
advantages have been confirmed in using CMS model instead of a full FEM model.

Table 4.12: Reduction and solution time comparison.

Method Reduction Time Solution Time Total Time

Full model (Direct) - 16 hours 16 hours

Full model (Modal) - 1 hour 30 min 1 hour 30 min

Craig-Chang Case 5 1 hour 30 min 29 min 2 hours

4.4 Discussions.

As for the first study case also in this case some conclusions can be made:

• the Craig-Bampton method, with fixed-interface condition, shows the best com-
promise when modes up to 700 Hz are retained for body and subframes, i.e. with a
reduction basis factor 2, even though for some frequency bands the error is greater
than 5% for the subframes;

• the Craig-Chang method, with free-interface condition, shows the best compromise
already when modes up to 525 Hz are retained, i.e. with a reduction basis factor
1.5

• comparing Craig-Bampton and the Craig-Chang method, the Craig-Chang method
performs better with less modes, i.e. for the same cut-o↵ frequency or reduction
basis factor.

• connections properties have a little influence on the choice of the reduction method,
since even if bushings are used the Craig-Chang method still performs better.

• using reduced model means that all the components have to be reduced and it takes
time, but the advantage is clear when it comes to solution time. The Craig-Chang
reduced model take 1/3 of the solution time for the FEM full model, if a modal
method is used to compute the response. Moreover the memory required by the
CMS (reduced) model is only 800Mb with respect the 180Gb of memory required
by the FEM full model.
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5
Conclusions

T
he aim of this thesis is to find criteria when di↵erent reduction techniques should
be used. To find out some criteria di↵erent analysis have been carried out.
Firstly the e↵ect of modal truncation has been studied, then the comparison
between the two method, Craig-Bampton and Craig-Chang, has been carried

out. Finally the e↵ect of connections has been deepen.

Starting with the modal truncation problem, it is clear that when dealing in compo-
nent mode synthesis techniques, that uses modes to represent the dynamic of a system,
the number of modes kept are a key factor for accurate dynamic representation. As
it has been said CMS methods are e�cient only if few modes are kept but this is in
contrast with reaching high accuracy of the description of the dynamic behavior, since a
low number of modes kept leads to a pour dynamic description, and with reducing the
solution time and the CMS file size. Hence a compromise has to be find.

Looking at both the study cases, the frame-box and the Volvo V40, a constant trend
exist. The Craig-Chang method needs a less number of modes with respect the Craig-
Bampton method to describe the dynamic of the complete system in an accurate way,
hence the Craig-Chang method results to be the most e�cient. Di↵erent study cases
have been tried out in order to understand the reason of this outcome and it has been
found out that the presence of the residual inertia relief attachment modes have a big
influence in describing the dynamic of the system especially a high frequency bands since
those modes account for the elasticity of the truncated modes, moreover the trim body
behave more as it was in free condition without any constraints and for this reason the
free-modes included in the reduction basis of the Craig-Chang method better describe
this condition. If criteria should be given i suggest:

• if the Craig-Bampton method is used in reducing a FEM component then it is
advisable to keep modes up to 2 times the maximum frequency the response has
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to be calculated, i.e. if the response is calculate up to 100 Hz then it is advisable
to keep modes up to 200 Hz. It means a factor 2 has to be used for the reduction
basis.

• if the Craig-Chang method is used in reducing a FEM component then it is advis-
able to keep modes up to 1.5 times the maximum frequency the response has to
be calculated, i.e. if the response is calculate up to 100 Hz then it is advisable to
keep modes up to 150 Hz. It means a factor 1.5 has to be used for the reduction
basis.

Secondly, it is very common using di↵erent type of connections in assembling subsys-
tems to the body. Combinations of bushings and bolt connections are used in the Volvo
V40 and for this reason the necessity of understanding how treat di↵erent connections
within di↵erent subsystem and also within the same subsystem arises when it comes to
choose between free-condition (Craig-Chang) and fixed-condition (Craig-Bampton).

Looking at the results for both study cases no particular e↵ect of the connections type
has been found. It means that both reduction method perform in the same way if bolt
or bushing connections are used. The only e↵ect that has been found was when studying
the frame-box system. When a very low sti↵ness value was used for the bushing connec-
tions the Craig-Chang method performed even better than using bolt connection and
this is what we expected since with a more loosely connections the subsystem behave
more as they were in free-condition and then their dynamics is better described by the
free-modes. In conclusion:

• apply Craig-Chang reduction method when bolt or bushing connections are used
to assembly the subsystems.

Finally a last look has been given to what actually is gained in using these reduction
methods. We start this thesis with the purpose to assess how powerful is the Component
Mode Synthesis approach in terms of solution time reduction and in reducing the number
of DoF. After hundreds simulations and many hours spent in gathering information it
is possible to say that CMS methods actually reduce the simulation time of about 1/3
in the case of the Volvo V40. This value is not constant, indeed it is a function of how
many modes are kept in the reduction basis. Lower the number of modes kept lower the
simulation time, but the necessity to have a high accuracy in describing the real dynamic
of the complete system leads to find a compromise, as usual in engineering problems.
Moreover reducing the complete model from 13 millions of DoF to just 8 thousands
it is very good results since it is possible to avoid upgrading constantly the computer
hardware, hence reducing cost.
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6
Future Work

T
his thesis from one side answers to some simple questions but from the other
side opens up new questions. Some of those are relative to the thesis itself
and other are relative to the topic in general. There is a need to validate and
correlate the findings of this thesis through an experimental analysis, moreover

since the CMS has shown good performance it would be advisable to include in the
comparison more than only two methods. Lots of other reduction methods exist, for
example the Modal Dominance or the Strain-Energy or the Balanced Gramians method
that show even better results in terms of accuracy in describing the dynamic with respect
the number of DoF kept. Hence this work has to be seen as an ’incipit’, as a starting
point within the dynamic substructuring field.
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