
Reinforcement Learning for Caching

Master’s thesis in Master Programme of Communication Engineering

XIXI LIU

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:Xixi Liu

Reinforcement Learning for Caching

XIXI LIU

Department of Electrical Engineering
Division of Communication Systems

Chalmers University of Technology
Gothenburg, Sweden 2020

Reinforcement Learning for Caching

XIXI LIU

© XIXI LIU, 2020.

Supervisor: Prof. Alexandre Graell i Amat, Department of Electrical Engineering
Co-Supervisor: Jesper Perderson, Department of Electrical Engineering
Co-Supervisor: Christian Häger, Department of Electrical Engineering
Examiner: Prof. Alexandre Graell i Amat, Department of Electrical Engineering

Master’s Thesis 2020: Xixi Liu
Department of Electrical Engineering
Division of Communication Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 72 975 5242

Cover: Content delivery for a wireless network consisting of an MBS and five
SBSs [1].

Typeset in LATEX
Printed by [Chalmers University of Technology]
Gothenburg, Sweden 2020

iv

Reinforcement Learning for Caching

XIXI LIU
Department of Electrical Engineering
Chalmers University of Technology

Abstract
It has been proposed to deploy several small base stations (SBSs) equipped with
caching units to deal with communication traffic congestion. It has been proved and
shown that caching content using error correcting codes (ECCs) in them can reduce
the download delay and the backhaul rate. In this scenario, users download content
from a file library, which is always available at a macro base station (MBS). They
could download content from the SBSs, or, if that is not possible, from the MBS.
During peak-traffic times, the popular files are prefetched at the SBSs. Optimizing
the caching placement in order to minimize the backhaul rate is an interesting
direction to explore, especially for the case of dynamic file popularity. In this thesis,
reinforcement learning (RL), in particular, Q-learning, is used to find the optimal
caching placement in order to minimize the backhaul rate.

Keywords: Caching, Reinforcement Learning, Markov decision process, Q-learning.

v

Acknowledgements
I would like to thank Prof. Alexandre Graell i Amat for offering me this interesting
and promising project, as well as my co-supervisers Jesper Perderson and Christian
Häger for giving me professional advice in the field of caching and reinforcement
learning, respectively.

Xixi Liu, Gothenburg, February 2020

vii

Contents

List of Figures x

1 Introduction 1
1.1 Background . 1
1.2 Purpose and limitations . 3
1.3 Thesis Outline . 3

2 Theory 5
2.1 Wireless Caching . 5

2.1.1 Uncoded Caching Scheme . 5
2.1.1.1 Most Popular . 5
2.1.1.2 Least Recently Used 6
2.1.1.3 Least Frequently Used 6
2.1.1.4 Grouped Linear Prediction Model 6

2.1.2 Maximum-distance Separable Codes 7
2.1.3 Coded Caching Scheme . 8

2.1.3.1 Most Popular Placement 9
2.1.3.2 Uniform Placement 9
2.1.3.3 Proportional Placement 9
2.1.3.4 Optimal Placement 9

2.2 Reinforcement Learning . 10
2.2.1 Markov Decision Process . 10

2.2.1.1 Basic Definitions . 11
2.2.1.2 Value Function . 12

2.2.2 Dynamic Programming . 14
2.2.2.1 Policy Iteration . 14
2.2.2.2 Value Iteration . 14

2.2.3 Temporal-Difference Learning 15
2.2.3.1 Q-learning . 15
2.2.3.2 Learning Rate . 16
2.2.3.3 Exploration and Exploitation 16

3 Methods 17
3.1 Problem Formulation . 17

3.1.1 Scenario . 17
3.1.2 Coded Caching Placement . 17

ix

Contents

3.1.3 Backhaul Rate Formulation 18
3.2 Q-learning . 19

3.2.1 State Space . 19
3.2.2 Big Action Space . 20
3.2.3 Small Action Space . 20
3.2.4 Reward . 20
3.2.5 Exploration, Exploitation, Learning Rate 20
3.2.6 Algorithm Description . 21

4 Results 23
4.1 Scenario 1: Zipf Distribution . 23
4.2 Scenario 2: MovieLens . 24
4.3 Convergence Investigation . 26

4.3.1 Big and Small Action Space 26
4.3.2 Increasing the Convergence Rate 28

4.3.2.1 Dynamic action space 28
4.3.2.2 Proportional Initial State 29

4.4 Integrated File Popularity Estimation and Caching Placement Im-
plicitly . 30

5 Conclusion 35

Bibliography 37

x

List of Figures

1.1 A single central server with several proxy servers. 2

2.1 Small cells topology [2] . 7
2.2 Markov chain and Markov decision process 11
2.3 The agent–environment interaction in reinforcement learning 12

3.1 Illustration of a state . 21

4.1 Backhaul rate as a function of cache sizeM , with N=200 files, δ=0.7,
r=60 meters. 24

4.2 Performance comparison of CVX and Q-learning based on two kinds
of file popularity estimation . 25

4.3 Convergence rate of using two action space for cache size M= 10, 15,
20, respectively. 27

4.4 Convergence rate of using two action space for cache size M= 10, 15,
20, respectively. 29

4.5 Performance of using improved algorithm 30
4.6 Convergence of two different changing action space 30
4.7 Convergence of two different changing action spaces with a propor-

tional initial state . 31
4.8 Schematic of network structure . 32
4.9 Policy iteration VS Q-learning . 33

xi

List of Figures

xii

1
Introduction

1.1 Background

Wireless traffic is growing at an unprecedented rate, due to an increasing number
of smartphones and average data volume per subscription, due to more viewing
and higher resolution of video content. It is reported that the demand for wire-
less data is predicted to reach 136 exabytes per month by 2024, where on-demand
video streaming is expected to account for 74% of the downloaded data [3]. How
to provide and sustain an acceptable quality of experience (QoE) to users is thus
an important problem that needs to be addressed. Because the backhaul link of
the communication system can be easily congested during peak-traffic times and
underutilized during the off-peak times [4], one approach is to deploy small base
stations (SBSs) equipped with cache units at the end-users. During off-peak traffic
hours, popular content is prefetched and cached at the SBSs. In this manner, the
congestion of traffic is reduced. Such network structures are referred to as heteroge-
neous networks (HetNets). Besides, HetNets allow that some scarce resources, such
as frequency, can be reused substantially. Since a small number of popular content
will be downloaded frequently by users who wish to download at any time, fetching
the expected content to SBSs during off-peak traffic times, such as night time, can
be an effective way to alleviate some of the backhaul link traffic. This method is
called caching.
Caching is a mature idea from the domains of web caching and content distribution
networks (CDNs) [5]. CDNs include two parts, a central server and several proxy
servers that are distributed geographically, as Fig. 1.1 shows. Frequently requested
content at the central server will be replicated and put at the proxy servers that
are closer to end-users when the communication systems are underutilized to mit-
igate the heavy traffic over the backhaul link. In wireless caching, the macro base
station (MBS) takes the role of the central server and the SBSs correspond to the
proxy servers in the CDNs scenario. The caching procedure can be divided into two
phases [2]: caching placement, which happens before users’ requests are revealed
and content delivery, which is proceeded after users’ requests are revealed.

There are several differences between caching and wireless caching.
1. The users are mobile in the wireless caching scenario. Hence, the user can

connect to different caches at different times.
2. Due to the overlapping SBSs and device coverage areas, users can connect to

several SBSs at any given time.

1

1. Introduction

Central Server

Proxy Server

Proxy Server

Proxy Server
Proxy Server

Proxy Server

Figure 1.1: A single central server with several proxy servers.

3. The wireless medium is a broadcast medium, which implies that a transmission
from a SBS can be overheard by any device within the transmission range.

Based on these three properties of wireless caching, there are two different aspects of
coding for caching. One is for caching placement. Since users have access to several
SBSs at the same time, codes, such as Reed-Solomon codes or Fountain codes, are
proposed to decrease the backhaul rate by using the property that users can access
multiple cache nodes [2, 6, 7]. The other aspect of coding for caching is content
delivery. The most typical coding is index coding, which takes advantage of the
inherent broadcast nature of wireless networks [4, 8].
The performance of different caching placements with maximum-distance separable
(MDS) codes was analyzed in [2] compared with an uncoded scheme. Besides, [2]
formulated the MDS coded caching placement as a convex optimization problem in
terms of minimization of the backhaul rate. [1] formulated the optimal coded caching
placement using MDS codes as a mixed linear integer programming (MILP). How-
ever, the analysis of [2, 1] is based on stationary content popularity. In reality, the
content popularity is non-stationary. Finding the optimal coded caching placement
for the case of dynamic content popularity is an interesting direction to explore.
Currently, machine learning is widely used to deal with the problems that do not
have a model or are difficult to formulate as a model. Many problems that arise in
the context of content caching can be addressed using machine learning. Generally,
there are two main problems, which are content popularity estimation and caching
placement optimization. For example, if the phase of content popularity estimation
is separated from finding an optimal caching placement, content popularity estima-
tion can be taken as a problem that uses past observations to predict future content
popularity. Machine learning, especially, supervised learning, can be used to solve
such problems. As for caching placement optimization, one needs to decide which
content should be cached in which node in a potentially dynamic environment to

2

1. Introduction

maximize certain rewards or minimize certain costs. For example, hit rate, i.e., the
probability that certain content is found in a cache node, can be maximized. Be-
sides, the cost of refreshing cache nodes, i.e., the number of files that are cached at
time slot t but not at time slot t− 1 multiplies with a weighting parameter, can be
minimized [9]. Moreover, rewards also can be a combined metric, which consists of
the hit rate and the cost of refreshing cache nodes with different weights [9]. Such a
problem can be formulated as a Markov decision process (MDP) and can be solved
by using RL. The authors of [9] used a grouped linear prediction (GLP) model based
on historical data to predict the future content popularity, and Q-learning is com-
bined with the GLP model to decide which contents should be cached to acquire a
long-term reward, which is a weighted metric that consists of hit rate and the cost
of refreshing cache nodes. The data set that is used to test the proposed algorithm
is from [10]. However, the drawback is that [9] only uses one cache node, which
implies that no coding scheme is used. In reality, due to the deployment of SBSs,
coding can be introduced to the caching placement scheme to decrease the average
backhaul rate. Content popularity estimation and caching placement optimization
was investigated in [11]. However, coding is not considered.
To conclude, current research has not explored the direction that integrates the file
popularity estimation with finding the optimal coded caching placement.

1.2 Purpose and limitations
The thesis aims to find the optimal coded caching placement with a non-stationary
content popularity by using Q-learning. The limitation is that the prediction of
content popularity and the coded caching placement are decoupled, which means
that the prediction of content popularity is independent of the decision of caching
placement.

1.3 Thesis Outline
This master thesis report is structured as follows.
In Chapter 2, we introduce the theory on caching and reinforcement learning. In
Chapter 3, we formulate the caching placement problem as an MILP problem and
illustrate how to use Q-learning to solve this problem.
In Chapter 4, we present results for three scenarios. The first one is that the file
popularity is simulated by Zipf distribution; the second one is using the dataset
from [10]; the third one is that file popularity estimation and caching placement
decision are integrated implicitly. Besides, we discuss the advantage of using Q-
learning to solve the MILP problem.
In Chapter 5, we give directions for interesting future work.

3

1. Introduction

4

2
Theory

2.1 Wireless Caching

This section summarizes the caching policies for two different scenarios in terms
of the number of cache nodes used in the communication system. For the case of
a single cache node, the content is cached using an uncoded scheme. The other
one has several SBSs in a cell, which means users can access multiple SBSs at the
same time. In the latter scenario, it is beneficial to introduce a coding scheme by
exploiting overlapping coverage. ECCs can be used to increase the performance of
a communication system.

2.1.1 Uncoded Caching Scheme
We are considering a scenario where a user can only have access to one cache node.
The file library is dynamic, which means that the number of files is changing with
time going by and the corresponding file popularity is also changing. The file library
at time slot t is indicated by Ft. Besides, one cache node can store up to M files,
which is smaller than the number of files in the file library. The potential popular
files will be cached at the cache node according to the caching placement at time
slot t − 1 during off-peak traffic times. When users’ requests are revealed at time
slot t, the number of files that the user wants to download as well as are cached at
the cached node over the number of whole requests is defined as hit ratio, which
is indicated by Ht. Moreover, since the caching placements of two continuous time
slots are different, refreshing the cache node might cause replacement cost because
of the replacement speed, network traffic and channel conditions [9].
Several caching policies are proposed to maximize the hit ratio for the case of dy-
namic file popularity, they are illustrated as follows.

2.1.1.1 Most Popular

The most popular policy means that the most popular M files will be cached at
the cache node. The file popularity for next time slot is estimated based on the file
request history. For example, the file f popularity at time slot t is calculated by the
number of file f that are requested over the number of the whole file request from
time slot 1 to time slot t− 1. The most popular M files according to the calculated
file popularity are cached at the cache node. It is based on the assumption that
more popular files will be more likely to be requested in the future.

5

2. Theory

However, if some files are only requested extensively at one time slot and hardly
requested later, the estimated file popularity of these files will be partial. Those
files will be cached at the cache node for a while. When new files are appearing, this
caching policy will keep ignoring the new files unless the popularity of the new files
is larger than the current least popular file at the cache node. Besides, the so-called
most popular files will occupy the cache node with no use.

2.1.1.2 Least Recently Used

The least recently used (LRU) policy means the least recently requested files will be
replaced by the new files when the cache node is full. This policy does not consider
the file popularity of the new files. This method assumes that the new files are more
likely to be requested in the future. It is often used in a scenario where new files
often bump up.

2.1.1.3 Least Frequently Used

The least frequently used (LFU) algorithm emphasizes that the least frequently
requested files are replaced by the new files when the cache node is full. It also does
not consider the file popularity of the new files. The logic of this policy is that the
least frequently used files in a period will be less likely to be requested in the future.
However, it still has the pitfall that the most popular one has.

2.1.1.4 Grouped Linear Prediction Model

The GLP model is a recent method that predicts file popularity by considering the
age of the file. The files that appear initially at the same time slot are defined
as the same age group [9]. This model is basically a linear regression model. It
uses the file history to find Θ = (θ1, θ2, θ3, ...θi), which is a parameter that can be
multiplied with the history of file requests to predict the future file request. i is the
age of a file. The dimension of Θ depends on the number of time slots, in which file
request history is taken as valid samples to predict future file popularity. It can be
changed manually for specific scenarios. Finding the optimal Θ can be formulated
as a linearly constrained optimization problem,

min
θ1,...,θi

t∑
k=1

∑
f∈Fk

(d̂k,f − dk,f)2

s.t. θi,j − θi,j+1 ≥ 0,∀j ∈ [1 : i− 1],∀i ∈ N+

θi,i ≥ 0,∀i ∈ N+

(2.1)

where dk,f represents the number times file f that is requested at time slot k. d̂k,f
represents the predicted number of times file f that is requested at time slot k. It
is calculated by

d̂k,f = θi ·Xk,f (2.2)

The files that belong to the same age group use the same θi, θi = (θi,1, θi,2, ..., θi,i).
θi,j represents a normalized correlation coefficient between the requests of files that

6

2. Theory

Figure 2.1: Small cells topology [2]

have the age of i at time slot t and the requests of the same files at time slot t− j.
The reason why θi,j − θi,j+1 ≥ 0 is that the shorter time interval shows stronger
correlation. The reason why θi,i ≥ 0 is that it is assumed that the files that are
requested before are more likely to be requested in the future. Xk,f represents the
file history of file f at time slot k. It is calculated by

Xk,f = (dk−1,f , dk−2,f , ...dk−i,f)T (2.3)

The GLP model is used to acquire the predicted file requests for every file f at time
slot k, d̂k,f . After that, the file popularity can be estimated based on the predicted
file requests. The most popular M files are cached at the cache node.

2.1.2 Maximum-distance Separable Codes
Using the coded caching scheme is beneficial to increase the performance of the
communication system. For an (n, kc) error correction code (ECC), it encodes kc
information fragments to a codeword of n encoded packets by adding n− kc parity
packets. For example, 3-repetition is a typical code, which is used to increase the
resilience of the communication system. It means each file is copied three times and
cached at different cache nodes. The disadvantage of this code is that it has high
overhead. The storage overhead is n

kc
= 3

1 . The fault tolerance is 2 nodes failure.
A suitable ECC to balance the storage overhead and fault tolerance is desirable.
Among all ECC codes, MDS codes have the best guaranteed performance in terms
of the trade-off between storage overhead and fault tolerance. For example, for a
(9,7) MDS code, the storage overhead is n

kc
= 9

7 = 1.28. The fault tolerance is 2
nodes failure. In other words, an MDS code is the optimal ECC code that has the
minimum storage overhead given a fixed fault tolerance. If a file is encoded by using
an MDS code (n, kc), the file is divided into kc uncoded fragments and encoded to n

7

2. Theory

coded packets. A property of this MDS code is that any subset of kc coded packets
can recover the file information without any loss.

2.1.3 Coded Caching Scheme
The coded caching scheme is introduced to the wireless edge because more than one
SBS is used in a cell. There will be an overlapped area where several small sta-
tions can serve, which means that users can potentially access several cache nodes
at the same time. Therefore, the introduced redundancy can be used to minimize
the backhaul rate.

We are considering a cellular network where a macro-cell is served by a MBS. Mobile
users wish to download files from a library ofN files, which are always available at the
MBS through a backhaul link. The file library has popularity distribution presented
by p = (p1, p2, .., pN) where file i is requested with probability pi. It is also assumed
that NSBS SBSs are deployed in a cell to serve users’ requests and offload traffic from
the MBS. Besides, each SBS has a cache size of M files. Users can be served by
SBSs within of communication range. If the user can not recover the file from the
collecting packets from SBSs, additional encoded packets from the MBS through
the backhaul link need to be fetched to recover the file. The average fraction of files
that are downloaded from the MBS is called backhaul rate. The cell topology is
shown in Fig.2.1. Different colour regions in Fig.2.1 represent the area where a user
can be served by the same number of SBSs at the same time. For example, the blue
region represents the area where users can be served by 4 SBSs at the same time.
The probability that a user can be served by b SBSs is represented by γb. The value
of γb is equal to the percentage of the coverage area where b SBSs could serve over
the whole square area. The system parameters are defined as follows:

• NSBS: the number of SBSs in a cell; NSBS is equal to 4 in Fig.2.1.
• N : the total number of files in the file library.
• pi: the file i popularity, it satisfies ∑NSBS

i=1 pi = 1.
• M : cache size. Here we assume all the files have the same size.
• r: the radius of the area that a small base station can provide.
• γb: the probability that a user can be served by b small base stations.

An MDS code (n, kc) is used to encode files in this scenario. During the phase of
caching placement, if the encoded packets for each file i, mi, are cached in each cache
node, the number of total encoded packets for file i is n = (kc + (NSBS − 1) ·mi).
The caching placement is expressed as [m1,m2, ...,mN]. During the phase of content
delivery, users will send file requests, the SBSs covering their locations will initially
serve those users. If a user is served by b SBSs at the same time and file i is
requested, the number of encoded packets that the user can collect from SBSs is
(b ·mi). When the user downloads (b ·mi) ≥ kc encoded packets, the requested file
can be decoded and the backhaul link will not be used. Otherwise, (kc − b · mi)
uncached encoded packets need to be fetched from the MBS through the backhaul
link in order to recover file i.
Four caching placement strategies are often in use. The following section intends to
illustrate each of them with the assumption that each file has the same size. Besides,

8

2. Theory

it is assumed that each file is partitioned into kc uncoded fragments, the number
of encoded packets may vary after using different code rates, which depend on the
caching placement strategies that are used.

2.1.3.1 Most Popular Placement

The most popular placement strategy means the mostM popular files are cached at
each cache node. The cache size of each SBS isM , which means those most popular
M files are cached completely at each cache node. The performance is the same as
the most popular policy using the uncoded caching scheme.

2.1.3.2 Uniform Placement

The uniform placement strategy is the number of cached encoded packets of each
file is the same, which is independent of the file popularity. For each file in the file
library, there will be M

N
encoded packets for each file that are placed randomly at

each cache node.

2.1.3.3 Proportional Placement

The proportional placement strategy means that the number of cached coded packets
of each file is proportional to its file popularity. The larger the file popularity is, the
more cache space is allocated. More specifically, for file i, the available cache space
is pi ·M . If each encoded packet has size np, the corresponding number of encoded
cached packets for file i is mi = pi·M

np
at each cache node.

2.1.3.4 Optimal Placement

[2] formulated the optimal MDS coded caching placement in terms of the minimiza-
tion of the average backhaul rate as a convex optimization problem,

min
q1,...,qN

N∑
i=1

NSBS∑
b=1

γbpi(1−min(1− b · qi))

s.t.
N∑
i=1

qi ≤M

0 ≤ qi ≤ 1,∀i ∈ [1, N]

(2.4)

where qi = mi
kc
. It can be seen from (2.4) that calculating a set of qi to minimize the

average backhaul rate equals to finding the optimal code rate for each file i. Since

9

2. Theory

qi = mi

kc

=
n−kc
NSBS−1

kc

= n− kc
(NSBS − 1) · kc

=
1− kc

n

(NSBS − 1) · kc
n

(2.5)

According to the definition of code rate, Rc = kc
n
,

qi = 1−Rc

(NSBS − 1) ·Rc

(2.6)

Due to 0 ≤ qi ≤ 1, it can be derived that the range of code rate can be chosen is,

1
NSBS

≤ Rc ≤ 1 (2.7)

2.2 Reinforcement Learning
Machine learning has been one of the topics that are attracting widespread attention
both in industry and academia. There are three paradigms in machine learning,
which are supervised learning, unsupervised learning and reinforcement learning
(RL) [12]. Supervised learning tries to learn from a set of training samples, which
are labeled by a professional supervisor. It is commonly used in the classification
problem [12]. Unsupervised learning tries to learn from a set of unlabeled training
samples and find the hidden structure underlying the training samples. It is often
used in clustering analysis [12]. The first time RL was proposed was in the late of
1979 [12], the main advantage of it is the optimal decision is made by continuously
learning information from the environment. The decision made by RL will adapt to
the changing of the environment and acquire a maximum long-term reward.
The common scenario that uses RL is where an agent tries to interact with the
environment and find a set of state-action pairs that can get the maximum reward
from a long term perspective, as Fig.2.3 shows. It is not like supervised learning,
which has a training set and each labeled sample can be used to train the model [12].
The essential difference between RL and unsupervised learning is that the goal of
the former is to get a sequence of state-action pairs to maximize a reward signal but
the latter aims to find the hidden model structure of training samples.

2.2.1 Markov Decision Process
The Markovian property is that the future is independent of the past given the
present. A Markov chain is a stochastic model, which describes a sequence of pos-
sible events in which the transition probability of each event depends only on the

10

2. Theory

state attained in the previous event, as the left plot of Fig.2.2 shows. Besides, the
transition probability is independent of time. In continuous-time, it is known as a
Markov process. An MDP is an extension of a Markov chain and is used to formal-
ize a reinforcement learning task. The difference between the Markov chain and the
MDP is two more parameters are introduced, which are actions and rewards. If the
state space and the action space of an MDP are finite, it is called a finite MDP. The
following theory part is illustrated under the assumption that the environment is a
finite MDP.
An MDP is uniquely defined by:

• a set of states, S;
• a set of actions, A;
• transition function T (s′ | s, a), which represents a probability distribution over

next possible states s′ given current state s after proceeding action a;
• reward function R(s′ | s, a), which represents the reward after proceeding the

action a at state s′.

(a) Markov chain (b) Markov decision process

Figure 2.2: Markov chain and Markov decision process

2.2.1.1 Basic Definitions

The action space is a set of all possible actions that an agent can proceed. The state
space is a set of all possible states that an agent can arrive at. Reward function
depends on the state that an agent is at and the action that an agent proceeds. It
can be defined specifically for different scenarios. The transition function is used to
represent the probability that an agent in the state s transfers to the state s′.
Take a sample (s, a, R, s′, T (s, a, s′)) to illustrate the relationship between these four
elements. An agent in the state s, after taking the action a, it will arrive at the
next state s′ with transition probability T (s, a, s′) and get the corresponding reward
Rs, a, s′) for proceeding the action a. A table that stores the rewards of all the
action-state combinations is called Q-table.

11

2. Theory

agent

action At
reward
Rt

state
St

Rt+1

St+1

Figure 2.3: The agent–environment interaction in reinforcement learning

If the transition probability is 1 always, the MDP is deterministic. Otherwise, it is
stochastic.

2.2.1.2 Value Function

In most cases, RL algorithms are related to value functions. They are functions of
the state or state-action pairs and used to estimate how good it is for an agent to
be in a given state or to perform a given action in a given state [12]. The criteria
to evaluate how good those functions is defined in terms of expected rewards, which
depends on what actions an agent will proceed in the future. Policy function π
maps each state s ∈ S, each action a ∈ A to the probability π(a|s) of proceeding
action a in state s [12]. Therefore, value functions are defined uniquely for specific
policies. RL algorithms aim to find the optimal policy that can lead to the maximum
expected rewards.
In a specific scenario, a proper definition of reward function is essential to evaluate
the performance of taking action a in state s. In order to maximize the expected
rewards, a value function is introduced to formulate the long term reward given a
specific discount factor γ, policy π. There are two functions, the state-value function
and the action-value function.
The definition of the state-value function is shown as (2.8),

Vπ(s) := lim
T→∞

Eπ
[T∑
k=0

γkRt+k+1 | St = s
]

(2.8)

A similar definition of the action-value function is shown as (2.9). For the state-
value function, it starts in state s and then proceeds action under policy π thereafter.
However, the action-value function proceeds action a first and then proceeds actions
under policy π thereafter.

12

2. Theory

qπ(s, a) := lim
T→∞

Eπ
[T∑
k=0

γkRt+k+1 | (St = s, At = a
]

(2.9)

One of the properties of the value function is its recursive relationship between the
current state and its successor states under policy π. The relation can be expressed
as a well-known equation, which is called Bellman equation.
For state-value function,

Vπ(s) = Eπ
[
Rt+1 + γ

∞∑
k=0

γkRt+k+2 | St = s
]

(2.10)

Eπ
[
Rt+1 | St = s] =

∑
a

π(s, a)
∑
s′
T (s′ | s, a)R(s′ | s, a) (2.11)

Eπ
[
γ
∞∑
k=0

γkRt+k+2 | St = s
]

=
∑
a

π(s, a)
∑
s′
T (s′ | s, a)

(
γEπ

[∞∑
k=0

γkRt+k+2 | St+1 = s′
])

(2.12)
Plug (2.11) and (2.12) in (2.10), the Bellman equation of the state-value function
can be derived as (2.13) shows.

Vπ(s) =
∑
a

π(s, a)
∑
s′
T (s′ | s, a)

(
R(s′ | s, a) + γEπ

[∞∑
k=0

γkRt+k+2 | St+1 = s′
])

=
∑
a

π(s, a)
∑
s′
T (s′ | s, a)(R(s′ | s, a) + γVπ(s′))

(2.13)

A similar way can be used to derive the Bellman equation of the action-value func-
tion, which is shown in (2.14).

qπ(s, a) =
∑
s′
T (s′ | s, a)

[
R(s′ | s, a) + γ

∑
a′
π(s′, a′)qπ(s′, a′)

]
(2.14)

It is worth considering how to choose the optimal policy π∗ to maximize the long
term reward. We can take advantage of Bellman equation. Before presenting how
to find the optimal policy, optimal state-value function and optimal action-value
function needs to be introduced firstly. Optimal state-value function is defined as
follows [12],

V∗(s) = max
π

Vπ(s) (2.15)

for all s ∈ S and a ∈ A.
Optimal action-value function is defined as follows [12],

q∗(s, a) = max
π

qπ(s, a) (2.16)

for all s ∈ S and a ∈ A.

It has been defined that if Vπ > Vπ′ , it means a policy π is better than policy π′.

13

2. Theory

Two types of methods are applied to finding the optimal policy in terms of transition
probability. One is dynamic programming (DP), which is applied to the problem
that the transition probability is known [12]. The other is temporal-difference (TD)
learning, which is used to deal with the problem that the transition probability is
unknown [12]. The following section will introduce them in more detail.

2.2.2 Dynamic Programming
For dynamic programming, the transition probability is known. It implies that the
model of the environment is known perfectly. Therefore, DP can be taken as a
performance benchmark. Policy iteration algorithm and value iteration algorithm
are mostly used.

2.2.2.1 Policy Iteration

The core of the policy iteration algorithm is improving the policy at every iteration.
Generally, there are two parts in the policy iteration algorithm.

1. Policy evaluation: It aims to calculate the state-value function under policy
π. A common way to evaluate a policy is using the iterative policy evaluation
algorithm. In the beginning, given a random policy π0 and an initial value
array V0. For each state s ∈ S, the value function is calculated based on the
initial policy π0. Thereafter, Q-table is updated by plugging the calculated
V (s) into the Q-table. Repeat this procedure until the difference of value
function between two iterations for each state is smaller than a small positive
number δ, which can be set manually. In other words, the real state-value
function is acquired under policy π.

2. Policy improvement: The current policy is improved by using the present Q-
table. More specifically, a policy is improved by choosing the action that leads
to the maximum reward for each state based on the current Q-table. The
termination of the iteration is when the policy cannot be updated. In other
words, the policy is unchanged when more iterations are used.

One tricky part of policy iteration is about policy improvement. In particular, when
the iterative policy evaluation algorithm is used, there are two state-value functions
to store the old value Vk and new updated value Vk+1 for each state. The condition
to terminate the iteration depends on the difference between Vk and Vk+1. Another
method is only using one V array. Once a new Vk+1(s) is calculated, the old Vk(s)
will be overwritten immediately. The second method can get the converged value
function quicker than that of using two value function arrays [12].

2.2.2.2 Value Iteration

The implementation of the policy iteration algorithm has two steps, the policy eval-
uation and the policy improvement. Besides, the policy improvement only can be
proceeded after the policy evaluation is finished. Moreover, the policy evaluation

14

2. Theory

needs to reach all the states multiple times to get the converged value function un-
der policy π. Therefore, it is desirable to come up with a new method to acquire
the optimal policy. It has been proved that the policy evaluation step of the policy
iteration algorithm can be truncated without losing the convergence of the policy
iteration algorithm [12]. The modified algorithm is called the value iteration algo-
rithm. It reaches all the states once and calculates state-value of all possible actions
to update the state-value function for each state. The procedure is terminated when
the state-value function difference between Vk and Vk+1 is smaller than a positive
number. Finally, the optimal policy can be extracted from Q-table.

2.2.3 Temporal-Difference Learning
It can be clearly seen that DP only can be proceeded with knowing the transition
probability. More specifically, all possible successive states will be considered when
the state-value function is updated. The charm of TD learning is that it can take
advantage of the information from the environment without knowing the transition
probability to get the optimal policy. The way to learn information from the envi-
ronment for temporal learning is using the continuous experienced samples to update
the Q-table. Thereafter, the optimal policy can be extracted from the Q-table [12].
Q-learning is an off-policy TD control algorithm if the greedy policy is not used.

2.2.3.1 Q-learning

Before illustrating what Q-learning is, a function that is similar to the action-value
function is introduced. It is called Q-function and is shown in (2.17).

Q(s, a) = R(s) + γ
∑
s′
T (s, a, s′) max

a′
Q(s′, a′)) (2.17)

The difference between (2.14) and (2.17) is that (2.17) takes the updated action-
value function as a approximation of the optimal action-value function directly.
Besides, the updated action-value function is independent of the policy being fol-
lowed. (s, a, R, s′) is defined as an experienced sample. In order to find the optimal
policy, the Q-function is updated as (2.18) shows.

Q(s, a) α←− R + γmax
a′

Q(s′, a′) (2.18)

α ∈ (0, 1) is the learning rate. In the beginning of Q-learning iteration times, α is
often to be set bigger. With the learning proceeding, α, learning rate, will decrease
since Q̂ will be closed to the real Q value. γ ∈ (0, 1) is discount factor.
Expand (2.18),

Q(s, a) = (1− α)Q(s, a) + α(R + γmax
a′

Q(s′, a′)) (2.19)

R is the immediate reward after proceeding action a in state s. Q̂ is the estimated Q
action-value function. With infinitely visiting (s, a), it has been proved that Q̂(s, a)
will converge to the real Q(s, a) if the learning rate satisfies (2.20).

∞∑
t=1

αt =∞,
∞∑
t=1

α2
t ≤ ∞, (2.20)

15

2. Theory

2.2.3.2 Learning Rate

In the beginning, the learning rate α is usually bigger. The initial Q̂ value is far
away from the real Q value, therefore the information from the environment is quite
important for updating the Q̂ in order to make Q̂ closer to the real Q. With the
learning procedure proceeding, the value of learning rate needs to be decreased.
Since too large α may cause the Q̂ oscillates around the real Q. In one sense, the
learning rate can be explained as the learning step size. If the learning rate is too
small, lots of iteration times need to be used to make Q-table converge. If it is too
large, the Q-table is hard to converge.

2.2.3.3 Exploration and Exploitation

One of the challenges for RL is the trade-off between exploration and exploitation.
The origin of exploration and exploitation comes from how to choose the action to
get the experienced samples. If actions that can get the maximum instant reward
are chosen every iteration, it is beneficial for the agent to have a reliable estimation
of expected reward. However, due to the limitation of learning iteration, some
possible actions that can acquire a larger reward may have no chance to be reached.
Therefore, the dilemma of exploitation and exploration diminishes the performance
of reinforcement learning [12]. There is a way to deal with this trade-off. With the
probability of ε ∈ [0, 1] , the action is chosen randomly. With the probability of
1− ε, the action that gets the maximum reward is chosen.

16

3
Methods

3.1 Problem Formulation

3.1.1 Scenario
The scenario that is used in this thesis is the same as [1]. A cellular network
where a macro-cell is served by a MBS. Mobile users wish to download files from
a library of N files, which are always available at the MBS through a backhaul
link. The file library has popularity distribution for each file, it can be presented by
p = (p1, p2, .., pN), where file i is requested with probability pi. It is also assumed
that there are NSBS SBSs deployed to serve users’ requests and offload traffic from
the MBS. Besides, each SBS has a cache size of M files. Users are served by SBSs
within communication range. If a user can not recover information of the file from
the SBSs, additional encoded packets from the MBS through the backhaul link need
to be fetched to recover the file. The average fraction of files that are downloaded
from the MBS is called backhaul rate, denoted by R. For no caching, R=1. The
cell topology that is used in this thesis is the same as [2]. Thus, the result of [2] can
be taken as a benchmark to compare.

3.1.2 Coded Caching Placement
Assume that all the files have the same size. During the caching placement phase,
file i is partitioned into ki uncoded fragments. These uncoded fragments are encoded
to NSBS encoded packets by using an (NSBS, ki) MDS code. Thereafter, each SBS
will cache one encoded packet of file i. In other words, for any file that is cached,
each of SBS stores one encoded packet of that file. The difference is that the number
of uncoded fragments of each file may vary. The number of uncoded fragments of
file i is denoted by ki.
Here we define µi , 1

ki
for convenience, in which ki ∈ {1, ..., NSBS}. Therefore,

µi ∈ {
1

NSBS
, ...,

1
2 , 1},

µ = {µ1, µ2, ..., µN} is defined as caching placement. Since each SBS can only cache
M files, it follows:

N∑
i=1

µi ≤M.

Cµ
MDS is used to denote the caching scheme that uses MDS code according to caching

placement µ [1].

17

3. Methods

3.1.3 Backhaul Rate Formulation
We aim to use RL to find the optimal coded caching placement to minimize the
backhaul rate, which has been formulated in [1] and defined as (3.1).

min
µ1,...,µN

N∑
i=1

pidµie
NSBS∑
b=1

γb max(0, 1
µi
− b)µi +

N∑
i=1

pib1− µic

s.t.
N∑
i=1

µi ≤M

µi ∈ {0,
1

NSBS
, ...,

1
2 , 1}

(3.1)

The case µi = 0, implying that file i is not cached, is added by convention. If µi = 0,
the corresponding backhaul rate will be 1 according to (3.1). The situation that file
i is not cached is represented by the second part of (3.1). The first part of (3.1)
accounts for the backhaul rate of a situation that file i is encoded by using (NSBS, ki)
MDS code. The code rate, Rc = ki

NSBS
, and the range of ki, ki ∈ {1, ..., NSBS}, it can

be derived that the range of code rate can be chosen is,

Rc ∈ {1,
NSBS − 1
NSBS

, ...,
1

NSBS
} (3.2)

Recall the optimal caching placement that is illustrated in section 2.1.3.4. The range
of code rate that can be chosen,

1
NSBS

≤ Rc ≤ 1 (2.7 revisited)

The optimal coded caching placement calculated in section 2.1.3.4 is taken as a
benchmark. In order not to confuse the notation, the range of code rate that is
considered as a benchmark is denoted as,

1
NSBS

≤ Rbenchmark ≤ 1 (3.3)

The reason why we can take (2.7) as a benchmark is that it represents the average
backhaul rate of the same scenario as we use in our formulated problem. The only
difference is that the choice of the code rate of the benchmark could be any real num-
ber from 1

NSBS
to 1. However, the choice of the code rate of our formulated problem

is specified to {1, NSBS−1
NSBS

, ..., 1
NSBS
}. Therefore, the optimal coded caching placement

from section 2.1.3.4 can be taken as a relaxation of our formulated problem.
The benchmark that is used in this thesis is a convex optimization problem [2],
which can be solved by CVX. CVX is a Matlab-based modeling system for convex
optimization [13]. Our formulated problem can be reformed as a MILP problem.
The number of SBSs that are deployed in Fig.3.1 is four. Therefore, there are four
possible caching placements for each file i, which equals to µi ∈ { 1, 1/2, 1/3,
1/4}. In terms of code rate, the feasible code rate set is Rc ∈ { 1/4, 1/2, 3/4, 1}.
More specifically, µi = 1 represents that file i can be recovered if one cache node is
accessible to the users. µi = 1

2 represents file i can be recovered with any loss if two
cache nodes are accessible to the users at the same time.

18

3. Methods

In this thesis, we successfully use greedy Q-learning to solve the MILP problem. In
practice, popularity estimation of a potentially dynamic file library has to be taken
into account. However, in this work, we assume a fixed file library and static file
popularity.

3.2 Q-learning
Q-learning is proposed to solve the problem as (3.1) shows. Therefore, the four basic
elements have to be defined.

3.2.1 State Space
The state space of our problem is defined uniquely by the number of files that
are assigned in each possible µi. Recall the definition of caching placement, µ =
{µ1, µ2, ..., µN}. If the number of files N in the file library is larger than the number
of µi that can be chosen, there must be some files share the same µi. Besides, it can
be easily understood that less code rate is assigned to the files that have larger file
popularity.
Due to the cell topology used, the number of SBSs is 4. Therefore, four possible
µi = (1, 1/2, 1/3, 1/4) can be chosen for each file. Each state can be expressed as
a 2 × 4 matrix; the first row is (1, 1/2, 1/3, 1/4), the second row is the number of
files that are assigned to the same µi. Besides, each coded caching placement is
constrained by ∑N

i=1 µi ≤ M. Since the first row of each state is the same, each state
can be simply denoted by the second row for convenience. The initial state for Q-
learning is (0, 0, 0, 0) always. All possible states for a file library that stores N files
and a cache node that could be filled up M files can be calculated by Algorithm 1.

Algorithm 1 Calculate State Space Size for a Specific Cache Size
1: function StateSize(N,M) . Where N - file number, M - cache size
2: d=0
3: for e = 0 to 2×M do
4: for f = 0 to 3×M do
5: for g = 0 to 4×M do
6: sum1 = 1

2 × e+ 1
3 × f + 1

4 × g
7: sum2 = e+ f + g
8: if sum1 ≤M and sum2 ≤ N then
9: d=d+1

10: end if
11: end for
12: end for
13: end for
14: end function

Because the radius of the coverage area of a SB is equal to the side length of the cell
topology , the area that a user that can be served by one SBS is 0, the probability
that a user can be served by one SBS is 0. It means that µi = 1 or̨ i = 1 is not

19

3. Methods

considered. In other words, the feasible set of µi is µi ∈ {1/2, 1/3, 1/4}. e, f , g are
the number of files that are assigned to µi = 1/2, µi = 1/3, µi = 1/4, respectively.
d is the size of state space for a specific file library and cache size. It will be used
to investigate the convergence of Q-learning.

3.2.2 Big Action Space
A state is defined uniquely by the number of files that are assigned to the same
µi. Besides, the number of files that are assigned to different µi can be increased,
decreased, or kept still. Therefore, {-1,1,0} is used to represent the actions that
could be proceeded at each state element. Each action can be expressed in a 2× 4
matrix, the first row is (1, 1/2 ,1/3, 1/4), the second row is the corresponding
action to each state element. Only the second row is used to represent action for
convenience. Each element in a state could have three possible actions. Therefore,
there are 34 = 81 actions in total. In our case, the probability of the user can be
served by one SBS is 0. Therefore, action space will have 33 = 27 different actions
in total.

3.2.3 Small Action Space
A known drawback of Q-learning is “the curse of dimensionality”, which is the num-
ber of states (actions) often grows exponentially with the number of state (actions)
variables [12]. Meantime, the number of all state-action pairs grows a lot, which
means more iteration times need to be used to make Q-table converged. A smaller
Q-table size may probably speed up its convergence. With this in mind, we define
a new, smalller action space. It only adjusts one state element each iteration. More
specifically, the proposed small action space is (−4,−3,−2,−1, 0, 1, 2, 3, 4). 9 ac-
tions can be chosen in total. The absolute value of each action is the index of the
element that should be adjusted in a state. Besides, if the real value is negative,
the corresponding element of the current state is reduced by 1. If the real value is
positive, the corresponding element of the current state is added 1. Otherwise, it
is kept still. Each action will give the information about which element of a state
should be adjusted and how to be adjusted.

3.2.4 Reward
(1 − R) is taken as the reward, since we aim to minimize the backhaul rate R.
Besides, if the next state s′ violates the cache size after applying action a to the
current state s, this action should be abandoned and another action should be chosen
until the subsequent state does not violate the constraint of the cache size.

3.2.5 Exploration, Exploitation, Learning Rate
In this case, there is no trade-off. Therefore, exploration probability can be set to
1 at the beginning to explore all possible states. After that, ε is set to decrease
linearly to check whether Q-learning will converge. At last, ε can be set to 0 and it

20

3. Methods

Figure 3.1: Illustration of a state

will converge around the optimal state.

Meanwhile, the learning rate α is also changing. As has been discussed in Section
2.2.3.2, the learning rate can set larger at the beginning of Q-learning. With the
proceeding of Q-learning, the learning rate can be decreased since Q̂ is closer to the
real Q, which we know since the updates don’t change the performance much. Then
the learning step size should be small, otherwise Q̂ will jump up and down around
the real Q and never reach it. The detailed parameters values are set as given in
(3.4), t is the current iteration, k is the total iteration times.

εt = 1, αt = 0.01 t = 1, 2, ..., d0.75ke
εt = 0.25·t

k
, αt = 0.001 t = d0.75ke+ 1, ..., d0.875ke

εt = 0, αt = 0.0001 t = d0.875ke+ 1, ..., k
(3.4)

3.2.6 Algorithm Description
The pseudo code of proposed algorithm is tabulated in Algorithm 2.

21

3. Methods

Algorithm 2 Q-learning for MILP
function Optimal State(N,M, γb,A,S, εt, αt)

2: Initialize Q̂0(s, a)← 0, s0 = 0
for t = 1 to k do

4: Take action a(t) chosen probability by

a(t) =

arg max Q̂t−1(s(t− 1), a) w.p. 1− εt
random a ∈ A w.p. εt

set st = st−1 + at
6: if sum(s(t))>M then

Go to step 2, choose an action until it doesn’t violate the cache size
8: end if

Incure backhaul rate r can be calculated by equation 3.1,1−R is taken
as reward r

10: Update

Q̂t(s(t− 1), a(t)) = (1− αt)Q̂t(s(t− 1), a(t))+
αt
[
r(s(t− 1), a(t)) + γt max

a
Q̂t−1(s(t), a))

]
end for

12: end function

22

4
Results

This chapter will show and analyze the results of two scenarios. Besides, a method
that is used to increase the convergence rate of Q-learning is proposed. Moreover,
the initial learning state is changed with the condition that the cache size that is
allocated for each µi is proportional to the value of µi. The corresponding result
is presented and analyzed. At last, the performance of a proposed algorithm that
integrates implicitly finding the optimal caching placement with stationary file pop-
ularity estimation is reproduced.

4.1 Scenario 1: Zipf Distribution
The small cell topology in [2] is used. The difference between scenario 1 and scenario
2 is the distribution of file popularity. The file popularity in the first scenario is given
by the Zipf distribution, which is stationary. It is given by (4.1)

pi =
1
iδ∑N

i=1 /
1
iδ

(4.1)

where δ is the skewness of the Zipf distribution. The optimal caching placement
from [2] is taken as a benchmark. The values of related parameters are the same as
in [2]. The formulated problem in [2] is a convex optimization problem, which can
be solved by the CVX solver.
In Fig.4.1, optimal represents the performance of caching placement that is found
by CVX and ML represents the performance of the optimal caching placement using
the proposed Q-learning. The red line represents the average backhaul rate that is
calculated under the condition that the range of code rate 1

NSBS
≤ Rc ≤ 1. The

blue line represents the backhaul rate that is calculated in the circumstance that
the code rate Rc ∈ { 1, 1/2, 3/4, 1/4}.
First, it can be seen that the proposed algorithm Q-learning can achieve almost the
same performance as CVX since these two curves are almost overlapped, which is
exactly what we expect.
Second, it can be seen that the backhaul rate is decreased with the increase of the
cache size since both curves in Fig.4.1 monotonically decrease over the cache size.
Finally, the reason why Q-learning is used to solve MILP problem is that the caching
placement usually happens during the off-peak traffic time, CVX has to repetitively
calculate the convex optimization at different time slots in order to find the optimal
coded caching placement for the case of dynamic file popularity. However, Q-learning
gives a sequence of action-state pairs. Given a state, there is always a corresponding

23

4. Results

0 2 4 6 8 10 12 14 16 18 20

Cache Size M

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l R
at

e
R

ML
Optimal

Figure 4.1: Backhaul rate as a function of cache size M , with N=200 files, δ=0.7,
r=60 meters.

action that can be extracted from Q-table to be proceeded in order to achieve a good
performance in the backhaul rate. Besides, for the case of dynamic file popularity,
using CVX to acquire the optimal caching placement replies on a good estimation
of the file popularity. However, Q-learning could update the Q-table by using the
new samples from the environment. No matter how the file popularity is changing,
the Q-table will adapt to the dynamic file popularity and a corresponding action
always can be extracted from Q-table. After that, a suboptimal caching placement
could be acquired.

4.2 Scenario 2: MovieLens
This section mainly focuses on applying the proposed Q-learning method to solving
the MILP problem that occurs in reality. The file popularity in this scenario is from
reality, Movie Lens, from which the file popularity is dynamic.
The file request data is from Movie Lens, which is an online recommender system
created by MovieLens Research to acquire research data on personalized recommen-
dations [10]. The recent three years of file data is used to generate 1000 time slots
data. Because the data from MovieLens is daily updated, three years of data can be
divided into 365 ·3 time slots. In other words, one day is taken as one time slot. The
recorded data should be ordered by timestamp first and labeled by the file name
before using.
The red curve and light blue curves in Fig.4.2 are the benchmarks that can be used
to compare with other file popularity estimation methods. In other words, any other
proposed algorithms try to achieve the same performance as the red curve or the

24

4. Results

light blue one. Since it assumes that the future file requests are known.
First, some parameters in Fig.4.2 are listed as below,

• ML represents the performance of Q-learning.
• CVX represents the performance of CVX solver.
• 10 represents the cache size M=10.
• 20 represents the cache size M=20.
• Genie aided means tomorrow’s file popularity is known, which causes the cor-

responding caching placement is optimal.
• Today means today’s file popularity is taken as tomorrow’s file popularity.

Based on this assumption, the corresponding caching placement is calculated.

1 100 200 300 400 500 600 700 800 900 1000

Time Slot

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

B
ac

kh
au

l R
at

e

CVX-genie aided(10)
CVX-today(10)
ML-genie aided(10)
ML-today(10)
ML-today(20)

Figure 4.2: Performance comparison of CVX and Q-learning based on two kinds
of file popularity estimation

Each point in Fig.4.2 is an average backhaul rate of 50 consecutive time slots. Several
conclusions can be made from Fig.4.2 and the corresponding analysis is stated below,

1. If tomorrow’s file popularity is assumed to be known, it can be seen by com-
paring the red curve and light blue curve that the performance of Q-learning
is closed to CVX, which is the optimal performance that can be achieved. A
similar conclusion can be applied to the scenario where today’s file popularity
is considered as tomorrow’s file popularity.

2. The third point of the green curve is 0.0062, which is less than the corre-
sponding point of the blue curve. Since the optimal caching placement for
today’s file popularity does not imply it will also be optimal for tomorrow’s.

25

4. Results

Therefore, some sub-optimal caching placement based on today’s file popular-
ity can perform better than optimal caching placement based on today’s file
popularity.

3. After time slots 200, all of the curves in Fig.4.2 are tending to increase since
more new files are appearing but cache size is fixed.

4. Before time slots 200, no matter which methods are used, CVX or Q-learning,
the backhaul rate in the scenario where today’s file popularity is regarded as
tomorrow’s file popularity is large at the beginning since at the beginning new
files bump up at the next time slot. Therefore, using today’s file popularity
as tomorrow’s file popularity is worse. With an increment in time, more in-
formation of requested files is acquired, then the backhaul rate will decrease
with a relatively more accurate file popularity prediction.

4.3 Convergence Investigation
Two action spaces are investigated to speed up the convergence rate of Q-learning.
One is a big action space, which adjusts the four elements of a state at one iteration.
The small action space only adjusts one state element at one iteration time. The
small action space is proposed since smaller action space means less dimensionality
of the Q-table and less iteration times are used to make the Q-table converged.

4.3.1 Big and Small Action Space
One episode is a sequence of states, actions, and rewards, which ends with terminal
state or limited iteration times [12]. In this thesis, not like computer games, there
is no terminal state. If iteration times are set to 5000, one episode is running out
of iteration times. In order to check whether Q-learning converges to the optimal
level, multiple episodes are used to achieve this goal. If all episodes generate the
same converged level, which means Q-learning converges optimally. Otherwise, it
doesn’t.
There are two sizes of iteration times used for investigation. One is 2 times of state
space size. The other is 6 times of state space size. The number of learning episodes
is always 8.

1. Small iteration times is applied to these two action spaces as Fig.4.3 shows.
The left column is using big action space, the right column represents using
small action space. The cache size for these three plots in each column in
Fig.4.3 are 10, 15, 20 respectively.
It seems that the big action space has better performance than the small
one since using the big action space converges almost at the same level by
running the same iteration times as small action space. Because Q-learning
takes more iterations to explore all feasible states when the size of action space
is decreased. The benefit of using a small action space is that the dimension
of Q-table is smaller, the time to finish the learning procedure is smaller. The
running time for the small one is 245 sec, and the big one is 563 sec.

2. Increase the iteration times to 6 times of the size of the state space. The results
are displayed in Fig.4.4 shows. Both action spaces behave better than that of

26

4. Results

1000 2000 3000 4000 5000 6000 7000 8000 9000

Iteration Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(a) Big action space, M=10

1000 2000 3000 4000 5000 6000 7000 8000 9000

Iteration Times

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(b) Small action space, M=10

0.5 1 1.5 2 2.5 3

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(c) Big action space, M= 15

0.5 1 1.5 2 2.5 3

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(d) Small action space, M=15

1 2 3 4 5 6

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(e) Big action space, M=20

1 2 3 4 5 6

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(f) Small action space, M=20

Figure 4.3: Convergence rate of using two action space for cache size M= 10, 15,
20, respectively.

using small iteration times. Since more iteration times are used, both of them
could explore all state-action pairs and converge at a similar sub-optimal level.

27

4. Results

The small action space has a smaller dimensionality of the Q-table but still requires
more iterations. One possible explanation is that the big action space requires fewer
iterations to explore all possible states since it can adjust four elements in a state
at one iteration. The subsequent cost is the real time to run the code for each
iteration actually is longer than using the small action space. For the small action
space, more iterations are used to explore the possible states since it only changes
one element in a state at one iteration. The benefit of this procedure is that the
real-time to run the code for each iteration is shorter.

4.3.2 Increasing the Convergence Rate
It is necessary to reach all state-action pairs for guaranteeing the convergence of Q-
earning [12]. Both action spaces take the risk of reaching the same states multiple
times since the exploration parameter ε is set to 1 to explore all possible states at
the beginning of the Q-learning.

There are two ideas to speed up the convergence rate. One is constraining the action
space at the beginning to reduce the times that some states are revisited. Another
one is the initial state is changing to (0,M, b3

4 ·Mc,M). The cache size that is
allocated for each µi is proportional to the value of µi. Since if the file popularity is
larger, it is more likely to be requested in the future. Therefore the lower code rate
should be assigned to the files that have larger file popularity. Moreover, the cache
space that is assigned to lower code rate should be larger in order to store more files
that have larger file popularity.

4.3.2.1 Dynamic action space

The detailed procedure is that the action space is limited at the beginning. For
the big action space, any actions that include −1 are omitted. For the small action
space, (−1,−2,−3) are omitted.

1. The performance is illustrated in Fig.4.6. The convergence rate is faster than
before in terms of iteration times. Since iteration times are 300, which is
smaller compared to the iteration times that are used before.

2. It also can be seen that the big action space takes less iterations to converge.
The converging point for the big action space is around 30 and for the small
action space is around 60. The reason is that the big action space can adjust
four elements at the same time.

3. The performance of using the big action space seems better than the small
one for a fixed cache size. Take the cache size M=10 for example, the final
converged level of using the big action space is lower than that of using the
small action space.

Moreover, the performance of the improved algorithm of using the small action space
still has quite good performance in Fig.4.5.

28

4. Results

0.5 1 1.5 2 2.5

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(a) Big action space, M=10

0.5 1 1.5 2 2.5 3

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(b) Small action space, M=10

1 2 3 4 5 6 7 8 9

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(c) Big action space, M= 15

1 2 3 4 5 6 7 8 9 10

Iteration Times 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(d) Small action space, M=15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iteration Times 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(e) Big action space, M=20

0.5 1 1.5 2

Iteration Times 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

(f) Small action space, M=20

Figure 4.4: Convergence rate of using two action space for cache size M= 10, 15,
20, respectively.

4.3.2.2 Proportional Initial State

Finally, the initial state is changed from (0, 0, 0, 0) to (0,M, b3
4 ·Mc,M) with a dy-

namic action space, the convergence rate curves for these two sets are illustrated as
Fig.4.7.

It can be seen that initializing the algorithm with the proportional caching placement

29

4. Results

0 2 4 6 8 10 12 14 16 18 20

Cache Size M

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

B
ac

kh
au

l R
at

e
R

ML
Optimal

Figure 4.5: Performance of using improved algorithm

50 100 150 200 250 300

Iteration Times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

M=5
M=10
M=15
M=20

(a) Big action space, M=5,10,15,20

50 100 150 200 250 300

Iteration Times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

M=5
M=10
M=15
M=20

(b) Small action space, M=5,10,15,20

Figure 4.6: Convergence of two different changing action space

significantly improves the rate of convergence.

4.4 Integrated File Popularity Estimation and Caching
Placement Implicitly

The results of the above two scenarios show that the proposed Q-learning can solve
the formulated MILP problem. However, it still relies on a good estimation of the
file popularity. Besides, it neglects the refreshment cost of cache nodes at each time
slot. Therefore, the minimum backhaul rate with an optimal caching placement at
each time slot does not imply that the cumulative backhaul rate within several time

30

4. Results

50 100 150 200 250 300

Iteration Times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e
M=5
M=10
M=15
M=20
M=5(Uniform)
M=10(Uniform)
M=15(Uniform)
M=20(Uniform)

(a) Big action space, M=5,10,15,20

50 100 150 200 250 300

Iteration Times

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ac

kh
au

l r
at

e

M=5
M=10
M=15
M=20
M=5(Uniform)
M=10(Uniform)
M=15(Uniform)
M=20(Uniform)

(b) Small action space, M=5,10,15,20

Figure 4.7: Convergence of two different changing action spaces with a proportional
initial state

slots is minimized. It is interesting to investigate whether file popularity can be
coupled with finding the coded caching placement in order to achieve the minimal
cumulative backhaul rate. Inspired by [11], we couple the file popularity is coupled
with the state space to affect the subsequent action, the coded caching placement.
We consider the scenario in [11] corresponding to a HetNet where each cell is served
by an SBS that can store M files. The size of the file library is N . It is assumed
that each SB is equipped with a caching control unit (CCU), which decides the
files that should be cached. If users can not get the files they want, the service
will be conducted by the backhaul link. The network structure is shown in Fig.4.8.
Besides, it is assumed that global popularity profiles and local popularity profiles can
be modeled as Markov processes. There is an underlying transition probability for
global popularity and local popularity, respectively, which is assumed unknown. At
every time slot, after users’ requests are revealed, each SBS only has the observation
of its local file popularity. The network operator could reach several SBSs and
get global file popularity by concatenating the local file popularity. The network
operator will transmit the global popularity to each SBS. Every SBS with CCU will
decide the caching placement for the next time slot based on the global popularity,
the local popularity, and the caching placement of the last time slot. The caching
placement of last time slot is considered since refreshing cache nodes also deprecates
the network performance.
The proposed algorithm uses Q-learning to find the optimal caching placement to
minimize the cost, which has three terms to account for. The first one is the cost of
refreshing cache contents; the second one is the mismatch between caching placement
and local file popularity. the third one is the mismatch between caching placement
and global popularity. They are weighted by λ1, λ2, and λ3. An action is a binary
vector with size of N , which is the number of files in the file library. 0 means the file
is not cached and 1 means the file is cached. A state is defined as a concatenation of
the global file popularity, the local file popularity, and the action of last time slot.
Global file popularity and local file popularity are modeled by a Zipf distribution.

31

4. Results

(1).pdf

Caching Control Unit (CCU)

PL1 PL2

PL3

PG1

PG3

PG2
Network operator (cloud)

Global popularity Markov chain Request of users (edge)

User requestsServe files to edge

CCU requestsSend files over backhaul

Global popularity Markov chain

PG(t)

PL(t)

Figure 4.8: Schematic of network structure

The global file popularity is given by,

[P i
G]f = 1

fniG
∑N
l=1 /l

ηGi
(4.2)

The local file popularity is similar. ηG1 = 1, ηG2 = 1.5, ηL1 = 0.7, ηL2 = 2.5.
It is assumed that there are two states of global file popularity and local file pop-
ularity, respectively. The assumed underlying transition probability for the global
popularity and the local popularity are as follows,

PG =
[
pG11 pG12
pG21 pG22

]
=
[

0.8 0.2
0.75 0.25

]
(4.3)

PL =
[
pL11 pL12
pL21 pL22

]
=
[

0.6 0.4
0.2 0.8

]
(4.4)

We consider Q-learning is used to find the optimal caching placement by learning
the underlying transition probability of global popularity and local popularity. The
optimal caching placement calculated by value iteration or policy iteration with
knowing the transition probability is taken as a benchmark as Fig.4.9 shows. SC1,
SC2, SC3 represent different scenarios, which are specified by the value of cost
parameters, λ1, λ2, and λ3. The horizontal curves in Fig.4.9 represent the minimal
cost in different scenarios, which is calculated by one of the DP algorithms, policy
iteration algorithm. The value iteration algorithm can be used to double-check the
result that is produced by the policy iteration algorithm. It can be seen that the cost

32

4. Results

10 1 10 2 10 3 10 4 10 5

Iteration Times

400

600

800

1000

1200

1400

1600

1800

C
os

t

SC1-optimal
SC2-optimal
SC3-optimal
SC1-Q
SC2-Q
SC3-Q

Figure 4.9: Policy iteration VS Q-learning

of caching placement that is calculated by Q-learning without knowing transition
probability can reach a similar level as policy iteration one, which represents the
minimal cost.

33

4. Results

34

5
Conclusion

In this thesis, greedy Q-learning is proposed to solve an MILP problem, which is
a function of the minimization of the backhaul rate. More specifically, the goal of
solving the formulated MILP problem is to find an optimal caching placement using
MDS codes in a scenario where file popularity is stationary in order to minimize the
average backhaul rate. Besides, the convergence rate can be speed up by adjusting
the action space and changing the initial state. It is shown that Q-learning can
solve an MILP problem well, which indicates that finding the optimal coded caching
placement for the case of stationary file popularity is feasible by using Q-learning.
Moreover, we also reproduced [11] to show it is possible to apply Q-learning to the
case of stationary file popularity by considering the cost of refreshing the cache nodes
to acquire the minimum cumulative cost. An interesting area of future research is
adapting the proposed Q-learning algorithm to the case of dynamic file popularity
profile with considering the cost of refreshing the cache nodes in order to find the
optimal coded caching placement and minimize the cumulative backhaul rate.

35

5. Conclusion

36

Bibliography

[1] S. Kumar, A. Graell i Amat, E. Rosnes, and L. Senigagliesi, “Private informa-
tion retrieval from a cellular network with caching at the edge,” IEEE Trans-
actions on Communications, vol. 67, no. 7, pp. 4900–4912, July 2019.

[2] V. Bioglio, F. Gabry, and I. Land, “ Optimizing MDS Codes for Caching at
the Edge .” IEEE Global Communications Conference (GLOBECOM), pp. 1–6,
2015.

[3] “Ericsson mobility report,” White report, Ericsson, 2018.
[4] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless

d2d networks,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp.
849–869, 2015.

[5] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless caching:
technical misconceptions and business barriers,” IEEE Communications Mag-
azine, vol. 54, no. 8, pp. 16–22, August 2016.

[6] J. Kangasharju, J. Roberts, and K. W. Ross, “Object replication strategies in
content distribution networks,” Computer Communications, vol. 25, no. 4, pp.
376–383, 2002.

[7] J. Pedersen, A. Graell i Amat, I. Andriyanova, and F. Brännström, “Optimizing
mds coded caching in wireless networks with device-to-device communication,”
IEEE Transactions on Wireless Communications, vol. 18, no. 1, pp. 286–295,
Jan 2019.

[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[9] N. Zhang, K. Zheng, and M. Tao, “Using grouped linear prediction and accel-
erated reinforcement learning for online content caching,” 2018 IEEE Interna-
tional Conference on Communications Workshops (ICC Workshops), pp. 1–6,
May 2018.

[10] GroupLens. Movielens latest datasets. [Online]. Available: https://grouplens.
org/datasets/movielens/latest/.

[11] A. Sadeghi, F. Sheikholeslami, and G. B. Giannakis, “Optimal and scalable
caching for 5g using reinforcement learning of space-time popularities,” IEEE
Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 180–190, Feb
2018.

[12] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning, 1st ed.
Cambridge, MA, USA: MIT Press, 1998.

[13] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-
ming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

37

https://grouplens.org/datasets/movielens/latest/.
https://grouplens.org/datasets/movielens/latest/.
http://cvxr.com/cvx

Bibliography

38

	List of Figures
	Introduction
	Background
	Purpose and limitations
	Thesis Outline

	Theory
	Wireless Caching
	Uncoded Caching Scheme
	Most Popular
	Least Recently Used
	Least Frequently Used
	Grouped Linear Prediction Model

	Maximum-distance Separable Codes
	Coded Caching Scheme
	Most Popular Placement
	Uniform Placement
	Proportional Placement
	Optimal Placement

	Reinforcement Learning
	Markov Decision Process
	Basic Definitions
	Value Function

	Dynamic Programming
	Policy Iteration
	Value Iteration

	Temporal-Difference Learning
	Q-learning
	Learning Rate
	Exploration and Exploitation

	Methods
	Problem Formulation
	Scenario
	Coded Caching Placement
	Backhaul Rate Formulation

	Q-learning
	State Space
	Big Action Space
	Small Action Space
	Reward
	Exploration, Exploitation, Learning Rate
	Algorithm Description

	Results
	Scenario 1: Zipf Distribution
	Scenario 2: MovieLens
	Convergence Investigation
	Big and Small Action Space
	Increasing the Convergence Rate
	Dynamic action space
	Proportional Initial State

	Integrated File Popularity Estimation and Caching Placement Implicitly

	Conclusion
	Bibliography

