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Abstract
Deep neural networks are powerful machine-learning models that excel at a large ar-
ray of machine-learning tasks. A major challenge in machine-learning is the problem
of assessing the uncertainty of deep-learning predictors. Coupled with this problem
is that deep neural networks tend to make overconfident predictions, which can
lead to incorrect decision making where errors go unnoticed. A number of schemes
for uncertainty detection have been proposed in recent years ranging from using
Bayesian methodology and Monte Carlo simulations to reading neuron states in the
upstream layers and letting the neural-networks learn to recognize its certainty. In
this thesis, we analyze one of the proposed methods that estimates the predictive
uncertainty of deep learning algorithms using an ensemble of deep neural networks.
Using classification of handwritten digits as the reference problem, we demonstrate
that this method is effective at assessing predictive uncertainty when faced with out-
of-distribution inputs and inputs that are distorted by deformation and noise. Our
results demonstrated that the distribution of the estimated predictive uncertainty
differs substantially between correctly and incorrectly classified inputs, indicating
that this method can be used to predict incorrect decision making.

Keywords: Deep Learning, Neural Networks, Ensemble Learning, Machine
Learning, Entropy, Predictive Uncertainty, Classification, CNN, Perceptrons.
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1
Introduction

Recent research have shown that deep-learning based methods achieve state-of-the-
art performance in numerous machine-learning tasks. This includes computer vision
[24], image recognition [46], speech recognition [19], natural-language processing [36],
and bioinformatics [2]. Well documented success of deep learning methods includes
that of conquering the game of Go [45] and the digital strategy game StarCraft2 [49].
Recent research also explored the viability of neural nets and deep-learning based
methods in a wider variety of more complex tasks such as sentiment analysis in short
texts [11] and it’s subproblems like sarcasm detection [40, 41], driving autonomous
vehicles [6], and health care [37].

A major challenge in machine-learning is to measure the confidence or uncertainty
of the predictions made by the algorithm [42]. While there exist measurement
metrics in statistical mechanics and information theory that measure uncertainty,
such as information entropy [44], negative-log probability measurements [42], and
Bayesian methods [12], there exists no general and uniformly agreed on procedure
for measuring uncertainty.

Another problem in deep-learning is that neural-network classifiers tend to be over-
confident in their decision making [25], especially when trained on smaller data sets
[4]. Studies have shown that this overconfidence can cause the algorithm to make
incorrect predictions without noticing [39]. In some cases, this is attributed to over-
fitting [14], but it remains unclear whether this is the case, or whether the error can
be attributed to other causes.

As mentioned above, research has explored the possibilities for using neural net based
algorithms to aid decision making for autonomous vehicles [6, 47] and for application
in advanced health-care [37]. The ability to measure the predictive uncertainty is
crucial for decision making in these areas.

As suggested in ref. [33], a well-calibrated uncertainty (or confidence) measurement
can indicate whether to trust the prediction or not.

1



1. Introduction

1.1 Problem specification

It is necessary to know whether a machine-learning algorithm is uncertain about its
decision or not. With proper uncertainty measurements, the user can better decide
whether or not to trust the decision made by the algorithm.

In this thesis, I analyze the method proposed by Lakshminarayanan et al. [25] for
uncertainty estimation using deep neural network ensembles. I evaluate this method
using classification of handwritten digits as the reference problem with focus on out-
of-distribution inputs and inputs affected by different types of distortion.

In short, the goal of this thesis is to answer the following questions:

• How does the method proposed by [25] perform with regards to out-of-distribution
and distorted inputs?

• Can we use the estimated predictive uncertainty to forecast incorrect predic-
tions?

1.1.1 Scope

This thesis focuses on analyzing the method proposed by Lakshminarayanan et al.
[25] for estimating predictive uncertainty through an applied example. The method
involves training an ensemble of deep neural networks, using a specific objective
function for training. As thus, in my experiments, I have used the hyperparameters
and network structures similar to those used in Ref. [25].

Unlike Lakshminarayanan et al. [25], who performed experiments on a wide array
of problems and datasets for both regression and classification, for my numerical
experiments, I consider the task of classifying images of handwritten digits [27]. My
goal is to quantify the uncertainty in classifying out-of-distribution- and distorted
inputs, using change of line thickness and salt and pepper noise as the two main
distortion types considered in the experiments.

1.1.2 Contributions

The main contribution of this thesis if the more in-depth analyses of the uncertainty
estimation scheme proposed in ref. [25]. These analyses were carried out using the
classification problem of handwritten digits with the MNIST dataset as reference.

This thesis provides a more thorough analyses of the scheme by [25] with regards
to out-of-distribution inputs and distorted inputs. Lakshminarayanan et al. also
performed experiments involving out-of-distribution inputs. The contributions of
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1. Introduction

this thesis in this regard includes another applied example of the proposed method
using inputs that are different but closer to the training distribution than example
demonstrated in ref. [25]. I demonstrate how uncertainty changes as the inputs
diverges from the training distribution with regards to one or more attributes of the
inputs.

Aside from providing an additional example of the method proposed by [25], this
thesis also provides a more in-depth understanding of the methods main components
and their impact on the method itself by demonstrating the effect of each component
separately and the impact and contribution of these components when used together.

The final contribution of this thesis is the insight in to relationship between predic-
tive uncertainty and incorrect decision making in deep learning algorithm. And how
it can be used to forecast an incorrect decision based on the input.

1.2 Prior work

The estimation of predictive uncertainty in machine-learning predictors was high-
lighted as a problem already in ref. [42]. The case of neural networks possibly failing
at assessing their predictive uncertainty is highlighted by many studies such as [25,
31] and [39].

As the interest in adapting neural-networks to encompass uncertainty is growing,
publications such as [38] and [15] have focused on utilising Bayesian formalism to
train neural networks for this purpose. According to Lakshminarayanan et al. [25],
Bayesian neural nets are neural networks where a prior distribution is specified upon
the parameters and a posterior distribution of the parameters are found during
training. However, Lakshminarayanan et al. [25] argues that Bayesian networks are
harder to implement and computationally slower to train in practice because of the
modified none-streamlined training process.

Lakshminarayanan et al. [25] proposed a method inspired by the work of Gal et al.
[12], which was published earlier. Gal et al. proposed a method of using Monte Carlo
dropout, or MC-dropout to estimate uncertainty. According to Lakshminarayanan
et al. [25], MC-dropout behaves similarly to machine-learning ensembles, which is
why their proposed method consists of training an ensemble of deep neural nets and
then evaluate the combined average output of each member network to obtain better-
calibrated uncertainty measurements. In their research, ref. [25] demonstrated that
the ensemble method outperforms MC-dropout method proposed in [12].

Mandelbaum et al. [33] proposed an evaluation metric for certainty (confidence)
that is based on the euclidean distance between the resulting vector of neuron states
in the earlier upstream layers. However, their research question is different from
that of Lakshminarayanan et al. [25] in that while [25] is interested in the neural
network uncertainty and indecisiveness based on the distribution of the outputs, the

3



1. Introduction

measurement metric proposed in ref. [33] is independent of the network outputs.

Like Mandelbaum et al. [33], DeVries et al. [10] proposed a method where the
neural nets are trained to calibrate their own uncertainty. The difference between
ref. [33] and [10] is that the latter trained the network to output the certainty as
a numerical value in an additional output neuron separated from neurons used for
the machine-learning task itself. A similarity between the research of Mandelbaum
et al. [33] and DeVries et al. [10] is that their proposed methods are independent
of the output of the neural networks. However, their method require modifications
to the training process, which was already an argument against the Bayesian neural
nets in ref. [25].

4



2
Deep-learning and uncertainty

estimation

According to [43], machine-learning is an area in computer science where the algo-
rithms learn and infer. Most problems in machine-learning can be boiled down to
approximating the function that maps an input data point x(µ) to its correct target
t(µ). Cases where the targets are known are called supervised learning, and cases
where they are unknown are called unsupervised learning. In this thesis, the focus
is on a classification task which falls under supervised learning [35].

Deep-learning is a field in machine-learning where the algorithms are learning by
performing the task over and over. The learned concepts are stacked on top of each
other to piece together information of higher level [13]. In classic machine-learning,
the input needs to be processed and filtered for the necessary information. This
process is called feature engineering [43]. According to [13], deep-learning mitigates
the need of feature engineering.

The first part of this chapter deals with the basics of deep-learning, what are neural-
networks, and how to train them. The second part of this chapter describes the
scheme proposed by Lakshminarayanan et al. [25] using neural-network ensembles.
In the last section, I present the metrics I use in this thesis. This includes classifi-
cation error, accuracy, and information entropy.

2.1 Artificial neural-networks

Neural-networks are mathematical models inspired by the interaction between neu-
rons in the brain [35, 13]. In the brain, brain cells, also known as neurons, are wired
together to form a complex network. Information is transmitted from neuron to
neuron using their intermediate connections as electrical signals [35]. A neuron pro-
cesses the information it receives from its connected neurons. An output is produced
and sent to other connected neurons.

In machine-learning, most neural-networks are based on the neuron model proposed
by McCulloch and Pitts [34, 20]. Consider a neuron unit i which is connected to

5



2. Deep-learning and uncertainty estimation

Figure 2.1: Illustration of a activation process of McCulloch-Pitts neuron. Here,
neuron i is connected to 5 other neurons with connection strengths (weights)
wi1, wi2, ..., wi5, respectively. The incoming signals v1, ..., v5 are multiplied with the
connection strengths and summed together. The activation function g(.) is applied
to this sum to turn it into the output si. Based on figure 2.1 in [5].

N neurons j in its vicinity. McCulloch and Pitts [34] modeled the activation si
of neuron i using equation (2.1). Here, vj represents the incoming signals from
the j connected neurons, wij represents the connection strengths (weights) between
neuron i and j. The function g(.) is called an activation function, and θi represents
the activation threshold (this is also known as bias [13])

si = g

 N∑
j

wijvj − θi

 . (2.1)

A simple caricature of this neuron model is illustrated in figure 2.1.

2.1.1 Multi-layer perceptrons and fully connected layers

Suppose that we are modeling the output of several neurons, let s denote the n-
dimensional vector that represents the outputs produced by n neurons. A conse-
quence of (2.1) is that these outputs can be computed by computing each component
si using eq (2.3). The vector b can be computed using linear algebra according to
(2.2). Here, W is the n ×m weights matrix that represents the connection weight
between these n neurons and m other neurons. The vector v is the m-dimensional
vector that represents the incoming signals from the m connected neurons [35]

6



2. Deep-learning and uncertainty estimation

Figure 2.2: Illustration of a multi-layer-perceptron with 3 layers, along with the
flow of a feed-forward operation. Based on figure 2.2 from [5]. All mathematical
transformations applied to the input pattern x(µ) are documented below each layer.

b = Wv − θ, (2.2)
si = g(bi). (2.3)

Note that eq. 2.3 is applied element-wise on the entire vector b In deep-learning,
several McCulloch-Pitts neurons are wired together in a layer-by-layer-structure
using equation (2.3) and (2.2). These networks consist of an input layer, an output
layer, and a number of hidden layers. Such networks are known as multi-layer
perceptrons (MLPs) [35]. An example of a MLP network with one hidden layer is
illustrated in figure 2.2.

Suppose that we are to feed the n-dimensional input pattern x(µ) through an MLP
network similar to the one illustrated in figure 2.2 with m neurons in the hidden
layer. The activation s(1,µ)

i for each neuron i in the hidden layer is calculated by

s
(1,µ)
i = g

 n∑
j=1

w
(1)
ij x

(µ)
j − θ

(1)
i

 . (2.4)

The final outputs y(µ)
j from this network is then calculated as a function of the

neuron synapses s(1,µ)
k from the hidden layers by equation (2.5)

y
(µ)
j = f

(
m∑
k=1

w
(2)
jk s

(1,µ)
k − θ(2)

j

)
. (2.5)

7



2. Deep-learning and uncertainty estimation

In the case were there are L hidden layers instead of just 1, then the outputs are still
calculated in the same way as in equation (2.5), and each of neuron activation s(`,µ)

j

in any hidden layer ` are calculated in terms of the previous layer `− 1 according to

s
(`,µ)
i = g

∑
j

w
(`)
ij s

(`−1,µ)
j − θ(`)

i

 . (2.6)

A layer where all neurons are connected to every neuron in the previous layer is
known as a fully connected layer [13], in some literature, these layers are known as
dense layers [9].

2.1.2 Convolutional neural-networks

According to [13], convolutional neural-networks (CNNs) are neural-networks de-
signed to process inputs that are two-dimensional images. While a regular fully
connected layer makes use of matrix multiplications. Convolutional nets uses a vari-
ation of discrete convolution [13]. Convolution is an operation between two functions
x and w of the same dimensionality defined as follows

s(i) = (x ∗w)(i) =
∑
a

xawa−i. (2.7)

Here, the "∗"-operator denotes the convolution operator. In neural-networks, the
first argument x of (2.7) is known as the input, and the second argument w is
called the kernel. Usually, the input is a multidimensional array (a.k.a a tensor),
and the kernel is a multidimensional array of parameters. Convolution is also an
operation that is conveniently defined on multiple axes. Suppose that the input is
a two dimensional image X(µ), then the kernel W(1) also has to be two-dimensional.
A consequence of this is that the output is also two dimensional. The activation
S

(1,µ)
ij for neuron (i, j) in this convolutional layer is calculated according to eq. (2.8).

Here g(.) is the activation function. In the context of convolutional neural-networks,
S

(1,µ)
ij is also known as a feature map [35]

S
(1,µ)
ij = g

[
(X(µ) ∗W(1))(i, j)

]
= g

[∑
m

∑
n

x
(µ)
i+m,j+nw

(1)
mn

]
. (2.8)

Note the change of sign in the indices used in (2.8) versus (2.7). Equation (2.8) is an
alternative form for writing convolution that is more widely used when implementing
convolutional-nets [13]. Some literature describes them as filters that scan and
perform the convolution operation in eq. (2.8) on smaller parts of the input at a
time. Figure 2.3 illustrates the convolution operations that occur in convolutional-
layers.
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Figure 2.3: Illustration of convolution in CNNs. Given a 3 × 3 input, using a
Kernel of size 2 × 2, the feature maps are calculated according to the formulas in
the figure. Based on figure 2.3 in [5] which is based of a figure used by [13].

Additionally, the outputs from convolutional-layers also filtered through a so-called
pooling-layer. A pooling-layer takes the output from its connected feature maps
and summarize them to a single number. Examples of pooling layers include the
max-pooling layer which, outputs the maximum of its connected feature maps, and
the l2-pooling layer that computes the root-mean-square value of the feature map
outputs [35].

2.2 Classification problems

Previously, we described machine-learning problems as approximating the function
that maps a given input x(µ) to its correct target t(µ). In machine-learning, clas-
sification problems are defined on a finite set of N classes 1 where each input x(µ)

is supposed to be assigned to their respective correct class by the algorithm. The
task of recognizing handwritten digits from the MNIST-dataset is an example of a
classification task [25].

Since each class is a discrete-element in the finite-set of N classes (or labels), they
can be represented numerically as integers. Let c(µ) = 1, ..., N denote the integer
representing the correct class for input x(µ). An approach to classification problems
in machine-learning is to approximate the discrete probability distribution of the

1Hence, classification problems. These are also called labels
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conditional probability y
(µ)
i = P (c(µ) = i|x(µ)) such that y(µ)

i is largest when i
corresponds to the correct class for input x(µ) (i.e. when i = c(µ)), and smaller
otherwise. A machine-learning model that uses this prediction scheme is called a
probabilistic-classifier [43].

Training neural-networks as probabilistic classifiers requires the labels c(µ) to be
encoded into the targets t(µ). This encoding is done by modelling the targets as
N -dimensional vectors using

t
(µ)
i =

1 if i = c(µ)

0 otherwise
. (2.9)

This kind of unit vectors are sometimes referred to as one-hot-vectors in computer
science [18].

Once an output y(µ) is obtained from a trained neural-network, a class is assigned
to the pattern x(µ) that was fed to the network. Usually this is done by computing
the one-hot-vector t̂(µ) by

t̂
(µ)
i =

1 if i = arg maxi y(µ)

0 otherwise.
(2.10)

This is equivalent of calculating the integer ĉ(µ) = arg maxi y(µ) directly. In which
case, the ultimate goal of training a probabilistic-classifier is to be able to assign any
given input x(µ) its correct class. Mathematically, this means that a well-trained
algorithm is expected to calculate t̂(µ) such that

∀µ, i : t̂(µ)
i = t

(µ)
i . (2.11)

Equivalently, ∀µ : ĉ(µ) = c(µ) is expected of a well-trained algorithm if ĉ(µ) is com-
puted. While these two conditions are equivalent, t̂(µ) introduces more mathematical
conveniences in terms of expressing classification error (and classification accuracy)
in later sections in this chapter.

According to [35], the outputs of a neural-networks can be transformed into proba-
bilities by using the softmax activation function in the output layer. This function
is defined as

yi = eαbi∑N
c=1 e

αbc
. (2.12)

Here bi stands for the local-field of neuron i in the output layer bi = ∑
j wijvj − θi.

The parameter α is usually set to unity (α = 1). Apart from transforming the
outputs of a neural net into probabilities, the output of softmax yi is largest when

10
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the local-field bi is the largest, and smaller otherwise. This property also ensures
that neural nets can be used as probabilistic classifiers.

2.3 Training the neural-network

In order for an neural-network to correctly predict the label of an input pattern x(µ),
correct weights W(`) and thresholds θ(`) are required. One question remains, how
do we calculate the correct weights and thresholds?

Given a classification problem with training set T = {(x(µ)
T , t

(µ)
T )|µ = 1, ..., p} con-

sisting of p training samples. The problem of finding the correct weights can be seen
as an optimization problem where the parameters are adjusted iteratively to mini-
mize a loss function, also known as the energy function [35, 13]. For each iteration,
the parameters are updated using gradient-descent.

2.3.1 Energy functions

An energy function H is a function defined by the inputs, targets, and the weights
and thresholds of the neural-network. For classification problems, the function H
needs to fulfill the following:

1. H has to be differentiable with respect to the parameters in the network.

2. H decreases when the classification error (probability of a neural-network
model making an incorrect prediction) decreases.

The first rule is needed since it allows us to update any parameter σ (denoting any
weight connection wij or threshold θi) in the network using the gradient-descent
update rule defined in (2.13). The parameter η in (2.13) is the step length. In the
context of neural-networks training, η is also known as the learning rate

σ(t+1) = σ(t) − η∂H
∂σ

. (2.13)

The second property ensures that the classification error of the network decreases as
we adjust the parameters of the network to minimize the energy function. According
to [35, 25] and [42], the negative log-likelihood function in eq. (2.14) is the preferred
energy function when training neural-network models to perform classification tasks.
Negative log-likelihood is also known as the cross-entropy loss function [42]. This is
also the energy function used in this thesis

11



2. Deep-learning and uncertainty estimation

H = −
∑
µ

∑
i

t
(µ)
i log2 y

(µ)
i . (2.14)

2.3.2 Backpropagation

The procedure of finding the gradients of the energy function with respect to the
network parameters is known as error-backpropagation [28]. Suppose that we have a
multi-layer perceptron with L hidden layers, given an input pattern x(µ), the neuron
state update rules in each of the layers would be that of (2.15),(2.16) and (2.17)

V
(`,µ)
i = g(b(`,µ)

i ), b
(`,µ)
i =

∑
i

w
(`)
ij x

(µ)
j − θ

(`)
i , ` = 1, (2.15)

V
(`,µ)
j = g(b(`,µ)

j ), b
(`,µ)
j =

∑
k

w
(`)
jk V

(`−1,µ)
k − θ(`)

j , 1 < ` < L, (2.16)

y
(µ)
k = f(b(O,µ)

k ), b
(O,µ)
k =

∑
k

w
(O)
kl V

(`,µ)
l − θ(O)

k , ` = L. (2.17)

To calculate the update gradient ∂H

∂w
(O)
mn

for the weights w(O)
mn that connects layer L

to the output layer, we differentiate the energy function H by using the chain rule
according to (2.18) where ∂H

∂y
(µ)
i

is the derivative of the energy function w.r.t. to

neuron y(µ)
i , dy

(µ)
i

db
(O,µ)
i

is the derivative of the output w.r.t. to its local-field, and finally,
db

(O,µ)
i

dw
(L)
mn

is the derivative of the local-field w.r.t. the weight w(L)
mn

∂H

∂w
(O)
mn

=
∑
µ

∑
i

∂H

∂y
(µ)
i

dy
(µ)
i

db
(O,µ)
i

db
(O,µ)
i

dw
(L)
mn

. (2.18)

Using the equations (2.15),(2.16) and (2.17), we can calculate each of the derivatives
in (2.18) into (2.19) and (2.20). Here f ′(.) is the derivative of the activation function
f of the output layer, and δim denotes the Kronecker delta (i.e., δim = 1 if i = m,
otherwise 0)

dyi
dbi

= f ′(bi), (2.19)

dbi
dwmn

= δimV
(L,µ)
n . (2.20)

Inserting (2.19) and (2.20) into (2.18), the final equation for calculating the gradients
with respect to the weight becomes eq (2.21)

12
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∂H

∂W
(O)
mn

=
∑
µ

∑
i

∂H

∂y
(µ)
i

f ′(bi)δim︸ ︷︷ ︸
∆(O,µ)
E

V (L,µ)
n =

∑
µ

∆(O,µ)
E V (L,µ)

n . (2.21)

A consequence of the equations for the local-field, differentiating the local-field w.r.t.
thresholds would always be−1. Thus the update gradient for the thresholds becomes
(2.22).

∂H

∂θ
(O)
m

=
∑
iµ

∂H

∂y
(µ)
i

f ′(bi)δim(−1) = −
∑
µ

∆(O,µ)
E . (2.22)

Next, the parameters between layer L and ` = L−1 are to be updated. The gradients
for the weights in the layer are obtained by applying the chain rule repeatedly [35].
To find the gradients to the next set of weights, we reapply the chain rule 3 times.
This is done using equation (2.23),(2.24), and (2.25)

∂H

∂w
(L)
mn

=
∑
µ

∑
i

∂H

∂y
(µ)
i

dy
(µ)
i

db
(O,µ)
i

db
(O,µ)
i

dw
(L)
mn

, (2.23)

∂b
(O,µ)
i

∂w
(L)
mn

=
∑
j

w
(O)
ij

dV
(L,µ)
j

dw
(L)
mn

, (2.24)

∂V
(L,µ)
j

∂w
(L)
mn

=
∂V

(L,µ)
j

∂b
(L,µ)
j

db
(L,µ)
j

dw
(L)
mn

= g′(b(L,µ)
j )δjmV (`,µ)

n . (2.25)

Similarly, to compute the gradients for the consecutive layers, we apply the chain
rule repeatedly to find the update gradients for those layers. This is possible due
to the layered structure of multi-layer perceptrons [35]. Once the gradients for the
layers are computed, the weights and thresholds are updated using the update rule
(2.13). A direct implication of eqs. (2.19) and (2.25) is that the activation functions
must be differentiable.

2.3.3 Stochastic gradient-descent and mini batches

In order to find the correct weights and thresholds for deep neural-network, an
iterative process that uses gradient-descent is used to update the weights. The
gradients are calculated using error backpropagation described in section 2.3.2.

In the beginning, weights and thresholds are initialized using a chosen distribution
[35]. Training samples x(µ)

T are then fed through the network. Using an energy
function H, the update gradients of the weights and thresholds in each layer is
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Figure 2.4: A satirical, but very informative description of machine-learning.
Reproduced from xkcd.com/1838 under the creative commons attribution-
noncommercial 2.5 license.

calculated by applying chain rule error backpropagation. Then the parameters in
the neural net model are updated using eq (2.13). Albeit satirical, figure 2.4 works
as a summary of the process of training deep neural nets.

As the energy function H is not necessarily convex in the space of the weights
and thresholds [22], stochastic methods are used to mitigate the possibilities of the
training to converge in a local optimum in H w.r.t. to the network parameters.
One of these methods is to use a stochastic gradient-descent algorithm where the
training patterns are either sampled one by one, or by simply shuffling the order
of the training patterns between each iteration of feeding all p patterns, one such
iteration is also known as an epoch [35]. In most cases, this algorithm minimizes
the risk of the weights getting stuck on saddle points, and local optima [26].

According to [35], it is also possible to feed all training samples in one go. This is
called batch training. While this is more convenient when writing proofs, in general,
the iterative stochastic approach is more favoured due to the latter being less prone
to converge prematurely into a local optimum [13, 35]. The number of operations
remains the same in both cases, batch training have the advantage of being faster
in terms of computational time, due to parallel computation algorithm applied to
matrix- and vector-operations [35].

A middle ground between batch and full stochastic gradient-descent is to use mini
batches. The training samples are randomly permuted and divided into mini batches
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of sizemB. The energy function is then normalized across the mini batch. According
to [35], this can speed up the training significantly while still mitigating the risk of
the training to converge prematurely.

Stochastic gradient-descent can be augmented using an adaptive learning rate with
regulated momentum depending on the gradient norm. One way of doing this results
in the optimization algorithm known as Adam. This optimization algorithm were
proposed by Kingma et al. in ref. [22].

2.4 Scheme for estimating predictive uncertainty

This section present the scheme for estimating the predictive uncertainty that was
proposed by Lakshminarayanan et al. [25]. Given a classification problem with N
labels and the set T =

{
(x(µ)

T , t
(µ)
T )|µ = 1, ..., p

}
of p training samples and corre-

sponding targets. The scheme proposed in ref. [25] consist of the following three
components

1. Choosing a proper scoring rule as training criterion.

2. Use adversarial training to smooth the predictive distribution.

3. Train an ensemble

These three components are described in detail in the following subsections.

2.4.1 Proper scoring rule

Lakshminarayanan et al. [25] described a proper scoring rule as a function that
rewards better-calibrated predictions over worse. While this is similar to the prop-
erties of energy functions listed in sect. 2.3.1, a scoring function S assigns higher
values to better-calibrated predictions instead of lower.

Suppose that S(y(µ), (x(µ), t(µ))) is a scoring rule that evaluates the predictive distri-
bution made by a trained network y(µ)

i = P
(
c(µ) = i|x(µ)

)
. Here, c(µ) is the integer

representing the correct class of input pattern x(µ) (see sect. 2.2), y(µ)
i is output i of

a neural-network with N outputs. Most importantly, S needs to satisfy (2.26) and
the equivalence implication in (2.27)

S[y(µ), (x(µ), t(µ))] ≤ S[t(µ), (x(µ), t(µ))], (2.26)

S[y(µ), (x(µ), t(µ))] = S[t(µ), (x(µ), t(µ))] ⇐⇒ y(µ) = t(µ). (2.27)
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In their scheme, the networks are trained using the energy function H = −S

According to [25], many common energy functions used for training neural-networks
fulfill the property required for a proper scoring rule. This includes the negative log-
likelihood function in (2.14) that is used when training neural nets as a probabilistic
classifier.

2.4.2 Adversarial training

Adversarial examples are datapoints that are specially engineered to trick a machine-
learning algorithm into making an incorrect decision [39, 31]. Given an arbitrary
input pattern x(µ) and an energy function H, an efficient way of generating an
adversarial example x′(µ) is to use eq. (2.28). This method is known as the fast
gradient sign method [14]

x′(µ) = x(µ) + εsign(∇x(µ)H). (2.28)

The idea behind adversarial training (AT) is to generate adversarial examples during
training and then treat them as additional samples in the training set [14]. This
is done by generating the adversarial example x′(µ) (using for instance (2.28)) for
each given input x(µ) and then perform the gradient-descent procedure with error
backpropagation using the generated x′(µ) as input to the network. According to
[14], training a machine-learning algorithm this way results in improved robustness
of the classifier.

2.4.3 Ensembles: training and predictions

In machine-learning, ensembles are models that combine multiple machine-learning
models to produce better results [29]. Deep ensembles refer to ensembles consisting
of deep neural nets.

In general, there are two ways of training an ensemble. One is randomization meth-
ods were each model is trained independently of each other. The other approach is
the use of boosting, where the ensemble members are trained sequentially [51]. In
this thesis, I mainly used randomization methods since this is the training model
favored by [25]. Another motivation for the use of randomization over boosting is
that it allowed me to train each ensemble member independent of each other, which
means that they could be trained in parallel.

Given an ensemble size K, the training scheme use by Lakshminaryanan et al. [25]
can be boiled down to these steps

1. Initialize each of the K members’ weights and thresholds independently.
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2. Each member is then given the whole training set shuffled randomly.

3. Train each of the ensemble members using their shuffled training samples as
input.

4. An alternative to 3), use adversarial training described in sect 2.4.2.

Another way of training randomization ensembles is to use bagging (or bootstrap-
ping), where each member is given a subset of the training data [7]. I favored the
training procedure used by [25] because according to [29, 25] it is outperforming
bagging methods.

Training aside, there exist numerous ways of modeling the prediction made by an
ensemble [29, 30, 51]. Suppose that we have an ensemble of size K, with y(k,µ) being
the output of member k, then one way of modeling the ensemble prediction Y (K,µ)

is to average the predictions made by each member using

Y
(K,µ)
i = 〈y(k,µ)

i 〉 ⇐⇒ 1
K

K∑
k=i

y
(k,µ)
i . (2.29)

In their work, Lakshminaryanan et al. [25] modeled the ensemble output using
the averaging model in eq (2.29). According to [51], this scheme is more favored
when facing regression problems. Zhou et al. [51] and Hansen et al. [17] both
suggested that a prediction scheme more resembling a voting system is better suited
for classification problems. Hansen et al. [17] described a vote by member k to be
the one-hot-vector t̂(k,µ) calculated by

t
(k,µ)
i =

1 if i = arg maxi y(k,µ)

0 otherwise.
(2.30)

Note that this is exactly the same as classifying operation in (2.10). Using this
method, the ensemble prediction Y (K) becomes

Y
(K,µ)
i = 1

K

K∑
k=1

t̂
(k,µ)
i . (2.31)

In this thesis, both ensembles using averaging and voting are used to compare their
impact with regards to performance and predictive uncertainty estimation.
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2.5 Scoring metrics

In this thesis, I mainly use two measurement metrics to evaluate the scheme for
estimating predictive uncertainty. These two metrics are information entropy and
classification error. Entropy is used to measure predictive uncertainty. This is done
in order to analyze the relation between entropy and classification error.

2.5.1 Information Entropy

Information entropy is a metric proposed by Claude Shannon [21, 44]. Let X denote
a discrete random variable with N observable outcome with P (X = i), i = 1, ..., N
denoting the probability to observe outcome i. In ref. [44], Shannon defined the
information entropy Z(P (X)) as

Z(P (X)) = −
N∑
i=1

P (X = i) log2 P (X = i). (2.32)

An important property of Z(P (X)) is that it is a symmetric function [44]. Further-
more, the global maximum of Z(P (X)) occurs when X is uniformly distributed (i.e.
P (X = i) = 1/N) and 0 when X is distributed such that there exist an event j
that can be observed with union probability (i.e. P (X = j) = 1), and 0 otherwise
(P (X 6= j) = 0). In other words, information entropy is a function of the broadness
of the distribution, which also falls under our intuitive understanding of uncertainty
as we are more uncertain about the outcome when observing an event distribution
that is broader compared to a sharply peaked one [21]. This is the main reason I
use entropy for measuring predictive uncertainty of neural-network predictions.

Suppose that y(µ) is the output from feeding the input pattern x(µ) through a neural-
network model. The entropy of the network output y(µ) can then be computed by

Z(y(µ)) = −
N∑
i=1

y
(µ)
i log2 y

(µ)
i . (2.33)

2.5.2 Classification error

Classification error is an estimation of the probability of the neural-network making
an incorrect decision. Assuming a classification problem with N labels, then the
classification error can be calculated using eq. (2.34) where the vector t̂(µ) is the
predicted target by the classifier that is calculated using (2.10) [35]
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C = 1
2p

p∑
µ=i

N∑
i=1
|t(µ)
i − t̂

(µ)
i |. (2.34)

Opposing to classification error is classification accuracy, which stands for the prob-
ability of the input patterns being correctly classified by the neural net. This implies
that classification accuracy Cacc can be calculated as Cacc = 1− C [35].
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3
Description of simulations

In this chapter, I describe the series of experiments that were performed to analyze
the predictive uncertainty estimation scheme described in 2.4. This chapter starts off
by explaining the basic setup for the experiments. The choice of ensemble size and
network structures are specified and motivated in this chapter. The chapter aims
to give the readers enough information to reproduce my results. In general, these
analyses are carried out by deconstructing the methods to its components. Each
component were analyzed individually in terms of their strength and contribution
to the scheme in it’s entirety.

3.1 Datasets and experiments setup

As specified in section 1.1, this thesis is about analyzing the scheme proposed by
[25] using the image-classification-problem of recognizing handwritten digits using
the MNIST dataset. Therefore the training samples from MNIST were used to train
the neural-networks. Apart from using the 10000 testing samples from MNIST, a
separate dataset consisting of about 1000 self-collected handwritten digits were used
in our experiments.

For most of our experiments, ensembles of size 20 were used. This is because Laksh-
minarayanan et al. [25] observed that their measurements converge on large ensem-
ble sizes in their experiments. The said convergence happens around the size of 20.
I also observe that increasing ensemble size past 20 does not affect the results. If
not specified, the ensembles in the simulations consisted of multilayered-Perceptrons
with 3 hidden layers with 200 neurons in each layer. This is the network structure
that was used by [25] in their simulations. For some of our experiments, we used en-
sembles of convolutional neural-networks with 2 convolutional layers with 16 neurons
in the first convolutional layer, and 32 in the second layer.

Each network in the ensemble was trained using the full training set from MNIST
according to the procedure described in section 2.3. The Adam optimizer was used
as the training algorithm [22] since [25] also used Adam in their experiments. Since
Lakshminarayanan et al. [25] listed adversarial training as optional, we only briefly
compared the results of using adversarial training with the results without. In a
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majority of the experiment, adversarial training was not used.

As stated in section 2.5, the predictive uncertainty was measured using information
entropy. Classification error was also measured in order to see the relation between
entropy and classification error. In their experiments, Lakshminarayanan et al.
[25] used the negative log-likelihood function (presented in eq (2.14)) to measure
uncertainty. I decided to use entropy since the knowledge of the targets was not
required when using entropy. While NLL does capture uncertainty [42], another
reason for us to favor entropy over NLL is that NLL is not a bounded function and
goes to infinity as the predicted probability of the correct class goes to 0.

3.2 Testing digits and distortions

As mentioned in the previous section, two testing datasets were used in our experi-
ments. The first one being the testing samples that are apart of the MNIST dataset;
the second one is a dataset of 1000 self-collected, bilevel images, hereby referred to
as the CTHMNIST dataset in this report. These digits were mainly collected from
bachelor students of the IT-student union division of Chalmers university of tech-
nology. There are two reasons for creating the CTHMNIST dataset:

1. It allowed us to evaluate how the method proposed by Lakshminarayanan et
al. performs on out-of-distribution inputs that are similar to the inputs in
MNIST.

2. Since the original images were available to us, it was easier to apply different
types of distortions to them without having to upscale the images, since scaling
up an image and then scaling down the image doesn’t guarantee that the same
image is reproduced, and may produce additional distortions through artifacts
from the scaling algorithm algorithms [3].

Lakshminarayanan et al. [25] performed some experiments with out-of-distribution
inputs using the NotMNIST dataset[32] as input to classifiers trained on the MNIST
dataset. We opted to use the CTHMNIST dataset since the inputs are much closer
to the MNIST dataset versus the NotMNIST dataset, which consists of letters.

Initial experiments involving only ensembles with a single member were performed
on CTHMNIST to produce initial comparisons between attributes of CTHMNIST
and the MNIST dataset. In the next few experiments, different distortions were
applied to the digits in CTHMNIST to test the performance of [25] with distorted
input. Mainly two types of distortion were used, namely change of line-thickness,
and salt and pepper noise. The original CTHMNIST digits are first downscaled and
fitted to a (200× 200) pixels box with a padding of 40 pixels applied using similar
methods described in [50] before applying the distortions. The digits were then
downscaled to match the (28) dimension of the MNIST images before they were fed
to the neural-net classifiers.
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3.2.1 Line thickness

The line-thickness of handwritten digits depends on the thickness of the pen (or
brush) that was used to write these, and the real-life dimensions (sizes). Therefore,
neural-net classifiers trained on the MNIST digits might fail to recognize handwrit-
ten digits that are not part of the MNIST dataset simply due to the digits having a
different line thickness [35].

In these experiments, the line thickness of the CTHMNIST digits were calculated
and adjusted using the algorithm described by Kozielski et al. [23]. We applied
the algorithm on the images individually so that we ended up with 29 datasets of
distorted CTHMNIST digits with the line thickness adjusted to target values ranging
from 2-30. These mutated digits were fed to the neural-net classifiers to measure
how the classification error and entropy changed as a function of Line thickness.

A detailed description of the algorithm by [23] can be found in Appendix A.1.
Additionally, we also measured the classification error and entropy of ensembles
consisting only of one member network to compare the ensemble approach to models
not using ensembles in terms of performance and predictive uncertainty estimation.

3.2.2 Salt and Pepper Noise

The next type of distortion we explore is salt and pepper noise. We define salt and
pepper noise as a distortion method where the binary values of randomly selected
pixels flipped using a binary NOT operation. Since CTHMNIST consists of grey-
scale images due to the interpolation algorithms used for downscaling, the selected
none zero pixels are set to 0, and the selected zero (white pixels) are set to 255.

Salt and pepper noise were applied in two ways. First, the CTHMNIST digits were
adjusted to a line thickness with the lowest classification error, the salt and pepper
noise were then applied to the adjusted images by randomly selecting non zero pixels
and set them to zero. Then once again from the images of optimal line thickness,
we do the opposite by randomly selecting zero pixels and set them to 255.

3.3 Predictive uncertainty and incorrect decisions

In these last few experiments, the relation between entropy and incorrect decision
making in deep learning models was explored. An example of incorrect decision
making, in this case is to classify an image of a 4 as 9. While this example is pretty
harmless, incorrect decision making in other areas might have horrible consequences.

These last few experiments were performed by classifying the images using trained
deep learning classifiers. Then the correctly classified images were separated from
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3. Description of simulations

the incorrectly classified images. Finally, the entropy of the outputs for both cases
was evaluated.

This experiment is performed using the MNIST test set, CTHMNIST digits without
applying line thickness adjustments, and CTHMNIST adjusted to the line thickness
with minimal classification error. Once again, the results produced by deep learning
models with only one neural-net classifier were compared to those produced by
ensembles. This is done using both multi-layer perceptrons and convolutional-nets.
Additionally, we also briefly analyzed the impact of using adversarial training and
ensembles using member voting as prediction scheme, as well as looking at the
regions of high average entropy using only ensembles of perceptrons.

3.4 Implementation details

The experiments were implemented using python. This is because python as a
programming language provides convenient libraries such as SciPy [8] and NumPy
[48, 8] that are useful for high level numerical and linear algebraic operations similar
to that of MatLab. Available in python is also Matplotlib, which was used to
visualize the results.

Most importantly, the deep-learning library Keras is mainly a python library[9].
Keras provides many useful tools for building and training neural-network based
models and algorithms. Keras also makes use of Google’s Tensorflow as a backend
[16, 1]. The models used were implemented using Keras functional API.
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Dataset Mean LT (px) LT Variance (px) Mean Accuracy Mean entropy
MNIST test 1.48 0.126 0.98 0.024
CTHMNIST 1.38 0.21 0.87 0.106

Table 4.1: Comparisons of basic attributes of CTHMNIST and the MNIST test
set. The line-thicknesses (LT) are calculated using the methods described by [23] on
28 by 28 images. The CTHMNIST digits are preprocessed, only using the procedure
described in [50]. The mean entropy is calculated by averaging the entropy of each
digit that were fed to the network. Both the mean accuracy and mean entropy in
this table are calculated by averaging the results over 20 independent trials.

4.1 Comparison of MNIST and CTHMNIST

Table 4.1 shows the calculated line-thickness of both the MNIST test set and CTHM-
NIST digits in their 28-by-28 dimensions. Without applying any line-thickness ma-
nipulation or normalization, the results in table 4.1 demonstrate the difference in
some attributes. At least from what can be observed, based on the lower accu-
racy and higher entropy is that the digits in the CTHMNIST dataset are harder
to classify for a single convolutional net trained using MNIST. The higher mean
entropy observed here vaguely indicates that there is a correlation between entropy
and classification error.

Samples of the numbers 6,9,4, and 7 from both datasets can seen in figure 4.1. From
what we can see, there are no clear differences between these samples, though we
do see that the MNIST samples in fig 4.1 contain more greyscale pixels than those
from CTHMNIST.
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Figure 4.1: Samples of both the MNIST test set and CTHMNIST. The top consists
of samples from the MNIST test set, and the bottom row consists of samples from
CTHMNIST of the same numbers.

4.2 Distortions using line-thickness

Figure 4.2 shows the classification error and average information entropy (entropy
averaged over the input) of ensembles in the size of 5,20,50, and 100 are plotted as
a function of line-thickness. We observe that increasing the ensemble size past that
of 20 does not significantly improve nor deteriorate classification error. Rather, the
metric seems to have converged as the ensemble size were increased past 20. When
looking at the plot of entropy (right panel of fig. 4.2), we observe that entropy seems
to be increasing with ensemble size. However, just like in the case of classification
error, the increase in entropy as a function of ensemble size seems to have converged
when the ensemble sizes goes past the size of 20. These results are consistent with
the observations reported in ref. [25].

The resulting images of line-thickness manipulations using [23] can be seen in figure
4.3. From this figure, we observe that while the image of 4 continues to be fairly
recognizable at the line-thickness of 30, both 8 and 9 have started to lose their
shapes at the same line-thickness as 4. From the results in figure 4.3, we can see that
both 8 and 9 were starting to lose their characteristic loops at high line-thickness.
Incidentally, we can also observe that the independent dots in the images have
started to merge with the digits at a certain line-thickness.

The previously described observations with regards to the convergence of our met-
rics in terms of ensemble size, are also observed in the case of convolutional net
ensembles, as seen in figure 4.4. A common observation in both 4.2 and 4.4 is that
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Figure 4.2: The classification error and entropy from an ensemble consisting of
multi-layered perceptrons of size 5, 20, 50, and 100. The left panel plots the classifi-
cation error as a function of line-thickness. The right panel plots the average entropy
over the mutated CTHMNIST dataset as a function of line-thickness. These results
are produced over 5 independent trials. Here the darker lines represent the average
over the runs, while the lighter lines show the different fluctuations from each run.
The horizontal dashed lines are the average classification error and average entropy
respectively over the trials for the MNIST test set, and the vertical black dashed
line is an approximated average line-thickness of the MNIST test set scaled up to
that of 280-by-280.

Figure 4.3: The change of sample images of an 8,4 and a 9 over line-thicknesses.
The columns are ordered by line-thickness. Starting from the left most columns, the
figure illustrates these same images adjusted to the line-thicknesses in the order 2,
5, 10, 15, 20, 25, and 30.

there seems to be a strong correlation between mean entropy and classification error,
as both of these metrics seem to increase and decrease in similar ways. Interestingly
when comparing 4.4 to 4.2, we can see that the classification seems to form a plateau
over the line-thicknesses between 10 and 20.
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Figure 4.4: Classification error and average entropy of ensembles consisting of con-
volutional nets. This figure illustrates the results from running the same experiment
that produces 4.2 using convolutional nets instead of multi-layer perceptrons. The
rest of the settings for this figure remains the same as 4.2.

Figure 4.5: Performance comparison between individual Multi-layer Perceptron
classifiers and an ensemble of 100 MLPs. The left panel plots the classification error
as a function of line-thickness, and the right panel plots the Average entropy over the
CTHMNIST dataset. In both panels, light blue colored lines represent the results of
individual MLP classifiers over 100 trials. This is compared to the darker blue line,
which corresponds to the results produced by a size 100 ensemble during 1 single
trial. The red lines represent the average performance of each individual ANN at
each line-thickness.
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Figure 4.6: Same experiments as figure 4.5, produced with CNNs and ensemble of
CNNs instead MLPs.

We also compared the behavior of individual neural-network models (i.e., Ensemble
size of 1). The figures 4.5 and 4.6 illustrate a comparison between the performance
of individual networks of a size K = 100 ensemble and the ensemble as a whole.
See the respective figure captions for a more detailed description of the content in
these figures. The main difference between these two is the usage of multi-layered
perceptron in the first one, and convolutional neural nets in the latter.

The results from the experiments where adversarial training and voting were used
can be found in the appendix. With respect to line-thickness, neither of these
methods had any significant impact on the task at hand in our experiments. The
results remain almost the same. In the case of adversarial training, this is in line
with the discovery by Lakshminarayanan et al. [25].
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Figure 4.7: Classification error and entropy produced by 2 ensembles over 5 trials
each with the inputs distorted with salt and pepper noise. One ensemble consists of
MLPs, and the second consists of CNNs. The noise is applied to the digits adjusted
to that of line-thickness with the least classification error. Based previous observed
results from figure 4.3, this line-thickness is 14. The noise is applied by first selecting
a number of black pixels, turning them white, and then from the unmodified image,
choosing a number of white pixels turning them black. Each step on the x-axis
corresponds to a multiple of 50 pixels.

4.3 Salt and pepper noise.

For our next few experiments, we do not compare ensemble sizes. All of these
experiments were be performed using the standard ensemble size of K = 20. The
results for salt and pepper noise experiments can be found in figure 4.7. Figure 4.8
shows how a picture of number 8 changes with varying degrees of salt and pepper
noise. See figure captions for more information on the figures.

The strong correlation between mean classification error and entropy was still ob-
servable in these experiments. We do note that the steeper curves in the figures,
especially in the case of convolutional nets. This could be due to the salt and pepper
noise messing up with the convolution operation in a way, or that convolutional nets
are more sensitive to this kind of distortion in general.
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4. Results and Discussions

Figure 4.8: Images of an 8 Distorted with salt and pepper noise applied the same
way it is described in figure 4.7. The first row is the 280-by-280 sized image of the
digits just after the noise is applied. Bottom row images are the results of scaling
down the images to 28-by-28, which is the images given to NN classifiers. The
leftmost and rightmost columns correspond to removing resp. adding 2000 black
pixels, and the middle-left and middle-right columns correspond to removing resp.
adding 800 black pixels.

4.4 Predictive uncertainty and incorrect decisions

The first few experiments were performed using only a single neural-network model.
Figure 4.9 shows the results for multilayered perceptrons, and figure 4.10 shows the
results for convolutional nets.

The ensemble-based solutions can be found in 4.11 and 4.12. More results involving
voting and adversarial training can be found in Appendix A.2.

In both of these cases, we can observe a peek around the entropy of 0 for correct
classification in the histograms. While the entropy distribution for incorrectly clas-
sified inputs is less concentrated around 0, for the cases of single neural-networks,
the peek around 0 still exists. This is not the case for ensembles, where we can see
in all four figures that the entropy distribution is concentrated on larger values.

In general, these results indicate that high entropy would likely mean that the pre-
diction might be wrong in both cases of ensembles and non-ensemble based models.
However, the entropy distributions produced by an ensemble clearly shows that the
two different cases are distinct in terms of uncertainty.
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Figure 4.9: Histogram of Information entropy distribution of correctly and incor-
rectly classified data points. The blue histograms correspond to correctly classified
input, and the red ones are incorrectly classified inputs. These values are produced
by using a single multi-layer perceptron classifier. The left-most column is produced
using the MNIST test-set, center column CTHMNIST without any adjustments to
line-thickness, and the right one is produced using the CTHMNIST digits adjusted
to the vicinity of optimal line-thickness, which ranges from 13-15.

Figure 4.10: Same histograms as in figure 4.9. This one is produced using a single
convolutional neural-network trained using MNIST.
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4. Results and Discussions

Figure 4.11: The experiments from figure 4.9 and 4.11, but performed using an
ensemble of 20 multi-layer perceptrons.

Figure 4.12: The experiments from figure 4.9 and 4.11, but performed using an
ensemble of 20 CNNs.
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5
Summary and conclusions

The main goal of this thesis is to understand and analyze a method for estimating
predictive uncertainty in neural-networks. This method was proposed by Laksh-
minarayanan et al. [25] and involves using an ensemble of neural-networks. The
neural-networks are trained using energy functions with specific properties. Option-
ally, adversarial training can be used to improve the performance of the ensemble
in terms of classification error.

The proposed method is analyzed by deconstructing it into its main components.
The analyses were carried out using classification of handwritten digits using the
MNIST dataset as training data set. We focused our analysis on out-of-distribution
inputs and distorted inputs. This is done by using both the MNIST test set and
a separate dataset of handwritten digits collected from IT-bachelor students, some
Ph.d. students and researchers from Chalmers. We used change of line-thickness and
salt and pepper noise as the two distortion types for our experiments. The predictive
uncertainty is measured using classification error and information entropy.

Throughout our experiments, we observed that the classification error gets worse
as the inputs diverge from that of the MNIST. We also found that entropy also
expresses this behavior, which indicates that average entropy is strongly related
to classification error. This is observed both with ensembles and a single neural-
network. In general, however, ensemble solutions generate higher entropy values
regardless of whether voting or prediction averaging is used as ensemble-prediction
scheme.

While low entropy usually indicates correct predictions in our experiments regard-
less of whether or not the classifier is an ensemble, we observed that the output of
single neural-network classifiers have low entropy levels even when the prediction is
incorrect. This is not true when using ensembles, where the outputs generally ex-
press higher entropy values when the prediction is incorrect. This goes to show that
the uncertainty measurements from ensembles are much better suited for forecasting
incorrect predictions when it comes to classifying handwritten digits.

To summarize and conclude this report, we demonstrated that the proposed method
for estimating the predictive uncertainty in neural-networks classifiers does indeed
produce well-calibrated results in this area. The major strength of this model is
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5. Summary and conclusions

the use of ensembles, which we found to be the most important component in this
scheme. This thesis demonstrated that uncertainty estimations from ensembles are
more satisfactory than that of single neural-networks. This comes with the strength
of ensembles being better at making accurate decisions overall in this problem.

5.1 Future work

While the usage of ensembles proved to be more effective when it comes to making
predictions and capturing predictive uncertainty, ensemble based models are still
resource-heavy in terms of computational time and memory. Worth exploring is to
find a model that behaves similar to ensembles but is computationally cheaper to
use.

As mentioned before in sect 1.2, the usage of Bayesian networks is the more stream-
line approach to estimating uncertainty. However, it was argued in [25] that these
methods still have shortcomings when it comes to implementation and training. It
is still interesting to compare the performance of the ensemble approach proposed
in [25] to that of Bayesian neural-networks.

Another future research could be the application of these methods in detecting
different types of uncertainty, and the cause of these. This can be done while also
comparing the ensemble approach to that of the aforementioned Bayesian neural
nets in the same regard.
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A
Appendix 1

A.1 Algorithm for modifying the line thickness

Let I(x, y) denote a two-dimensional image and a structuring element of radius r.
Kozielski et al. [23] described the operation of making the lines in the image thicker
as a morphological dilation. A dilated image I ′(x, y) fulfills is calculated using eq.
(A.1)

I ′(x, y) = max
rx,ry :d(rx,ry)<r

I(x+ rx, y + ry) for r ≥ 0. (A.1)

If r ≤ 0, then the operation becomes that of a thinning operation that is a variation
of morphological erosion. Described in eq (A.2)

I ′(x, y) = min
rx,ry :d(rx,ry)<r

I(x+ rx, y + ry) for r ≥ 0. (A.2)

Given these operations, the line thickness τ of for example an image I(x, y) of
a handwritten digit can be calculated using (A.3) where G(I) denotes the image
gradient of I(x, y) which is defined by [23] as the difference Ithick − Ithin between a
thinned image Ithin and a thickened image Ithick by a structuring element of radius
1

τ = 2
∑
x

∑
y I(x, y)∑

x

∑
y G(I)(x, y) . (A.3)

Suppose that an image I(x, y) is supposed to be adjusted to a target line thickness
T , then the algorithm can be described using the following steps.

1. calculate the radius of a structuring element as r = T − τ (using the current
line thickness).

2. Apply dilation or erosion on the image using either eq. (A.1) or (A.2).

3. Calculate the new line thickness τnew using (A.3).
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Figure A.1: The results from using an ensemble that uses member voting instead
of Averaging the member predictions.

Figure A.2: Comparisons of between two size 20 ensembles of multi-layered per-
ceptrons where one is trained using adversarial training. These results are produced
over 5 independent trials. Once again, the darker colored lines are the average over
these independent runs, and the lighter once are the fluctuations.

These steps are repeated until |τnew − T | ≤ ε where ε stands for an error diversion.
Throughout our experiments, ε is set to 0.9.

A.2 Additional results and discussions

See figure A.1 and A.2.
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Figure A.3: Classification error and average entropy produced by an ensemble
of CNNs and an ensemble of MLPs with inputs distorted with Salt and pepper
noise. The noise is applied by randomly selecting a number of pixels and flipping
their values. The randomly selected white pixels turn black, and the black pixels
turn white. In this plot, the noise is applied to CTHMNIST digits adjusted to
line thickness with the least classification error. The darker markers represent the
average over the trials, and the lighter ones represent the fluctuations over the trials

A.3 Unexplainable anomaly with convolutional neural-
networks

In a supplement experiment, we randomly select multiples of 200 pixels to be flipped
using the operation described previously in section 3.2.2. In the process, we noticed
the anomalies shown in figure A.3. We observed that as the amount of salt and
pepper noise increased, we noticed that the uncertainty, however, in ensembles of
convolutional neural-networks were approaching the limits of 0.

As this happens over multiples of trials, this means that the ensemble members seem
to all agreeing upon a common label. However, this is clearly unexpected, as the
classification error was still increasing.

A.4 Additional results with distributions

See figure A.6, A.7, A.8 and A.9, and their figure captions.
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Figure A.4: Results from the same experiments as figure A.3. The difference here
is that the noise is applied to the unmodified CHTMNIST digits rather then the
once adjusted to optimal line thickness.

Figure A.5: Images of an 8 Distorted with applied salt and pepper noise. The
noise is applied the same way as those that gave the results for figures A.3 and
A.4. Sorted according to the number of pixels that were selected to flip their values.
From the left, the number of pixels in each column is 1000, 2000, 5000, 10000.
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Figure A.6: Histograms from the same experiments that produced the previous
figures, this time using a 20 member MLP ensemble that uses voting rather than
prediction averaging.

Figure A.7: Histograms of the distribution of entropy like in the previous figures.
This figure is produced using ensembles of MLPs trained using adversarial training.

V



A. Appendix 1

Figure A.8: Histogram of the distribution of Entropy of heavily distorted inputs.
The left column represents the entropy distribution of the CTHMNIST dataset with
high line thickness(between 26 and 30), the center column with low line thickness
(between 2 and 6) and the third column is made with CTHMNIST with salt and
pepper noise with 12000 pixels flipped in the dimensions of 280-by-280. These
distributions were produced by a single MLP classifier over 20 trials.

Figure A.9: Histogram using the same datasets as A.8, produced over 5 trials using
an ensemble of 20 MLPs instead of a single neural network. The columns remain in
the same order as they were in A.8.
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