CHALMERS | UNIVERSITY OF GOTHENBURG

UNIVERSITY OF TECHNOLOGY

Help: ‘help’;

Init: 'init" project_name repository_url;

Open: ‘open’ project_name;

Close: ‘close’;

Create: ‘create’ model_name class_name;

Select: 'select’ (selectable_asset 'x') 'from' (model_name | '*') ('where' condition)?;
Insert: ‘insert' insert_assignment 'to’' (model name | '*') ('where' condition)?;

Update: 'update’ (model_name | '*') 'set' update_assignment ('where’ condition)?;

Delete: ‘delete’ (deleteable_asset "¥') 'from' (model name | '*') ('where' condition)?;

Calculate: ‘'calculate' (model_name | '*') column_name metric ('where' condition)?;
Validate: '‘validate' (model_name | '*') column_name metric ('where' condition)?;
Fit: 'fit' (model_name | "*') column_name ('where’' condition)?;

Predict: 'predict’ model_name column_value+;

Continue: ‘continue’ datetime_history 'in' model_name;

Development of a Query Language for
Improved Versioning Support for Machine-
Learning-Based Systems

Master’s thesis in Computer science and engineering

Erik Tran

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2022






MASTER’S THESIS 2022

Development of a Query Language for Improved
Versioning Support for Machine-Learning-Based
Systems

Erik Tran

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022



Development of a Query Language for Improved Versioning Support for
Machine-Learning-Based Systems

Erik Tran

© Erik Tran, 2022.

Supervisor: Daniel Striiber, Department of Computer Science and Engineering
Examiner: Jennifer Horkoff, Department of Computer Science and Engineering

Master’s Thesis 2022

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: A part of the grammar in the meta-language textX of the developed query
language

Typeset in KTEX
Gothenburg, Sweden 2022

v



Development of a Query Language for Improved Versioning Support for
Machine-Learning-Based Systems

Erik Tran

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

This thesis is about development of a query language for improved versioning sup-
port for machine-learning-based systems, focusing on the perspective of software
engineers. The motivation is to combine the worlds of software engineers and data
scientists as they have to work together effectively. Different existing tools that sup-
port management of machine learning assets are described and the reason why they
are not fit for software engineers are explained. A design science approach method
is applied for this thesis. Methods such as requirement elicitation, artifact feature
elicitation and artifact feature prioritizations have been applied. Requirements were
formed through independent research and are evaluated in four interviews. Features
were implemented based on the requirements, and are evaluated as well in another
four interviews. The artifact feature prioritization method includes construction of
a traceability matrix. The final evaluation results indicated that the population who
would hypothetically use this query language in its current state are users who are
less experienced in management of machine learning assets. Discussions regarding
future work such are related to scalability and data analysability are discussed in the
report. The query language could expand to more advanced users if more advanced
features are implemented e.g. features that supports data analysability or features
that supports other models so that it is not restricted to only Scikit-learn classes
that currently are the only classes that are able to be created by using the query
language.

Keywords: software engineering, query language, machine learning, asset, version-
ing.






Acknowledgements

I would like to thank my supervisor Daniel Striiber at Chalmers for providing me
with his guidance on the project and valuable feedback on writing my thesis.

I would also like to thank my examiner Jennifer Horkoff at Chalmers for providing
me with her valuable feedback on the thesis report.

Finally, I would like to thank all the study participants who volunteered their time
for interviews. Their valuable insights were very useful and helped with evaluating
the thesis project.

Erik Tran, Gothenburg, June 2022

vii






Contents

List of Figures
List of Tables

1 Introduction

1.1 Background and Motivation . . . . . . ... ... ... L.
1.2 Problem Description . . . . . . .. ... ... ... ...
1.3 Research Questions . . . . . . . . .. ... ... ... .. ...
1.4 Thesis Outline . . . . . . . .. . .. .. .

2 Related Work

3 Method
3.1 Design Science Cycles. . . . . . . ... ... 0.
3.2 Requirement Elicitation . . . . .. ... ... ... ... ... .. ..
3.3 Artifact Feature Elicitation . . . . . . . ... ... ... ... ....
3.4 Artifact Feature Prioritization . . . . . . . . . . ... ... ... ...
3.5 Artifact Technology Stack . . . . . .. ... ... ... .. ... ...
3.6 Ewvaluation Method . . . . . . . . . ... ...
3.7 Requirement Satisfaction . . . . . . ... ... ... L.
4 Results

4.1 Requirements . . . . . . .. ..o

4.1.1 Functional Requirements . . . . . . . . .. .. ... ... ...

4.1.2 Non-functional Requirements . . . . . . ... ... ... ...
4.2 Features . . . . . . ..
4.3 Traceability Matrix . . . . . . . ... ..o
4.4 Artifact Implementation Design . . . . . . . .. ... ... ... ...

4.4.1 Grammar . . . ... .. e

442 Code . . . . . .

4.4.3 Structure . . . . ...

4.4.4 Versioning . . . . . . ...
4.5 First Evaluation . . . . . .. ... ...
4.6 Second Evaluation . . . .. ... ... ... ... L.

5 Artifact Usage Scenarios

xi

xiii

10
11
11
12
12
15

17
17
17
20
21
23
24
24
29
31
32
32
36

43

ix



Contents

6 Discussion
6.1 Support for Scalability . . . . ... ... ... ... . L.
6.2 Support for Data Analysability . . . . ... ... ... ... .....
6.3 Support for Any Arbitrary Models . . . . . ... ... ... ... ..
6.4 Support for Other Data Types . . . . . . . . .. .. ... ... ....
6.5 Threats to Validity . . . . . .. .. . ... oo
6.5.1 Internal Validity . . .. .. ... ... ... .. .. ......
6.5.2 Construct Validity . . . .. ... ... ... ... ... ...
6.5.3 External Validity . . . . . ... ... ... ... ...

7 Conclusion
7.1 Limitations and Delimitations . . . . . . . . . . . . .. .. ... ...
7.2 Future Work . . . . . . . .

A Appendix
A.1 First Phase Interview Questions . . . . . . . . . ... . ... .....
A.2 Second Phase Interview Questions . . . . . . . ... ... ... ... .
A.3 First Phase Interview Code-Label Pairs . . . . . . . ... ... ....
A.4 Second Phase Interview Code-Label Pairs. . . . . . .. ... .. ...

55
95
95
26
26
56
56
57
57

59
29
60



3.1

4.1
4.2
4.3
4.4
4.5

4.6
4.7

5.1

5.2

5.3

5.4

2.5

2.6

2.7

5.8

2.9

5.10
5.11

5.12

5.13

5.14

List of Figures

Timeline of design science cycles. . . . . . . .. ... .. ... .. .. 10
A list of main command initials of the grammar. . . . . . . . . . . .. 25
Definitions for each main command initials of the grammar. . . . . . 25
Asset definitions in the grammar for the commands select, insert,

update and delete. . . . . . ... 27
Grammar definitions for conditions. . . . . . .. .. ... 28
Regular expression definitions for a few assets. . . . . . . .. ... .. 28
Partial implementation code of main loop function of the program. . 30
Metadata structure containing different assets. . . . . . . . .. .. .. 31
Initial folder structure. . . . . . . . . . . ... ... ... 43

Example execution command of main program in Visual Studio Code. 43
Example execution of init-command with its output. Initializes a new

project called p1. . . . . . . . . ... 43
Example execution of open-command with its output. Sets project
pl to be in command-mode. . . . . . .. ... 44
Example execution of close-command with its output. Unsets project
pl to be in command-mode. . . . . . ... ... 44
Example execution of init-command with its output. Initializes a new
project called p2. . . . . ... 44
Example execution of open-command with its output. Sets project
p2 to be in command-mode. . . . . .. ... 44

Example execution of open-command with its output. Unsets project
p2 to be in command-mode and sets project pl to be in command-mode. 44
Example execution of create-command with its output. Creates a

machine learning model of class DecisionTreeClassifier called m1.. . . 44
Folder structure after manually moving datasets into model folder. . . 45
Example executions of insert-command with its outputs. Inserts
training and testing datasets as the assets of model m1. . . . . . . .. 45
Example execution of select-command with its output. Showcasing
content of a training dataset. . . . . . . . ... ... ... ... .. 46
Example execution of select-command with its output. Showcasing
content of a testing dataset. . . . . .. ... ... L 46
Example executions of calculate-command with its outputs. Calcu-
lates several performance metric values. . . . . . . .. ... ... ... 47

X1



List of Figures

xii

5.15 Example execution of fit-command with its output. Trains model m1
to learn a column of its datasets. . . . . . . .. ... ... ... ...
5.16 Example execution of predict-command with its output. A male of
age 20 enjoys the dance music genre, based on the training dataset
and testing dataset. . . . . . .. ..o
5.17 Example execution of select-command. Displays hyperparameters of
amodel. . . . ..
5.18 Example execution of select-command. Outputs a specific hyperpa-
rameter value of amodel. . . . . .. ..o
5.19 Example execution of select-command. Displays performance metrics
ofamodel. . . . . ...
5.20 Example execution of select-command. Outputs a specific perfor-
mance metric value of a model. . . . . . ... ... L.
5.21 Example execution of select-command with its output. Partially dis-
plays a few first lines of the content of the metadata of a model. . . .
5.22 Example execution of select-command with its output. Displays the
latest version in the metadata of a model. . . . . . . .. . ... ...
5.23 Example execution of continue-command with its output. Repro-
duces a model of an older version. . . . . .. .. ...
5.24 Example execution of select-command with its output. Displays the
latest version in the metadata of a model, specifically after execution
of continue-command. . . . .. .. ... 0oL
5.25 Example execution of update-command with its output. Updates a
hyperparameter of a model. . . . . . .. ...
5.26 Example execution of select-command with its output. Displays hy-
perparameters of amodel. . . . . ... ...
5.27 Example execution of create-command with its output. Creates a
machine learning model of class DecisionTreeClassifier called m2. . . .
5.28 Example execution of select-command with its output. Displays hy-
perparameters of amodel. . . . . . ... ... 0L
5.29 Example execution of select-command with its output. Showcasing
the filtering feature. . . . . . . . . .. ...



4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8
4.9

4.10

4.11

4.12

4.13

4.14

4.15

List of Tables

Features that enable the ability to switch between projects as well as

creating new machine learning models. . . . . . . .. ... ... ... 21
Features that enable the ability to select asset(s) of machine learning
model(s). . . .. 21
Features that enable the ability to insert asset(s) to machine learning
model(s). . . ... 22
Features that enable the ability to update asset(s) of machine learning
model(s). . ... 22
Features that enable the ability to delete asset(s) of machine learning
model(s). . ... 22
Features that enable the ability to calculate performance metric val-
ues of machine learning model(s). . . . .. ... ... 22
Features that enable the ability to validate performance metric values
of machine learning model(s). . . . . ... ... L 22
Features that enable the ability to train machine learning model(s). . 23
Feature that enable the ability to predict values using a machine
learning model. . . . .. .. oo 23
Features that enable the ability to save new versions and retrieve
older versions of a machine learning model. . . . . . . . . . .. .. .. 23
Feature that enable the ability to execute Git commands. . . . . . . . 23

Maps rows of elicited requirements and columns of elicited features.
Displays whether there are any dependencies between them with True
(T) or False (F) values. . . . . .. ... ... ... ... . .... 24
Displays participants’ experience related to this thesis topic. Abbre-
viations: SM: Study Major, SDL: Study Degree Level, SE: Software
Engineering, Al: Artificial Intelligence. . . . . . . .. . .. ... ... 32
Displays conversion from code labels from first phase of interviews to
themes. . . . . . . . 34
Displays participants’ experience related to this thesis topic. Abbre-
viations: SM: Study Major, SDL: Study Degree Level, EML: Expe-
rience Level in Managing Machine Learning Assets (1 to 5) (1: very
inexperienced, 5: very experienced), EQL: Experience in Query Lan-
guages (1 to 5) (1: very inexperienced, 5: very experienced), PFP:
Participated During First Phase of Interviews, SE: Software Engi-
neering, Al: Artificial Intelligence. . . . . . . . . . .. ... ... ... 36

xiii



List of Tables

4.16 Displays conversion from code labels from second phase of interviews
tothemes. . . . . . . . ..

Xiv



1

Introduction

Data is the foundation of machine-learning-based systems. There are different types
of data in such systems such as modeling code, implementation code, metadata,
training data and model data. Tools that manage data with high traceability and
versioning support are of great importance for machine-learning-based systems that
evolve over time, since they can help reduce the work that needs to be done by
developers, and also because developers might require a better comprehension of
the evolution of such systems. Creating a version management tool for complex
machine-learning-based systems while trying to achieve high interpretability, per-
formance efficiency and interoperability is a challenging task.

This thesis is about development of a query language that is tailored to machine-
learning-based systems, with a focus on improvement of versioning support for such
systems by revising existing knowledge in the area. Such a system can help software
engineers with retrieval of historical data that they might need from a version history.

The software engineering research areas in this thesis topic will partially be about
knowledge seeking and mainly be about solution seeking. The research strategy
that is going to be employed for this thesis work is a design science study type of
research strategy as it is about development of an artifact which will be evaluated
with input from users with relevant expertise.

1.1 Background and Motivation

There already exist several tools with versioning support for machine learning as-
sets but are more towards data scientists’ perspective and less effective for software
engineers. The operations in such tools such as storing, tracking and querying data
in a version history are ineffective. The ineffectiveness of these tools in addressing
the needs of software engineers is explained more in Chapter 2.

This thesis is about the development of such a tool with improved version man-
agement support for machine learning assets that is focused on software engineers’
perspective. This is accomplished by developing a tool-supported query language
that offers domain-specific query functionalities for machine learning assets, being
tailored to software engineers by being integrated with the available versioning sys-
tem Git [1].



1. Introduction

One of the major differences between software engineers’ perspective and data sci-
entists’ perspective is that software engineers’ role is to analyze user requirements
and build a system that fulfills these requirements while data scientists’ role is to
analyze and manipulate big data. The motivation is to combine the world of soft-
ware engineers and data scientists as both have to work together.

This thesis aims to develop a query language with effective versioning support for
machine-learning-based systems that is more focused towards software engineers’
perspective by partially examining existing tools with versioning support. This
thesis explores different approaches in development of a querying tool with a high
usability and comprehensibility that is more towards software engineers’ perspective.
This thesis research involves exploration of design space of possible solutions in a
query language. In the end, the goal is a query language that supports interpretabil-
ity, performance efficiency and interoperability in machine-learning-based software
with a focus on the software engineers’ perspective.

Query Language

A query language is a computer programming language that retrieves data from
a data storage by sending queries [2]. A query is a request for data from a data
storage [3]. A data storage can either be a database or any text file that contains
data for extraction. The validity of a query command is valid if it is syntactically
correct. The correctness of a query command syntax is determined by the defined
grammar of the query language. A query for data can involve execution of code
that e.g. extracts data and performs calculations. A query language typically can
create, access and modify data. A query language can also be extended with other
additional functionalities with the capability to execute code.

Machine Learning Experiment Management Tools

A machine learning experiment management tool is a tool able to plan, track and
retrieve machine learning experiments and assets. Such tools can support developers
and data scientists when building machine learning software systems. Such tools
allows tracing back different versions of experiment runs [4].

1.2 Problem Description

When developing artificial intelligence enabled software systems (i.e., software with
integrated artificial intelligence components), it is desirable to benefit from version
control support. This is for the two main reasons commonly used for adopting ver-
sion management systems: 1. To support collaborative development, 2. To be able
to trace the version history of a particular project, allowing to retrieve and compare
previous versions.

Commonly used version management systems such as Git are efficient to store and
manage code, but not as efficient to store and manage machine learning assets. The
reason for this is that Git does not have advanced, domain-specific functionalities.
For example, it does not allow querying the version history to retrieve those model



1. Introduction

versions that had an accuracy score of at least 0.8. Same reason goes for existing
querying approaches in classical version control systems such as PostgreSQL [5] as
they are on the wrong abstraction level, and do not have advanced querying func-
tionalities that are specific for machine learning assets.

Although there exist a few dedicated tools with versioning support for machine learn-
ing assets such as Neptune [6] [7] that can store, track and query datasets from a
version history, these tools are more tailored towards the data scientists’ perspective
and less towards software engineers’ perspective. Since they are not connected to
established version control systems, they would require software engineers to adapt
a completely different kind of tooling that they are used to for the management
of machine learning assets. As both data scientists and software engineers have
to collaborate with each other, there is a need for effective storage, tracking and
querying datasets of machine learning assets based on available versioning systems.
This would allow software engineers to use the systems they are familiar with, while
eventually also providing support for data scientists via available interfaces to their
dedicated tools, such as Neptune.

Thus, the problem addressed is a lack of querying tools with versioning support
that are dedicated towards software engineers, allowing them to develop artificial
intelligence enabled software systems with the kind of tools that they are familiar
with. This problem results in redundancy in data storage with version history, and
collaboration becomes less feasible [8]. It is currently still challenging to create
tools with versioning support for machine-learning-based systems, while aiming to
achieve a high model interpretability, performance efficiency and interoperability for
both software engineers and data scientists. To confirm the quality of a tool, it is
essential to conduct some type of research method such as interviews, and evaluate
the tool with it. Although by creating a tool that favors software engineers over
data scientists, there already exists several dedicated tools that are more tailored
towards data scientists. The goal is to make a tool that allows effective collaboration
between both software engineers and data scientists.

1.3 Research Questions

In this thesis research, there are several research questions (RQs) that will be ad-
dressed.

« RQ1: How to design a query language with versioning support for machine
learning assets that is focused towards software engineers?

« RQ1.1: What querying functionalities do software engineers need and should
be included in such a query language?

« RQ1.2: How to implement such a query language on top of an existing version
control system?

« RQ2: To which extent does the developed query language achieve its goal of
enabling effective versioning of machine learning assets?



1. Introduction

1.4 Thesis Outline

Chapter 1 introduces briefly on the background and motivation, problem description
and research questions of this thesis project.

Chapter 2 consists of brief descriptions of prior work that are related to this thesis
project as well as parts that make this thesis project differ from prior work.

Chapter 3 explains the design cycles applied in this thesis project, requirement elic-
itation based on prior related work, artifact feature elicitation based on elicited
requirements, artifact feature prioritizations based on initially elicited and defined
features. The decision of the technology stack utilized for the development of the
artifact which in this case is the developed query language is explained. The eval-
uation method utilized for the developed query language is described. Finally, the
requirement satisfaction methodology is described.

Chapter 4 provides the results generated by using every mentioned method that
are applied in this thesis. Results such as the requirements, the features and the
language structure of the developed query language are described and explained.
Finally, evaluation results are provided.

Chapter 5 provides an example of usage scenarios of the query language.

Chapter 6 discusses potential improvements of the query language and the threats
to validity of this thesis.

Chapter 7 concludes this thesis with a concise description of the results and discusses
possible future work such as further development of the query language.



2

Related Work

This chapter describes prior related work that are about machine-learning-based
data management systems with versioning support. This would help with under-
standing flaws in such systems, and what types of requirements software engineers
would need. Each paragraph in this section is about a different topic. Each topic
relates to requirements that might be needed in machine-learning-based systems.
Additionally, each topic is identified with a number for referencing purposes further
in multiple parts of the report.

Topic 1, Machine Learning Asset Management

According to a recently published survey paper about machine learning asset man-
agement tools [7], providing improved tool support for developers of artificial in-
telligence based systems is still one of the relevant challenges today in the field of
artificial intelligence based systems. In the present, machine learning techniques are
becoming critical components of many software systems, which has caused a large
increase in adoption of machine learning techniques in many software systems in
the information technology industry sector. The need for this adoption is becoming
a critical component to many software systems because it is associated with large-
scale development of systems that require utilization of machine learning techniques.
Furthermore in the survey paper, it has been reported that there has been an in-
creasing number of tools for tracking and managing machine learning experiments,
which indirectly addresses the challenges of providing improved tools for machine-
learning-based systems.

Topic 2, OrpheusDB

According to a few research papers published by Silu et al. [8] [9], data science
teams spend significantly more time constructing, curating, and analyzing datasets
because of the tremendous growth of datasets. Different versions of datasets are
generated by data processing operations such as data transformation and cleaning,
feature engineering and normalization. However, there is no tool that allows effec-
tive storage, tracking and querying versioned datasets, resulting in redundancy in
versioned data storage, which makes collaboration less feasible. A tool that the au-
thors and its team has created is called OrpheusDB which is a wrapper on top of a
relational database for data management of structured data with versioning support.
The tool OrpheusDB supports a range of querying functions by a mix of structured
query language (SQL) and Git-style version commands. However, the tool is built
specifically for relational databases only. An assumption that the authors have made
is that SQL is best fit for querying data and versioning information. The goal that



2. Related Work

their study differs from this thesis study is that while OrpheusDB focuses only on
querying datasets, this thesis focuses more on querying machine learning assets, a
term that includes datasets, model data and metadata.

Topic 3, Data Management in Large-Scale Machine Learning Pipelines
A research paper published by a team in Google Research [10] discussed the data
management issues that arise in large-scale machine learning pipelines. The team
focused on the issues related to understanding, validating, cleaning, and enriching
training data. Fundamentally, the problem is that it is unclear on how to ensure
that the data is valid. The result of using invalid data will lead to low quality
machine learning models in return, which would affect the production in machine-
learning-based systems. The authors of the research paper have acknowledged that
production machine learning pipelines do not always provide the scaffolding required
by existing solutions. This thesis aims to develop a query language with improved
versioning support with a goal to solve these kinds of issues with data management
with production machine learning pipelines.

Topic 4, DSVC and DataHub

According to a research paper published by Anant et al. [11], relational databases
have limited support for data collaboration when working with large datasets. The
authors tried to overcome this issue by proposing two integrated systems: a dataset
version control system (DSVC) and a hosted platform built on top of DSVC called
DataHub. The system DSVC has functionalities that allows data scientists to work
around with divergent collections of datasets, and scales to larger and more struc-
tured datasets compared to Git. DataHub allows collaborative data analysis building
on their DSVC and supports better interaction capabilities. DataHub also has some
tool support such as data cleaning, data search and integration, and data visualiza-
tion. During the building of the two integrated systems that the authors proposed,
they have addressed several challenges regarding management and querying large
multi-version datasets that do not apply to regular source-code version control.
A challenge the authors had during development of DSVC was regarding how to
define a conflict, detect conflicts between branches, and merge non-conflicting diver-
gent branches. Traditional source-code version control systems such as Git define
conflicts by concurrent modifications to the same line. This is semantically equiva-
lent to detecting row-level conflicts for structured datasets. There would be no lost
update between two branches if there is a change of altering disjoint attributes for
overlapping rows in one of the branches, but this still leads to conflicts. This is one
of the problems in traditional version control systems when working with large-scale
datasets. Their study is somewhat relevant to this thesis. DataHub is a platform
that enables querying capabilities of large-scale datasets, while the goal of this thesis
is to develop a query language for machine learning assets that includes datasets,
model data and metadata.

Topic 5, DVC
A research paper published by Amine et al. [12] discussed about usage of tools such
as Data Versioning Control (DVC) that enables versioning support for machine



2. Related Work

learning data, models, pipelines and model evaluation metrics. Machine learning
artifacts need to be synchronized with each other and as well with the source and
test code of the software applications that utilize the machine learning models.
Therefore, coupling between software artifacts needs to be managed and updated.
According to the studies of the research paper, the results of 391 GitHub projects
using DVC showed that more than half of the DVC files in a project are changed
at least once every one-tenth of the project’s lifetime. Additionally, the DVC files
had a tight coupling between other artifacts. Around a quarter of pull requests of
change in source code and around half of pull requests of change in tests required
changes in the DVC files of the projects. An average of 78% of the studied projects
that utilized tools such as DVC showed a non-constant pipeline complexity. As re-
ported in the paper, it requires frequent and continual changes of the DVC files of
a project in order to manage connection between other artifacts. In order to tackle
such complexity, this thesis aims to develop a query language that does not require
such a file that needs continual changes.

Topic 6, Large-Scale Data Analytics and Statistical Machine Learning

A research paper published by Arun et al. [13] discussed large-scale data analytics
using statistical machine learning in many modern data-driven applications and that
developers have been tackling data management related challenges that arise in ma-
chine learning workloads. Many systems that include advanced analytics have been
built to tackle this challenge regarding data management of machine learning as-
sets. The research paper reviews and analyzes key data management challenges and
techniques such as query optimization, partitioning, and compression in machine-
learning-based systems. That is relevant to this thesis as the goal of this thesis is to
develop a query language with as low complexity as possible, and this is achieved
by utilizing the data management techniques that the research paper has discussed.

Topic 7, Google Colaboratory

According to a research paper published by Mary et al. [14], some prior work find-
ings revealed that data scientists are under-utilizing versioning tools like Git, which
made collaboration in data science experimental tasks more difficult. An integrated
development environment that data scientists commonly utilize for collaboration in
data science experimental projects is Google’s Colaboratory [15]. Furthermore, some
other findings that the research paper has found is that software engineering’s way of
versioning by utilizing Git has usually been avoided. This is because Colaboratory
already provides versioning support similar to Google Docs [16] way of versioning.
Colaboratory allows a real-time collaboration in a computational notebook where
users can simultaneously edit. Although data scientists utilize Colaboratory for
real-time collaborative data science, they usually have a difficult time with under-
standing past experiments by reading the version history provided by Colaboratory.
A functional requirement that is highly favored for the query language is model
versioning support.

Topic 8, Computational Notebooks
Another research paper published by Souti et al. [17] has pinpointed nine pain



2. Related Work

points, three of them being "Share and Collaborate", "Reproduce and Reuse"' and
"Archival" which are related to versioning, by utilizing computational notebooks.
The pain point "Reproduce and Reuse" also describes the importance of replicating
or reusing code in order to achieve high variability with model hyperparameters and
environment dependencies. Again, this is a pain point of utilizing computational
notebooks such as Colaboratory Notebook or Jupyter Notebook [18]. A functional
requirement that is highly favored is model reproducibility as it enables high vari-
ability which allows model optimizations.

Topic 9, Reproducibility in Machine Learning Pipelines

A research paper published by Peter et al. [19], discusses the importance of repro-
ducibility in machine learning pipelines, and the lack of reproducibility of modeling
is an existing problem for any machine learning practitioners. The lack of repro-
ducibility in machine learning pipelines causes significant financial costs, lost time
and sometimes personal reputation as well. Data provenance refers to how data was
collected historically, and is the most difficult challenge to ensure reproducibility. In
other words, to achieve high reproducibility, data provenance needs to be achieved
a priori.



3

Method

This chapter describes how the query language is developed in an iterative approach
by following several guidelines. These guidelines are described in the design science
method that is applied in this thesis, in Section 3.1. Section 3.2 explains how the
requirements are elicited and formed. Section 3.3 explains each elicited feature
that is based on the elicited requirements. Additionally, the elicited features are
prioritized in Section 3.4 utilizing a prioritization method with traceability matrix.
Section 3.5 explains the overall decision of the technology stack utilized for the
development of the query language. The evaluation method utilized for evaluating
requirements and features are described in Section 3.6. Finally, the requirement
satisfaction method that is utilized is described in Section 3.7.

3.1 Design Science Cycles

To develop a query language that has a specific purpose, it is necessary to ap-
ply a design science method. The work flow of this thesis follows an existing design
science method [20]. The design science method consists of in total seven guidelines.

Guideline 1 is about defining the artifact early to confirm whether it involves some
type of knowledge contribution or not. In the case of this thesis, the artifact is the
developed query language.

Guideline 2 is about working in iterations to improve the artifact and the knowledge
in each iteration as well as contributing to each research question in each iteration.
The length of each iteration is one week.

Guideline 3 is about defining the research questions where each research question is
related to a specific point e.g. the problem, the solution and the evaluation. The
research questions in this thesis are presented in Section 1.3.

Guideline 4 is about having regular meetings, where the student and the supervisor
discusses current progress at each iteration, and what to do for next iterations, and
how to improve progress.

Guideline 5 is about shift emphasis between cycles, where each research question
should be focused on each cycle. A cycle consists of several iterations. The length
of a cycle is approximately one month. In the case of this thesis, the length of



3. Method

each cycle is approximately six weeks. Each cycle in this thesis addresses each re-
search question to a preliminary extent as listed below. All cycles are connected to
each research question, but each cycle is more focused to a specific research question.

o Cycle 1 focuses on RQ1 and RQ1.1.
o Cycle 2 focuses on RQ1.2.
o Cycle 3 focuses on RQ2.

Guideline 6 is about describing the artifact precisely and concisely. The description
of the artifact benefits the reader and allows easier understanding of other sections
regarding discussions such as threats to validity (see Section 6.5) and future work
(see Section 7.2), to focus on the learning and less on the developed artifact itself.

Guideline 7 is about writing the thesis report iteratively to fill in findings found in
chronological order during development in each cycle.

Interviews Phase 1 Interviews Phase 2
<> <>

<«—Cycle 1 (6 Weeks)—»¢——Cycle2—— »¢—— Cycle 3————>

Addresses all RQs

Focuses more on RQ1 and Focuses more on RQ2
Focuses more on RQ1.2

RQ1.1 .
Focuses on evaluating
- Focuses on implementing whether the artifact
Focuses on defining f lobing th hi . | of i
requirements and features eatures and Fieve oping the |ac |eved_ its goal o .enab ing
artifact effective versioning of

for the artifact ; .
machine learning assets

Figure 3.1: Timeline of design science cycles.

3.2 Requirement Elicitation

To define requirements for the query language, it is necessary to conduct require-
ment elicitation methods. Conducting these requirement elicitation methods helped
with generating different requirements. These requirements are categorized into two

categories: functional requirements and non-functional requirements.

The elicited functional requirements were initially determined mainly by indepen-

10



3. Method

dent research about prior related work (see Chapter 2) and systematically analysing
different related dedicated tools’ functionalities. Chapter 2 contains several different
topics where each topic relates to requirements that might be needed in machine-
learning-based systems. One of the elicited functional requirements was initially also
determined partially by the knowledge of the author of this thesis. This knowledge
is about understanding how to build a query language on SQL-like commands which
is a crucial prerequisite knowledge for understanding the topic of development of a
query language. This knowledge is described in Section 1.1

The elicited non-functional requirements were initially determined by systemati-
cally analysing a standard reference list of non-functional requirements, as provided
by ISO/IEC 25010:2011 [21]. The relevance of each quality aspect from ISO/IEC
25010:2011 for the system was manually assessed, and kept those requirements that
were deemed as most relevant. Each non-functional requirement that is kept is fur-
ther analysed by independent research in different related work.

Each requirement is explained in detail about how they are derived and motivated
in Section 4.1. Conducting these elicitation methods also helped generate ideas of
potential feasible features for the query language.

An interview-based evaluation method is conducted to gather insights from inter-
viewees about the initial elicited requirements. This confirms the initially elicited
requirements and potentially elicits new requirements that can be formed by the
interviewees’ insights. This method is more described and explained in Section 4.5.

3.3 Artifact Feature Elicitation

To develop the query language, several initial features for it need to be elicited and
defined a priori. The initial features are defined based on initial elicited requirements
for the query language. A complete list of elicited features are provided in Section
4.2. Descriptions and detailed explanations on how each elicited feature is formed,
and motivations on how each elicited feature satisfies the elicited requirements are
provided.

An interview-based evaluation method was conducted during the first phase (see
Figure 3.1) and insights were gathered. These insights helped with confirming the
initial elicited features. Ideas for new potential features are gathered by the insights
from the interviewees. This is more explained in Section 4.5.

3.4 Artifact Feature Prioritization

To prioritize which features to implement for the artifact first based on the elicited
requirements and elicited features, a traceability matrix is created. It eases the de-
velopment progress as it displays the importance of each elicited feature and eases
decision-makings on which features to prioritize first for implementation. Detailed

11



3. Method

description for each requirement is provided in Section 4.1 and detailed description
for each feature is provided in Section 4.2.

3.5 Artifact Technology Stack

Before developing the query language, features are elicited and defined beforehand
in Section 3.3 and prioritized beforehand in Section 3.4 to ease the development
progress. To develop the query language, a technology stack used for developing the
query language is chosen. The technology stack chosen is based on the knowledge
and preferences of the author of this thesis project. The main goal is to satisfy as
many requirements as possible.

To develop the query language, the integrated development environment Visual
Studio Code is utilized. The programming language Python is chosen as it contains
many useful machine learning libraries such as Scikit-learn, PyTorch, TensorFlow
and Keras. A meta-language framework that is used for development of domain-
specific languages that includes support for regular expressions written in Python
called textX [22] is utilized for the development of the query language. The machine
learning library Scikit-learn is utilized as it provides a wide range of different machine
learning modules of classes such as classification, regression and clustering modules.
The GitHub repository data storage is utilized and acts as the database for the query
language. To access GitHub repository data storage, the version control system Git
is integrated and utilized in the query language.

3.6 Evaluation Method

Two phases of interviews were conducted to evaluate the developed query language.
The first phase of interviews was conducted at the end of the first cycle. The sec-
ond phase of interviews was conducted at the end of the last cycle. These cycles
are previously displayed in Figure 3.1. Each phase of interviews consisted of four
interviewees. The interviewees from the first phase were allowed to join the second
phase of interviews. However, the second phase of interviews was planned to include
several new interviewees who did not participate during the first phase of interviews
as well to get as much fresh insights as possible. The interviewees’ insights are sys-
tematically analysed in a thematic analysis. Most of the interviewees are students
of my supervisor’s current course called "Software engineering for data-intensive Al
applications" which is a software engineering course that is precisely in the same
context as our proposed thesis of developing an artificial intelligence enabled soft-
ware system. Furthermore, students are useful as a stand-in for practitioners in
research studies as there has been several studies suggesting that students practi-
tioners and industry practitioners do not have a statistically significant difference,
when performing tasks with tooling that the practitioners are not familiar with [23]
[24]. Regarding the interviewees motivation to participate in an interview, there are
benefits they could gain from it. A benefit that they can gain from this is that I could

12



3. Method

potentially also be a suitable candidate for their evaluation part of their potential
future studies as well. Another benefit they could gain from this is potentially gain
some ideas about different and unique ways of managing machine-learning-based
systems.

Interviews First Phase

The goal of the first phase of interviews is to gain insights about the initially elicited
requirements and making sure that the requirements are clear, which focuses on
RQ1, specifically RQ1.1. At the time of conduction of interviews in the first phase,
the query language is partially implemented. The interviewees are introduced with
a brief background of the thesis project. Subsequently, the elicited requirements
are displayed and explained. A quick demo of the partially implemented query
language is presented. Finally, questions regarding the elicited requirements are
asked. Some example questions asked are "Based on your own experiences of devel-
oping machine-learning-based software, would the requirement model reproducibility
be useful?", "Are there any missing requirements that would be good to have, based
on your own experiences?" and "What do you think about the usage of the query
language, based on what has been shown? What do you like, what needs improve-
ment?". A list of questions asked is provided in Appendix A.1. A summary of the
conducted interviews during the first phase is provided in Section 4.5.

The choice of participants should be experienced enough. An assumption that most
of the chosen participants are experienced enough is the fact that they have been lec-
tured or/and supervised by my supervisor who is experienced in Al engineering [25].

Insights are gathered in each interview. The insights provides ideas about potential
new requirements and new features that might be missing in the query language. It
also helps with deciding whether the features that are defined but not implemented
yet, should be implemented or not, e.g. the interviewees might suggest features
that are similar compared to initially elicited and defined features. The insights also
provides ideas about what the query language is capable of and what it could achieve.

Interviews Second Phase

The goal of the second phase of interview is to gain insights about the features and
making sure that the features are clear, which focuses on RQ2. Before introducing
the thesis project, the interviewees’ experience are assessed with a few questions
related to their experience related to this thesis topic. After that, the interviewees
are introduced with a brief background of the thesis project. Next, a quick demo of
the query language is presented which was done by following the steps provided in
Chapter 5. Finally, questions regarding the features are asked.

This phase helps with gathering insights from interviewees to help with confirming
that the implemented features for the query language are required to satisfy the
elicited requirements. Some example questions asked are "How would you rate your
own understanding of the query language on a scale from 1 (very low) to 5 (very
high)?" and "Based on your own experience in developing ML projects: How would

13



3. Method

you rate the usefulness of the query language on a scale from 1 (not useful at all)
to 5 (very useful)?". A list of questions asked is provided in Appendix A.2. The
list contains a mix of open-ended questions, closed-ended questions, rating questions
and multiple choice questions. Questions Q2.1 - Q2.4 are related to participants’
experience in machine-learning-based systems and are asked before a demo of the
project. This helped with assessing participants’ experience and evaluating their
insights on the query language. Questions Q2.5 - Q2.10 are related to features of
the developed query language and are asked after a demo of the project and the de-
veloped query language. A summary of the conducted interviews during the second
phase is provided in Section 4.6. A Goal-Question-Metric (GQM) approach [26] is
applied for the second phase of interviews. A list of goals and questions with metrics
are provided below.

e Goal G1: Evaluate the effectiveness of the querying tool.
— Question Q1: Who would hypothetically use the querying tool? (RQ1)
x Metric M1: Developers’ rating on their own experience in machine-
learning-based systems
x Metric M2: Developers’ rating on their own experience in query
languages
x Metric M3: Developers’ rating on the usefulness of the query lan-
guage of this thesis project
— Question Q2: Which features are the most useful in the querying tool?
(RQ1, RQ2)
x Metric M4: Developers’ subjective rating on the most useful feature
— Question Q3: How easy is it to use the querying tool? (RQ2)
x Metric M5: Developers’ rating on their own understanding of the
developed query language of this thesis project

There are interview questions that relates to each metric and are asked during the
interviews. The final score of each metric (except metric M4) is the calculated mean
score of the participants. Metric M4 is decided by a subjective rating by the partic-
ipants. The feature that is most chosen as the most useful is the metric value. This
metric would give some insights about the usefulness of the query language.

There are interview questions that lead to more detailed information. For GQM
Q1, interview questions such as "What are you studying?" and " Which study degree
level?" provides more detailed information on participants’ background. For GQM
Q2, interview questions such as "Which features are the least useful?", " Which of
the features need improvement? For each of them: what kind of improvement?" and
"Do you have ideas of new features that can further improve the usefulness of the
query language?" provides more detailed feedback on the prototype.

14



3. Method

3.7 Requirement Satisfaction

The interviewees during the first phase provided valuable insights. The insights
helped with confirming the initial elicited requirements as well as providing ideas
for new requirements. Initially defined requirements that the interviewees agree on
helps with confirming the requirements. Interviewees might disagree with a require-
ment or a feature with an explanation. If the explanation makes sense, then the
disagreed requirements or features are satisfied by either modifying the requirement
descriptions, or removing the requirements, or modifying the features, or adding
in new features. New requirements that were formed by the help of interviewees’
insights are analysed by independently researching about it in relevant research
papers. After confirming the need for the new requirements, new features are im-
plemented for the query language to satisfy the new and confirmed requirements.
The new requirements suggested by the interviewees are confirmed based on prior
related work as well as partially based on the knowledge of the author of this thesis
project.

The interviewees during the second phase also provided valuable insights which
helped with evaluating the query language. The second phase interviews were also
the final evaluation of the query language. Valuable feedback on features of the query
language were provided by the interviewees. Features that needed improvement can
be updated and improved in future. New feature ideas suggested by interviewees
are taken into consideration and discussed in Section 7.2.

15



3. Method

16



4

Results

This chapter presents the results by utilizing the methods mentioned in the previous
Chapter 3. The initially elicited and defined requirements are described, explained
and motivated. The new requirements formed by the insights gathered from the
first phase of interviews are also provided. The features that were used to struc-
ture the development of the query language are provided. The traceability matrix
that displays relationships between the requirements and features is provided. The
implementation design of the artifact such as the grammar, the code, the structure
and the versioning is described and explained. A summary of interviewees’ insights
about the query language is provided for each phase of interviews.

4.1 Requirements

Requirements are categorized in two categories: functional and non-functional. Each
requirement is described in detail how they were derived and what they entail.
Motivation for each requirement is explained. Additionally, each initially elicited
requirement is evaluated during the first phase of interviews, and insights were
gathered, which is more described in Section 4.5.

4.1.1 Functional Requirements

The query language is developed initially based on a few functional requirements.
A list of initially elicited functional requirements is provided below.

« FR1: Asset Manipulation

« FR2: Model Versioning

o« FR3: Model Reproducibility
o FR4: Data Provenance

o FR5: Model Interpretability

Asset Manipulation

This functional requirement is important as it is crucial to have asset manipulation
capabilities as part of the query language in order to manipulate and manage ma-
chine learning assets. Asset manipulation is the core functional requirement for the
query language. This requirement enables users of the query language to run differ-
ent commands that manipulate machine learning assets. The query language is also

17



4. Results

capable of running commands that execute code. By being able to execute code,
the query language could provide more valuable data such as different performance
metric values or prediction values of machine learning models. The query language
should be able to manipulate machine learning assets such as different available
machine learning model class-specific hyperparameters with domain-specific func-
tionalities such as selecting, inserting, updating and deleting. The query language
should also be able to create and train machine learning models. Additionally, the
query language should also be able to calculate and validate different available per-
formance metric values. The query language should also be able to predict values
of trained machine learning models. All of these querying functionalities would en-
able tuning of machine learning model hyperparameters in many different paths for
model optimizations. The query language should also be able to train the model as
well. In conclusion, this functional requirement allows other mentioned functional
requirements to be achievable.

The goal is to offer an integrated solution for machine learning experimentation
and versioning. Therefore, the envisioned query language should offer support for
domain-specific machine learning tasks as well as more traditional asset manipula-
tion tasks.

Model Versioning

This functional requirement is derived from and motivated in Chapter 2, Topic 7.
Model versioning is one of the main functional requirements for the query language
as it would enable users to save different versions of machine learning assets such as
binary file of the model and metadata file of the model. Each time a model asset
is manipulated, a new version will be saved in the metadata with updated values
including date time of when it happened, identification information of the person
such as the GitHub email that conducted the asset manipulation. This improves
traceability and data provenance when using the query language. The query lan-
guage should also be able to execute regular Git commands which enables saving
model assets in a GitHub repository. This would be useful in case files such as the
binary file of the model or the metadata of the model are lost locally which could be
saved by fetching the lost files from its GitHub repository. The ability to checkout
to different branches would also help with improving versioning support. This would
ease the evaluation and reviewing process of others’ work in different branches and
versions. [t also allows creating backup versions. The goal is to achieve high collab-
oration between software engineers and data scientists.

Model Reproducibility

This functional requirement is derived from and motivated in Chapter 2, Topic 8
and 9. Model reproducibility is an important functional requirement. The ability to
repeat an experiment and reproduce using the same model but with different model
hyperparameters is one of the functional requirements. The goal of this require-
ment is to ease the ability of tuning hyperparameters in order to achieve faster and
continuous improvements of machine learning models. Models with updated hyper-
parameters are able to be evaluated by calculating and checking the class-specific

18



4. Results

performance metric values of the model. The query language also enables machine
learning models to go back to previous versions that are tracked in the metadata,
which is the main purpose of this functional requirement.

Data Provenance

This functional requirement is derived from and motivated in Chapter 2, Topic 9.
Data provenance is an important functional requirement as well as it enables track-
ing abilities, such as being able to track when and how an asset is modified and
by whom. This applies to all processing steps in a machine learning pipeline that
includes data collection, data merging, data cleaning and model hyperparameter
modifications. The goal of this requirement is to avoid “visibility debt” in the con-
text of technical debt, which means to avoid missing data dependencies and histories
[27].

Model Interpretability

This functional requirement is derived from a research paper published by Zachary
et al. [28] that discussed the importance of interpretability of machine learning
models. A high interpretability benefits machine learning engineers with increased
trust, transferability, informativeness and more fair and ethical decision-making. A
high interpretability also benefits machine learning models with transparency. In-
terpretability is an important functional requirement in machine learning modeling
and can benefit the query language of this thesis. When using a highly interpretable
machine learning model created by the query language for predictions, it would ease
the comprehension of how the predictions were processed. This would lead to an
improved evaluation of the model.

During the first phase (see Figure 3.1), the query language is evaluated by an
interview-based evaluation method (see Section 3.6) and insights were gathered.
New functional requirements are formed and derived from interviewees’ insights
(see Section 4.5). A list of derived functional requirements elicited from insights
from the first phase of interviews is provided below.

o FR6: Data Analysability

Data Analysability

This is a functional requirement derived from insights gathered during the first phase
of interviews. Achieving this functional requirement enables the ability to analyse
data by e.g. utilizing some kind of visualization tool. Utilization of visualization
tools helps with understanding and interpreting data which helps with discovering
importances in data such as outliers that might be crucial information. This im-
proves evaluation of a model created using the query language by analysing the data.
Ways to achieve data analysability is more discussed in Section 7.2.

19



4. Results

4.1.2 Non-functional Requirements

The query language is also developed based on a few non-functional requirements.
A list of initially elicited non-functional requirements is provided below.

e NFR1: Performance Efficiency
« NFR2: Interoperability

Performance Efficiency

This non-functional requirement is fetched from a standard reference list of non-
functional requirements, as provided by ISO/IEC 25010:2011 [21]. Performance
efficiency is a common and an important non-functional requirement for the query
language. The query language should be able to load, dump and train models in
a way where it does not slow down the query language overall. Machine learning
models that utilize large datasets would require more time and data capacity to
operate which would slow down the speed for model optimization improvements.

Interoperability

This non-functional requirement is fetched from a standard reference list of non-
functional requirements, as provided by ISO/IEC 25010:2011 [21]. Interoperability
is a non-functional requirement for the query language that would help with imple-
menting features that could improve versioning support for machine learning assets.
The query language should be able to integrate with a versioning control system
such as Git and be able to fetch information that might be important such as data
in different versions. The importance of versioning is also previously explained and
motivated for the functional requirement FR2 in Section 4.1.1.

As mentioned, during the first phase (see Figure 3.1), the query language is evalu-
ated by an interview-based evaluation method (see Section 3.6) and insights were
gathered. New non-functional requirements are also formed and derived from in-
terviewees’ insights (see Section 4.5). A list of derived non-functional requirements
elicited from insights from first the phase of interviews is provided below.

o« NFR3: Scalability

Scalability

Scalability is a non-functional requirement derived from insights gathered during the
first phase of interviews. A high scalability improves performance efficiency when
working with large datasets. To achieve a high scalability, the query language would
need to be able to manage large datasets in an effective way. Extracting data from a
large dataset usually takes a long time. A high scalability reduces the time required
to extract that data. Ways to achieve scalability is more discussed in Section 7.2.

20



4. Results

4.2 Features

The query language is developed initially based on initial elicited requirements. Each
feature is initially defined and formed based on the knowledge of the author of this
thesis during iterative development of the query language during Cycle 1 and 2 (see
Figure 3.1). Each feature group relates to one or several elicited requirements. Each
feature group contains one or several features. Each feature contains an identifier
and description. Feature identifiers are used for referencing purposes previously in
Section 3.4, and does not indicate any kind of ordering when they are formed. Each
feature is described about how they work. Each feature group has a purpose and
motivates what its features entail e.g. satisfying specific elicited requirements. In
addition to every mentioned requirement that each feature satisfies, each feature
also tries to satisfy the requirement NFR1 by implementing these features in a way
where it can achieve sufficient performance efficiency of the query language overall
e.g. by improving code quality to avoid slowing down the query language in any
possible ways.

Tables of initially derived features are provided below. Each table contains feature
identifiers and feature description. These features are going to be evaluated by the
help of several interviewees’ insights during the first phase of interviews (see Figure
3.1). The whole evaluation process is previously described in Section 3.6.

F1.1 | The query language shall be able to initialize a project.

F1.2 | The query language shall be able to open a project.

F1.3 | The query language shall be able to close a project.

F1.4 | The query language shall be able to create a machine learning model of a
specified class.

Table 4.1: Features that enable the ability to switch between projects as well as
creating new machine learning models.

Motivation: Enables requirement FR1 and NFR2 to be satisfiable by enabling
other features implemented to be utilized.

F2.1 | The query language shall be able to select asset(s) of machine learning
model(s).

F2.2 | The query language shall be able to filter selected asset(s) by specifying a
condition.

Table 4.2: Features that enable the ability to select asset(s) of machine learning
model(s).
Motivation: To satisfy requirement FR1 and FR5.

21



4. Results

F3.1 | The query language shall be able to insert asset(s) to machine learning
model(s).

F3.2 | The query language shall be able to insert asset(s) to filtered machine
learning model(s) by specifying a condition.

Table 4.3: Features that enable the ability to insert asset(s) to machine learning
model(s).
Motivation: To satisfy requirement FR1.

F4.1 | The query language shall be able to update asset(s) of machine learning
model(s).

F4.2 | The query language shall be able to update asset(s) of filtered machine
learning model(s) by specifying a condition.

Table 4.4: Features that enable the ability to update asset(s) of machine learning
model(s).
Motivation: To satisfy requirement FR1.

F5.1 | The query language shall be able to delete asset(s) of machine learning
model(s).

F5.2 | The query language shall be able to delete asset(s) of filtered machine
learning model(s) by specifying a condition.

Table 4.5: Features that enable the ability to delete asset(s) of machine learning
model(s).
Motivation: To satisfy requirement FR1.

F6.1 | The query language shall be able to calculate performance metric values
of machine learning model(s).

F6.2 | The query language shall be able to calculate performance metric values
of filtered machine learning model(s) by specifying a condition.

Table 4.6: Features that enable the ability to calculate performance metric values
of machine learning model(s).
Motivation: To increase usefulness of requirement FR1.

F7.1 | The query language shall be able to validate performance metric values of
machine learning model(s).

F7.2 | The query language shall be able to validate performance metric values of
filtered machine learning model(s) by specifying a condition.

Table 4.7: Features that enable the ability to validate performance metric values
of machine learning model(s).
Motivation: To increase usefulness of requirement FR1.

22



4. Results

F8.1 | The query language shall be able to train machine learning model(s).
F8.2 | The query language shall be able to train filtered machine learning
model(s) by specifying a condition.

Table 4.8: Features that enable the ability to train machine learning model(s).
Motivation: To increase usefulness of requirement FR1.

F9 | The query language shall be able to predict values using a machine learning
model.

Table 4.9: Feature that enable the ability to predict values using a machine learning
model.
Motivation: To increase usefulness of requirement FR1.

F10.1 | The query language shall be able to save new versions of machine learning

model(s).

F10.2 | The query language shall be able to retrieve older versions of a machine
learning model.

Table 4.10: Features that enable the ability to save new versions and retrieve older
versions of a machine learning model.
Motivation: To satisfy requirements FR2, FR3 and FRA4.

’ F11 \ The query language shall be able to execute Git commands.

Table 4.11: Feature that enable the ability to execute Git commands.
Motivation: To satisfy requirements FR3 and NFR2.

4.3 Traceability Matrix

The traceability matrix maps elicited requirements and elicited features. It contains
rows of features and columns of requirements, which displays whether there are any
dependencies between them with True (T) or False (F) values. Features are the
user-visible functionality increments that were used to structure the development of
the query language.

23



4. Results

=
~
-
=
&~
[\¥}
=
&~
w
=
&~
ot

NFR1

NFR2

F1.1

F1.2

F1.3

F1.4

F2.1

F2.2

F3.1

F3.2

F4.1

F4.2

F5.1

F5.2

F6.1

F6.2

F7.1

F7.2

F8.1

F8.2

F9

F10.1

F10.2

|| R S S e e e | | | | |
e e e e e e S e e e e e e e ST ST ST
e | e | e 51 Bes1 e eS| Bes| Res | Besl ResiRe o] Res| Resl Res| sl Resl e Her | Bes| Res| Bes!
&
e e e e e T L s e | e e 3T TSRS STR=S
Iy
e L e | e s e | e e e | e T
(I | | | e = R R TS

F11

| K> 1| et a1 e MesTes1 Mea Mes T e TS5 Mes o1 Kes eSS | I T

Table 4.12: Maps rows of elicited requirements and columns of elicited features.
Displays whether there are any dependencies between them with True (T) or False

(F) values.

4.4 Artifact Implementation Design

This section describes and explains the overall implementation design and struc-
ture of the developed query language. The implementation design is based on the
technology stack utilized for development of the query language which is previously
described earlier in Section 3.5. An example of usage scenarios of the query language

and more detailed outputs are provided in Section 5.

4.4.1 Grammar

The grammar for the query language is written in textX. A list of main command
initials of the grammar is provided in Figure 4.1 displayed below.

24




4. Results

DomainModel: command=Query
Query: Help Init Open | Close Create

Select Insert Update Delete
Calculate Validate Fit Predict Continue

Figure 4.1: A list of main command initials of the grammar.

Definitions for each main command initials of the grammar is provided in Figure
4.2 displayed below. Brief explanations of how the grammar works are described.

Help 'help*

Init 'init' project_name repository_url

Open ‘open’ project_name

Close ‘close’

Create ‘create’ model_name class_name

Select ‘select’ (selectable_asset "#') "from' (model_name FEss ‘where’ condition
Insert ‘insert’ insert_assignment 'to’ (model_name vE30 ‘where' condition

Update ‘update’ (model_name '#') "set' update_assignment ('where' condition

Delete ‘delete’ (deleteable_asset ') "from' (model_name Feas ‘where' condition
Calculate ‘calculate’ (model_name "*") column_name metric ('where® condition

Validate ‘validate® (model_name **¥') column_name metric ('where' condition

Fit ‘fit' (model_name "*") column_name ('where’ condition

Predict ‘predict’ model_name column_value

Continue ‘continue’ datetime_history ‘in’' model_name

Figure 4.2: Definitions for each main command initials of the grammar.

Line 1:
Contains sub-grammar for the help-command. Outputs a help message.

Line 2:
Contains sub-grammar for the init-command. Initializes a project by specifying a
GitHub repository.

Line 3:
Contains sub-grammar for the open-command. Opens an existing project.

Line 4:
Contains sub-grammar for the close-command. Closes the current project.

Line 5:
Contains sub-grammar for the create-command. Creates a machine learning model
by specifying an existing Scikit-learn class.

Line 6:

Contains sub-grammar for the select-command. Selects machine learning assets of
machine learning models. Filter models by specifying a condition.

25



4. Results

Selecting all (*) retrieves the metadata containing all versions of the specified model.

Line 7:
Contains sub-grammar for the insert-command. Inserts machine learning assets to
machine learning models. Filter models by specifying a condition.

Line 8:
Contains sub-grammar for the update-command. Updates machine learning assets
of machine learning models. Filter models by specifying a condition.

Line 9:
Contains sub-grammar for the delete-command. Deletes machine learning assets of
machine learning models. Filter models by specifying a condition.

Line 10:

Contains sub-grammar for the calculate-command. Calculates a specified perfor-
mance metric value of machine learning models. Filter models by specifying a con-
dition.

Line 11:
Contains sub-grammar for the validate-command. Validates a specified performance
metric value of machine learning models. Filter models by specifying a condition.

This validation feature uses a method called "sklearn.model selection.cross_validate",
which is a method provided by Scikit-learn [29]. This method returns an array of
scores such as test_ score, train_score, fit_time and score time.

Line 12:
Contains sub-grammar for the fit-command. Trains machine learning models. Filter
models by specifying a condition.

Line 13:
Contains sub-grammar for the predict-command. The machine learning model
makes a prediction.

DecisionTreeClassifier is the only class that was tested to make predictions. Other
classes have not yet been tested and it is unknown to the author whether they can

make predictions or not.

Line 14:
Contains sub-grammar for the continue-command. Continues a machine learning
model in a specified version.

Assets are defined and its grammar is shown below in Figure 4.3.

26



4. Results

insert_assignment insertable_asset '=' (file_name | int_float_value

update_assignment updateable_asset ‘= file_name int_float_value

selectable_asset
"train_data’ "test_data’ "hyperparameters’ ‘metrics’

‘create_history’ 'insert_history’ ‘update_history" ‘delete_history’

‘calculate history’ "fit_history’ ‘continue_history’

datetime_history | author_email_hist | hyperparameter | metric
insertable_asset "train_data“ ‘test_data“’
updateable asset 'train_data“ "test_data’ hyperparameter
deleteable_asset 'train_data“ ‘test_data“’

Figure 4.3: Asset definitions in the grammar for the commands select, insert,
update and delete.

Line 1:
Contains sub-grammar for assignment of data to assets that are insert-able.

Line 2:
Contains sub-grammar for assignment of data to assets that are update-able.

Line 4-8:
Contains sub-grammar for the assets that are select-able.

Selecting a date time by specifying the exact date time retrieves the version con-
taining its metadata with its version-specific values.

Selecting the GitHub email of an author of a project of the query language retrieves
all versions of specified models that have been modified by the specified author.

Line 9:
Contains sub-grammar for the assets that are insert-able.

Line 10:
Contains sub-grammar for the assets that are update-able.

Line 11:
Contains sub-grammar for the assets that are delete-able.

Conditions are defined and its grammar is shown below in Figure 4.4. A condi-
tion is either a class, hyperparameter or metric condition type. Specifying a class
condition filters away machine learning models that are not the specified machine
learning model (Scikit-learn) class. Specifying a hyperparameter condition filters
away machine learning models that do not satisfy the specified hyperparameter con-
dition. A hyperparameter condition should contain a machine learning class-specific
hyperparameter, comparison operator and a value of either integer, float or string.
Specifying a metric condition filters away machine learning models that do not sat-

27



4. Results

isfy the specified class-specific performance metric value condition. All conditions
are validated in run-time of program execution.

condition: class_condition hyperparameter_condition | metric_condition

class_condition ‘class’ ‘model’ ‘== 'is') class_name
hyperparameter_condition hyperparameter operator (int_float_value string_value
metric_condition metric operator int_float_value

Figure 4.4: Grammar definitions for conditions.

A few specific assets are defined in regular expressions and the grammar for each of
those is shown in Figure 4.5 below. A quick reference for regular expression syntax
is available at a website (https://regex101.com/) [30].

author_email hist \w|\. | \@|\: [\+]1{1,256}

datetime_history 0-9]{4}-[0-9]{2}-[@-9]{2}(_[e-9]{2}:[@-9]{2}:[@-9]{2}
hyperparameter \w]{1,256}

metric \w]{1,256}

repository_url https?:\/\/ (www\. a-zA-Z0-9@:%. \+~#=1{1,256}\.[a-zA-Z0-9
{1,6}\b([-a-zA-Z0-9() !@:% \+.~#2&\/\

project_name \w|\.|\-1{1,256}

model name \w|\.|\-1{1,256}

class_name \w]{1,256}

column_name STRING

column_value STRING int_float value
file_name \w|\.|\-1{1,256}

int float value \d]{1,256}((\.)[\d]{1, 256}
string_value \w|\. {1,256}
operator "==" "=t te="

Figure 4.5: Regular expression definitions for a few assets.

The definition of a regular expression variable called int_ float_ value accepts a value
to be either an integer value or a float value.

The STRING-keyword is a predefined keyword in textX that accepts a string value
with double quotation marks (") or single quotation marks (’) at the beginning and

at the end of the string.

The definition of a regular expression variable called string value accepts a value
to be a string value without quotation marks.

Note that a variable called operator that is included in Figure 4.5 is not a regular
expression definition, and is just a regular keyword definition.

28



4. Results

4.4.2 Code

A program for the query language is implemented and the code is written in Python.
The purpose of the program is to validate querying commands by checking the syn-
tax of the querying command and as well as handling the querying command if
the querying command is valid. A detailed inspection of the code is provided in a
GitHub repository and is available upon request as the repository is currently pri-
vate for now.

The main function of the program contains a while-loop. The while-loop continu-
ously reads input of querying commands. The validation of the input is checked. If
the input is invalid, the program continues by waiting for a new input. If the input
is valid, the program handles the querying command correspondingly. Except if the
querying command is detected as a Git-command, it does not require validation
check with the defined grammar as it will instead be validated with the grammar of

Git.

29



4. Results

while
try: command = input(COLOR + "<" + CURRENT_PROJECT + "> " + RESET)
except KeyboardInterrupt: quit()
if command == '': continue
c = shlex.split(command)

if CURRENT_PROJECT l= "' c[@] == 'git': pass
elif is_valid_query(command):

print(’'Invalid querying command')

print()

continue

if CURRENT_PROJECT == "':
if c[@] == 'help’: query_help(INACTIVE CMDS)
elif c[@] == "init': query_init(c)
elif c[@] == 'open': query_open(c)
else:
if c[@] == 'help’: query_help(ACTIVE_CMDS)
elif c[8] == 'open': query_open(c)
elif c[@] == 'close’: query_close(c)
elif c[@] == 'create': query_create(c)
elif c[@] "select’: query_select(c)
elif c[0] "insert’': query_insert(c)
elif c[@] "update’: query_update(c)
elif c[0] "delete’: query delete(c)
elif c[0] "calculate': query_calculate(c)
elif c[@] 'validate': query_validate(c)
elif c[0] "fit': query_ fit(c)
elif c[@] "predict’: query_predict(c)
elif c[@] "continue': query_continue(c)
elif c[0] "git': query_git(c)

Figure 4.6: Partial implementation code of main loop function of the program.

As seen in the code (at line 13-31), several commands are available depending
whether a project is currently active or not. If no project is currently active then the
following commands: "help", "init" and "open" are available. If a project is currently
active then the commands such as "help", "open", "close", "create", "select", "insert"
and more are available as shown in Figure 4.6 above. A project can be activated
by using the open-command. A project can be closed using the close-command. A
project can be initialized using the init-command. Using the open-command when a
project is already active switches the current active project to the specified project in
the command. The rest of the querying commands are previously briefly explained
for Figure 4.2.

30



4. Results

4.4.3 Structure

There are two core files when managing machine learning assets: 1. The binary file,
2. The metadata file. If either of the files is lost, the machine learning model would
not be able to be managed properly. Integration with Git and utilization of Git
solves the problem of loss of either core files. Utilizing Git saves files as a backup in
case any of the files are lost.

Binary File
The binary file is the heart of the model. It is created once during the creation of a
machine learning model. It is updated each time a model is trained.

Metadata File

The metadata file is the brain of the model. It is created once during the creation of
a machine learning model. It is updated each time a trackable querying command is
executed. A trackable command is every command that is included as a select-able
history asset as shown in Figure 4.3.

'model name’': model name,

"'module_name': module_name,

‘class_name': class_name,

‘versions': {

get _new_version(): {

'version_type': ‘create’,
"command': " ".join(c).strip(),
"author _name’': get git name(),
"author _email’: get git email(),
"train_data': s
"test_data’: ,

"hyperparameters’: model.get params(),
"'metrics': {}

Figure 4.7: Metadata structure containing different assets.

The metadata consists of the model name, the Scikit-learn module name, the Scikit-
learn class name of the module and a list of versions. A version is defined by the
date time during execution of a trackable command. Each version consists of the
versioning type which is the executed command initial, the whole command, the

31



4. Results

author’s Git full name, the author’s Git email, the training data, the test data,
class-specific hyperparameters with values for each and class-specific performance
metric with values for each. Each version is saved for the purpose to achieve model
versioning (FR2) and model reproducibility (FR3). Each asset contained in the
metadata file is needed to achieve data provenance (FR4).

4.4.4 Versioning

There are two types of versioning utilized in the query language. The first type of
versioning is related to the metadata. The metadata updates the history of exe-
cutions of trackable querying commands. Each version is trackable. This type of
versioning is done locally in offline mode i.e. does not require connection to any
kind of server.

The second type of versioning is related to Git. Git can save model files locally in
offline mode and as well can be pushed to the online repository. Git can be used as
a backup in order to save and retrieve any core files that might be lost by any kind
of reason, either manually or potential run-time errors (which might not have been
fixed yet).

4.5 First Evaluation

The first phase of interviews consisted of four interviewees. A simple table of inter-
viewees is provided below.

SM SDL

Participant 1 | SE and Management | Bachelor
Participant 2 | SE and Management | Bachelor
Participant 3 | Data Science and Al | Master
Participant 4 | Data Science and Al | Doctoral

Table 4.13: Displays participants’ experience related to this thesis topic. Abbrevi-
ations: SM: Study Major, SDL: Study Degree Level, SE: Software Engineering, Al:
Artificial Intelligence.

The questions asked during the interviews are provided in Appendix A.1. The re-
quirements of the query language are evaluated by the interviewees. Insights from
interviewees were gathered and summarized.

The insights were summarized by first identifying each opinion as a code. The codes
are then labeled into labels. A full list of code-label pairs can be found in Appendix
A.3. Themes are then generated and formed by the labels. The themes are then
discussed and summarized in regards to the RQs.

32



4. Results

A few examples of interview questions and codes:

Q1.4: How important is the requirement interpretability?

Code: "Uh, it depends on what applications it’s about. For example, I predict

understand how the machine learning model processed, when it came to that
decision. Because patients want to know... Like, the model says I have cancer,
but I also want to know why it says so. For such applications, it is important.
But then there are other things, such as predicting an email is spam or not,
which is not important." - Participant 4

Note: Transcript translated from Swedish to English

Label: Depends on the type of applications when it comes to interpretability

which medications a patient should take, for example, to determine whether
that patient has cancer or not. When you make such decisions, you want to

Q1.8: What do you think about the usage of the query language, based
on what has been shown? What do you like, what needs improvement?

regular sequel command. If it were to perform a function that it is completely,

of style." - Participant 3

Code: "Ehm, I think it’s good that it sort of strives to look like regular sequel
commands a little bit. I think that’s a good thing, cuz you always feels right
at home, you know what it’s about, that’s good. Although that comes with
the backside if your command were to behave differently in some way from

like, it does not look like or feel like regular sequel functions at all, then that
might be a bit of a surprise. So there might be small learning bumps. So that
might be the backside of it. So there’s the feeling, I know this, I've seen this.
And there is also, wow this didn’t behave the way I expected it to. So it might
be a two-edged sword, so to speak. But I like the idea to go for a sequel kind

Labels: Follows standard sequel commands, Possibly can behave differently com-

pared to regular sequel commands, Possible learning bumps

4
Note: Transcript translated from Swedish to English

Code: "I think I understand roughly what it’s about, but not exactly in detail.
It is an SQL-like language. You have made a program that takes care of all
the steps that you normally need to do manually, such as starting a GitHub
repository, defining your model, training the model. Improvement then would
be to implement support for more libraries, so not only for Scikit-learn, but
your language could also support PyTorch, Keras or TensorFlow. When it
comes to data analysis and stuff like that, because now you just load the data
and train. You have to prepare the data and normalize it as well." - Participant

33



4. Results

Labels: Easy to understand the idea, Possible improvement by adding support
for more libraries, Possible improvement by adding support for data analysis

Labels to Themes:

Labels

Themes

Agreement on model versioning

Agreement on Elicited Require-
ments

Agreement on model reproducibility

Agreement on Elicited Require-
ments

Agreement on data provenance

Agreement on Elicited Require-
ments

Depends on the type of users when it comes
to interpretability

Requirement Prioritization

Agreement on interpretability

Agreement on Elicited Require-
ments

Depends on the type of applications when it
comes to interpretability

Requirement Prioritization

Agreement on performance efficiency

Agreement on Elicited Require-
ments

Depends on what kind of aspect when it
comes to performance efficiency

Requirement Prioritization

Agreement on interoperability

Agreement on Elicited Require-
ments

Approval of no missing requirements

Agreement on No Missing Re-
quirements

Lack of experience Validity
Easy to use Ease of Use
Follows standard sequel commands Ease of Use

How to handle big data

Elicitation of New Requirements

Possibly can behave differently compared to
regular sequel commands

Ease of Use

Possible learning bumps

Ease of Use

Easy to understand the idea

Ease of Use

Possible improvement by adding support for
more libraries

Elicitation of New Requirements

Possible improvement by adding support for
data analysis

Elicitation of New Requirements

Table 4.14: Displays conversion from code labels from first phase of interviews to

themes.

34




4. Results

List of Generated Themes (For First Phase of Interviews):

o Agreement on Elicited Requirements

e Requirement Prioritization

o Agreement on No Missing Requirements
o Elicitation of New Requirements

« Validity

o Fase of Use

Each following paragraph below is about each theme such that it relates to the RQs.
Each theme description is according to the interviewees’ opinions.

Agreement on Elicited Requirements (RQ1)

The majority agreed on the requirements model versioning, model reproducibility,
data provenance, interpretability, performance efficiency and interoperability. It is
useful to backtrace what has been done, it is important to keep track of different
versions. Participant 3 thought that some parts of Git would actually be beneficial
to enrich the versioning of the query language, which is an agreement to the require-
ment interoperability.

Requirement Prioritization (RQ1)

Participant 2 thought that interpretability might be unnecessary for some people
that does not require an understanding on how exactly in detail the prediction is
calculated by the trained machine learning model. Participant 4 thought that the
importance of interpretability depends on what kind of applications the model is
used for. It is important to know how the model came to the conclusion about what
kind of medicines to take to know whether the patients have cancer or not. It is not
important to know how the model came to the conclusion whether an email is spam
or not. Participant 3 thought that Python is not a very performant programming
language that might affect the performance efficiency in the query language which
might contradict the elicitation of the requirement. Also, versioning does not require
efficient performance, however it is important that it does not slow down the query
language overall. Participant 4 provided some more input, that the performance ef-
ficiency is dependent on the training time of the model which depends on the library
that is being used.

Agreement on No Missing Requirements (RQ1)

The majority agreed on that there are no missing requirements. Participant 3
thought that it is a good list of requirements. The listed requirements are broad.
Captures most of the important things.

Elicitation of New Requirements (RQ1)

Participant 2 thought that an improvement would be to add a timer to check how
long it would take to train models with large datasets, which indicated the need
for support for larger datasets in the query language. A newly elicited requirement

35



4. Results

called "Scalabilty" is formed (as mentioned previously in Section 4.1.2). Participant
4 thought that an improvement would be adding support for other libraries such as
PyTorch, Keras and TensorFlow as the query language is currently utilizing only
Scikit-learn classes, which might not be useful for advanced users who requires using
other classes. Also, participant 4 thought that the query language would expand to
more advanced users if the query language is updated new features that are able to
analyse data of the datasets used by the models as it is currently only able to load the
data and train the model. Analysis of datasets would include visualization of data,
preparation of data and normalisation of data. Another newly elicited requirement
called "Data Analysability" is also formed (as mentioned previously in Section 4.1.1).
Different ways to achieve the newly formed requirements are discussed in Section 7.2.

Validity (RQ1)
Participant 1 mentioned its own lack of experience which might affect the validity
of the specific interview.

Ease of Use (RQ2)

Participant 1, 2 and 3 thought that the overall usage of the query language is good.
Participant 3 thought that it is good that the query language strives to look like
regular sequel commands, and that it feels right at home, and can see the usefulness
of the query language. Although that comes with the backside if the query command
is to behave differently compared to regular sequel commands. There might be small
learning bumps. It might behave differently than expected. It is like a two-edged
sword.

4.6 Second Evaluation

The second phase of interviews consisted of four interviewees. The questions asked
during the interviews are provided in Appendix A.2. The features of the query lan-
guage are evaluated by the interviewees. Interviewees’ experience are asked (Q2.1 -
Q2.4) and are summarized in a table below.

SM SDL EML | EQL | PFP
Participant 1 | SE and Management | Bachelor 3 3 False
Participant 2 | SE and Management | Bachelor 1 2 False
Participant 3 | Data Science and Al | Master 1.5 3.5 | True
Participant 4 | Data Science and Al | Doctoral 4 3 True

Table 4.15: Displays participants’ experience related to this thesis topic. Abbre-
viations: SM: Study Major, SDL: Study Degree Level, EML: Experience Level in
Managing Machine Learning Assets (1 to 5) (1: very inexperienced, 5: very expe-
rienced), EQL: Experience in Query Languages (1 to 5) (1: very inexperienced, 5:
very experienced), PFP: Participated During First Phase of Interviews, SE: Soft-
ware Engineering, Al: Artificial Intelligence.

36



4. Results

The questions related to the features asked during the interviews are provided in
Appendix A.2. The features of the query language are evaluated by the interviewees.
Insights from interviewees were gathered and summarized.

The summarization of insights from the second phase of interview is similar to
summarization of insights from the first phase of interviews. The insights were sum-
marized by first identifying each opinion as a code. The codes are then labeled
into labels. A full list of code-label pairs can be found in Appendix A.4. Themes
are then generated and formed by the labels. The themes are then discussed and
summarized in regards to the RQs.

Questions Q2.1 - Q2.4 were simple enough and did not provide any additional in-
sights and does not require any kind of thematic analysis and therefore were skipped
in the Appendix, as it already provided necessary output for Table 4.15 above.

A few examples of interview questions and codes:

Q2.6: Based on your own experience in developing ML projects: How
would you rate the usefulness of the query language on a scale from 1
(not useful at all) to 5 (very useful)?

Code: "Uhh, I have to think. So, I mean like, versions for like different models
you trained with different hyperparameter setups is very important for machine
learning. So, like the versioning part of it, like storing the history is definitely
useful. I'm not sure... Like so, I think using the query language to actually
train models and develop machine learning systems, then you would need some
models that using existing methods. So somebody that is like working for a
company maybe and then working on a particular application. And then they
are only going to use existing methods. But for me as a PhD student who’s
researching stuff, making my own models and so on. Then it would be hard to
use this query language, right. Cuz, I won’t be able to use just any machine
learning model. So, for me personally probably not so useful for that reason,
but in general it looks interesting. So like usefulness in general is, I would give
it maybe a 4. But for me is probably like a 1." - Participant 4

Labels: Rating on the usefulness of the query language, Agreement on versioning
functionality, Possible improvement by adding support for any arbitrary models,
Hard to use the query language

Q2.9: Which of the features need improvement? For each of them: what
kind of improvement?

37



4. Results

Code: 'It’s difficult, because, you know, for a short amount of time, you
have to get a very deep understanding of all of them and check if any needs
improvement. But I’d say right now I don’t think any of them do." - Participant

1
Labels: Approval of no features need improvement, More time required to un-
derstand

38



4. Results

Labels to Themes:

Labels Themes
Rating on own understanding of the query | Ease of Use
language

Rating on the usefulness of the query lan- | Usefulness
guage

Subjective rating on most useful feature | Usefulness

Agreement on versioning functionality

Agreement on Implemented Features

Agreement on reproducibility functional-
ity

Agreement on Implemented Features

Agreement on reusability functionality

Agreement on Implemented Features

Agreement on calculation feature

Agreement on Implemented Features

Agreement on filtering feature

Agreement on Implemented Features

Possible improvement by adding support
for any arbitrary models

Elicitation of New Features

Hard to use the query language Ease of Use

Approval of no feature to be least useful | Agreement on Implemented Features
Lack of experience Validity

Approval of no features need improvement | Agreement on Implemented Features
More time required to understand Validity

Disapproval of no features need improve-
ment

Potential Improvement of Implemented
Features

Possible improvement by easing the pro-
cess of comparison between values pro-
duced by different models

Potential Improvement of Implemented
Features

Possible improvement by reducing the
need for a lot of scrolling in command con-
sole to find the correct version of a model

Potential Improvement of Implemented
Features

Possible improvement by adding support
for other libraries

Elicitation of New Features

Approval of no new features can improve
the usefulness

Agreement on Implemented Features

Disapproval of no new features can im-
prove the usefulness

Elicitation of New Features

Possible improvement by improving the
current features to save values in a file sep-
arately

Potential Improvement of Implemented
Features

Possible improvement by adding support
for data analysis

Elicitation of New Features

Table 4.16: Displays conversion from code labels from second phase of interviews

to themes.

39




4. Results

List of Generated Themes (For Second Phase of Interviews):

o Agreement on Implemented Features

Potential Improvement of Implemented Features
Elicitation of New Features

Validity

Ease of Use

o Usefulness

Each following paragraph below is about each theme such that it relates to the RQs.
Each theme description is according to the interviewees’ opinions.

Agreement on Implemented Features (RQ2)
The majority agreed on the current set of features. Participant 4 thought a few
features could be improved and few new potential features could be implemented.

Potential Improvement of Implemented Features (RQ2)

Participant 4 thought that the features that relate to training models and predicting
models which are "fit" and "predict" were the least useful as their use are restricted
to existing Scikit-learn class models. An improvement would be to add support for
any arbitrary models e.g. models that are defined in a Python class by the users
as long as it follows the correct paradigm such that it follows the current features
of the query language e.g. "fit" and "predict'. Another improvement would be to
add support for other libraries such as PyTorch and TensorFlow, as they offer great
functionalities as well. Participant 1 thought of an improvement could be to im-
prove the current features to be able to save values such as hyperparameter values
or performance metric values in a file separately. Participant 2 thought of an im-
provement that is to ease the process of comparison between values produced by
different models. Participant 3 thought of another minor improvement would be to
reduce the need for a lot of scrolling in the command console to find the correct
version of a model by making the model metadata output more compact.

Elicitation of New Features (RQ2)

Participant 4 thought of an improvement would be to add a new feature that sup-
ports the ability to analyse data. Feature commands that plots different statistics
regarding the data, manipulates data in different ways and normalises the data would
improve the usefulness of the query language. In practice, dealing with datasets with
millions of entries usually have some missing or empty values which should be han-
dled as well. A feature that supports data analysability can also help with finding
outliers.

Validity (RQ2)

Participant 1 mentioned its requirement of more time to be able to understand more
about the query language which might affect the validity of the interview. Partici-
pant 2 mentioned its lack of experience in the topic of this thesis which might affect

40



4. Results

the validity of the interview as well.

Ease of Use (RQ2)
The mean value of participants’ understanding of the query language is 3.875.

Usefulness (RQ1, RQ2)

The mean value of participants’ rating on the usefulness of the query language is
2.875.

The feature that was the most useful according to a subjective rating by the partici-
pants is the feature "continue' that allows reproducing a model of a different version.

Participant 4 thought that the versioning part of the query language is very useful.
Although the versioning part is useful, the query language would not be very useful
if companies were required to use existing methods. For researchers, it would be
hard to use this query language, because they want to use any kind of machine
learning models and not only Scikit-learn class models that are created by the query
language. The current state of the query language is not very useful for advanced
users, however has a lot of potential if more features were to be implemented. Par-
ticipant 1 thought that it is good to switch between different versions of a model.
All of the features were good, as each is a part of the whole procedure of managing
machine learning assets. Participant 2 thought that the feature "calculate" is useful.
The filtering feature was also found pretty neat and helpful such that it supports
working with multiple models at the same time. All the features that related to sav-
ing histories, versioning and reproducing results were the most useful. The majority
of the participants did not have any feature to be the least useful in mind as all of
the features were useful.

GQM Results:
The metrics of the GQM-approach used in this thesis (see Section 3.6, Interviews
Second Phase) are calculated as well.

e Metric M1: Developers’ rating on their own experience in machine-learning-
based systems. Mean rating score of 2.375.

e Metric M2: Developers’ rating on their own experience in query languages.
Mean rating score of 2.875.

o Metric M3: Developers’ rating on the usefulness of the query language of
this thesis project. Mean rating score of 2.875.

e Metric M4: Developers’ subjective rating on the most useful feature. Feature
"continue".

o Metric M5: Developers’ rating on their own understanding of the developed
query language of this thesis project. Mean rating score of 3.875.

41



4. Results

42



O

Artifact Usage Scenarios

The purpose of this chapter is to provide further understanding on how the querying
commands works by providing execution examples of the available querying com-
mands. A querying command is valid if it follows the rules of the defined grammar
for the query language. Additionally, a querying command is also valid if it is a
valid Git-command without following the defined grammar as the implementation
design of the query language is integrated with Git.

Initially, the folder structure only contains the program file written in Python
"query.py" and the textX grammar file "grammar.tx".

= grammar.ix

Figure 5.1: Initial folder structure.

To begin, open a command terminal, start by changing the current directory to the
same directory that contains the file "query.py". Next, execute the file "query.py".

PS C:\Users\erikt\Desktop\Query Language> python -u

I

Figure 5.2: Example execution command of main program in Visual Studio Code.

Initialize a project, by specifying a name and a GitHub repository for it.

init p1 https://github.com/eriktran/pl repo
Initialized empty Git repository in C:/Users/erikt/Desktop/Query Language/workspace/pl/.gi
t/[master (root-commit) 1c33cbl] Initialize p1

1 file changed, 1 insertion(+)

create mode 188644 README.mdTo https://github.com/eriktran/pl_repo

* [new branch] master -» masterBranch 'master’ set up to track remote branch ‘master
' from ‘origin”.

Figure 5.3: Example execution of init-command with its output. Initializes a new
project called pl.

Open the project.

43



5. Artifact Usage Scenarios

open pl

Project pl is in command mode

Figure 5.4: Example execution of open-command with its output. Sets project pl
to be in command-mode.

To effortlessly switch between projects, use the same open-command. To show this,
another project needs to be created first. So, close the current project first.

close

Project pl has been closed

Figure 5.5: Example execution of close-command with its output. Unsets project
pl to be in command-mode.

Initialize another project.

init p2 https://github.com/eriktran/p2 repo
Initialized empty Git repository in C:/Users/erikt/Desktop/Query Language/workspace/p2/.gi
t/[master (root-commit) O a] Initialize p2
1 file changed, 1 insertion(+)
create mode 188644 README.mdTo hitps://github.com/eriktran/p2_repo
* [new branch] master -> masterBranch 'master’ set up to track remote branch ‘master
' from ‘origin’.

Figure 5.6: Example execution of init-command with its output. Initializes a new
project called p2.

Open the project.

open p2

Project p2 is in command mode

Figure 5.7: Example execution of open-command with its output. Sets project p2
to be in command-mode.

Switch to another project using the same open-command.

open pl

Project pl is in command mode

Figure 5.8: Example execution of open-command with its output. Unsets project
p2 to be in command-mode and sets project pl to be in command-mode.

Let’s create a new machine learning model as a DecisionTreeClassifier (a Scikit-learn
class).

create ml DecisionTreeClassifier

DecisionTreeClassifier ml has been created

Figure 5.9: Example execution of create-command with its output. Creates a
machine learning model of class DecisionTreeClassifier called m1.

44



5. Artifact Usage Scenarios

To train the model, add external training dataset and testing datasets into the model

folder manually.
rkspace

~ ml

m1.joblib

£ metadata.txt
B music_test.csw
B music_train.csv
README.md
; p2
README.md

= grammar.tx

query.py

Figure 5.10: Folder structure after manually moving datasets into model folder.

Note that creating a machine learning model generated a binary file called "m1.joblib"
and a metadata file called "metadata.txt" for the created model.

Choose the external training dataset as the training data asset of the model with
the insert-command. Do the same for the testing dataset.

insert train data = music train.csv to ml
Model train data has been inserted with the value music train.csv

insert test data = music test.csv to ml
Model test data has been inserted with the value music test.csw

Figure 5.11: Example executions of insert-command with its outputs. Inserts
training and testing datasets as the assets of model m1.

Let’s display how the datasets look like by using the select-command.

45



5. Artifact Usage Scenarios

select train data from mil
music train.csw
gender genre

3]

WU N S R R S|

[ax]

m

1 HipHop
1 HipHop
1 HipHop
1 Jazz
1 la
1 lazz
1 Classical
1 Classical
1 Classical
&
&
&
&
&
&
&
&
&

= &
LA LU

v I - R Y %]
LT I ) ]

Lt
=

~

Dance
Dance
Dance
Acoustic
Acoustic
Acoustic
Classical
Classical
Classical

Bl P PR R BRI LU

Figure 5.12: Example execution of select-command with its output. Showcasing
content of a training dataset.

select test data from ml
music_test.csv
gender genre
Dance
HipHop

Jazz

Jazz
Classical

5]
1
8 Acoustic
1
8
1

(W TR - W

Figure 5.13: Example execution of select-command with its output. Showcasing
content of a testing dataset.

Let’s calculate several performance metric values for an existing column of the
datasets. A performance metric is class-specific, meaning a performance metric
value is only calculate-able if the model of the specified class supports it. Specify-
ing a nonexistent performance metric will print out a list of available performance
metrics.

46



5. Artifact Usage Scenarios

' accuracy

calculate ml 'genre' max _error

calculate ml 'genre’ recall _macro
. 2200000880008881
calculate ml ‘genre’ recall micro

1 macro

1_micro

Figure 5.14: Example executions of calculate-command with its outputs. Calcu-
lates several performance metric values.

Let’s train the model to learn a specified column of the datasets.

fit m1 'genre’
Model has been trained successfully

Training time: 8.8681881 seconds

Figure 5.15: Example execution of fit-command with its output. Trains model m1
to learn a column of its datasets.

Let’s see what the model prediction is by specifying values for all columns except
the specified column used for training.

predict m1 ‘28" '@’

Dance

Figure 5.16: Example execution of predict-command with its output. A male
of age 20 enjoys the dance music genre, based on the training dataset and testing
dataset.

Let’s check the available and current hyperparameters of the model.

47



5. Artifact Usage Scenarios

select hyperparameters from mil
{'ccp alpha': 8.8,
"class weight®: None,
‘criterion’: "gini',
‘'max_depth’: None,
‘max_features’: Mone,
'max_leaf nodes’: Mone,

‘'min_impurity decrease’: 8.8,
‘'min_samples leaf': 1,
'min_samples split': 2,
'min_weight fraction leaf': 8.8,
"random state": None,
‘splitter’: 'best'}

Figure 5.17: Example execution of select-command. Displays hyperparameters of
a model.

Retrieving the value of a specified hyperparameter is also possible.

select splitter from ml
best

Figure 5.18: Example execution of select-command. Outputs a specific hyperpa-
rameter value of a model.

Let’s check the available and current performance metrics of the model.

select metrics from m
{'accuracy’:
"1 macro’:
'f1 micro':
‘max_error”:
‘recall macro’: 8.8308008080000081,
‘recall micro': 8.9}

Figure 5.19: Example execution of select-command. Displays performance metrics
of a model.

Retrieving the value of a specified performance metric is also possible.

select accuracy from ml

Figure 5.20: Example execution of select-command. Outputs a specific perfor-
mance metric value of a model.

Let’s check the full content of the metadata and all the tracked versions of the model
that the metadata contains.

48



5. Artifact Usage Scenarios

select * from ml
{'class_name’: ‘'DecisionTreeClassifier’,
‘model name": ‘ml’,
‘module name': ‘tree’,
‘versions®: {"2822-85-86 84:08:55': { author email': ‘eriktraniS@gmail.com’,
‘author name': 'Erik Tran',
‘command’: ‘create ml °
'DecisionTreeClassifier’,
‘hyperparameters”: {'ccp _alpha": 8.8,
‘class_weight': None,
‘criterion’: ‘gini’,
‘max_depth®: None,
‘max_features’: None,
‘max_leaf nodes®: Mone,
‘min_impurity decrease': 8.8,
‘min_samples leaf': 1,
‘min_samples split': 2,
‘min_weight fraction leaf': 6.8,
‘random_state’: None,
‘splitter®: 'best'},

‘metrics': {1},
‘test data': Mone,
‘train_data': None,
‘version_type': ‘create'l},
: {"author_email®: ‘eriktraniS@gmail.com’,

Figure 5.21: Example execution of select-command with its output. Partially
displays a few first lines of the content of the metadata of a model.

As seen in the figure above, the top-level of the metadata contains class name, model
name, module name and versions. Each version contains a date time. The first ver-
sion is tracked using the create-command.

The latest version is printed at the end of the output.

49



5. Artifact Usage Scenarios

: {'author_email’: ‘eriktranlSggmail.com’,

‘author_name’: 'Erik Tran',

‘command’: ‘fit ml genre’,

‘hyperparameters’: {'ccp alpha': 8.8,
‘class weipght': None,
‘criterion’: 'gini’,
‘'max_depth”: None,
‘max_features': None,
'max_leaf nodes': None,
‘'min_impurity decrease’: @.8,
'min_samples leaf': 1,
‘'min_samples split': 2,
'min_weight fraction leaf': 8.8,
‘random_state': None,

‘metrics': {'accuracy':
'f1_macro’: 8.
1 micro’: 8.:
‘'max_error’: -@.4,
‘recall macro®: ©.8200808080800081,
‘recall micro®: 8.9},
"test_data’: 'music_test.csv'
"train data’: ‘music train.csv',
‘version type': 'fit'}}}

Figure 5.22: Example execution of select-command with its output. Displays the
latest version in the metadata of a model.

To retrieve model assets from an older version i.e. reproduce a model of an older
version, use the continue-command by specifying a date time that is tracked in the
metadata file of the model.

continue 2822-85-86 84:88:55 in ml

Model ml successfully fetched data from its version with datetime 2822-85-86 84:88:55

Figure 5.23: Example execution of continue-command with its output. Reproduces
a model of an older version.

See the latest version at the end of the output message by selecting all assets of
the model again, and check that the latest version has been updated with an older
version’s data.

50



5. Artifact Usage Scenarios

: {"author email’: 'eriktraniS@ggmail.com”,
‘author name': "Erik Tran',
‘command’ : 'comtinue 2822-85-86 B4:88:55
‘in m1°,

"hyperparameters': {"ccp_alpha': 8.8,
‘class weight': None,
‘criterion’: ‘gini®,
'max_depth': None,
'max_features’: None,
'max_leat nodes”: Mone,
‘'min_impurity decrease’: 8.8,
'min_samples leaf': 1,
'min_samples split’: 2,
'min_weight fraction leaf': 8.8,
‘random_state’: None,
‘splitter’: ‘best'},

‘'metrics’: {},

"test data': None,

“train_data’: None,

‘version_type’: ‘comtinue'}}}

Figure 5.24: Example execution of select-command with its output. Displays the
latest version in the metadata of a model, specifically after execution of continue-
command.

Let’s update a hyperparameter of a model.

update ml set splitter = random

Hyperparameter splitter has been updated with the wvalue random

Figure 5.25: Example execution of update-command with its output. Updates a
hyperparameter of a model.

Check the updated hyperparameter.

51



5. Artifact Usage Scenarios

select hyperparameters from mil
{'ccp alpha': 8.8@,
"class weight": None,
‘criterion’: "gini®,
‘'max_depth’: None,
‘max_features’: Mone,
'max_leaf nodes': None,

‘'min_impurity decrease’: 8.8,
'min_samples leaf': 1,
'min_samples split': 2,
'min_weight fraction leaf': 8.8,
‘random_state’: Mone,
‘splitter’: ‘random’}

Figure 5.26: Example execution of select-command with its output. Displays
hyperparameters of a model.

To showcase the filtering feature, let’s create another model for demonstrating pur-
poses.

create m2 DecisionTreeClassifier
DecisionTreeClassifier m2 has been created

Figure 5.27: Example execution of create-command with its output. Creates a
machine learning model of class DecisionTreeClassifier called m2.

Display the current hyperparameter values of the new model.

select hyperparameters from m2
{'ccp alpha': 8.8,
"class weight®: None,
‘criterion’: "gini',
‘'max_depth’: None,
‘max_features’: Mone,
'max_leaf nodes’: Mone,

‘'min_impurity decrease’: 8.8,
‘'min_samples leaf': 1,
'min_samples split': 2,
'min_weight fraction leaf': 8.8,
"random state": None,
‘splitter’: 'best'}

Figure 5.28: Example execution of select-command with its output. Displays
hyperparameters of a model.

Now, select a specified hyperparameter (or any other choice of model asset) of every
model that satisfies a specified condition.

52



5. Artifact Usage Scenarios

select ccp alpha from
ml DecisionTreeClassifier
8.8

where splitter == random

m2 DecisionTreeClassifier
Condition not satisfied

Figure 5.29: Example execution of select-command with its output. Showcasing
the filtering feature.

Everything that has been shown right now is partially what the query language
can do. It is possible to work with other machine learning model classes (Scikit-
learn classes) as well. Working with multiple machine learning models at the same
time is also possible by utilizing the filtering feature which increases efficiency and
usability. It is possible to validate machine learning models, but is not showcased
in this example as DecisionTreeClassifier is not a "validate-able" class. A class that
is "validate-able" is defined by Scikit-learn. Git is not showcased here, as it is used
as the regular way software engineers routinely use.

53



5. Artifact Usage Scenarios

o4



O

Discussion

This chapter discusses different ways to support several ideas provided by the in-
terviewees during evaluation in both first phase and second phase, and ends with a
discussion regarding different threats to validity of the thesis.

6.1 Support for Scalability

Scalability is a potential requirement formed by the insights from the first phase
of interviews. A high scalability should be able to achieve a sufficient performance
efficiency when working large datasets. A sub-requirement to support scalability is
to have a scalable data storage capacity such as a database. Relying only on the data
storage capacity of a personal computer would not be sufficient as it is limited. The
query language would require relying on an external database to support scalability.
MongoDB is an example of a database that could be supported [31] in order to
achieve a scalable data storage capacity. When working with larger datasets, it
would require another process which is data mining. The process of data mining
needs to be efficient as well. There are several efficient data analytics methods for
data mining discussed in a survey paper published by Chun-Wei et al. [32]. The
process of data mining might encounter some kind of problem when working with
larger datasets such as clustering, classification, association rules and sequential
patterns. Each problem type contains different methods as solutions e.g. BIRCH
[32] for clustering problems. These solution methods could improve the scalability
and potentially be supported in the query language of this thesis.

6.2 Support for Data Analysability

Data analysability is a potential requirement formed by the insights from the first
phase of interviews. A high data analysability should be able to visualize and plot
different types of graphs such as bar graphs, pie charts, box plots, histograms,
line charts and scatter plots [33] by utilizing a library called Matplotlib [34]. This
improves the interpretability of datasets and allows the users to detect outliers which
are data points in a dataset that differs significantly from other data in the dataset
which could be crucial information [35]. Data analysability also helps with detecting
empty or missing values in entries when working with large datasets.

95



6. Discussion

6.3 Support for Any Arbitrary Models

Support for any arbitrary models of any class is a potential improvement suggested
by an interviewee from the second phase of interviews. The support for this expands
the query language to more advanced users as they might need to use their own
defined class in the query language instead of existing Scikit-learn classes.

6.4 Support for Other Data Types

Support for other data types such as image data or audio data could be imple-
mented in the future. The current supported data types for now are text-based
data (numerical or string) in table-structured datasets.

6.5 Threats to Validity

The threats to validity are discussed in three different aspects: internal validity,
construct validity and external validity.

6.5.1 Internal Validity

A threat to internal validity relates to the elicitation of requirements. A few require-
ments were already defined before the first phase of interviews. There are trade-offs
by defining the requirements before versus after the first phase of interviews. Defin-
ing requirements before will allow the participants to confirm the requirements.
This might have biased the results more towards remarks on our particular solu-
tion, instead of the intended users’ needs. On the other hand, it avoided the risk of
obtaining too sporadic comments, in which case it would have been more difficult
to form a consistent set of requirements. Defining requirements after have a benefit
of knowing what the participants’ want in query language from scratch. A problem
by letting participants having a high impact on the requirements, might lead to
a problem if the participants’ experience is not sufficient in the topic of this the-
sis. The participants might give different answers for requirements which might be
contradicting. Therefore, a few requirements for query language which are elicited
from research papers are defined in prior. However, there are also some open-ended
questions asked during the first phase of interviews such as "Are there any missing
requirements that would be good to have, based on your own experiences?" and " What
do you think about the usage of the query language, based on what has been shown?
What do you like, what needs improvement?" which enables the participants to think
more critically.

Another threat to internal validity relates to the feature implementation. The fea-
tures are implemented and then evaluated during the second phase of interviews.
As the same reason for eliciting the requirements before versus after interviews, the
features implemented beforehand could have biased the results more towards re-
marks on our particular solution. However, there are several open-ended questions

56



6. Discussion

asked during second phase of interviews such as "Do you have ideas of new features
that can further improve the usefulness of the query language?' which enables the
participants to think more critically as well.

Another threat to internal validity relates to the systematic thematic analysis of
interviews. The codes might not be correctly labeled. The labels might not be
correctly converted into themes, which might affect the internal validity.

6.5.2 Construct Validity

A threat to construct validity could possibly be potential misunderstandings of the
terms from the interview questions by the interviewees. An example is that Question
Q1.4 is supposed to be about the model interpretability and not interpretability of
the query language.

Another threat to construct validity is that the GQM metrics chosen to be answered
during interviews might not actually answer the stated GQM questions. An example
is that Metric M3 "Developers’ rating on the usefulness of the query language of this
thesis project" does not exactly answer the Question Q1 "Who would hypothetically
use the querying tool?". But it does provide some ideas about why it may be used
or not based on its usefulness.

6.5.3 External Validity

A threat to external validity is the experience of the participants. The interviewees
that participated during the evaluation of the query language should have the re-
quired knowledge and experience in order to be able provide qualitative insights.
During the first phase of interviews, most of the interviewees’ experiences have not
been measured in some kind of concise way. An assumption that most of them are
experienced enough is the fact that they have been lectured or/and supervised by
my supervisor who is experienced in Al engineering [25]. Most of the participants
are attending / have attended a software engineering course called 'Software en-
gineering for data-intensive Al applications" which is in the same context as this
thesis of developing an Al-enabled software system. During the second phase of
interviews, the participants’ experience has been measured by their own ratings on
topics related to this thesis. A partial threat to this external validity is their biases
on their rating scores on their own experiences. The identity of a particular inter-
viewee during both first phase and second phase of interviews were not known to
the thesis supervisor, which avoided an additional source of bias.

Another threat to external validity is the fact that two of the participants during
the second phase of interviews have also participated during the first phase of in-
terviews. It is possible that the results are affected, which is hard to avoid in this
evaluation setup. However, the positive side with it is that they are well-informed
about the query language from the first phase of interviews, which potentially gives
them additional time to think critically during the second phase of interviews and

57



6. Discussion

are able to provide more qualitative insights.

Another threat to external validity is the low amount of participants for interviews.
It is necessary to thrive for an accurate evaluation as possible from the general
experienced users. It is also necessary to thrive for as unbiased opinions as possible
by including more participants. A survey could helped with quantitative answers
from the participants, however interviews provided more qualitative insights which
would be fair to have a low amount of participants, which were more focused for
this thesis.

58



-

Conclusion

The need for a new tool with improved versioning support for machine-learning-
based systems dedicated for software engineers has been indicated in several stud-
ies. Therefore, a query language that is able to manage machine learning assets
with improved versioning support has been developed that is more focused towards
software engineers in this thesis. The developed query language has been evaluated
by four participants in each phase of interviews.

The first phase was about requirements, and confirming the prior defined require-
ments for the query language. The prior defined requirements were overall a good
set of requirements. An interviewee helped with forming a requirement of data
analysability which would improve the usefulness of the query language. Another
interviewee helped with forming a requirement of scalability which would allow the
query language to be able to work with larger datasets. These requirements are
discussed further in this chapter in Section 7.2 about potential solutions of features
that would help with achieving these requirements.

The second phase of interviews was about features. The set of questions during the
second phase of interviews included questions to assess the experience of the inter-
viewees as well as questions about the features. The set of questions contained a mix
of open-ended, closed-ended, rating and multiple choice questions. The questions
helped with calculating a set of metrics of the GQM approach applied for the sec-
ond phase of interviews. The effectiveness of the querying tool is evaluated. Based
on the GQM results, those who would hypothetically use this query language are
users who are in the beginner-level in management of machine learning assets and
average-experienced users in general query languages. The usefulness of the query
language of this thesis is at a medium-level. It is more useful for practitioners and
less useful for researchers. The feature that was the most useful according to the
GQM results was the "continue" feature that has the reproducibility functionalities.
The ease of using the query language of this thesis is at a high-level meaning the
query language is very easy to use.

7.1 Limitations and Delimitations
The whole implementation process of the query language is done in a single type

of operating system: Windows. Specifically, the query language is developed in
Windows 11. This is a delimitation as Windows is the only accessible operating

59



7. Conclusion

system to the author during the development. Testing of the query language is not
conducted in other operating systems.

7.2 Future Work

The usefulness of the query language could be further improved by implementing
new potential features that support the ideas provided by the interviews which
are discussed in Chapter 6, such as support for scalability, data analysability, any
arbitrary models and other data types. In the future, it could also potentially be
developed in other operating systems other than Windows which would expand to
more users.

60



[1]

[10]

[11]

[12]

Bibliography

“Git is a free and open source distributed version control system designed to
handle everything from small to very large projects with speed and efficiency.”
[Online|. Available: https://git-scm.com/

“Query Language.” [Online]. Available:  https://www.techopedia.com/
definition /3948 /query-language

“Query.” [Online]. Available: https://www.techopedia.com/definition/5736/
query

S. Idowu, O. Osman, D. Striitber, and T. Berger, “On the Effectiveness of
Machine Learning Experiment Management Tools,” 2022.

“PostgreSQL: The World’s Most Advanced Open Source Relational Database.”
[Online]. Available: https://www.postgresql.org/

“Experiment tracking and model registry for teams doing ML at a reasonable
scale.” [Online|. Available: https://neptune.ai/

S. Idowu, D. Striiber, and T. Berger, “Asset Management in Machine Learning:
A Survey,” in 2021 IEEE/ACM 43rd International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). 1EEE, 2021, pp.
51-60.

)

S. Huang, “Effective data versioning for collaborative data analytics,” in Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 1925-1938.

L. Xu, S. Huang, S. Hui, A. J. Elmore, and A. Parameswaran, “Orpheusdb:
a lightweight approach to relational dataset versioning,” in Proceedings of the
2017 ACM International Conference on Management of Data, 2017, pp. 1655—
1658.

N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data management
challenges in production machine learning,” in Proceedings of the 2017 ACM
International Conference on Management of Data, 2017, pp. 1723-1726.

A. Bhardwaj, S. Bhattacherjee, A. Chavan, A. Deshpande, A. J. Elmore,
S. Madden, and A. G. Parameswaran, “Datahub: Collaborative data science &
dataset version management at scale,” arXiv preprint arXiv:1409.0798, 2014.

A. Barrak, E. E. Eghan, and B. Adams, “On the co-evolution of ml pipelines and

61


https://git-scm.com/
https://www.techopedia.com/definition/3948/query-language
https://www.techopedia.com/definition/3948/query-language
https://www.techopedia.com/definition/5736/query
https://www.techopedia.com/definition/5736/query
https://www.postgresql.org/
https://neptune.ai/

Bibliography

[13]

[14]

[25]

62

source code-empirical study of dvc projects,” in 2021 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering (SANER). 1EEE,
2021, pp. 422-433.

A. Kumar, M. Boehm, and J. Yang, “Data Management in Machine Learning:
Challenges, Techniques, and Systems,” in Proceedings of the 2017 ACM
International Conference on Management of Data, ser. SIGMOD ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p. 1717-1722.
[Online|. Available: https://doi.org/10.1145/3035918.3054775

M. B. Kery, B. E. John, P. O’Flaherty, A. Horvath, and B. A. Myers, “Towards
effective foraging by data scientists to find past analysis choices,” in Proceedings
of the 2019 CHI Conference on Human Factors in Computing Systems, 2019,
pp. 1-13.

“Google Colab.” [Online]. Available: https://colab.research.google.com/
“Google Docs.” [Online]. Available: https://www.google.com/docs/about/

S. Chattopadhyay, I. Prasad, A. Z. Henley, A. Sarma, and T. Barik, “What’s
wrong with computational notebooks? Pain points, needs, and design oppor-
tunities,” in Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems, 2020, pp. 1-12.

“Project Jupyter.” [Online]. Available: https://jupyter.org/

P. Sugimura and F. Hartl, “Building a reproducible machine learning pipeline,”
arXiv preprint arXi:1810.04570, 2018.

E. Knauss, “Constructive master’s thesis work in industry: Guidelines for ap-
plying design science research,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). 1EEE, 2021, pp. 110-121.

“ISO/IEC 25010:2011,” International Organization for Standardization,
Standard, Mar. 2011. [Online]. Available: https://www.iso.org/standard/
35733.html

“textX.” [Online]. Available: https://textx.github.io/textX/3.0/

S. Counsell, “Do student developers differ from industrial developers?” in
ITI 2008-30th International Conference on Information Technology Interfaces.
[EEE, 2008, pp. 477-482.

T. Berger, M. Volter, H. P. Jensen, T. Dangprasert, and J. Siegmund,
“Efficiency of Projectional Editing: A Controlled Experiment,” in Proceedings
of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, ser. FSE 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 763-774. [Online]. Available: https:
//doi.org/10.1145/2950290.2950315

D.  Striber,  “Daniel  Striber.” [Online].  Available: https://
www.danielstrueber.de/


https://doi.org/10.1145/3035918.3054775
https://colab.research.google.com/
https://www.google.com/docs/about/
https://jupyter.org/
https://www.iso.org/standard/35733.html
https://www.iso.org/standard/35733.html
https://textx.github.io/textX/3.0/
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1145/2950290.2950315
https://www.danielstrueber.de/
https://www.danielstrueber.de/

Bibliography

[26]

[27]

[28]

[29]

[34]

[35]

V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric approach,”
Encyclopedia of software engineering, pp. 528-532, 1994.

C. Kaéstner, “Versioning, Provenance, and Reproducibility in Production Ma-
chine Learning.” [Online|. Available: https://ckaestne.medium.com/versioning-
provenance-and-reproducibility-in-production-machine-learning-355¢48665005

Z. C. Lipton, “The Mythos of Model Interpretability,” CoRR, vol.
abs/1606.03490, 2016. [Online|. Available: http://arxiv.org/abs/1606.03490

“sklearn.model selection.cross validate.” [Online]. Avail-
able: https://scikit-learn.org/stable/modules/generated /
sklearn.model selection.cross validate.html

“Regular Expressions 101.” [Online]. Available: https://regex101.com/

“Database. Deploy a multi-cloud database.” [Online]. Available: https:
//www.mongodb.com/atlas/database

C.-W. Tsai, C.-F. Lai, H.-C. Chao, and A. V. Vasilakos, “Big data analytics: a
survey,” Journal of Big data, vol. 2, no. 1, pp. 1-32, 2015.

A. Bhandari, “A Beginner’s Guide to matplotlib for
Data  Visualization = and  Exploration in  Python.” [Online].
Available:  https://www.analyticsvidhya.com/blog/2020/02/beginner-guide-
matplotlib-data-visualization-exploration-python /

“Matplotlib: ~ Visualization with Python” [Online|]. Available:  https:
//matplotlib.org/

C. Y. Wijaya, “Outlier — Why is it important?”  [Online]. Available:
https://towardsdatascience.com/outlier-why-is-it-important-af58adbefecc

63


https://ckaestne.medium.com/versioning-provenance-and-reproducibility-in-production-machine-learning-355c48665005
https://ckaestne.medium.com/versioning-provenance-and-reproducibility-in-production-machine-learning-355c48665005
http://arxiv.org/abs/1606.03490
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html
https://regex101.com/
https://www.mongodb.com/atlas/database
https://www.mongodb.com/atlas/database
https://www.analyticsvidhya.com/blog/2020/02/beginner-guide-matplotlib-data-visualization-exploration-python/
https://www.analyticsvidhya.com/blog/2020/02/beginner-guide-matplotlib-data-visualization-exploration-python/
https://matplotlib.org/
https://matplotlib.org/
https://towardsdatascience.com/outlier-why-is-it-important-af58adbefecc

Bibliography

64



A

Appendix

A.1 First Phase Interview Questions

Q1.1: Based on your own experiences, would the requirement model versioning be
useful?

Q1.2: Would the requirement model reproducibility be useful?
Q1.3: Would the requirement data provenance be useful?

Q1.4: How important is the requirement interpretability?

Q1.5: How important is the requirement performance efficiency?

Q1.6: How important is the requirement interoperability? Is it important to inte-
grate with Git?

Q1.7: Are there any missing requirements that would be good to have, based on
your own experiences?

Q1.8: What do you think about the usage of the query language, based on what
has been shown? What do you like, what needs improvement?



A. Appendix

A.2 Second Phase Interview Questions

Q2.1: What are you studying?

Q2.2: Which study degree level?

Q2.3: How would you rate your own experience in managing machine learning
assets (code, data, models...) on a scale from 1 (very inexperienced) to 5 (very

experienced)?

Q2.4: How would you rate your own experience in query languages on a scale
from 1 (very inexperienced) to 5 (very experienced)?

Q2.5: How would you rate your own understanding of the query language on a
scale from 1 (very low) to 5 (very high)?

Q2.6: Based on your own experience in developing ML projects: How would you
rate the usefulness of the query language on a scale from 1 (not useful at all) to 5
(very useful)?

Q2.7: Which features are the most useful?

Q2.8: Which features are the least useful?

Q2.9: Which of the features need improvement? For each of them: what kind
of improvement?

Q2.10: Do you have ideas of new features that can further improve the useful-
ness of the query language?

IT



A. Appendix

A.3 First Phase Interview Code-Label Pairs

Q1.1: Based on your own experiences, would the requirement model ver-
sioning be useful?

Code: "Eh, I believe so. So, I'm really feeling right now that I probably am
not qualified. But, like, yes, it seems like interesting and useful." - Participant
1

Label: Agreement on model versioning

Code: "Eh, I think so. I mean the model versioning you are talking about,
different, if you train different models just to see, and give it different versions
and the query language supports that. Yeah, for sure. I’d say that is one of
the key points of machine learning modeling. So, yes." - Participant 2

Label: Agreement on model versioning

Code: 'l think it’s always useful to have that history, to be able to sort of,
backtrace what you've done. That’s always helpful no matter what. I think
model versioning is absolutely something good to have, for sure." - Participant

3

Label: Agreement on model versioning

Code: "Yes, when working with machine learning and training models, it is
clear that it is important to keep an eye on the different versions." - Participant
4

Note: Transcript translated from Swedish to English

Label: Agreement on model versioning

Q1.2: Would the requirement model reproducibility be useful?

Code: "Uh, yeah, I think so." - Participant 1

Label: Agreement on model reproducibility

Code: "Yeah, for sure. I'd say it’s important. In my opinion, then you can
improve accuracy." - Participant 2

Label: Agreement on model reproducibility

ITT



A. Appendix

Code: "Yeah, absolutely." - Participant 3

Label: Agreement on model reproducibility

Code: "So, yes it is important in general." - Participant 4
Note: Transcript translated from Swedish to English

Label: Agreement on model reproducibility

Q1.3: Would the requirement data provenance be useful?

Code: "Uh, yeah, it’s like very important, because like you would need to...
It is always important to be able to track changes, ehm, who made them, and
go back, see what went wrong, and talk to them and find out how to solve
things. So yeah, absolutely." - Participant 1

Label: Agreement on data provenance

Code: "Eh, yes. I'd say important. We worked a bit with traceability. And
especially in projects is really useful to see who touches it, and what the latest,
and just get all the information you can regarding that" - Participant 2

Label: Agreement on data provenance

Code: "Yes, I only have experience from working with these things in very
very small group. So you kinda always have a sense of what everyone is doing
and who is doing what. But, if you are working with models in larger team.
If you have like commits everyday by several people. This is something going
to be turned out useful." - Participant 3

Label: Agreement on data provenance

Code: "Of course it is, for the same reason to keep track of... So, GitHub
keeps track of commits in software development in general. But you can see
similar things when it comes to machine learning, that you keep track of who
does what and train which models, I guess." - Participant 4

Note: Transcript translated from Swedish to English

Label: Agreement on data provenance

Q1.4: How important is the requirement interpretability?

IV



A. Appendix

Code: "Yes, I believe so, yes, absolutely." - Participant 1
Label: Agreement on interpretability

Code: "Aha, hmm, depending on who sees it, if it’s just software developers
and people who understands it, then it’s useful, but it can be kinda redundant
for people who doesn’t." - Participant 2

Label: Depends on the type of users when it comes to interpretability

Code: "Yeah, it’s important. I mean it’s difficult enough with machine learn-
ing models to sort of get a grip of why stuff is happening in the first place, so
every ounce of interpretability is gonna be good." - Participant 3

Label: Agreement on interpretability

Code: "Uh, it depends on what applications it’s about. For example, I predict
which medications a patient should take, for example, to determine whether
that patient has cancer or not. When you make such decisions, you want to
understand how the machine learning model processed, when it came to that
decision. Because patients want to know... Like, the model says I have cancer,
but I also want to know why it says so. For such applications, it is important.
But then there are other things, such as predicting an email is spam or not,
which is not important." - Participant 4

Note: Transcript translated from Swedish to English

Label: Depends on the type of applications when it comes to interpretability

Q1.5: How important is the requirement performance efficiency?

Code: "It would be right? Yeah, I find myself not being able to... But, but,
I'm pretty sure that would be important yeah." - Participant 1

Label: Agreement on performance efficiency

Code: 'I'd say very important. You can improve the versions by retrain-
ing and with more performance, then you can decrease the time it takes." -
Participant 2

Label: Agreement on performance efficiency



A. Appendix

Code: "Well... I don’t know, both yes and no, I think. Cuz, I mean perfor-
mance is important overall. But then again, we train machine learning model
using Python, which is not a very performant language right? But you don’t
want the performance to go down the drain, just because you are using like a
query language, like a special tool, for inserting model data and training data.
You don’t want to query language to be slow, you don’t want it to make like
stupid decisions about where to put things and make things even slower. So
yeah, it’s important. In the case of versioning control, maybe not as impor-
tant. Cuz, that’s mostly about seeing like who did what. But it’s important,
but less to some aspects." - Participant 3

Label: Depends on what kind of aspect when it comes to performance efficiency

Code: "So if we take a comparison with Git which is a version control system.
Of course I care if Git is slow or fast. So if Git is very slow, if I run a Git push
for example, and it is very slow and I have to sit and wait, it’s clear that I
get annoyed by it, so it has an impact. The training time has to do with the
fact that you use Scikit-learn, for example. So the training time is involved
in making which library you use you use to train the model. For the query
language as a whole, it is generally important." - Participant 4

Note: Transcript translated from Swedish to English

Label: Agreement on performance efficiency

Q1.6: How important is the requirement interoperability? Is it impor-
tant to integrate with Git?

Code: "Yeah, absolutely, you would be working with that all the time. Yeah,
there is not doubt about that." - Participant 1

Label: Agreement on interoperability

Code: "For me, I somewhat agree. But it won’t be the most important non-
functional requirement." - Participant 2

Label: Agreement on interoperability

Code: "Eh, I mean yeah. Maybe some parts of Git would actually be beneficial
to enrich this versioning. Like you could connect different types of commits
and different types of histories. Like your query history and Git history, and
connect commits, sort of. Like wrap them together, or entangle them a bit to
be able track what’s going on." - Participant 3

VI



A. Appendix

Label: Agreement on interoperability

Code: "So that the version not only keeps track of your code files that GitHub
keeps track of, but it is also in combination with also keeping track of history
from the query language. Yes, I guess so. Sees no reason why it would not be
useful." - Participant 4

Note: Transcript translated from Swedish to English

Label: Agreement on interoperability

Q1.7: Are there any missing requirements that would be good to have,
based on your own experiences?

Code: "Uhm, right now, I haven’t thought of any. I think the ones you listed
are perfect, yeah." - Participant 1

Label: Approval of no missing requirements

Code: '"Cuz, the requirements you have are very broad, cuz, I think they
capture the most important things." - Participant 2

Label: Approval of no missing requirements

Code: "No, I think this is already a solid list. I can’t come up with any more
on the spot. I think this is a very good start of requirement specification." -
Participant 3

Label: Approval of no missing requirements

Code: "I do not think so. But it is possible that there are stuff." - Participant

4
Note: Transcript translated from Swedish to English

Label: None

Q1.8: What do you think about the usage of the query language, based
on what has been shown? What do you like, what needs improvement?

Code: 'l really like, ehm..., I think it’s..., yeah. Hmm, there was nothing
that stands out to me, but me like, I'm constantly repeating, like my lack of
experience, that just..., so I have nothing to contribute here." - Participant 1

VII



A. Appendix

Label: Lack of experience

Code: 'l like that it is very easy to use. Like the syntaxes, it follows all
the standard query languages. So that was my favorite part. I can see the
usefulness for when doing in projects. Ehm, I mean cuz when we did the
training, cuz you had a small amount of data, but if the data was bigger, does
it display any sort of how long it would take or... If we working with big data
and it would take like couple of hours, then I'd say it would be very useful.
Cuz then you can..., you don’t have to cancel, cuz you don’t know what’s going
on in the other side of the console. It’s nice to see some sort of, oh it’s alive,
it’s still working." - Participant 2

Labels: Easy to use, Follows standard sequel commands, How to handle big data

Code: "Ehm, I think it’s good that it sort of strives to look like regular sequel
commands a little bit. I think that’s a good thing, cuz you always feels right
at home, you know what it’s about, that’s good. Although that comes with
the backside if your command were to behave differently in some way from
regular sequel command. If it were to perform a function that it is completely,
like, it does not look like or feel like regular sequel functions at all, then that
might be a bit of a surprise. So there might be small learning bumps. So that
might be the backside of it. So there’s the feeling, I know this, I've seen this.
And there is also, wow this didn’t behave the way I expected it to. So it might
be a two-edged sword, so to speak. But I like the idea to go for a sequel kind
of style." - Participant 3

Labels: Follows standard sequel commands, Possibly can behave differently com-
pared to regular sequel commands, Possible learning bumps

Code: "I think I understand roughly what it’s about, but not exactly in detail.
It is an SQL-like language. You have made a program that takes care of all
the steps that you normally need to do manually, such as starting a GitHub
repository, defining your model, training the model. Improvement then would
be to implement support for more libraries, so not only for Scikit-learn, but
your language could also support PyTorch, Keras or TensorFlow. When it
comes to data analysis and stuff like that, because now you just load the data
and train. You have to prepare the data and normalize it as well." - Participant
4

Note: Transcript translated from Swedish to English

Labels: Easy to understand the idea, Possible improvement by adding support
for more libraries, Possible improvement by adding support for data analysis

VIII



A. Appendix

A.4 Second Phase Interview Code-Label Pairs

Q2.5: How would you rate your own understanding of the query language
on a scale from 1 (very low) to 5 (very high)?

Code: "That’s basically the same thing I been working before with, so I would
say 4, I understand it." - Participant 1

Label: Rating on own understanding of the query language

Code: 'I think I could follow along fairly good, you were getting statistics,
uhh, T mean or not statistics per se, but information from the runs that you
did using queries basically. Say maybe a 2 or 3." - Participant 2

Label: Rating on own understanding of the query language

Code: '"I'd say I understand it pretty well, so a 4." - Participant 3

Label: Rating on own understanding of the query language

Code: "Uhh, I mean 5. I guess." - Participant 4

Label: Rating on own understanding of the query language

Q2.6: Based on your own experience in developing ML projects: How
would you rate the usefulness of the query language on a scale from 1
(not useful at all) to 5 (very useful)?

Code: "4." - Participant 1

Label: Rating on the usefulness of the query language

Code: "Okay, based... I would say in just a number short, it’s so hard from
my perspective, but a 3, a 3 at least." - Participant 2

Label: Rating on the usefulness of the query language

Code: "I think would got it somewhere 3 and 4 region, perhaps" - Participant
3

Label: Rating on the usefulness of the query language

IX



A. Appendix

Code: "Uhh, I have to think. So, I mean like, versions for like different models
you trained with different hyperparameter setups is very important for machine
learning. So, like the versioning part of it, like storing the history is definitely
useful. I'm not sure... Like so, I think using the query language to actually
train models and develop machine learning systems, then you would need some
models that using existing methods. So somebody that is like working for a
company maybe and then working on a particular application. And then they
are only going to use existing methods. But for me as a PhD student who’s
researching stuff, making my own models and so on. Then it would be hard to
use this query language, right. Cuz, I won’t be able to use just any machine
learning model. So, for me personally probably not so useful for that reason,
but in general it looks interesting. So like usefulness in general is, I would give
it maybe a 4. But for me is probably like a 1." - Participant 4

Labels: Rating on the usefulness of the query language, Agreement on versioning
functionality, Possible improvement by adding support for any arbitrary models,
Hard to use the query language

Q2.7: Which features are the most useful?

Code: "Uhh, I think it is good to switch between different versions of models.
It is good to... I think all of them are quite useful, cuz each of them is a part
of the model processing or training or performing the prediction. It is a part
of what you’re doing, it’s a part of the whole procedure. But yeah, if I were
to prioritize or pick one, it would be the Continue-feature." - Participant 1

Labels: Subjective rating on most useful feature, Agreement on reproducibility
functionality

Code: "Mmm, [ would think the reusability feature. Just from my under-
standing, that’s what’s been a big struggle when you have involvement in
people developing, and running different models. Yeah, it’s difficult to repro-
duce results from other teams not within your own, it’s been a big issue from
my understanding. So yeah, that seems really good." - Participant 2

Labels: Subjective rating on most useful feature, Agreement on reusability func-
tionality

Code: "The calculation stuff is pretty useful. Seems like a nice sort of shortcut
to get what you actually after, and what you actually interested in. I also
thought that the filtering was pretty neat. So I think that is going to be very
helpful as well." - Participant 3

X



A. Appendix

Labels: Subjective rating on most useful feature, Agreement on calculation fea-

ture, Agreement on filtering feature

Code: "Ok, by the way when I said 1 just for the previous question, I meant
like with respect to the current state of the system, but if you kept developing
and added more features, then maybe it would be more than 1. Ok so, the
most useful feature, for me it probably would be the way of being able to save
the history. Anything that has to do with storing like the history of trained
models and also reproducing results and so on." - Participant 4

Label: Subjective rating on most useful feature, Agreement on reproducibility func-

tionality

Q2.8: Which features are the least useful?

Code: "Ehm, I don’t know, do I have to pick one that is considered the
least useful? I don’t have anything in mind, I think all of them are useful." -
Participant 1

Label: Approval of no feature to be least useful

Code: "Uhh, hmm... T don’t know, it depends... I mean... the... The select,
but I mean it’s also one of the key features but it doesn’t do as much as the
reproducibility one. It’s really hard. Do I have to say something? Because my
opinion is not gonna be... It’s gonna be mostly a guess work at this point. I
don’t think I can provide much value for you actually." - Participant 2

Labels: Approval of no feature to be least useful, Lack of experience

Code: 'l don’t think there is a feature that is like unwanted in this set of
features. So I couldn’t really say like that this one should probably go. Nah I
think this set of features, this set of functionality is like a good foundation of
what we would want to do with a query language like this. Like there are no
obvious, like no get rid of this, like this is not useful at all." - Participant 3

Label: Approval of no feature to be least useful

Code: "Probably, well the stuff that had to do with like training models and
predicting and so on. Cuz when I do that I would be restricted to existing
models, like Scikit-learn models and so on. That would be least useful for me
I would say." - Participant 4

XI



A. Appendix

Label: Possible improvement by adding support for any arbitrary models

Q2.9: Which of the features need improvement? For each of them: what
kind of improvement?

Code: 'It’s difficult, because, you know, for a short amount of time, you
have to get a very deep understanding of all of them and check if any needs
improvement. But I'd say right now I don’t think any of them do." - Participant
1

Labels: Approval of no features need improvement, More time required to un-
derstand

Code: "Mhmm, maybe that you would be able to compare results, if you select
two different parameters from two different models if you compare, and... Like
if you select one run and then you compare result with another one, then
maybe you would see okay this run had this much of an improvement in terms
of this but decreases the accuracy here, ehh, something like that maybe. If
you train two models on the same datasets, maybe it would be interesting to
have an easy view of how they performed differently, or what their parameters
were differently." - Participant 2

Labels: Disapproval of no features need improvement, Possible improvement by
easing the process of comparison between values produced by different models

Code: "Maybe one would want to tidy up, like if you print a lot of stuff to the
console, maybe that needs to be prettified in some way, so that it’s more easy
to read like, to actually find what you are looking for, so you are not jumping
across the screen because the implementation. But that’s kinda minor thing I
guess." - Participant 3

Labels: Disapproval of no features need improvement, Possible improvement by
reducing the need for a lot of scrolling in command console to find the correct ver-
sion of a model

Code: "So all the features that correspond to using existing models. So I
guess... Your models. All models are in Scikit-learn, right. So if you added a
way to use any arbitrary models that I can define with my own like Python
class for example, as long as it follows like the correct paradigm, like it has
a predict function and a fit function and so on. Like, if I can define my own
class with those functions and then use them with your framework, then it
would be useful. And also support for other libraries other than Scikit-learn
like PyTorch, or TensorFlow and so on." - Participant 4

XII



A. Appendix

Labels: Disapproval of no features need improvement, Possible improvement by
adding support for any arbitrary models, Possible improvement by adding support
for other libraries

Q2.10: Do you have ideas of new features that can further improve the
usefulness of the query language?

Code: "So my thought is, maybe a user want to retrieve certain information
and save them separately. Like you are looking for something, you filter the
metric for example and you want this piece of information to be saved to
somewhere. Otherwise I don’t think uh... Like what I've seen, as I said before,
because it was short time to get understanding for all of these features, but
from this overview, I don’t think any other features are needed." - Participant
1

Labels: Approval of no new features can improve the usefulness, Possible improve-
ment by improving the current features to save values in a file separately, More time
required to understand

Code: "I think it would be somewhere based around that, like as for me as I
am so new to it, that would be one of the things that I would find interesting,
like to easy be able to see the difference between what parameters you are
using." - Participant 2

Labels: Disapproval of no new features can improve the usefulness, Possible im-
provement by easing the process of comparison between values produced by different
models, Lack of experience

Code: "I wouldn’t say new features, cuz I think these you could get pretty
far with these features that already exists, so I guess, to make the language
more useful. Maybe just expand on functionality that is already there and
refine it. And maybe add more options to these commands that are already in
there. I think the main point is that I don’t really see an obvious new piece of
functionality, so I think, if you want to make it more useful, then like focus on
just expanding the functionality that is already there. I don’t think you would
need to throw in a bunch of new commands just to make it more useful, cuz
this would already get you pretty far." - Participant 3

Label: Approval of no new features can improve the usefulness

XIIT



A. Appendix

Code: "So I guess I just mentioned, right. Just more support for more models,
and I mean I guess we talked about it in the previous interview with like data
analysis. Being able to analyse the data, because that is the very important
part in machine learning. Maybe some command that like after you loaded
your data, you can plot different statistics regarding the data, and manipulate
the data, and normalise and so on. The datasets that you show me now were
just example toy datasets, right. But in practice, you sometimes deal with
data with millions of entries. In some of the columns or rows there might be
missing values and so on, so you might have to remove some data to prevent
that and so on." - Participant 4

Labels: Disapproval of no new features can improve the usefulness, Possible im-
provement by adding support for any arbitrary models, Possible improvement by
adding support for data analysis

XIV



	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Problem Description
	Research Questions
	Thesis Outline

	Related Work
	Method
	Design Science Cycles
	Requirement Elicitation
	Artifact Feature Elicitation
	Artifact Feature Prioritization
	Artifact Technology Stack
	Evaluation Method
	Requirement Satisfaction

	Results
	Requirements
	Functional Requirements
	Non-functional Requirements

	Features
	Traceability Matrix
	Artifact Implementation Design
	Grammar
	Code
	Structure
	Versioning

	First Evaluation
	Second Evaluation

	Artifact Usage Scenarios
	Discussion
	Support for Scalability
	Support for Data Analysability
	Support for Any Arbitrary Models
	Support for Other Data Types
	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity


	Conclusion
	Limitations and Delimitations
	Future Work

	Appendix
	First Phase Interview Questions
	Second Phase Interview Questions
	First Phase Interview Code-Label Pairs
	Second Phase Interview Code-Label Pairs


