
DF

Indoor 2D map generation using projec-
tive transformation
Master’s thesis in Systems, Control and Mechatronics

Admir Alihodza
Jonas Hejderup

Department of Electrical Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2020

Master’s thesis 2020:EENX30

Indoor 2D map generation using projective
transformation

Admir Alihodza Jonas Hejderup

DF

Department of Electrical Engineering
Signal processing and Biomedical engineering
Computer vision and medical image analysis
Chalmers University of Technology

Gothenburg, Sweden 2020

Indoor 2D map generation using projective transformation
ADMIR ALIHODZA JONAS HEJDERUP

© ADMIR ALIHODZA JONAS HEJDERUP , 2020.

Company Supervisor: Per-Lage Götvall, Volvo Group Trucks Operations
Academic Supervisor & Examiner: Torsten Sattler, Department of Electrical Engi-
neering

Master’s Thesis 2020:EENX30
Department of Electrical Engineering
Signal processing and Biomedical engineering
Computer vision and medical image analysis
Chalmers University of Technology
SE-412 96 Gothenburg

Cover: The figure shows all the used input images and the final generated map using
the pipeline outlined in this thesis.

Typeset in LATEX, template by David Frisk
Gothenburg, Sweden 2020

iv

Indoor 2D map generation using projective transformation
ADMIR ALIHODZA JONAS HEJDERUP
Department of Electrical Engineering
Chalmers University of Technology

Abstract
Indoor navigation and localization within complex environments is a critical compo-
nent for many systems. With increased computation power and cheaper cameras, it
is becoming more viable to use computer vision-based techniques to generate large-
scale indoor maps using images. In recent years, Structure of motion has been an
approach for these types of problems, where the 3D reconstruction of the indoor
scene forms the basis of the map. An alternative approach is to estimate projective
planar transformations between images and stitch them together into a map. This
approach is better suited than Structure of motion since most indoor scenes contain
planar surfaces.

The aim of the thesis is to develop a pipeline for generating a 2D indoor map using
images over a planer scene. The primary approach is to stitch images together into
a single image using planar projective transformations. The pipeline’s performance
is evaluated by constructing a map over an indoor scene and measuring the overall
distance accuracy of the map. The evaluation shows that the proposed pipeline can
generate an accurate map over an indoor scene that resembles an industrial factory
environment.

Keywords: Map generation, Computer vision, Homography, Image stitching, Bundle
adjustment, Multi-band blending.

v

Acknowledgements
Firstly, we would like to thank our supervisor and examiner Torsten Sattler for his
extremely valuable support and guidance throughout the thesis. We were constantly
amazed by his vast knowledge within computer vision and he kept us encouraged
throughout the thesis. Thank you Torsten!

Secondly, we would like to thank Per-Lage Götvall at Volvo Trucks Operations for
giving us the opportunity to carry out our thesis at AB Volvo. We would also like
to thank him for his insights and support during the thesis.

Lastly, we would like to thank our families and friends for the support given to us
during our pursuit of an engineering degree at Chalmers. You guys kept using going
the early mornings and late nights. Without your support and love, we would have
never come this far.

The last dance!

Admir Alihodza & Jonas Hejderup, Gothenburg, June 2020

vii

Contents

List of Figures xi

List of Tables xv

1 Introduction 1
1.1 Related work . 2

1.1.1 3D reconstruction . 2
1.1.2 Image Stitching . 3

1.2 Thesis Outline . 4

2 Theory 5
2.1 Camera Model . 6
2.2 Homography . 8
2.3 Homography Estimation . 10
2.4 Feature detection and matching . 12

2.4.1 Feature detector . 12
2.4.1.1 Harris corner detector 12
2.4.1.2 SIFT . 14

2.4.2 Feature descriptor . 16
2.4.3 Feature matching . 16

2.5 Random sample consensus . 17
2.6 Bundle adjustment . 18
2.7 Multi-band blending . 19

3 Method 21
3.1 Pairwise homography estimation . 22
3.2 Compute Map homography . 23
3.3 Optimization . 24
3.4 Map Compositing . 25

4 Results 27
4.1 Experimental Setup . 27
4.2 Evaluation Metric . 28
4.3 Implementation details . 29
4.4 Evaluation . 29

4.4.1 Performance of bundle adjustment 30
4.4.2 Comparasion of feature extractor 34

ix

Contents

4.4.3 Indoor scene with objects . 37
4.5 Summary . 40

5 Conclusion 41
5.1 Future work . 41

Bibliography 43

A Appendix: Input images I

x

List of Figures

2.1 The figure shows a flow chart of a general image stitching pipeline [19].
The pipeline shows the different stages required to stitch together the
input images into a single image. From the input images, features are
extracted and matched. The matched features are used to estimate
an homography. The images are stitched using the homography and
the result is optimized using bundle adjustment. 5

2.2 Illustration of the mathematical model behind the pinhole camera
model. The pinhole camera coordinate system is given by e′

x, e
′
y, e

′
z

where the origin is the camera center C and the plane at e′
z = 1 is

the image plane. The illustration shows the ray between the scene
point X and the camera center C intersects the image plane at point
x. The figure is taken from [26]. 6

2.3 An illustration of a point transformed between coordinates frames.
The transformation of a point between the left and middle image
shows the mapping of a 3D point from the world frame into the pin-
hole camera frame using the external parameters [R t]. The trans-
formation of a point between the middle and right image shows the
mapping of a point from camera coordinates into pixels coordinates
using the calibration matrix K. The figure is taken from [27]. 7

2.4 Illustration of how a homography maps point correspondences be-
tween two images with common world points belonging to the same
scene plane. 9

2.5 The graphs x and y-axis are the values of the two eigenvalues from
the M matrix, here α corresponds to λ1 and β to λ2. It shows the
contour plots for Equation (2.17) and how they varies with the values
of λ1, λ2. The graph is divided into different regions corresponding
if the eigenvalues indicate whether it is a corner, edge or flat region.
The graph is from [29]. 14

2.6 The figure shows for each octave the image is filtered with Gaussian
blur with a varying σ. The DoG is calculated by subtracting the
blurred images with each other. The resulting image is then used to
find any local extrema. The figure is from [11]. 15

xi

List of Figures

2.7 The figure to the left shows the grid that is centred around the de-
tected feature. The arrows in the cells represent the magnitude and
direction of the image gradients. The figure to the right shows the
orientation histogram for each quadrant which is later stacked into a
vector to form the descriptor. The figure is from [11]. 16

2.8 The figure shows matched SIFT features between two images that
covers the same scene with two different view-points. The images are
from [33]. 17

3.1 The figure shows the different stages from turning the input images
into a 2D map. The first stage is to estimate pairwise homographies
between images by finding point correspondences between them. The
second stage consists of building the map by calculating homographies
which transforms each image into the maps coordinate system. These
homographies are called map homographies. The third stage is to
optimize the map homographies and point correspondences for each
image using bundle adjustment. The final stage is compositing the
map by stitching all the images together using the calculated map
homographies and converting the unit of the map from pixels into
centimetres. 21

3.2 The figure shows an example of a birdseye view over the camera
layout. Each black dot represents a camera and they are identified by
the position in the grid system. The green arrows show the images
each camera is matched with. For example, camera (1, 1) image is
matched with cameras (1, 2) and (2, 1) images. 22

3.3 The figure shows an illustration of a distorted map to the left and the
rectified map after applying the estimated homography. 26

4.1 The figure shows a schematic overview of the indoor scene used to
evaluate the map generation pipeline. The ten black arrows indicate
distances between points that are used to evaluate the accuracy of
the map. The red circles are points use to estimate the rectification
homography. All the distances in the figure are measured in centimeters. 27

4.2 The figure shows the mean distance for all specified distances in Fig-
ure 4.1 when using Harris corner detector. The results for not using
bundle adjustment can be in Figure 4.2a and the results for using bun-
dle adjustment can be seen in Figure 4.2b. These figures clearly show
that bundle adjustment reduces the distance error for all distances
except for d1. Also, the variability for the distance errors decreases
which indicates that bundle adjustment increases the robustness of
the map generation. 32

xii

List of Figures

4.3 The figure shows the mean distance for all specified distances in Fig-
ure 4.1 when using SIFT feature extractor. The results for not using
bundle adjustment can be in Figure 4.3a and the results for using bun-
dle adjustment can be seen in Figure 4.3b. These figures clearly show
that bundle adjustment reduces the distance error for all distances
except for d1. Also, the variability for the distance errors decreases
which indicates that bundle adjustment increases the robustness of
the map generation. 32

4.4 The figure shows the effect of bundle adjustment when using Harris
corner detector. Figure 4.4a shows the generated map without us-
ing bundle adjustment and Figure 4.4b shows the result with bundle
adjustment. The figures clearly show that the map generated with
bundle adjustment more accurately portrays the indoor scene. This
can clearly be seen at the top of the map where the bundle adjustment
ensures the lanes are more aligned. 33

4.5 The figure shows the effect of bundle adjustment when using SIFT
feature extractor. Figure 4.5a shows the generated map without us-
ing bundle adjustment and Figure 4.5b shows the result with bundle
adjustment. The figures clearly show that the map generated with
bundle adjustment more accurately portrays the indoor scene. This
can clearly be seen at the top of the map where the bundle adjustment
ensures the lanes are more aligned. 34

4.6 The figure shows a bar chart over the average RMS distance error
when either using SIFT feature extractor or Harris corner detector
in the pipeline. The result shows that the Harris corner detector has
lower error compared to SIFT feature extractor. Therefore Harris
corner detector generates more accurate maps. Also, Harris corner
detector is more robust since the variability of the data is lower. . . 36

4.7 The figure shows the ten distance errors of two different generated
maps using images with and without industrial objects placed in the
scene. Both maps are generated using the pipeline that includes Har-
ris corner detector and bundle adjustment. Two blue pallets in the
input images are masked during preprocessing when generating the
map with objects. The results show that the distance error for all
distances increases for the generated map when objects are present in
the scene. 38

4.8 The figure shows two maps generated using images with industrial ob-
jects placed in the scene. Both maps are generated using the pipeline
that includes Harris corner detector and bundle adjustment. Figure
4.8a shows the generated map when the two blue pallets in the in-
put images are not masked during preprocessing. Figure 4.8b shows
the generated map when the two blue pallets in the input images are
masked during preprocessing. The figures clearly show that masking
the two pallets contributes to a map that accurately portrays the in-
door scene. The overall accuracy for Figure 4.8b can be seen in Table
4.3. 39

xiii

List of Figures

A.1 The figure shows all the input images for a scene without objects. . . I
A.2 The figure shows all the input images for a scene with objects. . . . II
A.3 The figure shows all the input images for a scene with objects were

two pallets have been masked. III

xiv

List of Tables

4.1 The table shows the different parameter values used for evaluating
the map generation pipeline. 29

4.2 The table shows seven metrics used for comparing the different feature
extractors used in the pipeline for one generated map. The first three
metrics shows the average extracted features, matched features and
inliers points per image. In these metrics, Harris corner detector
extracts more features than the SIFT feature extractor. The last
four metrics are the total map points, average track length and the
cost per map point before and after bundle adjustment. Both feature
detectors perform similarly for average track length and cost per map
point. SIFT feature detector has a lower total map points since it has
fewer inliers points per image compared to Harris corner detector. . 37

4.3 The table shows the RMS error of two different generated maps us-
ing images with and without industrial objects placed in the scene.
Both maps are generated using the pipeline that includes Harris cor-
ner detector and bundle adjustment. Two blue pallets in the input
images are masked during preprocessing when generating the map
with objects. The results show that the RMS error increases for the
generated map when objects are present in the scene. This indicates
that the accuracy of the generated maps decreases using images with
objects in them. 39

4.4 The table shows the overall run-time along with individual stages of
the pipeline using either SIFT or Harris corner detector as a feature
extractor. The pipeline with Harris corner detector is considerably
slower than the pipeline with SIFT feature extractor. Note that the
matching process and the RANSAC are performed simultaneously
and could not be measured separately. 40

xv

List of Tables

xvi

1
Introduction

An indoor digital map aims to create an accurate digital two-dimensional represen-
tation of an indoor scene. These maps form the foundation of many systems that
rely on precise localization and navigation within complex indoor environments. An
example of these types of environments are factories where determining and navi-
gating to different locations in the environment is highly critical for many different
systems. These maps are either created manually or using some of measuring device
such as LiDAR that is mounted on a robot which maps the entire indoor scene.
With the introduction of cheaper cameras and increased computing power, it is be-
coming a more viable option for generating maps by using computer vision-based
techniques. Volvo Group Trucks Operations wants to investigate the possibility of
automatically generate a 2D map using images over an indoor scene.

A possible vision-based method of generating an indoor map is to use Structure from
Motion (SfM). This is a technique used to reconstruct a 3D scene using a series of
images from different viewpoints by estimating both the camera pose and the 3D
structure [1]. SfM is an extensively studied area within computer vision which has
proven to work quite well with large-scale reconstructions [2, 3, 4, 5, 1]. For the
3D reconstruction to successfully generate an accurate map, the point cloud of the
indoor scene needs to be dense, in particular for the floor of the scene. An alter-
native approach is to consider the indoor scene as a large single plane instead of a
3D structure since the scene mostly consist of a floor. Therefore, it is more suitable
to estimate a planar projective transformation that relates a common plane in all
images corresponding to a plane in the scene, namely the floor. An existing method
that uses this approach is the Micro-GPS system [6]. It works by generating a map
over the planar surface by using a robot which takes close-range images over the
surface. These images are stitched together to form a 2D map over the planar sur-
face. This process is quite slow since it requires a robot to drive through the entire
scene and inflexible to any change in the scene since it would require the robot to
remap the entire scene again.

The thesis presents a vision-based pipeline of generating a digital 2D indoor map
which is heavily inspired by the automatic image stitching pipeline [7]. It uses im-
ages captured from the ceiling of the indoor scene and finds feature correspondences
between them. The correspondences are used to estimate a homography [1] that
relates the pixels between the images. These homographies are called pairwise ho-
mographies and is used to calculate another homography that relates all input images
into a common image coordinate system. From these homographies, it is possible to

1

1. Introduction

stitch the images into a single image. The homographies are further optimized by
using bundle adjustment [8] to ensure the images are correctly aligned. The stitched
image is correctly scaled and the seams between the images are removed by using
multi-band blending [2]. The proposed pipeline uses projective planar transforma-
tion instead of creating a 3D reconstruction of the indoor scene and therefore does
not require a dense point cloud. It also addresses several shortfalls of the Micro-GPS
system, mainly that it simplifies the map generation process. Micro-GPS system
requires the images to be captured close to the surface while the proposed method
uses images captured from the ceiling. Images from the ceiling cover more of the
indoor scene, thereby the pipeline needs fewer images to construct the indoor map.

The following contributions made by the thesis:
• Proposed a pipeline for generating a map using images over an indoor scene.
• The proposed pipeline was able to generate an accurate map using images

from a real world indoor scene resembling an industrial environment.
• The components of the pipeline were evaluated to study their influence on the

generated map.

1.1 Related work
This section presents previous research and work related to vision-based methods
for indoor map generation, as well as previous works that will be incorporated into
the proposed map generation pipeline.

1.1.1 3D reconstruction
An indoor map can be generated by reconstructing an indoor 3D scene from a set
of images by estimating the camera poses and the 3D scene points. Most recent
research has focused on SfM and visual Simultaneous Localization and Mapping
(SLAM) [9]. SfM is mainly used for offline tasks and has been shown to success-
fully solving large-scale reconstruction problems such as reconstructing buildings and
cities [10]. Visual SLAM is an online method that mainly focuses on the navigation
of robots and autonomous cars where the task is to locate and build a map of an
unknown environment using measurements from various sensors. More specifically,
SLAM tries to estimate the positions of the landmarks and the robot by using the
measurement information from the sensors. The landmarks are used to construct a
map of the unknown environment. Visual refers to the fact that cameras are used
as sensors. Both methods are similar and mostly differs on the type of applications,
SfM for offline problems and visual SLAM for online problems.

The general pipeline for SfM consists of extracting and matching features for all
of the input images. Commonly Scale-invariant feature transform (SIFT) [11] is
used as a feature extractor since it has shown to be quite robust for finding distinct
features between the images [12]. For uncalibrated cameras, eight matched feature
correspondences are used to calculate the relative pose between the views by using

2

1. Introduction

epipolar geometry [13] while calibrated camera only need five matched feature cor-
respondences to compute the relative pose [14]. The scenes points are estimated by
using the computed camera poses and triangulation [1]. Due to noise and drift, the
resulting camera poses and scene points needs to be further refined by using bundle
adjustment [1] which solves a nonlinear optimization problem that minimizes the
reprojection error. As previously discussed, to generate an accurate map using SfM,
the 3D reconstruction needs to be dense. Most feature detectors struggle to find
distinct features over homogenous surfaces such as a floor. This results in just a
few point correspondences are found between the images which lead to a quite spare
final 3D reconstruction. Therefore, the sparse point cloud would require further
reconstructions to turn it into a dense point cloud by for example using the Patch-
based Multi-View Stereo algorithm [15]. The points that correspond to the floor of
the indoor scene are not constrained to be located on the same plane which further
adds inaccuracies when generating a map.

Early visual SLAM was based on Bayesian framework to reduce computing time
where an Extended Kalman filter is used to estimate the landmarks and the cam-
era pose using extracted features from the images [16]. More recently, visual SLAM
methods have started to use sparse bundle adjustment which optimizes the 3D land-
marks along with the camera poses [17]. This has resulted in higher accuracy for
the estimated map given the same constraint on the computation time [17]. This
approach has shown to generate a consistent map for large-scale outdoor environ-
ments [18].

1.1.2 Image Stitching
Aligning images and stitching them together is a well-established problem within
computer vision [19, 20, 21, 22, 23], where the goal is to relate one image’s coordi-
nate system into another image’s coordinate system.

Within image stitching, there are two main techniques: Direct alignment and Feature-
based registration [19]. Earlier image stitching algorithms were based on direct align-
ment which searches through all possible alignments and picks the alignment with
the lowest error [19]. There are different techniques used to speed up the search, but
overall this technique is slow and not as robust as the feature-based techniques [19].
More recent image stitching algorithms are using feature-based techniques since they
are generally faster and more robust [7]. The feature-based techniques try to find
distinct features between the images and estimate a homography to transform one
image’s coordinate system into another [7]. A general feature-based image-stitching
pipeline consists of feature extraction and matching, homography estimation, bundle
adjustment, blending and compositing the final image [2]. Crucially, the introduc-
tion of bundle adjustment significantly improved the accuracy of the stitched image
since it gives a globally consistent solution by optimizing all of the poses in the
image simultaneously [19].

3

1. Introduction

It has been shown that it is possible to stitch together images of a small planar
surface such as a whiteboard by using homographies [24]. As far as the authors
know there has not been any research or use of image stitching when it comes to in-
door map generation, except for the Micro-GPS system [6]. The Micro-GPS system
works by first constructing an offline database over the planar surface by using a
robot that takes close-range images over the surface for the entire indoor scene. The
images are stitched together by using the general feature-based stitching pipeline
with bundle adjustment. These stitched together images form the map over the
indoor scene. The Micro-GPS system solves the problem with the lack of texture
on homogeneous surfaces by using images close to the surface for the SIFT detector
to find distinct features [6].

There is not any fundamental algorithmic differences between our proposed approach
and the Micro-GPS system. Both pipelines use the general image stitching pipeline
as the foundation. The difference lies in the type of input images used in the
respective pipelines. The Micro-GPS requires images captured close to the surface
of the indoor scene which is a cumbersome process especially for larger indoor scenes
such as factories or warehouses. Our approach uses images taken from the ceiling
which is able to capture more of the scene and thereby needing fewer images. If
the cameras are mounted in the ceiling, then our approach could automatically
update the map if the layout of the indoor scene changes. However, our approach
will struggle more to find point correspondences since the images are not detailed
enough to extract the texture of the homogeneous surface. Instead, the approach
relies on that other distinct features exist on the floor, such as lane markings.

1.2 Thesis Outline
The thesis consists of four sections. The theory section contains the underlying
theory of the different components in the proposed pipeline. Next section describes
how the proposed pipeline is able to generate a map given a set of input images
along with details about the implementation of the pipeline. The results section
presents the evaluation of the pipeline for a real world indoor scene. Also, the
different components of the pipeline are evaluated to study their influence on the
generated map. Finally, the conclusion summarizes the results of the thesis along
with suggestions for potential future work.

4

2
Theory

Image stitching is a problem that aims to align and join images that cover only parts
of a scene into a large image that covers the entire scene. The images are seamlessly
and consistently joined together in a way where the result should be an aesthetically
pleasing image which accurately portrays the scene. The pipeline proposed by the
thesis is heavily influenced by the general image stitching pipeline [19], which can
be seen in Figure 2.1.

Figure 2.1: The figure shows a flow chart of a general image stitching pipeline
[19]. The pipeline shows the different stages required to stitch together the input
images into a single image. From the input images, features are extracted and

matched. The matched features are used to estimate an homography. The images
are stitched using the homography and the result is optimized using bundle

adjustment.

The first section of the chapter will introduce the pinhole camera model and projec-
tive geometry which forms the mathematical foundation of the proposed pipeline.
The section after will introduce and present how homographies can be used to trans-
form images so that they align with each other. Also, methods of estimating homo-
graphies using point-correspondences between images will be presented. Afterwards,
the next section will present how to extract, describe and match features which form
the point-correspondences used to estimate the homographies between the images.
The point-correspondences will not always be correctly matched and therefore an
algorithm called RANdom SAmple Consensus (RANSAC) [25] will be presented to
robustly estimate model parameters using data containing outliers. Bundle adjust-
ment will be explained, which is a method of further refining the homographies by
using non-linear optimization. Finally, multi-band blending will be presented, which
is a method of removing the seams for the stitched-together image to create a more
aesthetically pleasing result.

5

2. Theory

2.1 Camera Model
Camera models are mathematical models used for mapping 3D points in the world
into 2D points in the image. The mathematical model is different between camera
models and the difference depends on for example the lens a certain camera uses
to focus or disperse light [1]. One of the most commonly used and simplest camera
model is the pinhole camera. The mathematical model behind the pinhole camera
is illustrated in Figure 2.2.

Figure 2.2: Illustration of the mathematical model behind the pinhole camera
model. The pinhole camera coordinate system is given by e′

x, e
′
y, e

′
z where the

origin is the camera center C and the plane at e′
z = 1 is the image plane. The

illustration shows the ray between the scene point X and the camera center C
intersects the image plane at point x. The figure is taken from [26].

The origin in the camera model is the camera center C for which all viewing rays
associated with the image intersect. A global 3D point is projected to a point on the
image plane where a ray connecting the global point to the camera center intersects
the image plane. The mapping of a point from 3D world to 2D image coordinates
can be computed using a perspective transformation [1]. For the pinhole camera
model, the perspective transformation is given by the camera matrix

P = K
[
R t

]
, (2.1)

where
[
R t

]
are the external parameters of the camera matrix which relate the

position and orientation of the camera frame to the world coordinate frame. The
first parameter R is a 3 × 3 rotation matrix and the second parameter t is a 3 × 1
translation vector. By applying the rotation R and the translation t it is possible

6

2. Theory

to transform a point from the world frame into the pinhole camera frame as seen in
Figure 2.3. While K is the calibration matrix of the camera matrix and it encodes
the internal orientation of the camera. In other words, the calibration matrix K
maps transformed world points in the camera frame into points in the image frame
which has units pixels as seen in figure 2.3. The calibration matrix K is an upper
triangular matrix and is constructed for a pinhole camera as

K =

γf sf x0
0 f y0
0 0 1

 , (2.2)

where γ is an aspect ratio parameter and s is a skew parameter. The aspect ratio
determines the pixel x : y ratio while the skew corrects for tilted pixels in the image.
f is the focal length and corresponds to the distance between the image plane and
the camera center. The coordinates (x0, y0) are denoted the principal point and are
the pixel coordinates in the image of the point where the z-axis intersects the image
plane. The focal length re-scales image coordinates into pixels while the principle
point translates the origin from the intersection point in the image plane to the
upper left corner of the image. Therefore, after applying the calibration matrix, the
coordinates will be measured in pixels where the origin is at the top left corner of
the image.

Figure 2.3: An illustration of a point transformed between coordinates frames.
The transformation of a point between the left and middle image shows the

mapping of a 3D point from the world frame into the pinhole camera frame using
the external parameters [R t]. The transformation of a point between the middle
and right image shows the mapping of a point from camera coordinates into pixels

coordinates using the calibration matrix K. The figure is taken from [27].

As previously mentioned, 3D world points can directly be mapped to pixel coordi-
nates in the image using the camera matrix P . This is possible since the camera
matrix contains the calibration matrix K and the external parameters

[
R t

]
. How-

ever, before applying the camera matrix to a given point in the 3D world, it is
necessary to rewrite the points into homogeneous coordinates. Homogeneous co-
ordinates are necessary in order to be able to use matrix multiplication between

7

2. Theory

the camera matrix and the 3D world point. Applying homogeneous coordinates in-
creases the dimension of the point with one. In other words, a N dimensional point
becomes a N + 1 dimensional point. This means that a 3D world point can directly
be projected into pixel coordinates in an image using homogeneous coordinates and
the camera matrix. The mapping of a 3D world point into pixel coordinates using
homogeneous coordinates can be computed as

λ

xy
1

 = P


X
Y
Z
1

 , (2.3)

where λ is an arbitrary scaling parameter and
[
x y

]T
is the pixel coordinates in

the image of the corresponding 3D world point
[
X Y Z

]T
. Due to the use of

homogeneous coordinates, the projected pixel point will have a N+1 dimensionality.
However, the corresponding pixel point can easily be retrieved by dividing all rows
with the last element and removing the last row after the division.

2.2 Homography

As discussed, a perspective transformation is a projection of 3D points in the world
frame to 2D points in the image frame. Another transformation that is used for
mapping between planes or 2D points to 2D points is a planar projective transfor-
mation [1]. A planar projective transformation is also sometimes referred to as a
homography and is represented by a non-singular 3× 3 matrix as

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 . (2.4)

A homography is an invertible mapping of 2D point to 2D points in 2D projective
space P2 where lines are mapped to lines [1]. In other words, three points that lie
on a single straight line in P2 will be mapped, using the homography, to three new
points in P2 which also lie on a straight line. Therefore, a homography is a point
to point mapping which has the property to preserve lines between the mappings [1].

8

2. Theory

Figure 2.4: Illustration of how a homography maps point correspondences
between two images with common world points belonging to the same scene plane.

Typically, homographies are used to transform 2D points from one image into 2D
points in another image coordinate system. The transformation is valid under the
assumption that both images have a set of common world points that belong to
the same scene plane, as seen in Figure 2.4. If the assumption holds, there is
a homography corresponding to a scene plane that maps points between images
belonging to the same image plane and corresponding to the same point. The
mapping of image points between images with a common image plane and common
points can be expressed as x

′
1
y

′
2

1


︸ ︷︷ ︸
x

′
i

= H

x1
y2
1


︸ ︷︷ ︸
xi

, (2.5)

where xi is a set of 2D points in one image and x′
i are the corresponding set of

mapped points in the other image. As in the case with the camera matrix, 2D im-
age points are represented as 3D image points using homogeneous coordinates. The
use of homogeneous coordinates makes the transformation linear and gives a linear
transformation of homogeneous points between image planes in 2D projective space
P2 [1].

Another essential property of a homography is that consecutive transformations
between multiple images are applicable. For example, lets assume there exists a
homography HAB mapping image points from IB to IA and another homography

9

2. Theory

HBC mapping image points from IC to IB. Then it is possible to map image points
from IC to IA by consecutively multiplying homographies as

HAC = HABHBC , (2.6)

where HAC is the homography mapping points from image IC to IA.

2.3 Homography Estimation
If two images are capturing the same planar scene from different angles, it is possi-
ble to estimate the homography relating 2D pixel points from one image to another.
The estimation is performed by extracting feature correspondences between two im-
ages and ensuring that the correspondences are image points belonging to the same
planar scene. If the correspondences between the images are representing the same
points in a common planar scene, it is possible to estimate a homography that maps
points from one image plane to another. There are many different linear algorithms
for determining the homography given point correspondences between images. One
of the simplest algorithms is the direct linear transformation (DLT) algorithm [1].

The DLT algorithm is a linear algorithm that uses a set of point correspondences
to solve a homogeneous linear system in order to estimate the homography matrix.
More specifically, a homography is a 3× 3 matrix that contains nine elements.
However, only eight elements are solved as equality is up to an arbitrary scale [28].
The reason for only eight unknown elements comes from the fact that homogeneous
coordinates are used and a homography can be multiplied with a nonzero scale
factor but still represent the same projective transformation [2]. In other words, the
homography is homogeneous matrix with eight degrees of freedom. Eight equations
are needed to determine eight unknowns. Each pair of corresponding points yields
three equations when inserted to Equation (2.5). But only the two first equations
are linearly independent since the third equations is a linear combination of the
two other [1]. Therefore, each pair of corresponding points accounts only for two
equations that can be used to solve for the unknown elements. The minimal amount
of point correspondences n required to solve for the homography is given by

2n ≥ 8⇔ n ≥ 4. (2.7)

Therefore, at least four point correspondences are needed for the DLT to be able
to solve the homogeneous linear system of equations. The DLT algorithm in [1]
solves the generated system of linear equations by representing everything in matrix
form and estimates an approximate solution by finding the nullspace of the system
matrix. The DLT algorithm below is derived in the same way as the derivation
presented in [1]. Firstly, the expression in Equation (2.5) can be rewritten in terms
of a vector cross product as

x
′

i ×Hxi = 0, (2.8)

10

2. Theory

where x′
i and xi are the image point correspondences related by the homography H.

It is possible to formulate the transformation as a cross-product because the vectors
x

′
i and Hxi have the same direction even though they may differ in magnitude

since homogeneous coordinates are used [1]. Having the same direction implies that
the vectors are parallel and therefore their cross-product is zero. To simplify the
derivation, one can rewrite Hxi as

Hxi =

h
T
1 xi

hT
2 xi

hT
3 xi

 , (2.9)

where hT
j is a 1 × 3 vector containing the j-th row of H. Substituting Hxi into

Equation (2.8) and performing the cross-product yields

x
′

i ×Hxi =

 y
′
ih

T
3 xi − hT

2 xi

hT
1 xi − x

′
ih

T
3 xi

x
′
ih

T
2 xi − y

′
ih

T
1 xi

 , (2.10)

where x′
i =

[
x

′
i y

′
i 1

]T
and xi =

[
xi yi 1

]T
are the i-th pair of corresponding

points. The result from the cross product in Equation (2.10) can be expressed in
terms of matrix multiplication as 0T −xT

i y
′
ix

T
i

xT
i 0T −x′

ix
T
i

−y′
ix

T
i x

′
ix

T
i 0T


h1
h2
h3

 =

0
0
0

 (2.11)

which in a more compact way can be written as

Aih = 0, (2.12)

where Ai is a 3× 9 matrix for the i-th pair of corresponding points and h is a 9× 1
vector containing the unknown elements of the homography matrix H. Each Ai ma-
trix is constructed using only one point correspondence while four correspondences
are needed to determine the homography. In other words, four Ai matrices are
needed to fully determine the homography. This can be constructed by assembling
each Ai into a single matrix as 

A1
A2
A3
A4


︸ ︷︷ ︸
A

h1
h2
h3


︸ ︷︷ ︸
h

=


0
0
0
0

 , (2.13)

where A is a 12× 9 matrix containing four Ai matrices constructed using four, i =
1, 2, 3, 4, pair of corresponding points. The system in Equation (2.13) can be solved
by finding a non-zero vector in the nullspace of the system matrix A. However, the
system will not always have an exact solution since the correspondences are usually

11

2. Theory

exposed to noise. Therefore, a least squares solution is found by reformulating
the problem as a homogeneous least-squares problem. Furthermore, the constraint
‖h‖2 = 1 is also added since the homography is only determined up to an arbitrary
scale. A least-squares solution is obtained by minimizing the following

min
‖h‖2=1

‖Ah‖2 . (2.14)

In some cases, the linear system is numerically unstable and causes the solution
to diverge from the correct estimation. The reason for instability is due to the
highly varying magnitude values between the entries in the Ai matrix. Image cor-
respondences are measured in pixels and each point can have values that are in
the thousands. Therefore, the magnitude between terms in the Ai matrix can vary
highly since some terms are squared coordinates while other coordinates are con-
stant. To prevent divergence and obtain a more stable system, [1] proposes that
the point correspondences are normalized before performing DLT. The points are
normalized by translating them such that their centroid is at the origin and their
average distance from the origin is equal to

√
2.

2.4 Feature detection and matching
The first step in the stitching pipeline is to extract a set of image features and
matching them between the images. Matching identical features between images
make it possible to establish point correspondences between images that can be
used to estimate the homography. The process can be divided into three main
parts: feature extraction, creating feature descriptors and matching features. The
feature extraction part is simply an algorithm that extracts unique features present
in the image. The second part consists of representing each detected feature using
a feature descriptor which is used to match features between each other. Features
are matched by comparing descriptors between two images and a match is found if
two descriptors are similar.

2.4.1 Feature detector
A feature detector algorithm extracts unique features present in an image. Several
feature extraction algorithms exist, where the most apparent difference between
them can be found in what kind of distinct feature they extract. Two commonly
used algorithms are Harris corner detector [29] and SIFT [11]. Harris corner detector
extracts corners from the image while SIFT extracts blobs. Selecting between these
two detectors depends on the problem at hand and what features are available in
the image.

2.4.1.1 Harris corner detector

Harris corner detector is a feature detector algorithm that aims to detect corner
in an image [29]. Corners are identified by checking if their gradient changes in
all directions. This makes corners distinct and easily distinguishable compared to

12

2. Theory

edges and flat regions where the gradient change either in one direction or not at all.
Corners are detected by placing a small window that is centred around each pixel
in the image. The window measures the intensity level of all the pixels located in
the window. Then the squared difference in intensity level is computed by shifting
the window by small amounts in every direction. This is can be expressed as

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y + v)− I(x, y)]2, (2.15)

where w(x, y) is the window function and u, v are the small shift in x and y direction
in the image. The change in intensity should be large for corners, therefore Equation
(2.15) should be maximized. This is achieved by firstly approximating Equation
(2.15) using 2D Taylor-approximation and in [29] the equation is rewritten into
matrix form as

E(u, v) ≈
[
u v

] (∑
x,y

w(x, y)
[
I2

x IxIy

IxIy I2
y

])
︸ ︷︷ ︸

M

[
u
v

]
, (2.16)

where Ix and Iy are the partial derivative of the intensity with respect to x and y.
Edges will also contribute to a change in the gradient, therefore it is important to
ensure there is a large change in all directions. The eigenvalues of the M matrix
are proportional to the principal curvatures from Equation (2.16) [29]. The size of
these eigenvalues indicates whether a corner, edge or a flat region is present in the
window [29]. There are three possible cases:

• If both eigenvalues λ1 and λ2 are large: A shift in either direction of the
window gives a large change of the intensity, therefore this corresponds to a
corner. As discussed before, the gradient should change in all directions for
corners.

• If one eigenvalue is large and the other eigenvalue is small: A shift in one
direction of the window gives a large change in intensity while a shift in the
other direction gives a small change in intensity. This corresponds to an edge
since the gradient does not change along the edge but changes when crossing
the edge.

• If both eigenvalues λ1 and λ2 are small: A shift in either direction of the win-
dow gives a small change of the intensity, therefore this corresponds to a flat
region. As discussed before, the gradient should not change in any directions
for flat regions.

Figure 2.5 shows a graph over the eigenvalues along with the type of feature they
correspond to. Previously, computing eigenvalues was considered as too computa-
tionally expensive, therefore [29] proposed a response function to efficiently deter-
mine if a corner is present in the window without the need to explicitly compute the
eigenvalues. The response function is given by

R = det(M)− kTr(M)2 where det(M) = λ1λ2 Tr(M) = λ1 + λ2. (2.17)

13

2. Theory

The response R is given by the determinant and trace of the M matrix and k is
an empirically determined constant. For corners, the response is positive while for
edges the response is negative [29]. The response for flat regions has a low magnitude
[29]. Contour curves for the response of different eigenvalues can be seen in Figure
2.5.

Figure 2.5: The graphs x and y-axis are the values of the two eigenvalues from
the M matrix, here α corresponds to λ1 and β to λ2. It shows the contour plots for

Equation (2.17) and how they varies with the values of λ1, λ2. The graph is
divided into different regions corresponding if the eigenvalues indicate whether it is

a corner, edge or flat region. The graph is from [29].

2.4.1.2 SIFT

The SIFT feature extractor is a blob detector that extracts distinctive features that
are invariant for both scale and rotation and partially invariant to viewpoint and il-
lumination [11]. A blob is a region of the image that share common properties such
as intensity level or colour that is significantly different compared to neighbour-
ing regions. Blobs are detected by filtering the image using Laplacian of Gaussian
(LoG) filter to find local extrema in the image. For the feature extractor to be
scale-invariant, the LoG filter needs to apply different Gaussian blur with varying
variance σ and for different scales of the image [11]. However, the Laplacian of
Gaussian (LoG) filter requires the calculation of the second derivative which is com-
putationally expensive, therefore the Difference of Gaussian (DoG) filter is used as
an approximation of LoG to find the local extrema [11]. The DoG filtering is by
done smoothing the image with two Gaussian blurs. The first Gaussian blur has
the variance σ while the second Gaussian blur has the variance kσ where k is a
multiplication factor. Then these two blurred images are subtracted shown as

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ), (2.18)
where L(x, y, σ) is the Gaussian blurred image with the variance σ and is defined
by

14

2. Theory

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) where G(x, y, σ) = 1
2πσ2 e

−x
2+y2

σ2 . (2.19)

The DoG simplifies the computation since it simply involves applying Gaussian blurs
to images and subtract them. The different scale and the DoG filtering process are
illustrated in Figure 2.6.

Figure 2.6: The figure shows for each octave the image is filtered with Gaussian
blur with a varying σ. The DoG is calculated by subtracting the blurred images
with each other. The resulting image is then used to find any local extrema. The

figure is from [11].

The features are identified by checking the maximum and minimum for each pixel
after the DoG filtering. This is accomplished by comparing the values at neigh-
bouring pixels at the same variance σ, but also comparing the pixels for the scale
above and below it [11]. However, further refinement is required to find the sub-pixel
locations of the local extrema. This is achieved by using Taylor expansion of the
scale-space up to the quadratic term around the potential feature and interpolate
to find the sub-pixel location of the local extrema [11]. At this stage, local extrema
with low contrast are removed by checking if the intensity level is below a certain
threshold. Similar to the Harris corner detector, the edges are removed as potential
features by analyzing the eigenvalues of the hessian matrix given by the previous
Taylor expansion [11]. Here, the criterion is given by the ratio between the trace
and the determinant of the hessian matrix instead of Equation (2.17). Rotation
invariant is achieved by computing an orientation histogram for a region around the
extracted feature. The histogram contains 36 bins where each sample is weighed

15

2. Theory

with its gradient magnitude. The highest peak and any peak within 80 percent of
the highest peak will form the orientation of the feature.

2.4.2 Feature descriptor
Feature descriptors are used to describe the extracted features and are used to match
common features that are present in different images. There are several different
approaches to creating descriptors such as ORB [30] and BRIEF [31] descriptors.
A commonly used descriptor is the SIFT descriptor [11], where the descriptor is
calculated by creating a 16x16 grid centred around the extracted feature. The image
gradient is computed for each cell in the grid and from these gradients an orientation
histogram with eight bins are formed in each quadrant of the grid. This process can
be seen in Figure 2.7, note that the figure only shows an 8x8 grid instead of a 16x16
grid. The four different histograms are stacked into a vector which becomes the
resulting descriptor which is a vector with a length of 128 elements.

Figure 2.7: The figure to the left shows the grid that is centred around the
detected feature. The arrows in the cells represent the magnitude and direction of
the image gradients. The figure to the right shows the orientation histogram for
each quadrant which is later stacked into a vector to form the descriptor. The

figure is from [11].

2.4.3 Feature matching
Feature matching aims to match common features between images. The idea is to
take one feature from one image and find the feature in the other image which has the
lowest Euclidean distance between their descriptor vectors. To search through all the
extracted features is quite time-consuming. Therefore, the search is approximated
by using Best-Bin-First algorithm [32] to speed up the search process [11]. The
high dimensionality of the descriptor vector causes many matches being to close to
each other which potentially leads to incorrectly matched features [11]. A simple
test to identify incorrectly matched features is to find the ratio between the match
and the second-closest match. If they are above a certain pre-determined threshold
between 0.6-0.9, they are discarded. The logic is that an incorrectly matched feature

16

2. Theory

will likely have other falsely matched feature that is similar to each other [11]. An
example of matched features can be seen in Figure 2.8.

Figure 2.8: The figure shows matched SIFT features between two images that
covers the same scene with two different view-points. The images are from [33].

2.5 Random sample consensus
Random sample consensus [25] (RANSAC) is an algorithm used to robustly estimate
model parameters when using a data set containing outliers. These are data points
that cannot be explained by the model parameters. The algorithm tries to filter
out all the outliers from the data set by estimating the model parameters using the
minimal amount of data points which is randomly selected. Each data point from
the data set is verified whether it is an inlier or an outlier. The verification can
be done in multiple ways depending on which type of model the algorithm tries to
estimate the parameters for. For homography estimation reprojection error is com-
monly used [1] and if the error is within a certain pre-determined threshold then
the point is counted as an inlier, otherwise it will be counted as an outlier. The
process is repeated with new randomly selected data points to re-estimate the model
parameters. The final solution is the parameters with the largest number of inliers.

In [25] presents an equation to compute how many iterations the algorithm needs to
run to probabilistically guarantee that one sample will be outlier free which is given
by

N = log(1− psuccess)
log(1− (1− poutlier)s)) , (2.20)

where psuccess is the probability of successfully finding the model parameter without
using any outlier data and poutlier is the probability of an outlier in the data set
and s is the number of data points needed to estimate the model parameters. The
poutlier value is difficult to know before running the RANSAC algorithm, therefore
it is estimated during the run-time of the RANSAC algorithm by finding the ratio

17

2. Theory

of the number of inlier points for a solution and the total number of data points.
Then, a new N is computed by using Equation (2.20) and the newly estimated
poutlier value.

2.6 Bundle adjustment
Stitching together a large set of images require consecutive multiplications of the
pairwise homographies to transform all images into a common coordinate system.
These consecutive multiplications result in an accumulation of error between the
images and constraints between the images will be disregarded [7]. Bundle adjust-
ment is a method used to reduce the accumulated error between images and ensure
consistent global alignment between the images by solving a non-linear optimization
problem [2]. More specifically, Bundle adjustment aims to find a set of parameters
that minimize the re-projection error. The error is given by

rkij = ûki − ũ
k
ij , (2.21)

where ûki is the k-th feature in image i and ũkij is the same feature that have been
projected from image j into image i. The loss function for the optimization problem
is the sum of all the squared residual errors [7] and is given by

ereproj =
n∑

i=1

∑
j∈I(i)

∑
k∈F (i,j)

∥∥∥rkij∥∥∥2
, (2.22)

where I(i) is the images that have matches with image i and F (i, j) is the matched
features between image i and image j. In image stitching application, Bundle ad-
justment tries to find the optimal homographies and feature points that result in the
lowest total reprojection error by solving non-linear least squares problem. These
problems are typically solved by using the Levenberg-Marquardt algorithm which
incorporates properties from both Gradient descent and Gauss-Newton algorithms
[1]. Gradient descent is a first order optimization method that computes the local
minimum by iteratively taking small steps in directions where the cost function has
the largest decrease which is the negative gradient. The update step is given by

θk+1 = θk − α2J(θk)Tr(θk). (2.23)

The Jacobian J is with respect to all parameters θ, namely the homographies and
features points we want to optimize. With small enough step size α, the Gradient
descent algorithm is always able to find a local minimum, but the convergence rate
of the algorithm is quite slow when approaching the solution. In contrast, the Gauss-
Newton algorithm has a faster convergence rate compared to the Gradient descent
algorithm. The Gauss-Newton algorithm achieves the faster convergence rate by
first approximate the Hessian matrix by

H ≈ JTJ . (2.24)

This is under the assumption that the residual is quite small or if it is approximately
linear. The update step is therefore given by

18

2. Theory

θk+1 = θk − (J(θk)TJ(θk))−1J(θk)Tr(θk). (2.25)

This leads to a faster convergence than the Gradient descent algorithm and without
the computational expense of calculating the second derivative of the residuals.
However, this algorithm is quite unstable and fails if the initial values are far from the
solution. Levenberg-Marquardt is an algorithm that is more stable algorithm than
the Gauss-Newton algorithm and has a faster convergence rate than the Gradient
descent algorithm [34]. The update step for the Levenberg-Marquadt is given by

θk+1 = θk − (J(θk)TJ(θk) + λI)−1J(θk)Tr(θk). (2.26)

For large values of λ, the solver behaves as the Gradient descent algorithm and
it guaranteed to find a lower value for the cost function. For smaller values of λ,
the solver behaves as the Gauss-Newton algorithm and is able to converge to the
solution quite fast. The general strategy for these solvers is to start with a large λ
in the beginning when the solution is far from the minimum and decrease λ when
it starts reaching the minimum [34].

2.7 Multi-band blending
Blending is a technique that is used in image stitching to remove seams caused by
exposure differences and pixel miss-alignments between two or more images with
overlapping regions [2]. Multi-band blending presented by [35] is a blending algo-
rithm that uses image pyramids to blend images. The algorithm ensures that most
seams are removed and no ghosting or blurring is present in the resulting image. The
multi-band blending algorithm presented in [35] works by constructing a blending
mask M for the region which is to be blended. Values are assigned to the pixels in
the blending mask to indicated if a pixel is either from image IA or IB. The pixel
value of 1 indicates that the pixel comes from image IA while the pixel value of 0
implies that it comes from image IB. Furthermore, Laplacian pyramids LA and LB

are constructed from both images and a Gaussian pyramid GM is created from the
blending mask M . Creating a Gaussian pyramid makes it possible to weight each
level in the Laplacian pyramids correctly by the corresponding level in the Gaussian
pyramid [36]. The blended pyramid LS is constructed using the weighted levels from
the Laplacian pyramids where each single pyramid level in LS is given by

Ll
S = Gl

ML
l
A + (1−Gl

M)Ll
B, (2.27)

where l is the pyramid level. The final blended image Is can be obtained by inter-
polating and summing up the blended images in every layer of the LS pyramid [19].
After the operations, image Is will correspond to the image at the lowest level l = 0
in the pyramid.

19

2. Theory

20

3
Method

The goal of the thesis is to construct a digital 2D map over a planar indoor scene
by only using images. The main idea is to stitch the images together to form the
indoor map. An overview of the proposed pipeline can be seen in Figure 3.1.

Figure 3.1: The figure shows the different stages from turning the input images
into a 2D map. The first stage is to estimate pairwise homographies between

images by finding point correspondences between them. The second stage consists
of building the map by calculating homographies which transforms each image into
the maps coordinate system. These homographies are called map homographies.
The third stage is to optimize the map homographies and point correspondences
for each image using bundle adjustment. The final stage is compositing the map
by stitching all the images together using the calculated map homographies and

converting the unit of the map from pixels into centimetres.

The first stage of the pipeline consists of estimating the pairwise homographies be-
tween overlapping images to relate the pixel coordinates from one image to another.
Pairwise homographies are estimated by finding point correspondences between the
images using feature detectors. The second stage consists of computing homogra-
phies that transform each image into a common coordinate system which will serve

21

3. Method

as the coordinate system of the map. A coordinate system of a reference image is se-
lected as the common coordinate system and all remaining images are consequently
transformed into the reference image. Homographies transforming images into the
reference image are called map homographies and are obtained by consecutively
multiplying pairwise homographies between multiple images. Bundle adjustment is
used to optimize all the map homographies and point correspondences after each
image is transformed to the reference image. This is done to ensure global alignment
between the images when they are stitched together. The final stage of the pipeline
is to generate the map by using the optimized map homographies and multi-band
blending to stitch the images together. Multi-band blending removes the seams be-
tween the images and a final post-processing step is needed to accurately convert
the map units from pixels to centimetres.

This section will go into more details about the four stages of the pipeline.

3.1 Pairwise homography estimation

Figure 3.2: The figure shows an example of a birdseye view over the camera
layout. Each black dot represents a camera and they are identified by the position
in the grid system. The green arrows show the images each camera is matched
with. For example, camera (1, 1) image is matched with cameras (1, 2) and (2, 1)

images.

The main idea of constructing the map is to stitch images together, therefore it is
essential to estimate homographies that relate overlapping image pixel coordinates

22

3. Method

from one image to another. Homographies that transforms between overlapping im-
ages are called pairwise homographies.

The first step is to pre-process the images to remove any radial distortion by us-
ing the radial distortions parameters since any distortion may lead to an incorrect
estimation of the pairwise homography. The pipeline assumes the cameras are cal-
ibrated beforehand and that the radial distortion parameters are estimated during
the calibration process for a pinhole camera model. Also, cameras are assumed to
be positioned in a grid system, an example is shown in Figure 3.2. Images are iden-
tified according to the position of the camera in the grid system. Some additional
pre-processing is required with images that have other highly texture planar sur-
faces except for the floor. For example, pallets with lids that are highly textured.
These highly textured surfaces might lead to more point correspondences that are
located between these planar surfaces instead of the floor. This causes the RANSAC
algorithm [25] to estimate homographies between these planes and not the floor of
the scene since there are more point correspondences between these planes. The
problem is solved by letting the user manually add a black mask over these surfaces
before inputting the images to the algorithm. In this way, the feature extractor is
not able to detect features over these surfaces.

The next step is to form the point correspondences between overlapping images to
estimate the pairwise homography using the DLT algorithm [1], as explained in Sec-
tion 2.3. Point correspondences are formed by extracting features from each image
by either using a SIFT feature detector [11] or a Harris corner detector algorithm
[29]. Extracted features are matched by calculating a SIFT descriptor for each fea-
ture and searching in the descriptor space using nearest neighbour search to find
the closet match. Each image is matched to the image below and to the left accord-
ing to the arrows shown in Figure 3.2. Images located on the last row or column
are only matched either to the image to the left or the image below it respectively.
This reduces the computation time since the features for a single image is at most
matched with features from two other images. The SIFT detector and descriptor
along with the Harris corner detector and nearest neighbour search is implemented
in C++ using the VLFeat library [37].

The matching process does not guarantee that all features will be correctly matched
and any incorrectly matched feature will result in a poorly estimated homography.
Therefore, the RANSAC algorithm [25] along with the DLT algorithm is used to
robustly estimate the pairwise homographies. The DLT algorithm is implemented
in C++ using the Eigen library [38]. The pseudo-code for how DLT and RANSAC
algorithms are integrated together can be seen in Algorithm 1. The homography
BestH is saved as the solution along with its associated inliers points.

3.2 Compute Map homography
All images need to be transformed into a common coordinate system to stitch them
together into a single image. Pairwise homgraphies only describe the transformation

23

3. Method

Algorithm 1 Homography estimation with DLT and RANSAC
1: for A pre-determined number of iterations do
2: Randomly sample four point correspondences
3: Compute H using DLT and the four point correspondences
4: NumInliers = 0
5: for All point correspondences do
6: Compute reprojection error
7: if reprojectionerror ≤ threshold then
8: NumInliers← NumInliers+ 1
9: if NumInliers > BestNumInliers then

10: BestNumInliers← NumInliers
11: BestH ← H

between two image coordinate systems, therefore a homography that relates each
image into a common coordinate system needs to be computed. These homographies
are called map homographies.

The first step is to initialize the common coordinate system by selecting an image
that will serve as a reference for the coordinate system. The top left image in the
grid system is selected as the reference image. Then, the map homography for each
image is computed where the map homography for the reference image is simply
an identity matrix. Furthermore, the map homographies for images below and to
the left of the reference image is their respective pairwise homography. For the rest
of the images, their map homographies are computed by consequently multiplying
the pairwise homographies. For example, the map homography for image j to the
reference image i is obtained by

Hij = HikHkj, (3.1)

where Hik is the pairwise homography that relates images i with image k and Hkj is
the pairwise homography that relates images k with image j. If there exist several
different paths to obtain the map homography, then the path that has the pairwise
homographies with the largest number of inliers is selected. The reason is that a
homography with a large number of inliers is more correctly estimated and will more
accurately transform the images.

3.3 Optimization
Multiple map homographies are computed by consequently multiplying several pair-
wise homographies. These multiplications lead to an accumulation of error and the
constraints from the pairwise homographies are disregarded. The accumulated error
results in a stitched image that is not globally consistent. The idea here is to use
bundle adjustment to reduce the error and enforcing the constraints for the homo-
graphies. This ensures that the stitched image is globally consistent and ultimately
results in a more accurate map.

24

3. Method

The bundle adjustment problem is initialized using the reference image and a nearby
image that it has the largest number of inliers matches with. All matched points
from the reference image are added to a 2D map where the coordinate system is
the same as the reference image. Each point in the 2D map is associated with its
corresponding point in the reference image and the nearby image. The homographies
from both images are initialized by using the computed map homography from each
image. The bundle adjustment optimizes the map homographies and map points
by minimizing the reprojection error. The error is given by converting the 2D map
points into homogeneous coordinates and projecting them into both images using the
inverse map homography for each image. Before the residual error is computed, the
projected points are converted back into inhomogeneous coordinates. The residual
error is given by

rki = x̂ki − x̃
k
i , (3.2)

where rki is the residual error between the actual image point x̂ki and the projected
point x̃ki for the k-th map point in image i. The error function for the bundle
adjustment is given by

ereproj =
n∑

i=1

∑
k∈F (i)

h(rki), (3.3)

where n is the number of images and F (i) is the number of map points that is vis-
ible in image i. In this case n is only two images since the map is being intiliazed.
Furthermore, a Huber loss function is used to make bundle adjustment more ro-
bust towards outliers [7] since some of the 2D point correspondences are incorrectly
matched. The Huber loss function is defined as in [39] and is given by

h(r) =
{
|r|2 if |r| < δ
2δ|r| − δ2 otherwise , (3.4)

where δ is a hyperparameter that decides the transition between a quadratic and a
linear loss function.

After the two first images have been optimized, a new image is added that has point
matches with one of the already optimized images in the 2D map. If the feature of
the matched points does not already exist in the 2D map then the map is extended by
projecting the matched inlier points of the existing image. The newly extended map
points and the map homography of the newly added image along with the previously
added map homographies are optimized by minimizing the reprojection error. This
process repeated until all images have been added and all map homographies have
been optimized. The bundle adjustment is implemented in C++ using the Ceres
library [40].

3.4 Map Compositing
The final stage in the pipeline is to generate the map by stitching all of the images
together by using the calculated map homographies. The generated map needs to

25

3. Method

be rescaled to ensure that each pixel corresponds to one centimetre.

The main stage in the map compositing is to warp each image using the calculated
map homography. This process will create seams between the warped images since
the exposure differs between each image. Therefore, multi-band blending [35] is used
to remove the seams. The images are warped using the map homography and be-
fore they are stitched together, a binary mask is created for each image. The binary
masks have the same size as the final stitched image and in each mask the value 1 is
assigned to the pixels where the corresponding warped image will be located while
all other pixels are assigned the value 0. The masks encode the overlapping regions
of each image and makes it possible to distinguish the origin of each pixel in the
stitched image. Using the masks, the stitched image is blended. The warping and
blending process is implemented in C++ using the OpenCV library [41].

Figure 3.3: The figure shows an illustration of a distorted map to the left and the
rectified map after applying the estimated homography.

The stitched image is from the perspective of the reference image. If the camera
of the reference image is not pointed straight downwards, the generated map will
have some distortions and needs to be rectified as illustrated in Figure 3.3. The
rectification is done by selecting four or more points from the stitched image where
the world positions are known. The pipeline assumes that the positions are given
in centimetres. From the selected points, a homography can be estimated using the
DLT algorithm [1]. With the estimated homography it is possible to rectify the
stitched image. Additionally, the homography scales the image so one pixel corre-
sponds to one centimetre since real world points used to estimate the homography
are given in centimetres. The procedure is implemented in MATLAB since it offers
a function called ginput to manully select points on the image.

26

4
Results

In this section, the results for the map generation pipeline will be presented. The
map is evaluated accordingly to how accurately the map represents the real world
indoor scene. Details of how the accuracy is measured along with the experimental
setup and implementation settings will be presented.

4.1 Experimental Setup

Figure 4.1: The figure shows a schematic overview of the indoor scene used to
evaluate the map generation pipeline. The ten black arrows indicate distances

between points that are used to evaluate the accuracy of the map. The red circles
are points use to estimate the rectification homography. All the distances in the

figure are measured in centimeters.

Two sets of ten images over an indoor scene are used to evaluate the performance
of the proposed pipeline. The images are collected using ten stationary cameras
mounted in the ceiling over an indoor scene in Assar arena in Skövde. The first set of
images obtained from the cameras contain an indoor scene with yellow lane markings
and a homogenous floor which contributes to a scene similar to an environment in
an industrial factory. Therefore, the indoor scene gives a strong indication of how

27

4. Results

well the pipeline would perform in a real world industrial setting. The second set of
images is from the same indoor scene but with industrial objects spread out through
the scene. An overview of the indoor scene without objects can be seen in Figure
4.1. Furthermore, all cameras are calibrated beforehand and are positioned in a grid
system with five rows where each row has two cameras. All images in the set have
the same resolution of 2304× 1536 pixels and are captured simultaneously. The two
sets of images used in the evaluation can be seen in Appendix A.

4.2 Evaluation Metric
The main evaluation metric is the accuracy of the generated map since it measures
how well the map depicts the indoor scene. The accuracy is computed by having
prior knowledge of the real world distances between several points in the generated
map. From these points, the error is computed between the real world distance and
the distance measured in the map. A more accurate measurement of the overall map
accuracy is computed by selecting several distances that are spread out through the
map and finding their distance error. For example, only computing the error for a
single distance in the map will only show the accuracy of that specific section in the
map. Another reason for using multiple distances is to reduce the influence of the
error that occurs when manually selecting points in the map. The error is computed
by using the ten distances that are represented as black arrows in Figure 4.1. Using
these errors, the Root Mean Square (RMS) error is computed by

eRMS =

√√√√ N∑
i=1

(di − d̂i)2

N
, (4.1)

where di is the measured distance in the map and d̂i is the real world distance. The
RMS error is the performance metric used to evaluate the generated maps.

Furthermore, the robustness of the map generation is also evaluated since RANSAC
introduces randomness in the pipeline and the generated maps should consistently
be accurate. The metric used to measure the robustness is the spread of the data.
More specifically, it is the spread of the mean accuracy for ten different generated
maps and the spread of the mean distance error for each distance. A low spread
corresponds to a robust map generation, while a high spread corresponds to a less
robust map generation.

Additionally, other metrics are used to evaluate the impact of the feature extractors
on the pipeline. Firstly, the ability of the feature detector to extract features from
the input images and form point correspondences are studied. This is measured
by computing three averages: Number of extracted features per image, matched
features per image and number of inliers per image. Furthermore, the quality of
the point correspondences are studied by measuring the average track length which
indicates how well the feature extractors are able to extract distinctive features
that are present in multiple images. The average cost per map point gives a good

28

4. Results

indication of how accurately the pairwise homographies are estimated using different
feature extractors.

4.3 Implementation details
In this section, the different parameters and settings used for evaluating the map
generation pipeline are presented. The SIFT extractor uses 10 octaves with 5 scale
levels at each octave since using these parameters the SIFT extractor was able to
extract many features from the input images. A boundary margin of 1 pixel is
used for the Harris corner detector since the corner of the image should not be
detected as a corner. The peak and edge threshold was manually selected to 1 and
10000 respectively. With these parameters, the detector was able to extract many
features while keeping the run-time at a reasonable level. The RANSAC loop is
run for 30000 fixed iterations and the error threshold is 5 pixels. These values are
manually chosen when tuning the pipeline as these values gave robustly estimated
homographies that were quite accurate. During the matching process, at most 1000
leaf nodes comparisons will be made per query during the k-d tree search in order
to the keep the run-time fairly low. The ratio threshold used to test the two closet
matches is selected to be 0.7 as it will keep most of the correctly matched features
while removing most of the incorrectly matched features [11]. The δ parameter for
the Huber loss is 5. Initially, the value was larger but through trial and error it was
finally selected to by 5 since it gave the best results. A summary of all the different
parameters can be found in Table 4.1.

Function Parameter Value
SIFT Number of octaves 10
SIFT Number of scale levels 3
Harris Peak threshold 1
Harris Edge threshold 10000
Harris Boundary margin 1 pixel

RANSAC Threshold 5 pixels
Matching Max number of visited leaf nodes 1000
Matching ratio threshold 0.7

Bundle adjustment Boundary transition (δ) 5

Table 4.1: The table shows the different parameter values used for evaluating the
map generation pipeline.

4.4 Evaluation
In this section, the map generation is evaluated by conducting six experiments using
the experimental setup described in Section 4.1 and the evaluation metrics described
in Section 4.2. Two of the experiments aim to investigate how the pipeline performs
on input images with and without masked objects in them. The other four experi-
ments aim to investigate how different components of the pipeline affect the outcome

29

4. Results

for the map generation. In particular, two components are singled out as highly in-
teresting, namely the feature extraction and bundle adjustment. Matched features
between the images are the point correspondences used to estimate the pairwise
homographies. If the features are incorrectly matched or if they are not located on
the floor of the indoor scene then the pairwise homography will be poorly estimated
and lead to an inaccurate map. Therefore, the feature extractor needs to extract
enough features that are both correctly matched and located on the floor of the
indoor scene. The SIFT feature detector [11] along with the Harris corner detector
[29] is evaluated accordingly to the accuracy of the map and the robustness of the
map generation. Furthermore, the influence of bundle adjustment on the generated
map is also evaluated. In particular, to study how much the optimized map homo-
graphies further improves the accuracy of the map and if the robustness of the map
generation improves.

4.4.1 Performance of bundle adjustment
This section studies the impact bundle adjustment has on the proposed pipeline.
In particular, to what extent does the map accuracy and robustness increase when
optimizing the initial map homographies using bundle adjustment. The impact of
bundle adjustment is investigated by generating four different sets of maps. The
first two sets of maps are generated using Harris corner detector and SIFT feature
extractor while bundle adjustment is omitted from the pipeline. While the remain-
ing two sets of maps are generated using the same feature extractors but this time
bundle adjustment is included in the pipeline. Two different feature extracts are
used to investigate the consistency of the bundle adjustment since they might yield
different initial map homographies. This shows the impact of bundle adjustment
regardless of switching between feature extractors in the pipeline.

Additionally, each set of maps contains 10 generated maps using the same input
images. Therefore, in total 40 maps are evaluated by computing distance errors
for the marked distances in Figure 4.1. Bar charts for the two sets of maps using
Harris corner detector with and without bundle adjustment can be seen in Figure
4.2. Each chart visualizes the mean error for each distance respectively, where the
mean value is derived through ten different generated maps. Also, error bars are
shown to indicates the variability of the measurements for each distance. Maps gen-
erated with bundle adjustment have overall a lower error for nearly all the distance
when compared to the maps generated without bundle adjustment. This clearly
shows that bundle adjustment is able to improve the map homographies by using
nonlinear optimization. The only exception is the distance d9 which has a slightly
higher error when bundle adjustment is included in the pipeline. The reason why
it did increase could be that the error is already fairly low if compared to all other
distances and bundle adjustment could not significantly further improve the result.
Therefore, the small increase could possibly come from when manually choosing the
points on the map when measuring the error for distance d9.

Another observation that can be made is that the error distances of d7 and d10

30

4. Results

are considerably larger compared to the rest of the distances in Figure 4.2. This is
mainly due to the poor quality of the feature correspondences between the input im-
ages where distance d7 and d10 are located in. Therefore, the pairwise homographies
between these images are poorly estimated which later in the pipeline contributes
to a poorly computed initial map homography. However, bundle adjustment is still
able to bring down the mean error of the measurements for both distances even
though poorly initial map homographies are provided. By having better initial map
homographies the mean distance error can be further decrease using bundle adjust-
ment since the cost function used is non-convex. A better initial map homography
leads to the optimizer finding a solution located at a lower local minimum.

Results for the second set of maps using SIFT feature extractor instead of Harris
corner detector can be seen in Figure 4.3. The result follows a similar pattern as the
result from the Harris corner detector, mainly that bundle adjustment lowers the
mean distance error for each measured distance . The impact of bundle adjustment
is more visible in this case since it reduces the error considerably more compared
to the equivalent results for the Harris feature detector. This further demonstrates
bundle adjustment ability to improve the accuracy even if the initial map homogra-
phies are poorly estimated.

Overall, results in Figure 4.2 and Figure 4.3 shows a clear improvement for the map
accuracy when including bundle adjustment regardless of feature extractor. Fur-
thermore, this behaviour can be confirmed by looking at the final generated maps
for each feature extractor. Figure 4.4 shows the final maps when using Harris corner
detector and Figure 4.5 shows the map for the SIFT feature extractor. Both figures
show that bundle adjustment significantly improves the alignment of the images,
specifically for the lanes at the top of the maps.

When it comes to the robustness, using bundle adjustment yields a pipeline which is
a more robust regardless of what feature detector is applied. This can be seen in both
Figure 4.2 and Figure 4.3 where the variability for most distances is either lower or
similar after bundle adjustment has been included in the pipeline. More specifically,
the impact on the robustness can especially be seen in the SIFT case where the
variability of distance d7 and d10 is drastically reduced after bundle adjustment is
applied. In other words, bundle adjustment manages in the SIFT case to drastically
improve the poorly estimated initial map homographies caused by poor quality
features and randomness from RANSAC. However, the variability for distance d1
increases even if the mean error distance decreases for both the Harris and SIFT
case after bundle adjustment is applied. This increase in variability is likely caused
when computing the measured distance manually in the map since the starting point
of d1 is not always as clear as the starting points for other distances.

31

4. Results

(a) The figure shows the results without
using bundle adjustment.

(b) The figure shows the results with
bundle adjustment.

Figure 4.2: The figure shows the mean distance for all specified distances in
Figure 4.1 when using Harris corner detector. The results for not using bundle

adjustment can be in Figure 4.2a and the results for using bundle adjustment can
be seen in Figure 4.2b. These figures clearly show that bundle adjustment reduces

the distance error for all distances except for d1. Also, the variability for the
distance errors decreases which indicates that bundle adjustment increases the

robustness of the map generation.

(a) The figure shows the results without
using bundle adjustment.

(b) The figure shows the results with
bundle adjustment.

Figure 4.3: The figure shows the mean distance for all specified distances in
Figure 4.1 when using SIFT feature extractor. The results for not using bundle

adjustment can be in Figure 4.3a and the results for using bundle adjustment can
be seen in Figure 4.3b. These figures clearly show that bundle adjustment reduces

the distance error for all distances except for d1. Also, the variability for the
distance errors decreases which indicates that bundle adjustment increases the

robustness of the map generation.

32

4. Results

(a) The figure shows the generated map
without using bundle adjustment.

(b) The figure shows the generated map
using bundle adjustment.

Figure 4.4: The figure shows the effect of bundle adjustment when using Harris
corner detector. Figure 4.4a shows the generated map without using bundle

adjustment and Figure 4.4b shows the result with bundle adjustment. The figures
clearly show that the map generated with bundle adjustment more accurately
portrays the indoor scene. This can clearly be seen at the top of the map where

the bundle adjustment ensures the lanes are more aligned.

33

4. Results

(a) The figure shows the generated map
without using bundle adjustment.

(b) The figure shows the generated map
using bundle adjustment.

Figure 4.5: The figure shows the effect of bundle adjustment when using SIFT
feature extractor. Figure 4.5a shows the generated map without using bundle

adjustment and Figure 4.5b shows the result with bundle adjustment. The figures
clearly show that the map generated with bundle adjustment more accurately
portrays the indoor scene. This can clearly be seen at the top of the map where

the bundle adjustment ensures the lanes are more aligned.

4.4.2 Comparasion of feature extractor
The previous subsection concluded that bundle adjustment improves the accuracy
and robustness of the pipeline regardless of the feature extractor. In this section,
the influence of feature extractor on the proposed pipeline is further investigated in
detail. In particular, the performance of two different features extractor is investi-
gated, namely Harris corner detector and SIFT feature extractor. The performance
of the extractor will be evaluated according to the overall accuracy of the generated
maps and the robustness of the map generation.

The evaluation is based on the two map sets that include bundle adjustment in its
pipeline from the bundle adjustment experiments in Section 4.4.1. However, instead
of looking at the individual distance errors, an RMS error is computed using all the
distances in each map. The RMS error computed for each map in a set is used to
compute an average RMS error for the entire set. In this way, a single metric gives
us the overall accuracy of the maps outputted from the pipeline given that different

34

4. Results

feature extractors are used. Additionally, to further study the effect that the feature
extractors have on the map accuracy, seven different metrics have been computed
for one map generation as seen in Table 4.2.

Results show that Harris corner detector achieves a higher map accuracy compared
to SIFT feature extractor. This can be seen in Figure 4.6 that shows the average
RMS error for an entire map set. The average RMS error is around 20% lower when
using Harris corner detector compared to using SIFT feature extractor. A lower
RMS implies that Harris corner detector contributes to a pipeline that generates
more accurate maps. The reason for the improved accuracy is possible due to the
fact the features from the Harris corner detector are able to form more correct point
correspondences between images resulting in a more accurate estimated pairwise
homography.

Analyzing Figure 4.6 further shows that the spread of the average distance RMS
error is lower for Harris corner detector compared to SIFT feature extractor. This
indicates that having Harris corner detector in the pipeline contributes to a more
robust map generation in terms of accuracy. The reason for a more consistent map
generation could be explained by the number of features and matched features per
image seen in Table 4.2. On average Harris corner detector extracts and matches
four times more features per image then SIFT feature extractor. Furthermore, Table
4.2 shows the average total number of inliers per image. Harris corner detector has
approximately seven times more inliers per image. This suggests that Harris corner
detector extracts considerably more quality features between images that contribute
to better pairwise homographies.

Additionally, the cost per map point before and after bundle adjustment suggests
there are no significant differences between the two feature extractor as seen in Ta-
ble 4.2. However, the results from Figure 4.6 clearly shows a difference in accuracy
between the feature extractors. A possible reason for this behavior is that Harris
corner detector extracts features that are more distributed throughout the indoor
scene in each image. While the SIFT feature extractor finds more features at specific
regions in the indoor scene in each image. Having features correspondences at spe-
cific regions leads to homographies that are overfitting the map to the regions where
the features are extracted from. Therefore, in the SIFT case the homographies are
optimized for a certain region of the map resulting in a similar cost per map point
as in the Harris case but the overall map accuracy is lower. In other words, Harris
corner detector has a better overall map accuracy as the inliers used to compute the
homographies are distributed throughout the map and not at specific regions of the
map. However, both feature extractors have problems with finding common distinct
features that are present in more than two images as seen from the average track
length in Table 4.2. Both Harris corner detector and SIFT feature extractor have
on average only one distinct feature that is present two images.

Overall, the results show that Harris corner detector performance is better at ex-
tracting features from an indoor scene resembling an industrial factory. Extracting

35

4. Results

features that a more distributed throughout the indoor scene results in an estimated
homography that is not overfitted for certain regions of the map. Improved pairwise
homographies yield more accurate initial map homographies that results in a more
accurate map since bundle adjustment receives a better initial solution. Also, Harris
corner detector has considerably more map points that are distributed throughout
the map which contributes against overfitting the estimated homographies. There-
fore, Harris corner detector is a better choice of feature extractor in the proposed
pipeline compared to SIFT feature extractor.

Figure 4.6: The figure shows a bar chart over the average RMS distance error
when either using SIFT feature extractor or Harris corner detector in the pipeline.
The result shows that the Harris corner detector has lower error compared to SIFT
feature extractor. Therefore Harris corner detector generates more accurate maps.
Also, Harris corner detector is more robust since the variability of the data is lower.

36

4. Results

Metric SIFT Harris
Avg. extracted features per image 19130 73091

Avg. matches per image 182 719
Avg. inliers per image 30 216

Total map points 312 2199
Avg. track length 2.076 2.062

Cost per map point before B.A. 3.867 3.247
Cost per map point after B.A. 1.348 1.211

Table 4.2: The table shows seven metrics used for comparing the different feature
extractors used in the pipeline for one generated map. The first three metrics
shows the average extracted features, matched features and inliers points per
image. In these metrics, Harris corner detector extracts more features than the
SIFT feature extractor. The last four metrics are the total map points, average

track length and the cost per map point before and after bundle adjustment. Both
feature detectors perform similarly for average track length and cost per map

point. SIFT feature detector has a lower total map points since it has fewer inliers
points per image compared to Harris corner detector.

4.4.3 Indoor scene with objects
The proposed pipeline is also evaluated on the set of images containing industrial
objects in the scene in order to see how the overall accuracy of the map is affected
when objects are present. Additionally, the masking step in preprocessing described
in Section 3.1 is also evaluated to illustrate how it affects the overall map accuracy.
Two pallet objects in the scene are masked for this experiment. However, the per-
formance will only be evaluated when Harris corner detector and bundle adjustment
is included in the pipeline. This is the case since it was concluded in Section 4.4.1
and Section 4.4.2 that the pipeline had the highest accuracy and robustness when
both bundle adjustment and Harris corner detector were used.

The overall RMS error for generating one map using images that have been masked
during the preprocessing can be seen in Table 4.3. The RMS error for the generated
map is as before computed using all ten distances on the map and the error for
each distance can be seen in Figure 4.7a. The RMS error of the map that gave
the highest accuracy in the map set using bundle adjustment and Harris corner de-
tector in Section 4.4.2 can also be seen in Table 4.3. Each distance error used to
compute the RMS error for the generated map without objects can also be seen in
Figure 4.7b. It is clear from Table 4.3 that the overall accuracy of the map decreases
with approximately 50 % when objects are present in the scene. The difference is
even more clear when comparing the distance error for each distance in figure 4.8a.
For each distance, the error increases when objects are present in the scene even if
masking is used. This decrease in accuracy was expected since the feature extractor
manages to detect and match a few distinct features located on some of the objects.
The RANSAC algorithm does not always manage to filter out these outliers which
contribute to poorly estimated pairwise homographies between a few images. This

37

4. Results

further contributes to an error that stacks up when map homographies are computed
by consecutively multiplying pairwise homographies.

Furthermore, generating a map with and without masking the pallets in the scene
can be seen in Figure 4.8 . Looking closer at the map where masking was not used it
is clear that all distances are not clearly defined which makes it hard to compute a
valid RMS error. Therefore it is not possible to compare the overall accuracy using
the RMS between these two cases. However, analyzing both images in Figure 4.8
visually, it can be seen that the map generated without masking does not accurately
portray the indoor scene. The reason for failure when not masking the pallets is
that the RANSAC algorithm [25] finds more inliers for the pairwise homographies
transforming points between the planes given by the lid of the pallets and not the
plane given by the floor. Therefore in Figure 4.8a objects are less blurry since the
map homography aligns the plane given by the objects and not the floor. While in
Figure 4.8b the objects are more blurry since the map homography aligns the plane
given by the floor and not the objects.

The results indicate that objects with a large surface representing a plane apart
from the floor surface need to be masked if one wants to compute a map that accu-
rately portrays an indoor scene with objects in it. Even with masked objects, the
generated map is less accurate compared to the case where no objects are present
in the scene.

(a) The figure shows the result when
using images with masked objects.

(b) The figure shows the result when
using images without objects.

Figure 4.7: The figure shows the ten distance errors of two different generated
maps using images with and without industrial objects placed in the scene. Both
maps are generated using the pipeline that includes Harris corner detector and
bundle adjustment. Two blue pallets in the input images are masked during

preprocessing when generating the map with objects. The results show that the
distance error for all distances increases for the generated map when objects are

present in the scene.

38

4. Results

(a) The figure shows the generated map
without masking input images.

(b) The figure shows the generated map
with masked input images.

Figure 4.8: The figure shows two maps generated using images with industrial
objects placed in the scene. Both maps are generated using the pipeline that
includes Harris corner detector and bundle adjustment. Figure 4.8a shows the
generated map when the two blue pallets in the input images are not masked
during preprocessing. Figure 4.8b shows the generated map when the two blue
pallets in the input images are masked during preprocessing. The figures clearly
show that masking the two pallets contributes to a map that accurately portrays
the indoor scene. The overall accuracy for Figure 4.8b can be seen in Table 4.3.

Indoor scene RMS error [cm]
With objects + masking 11.27

Without objects 5.36

Table 4.3: The table shows the RMS error of two different generated maps using
images with and without industrial objects placed in the scene. Both maps are
generated using the pipeline that includes Harris corner detector and bundle

adjustment. Two blue pallets in the input images are masked during preprocessing
when generating the map with objects. The results show that the RMS error
increases for the generated map when objects are present in the scene. This

indicates that the accuracy of the generated maps decreases using images with
objects in them.

39

4. Results

4.5 Summary
The results clearly show the pipeline is able to generate a highly accurate map using
images over an indoor as seen in Figure 4.6. From the results, it is clear the best
performing pipeline included bundle adjustment and had Harris corner detector as
a feature extractor, as seen in Figure 4.2. However, the result also shows that the
pipeline fails to generate a map when the indoor scene contains objects with highly
textured planar surfaces. The pipeline is able to generate a map if these objects
are masked but the overall accuracy of the map decreases when compared to a map
that was generated for a scene without any objects. Overall, the pipeline is able
to generate an accurate map over an indoor scene if the scene does not contain too
many planar textured objects.

The run-time for the pipeline can be seen in Table 4.4, which clearly shows the
pipeline that uses the SIFT feature extractor is considerably faster than the pipeline
with Harris corner detector. This expected since the Harris corner detector extracts
four times more features than the SIFT feature extractor, as seen in Table 4.2.
Therefore, it will increase the run-time for the other stages since there will be consid-
erably more points. However, the runtime of the map generation was not considered
when designing the pipeline and therefore there are many potential improvements
to decrease the run-time.

Pipeline stage Harris [s] SIFT [s]
Feature extraction 1569.34 89.67

Matching + RANSAC 1818.00 538.75
Bundle adjustment 4.99 0.62

Multi-band blending 5.47 2.58
Total time 3406.18 637.031

Table 4.4: The table shows the overall run-time along with individual stages of
the pipeline using either SIFT or Harris corner detector as a feature extractor.
The pipeline with Harris corner detector is considerably slower than the pipeline
with SIFT feature extractor. Note that the matching process and the RANSAC

are performed simultaneously and could not be measured separately.

40

5
Conclusion

This thesis has investigated a new pipeline that generates a 2D map that could
be used for indoor navigation and localization within complex environments. The
pipeline utilizes mainly projective planar transformations that relate pixel coordi-
nates from one image to another. These transformations are used to stitch all images
of the indoor scene into a single image that captures the entire indoor scene. Dif-
ferent components of the pipeline were evaluated to study their influence on the
generated map. The results show that the maps generated by the pipeline increase
in accuracy and robustness when bundle adjustment is included. Furthermore, the
highest accuracy and robustness was achieved when combining Harris corner de-
tector with bundle adjustment in the pipeline. These results show the importance
of finding feature correspondences that are correctly matched and are evenly dis-
tributed throughout the floor. The latter is more important since it will contribute
to a map that is overall accurate and not only at specific regions of the map.

The pipeline was further evaluated on an indoor scene with objects present on the
floor. Overall, the pipeline’s accuracy was lower compared to the scene without
objects. Also, the results show that the input images needed to be masked to suc-
cessfully generate a map. This is probably due to the RANSAC algorithm estimating
homographies for other planar surfaces caused by the objects. This thesis has shown
it is possible to generate an accurate map for an indoor scene using images captured
from the ceiling of the scene.

5.1 Future work
The feature extractor stage in the pipeline should be investigated further to see how
well different feature extractors perform in different indoor environments. In this
thesis, only two feature extractor were studied and only one type of indoor scene was
used. Therefore, it could be interesting to see how well different feature extractors
perform in different scenes, especially how well they extract features from the floor.
In this case Harris corner detector performed quite well since there where many
corners present on the floor of the scene.

Furthermore, the robustness of the homography estimation could be further studied.
In particular, how to avoid estimating homographies that does not relate the plane
given by the floor. One solution could be to develop an additional component in
the pipeline that checks if all estimated homographies actually maps to the same

41

5. Conclusion

plane. If a homography maps the wrong plane, then the corresponding inliers points
are removed and RANSAC is run again. This is done until all pairwise homogra-
phies map to the same plane. This could improve the map generation if there are
objects present on the scene floor and potentially remove the masking of objects in
the preprocessing stage. Lastly, it might be worth to investigate how non-invasive
modification of the scene floor can improve the homography estimation. For exam-
ple, adding several tags on the floor where the feature extractor can detect features
from.

42

Bibliography

[1] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer
Vision. 2nd ed. USA: Cambridge University Press, 2003. isbn: 0521540518.

[2] Richard Szeliski. Computer Vision: Algorithms and Applications. 1st. Berlin,
Heidelberg: Springer-Verlag, 2010. isbn: 1848829345.

[3] Noah Snavely, Steven M Seitz, and Richard Szeliski. “Photo tourism: exploring
photo collections in 3D”. In: ACM Siggraph 2006 Papers. 2006, pp. 835–846.

[4] Noah Snavely, Steven M Seitz, and Richard Szeliski. “Modeling the world from
internet photo collections”. In: International journal of computer vision 80.2
(2008), pp. 189–210.

[5] Changchang Wu. “Towards linear-time incremental structure from motion”.
In: 2013 International Conference on 3D Vision-3DV 2013. IEEE. 2013, pp. 127–
134.

[6] Linguang Zhang, Adam Finkelstein, and Szymon Rusinkiewicz. “High-precision
localization using ground texture”. In: 2019 International Conference on Robotics
and Automation (ICRA). IEEE. 2019, pp. 6381–6387.

[7] Matthew Brown and David G Lowe. “Automatic panoramic image stitching
using invariant features”. In: International journal of computer vision 74.1
(2007), pp. 59–73.

[8] B. Triggs et al. “Bundle adjustment - A modern synthesis”. In: ICCV ’99
Proceedings of the International Workshop on Vision Algorithms: Theory and
Practice (Jan. 2000), pp. 198–372.

[9] Muhamad Risqi U Saputra, Andrew Markham, and Niki Trigoni. “Visual
SLAM and structure from motion in dynamic environments: A survey”. In:
ACM Computing Surveys (CSUR) 51.2 (2018), pp. 1–36.

[10] Sameer Agarwal et al. “Building rome in a day”. In: Communications of the
ACM 54.10 (2011), pp. 105–112.

43

Bibliography

[11] David G Lowe. “Distinctive image features from scale-invariant keypoints”.
In: International journal of computer vision 60.2 (2004), pp. 91–110.

[12] Johannes L. Schonberger and Jan-Michael Frahm. “Structure-From-Motion
Revisited”. In: The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). June 2016.

[13] H Christopher Longuet-Higgins. “A computer algorithm for reconstructing a
scene from two projections”. In: Nature 293.5828 (1981), pp. 133–135.

[14] F.Kahl. Lecture 6: Camera Computation and the Essential Matrix. 2019.

[15] Yasutaka Furukawa and Jean Ponce. “Accurate, dense, and robust multiview
stereopsis”. In: IEEE transactions on pattern analysis and machine intelligence
32.8 (2009), pp. 1362–1376.

[16] Andrew J Davison. “Real-time simultaneous localisation and mapping with a
single camera”. In: null. IEEE. 2003, p. 1403.

[17] Hauke Strasdat, José MM Montiel, and Andrew J Davison. “Visual SLAM:
why filter?” In: Image and Vision Computing 30.2 (2012), pp. 65–77.

[18] Hyon Lim, Jongwoo Lim, and H Jin Kim. “Real-time 6-DOF monocular visual
SLAM in a large-scale environment”. In: 2014 IEEE international conference
on robotics and automation (ICRA). IEEE. 2014, pp. 1532–1539.

[19] Richard Szeliski et al. “Image alignment and stitching: A tutorial”. In: Foun-
dations and Trends® in Computer Graphics and Vision 2.1 (2007), pp. 1–104.

[20] Matthew Brown, David G Lowe, et al. “Recognising panoramas.” In: ICCV.
Vol. 3. 2003, p. 1218.

[21] David L Milgram. “Computer methods for creating photomosaics”. In: IEEE
Transactions on Computers 100.11 (1975), pp. 1113–1119.

[22] Chung-Ching Lin et al. “Adaptive as-natural-as-possible image stitching”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2015, pp. 1155–1163.

[23] Julio Zaragoza et al. “As-projective-as-possible image stitching with moving
DLT”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2013, pp. 2339–2346.

[24] Zhengyou Zhang and Li-Wei He. “Whiteboard scanning and image enhance-
ment”. In: Digital Signal Processing 17.2 (2007), pp. 414–432.

44

Bibliography

[25] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-
phy”. In: Communications of the ACM 24.6 (1981), pp. 381–395.

[26] F.Kahl. Lecture 1: The Pinhole Camera Model. 2019.

[27] F.Kahl. Lecture 3: Camera Calibration, DLT, SVD. 2019.

[28] Etienne Vincent and Robert Laganiére. “Detecting planar homographies in an
image pair”. In: ISPA 2001. Proceedings of the 2nd International Symposium
on Image and Signal Processing and Analysis. In conjunction with 23rd Inter-
national Conference on Information Technology Interfaces (IEEE Cat. IEEE.
2001, pp. 182–187.

[29] Christopher G Harris and Mike Stephens. “A combined corner and edge de-
tector.” In: Alvey vision conference. Vol. 15. 50. Citeseer. 1988, pp. 10–5244.

[30] Ethan Rublee et al. “ORB: An efficient alternative to SIFT or SURF”. In:
2011 International conference on computer vision. Ieee. 2011, pp. 2564–2571.

[31] Michael Calonder et al. “BRIEF: Computing a local binary descriptor very
fast”. In: IEEE transactions on pattern analysis and machine intelligence 34.7
(2011), pp. 1281–1298.

[32] Jeffrey S Beis and David G Lowe. “Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces”. In: Proceedings of IEEE com-
puter society conference on computer vision and pattern recognition. IEEE.
1997, pp. 1000–1006.

[33] F.Kahl. Computer Vision, Assignment 2 Calibration and DLT. 2019.

[34] F.Kahl. Lecture 9: Local Optimization. 2019.

[35] Peter J Burt and Edward H Adelson. “A multiresolution spline with applica-
tion to image mosaics”. In: ACM Transactions on Graphics (TOG) 2.4 (1983),
pp. 217–236.

[36] Alexander Behrens et al. “A non-linear multi-scale blending algorithm for flu-
orescence bladder images”. In: Computer Science-Research and Development
26.1-2 (2011), pp. 125–134.

[37] Andrea Vedaldi and Brian Fulkerson. “VLFeat: An open and portable library
of computer vision algorithms”. In: Proceedings of the 18th ACM international
conference on Multimedia. 2010, pp. 1469–1472.

45

Bibliography

[38] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org.
2010.

[39] Peter J. Huber. “Robust estimation of a location parameter”. In: Annals of
Mathematical Statistics 35.1 (Mar. 1964), pp. 73–101.

[40] Sameer Agarwal, Keir Mierle, et al. Ceres Solver. http://ceres-solver.org.

[41] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software Tools
(2000).

46

http://ceres-solver.org

A
Appendix: Input images

Figures A.1-A.3 shows all the inputs images used to evaluate the pipeline.

Figure A.1: The figure shows all the input images for a scene without objects.

I

A. Appendix: Input images

Figure A.2: The figure shows all the input images for a scene with objects.

II

A. Appendix: Input images

Figure A.3: The figure shows all the input images for a scene with objects were
two pallets have been masked.

III

	List of Figures
	List of Tables
	Introduction
	Related work
	3D reconstruction
	Image Stitching

	Thesis Outline

	Theory
	Camera Model
	Homography
	Homography Estimation
	Feature detection and matching
	Feature detector
	Harris corner detector
	SIFT

	Feature descriptor
	Feature matching

	Random sample consensus
	Bundle adjustment
	Multi-band blending

	Method
	Pairwise homography estimation
	Compute Map homography
	Optimization
	Map Compositing

	Results
	Experimental Setup
	Evaluation Metric
	Implementation details
	Evaluation
	Performance of bundle adjustment
	Comparasion of feature extractor
	Indoor scene with objects

	Summary

	Conclusion
	Future work

	Bibliography
	Appendix: Input images

