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Abstract
The need to reduce carbon emissions is clear. In this thesis a software model was
created to assist in the planning phase of building systems that help decarbonize
transportation and electricity production by deploying solar power stations with
battery storage. These off-grid solar power stations are meant to power household
loads and charge electric vehicles. The model and results can be helpful in many
locations and with different electric vehicle types. This work is centered around
tropical coastal communities using electric boats built by Azura Indonesia.

Two data logging power devices were built to measure household loads and boat
chargers. The measurements were used to build a computer model to simulate a
wide range of scenarios. The outputs from the model are: required installed solar
power, storage battery capacity, C-rate and a rough estimate of economic payback
time.

The influences of different input variations were tested such as: number of house-
holds, number of boats, varying system availability and varying household energy.
Two storage battery types were also simulated, flooded lead acid and li-ion.

When testing the different scenarios the li-ion battery storage system was the winner
in terms of installed capacity, maintenance, longevity and economic payback time.
Furthermore most of the economic savings are due to avoided gasoline rather than
avoided electricity from the grid. This implies that replacing combustion engine
should be a priority. Even when including household loads the economic payback-
time is reasonable when using li-ion storage batteries. Some design modifications are
possible such as lower availability and power limitations in order to make the system
even more economically feasible. The results, especially the ones related to cost, are
based on assumptions and measurements from a few cases. Thus the results are to
be taken as an indication and further work is needed for a more accurate model.

Keywords: Solar Energy, Energy Storage, Li-ion Storage, FLA Storage, Electric
Boat, EV, off-grid energy, Battery Charging, Household Energy Measurements
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Nomenclature

AC Alternating Current
ADC Analog to Digital Converter
BMS Battery Management System
CoV Coefficient of Variance
CSV Comma Separated Value File
CT Current Transformer
DC Direct Current
DoD Depth of Discharge
EVCS Electric Vehicle Charging Station
EV Electric Vehicle
FLA Flooded Lead Acid
ICE Internal Combustion Engine
IDR Indonesian Rupiah (currency of Indonesia)
Li-ion Lithium Ion
PBT Payback Time (economic)
PV Photo Voltaic
RTC Real Time Clock
SD Secure Digital
SoC State of Charge
SoH State of Health
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1
Introduction

Climate change is arguably one of the biggest and most challenging problems cur-
rently facing humankind. A big part of the change is due to increased global warming
caused by green house gases. Emissions of green house gases can be attributed to
most human activities such as farming, energy production, manufacturing and trans-
portation. One of the major green house gases is carbon dioxide which is added to
the atmosphere when burning fossil fuels [4]. Within the transport sector this can
be limited by using power trains driven by bio fuels or by using electrified vehicles.
This is true for any type of vehicle, however in this project the focus is electrified
boats. When using electricity it is important to consider how the energy is pro-
duced as a fossil dominated energy mix still generates carbon dioxide and will, at
worst, only move the emissions to another location. With combustion engines comes
more downsides connected to the combustion of any type of fuel such as noise, high
fuel cost, local emissions and a high maintenance need. Further problems of higher
concern in aquatic environments are oil and gas leaks from the engine.

1.1 Azura Indonesia
This project is done in collaboration with Azura Indonesia with the aim to tackle
all the stated problems above. They are developing electric boats and solar based
charging stations to provide sustainable, low emission and cost effective marine
transportation. Azura has several products and in this project the focus is the
Manta electric outboard motor.

1.2 Electric Boats and Solar Charging Station
This project was done in Kelan village, Bali, Indonesia. In this village a solar charg-
ing station built by Azura Indonesia already powers a number of electric boats used
by fishermen for coastal small scale fishing. The electric motors have long shaft pro-
pellers and can be mounted on any existing boat with a corresponding combustion
engine configuration. The motor is a 2.5 kW brushless DC motor powered by a 1.5
kWh, 48 V, li-ion battery pack. Currently, three such motors are deployed in the
village. In one of the households there is also a solar power system with an installed
PV capacity of 1.8 kW. The panels are connected to a small storage battery pack
consisting of four FLA batteries with a total capacity of 150 Ah at 48 V. The so-
lar power is currently used for household loads and boat charging but the installed
capacity in not enough to cover all the loads at the time. This is however the end

1



1. Introduction

goal for such systems built by Azura in the future. These boats and the households
in the village was used in the data collection part of this study.

1.3 Background
Indonesia has the worlds fourth largest population and as of 2017 was the home
to 261 million people [5]. This means that Indonesia can have a big global impact
in regards to emissions of fossil fuels depending on how the nation acts. Today a
large amount of the electric grid is powered by fossil fuels. In many parts of the
country the population is suffering from instability and a weak grid. Furthermore
most locations in Indonesia has a great potential for PV when looking at weather
and solar irradiance. These factors indicates the huge potential for solar power with
off grid capabilities [6]. By using solar generated energy the carbon dioxide emis-
sions related to electricity production can be reduced. Furthermore this maximizes
the positive impact of electrified vehicles as the electricity used for charging them is
renewable. This effort will help create sustainable and affordable energy according
to the UN sustainable development goal 7 [7]. As mentioned, this thesis focuses on
electric boats but the principle is the same and the purpose of this thesis is to build
a model that could be easily modified for investigating any type of EV. This would
help in the creation of a cleaner transportation infrastructure according to climate
goal 9. There are problems related to the oceans such as anthropogenic noise pol-
lution found to be harmful to marine environments [8]. This can be reduced by an
electric motor as it will operate more quietly. Finally small oil spills and gasoline
leaks are eliminated when using an electric motor. The two latter points will move
towards solving goal 14.

A similar type of system was investigated by researchers at the university of Se-
belas Maret, Surakarta for charging electric cars in Indonesia with solar generated
electricity stored in battery packs with promising results [9]. Furthermore another
project investigated a micro grid powering electrified boats and industrial loads in
Lake Victoria, Uganda [10].

The tool developed in this thesis will not provide system layouts or specific de-
signs. It is built to give the user a good insight in what sort of impacts general
choices such as battery storage type and installed capacity will have on the system
cost and functionality. It can also help evaluate where cost savings can be done
with as small an impact as possible on performance. If the user is to develop a
solar energy system, this tool should be used early in the process to determine a
rough estimate on the requirements by trying different options. Then, when the
most promising results are found, the user will proceed with other tools to create a
specific design based on the results from the model developed in this thesis.

2



1. Introduction

1.4 Aim
The aim of this project is to build an evaluation tool to make design choices easier
when developing an off grid solar power station. In this project the type of loads
powered by the system are categorized as either household loads or electric vehicle
charging. Furthermore the project aims to use the evaluation tool to give general
design recommendations and insights for building off grid solar power systems. The
aspects covered are installed PV power, installed battery capacity, current capabil-
ities and battery storage type as well as economic payback time.

1.5 Problem Statement
To create a reliable implementation of the tool mentioned in section 1.4, a model had
to be built based on measurement data. This model was then used to test a number
of scenarios around the same number of users as the solar station currently operated
by Azura Marine. The output data from these scenarios was then compared and
analysed in order to give general design recommendations. This challenge can be
broken down into a number of sub problems as follows.

The first sub-problem is to represent boat charging events in the software. The
model should be based on real measured data to represent reality as good as possi-
ble. These loads has to be simulated so that the model can dimension a solar power
system accordingly.

Secondly, similar to the first sub-problem, the household loads must be represented.
Some variation of the load pattern is necessary for a realistic representation. The
user has to be able to decide the 24 hour total energy in order to make the model
useful for any type of household. These loads has to be simulated so that the model
can dimension a solar power system accordingly.

When the data is collected a model has to be built. The model has to efficiently be
able to simulate a large number of scenarios according to user inputs. Furthermore
the results of these simulations has to be presented in an clear manner that makes
comparison between scenarios easy.

Finally, a variety of scenarios has to be defined to determine factors that has an
impact on system size and economic feasibility. This should make possible a list of
recommendations and insights for future system construction and design.

1.6 Scope
The model will not include a life cycle analysis of the components used in the system.
This would be interesting data to have but with limited time it was not feasible.
The main focus of the model was to give storage energy and PV power requirements

3



1. Introduction

while payback times are more of a rough bonus estimation. Thus the economic
calculations are done in a basic way and ignores potential debt associated with the
investment as well as inflation. Grid buy back possibilities and tax cuts are ignored.
As this thesis is done in cooperation with Azura Indonesia, the model is built for
Indonesian circumstances and other locations are not considered. Furthermore it is
focused on the boats currently in use and no other vehicles. This would however be
easy to change by modifying the model slightly to fit other places and vehicles.

4



2
Batteries

The ability to store energy is crucial for an off grid system, especially so if it’s
depending only on solar energy. There are many promising storage technologies
such as pumped storage, flywheels and hydrogen. This project is focusing on readily
available components for small scale systems and thus batteries are the only storage
medium investigated. This chapter gives a brief insight in the battery parameters
relevant to the constructed model.

2.1 Cell chemistry
The cell chemistry describes what electrochemical reaction is behind the stored
energy in a battery. There is a large variety of types on the market. In this project
two types of batteries will be compared. The first type is a flooded lead acid (FLA)
battery and the second is a lithium ion (li-ion) battery.

2.1.1 Flooded Lead Acid
Lead acid batteries was the first type of batteries to be invented [11]. The positive
electrode is made up of lead dioxide and the negative electrode is sponge lead. Both
electrodes are surrounded by sulfuric acid and in the current generating reaction
the electrodes will transform the acid to ions. Thus the sulfuric acid concentration
drops as the battery discharges. When charging takes place, the reaction is reversed.
Some maintenance is usually required in the form of acid refilling. The FLA type is
sensitive to high operating temperatures [11].

2.1.2 Li-ion Batteries
Lithium ion batteries is a more recent innovation and creates current when li-ions
travel in an electrolyte from the negative to the positive electrode. The positive
electrode can be made of a lithium compound and the negative a material such as
graphite. Li-ion batteries are maintenance free and has a comparatively high energy
density. They also perform better in warm environments. A downside is the risk of
fire in the event of high C-rate or puncture of the cell [11][12].

5



2. Batteries

2.2 C-rate
The C-rate describes the amount of current that can safely flow through a battery
cell. A high C-rate means a high current. It can be expressed as follows,

C = Icell

Qcell

[h−1] , (2.1)

where Qcell is the capacity in ampere hours and Icell the current flowing through the
cell. For a battery pack consisting of many cells it follows that putting more cells
in series will keep the C-rate constant, but increase the voltage. Whereas putting
more cells in parallel will increase the C-rate while keeping the voltage constant.
Typically the C-rate for FLA batteries is lower than for li-ion, as seen in table 4.5
the C-rate is 10 times lower for the FLA batteries for the cells compared in this
project.

2.3 Cell Efficiency
All batteries has some internal resistance that will create losses in terms of heat
when charged or discharged. The cell efficiency describes how good a battery is at
delivering power without heating up. The cell efficiency is lower for FLA batteries
compared to li-ion batteries.

2.4 Cycle life
Each time a battery is used it ages as the cathodes degrades. This happens every
time a battery is put through a cycle, that is, every time a discharge followed by a
charge takes place. The cycle life describes how many times this can happen before
the battery state of health (SoH), and thus performance, is significantly reduced.
The cycle life for the li-ion cells used in this project is twice as long as for the FLA
cells.

2.5 Depth of Discharge
The depth of discharge (DoD) describes the amount of energy used compared to the
total energy stored at full charge, as described by

DoD = 100 · I · t
Qtot

. (2.2)

DoD is usually given in percent and is the complement of State of Charge (SoC).
Thus a fully charged battery has DoD = 0 % and SoC = 100 %. For most battery
types the allowed DoD in each cycle has a significant impact on cycle life. The
higher the DoD the lower the cycle life. This means that the cycle life is defined for
a chosen depth of discharge. With the cycle life in table 4.5 the allowed depth of
discharge is larger for the li-ion cells.
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2.6 Price
The price is a very important factor when choosing a battery type. In order to
properly determine which type is most economical the price needs to be related to
one or more of the properties stated above. A cheaper cell chemistry can for example
have a low price per kWh but a low cycle life which for a system with a long lifetime
increases the price per kWh as the cells need replacing. The price is therefore not
only the purchase price but the user scenario and the life cycle has to be considered
as well. The purchase price per kWh is significantly lower for FLA batteries.

7



2. Batteries

8



3
Method

This chapter explains the methodology behind solving the sub problems presented
in section 1.5. It also gives an explanation to the different test scenarios and why
each scenario was simulated.

3.1 Building a Model
The first part of this project was focused on building the model. The model was
based on measured values. These values were collected using measurement sys-
tems custom built for this project. When the necessary data was collected it was
integrated into the software built in Matlab.

3.1.1 Modeling Charging of the Boats
Data was collected on the boat charger using a custom build data logger. This data
was used to create a simplified computer model of a boat charge event. Fishermen
were asked regarding how and when they use their boats in order understand when
charging events can be expected. All this was done to be able to represent charging
events in a realistic way.

3.1.2 Household Load Modeling
To be able to include realistic household loads a household energy logger was built
using a modified design of the one used for the charger. This unit was deployed at
four different households and the measured data was used in the model. In one of the
households the reading on the already installed energy meter recorded as a reference
to the other measurements in order to ensure that the logger gave reasonable results.

3.1.3 Building a Model as a Simulation Tool
A model was built in Matlab using the simulated load patterns designed from mea-
surements. It was created so that a number of inputs are chosen according to the
desired scenario. The model used normalized household load patterns in order to
have user defined household energy. The charger events were simplified to make the
simulation run more efficiently. Before a simulation is initiated the user defines the
scenario to be evaluated The model is built around 24 hour periods of system use
and one run will consist of a large number of 24 hour semi-randomly generated use
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patterns represented by a load curve. It will in other words run several iterations
resulting in different daily load curves. Each 24 hour period is hereby referred to
as one iteration. For each iteration the model will output a range of requirements
based on all the iterations. The model was built in this way to simulate a large
variety of user patterns for each scenario.

3.2 Running Simulations in the Model
After a model was built it was used to compare system requirements and costs of
different costumer demands. The different scenarios were chosen based on the cur-
rent solar charging system in use. Some scenarios were also simulated in order to
attempt to reduce shortcomings of some designs, such as a power limit to reduce
C-rate needs. The results were then analyzed and insights and recommendations
were presented. Some scenarios are run with a varying number of users to see what
impact it has on the system. FLA and li-ion batteries are also compared. FLA
batteries are included since the existing system uses them as storage batteries. Li-
ion batteries are included due to their high performance. All results are presented
as average values with coefficient of variance for all iterations for each set of input
parameters. Averages were chosen to make the results repeatable and easily compa-
rable.

3.2.1 Base Case
In order to compare results from different simulation runs a base case was specified.
The base case aims to represent a nominal system specification and deviations from
this scenario are considered modifications to the standard system requirements. The
base case will supply energy to five fishermen with one boat each. Each boat is
charged once per day and there are five chargers available for simultaneous charging.
In addition to the five boats the system also supplies five households with a daily
energy consumption. All households uses the same amount of daily energy which is
the average of conducted measurements. The daily energy used in the base case is
based on measurements on the households. The storage battery type for the base
case is li-ion.

3.2.2 One Boat per Household with Li-ion Storage Batteries
The first simulation simulates the base case explained above and some values around
the base case. The simulation is run with 1, 2, 5 and 10 number of households and
boats.

3.2.3 One Boat per Household with FLA Storage Batteries
It is possible that FLA batteries, with a lower initial investment cost per kWh, can
be a good substitute to li-ion batteries. This was investigated by running the same
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simulation as in "One Boat per Household with Li-ion Storage Batteries" but with
FLA batteries as energy storage units. This type of storage batteries are currently
used in the existing solar charging station. The simulation is run with 1, 2, 5 and
10 number of households and boats.

3.2.4 Only Boats with Li-ion Storage Batteries
The primary purpose of the solar energy system is to supply energy for electric
boats. Is is therefore of interest to test the system without household loads. In
this simulation the number of boats were 1, 2, 5 and 10 with the same number of
chargers and charges per day.

3.2.5 Only Boats with FLA Storage Batteries
Again, in order to investigate potential benefits of using FLA batteries the same
simulation as in section 3.2.4 were run with the only difference being the type of
energy storage batteries.

3.2.6 Varying Daily Household Energy with Li-ion Storage
Batteries

Since the average of the measured daily energy consumption that is used in the
base case is not representative for all households the need for investigating a range
of household energy uses was clear. The complete set of values are as follows: 5,
10.5, 25 and 50 kWh. The lowest value of 5 kWh was the lowest daily energy
consumption measured for the four measured households. 10.5 kWh is the average
value of all four households. 25 and 50 kWh represents costumers with significantly
larger consumption. Values this high were not measured in this project but they
were included to see what effect a larger energy consumption has on the system.

3.2.7 Varying Number of Boats per Household with Li-ion
Storage Batteries

This case tests the system economy when the number of boats per household varies.
The number of households is five for all simulations and the number of boats are
1, 2, 5 and 10. This is similar to the case in section 3.2.6, with varying household,
load since the ratio of household energy and boat energy is changed in both cases.

3.2.8 Varying Power with FLA Storage Batteries
The low C-rate capabilities is a big drawback for FLA batteries. This simulation
scenario tests what impact a power limit will have on installed battery capacity. The
simulation is run with the base case for FLA batteries but varying power limits. The
power limit is put on the household loads and are as follows: 1, 2, 3 and 4 kW. These
power limits will also decrease energy use.
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3.2.9 Varying System Availability with Li-ion Storage Bat-
teries

Since the highest cost of the system is the energy storage batteries it is of interest
to limit the installed capacity. This comes at the cost of limiting the user in some
way and thus the availability. In this project the availability is defined as all the
days where the system can provide all the energy and power that the user demands.
If, for example, a specific user requires 7 kWh during a period of one hour and
the storage batteries only has 6 kWh of capacity the requirements are not met and
that hour is considered as downtime. When analyzing the results of varying the
availability it is worth considering the tiers of availability defined in The Energy
Sector Management Assistance Programs report on energy in developing countries.
The different tier levels defines how many hours per day energy is available as well
as during what time of the day. Tier 3 is 8 out of 24 hours availability with at least
3 hours during the evening, Tier 4 is 16 out of 24 hours and tier 5 is 23 out of 24
hours [13]. Both tier 4 and 5 requires 4 hours availability during the evening. In
this project only the amount of hours per day are considered for simplicity. These
simplified definitions of tiers are used when analysing the results. Full availability
is the base case and was also included in this scenario. This corresponds to the
following percentages of availability: 33 %, 67 %, 98 % and 100 %.
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The following chapter gives insight into the process and working principles of the
tool that was built. It also describes the underlying assumptions and necessary
measurements made in order to create it. The basic idea was to create a model
that could simulate different scenarios and give estimations on required system pa-
rameters such as PV power and battery capacity as well as C-rate battery capacity
and peak power draw. The economic payback time is also calculated as well as the
number of battery replacements during the PBT. These parameters are explained
in more detail later in this chapter. The model was built in Matlab and contains
one main script with a number of sub-scripts, functions and data files. For each
iteration the output information is saved. When all iterations are done the model
will output a file with results from all iterations. This file can then be used to design
an appropriate system. A block diagram of the process for each iteration is shown in
figure 4.1. In the sections below, the functionality and process behind the creation
of these individual blocks are explained in more detail.

Figure 4.1: A block diagram of the model information flow and sub-functions.
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4.1 Measurement Hardware
To make an accurate model of a system it is desirable to base it on measurements
when possible. In this project the loads were measured. The end goal was to make
an estimation of system parameters and hence measurements with lower accuracy
was tolerable. Instead the focus was to get a measurement over a long period of
time with short intervals. A low cost and portable system that could measure power
in the low kilo-watt range over long time could not be locally sourced and instead
two devices with logging capabilities were built using low cost components.

4.1.1 Micro controller and data storage
The readily available and cost effective Arduino UNO was the choice of micro con-
troller. However using only the Arduino and external sensors poses two problems.
Firstly the internal memory is only 1024 bytes. This is not enough to store the data
generated by a frequent and long lasting measurement setup. The second issue is
keeping time. The Arduino starts an internal timer when it’s powered on and this
timer counts as long as the power is not lost. With frequent power outages and
risk of the device being unplugged it would be impossible to know when in time the
charge events would happen after loosing power the first time.

The two issues presented above are solved by a separate module that easily con-
nects to the Arduino. The shield features an SD card reader/writer and a real time
clock. The SD card installed is 4 GB and gives space for more than two years of
measurements with a one second interval. The RTC, once set one time, keeps the
time even when no external power is available with it’s own back up battery. When
the logger is restarted the new measurements will be saved with a correct time stamp.

The code will create a CSV file on the SD card for each power on and start logging
voltage and power. To reduce noise the system will make 15 measurements with the
analog inputs every second. These 15 values are then averaged and only the average
values are saved one time per second.

4.1.2 DC Power Measurement for the Battery Charger
For measuring charger currents up to 10 A the ACS712 chip was used [14]. This
uses a hall effect sensor and no current shunt resistor is needed. The high voltages
around 50 V can not be fed straight into the analog inputs of the micro controller
but a 240 kΩ voltage divider with a reduction ratio of 12 was used. The total power
draw of the divider is 15 mW. The circuit can be seen in figure 4.3. It was build in a
watertight plastic container and powered from the same source as the boat charger.
When the charger is plugged in, the device will start logging voltage and current,
even if no battery is charging. A photo of the container without lid is seen in figure
4.2.
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Figure 4.2: A closeup of the DC measurement system.

Figure 4.3: A circuit diagram of the DC measurement system, data logging shield
not included.

4.1.3 DC logger accuracy
In this project the focus was not to make measurements with high accuracy. Even
if high accuracy was possible there are many introduced errors elsewhere such as
the approximation in the modeling of the charge event. With this in mind a brief
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look into the measurements are presented as follows. The voltage sensing circuit
measures zero when the voltage is zero. At 52 V, according to a multimeter, the
voltage sensor reads 51 V. The current differed around 0.1-0.4 A for the different
values in the charger operating range of 0-10 A. This gives four points of error
according to table 4.1.

Table 4.1: Measurement errors calcutaled for different operating points.

Multimeter Reading Sensor Reading Error
0 [V] 0 [V] 0 %
52 [V] 51 [V] 2 %
1.1 [A] 1 [A] 9 %
10.4 [A] 10 [A] 4 %

4.1.4 AC Power Measurement for Household Loads
Due to the hazardous nature of 220 VAC and the inconvenience caused by shutting
of the mains for installment it was desirable to use a non-invasive sensor. The SCT-
013 split core current transformer (CT) was used with an internal burden resistor.
A CT, as with any type of transformer, can only be used with alternating currents.
For a CT sensor the primary winding is one of the mains conductors, either neutral
or live, and the secondary is the sensor output. The core is a ferrite ring split in half
so that the device can be clamped onto a conductor. When the CT is installed the
varying current in the mains conductor (primary winding) will cause a fluctuating
magnetic field in the core and in turn induce a current in the secondary winding
circuit. Since the turns ratio is known, the current in the secondary winding can be
calculated.

The ADC on the micro controller is a voltage sensing input and hence this sec-
ondary current has to be converted into a voltage using a burden resistor. The
circuit can be seen in figure 4.4. As the current on the output is also AC, the
reference ground has to be lifted to half of the micro controllers maximum analog
input voltage VAref/2. This is done with a voltage divider. Now the desired burden
resistance can be calculated as

Rburden = 0.5 · VAref/Isec,peak . (4.1)

The sensor used in the logger can be seen in figure 4.5. The blue CT has a built
in burden resistor and has a conversion ratio of 5A:1V. For the DC logger, power
to the system was easily taken from the charger. For the AC logger it was not as
convenient and in order to not have to run extension cords the system was run on
a 20 Ah, 5 V li-ion power bank.
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Figure 4.4: A circuit diagram of the AC measurement system, data logging shield
not included.

Figure 4.5: The AC logger built, without protective case.

The AC power is calculated from the currents measured by the CT. When doing
these calculations two assumptions are made. The first is that the grid voltage is
stable at 220 VAC. The second is that there is only active power flowing to the load
and thus all current sensed by the CT probe gives a contribution to the active power
curve. In figure 4.6 one of the measurements done on one of the households is seen,
where the power has been calculated using measured current and the assumptions
above.
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Figure 4.6: A 24 hour measurement on one of the households.

4.1.5 AC Energy Measurement
In addition to the power logger above, the energy meter on the building was also
measured manually on the dial at regular intervals. In figure 4.7 the power meter is
seen and above it is the AC power logger enclosed in a protective case and running
on a power bank.

Figure 4.7: The AC logger used next to the installed power meter.
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The energy measurement was used as a reference and gave insights into the accuracy
of the power logger. Several visits to the village were made over a period and the
results are seen in table 4.2.

Table 4.2: Measured energy usage from one of the households and calculated
averages.

Date 10/3 18/3 25/3 30/3 5/4
Time 11:30 9:30 14:00 12:00 16:30

Energy on Meter [kWh] 3478.1 3523 3564 3593.2 3628
Consumed Energy [kWh] - 190 172.5 118 148.5

Avg. 24 h Energy Use [kWh] - 5.67 5.7 5.94 5.62
Average Power [W] - 236 238 247 234

4.1.6 AC logger accuracy
When comparing the grid energy meter provided by the network supplier with the
power meter built, the error in energy over time was around 2 % for a 6 day period.
The network power meter was consistently giving a lower reading than the self made
sensor. This is probably since the CT probe in the self made meter measures appar-
ent power and the loads are not purely restive as assumed. If the measured power
is consistently higher than in real life that means that the model will overestimate
the load. This makes the approximate energy consumption conservative.

4.2 Modeling Boat Charging
The following section explains the process and the estimations behind the part of
the model that simulates boat charging. This part is seen in diagram box "Generate
24 hour total load from charging boats" in figure 4.1.

4.2.1 Model a Charge Event
In order to simulate one charge of a boat battery pack, the DC power logger was
used to sample charge data from real charge events. One such charge event is seen
in figure 4.8 with the charger operating in two modes. When the SoC is low the
battery is charged at a constant current. During this time the voltage rises around
10 %. This rise in voltage is due to the rising cell voltage when the SoC increases.
At a certain point, around 90 % SoC, the current is instead decreased until it reaches
0 A when the battery is full.

In the model a charge event was assumed to have two phases. The first being
a constant power mode with the measured peak power as the constant operating
point. This is followed by a linearly decreasing power for the last part of the charge.
Both these approximations gives a slightly larger energy demand than in reality.
The duration of the charge and the peak power is however maintained. The approx-
imation and the accumulated energy error can be seen in figure 4.8. Note that the
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total energy transferred to the battery in this charge was 1.2 kWh making the over
estimation around 10% or approximately 0.12 kWh. This implies a conservative
approach to energy and power need in the system as a whole.

0 50 100 150 200

Time [min]

0

100

200

300

400

500

600

P
o

w
e

r 
[W

]

0

20

40

60

80

100

120

140

160

A
c
c
u

m
u

la
te

d
 E

n
e

rg
y
 E

rr
o

r 
[W

h
]

Approximation

Actual Measured Data

Accumulated Energy Error

Figure 4.8: The charge event used in the model to represent all charge events,
including measured and approximated charge power as well as accumulated energy
error.

4.2.2 Generate 24 hour Charge Events
When the model is asked to generate one charge event, the internal sub-function
takes SoC as one input and outputs a power curve. The power curve will have
the same shape and peak as the approximation seen in figure 4.8 but the duration
will vary depending on the SoC. The SoC has to be within the specified limits:
10 % < SoC < 90 %. The lower limit is the cutout limit for the battery packs
internal BMS. The upper limit is put there since it is unlikely to initiate a charge of
an almost full battery pack, and such very short charges would not have significant
impact on they system anyway with low power and low energy.

Unless the simulation has only one charge per day there is a need to generate more
than one charge event and add the power required together. When the model is
asked to generate one whole 24 hours of charge events a sub-function takes number
of chargers and number of charges per day as input. When adding another charge
event to the day the model will randomly generate a start time for the charge event
and then call the sub-function described above to get the power curve according to
a random SoC. When this is done the first thing to consider is if there are enough
chargers available. If there is then the suggested charge starting time is accepted
and the charge event is added to the daily power curve. If not, the loop restarts
with a new start time until there are available chargers. If the loops restarts more
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than 500 times without finding a free spot, the simulation stops and gives an error
message saying "not enough chargers". A block diagram of the process is seen in
figure 4.9.

Figure 4.9: A block diagram of the process behind creating one full day of charging.

In figure 4.10 is the total power curve for all charge events in one iteration of the
base case is seen. Note that at no point are there more than two batteries charging
a the same time. The varying duration of the events correspond to varying initial
SoC. The last charge event is continuing after midnight and will then be folded to
run in the morning instead. This curve will be added with the household power
demand described below and those two curves will form the total power demand.
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Figure 4.10: Total charger power curve for the base case with five charges per day.
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4.3 Modeling Household Loads
When estimating the household loads the power logger was used for energy and
power measurements. This section describes the system block "Generate 24 hour
total load from households" from figure 4.1.

4.3.1 Household Energy Demand
Measurements on four different households were conducted using the data logger
described above. Household A was shared by three grownups and three children.
Household B had three grownups. Household C was a family home with two grown
ups and two children. Household D was a hotel room with two grown ups. This data
was used to calculate the average 24 hour energy use for each individual household,
as well as the total average, as seen in table 4.3. The total average of 10.5 kWh is
used in all simulation scenarios unless otherwise stated. It is assumed to be constant
all year around. Unlike in regions with large differences between temperatures in
different seasons the temperature in Indonesia is fairly constant. This gives less
error to an estimated constant daily energy consumption all year, although some
seasonal differences might still exist due to other factors.

Table 4.3: Measured household energy usage for all households and calculated
averages.

Household A B C D Total Avg.
Average Consumption [kWh/24h] 5.7 18.0 12.2 6.1 10.5

4.3.2 Household Power Demand
In addition to the energy need there is also a need to dimension the power capabilities
to ensure the battery pack has a high enough C-rate tolerance to handle the currents
needed. To implement this in the model the measured household power curves were
used. The measurement data was collected and divided into 24 hour intervals, as
seen in the top graph in 4.6. Then each 24 hour interval was normalized and stored
in the model file. The file contains a number of different such normalized curves
from different days and different households. By using this data in the model the
simulation will have power curves proportional to the real measured system. A
load curve will always have the same shape as the original measurement but the
magnitude depends on the desired energy use.

4.3.3 Generate 24 hour Household Loads
When the system block "Generate 24 hour total load from households" seen in figure
4.1 is called it will generate a total household load curve with the number of house-
holds and their energy according to the input. For each household the daily energy
need is multiplied with a randomly chosen normalized power curve previously stored
in the model file. All the separate households are then added together to form the
total 24 hour load for that iteration.
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4.4 Total 24 hour Load
When the full load curves from the chargers and the households are generated they
are added together. In figure 4.11 the total 24 hour load is seen for one iteration
of the base case. The charge events from figure 4.10 was added together with five
household loads generated by the function described above.
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Figure 4.11: Total power curve for the base case with five charges per day and
five household loads, each using 10.5 kWh per day.

4.5 Dimensioning the Solar Power System
When a total power curve, like the one in figure 4.11, is created it is sent as an input
to the system block "Dimension PV cells & storage battery". This block will use the
load curve to determine the power capacity and energy need.

4.5.1 Installed PV Power
For the model to work, the user has to define a number of hardware related constants
such as panel rated power, cell efficiency and voltage. The output will be given in
installed PV power as multiples of the a single panels power rating. Then the di-
rect solar normal irradiation is defined. In this model the irradiation is assumed
to be constant during daytime and zero during night. At sunrise and sunset the
irradiation level will rise and fall with a step. This is not a perfect representation of
reality since even if the length of the days close to the equator varies very little the
irradiation is not the same in rain season as in dry season. The step representation
of daily values gives an accurate average daily irradiation value. It is, however, not
accurate for instantaneous values as a real day will have a rising slope, a peak and a
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falling slope. To mitigate these shortcomings the daily solar irradiation used in this
model for all days is taken from the lowest monthly average value for Bali in Febru-
ary at 85 kWh/m2 [15]. The yearly average is around 60 % lager than the monthly
average for February and that makes the model conservative in this regard. The
model ignores shading effects and angling of the panels. The conservative irradia-
tion can account for some of this but it should be remembered when using the model.

When calculating the installed PV power the model will consider all the energy
needed during 24 hours, including losses. It will then calculate how many panels are
needed to generate that energy with the given irradiation during the given daytime
interval. The answer is given in watts and will always be a multiple of the closest
number of individual panels needed rounded upwards.

The parameters for the cell were taken from a similar type as the one currently
installed in the village [1] and are seen in table 4.4.

Table 4.4: PV panel specifications from a panel similar to the one installed in the
current solar charging station [1]. These parameters were used in the model.

Parameter Unit Value
Short Circuit Current [A] 9.72
Open Circuit Voltage [V] 21.6
Max Power Current [A] 8.72
Max Power Voltage [V] 17.2

Installed Power Per Panel [W] 150

4.5.2 Installed Battery Capacity
The hardware specific parameters defined for the battery are those mentioned in
chapter 2. The individual cell capacity is also defined as well as number of cells in
series. When the model calculates battery capacity the first step is to calculate the
needed capacity for storage only, disregarding C-rate capabilities. This is done by
sorting out the part of the total 24 hour load curve that is needed during the user
defined night time. All the energy that is to be supplied during night has to be
stored in the battery pack. The energy lost in the internal resistance of the battery
also has to be stored. The initial C-rate capacity (Cinitial) calculated in this first
step assumes that the cells will be able to handle any C-rate. This is however not
always the case and therefore the next step is to check if the C-rate capability of
the pack is enough for the given load pattern. The initial C-rate capability of the
pack is calculated as

Cinitial = Nparallel cells · Ccell , (4.2)

where Ccell is the C-rate capability of one cell and Nparallel cells is the number of
parallel strings of batteries in the initial battery pack. The next step is to check
how large the C-rate capability has to be to handle the load curve. This is done
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using
Cneeded = Ppeak

Ebatt initial

, (4.3)

where Ppeak is the maximum power during the iteration and Ebatt initial is the total
battery capacity before C-rate considerations. Now the model will check if Cinitial

is lower than the required C-rate, Cneeded. If it is, a series string of batteries will
be added to the pack until the condition is no longer met and the C-rate capability
can handle the load. It should be noted that short intervals of high C-rate might be
acceptable in a real system. This model is conservative as it will trigger the C-rate
warning even if the peak is only one second.

In the model two type of cells were used. The first one is the very same type
of FLA battery currently installed in the solar charging station [2]. The second is
a li-ion battery made for energy storage [3]. The parameters were taken from two
data sheets for the two different cells. All used battery parameters are seen in table
4.5.

Table 4.5: Battery specifications from the two types of cells used in this model.
The FLA cell is the same model currently used [2] and the li-ion is a typical storage
cell [3].

DoD Cycle Life Cell Efficiency Price [€/kWh] C-rate [h−1]
FLA 50% 1500 70% 85 0.05
Li-ion 70% 3000 92% 150 0.5

4.6 Cost and Payback Time
The economic payback calculation done in this thesis is meant to be an indication
only and a more thorough cost calculation has to be done to get accurate results.
The numbers influencing the price is broken down according to costs and avoided
costs related to grid electricity, gasoline, solar power station hardware and boat
propulsion systems.

4.6.1 Solar Power Station Costs
The power station consists of batteries, PV panels, converters and various hardware
such as wires and switches. The single most expensive part of the system is the
storage battery. The acquisition cost for a generic li-ion battery in Indonesia is seen
in table 4.6 and the FLA battery cost is estimated to be around 65 % lower [16].
Some of the costs are expressed relative to the PV system cost. This model ignores
cost for maintenance and operation. It also ignores gained funds from salvaging
and omits high volume purchasing discounts. Replacements are only considered
for storage batteries and thus the PBT becomes increasingly inaccurate as PBT
increases. This is due to the likelihood of other components needing replacements
being higher the longer the system operates. Furthermore potential interest rates
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and inflation is also disregarded. The avoided costs that make up for these expenses
in the long run is avoided grid electricity and gasoline for the boats.

Table 4.6: Costs and avoided costs related to the installment and usage of a solar
charging station.

Absolute Costs Estimated Cost Unit Reference
Li-ion Battery 8500 kIDR/kWh [9]
FLA Battery 5525 kIDR/kWh [16]
PV Panels 14 kIDR/W [9]

Relative Costs Percentage of PV Cost
Power Electronics 20% [17]
Wiring and Misc. 20% [18]

Installation 10% [17]
Avoided Costs Estimated Savings Unit

Grid Electricity Price 14 kIDR/kW [19]

4.6.2 Boat Related Costs
When calculating the boat related costs it is assumed that the user buys a new
electric motor and battery system from Azura Indonesia. The cost saved is only that
of not buying gasoline. Other costs related to an ICE such as oil and replacement
parts are ignored.

Table 4.7: Costs and avoided costs related to the purchasing and usage of a Azura
Indonesia longtail electrified boat system.

Electric Boat Costs Estimated Cost Unit Reference
Electric Motor 15000 kIDR/piece [20]
Boat Battery 28000 kIDR/piece [20]

Avoided Costs Estimated Savings Unit
ICE Propulsion System 5000 kIDR/piece [20]

Gasoline 9.5 kIDR/L [21]

4.6.3 PBT Calculation
When the PBT is to be given the model will first calculate the initial investment.
Thereafter it will give the number of days required for the avoided costs to pay
for the initial investment. If the number of days are longer than the cycle life of
the storage battery a new battery will be added to the investment cost and the
calculation will be made again until the cycle life is lower than the PBT.
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4.7 Evaluated Parameters
For each iteration, representing one day, the results are saved in the Matlab workspace
memory. Then, for each scenario, consisting of several iterations or equivalently sev-
eral simulated days, the results are presented. In the results there are six output
specifications to consider:

• Installed PV Power: The installed PV capacity needed to run the system.
• Total Installed Battery Capacity: The required storage battery capacity,

including extra capacity installed only for C-rate.
• Battery Replacements: The number of times the whole pack has to be

replaced before the payback time is reached due to cycle life limit. Can be
zero.

• Extra Battery Capacity for C-rate: The extra capacity installed only to
handle high power. Can be zero.

• Peak Power: The maximum power used. This number is used when calcu-
lating C-rate.

• Payback Time: The number of years until the system has payed for itself.
The simulations done was run with 350 iterations per scenario. The model will in
this case, for each scenario, use the 350 iterations and calculate average values and
coefficient of variance (CoV) for all scenarios. This means that for each scenario
the 350 iterations are represented by one average value and one CoV for each of the
six output specifications in the list above. The average value was chosen to make
comparison between scenarios easy. It should however be remembered that the
actual specification for the system might be significantly higher than the average for
satisfactory user experience. The CoV was included in the results to show how much
the answers differ from the average value and gives an insight in how predictable
the outcome is.
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5
Simulating Scenarios in the Model

This chapter presents results from the different simulation scenarios explained in
section 3.2. These results are then analysed and reflections relevant each simulation
scenario is presented. A discussion between the different simulations can be found in
the next chapter. For the first simulation there are graphs showing the results from
installed PV power, total installed battery capacity, peak power and PBT together
with the table. These are included to show how how the results in each 24 hour
iteration can vary. In the simulations following the first the results are presented
with tables, however, all simulation runs will have data in similar distributions as
seen in the first example.

5.1 One Boat per Household with Li-ion Storage
Batteries

In the following simulation there were one boat per household and the tested num-
bers were: 1, 2, 5 and 10 boats and households. The case with five boats and
households is the base case. The batteries for solar energy storage were li-ion bat-
teries. Each boat were charged once per day and there were enough chargers so
they could be charged simultaneously. The results are first presented in table 5.1
followed by four figures.
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Table 5.1: Simulation results for one boat per household with li-ion storage bat-
teries. For all outputs the answers are given as absolute and relative average values
from 350 iterations as well as the coefficient of variance. The number of households
and boats varied as follows: 1, 2, 5 and 10.

Number of Boats and Households 1 2 5 10
Installed PV power, (avg) [kW] 4.2 8.5 22 43
Installed PV power, Relative 0.2 0.4 1 2
Installed PV power, CoV 5% 4% 2% 2%
Total installed batt. cap. (avg) [kWh] 14 22 51 98
Total installed batt. cap, Relative 0.27 0.44 1 1.9
Total installed batt. cap, CoV 26% 22% 15% 11%
Battery replacements , (avg) [number of] 1.4 1.3 1.1 1.1
Battery replacements , Relative 1.3 1.2 1 1
Battery replacements , CoV 38 % 35 % 30 % 25 %
Extra Batt. cap for C-rate, avg [kWh] 0 0 0 0
Extra Batt. cap for C-rate, Relative - - - -
Extra Batt. cap for C-rate, CoV - - - -
Peak Power, (avg) [kW] 2.0 3.2 6.3 11
Peak Power, Relative 0.32 0.5 1 1.8
Peak Power, CoV 34 % 26 % 16 % 15 %
Payback time, (avg) [years] 8.9 8.1 7.4 7.3
Payback time, Relative 1.2 1.1 1 0.99
Payback time, CoV 43 % 30 % 21% 16%

The installed solar capacity is seen in table 5.1 and figure 5.1. In the figure it can be
seen that installed PV power increases with the number of users, since more power
is needed. It varies with discrete steps, these occur due to the fixed power of the
solar panels, adding a new panel will add one string of two 150 W panels to the
system and it is therefore almost always slightly oversized. This is done to guarantee
that the energy need is always covered and gives some extra margin. The average
values seen in the table correspond roughly to the peak of the histogram bins in
figure 5.1 since the bins are evenly distributed on each side of the peak. The rela-
tive values of installed PV follows exactly the number of users, when increasing from
5 to 10, the power is doubled, and when decreasing from 5 to 1 the PV power is 19 %.

The cases with higher levels of installed PV, as seen in the figure, can be caused by
one or a combination of the following reasons. Firstly a large number of the charge
events could have taken place at night and thus the power must first be stored in the
batteries and the losses in the storage batteries must be provided for. Secondly the
state of charge for the charges done that day could have been low and more energy
is then needed for the boat batteries. Finally the household load curve for that day
could have been more or less demanding during night. Even if the same energy is
always used by the household during 24 hours, there are some curves with more
night time use and some with more day time use. For the lower values of installed
power the conditions have been the opposite with high SoC and/or mostly daytime
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energy use.

Figure 5.1: Simulation results for probability of occurrence of installed PV power
from 350 iterations. From top to bottom the number of households and boats were:
1, 2, 5, 10. The storage battery type was li-ion.

The installed battery capacity varies in a similar pattern as installed PV power,
as seen in figure 5.2. In the figure it is seen that for one boat and household, the
lowest capacity that can occur is 8 kWh, whereas the highest is 23 kWh. This gives
a ratio between the highest and lowest needed battery capacity of around 2.9. If
the same comparison is done for PV power in figure 5.2, where the lowest installed
PV power for one user is 3.9 kW and the highest is 4.5 kW, the ratio is only 1.15.
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This is also seen in the larger CoV for battery capacity in table 5.1. The variation is
caused by the same factors as described for the installed PV power. A load pattern
with heavy night load will have to store that energy and thus a higher battery
capacity is required for storage, whereas a load pattern with mainly daytime energy
use will not require as much storage. The larger variance in battery capacity makes
the needed battery capacity less predictable when designing the system. The effect
wears off when the number of users increase as the ratio between the highest and
lowers capacity needed in the 10 user case is closer to 2 and the CoV has decreased
from 26 % to 11 %. This indicates that more users are desirable if a system is to be
designed for all cases.
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Figure 5.2: Simulation results for probability of occurrence of installed storage
battery capacity from 350 iterations. From top to bottom the number of households
and boats were: 1, 2, 5, 10. The storage battery type was li-ion.

In figure 5.3, the highest power draws of the total load for each of the iterations
are shown. As seen, some peaks are significantly higher than the surrounding ones,
the largest at 1.5 kW with a probability of 14 %. This peak is there because the
highest power draw of two of the fourteen normalized household loads are 1.5 kW.
This means that given a large number of iterations these two curves will together
have been randomly selected 14 % of the iterations. The second largest peak at 2.5
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kW has close to 7 % chance of happening and correspond to another peak from one
of the power curves. This higher peak is only present in one of the 14 curves and
thus after a large number of iterations it will show up 7 % of the times. These types
of peaks originates from the measured load patterns from the actual households and
reflects the highest loads experienced there. It could be an electric stove or heater.
With increasing number of boats and households the histogram is smoothed out and
the peak bars in the histograms are less prominent. This is because even if the same
peaks as before occur in the individual households, there are a lot of other loads at
the same time, and the peak will vary as all loads adds up. In the bottom one for
10 users most of the peaks are spread around the mean value of 11 kW.
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Figure 5.3: Simulation results for probability of occurrence of peak power out-
put for the entire system from 350 iterations. From top to bottom the number of
households and boats were: 1, 2, 5, 10. The storage battery type was li-ion.

In figure 5.4 the economic payback time is seen. All number of boats and costumers
have local maximums around at least two different years on the timeline, for the
first case there are three local maximums at around 6, 12 and 22 years respectively.
The number of maximums and the average PBT decreases as the number of users
increase. The reason for the local maximums and minimums is the need for storage
battery pack replacements. If, for example, a set of system requirements causes a
first iteration payback time of eight years in the system block "cost calculation" in
figure 4.1 but the storage batteries has reached maximum lifetime cycles already
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after 7.5 years the function will add another complete pack of storage batteries to
the system cost. This will then substantially prolong the new payback time making
it impossible to have a payback time of 8 years for this iteration. Instead the added
battery cost must be regained by avoided costs over time and there is some years
before a new PBT is possible. The fact that the average and maximum possible
PBT decreases with the number of users correlates with the decreasing number of
battery replacements. For these parameters the average value of PBT and the CoV
decreases together.
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Figure 5.4: Simulation results for probability of occurrence of payback time for
the entire system for the entire system from 350 iterations. From top to bottom the
number of households and boats were: 1, 2, 5, 10. The storage battery type was
li-ion.

5.2 One Boat per Household with FLA Storage
Batteries

In the following simulation there were one boat per household and the tested num-
bers were: 1, 2, 5 and 10 boats and households. The case with five boats and
households is the base case. The batteries for solar energy storage were FLA batter-
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ies. Each boat were charged once per day and there were enough chargers so they
could be charged simultaneously. The results are presented in table 5.2.

Table 5.2: Simulation results for one boat per household with FLA storage bat-
teries. For all outputs the answers are given as absolute and relative average values
from 350 iterations as well as the coefficient of variance. The number of households
and boats varied as follows: 1, 2, 5 and 10.

Number of Boats and Households 1 2 5 10
Installed PV power, (avg) [kW] 4.9 9.8 25 50
Installed PV power, Relative 0.2 0.4 1 2
Installed PV power, CoV 8 % 5 % 3 % 2 %
Total installed batt. cap. (avg) [kWh] 44 70 140 240
Total installed batt. cap, Relative 0.32 0.51 1 1.8
Total installed batt. cap, CoV 29 % 20 % 15 % 11 %
Battery replacements , (avg) [number of] 3.5 3.1 2.8 2.7
Battery replacements , Relative 1.3 1.1 1 0.96
Battery replacements , CoV 35 % 23 % 17 % 17 %
Extra Batt. cap for C-rate, avg [kWh] 9.5 10 9.8 7.4
Extra Batt. cap for C-rate, Relative 0.97 1.02 1 0.76
Extra Batt. cap for C-rate, CoV 76 % 83 % 120 % 180 %
Peak Power, (avg) [kW] 2 3.2 6.4 11
Peak Power, Relative 0.31 0.5 1 1.8
Peak Power, CoV 32 % 24 % 19 % 14 %
Payback time, (avg) [years] 25 19 14 13
Payback time, Relative 1.7 1.3 1 0.94
Payback time, CoV 72 % 42% 23% 19 %

With FLA batteries there is a need for extra batteries installed for C-rate reasons
only. If a day has several charge events taking place at the same time, or a high
peak in the household curve, a large maximum power is needed and therefore also
a high C-rate capability. This can cause the need for extra batteries in parallel to
supply enough current. The effect is larger in smaller battery packs since C-rate
is proportional to the number of parallel batteries. The relative capacity need for
C-rate is fairly constant around 1 for the first three scenarios and decreases more
for the 10 user case. When comparing the C-rate capacity with the total capacity it
is seen that even if the C-rate capacity is fairly constant the total capacity increases
a lot. For the 1 user case the average C-rate capacity is 22 % of the total and for
the 10 user case it is only 3 %. This is because a larger battery pack will also have
a larger C-rate by default and makes the larger pack less sensitive to high power
peaks. As the average C-rate capacity decreases there is an increasing variance in
the needed C-rate. This is due to some rare cases with many users where a lot of
charge events takes place at once. Even if the variance for C-rate capacity increases
the variance for total installed battery decreases.

In the best case scenario there is no need for extra C-rate capacity as the capacity is
not used for energy purposes. This implies that a larger number of users is desirable
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since one battery capacity fits most cases as the CoV decreases and less of the ca-
pacity is installed due to C-rate reasons. However it is important to remember that
the input to the simulation is completely randomized charge events and even if the
fishermen all have different schedules and operated all day and night there might be
patterns or habits that causes charging to be done in a lot less randomized manner.
This can impact the need for night time storage as well as C-rate capacity need.

5.3 Only Boats with Li-ion Storage Batteries
In the following simulation there were no households, the only type of loads were
boat charging events. The tested numbers were: 1, 2, 5 and 10 boats. The batteries
for solar energy storage were li-ion batteries. Each boat were charged once per
day and there were enough chargers so they could be charged simultaneously. The
results are presented in table 5.3.

Table 5.3: Simulation results for only boats with li-ion storage batteries. For
all outputs the answers are given as absolute and relative average values from 350
iterations as well as the coefficient of variance. The number of boats varied as
follows: 1, 2, 5 and 10.

Number of Boats 1 2 5 10
Installed PV power, (avg) [kW] 0.6 0.9 2.2 4.6
Installed PV power, Relative 0.27 0.41 1 2.1
Installed PV power, CoV 27% 31% 19% 14%
Total installed batt. cap. (avg) [kWh] 7.7 7.7 9.2 14.8
Total installed batt. cap, Relative 0.84 0.84 1 1.6
Total installed batt. cap, CoV 0% 0% 33% 29%
Battery replacements , (avg)[number of] 1.2 1 1 1
Battery replacements , Relative 1.2 1 1 1
Battery replacements , CoV 32% 14% 0% 0%
Extra Batt. cap for C-rate, avg [kWh] 1.4 0.5 0 0
Extra Batt. cap for C-rate, Relative - - - -
Extra Batt. cap for C-rate, CoV 140% 270% - -
Peak Power, (avg)[kW] 0.5 0.6 1.1 1.7
Peak Power, Relative 0.5 0.5 1.1 1.5
Peak Power, CoV 0% 32% 25% 18%
Payback time, (avg) [years] 5.3 3.9 3.0 2.9
Payback time, Relative 1.8 1.3 1 0.97
Payback time, CoV 52% 37% 15% 10%

An interesting effect is seen on the total installed battery capacity, where the needed
average is the same for one and two boats. The reason for this is the high C-rate
capability needed for lower number of boats. Even with the high C-rate capability
provided by li-ion batteries the power when charging is high in relation to the total
energy needed. This means that if a system is designed for one boat it might very
well be designed for two boats by default. If the system is designed and used with
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only one boat it will be more expensive per user due to the extra C-rate capacity
needed. For five and ten boats there is no need for extra C-rate capacity and here the
ratio of required peak power in relation to energy capacity is different. The payback
time and number of replacements decreases with lower variance as the number of
boats increases.

5.4 Only Boats with FLA Storage Batteries
In the following simulation there were no households, the only type of loads were
boat charging events. The tested numbers were: 1, 2, 5 and 10 boats. The batteries
for solar energy storage were FLA batteries. Each boat were charged once per day
and there were enough chargers so they could be charged simultaneously. The results
are presented in table 5.4.

Table 5.4: Simulation results for only boats with FLA storage batteries. For
all outputs the answers are given as absolute and relative average values from 350
iterations as well as the coefficient of variance. The number of boats varied as
follows: 1, 2, 5 and 10.

Number of Boats 1 2 5 10
Installed PV power, (avg) [kW] 0.6 1.0 2.7 5.4
Installed PV , Relative 0.22 0.37 1 2
Installed PV power, CoV 48% 32% 22% 15%
Total installed batt. cap, (avg) [kWh] 15 17 26 41
Total installed batt. cap, Relative 0.59 0.65 1 1.5
Total installed batt. cap, CoV 0% 18% 25% 17%
Battery replacements , (avg) [number of] 1.9 1.4 1.1 1
Battery replacements , Relative 1.7 1.3 1 0.9
Battery replacements , CoV 50% 38% 27% 15%
Extra Batt. cap for C-rate, avg [kWh] 5.3 4.2 4.6 5.5
Extra Batt. cap for C-rate, Relative 1.2 0.91 1 1.2
Extra Batt. cap for C-rate, CoV 49% 75% 98% 97%
Peak Power, (avg) [kW] 0.5 0.6 1.1 1.7
Peak Power, Relative 0.45 0.55 1 1.5
Peak Power, CoV 0% 32% 25% 21%
Payback time, (avg) [years] 7.8 4.7 3.5 3.3
Payback time, Relative 2.2 1.3 1 0.94
Payback time, CoV 76% 41% 22% 12%

With only boat charging as a load and FLA batteries used for storage, the average
extra capacity needed for C-rate can be more than 35 % of the total energy storage
need. This is a big downside and "wasting" this much capacity for only C-rate
should be avoided. The average C-rate capacity stays fairly constant around 5 kWh.
However the percentage of total battery capacity being installed for C-rate reasons
decreases from 35 % to 13 %. Keeping in mind that this is average values, it is
important to look at variance as well. The variance increases with more users. This
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is due to the possibility of up to 10 chargers running simultaneously in the worst
case scenario with 10 boats. Many charging events taking place at the same time
will cause a very high C-rate demand and this explains the large CoV. Even with
the increasing variance of C-rate battery capacity, the variance for total installed
battery capacity seems to decrease for 10 boats. The total battery capacity CoV will
however first increase before decreasing again. The average peak power increases
with number of boats. Even if the potential peak power for 10 boats per day is more
than 5 kW the average is 1.7 kW. The average number of simultaneous charge events
is therefore between three and four. The payback time is decreasing significantly
with more charges per day. The CoV is also decreasing significantly.

5.5 Varying Daily Household Energy with Li-ion
Storage Batteries

In the following simulation there were five boats and households in all iterations.
The daily energy need for the households varied as 5, 10.5, 25 and 50 kWh. The
batteries for solar energy storage were li-ion batteries. Each boat were charged once
per day and there were enough chargers so they could be charged simultaneously.
The results are presented in table 5.5.

Table 5.5: Simulation results for varying daily household energy with li-ion storage
batteries. For all outputs the answers are given as absolute and relative average
values from 350 iterations as well as the coefficient of variance. The daily household
energy varied as follows: 5, 10.5, 25 and 50 kWh.

Household energy use [kWh] 5 10.5 25 50
Installed PV power, (avg) [kW] 7.7 22 48 94
Installed PV power, Relative 0.36 1 2.2 4.4
Installed PV power, CoV 6% 2% 1% 1%
Total installed batt. cap, (avg) [kWh] 21 51 110 210
Total installed batt. cap, Relative 0.41 1 2.1 4.1
Total installed batt. cap, CoV 18% 14% 14% 14%
Battery replacements , (avg) [number of] 1 1.2 2 2
Battery replacements , Relative 0.83 1 1.7 1.7
Battery replacements , CoV 0% 30% 6% 6%
Extra Batt. cap for C-rate, avg [kWh] 0 0 0 0
Extra Batt. cap for C-rate, Relative - - - -
Extra Batt. cap for C-rate, CoV - - - -
Peak Power, (avg) [kW] 2.4 6.4 14 29
Peak Power, Relative 0.38 1 2.2 4.5
Peak Power, CoV 15% 18% 18% 18%
Payback time, (avg) [years] 4.5 7.5 13.1 17.1
Payback time, Relative [years] 0.6 1 1.7 2.3
Payback time, CoV 18% 22% 13% 12%

The PV power increases, as expected, with energy demand. The CoV on the other
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hand decreases. The same is true for battery capacity and PBT. This can be ex-
plained by the household loads being a larger and larger portion of the total load.
Even if the load patterns from the households has peaks and varies over time the total
household load will vary less from day to day than the total load from the chargers.
In other words, as the household loads has a smaller variance than charger loads,
the increased household load corresponds to lower over all CoV for PV power, PBT
and battery capacity.

The number of battery replacements increases with energy. For 10.5 kWh the av-
erage is 1.2 replacements, with a substantially larger variance than the other cases.
When the average is either 1 or 2, the variance is lower. The CoV is higher when
the simulation inputs causes an average of battery replacements that is not a whole
number. In reality the number can only be 1 or 2 (or any positive integer) as the
pack either needs replacing or not. When the average is 1.2, the actual numbers will
vary between 1 and 2 (and possibly 3) and cause a large CoV. Since a replacement
will prolong the payback time significantly the highest variance of the payback time
is where the highest variance for battery replacements is.

5.6 Varying Number of Boats per Household with
Li-ion Storage Batteries

In the following simulation there were a varying number of boats distributed over
five households. The number of boats per five households were 1, 2, 5 and 10. The
daily energy need for the households were 10.5 kWh. The batteries for solar energy
storage were li-ion batteries. Each boat were charged once per day and there were
enough chargers so they could be charged simultaneously. The results are presented
in table 5.6.
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Table 5.6: Simulation results for varying number of boats per household with li-
ion storage batteries. For all outputs the answers are given as absolute and relative
average values from 350 iterations as well as the coefficient of variance. The number
of boats per five households varied as follows: 1, 2, 5 and 10.

Boats per 5 Households [kWh] 1 2 5 10
Installed PV power, (avg) [kW] 20 20 22 24
Installed PV power, Relative 0.91 0.93 1 1.1
Installed PV power, CoV 1% 2% 2% 3%
Total installed batt. cap, (avg) [kWh] 47 47 51 57
Total installed batt. cap, Relative 0.91 0.92 1 1.1
Total installed batt. cap, CoV 16% 13% 14% 14%
Battery replacements , (avg) [number of] 2.2 2 1.1 1
Battery replacements , Relative 2 1.8 1 0.91
Battery replacements , CoV 19% 11% 31% 6%
Extra Batt. cap for C-rate, avg [kWh] 0 0 0 0
Extra Batt. cap for C-rate, Relative - - - -
Extra Batt. cap for C-rate, CoV - - - -
Peak Power, (avg) [kW] 6 6.1 6.3 6.7
Peak Power, Relative 0.95 0.97 1 1.1
Peak Power, CoV 19% 19% 19% 18%
Payback time, (avg) [years] 18 13 7.4 5.3
Payback time, Relative [years] 2.5 1.8 1 0.72
Payback time, CoV 27% 20% 20% 12%

When looking at the table it is seen that neither installed PV power, peak power or
installed battery capacity varies more than 10 %, as compared to the base case for
each parameter. This is due to the relatively small energy needed by boat charging
when comparing to households. The need for C-rate capacity is zero for all cases.
The payback time is however substantially changed with more than a factor of three
between 1 and 10 boats per 5 households. It decreases as the number of boats go
up. The cost saved by avoided gas is higher than the cost saved from avoided grid
power and this effect is apparent. The decreasing payback time correlates to the
decreasing number of battery replacements. Furthermore the CoV for payback time
is decreased as the number of boats increases, this gives a more predictable system.
The results indicates that more boats per households are better from an economic
PBT perspective.

5.7 Varying Power with FLA Storage Batteries
In the following simulation there was a power limit on the household loads. The
scenario was the base case with FLA storage batteries. The power limit started as
infinite (no limit) and then decreased to 3, 2 and 1 kW. The results are presented
in table 5.7.
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Table 5.7: Simulation results for varying power limit with one boat per household
using FLA storage batteries. For all outputs the answers are given as absolute and
relative average values from 350 iterations as well as the coefficient of variance. The
power limit varied as follows: ∞, 3, 2 and 1 kW.

Household Power Limit [kW] ∞ 3 2 1
Relative 24h Energy 1 0.95 0.82 0.51
Installed PV power, (avg) [kW] 25 24 21 13
Installed PV power, Relative 1 0.96 0.83 0.51
Installed PV power, CoV 3% 6% 7% 6%
Total installed batt. cap, (avg) [kWh] 130 110 100 64
Total installed batt. cap, Relative 1 0.84 0.74 0.48
Total installed batt. cap, CoV 15% 14% 12% 11%
Battery replacements , (avg) [number of] 2.8 2.6 2.4 2
Battery replacements , Relative 1 0.93 0.86 0.71
Battery replacements , CoV 17% 20% 20% 10%
Extra Batt. cap for C-rate, avg [kWh] 9.5 0.2 0 0.1
Extra Batt. cap for C-rate, Relative 1 0.021 - 0.011
Extra Batt. cap for C-rate, CoV 120 % 600% - 890%
Peak Power, (avg) [kW] 6.3 4 3.1 2.1
Peak Power, Relative 1 1.1 0.5 0.33
Peak Power, CoV 18% 7% 9% 14%
Payback time, (avg) [years] 14 13 11 8
Payback time, Relative [years] 1 0.89 0.77 0.56
Payback time, CoV 24% 25% 25% 20%

The implementation of a power limit was done by simply forcing all power above the
limit down to the limit. This happened without redistributing that energy to some
other time. As seen in the added row in the top of 5.7 the total energy decreases
as the power limit decreases. The goal with the power limit was to make the FLA
system more feasible by not having to install C-rate capacity. When comparing
the no-limit case with a 3 kW limit case the desired effect of lower C-rate capacity
need is found. The average C-rate is only 2 % of the total capacity in the 3 kW
limit case even if the energy is only down to 95 % relative to the base case. The
"blocked" remaining 5% energy that was used at total load power levels above the
limit could in a real life scenario simply be redistributed without causing a higher
C-rate capacity need. For example don’t charge the boat batteries while using heavy
appliances. This is of course a slight inconvenience and even if the C-rate capacity
is decreased a lot the payback time is only decreased by one year. Even lower power
limits will not effect the C-rate significantly as it is already close to zero. It will have
a larger impact on the user however and thus a lower power limit is not beneficial. It
should be noted that the very large CoV for C-rate in the scenarios with low C-rate
are not accurate. The CoV will approach infinity as the mean value approaches zero
and this causes the high values, they can thus be ignored in this case.
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5. Simulating Scenarios in the Model

5.8 Varying System Availability with Li-ion Stor-
age Batteries

In figure 5.5 we see availability for the same scenario as run in section 5.1. In the
first case the curve is fairly steep. The average payback times are marked by a
star for each number of users. If all the cases up until the PBT average value are
included an availability of just under 60 % is achieved for the 1 user case. For the
other three scenarios the availability increases to around tier 4. In order to have 100
% availability the actual payback time is almost three times larger than the mean
value. In the last few percent there is a very steep increase in payback time when
the curve at around 16 years PBT gives tier 5 and reaches 100 % at 23 years, the
last two percent increases the PBT with ca 40 %. This steep increase is also seen in
figure 5.4 in the top most histogram to the right in the timeline where a few of the
blue histogram bars are scattered around 23 years PBT. The steep increases occurs
when a new storage battery pack is needed and thus prolongs the PBT significantly.
This characteristic is a big downside as it creates a dilemma for the designer. The
desire is to make the system 100 % available but the price is very high for the last
few percent. Furthermore a system that is build like this will have a lot of it’s ca-
pacity unused most of the time. This wastes not only money for the user but also
resources and energy when producing the system. The alternative is to save a lot
of cost by settling for tier 5 and allowing for a few percent downtime but avoiding
the high increase in payback time. This will have a negative impact on the end user
but might play an important role in making the investment economically feasible.
Keeping in mind that there will still be energy available during these 2 % of the
days, but not for all loads, the sacrifice of 2 % downtime is well worth considering
due to the significantly reduced cost. In reality this could, for example, force the
user to postpone a battery charge or shut off a household load. Perhaps the negative
impact on user experience is acceptable, although this is a decision to be taken case
by case. The ratio between PBT for the mean value with around Tier 5 availability
and 100 % is around 2.5.

As the number of boats and households goes up, the average value of availabil-
ity is above Tier 3 for case 2, 5 and 10. The ratio between the mean value and
the full availability also decreases. The curves are flatter for more users and thus
the system is more predictable. In the case with 2 users a lot can still be saved by
sacrificing the last few percent but the number of years saved is around three times
less as compared to the one user case. For even more users the benefit of lowering
the availability diminishes.
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Figure 5.5: Payback times and corresponding availability for one boat per house-
hold using li-ion storage batteries. The stars are the average values. The number of
households and boats varied as follows: 1, 2, 5 and 10.
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6
Discussion

This chapter aims to give insights in what can be found when comparing the different
scenarios simulated.

6.1 Installed PV Capacity
When comparing the first two cases (one boat per household) with the following two
cases (only boats) it becomes clear that the majority of the PV capacity is installed
to cover the household loads. This is not surprising as each household draws 10.5
kWh per day while one charge is in the 1 kWh range. There is a larger capacity need
in the FLA systems due to higher battery losses. This is an obvious disadvantage
inherent to the FLA batteries.

If the only difference is the storage battery type the extra PV power needed is
around 15 % more for FLA than when li-ion is used. This will increase cost and the
surface needed for the panels. Increasing losses will also decrease the environmental
benefit as a less efficient system will waste more energy during it’s lifetime. The
same is true for materials, if more solar panels are needed, there will be more re-
sources required to manufacture those panels. This will increase the use of natural
resources and energy in the supply chain and should be avoided if possible. From
a community point of view the area needed for panels is a potential problem. This
is probably more of an issue if the needed area is significantly larger than the roofs
available, as valuable land then has to be sacrificed for panels. When looking at
the area needed to supply the base case with power using FLA storage batteries it
is around 200 m2 square meters. This gives each house a required area of 40 m2.
While most roofs in the area are larger it is possible that this is not true in all
cases and the 15 % saved space using li-ion might be worth it accounting for. Since
shading and angling of the panels are not accounted for, there is a need to further
investigate these properties. If they were accounted for a larger PV capacity might
be needed. On the other hand the solar irradiation data for the worst month was
used and this will cause a over estimation of the needed capacity.

6.2 Storage Battery
The following section discusses the three parameters related to the storage battery:
installed capacity, C-rate capacity and number of pack replacements. As with PV
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power, the installed capacity is larger in the FLA scenarios than in the li-ion scenar-
ios. The battery capacity in the FLA system needs more than twice the installed
capacity in the corresponding li-ion system. Thus the battery capacity requirements
of an FLA system has a much more severe disadvantage compared to PV capacity.
There are several reasons for this. Firstly the allowed DoD for the FLA systems is
lower which causes a higher need for more installed capacity. Secondly, the higher
losses in the FLA system also has to be stored in the battery. Finally more capacity
is needed for C-rate reasons in some scenarios.

In general the average installed capacity for C-rate reasons is higher with fewer
users. A part of the explanation for this is that with fewer users the daily load
curve is much more varying. The most extreme case in terms of C-rate capacity is
where there are only boats and FLA storage batteries. In this case the energy need
is low compared to the maximum power and the C-rate demand is high. This could
be avoided by limiting the amount of chargers and thus very efficiently limiting the
peak power. This is of course done at the expense of the end users and might not
be an acceptable solution in all cases. When households are added, the total power
curve is smoothed out by the households and the ratio of peak power and energy is
lower. However, even in this scenario the average C-rate need is large for few users.
It gets lower as the number of users increase but the CoV increases. As already
mentioned this is caused by many chargers running simultaneously in some rare
cases. The scenario with the power limit was created to try to solve this problem
and look into using FLA batteries together with a power limit to decrease battery
capacity need for C-rate reasons. The average C-rate capacity need was reduced to
almost zero, even with a high power limit, and having a power limit is helpful to
reduce battery capacity. If a system is built for only boats using FLA batteries the
effect is however not large enough to make FLA batteries better overall. The only
scenarios where C-rate has to be considered for the li-ion systems are when only
boats are used for few users.

The downside of the shorter cycle life of FLA batteries is apparent when look-
ing at the number of pack replacements. In the comparable scenarios the average
number of replacements during the PBT will always be larger for the FLA storage
system. Some of the downsides of a replacement are not apparent in the results.
One issue is the labour cost related to a pack replacement. The model only con-
siders the hardware cost of the new pack. Especially if the location is remote the
manual work will not only consist of installation but also transport. Batteries are
heavy and not locally manufactured and transporting them to the final location can
be a demanding job for the workers involved. This also leads into the other part
of the problems with more replacements. The environmental strain caused by more
transport, manufacturing and generated waste is much larger in the FLA case due
to more pack replacements and larger installed capacity for each pack.

Based on the results it seems that li-ion batteries are favourable. Lower losses,
higher cycle life, higher allowed DoD and higher C-rate are all parameters con-
tributing to a lower capacity needed if li-ion batteries are used. A lower capacity
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will benefit the user since less space is needed for the battery pack and fewer re-
placements will minimize replacement operations. Both these factors improves the
experience for the families in the households.

6.3 Peak Power
Having a high peak power is in itself not a bad thing if the system is build for it,
this is however not always the case. Considering this it is desirable to have a peak
power as close as possible to the average power. This will decrease the need for
C-rate capacity and can be implemented with a power limit as already described.
It could also be achieved with a control system that could decide when to turn on
and off certain loads. This approach is called demand side management. This adds
complexity if it is done automatically and manual load management is probably the
better solution. This means simply that the user knows not to run heavy loads when
charging. The use of li-ion batteries will increase the tolerable power and in most
scenarios the use of li-ion batteries was enough to allow desired peak powers. Again,
power limits should be implemented. It is also generally good for the health of a
battery to keep the C-rate as low as possible and by limiting the power, the cycle
life is expected to increase. This effect is not considered in this model as the cycle
life is assumed to be fixed.

6.4 Payback Time
The payback time increases as the household load increases. This is first seen when
comparing the PBT for the first two scenarios with one boat per household with the
following two simulating only boats. For both FLA and li-ion storage the PBT is
higher when including households. Secondly, in the scenario with varying household
loads the payback time increases as the household energy goes up. What is also
seen is that even if the FLA batteries are less expensive to buy the PBT is generally
higher when using FLA batteries. From a PBT perspective the ideal case is a li-ion
setup with only boats. These cases gives payback times in the rage of a few years.
Similar findings were seen in the study previously mentioned in Lake Victoria where
the investment in a li-ion based electric boat is regained after 3 years [10]. If the
model built in this project was used with electric cars the PBT might be different.
The study conducted in Indonesia on charging electric cars suggests that the idea
is feasible for cars as well with a conclusion as follows: "PV-standalone power plant
system for EVCS is the most recommended choice with its cost- effectiveness and
expected to spread across the country of Indonesia in near future" [9]. This study did
however not include households. As stated already the reason for household loads
having a longer PBT is that the cost savings related to replacing grid electricity
with solar are lower than replacing gasoline with solar. Even if the PBT is longer
for household loads it is still a viable option as we see in figure 5.5. In cases with
more users the system can be built with 100 % availability with reasonable PBT
and in cases with fewer users a lower availability might be something to consider.
From an environmental point of view this slightly higher PBT when covering the
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household loads is worth it. Especially in Indonesia where most of the grid power
is from fossil fuels [6].

6.5 Future Work
In this section some interesting paths to continue continue are presented.

6.5.1 Second Life for li-ion batteries
The batteries used in the electric boats are not covered in great detail in this report.
It would be interesting to investigate the possibility to reuse the boat batteries as
storage batteries. This would create a beneficial ecosystem since the deployer of
boats and charging stations, in this thesis Azura Indonesia, could keep the first step
of recycling within the organization and thus saving cost. It would also decrease
emissions by eliminating some of the need for transport as the boat batteries already
are at the location of the solar charging station.

6.5.2 Grid Connected System
In areas where a grid is available, the model could be expanded to allow for grid
connectivity. This is interesting for two main reasons. Firstly there is a possibility
to sell power to the grid when there is a local high supply from the PV plant, and the
batteries are full or chose to charge slower and sell some power. There is even the
possibility to sell energy stored in the battery to the grid if the price for electricity
is high. Secondly a system with lower availability could be designed that would use
grid power in the worst case scenarios, for example high night time loads. This could
all help decrease PBT and make the initial investment lower. Having grid support
can also enable a modular construction where the first priority is to build a system
capable of charging boats and then adding more capacity in stages while decreasing
grid power use.

6.5.3 Different Energy Storage
Batteries are the single most expensive part of the system and the use of other
storage technologies could potentially decrease system cost.
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Design Recommendations

This chapter aims to give general design recommendations for building an off-grid
solar power system. It gives insights into where costs can be saved and what neces-
sary sacrifices are made to do so.

7.1 Number of Users
In all scenarios the benefit of having more users is clear. It helps spreading out the
power curve and makes the PBT more predictable. The system should have some
power limit to eliminate the most demanding scenarios that can happen with many
users. An example of a way to limit power is a fuse or a limited number of chargers.

7.2 Household Loads
The main cost saving is done by avoiding gasoline and this should be the focus.
Adding household loads will increase the PBT. The PBT is however still reasonable
when adding household loads and as long as the PBT can be accepted the system
makes sense economically in the long run. If necessary, a system with limited avail-
ability can be a good option to reduce PBT. Having an off grid system gives other
benefits as well such as reliable power independent of grid downtime and sustainable
power production.

7.3 Boat Usage Patterns
Since avoided gasoline is the biggest economical benefit a high usage of the boats
is desirable. In the simulated scenarios each boat was charged once per day. If
a system could be implemented where the boats were used twice per day the PBT
could be even shorter as the same initial hardware cost of the boats would be covered
much quicker.

7.4 Battery Storage Type
The li-ion battery as energy storage is the best choice in all scenarios tested and in
all aspects. It gives shorter payback times, takes up less space and will last longer.
The only scenario where the FLA batteries would be preferred due to their lower
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price is if the planned lifetime of the system was shorter than the lifetime of the FLA
batteries (and therefore also the li-ion batteries). In the off grid solar power systems
covered in this project the aim is to have as long a lasting system as possible and
this makes li-ion batteries the best option in all cases. If the initial investment is a
big concern it appears to be better to start with a lower battery capacity using li-ion
and then add to it later instead of being tempted by the cheaper FLA batteries as
they will end up costing more in the long run. Since these systems are modular
in terms of panels and battery cells this makes a step by step approach feasible.
On the other hand there are aspects that could lessen the apparent benefit of the
li-ion batteries in a real scenario when initial investment is an issue. The main
drawback of this study is in the economic calculations where interest rates from
loans are ignored which means the cost of a large initial investment can be high
if it is obtained through a mortgage. It’s also important to know that while the
panels and battery cells are completely modular, the power electronics and other
components are not. If a modular approach is taken it is therefore important to
consider sizing of power electronics from the start. Either start with an oversized
system or add smaller chargers and inverters as the system grows. The later option
will cost more per watt but the initial investment will be lower.

7.5 System Availability
In the ideal case the system is of course designed to work at all times as all other
options will make the quality of life lower for the user. There can however be cost
benefits if the availability is lower than 100%. The highest benefit is seen when
the number of users are low. With higher users however the difference in PBT is
probably not worth the sacrificed availability.
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Conclusion

In this report a model was built to provide a tool for dimensioning solar power sys-
tems meant to power household loads and electric vehicles. The study was based
in a coastal fishing village in Bali, Indonesia and the EVs in this study was electric
boats. Measurements on household loads showed that the average energy need was
10.5 kWh per 24 hours and this was used in the model.

The model as a whole was build using measurements on household loads and boat
chargers. Furthermore a basic cost analysis was included in the model based on data
from Azura Indonesia and other papers on the subject.

When the model was complete a number of scenarios were tested in order to eval-
uate the impact of varying inputs. One factor tested was which storage battery
type was most beneficial, FLA or li-ion. In all scenarios the li-ion was the winner
in terms of installed capacity, maintenance, longevity and economic payback time.
The different scenarios also show that most of the avoided cost from using a solar
powered system to power household loads and boats comes from avoided gasoline.
This implies that replacing the gasoline engines should be a priority. There are also
savings from not buying electricity from the gird. Furthermore, some modifications
are possible such as lower availability and power limitations in order to make the
system more economically feasible. In all scenarios using li-ion batteries for storage,
the payback times are reasonable and the system makes sense for the types of load
configurations tried in this thesis.
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