
Legend of Cube
Evaluation of the development of a 3D platform game
designed for optimal player control

Bachelor of Science Thesis in Computer Science and Engineering

William Dahlberg
Niklas Helmertz
Peter Hillerström
Viktor Karlsson
Christoffer Matsson
Lucas Persson

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Gothenburg, Sweden, June 2015



The Authors grant to Chalmers University of Technology and University of Gothen-
burg the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet.

The Authors warrant that they are the authors to the Work, and warrants that
the Work does not contain text, pictures or other material that violates copyright
law.

The Authors shall, when transferring the rights of the Work to a third party
(for example a publisher or a company), acknowledge the third party about this
agreement. If the Authors have signed a copyright agreement with a third party
regarding the Work, the Authors warrant hereby that they have obtained any
necessary permission from this third party to let Chalmers University of Technology
and University of Gothenburg store the Work electronically and make it accessible
on the Internet.

Legend of Cube
Evaluation of the development of a 3D platform game designed for optimal player
control

William Dahlberg
Niklas Helmertz
Peter Hillerström
Viktor Karlsson
Christoffer Matsson
Lucas Persson

© William Dahlberg, June 2015
© Niklas Helmertz, June 2015
© Peter Hillerström, June 2015
© Viktor Karlsson, June 2015
© Christoffer Matsson, June 2015
© Lucas Persson, June 2015

Examiners: Jan Skansholm, Arne Linde

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone +46(0)31-772 1000

Cover: Image from Legend of Cube showing the main character and player controlled
actor in one of the game’s levels.

Department of Computer Science and Engineering Göteborg, Sweden, June
2015



Abstract

This thesis explores the subject of game development by detailing the
creation of a game. The game is called Legend of Cube and is a 3D
platform game. The main design goal was to create a game that let the
player feel in control while playing it. How well this is achieved is then
evaluated based on user tests.
Techniques in various aspects of game development have been researched
and implemented, then assessed through continuous testing during
development. This thesis presents concepts like level design, property-
centric software architecture, and gives insight into the technology and
science behind graphics, physics and gameplay in game development.
The results of our user tests show that the main design goal of the game
is, to some extent, reached. We conclude that perfect player control is
difficult, if not impossible, and even though the outcome was positive,
much more work can be made on the subject.



Sammanfattning

Den här rapporten undersöker ämnet spelutveckling genom att redogöra
för utvecklingen av ett spel. Spelet är ett plattformsspel i 3D vid
namn Legend of Cube. Huvudmålet var att skapa ett spel där spelaren
känner sig i kontroll över spelet. Hur väl detta uppnås utvärderas genom
användartester.
Tillvägagångssätt för spelutvecklingens olika delar undersöks, imple-
menteras och utvärderas fortlöpande under utvecklingen. Rapporten
behandlar koncept som bandesign men även implementationer och
mjukvaruarkitektur, för att ge insikt i tekniken och vetenskapen bakom
grafik, fysik och spelkänsla.
Användartesterna pekar på att projektets mål till stor del är uppnått.
Att uppnå perfekt känsla av kontroll är svårt, om inte omöjligt, så
även om resultaten är mycket positiva finns det stort utrymme för
förbättring.



Acknowledgements

We would like to thank our supervisor, Håkan Burden, who was very
helpful during the development. We would also like to thank Ulf
Assarsson, who gave advice about what tools to use.



Contents

Glossary

1 Introduction 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Method 4
2.1 Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Backlog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Version Control . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 User Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Gameplay 6
3.1 Gameplay Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Jump Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Aspects of Interest . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Level Design 12
4.1 Level Design in Platform Games . . . . . . . . . . . . . . . . . . . 12

4.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Learning the Game Through Level Design . . . . . . . . . . . . . . 13
4.3 Puzzle Versus Skill-based Platform Games . . . . . . . . . . . . . . 14
4.4 Method of Research . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Software Architecture 16
5.1 Data-Driven Engines . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16



Contents

5.2 Gameplay Foundation System . . . . . . . . . . . . . . . . . . . . . 17
5.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3.1 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 20

5.4 Stuttering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Physics 22
6.1 Physics Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Updating the Simulation . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Bounding Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 Contact with Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Graphics 28
7.1 3D Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.1 Textures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.1.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.2 Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2.1 Camera Representation . . . . . . . . . . . . . . . . . . . . . 29
7.2.2 Movement Mapping . . . . . . . . . . . . . . . . . . . . . . . 30
7.2.3 Interactive Cameras . . . . . . . . . . . . . . . . . . . . . . 31
7.2.4 Camera Behavior . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2.5 Camera Requirements . . . . . . . . . . . . . . . . . . . . . 32
7.2.6 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.3 Real-time Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.4 Shading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4.1 Normal Mapping . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.5 Shadows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.5.1 Smooth Shadows . . . . . . . . . . . . . . . . . . . . . . . . 38
7.5.2 Cascaded Shadow Maps . . . . . . . . . . . . . . . . . . . . 39
7.5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Contents

8 Results 41
8.1 User Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

9 Discussion 43

10 Conclusion 45

Bibliography 46



Glossary

AABB - Axis-Aligned Bounding Box

BV - Bounding Volume

C# - A programming language which can be compiled to bytecode, running on the
CLR

CLR - Common Language Runtime, a virtual machine for running programs
written in various Microsoft languages

Direct3D - Microsoft API for 3D graphics

DirectX - Collection of Microsoft APIs for multimedia applications

Game engine - Frameworks which provides various functionality needed for a
game.

Gamepad - Type of controller held in two hands with two analog sticks, designed
for video games

Legend of Cube - The game that has been developed for this thesis project

Level - A virtual space filled with obstacles and objectives, and in which the
gameplay takes place

LoC - See Legend of Cube

OBB - Oriented Bounding Box

Platform game - A game genre characterized by levels that involve jumping
between platforms and over obstacles

Platformer - A game in the platform game genre

Player - The user playing the game

Player character - The in-game avatar that the player controls

XNA - A game development framework created by Microsoft



1
Introduction

Video game development is a continually changing landscape. Recent years have
seen a rise of independent developers, often shortened to indie developers, and
refers smaller studios not backed by a video game publisher [1]. Indie developers
have gained a reputation for experimenting and creating games that traditional
publishers will not.

Platformers have seen a resurgence through this rise of indie developers. Platformers,
or platform games, is a type of video game where the focus is on the player character’s
movement mechanics themselves, usually manifested by having levels in the form of
obstacle courses that the player needs to traverse. The genre was popular during
the 2D era, but interest among larger developers lessened with the transition to
3D. Platform games in 2D is however a common genre for indie developers, with an
example being Super Meat Boy [2].

Even though 2D platformers are once again common, relatively few platformers in
3D are released. One explanation might be that getting the platforming mechanics
to work satisfactory in 3D is complicated. It is therefore of interest to investigate the
process of creating a 3D platformer in order to understand the various development
challenges that arise.

1.1 Purpose
The purpose of this thesis is to detail and evaluate different aspects of the devel-
opment of a 3D platform game. Additionally, this thesis evaluates one particular
design goal of the game, which was to make the player feel in control. What is
meant by in control is defined in section 1.2.

1.2 Problem Statements
Developing a game requires solving problems is many different areas. In this thesis,
the development has been divided into five problem areas, which are handled
separately. What is to be answered in each is the following:

• Gameplay: What mechanics the game has, and how they are imple-
mented.

• Level Design: What techniques that have been used when design of the
levels.

1



1. Introduction

• Software Architecture: What architectural techniques the developed game
has been based on.

• Physics: In a realistic simulation of a 3D world, there is the need for simulating
physical laws. How this is done in the game, for enabling the chosen game
mechanics, is to be answered.

• Graphics: A 3D game needs consideration of graphical appearance. The
thesis will answer how the camera works as well as how the game world is
rendered.

Aside from these five problem areas, there are some other general goals of the
project – one of them is to keep the hardware limitations to a minimum. Today,
developers are competing in making the most impressive and realistic looking game –
increasing the demand for more powerful hardware. Having to upgrade components
in order to play the latest games, adding to the ever growing problem of e-waste, is
not sustainable. Thus, to not add to this issue, Legend of Cube is aimed to function
even on low-end computers.

As previously mentioned in the purpose, the thesis aims to explore how to make
the player feel in control. In control is, for the purpose of this thesis, divided into
four key aspects. These, and their definitions, are:

• Consistency: The same input and situations should yield the same results.
The game should never surprise the player by acting differently in a specific
situation.

• Predictability: The player should be able to predict what is going to happen
next and not be surprised by unexpected elements.

• Freedom: The player should be able to control the game as freely as possible
and not feel constrained. I.e. the player should be able to choose different
approaches without feeling that the game forces them into playing the game
a specific way.

• Natural feeling: The game and controlling of the character should feel and
look intuitive and natural to the player.

1.3 Scope
We chose to focus more on having good gameplay, see chapter 3, and only implement
the most essential features in graphics, physics and level design to achieve our goals
for the gameplay. Additionally, the plan from the start was to have only one level
that would highlight our game’s features as well as possible.

The game engine in Legend of Cube was largely written by us instead of using an
existing solution. This was done so that more aspects of game development could
be explored. Creating the game from the ground up allowed for exploration of the
software architecture of a game engine and how the various parts affect each other.
Due to this decision, some things had to be excluded from the project in order to
be able to finish a playable prototype.

2



1. Introduction

During the graphics development, focus was not on implementing particularly
advanced graphical effects. It was thought they would take too much time to
implement – time that could be better spent improving the camera mechanics.
However, one effect that was still considered important is shadows, as they are
important for judging distances and depth in a platform game.

1.4 Outline
The report is structured to give the reader an accessible way to read about a
particular aspect of the developed game. This is done by dividing the thesis into
a number of chapters, each for a different domain, that all contain some result
and discussion, rather than having a single larger discussion chapter toward the
end.

To illustrate the outline, take chapter 3 on gameplay. It starts by presenting
the general idea of the game, which is followed by sections on different gameplay
mechanics. Each of these start by presenting background, and is concluded with
result and discussion. The following chapters then follow a similar pattern, but
cover other aspects of the game.

The initial chapters of this thesis are on topics related to user experience, like level
design, which is followed by chapters on subjects that are more technical. This is
to give the reader a more general idea of what functionality the game has, before
focusing on how it is accomplished.

3



2
Method

Developing a game requires decisions on several aspects of the process, ranging from
what framework to use, to how high the character should jump. These decisions have
largely been made through trial and discussion within the development team. In
the following sections, we detail the process used during development, such as what
initial technical choices were made and how the game has been evaluated.

2.1 Development Process
At the beginning of the project, some decisions about how we were to work on the
project were taken. Generally, we wanted to work in an iterative manner, rather
than fully defining the requirements at the very start. However, the workflow did in
many ways evolve over time as we discovered what worked and what did not.

2.1.1 Backlog
A backlog was used in this project to keep track of what needed to be done and to
see what other members were doing. Weekly meetings were held where the backlog
was reviewed. On these meetings, it was decided which backlog entries were most
important and which project member should deal with which task. If a project
member was done with his assigned task, or did not get any specific task assigned,
he could always check the backlog for what to do next. Using this method we could
assure that there was always something to be done.

2.1.2 Version Control
Github1 was used for version control during the project. Whenever a project member
started on a new feature, it was decided that they should create a new branch, and
work solely on that feature there. When a feature branch was completed, a pull
request for it was opened, where the code would be reviewed by other members
to ensure correctness and code quality, before being merged into the development
branch.

2.2 Development Tools
It was decided that Microsoft’s XNA framework [3], along with the C# language,
would be used for the project. The main reason was that XNA seemed to provide

1Online Git repository hosting service, found at https://github.com/

4

https://github.com/


2. Method

a fair bit of functionality, but still gave a substantial degree of freedom in how to
implement the game, as opposed to most complete game engines. It provides a
basic game loop, audio, input and window management, among other functionality
common to games. An advantage of using the C# language is that it is similar to
what most group members have worked with previously.

The game targets only the Windows desktop platform. Cross-platform development
with XNA is technically possible, with the help of Monogame [4], but it was still
excluded in order to avoid spending time on something that could easily turn out
to be more time-consuming than expected.

All 3D models were created using 3DS Max 2015, a 3D modeling software created
by Autodesk Inc. and all sound effects were designed, mixed and mastered in
Ableton Live 9. The choice of modeling software and digital audio workstation were
done based on personal preference and previous ownership and experience of the
products.

2.3 User Testing
User tests were conducted in order to evaluate the gameplay with regards to consis-
tency, freedom, predictability and intuition. A total of twelve persons participated
in the tests, four of which had little to no experience playing video games. All tests
started by handing a gamepad or a keyboard to the participant. Out of the twelve
participants, six used a gamepad and the others a keyboard. Upon receiving the
input device, the participants were told to try to complete “Level 1”.

The tests were all performed on the same computer, a machine without loss in
performance or quality. The game was played with the same, well-working, gamepad
by each user. The users were 85% male and around 50% considered themselves
experienced using a gamepad to play games.

5



3
Gameplay

“A game is not defined by its technology but by its gameplay. Game-
play can be defined as the overall experience of playing a game. The
term game mechanics pins down this idea a bit more concretely - it is
usually defined as the set of rules that govern the interactions between
various entities in the game.”

– Jason Gregory [5, p. 847]

This chapter presents the game itself by describing the idea behind the game and
how it is played. Additional information on the game can be found through its
official web site1.

The main goal of the game’s design was to give the player control. The movement
should enhance the players feeling of being in control. This is of course a very
subjective goal; feeling good might differ from person to person. We have tried
fine-tuning the movement of the character, and later performed user testing to
evaluate to which extent our goals have been fulfilled.

3.1 Gameplay Concepts
Legend of Cube is a platform game set in a 3D environment. The goal of the
game is to navigate the game avatar, the cube, through levels with an emphasis on
doing so as fast as possible. The game is intended to be played with a gamepad
(most preferably an XBOX360 controller [6]) but a keyboard can also be used. The
gameplay is designed to be fast-paced and usually straightforward when it comes to
finding the way. The game is played in different levels (see Chapter 4), which are
to be traversed by the main character: the cube. The cube has a few abilities; it
can slide on the ground; it can jump with variable power, bringing it to different
altitudes; and it can slide along and jump from walls (which can be seen in Figure
3.1 and 3.2). These mechanics are what distinguishes the gameplay, and are the
core techniques that a player will have to master to complete the game.

1See http://legendofcube.github.io/

6

http://legendofcube.github.io/


3. Gameplay

Figure 3.1: In-game screenshot the player cube sliding along a wall.

Figure 3.2: In-game screenshot of character just having jumped off a wall.

While the main challenge is to be able to traverse the levels and get to the finish
line, a rather large part of the game is to complete the levels as quickly as possible,
which can be done by optimizing the choice of path to the goal, and fine-tuning the
execution of the planned path. This concept is called speedrunning [7] and might
increase the replay value, which is the potential satisfaction of playing the game
again after finishing it.

3.2 Jump Mechanics
In every game that involves jumping, there needs to be a defined model for how
the character behaves while doing so. Different games might benefit from different
models. Certain kind of games, such as Legend of Cube, which is strongly focused
around jumping and moving, need more advanced and thought-through jump

7



3. Gameplay

mechanics. This section will cover the important aspects when characterizing a
jump; how it is solved in some popular games, and finally, how the problem was
approached in Legend of Cube.

3.2.1 Aspects of Interest
In real life, it is not possible to control one’s direction much while in air, with
some exceptions in the animal world of course. In games, the approach is a lot less
scientific, to allow for better gameplay. Thus, is it often possible to change direction
while in air, even though there is no anchor in reality for doing so. This is the first
aspect given special consideration, while studying jump mechanics.

A more realistic example and the second aspect we have analyzed is the ability to
jump variable heights, which is desirable, since you do not necessarily need a jump
of maximum height to clear a certain obstacle. Furthermore, variable jump height
can positively affect the level design, since it adds another concept of challenge,
where good jump control is needed to pass some part of a level. There is more than
one way to implement variable jump height, and how the implementation affects
the player will be discussed in the following section.

The third aspect that was chosen to be analyzed more deeply, that is present in
many popular platforming games, such as Super Meat Boy [2], Super Mario 64 [8],
Super Mario Sunshine [9] and Speedrunners [10] is wall jumping. Jumping up to
a wall and then jumping away from it can be a good way to clear obstacles and
traverse forward in the level.

3.2.2 Research
We have looked at games such as the above-mentioned Super Mario games and
Super Meat Boy (abbreviated as SMB) and analyzed their jump mechanics, with a
focus on the previously mentioned aspects.

There are two main ideas on how to implement a variable jump height. In Super
Meat Boy, you hold down the jump button until you have reached the desired height
and then let go. As the developer described, the player character then immediately
loses all upwards velocity and starts falling [11]. In recent Super Mario Games, more
specifically Super Mario Sunshine, you vary Mario’s jump height in the beginning
of the jump by either tapping for a short jump or pressing a bit longer for a high
jump. Figure 3.3 describes the differences of these models.

8



3. Gameplay

Time

J
u
m
pH

ei
g
h
t

(a) An interrupted jump in Super Meat
Boy. The graphs describe the complete
behavior of the jump, while the solid
parts are what actually is executed.

Time

J
u
m
pH

ei
g
h
t

(b) A jump of any height in Super Mario
Sunshine.

Figure 3.3: Visual representations2 comparing the jump models of Super
Meat Boy and Super Mario Sunshine.

The advantage of SMB’s model is a very precise and responsive jump height. A
drawback, however, is that the game cannot predict when the player will release
the jump button. This introduces difficulties in determining the character’s jump
trajectory and may result in bad jumping animations. SMB solves this with a
direct approach, as seen in Figure 3.3a, with a broken curve. Super Mario Sunshine
has a visual advantage in this subject due to the jump height being determined
before the character reaches the minimum jump height. This allows for a continuous
jump curve, which is more aesthetically pleasing; without regards to such curves is
this, however, a less precise way of dealing with the ability to vary the character’s
jump height. What is desired will vary on the amount of precision needed in the
game.

In SMB, the air control is high, to the point that the player can make a jump full
speed in one direction, and then change direction in air and land at the point where
the jump started. Such high in air control puts pressure on the level designer since
it could potentially break the level design and make it too easy. This did however
does not appear to be a major issue, neither in our, nor other consumer’s opinion,
based on Steam3 reviews [12].

Due to the high in air control in SMB, it is possible to perform multiple wall jumps
against a single wall, this is not the case in Super Mario Sunshine where the air
control is much lower, to the point where wall jumping is only possible against
opposite walls.

2These graphs are not the actual functions of the jumps, just a visual aid aimed to explain the
differences between them.

3Steam is a popular platform and community for buying and playing games online, http:
//store.steampowered.com/

9

http://store.steampowered.com/
http://store.steampowered.com/


3. Gameplay

3.2.3 Results
Much play testing and tweaking was made, in order to find the final model of
jumping that is present in Legend of Cube; the jump we ended up with is a mix of
the two jumping models studied in 3.2.2. The core jump is closer to Super Mario
Sunshine’s implementation, where the jump height is calculated early in the jump,
based on how long the initial jump input was; this gives a more arced jump but
a little less precision. The amount of air control and wall jumping behaves more
like in Super Meat Boy; the wall jump is calculated in a similar way as the normal
jump. The ability to jump several times from the same wall is limited but possible.
While we do not have total air control as in SMB, we still have enough so that the
player is able to completely change direction in air.

3.2.4 Discussion
Early on in the project, we did not have a clear model of jumping, which caused
many problems, since it was difficult to fine-tune the jump without a real model.
When we reworked the jump into the one we currently have, we wanted a jump where
we could calculate the jump height before landing, but still have some variability in
it. We realized that, while this method sacrifices some precision, it gives a more
natural feeling and jumps that are more consistent.

The amount of in air control early in the development was high. It was later
limited, since it was possible to climb a single wall by repeatedly wall jumping
on it, which could break the level design. It is still possible to a small extent, it
is however very slow, and needs perfectly timed jumps every time to reach any
elevation. This was deemed not an issue with the approach that LoC should be
speedrunner friendly.

Strafe jumping and bunny hopping has been around for a long time in many games
based on the Quake-engine, these jumps are both described in SourceRuns wiki
[13]. As mentioned in the wiki, it was first discovered as a bug and it is a way of
jumping and strafing to increase the characters speed above the normal max speed.
It is a way to perform speedruns (see 3.1) or to just move exceptionally fast in the
affected games. A similar concept appeared in LoC when implementing wall jumps.
When a wall jump is performed, the character instantly receives some velocity to
move away from the wall. This addition of velocity made it possible to travel faster
than the usual maximum speed. The feature was kept to encourage the possibility
to do speedruns in LoC.

3.3 Movement
The movement system might be easy to overlook or take for granted while looking
at games, even in platform games where the movement is integral to the gameplay.
This section will describe how we implemented the movement system and why we
made the choices we did.

10



3. Gameplay

3.3.1 Results
We designed the movement to make the cube feel heavy, invoking a feeling of inertia;
this was done through having accelerations. Every time the cube starts from a
complete stop, it takes a short while before it reaches its maximum velocity, and
likewise when it decelerates to a stop. The direction of the cube is also directly
related to the direction of the camera, as mentioned further in section 7.2.2. A side
effect of this is that a manual rotation of the camera, while moving forward, causes
the cube to turn in the direction that the camera is rotating. We designed Legend
of Cube with a gamepad in mind as the main way of controlling the character; this
enables us to be able to take analog input from a stick varying from 0.0 to 1.0,
which makes it so that the cube can move slower or faster depending on how tilted
the stick is.

3.3.2 Discussion
The design choice to include inertia in Legend of Cube enhances the natural feeling
of the game, but comes at the price of precision controls; for example, stopping at
an edge becomes much harder. The other way of doing it, with instant stopping
and starting, does not work as well for platform games in general, since many
such games build upon the mechanics to preserve movement velocity to overcome
obstacles.

11



4
Level Design

The designing of levels is one of the more important elements when creating a natural
gameplay. Physical constraints, such as jump height, and the skill progression of
the player, are two examples of what the level designer must take into account
when creating a level that is fun and rewarding to play. For the game to be fun,
it is usually good to think about fairness to the player too. That is, make sure
there are no invisible traps that the player does not understand, but still provide
a challenge, facilitating the feeling of accomplishment for the player, upon level
completion. This section will go into a bit more depth on what is good and bad
when it comes to level design.

Level design is a broad term and can refer to different concerns depending on which
game or genre that is being discussed, generally it refers to the creation of levels,
maps, missions, environments and other spaces which the player can explore. When
designing levels in a platform game, such as Legend of Cube, there are a few ideas
to keep in mind, which is what will be discussed in this chapter.

4.1 Level Design in Platform Games
When designing platforming levels and single player games in general, it is important
to have good “gameflow”, as Bleszinski [14] calls it. He refers to it as the life force
that makes a good game fun, and that it is mostly about the reward-response
system, which challenges the player and then rewards them for completing tasks.
The point is that the Gameflow is completely in the hands of the level designer,
since it is the level designer’s task to create the challenges and the following rewards
for motivating the player.

Since platforming games are essentially obstacle courses where you need to reach
the end, it is good if the levels are quite linear and have some kind of flow that leads
the player, so that the player does not get confused on where to go [15, p. 110]. It
can however be good to give the player some kind of freedom on where to go or at
least give them the illusion of freedom, this can be done through creating multiple
paths where the player can choose which path to take, even though they may all
lead to the same goal [14]. The visual design is important when creating a level
with good flow, giving certain platforms special colors or even just putting up some
simple direction arrows can help indicate where to go next. An example of this is
the game Mirror’s Edge [16], which has mostly open levels but they use stark colors
to indicate obstacle and doors that you can interact with, which helps the player
know where to go.

12



4. Level Design

Another important thing about level design is to ease the player into new type of
obstacles, so that at each obstacle all the necessary information has been provided
beforehand [17]. An example of this, in LoC, would be a part of “Level 1” where
the player is supposed to jump between three walls, where earlier in this level the
player has been introduced to walls which you can jump away from.

4.1.1 Results
When the levels in LoC was designed we did not have much knowledge about
designing levels except for our own experiences from playing similar games, so the
design process was very much trial and error trying to find what was considered by
us to be a fun level. It is also important to notice that the creation of levels had a
very low prioritization throughout the project, and our initial goal was to have one
level that highlighted most of the games features. The result was one complete level
and several test levels, which were produced during the development for testing
different features. The complete level was found by both developers and testers (see
section 8.1) to be a quite fun level, there was a small contest among the developers
to see who could complete it in the fastest time.

4.1.2 Discussion
There is a multitude of decisions we might have made differently, if we had had
more time and experience to work with our levels and their design. The one thing
we would have liked to do, which would have directly impacted our game, would
have been to make a tutorial level to introduce the controls and all of the game
mechanics to the player. Unfortunately, it was low priority and we did not have
enough time. A big reason we decided not to create more levels was that it was a
very time consuming process, since we neither had a level editor, or a level format.
This meant that we constantly had to guess the placement and manually test the
level between every adjustment made to the level. Furthermore, since our purpose
relates entirely to the control and movement of the character, only one level was
actually needed to assess the smooth gameplay we were striving for.

4.2 Learning the Game Through Level Design
A hallmark of good level design is to have the level teach the mechanics of the
game to the player without having long tutorial messages pop up on the screen;
for example, the first level in LoC starts the player off on a lonely platform with
the only way forward being another platform a small distance away. Most players
realize that there should be some way to make it to the next platform and a common
reaction should be to try to jump there, then suddenly the player has learned to
jump without the game telling the player how to do it. After that, the next platform
is even further away and if the player attempts to make a normal jump there he
will not reach it, but since there is no other way forward the player might realize
that if he holds the jump button down, the character makes an even higher jump.
Using this method to learn the game, it can be more interesting to players, since

13



4. Level Design

they learn to use the mechanic, in this case jumping, in an ordinary game situation
[18, Chapter 2.3].

4.3 Puzzle Versus Skill-based Platform Games
There might be considerable differences in level design, even within the platforming
genre. There are puzzle platforming games, which usually offer the player a calm
progression. Popular titles include Braid [19], Portal [20] and Thomas Was Alone
[21]. In puzzle games, the finish point of the level, and the way to get there, is
mostly not very clear. The purpose of such a game is to challenge the player
mentally. The player is supposed to scrutinize the level for clues, or use a different
approach or technique to approach the problem, finally finding a way to the finish
line. These kind of levels require attention to detail; it is important that objects that
are important for the player, are possible to find, and that the clues are reasonable
enough. Guesswork is, of course, part of the puzzle, but when it becomes far-fetched,
it is possible that the player loses interest.

Another type of platforming game, that requires another type of level design, is
the action platforming game. The levels in these games often have a clear path
to follow. Instead, the challenge lies in the physical skills of the player. Dexterity
and reaction time play an important role, and the game is usually not mentally
challenging. Legend of Cube is good example of such a game, where it is more
important with the larger composition of the levels. Instead of detail in the tiny
things, that might hint to a solution, you mostly already know where to go, and
how. The problem here is to actually manage to do it, only using the mechanics
described in Chapter 3, thereby refining your skills.

4.4 Method of Research
The level designing has been tested in several different levels during the development
of LoC, but the main testing method has been “Level 1”, seen from above in Figure
4.1. Level 1 utilizes several of the techniques described in the previous sections of
this chapter, such as learning through the level design, usually with only one way
forward, forcing the player to learn and perfect their ability to control the character.
Another important aspect when designing a level is of course to take into account
the jump height and jump length or the character.

14



4. Level Design

Figure 4.1: In-game screenshot of “Level 1”, the primary level of the game.

15



5
Software Architecture

The software architecture of a game is often split into two parts, the game engine
and the game itself. A game engine can be seen as a collection of components, such
as a rendering and physics component, on which a game can run [5, p. 11]. The
game itself is then the art assets and logic needed to run the game. In the early
days of game development there were no separation between these parts and games
were typically completely written from scratch every time [22], and even today the
separation can be quite blurry [5, p. 11].

One of the more important jobs of a game engine is to keep track of all the objects
in the game. Examples include the player character, enemies and items. Common
names for these objects are entities, actors and agents [5, p. 853]. The part of
the engine responsible for these objects is sometimes referred to as the gameplay
foundation system; this system will be covered in section 5.2.

A game engine was developed for Legend of Cube. It is quite strongly coupled to
the game logic, since it was never intended to be reused for other games. It was
however intended to be data-driven in order to facilitate user-created levels. It uses
a property-centric gameplay foundation system in order to accomplish this. This
chapter will mainly cover this game engine and some other interesting aspects of
the software architecture in Legend of Cube.

5.1 Data-Driven Engines
An important concept when talking about game engines is whether the engine is
data-driven or not. In a completely data-driven engine, the game is defined in
external scripts, configuration files and media assets [22]. In a non-data-driven
engine on the other hand, part or all of the game is defined in code.

There are advantages of having a data-driven engine. Since the game is largely
defined in external files, game designers and artists do not need to touch the code
when creating the game [22]. Another advantage is that it could allow the users to
modify the game and create their own content [5, p. 11].

5.1.1 Discussion
One of the early intents with Legend of Cube was to define levels completely in
external files and therefore make it somewhat data-driven. At the very least it
would probably make it easier to create levels and level creation tools. It could also
potentially have allowed for user-created levels.

16



5. Software Architecture

Unfortunately, this was never accomplished. However, the infrastructure to imple-
ment it is partially in place, in the form of a property-centric gameplay foundation
system, which is described in more detail in section 5.2.

5.2 Gameplay Foundation System
The gameplay foundation system, as described by Gregory [5, pp. 869-891], is
responsible for keeping track of objects in the game. He goes on to describe
two common architectural styles for representing game objects, object-centric and
property-centric architectures.

The object-centric style can be seen as the standard object-oriented programming
approach. Commonly, each type of game object has its own class and each object is
represented by a single instance. There is usually some sort of inheritance structure
in place.

The property-centric style instead focuses on the properties of the game objects.
Typically, a game object is just represented by some sort of unique identifier.
Each property is then just data or an instance of another class stored in separate
collections with the identifier as a key. What an object actually is, is then defined
by what properties it has.

struct Entity {
Vector3 position;
Vector3 velocity;
Vector3 acceleration;
Model model; // 3D model

}

// array -of-structs (list of game entities)
Entity [] entities = new Entity[numEntities ];

Listing 5.1: Example of array-of-structs layout in C#.

struct Entities {
Vector3 [] positions = new Vector3[numEntities ];
Vector3 [] velocities = new Vector3[numEntities ];
Vector3 [] accelerations = new Vector3[numEntities ];
Model[] models = new Model[numEntities ]; // 3D models

}

// struct -of-arrays (list of all game entity properties)
Entities entities = new Entities ();

Listing 5.2: Example of struct-of-arrays layout in C#.

The difference between object-centric and property-centric style can be compared
with the difference between the array-of-structs and the struct-of-arrays layouts.
Listing 5.1 and 5.2 shows the same simplified gameplay foundation system using

17



5. Software Architecture

array-of-structs and struct-of-arrays respectively. In the first example, an entity is
an object while in the second it is an index.

A problem with the object-centric style is that it is hard to define new types without
changing the code [22], as exemplified in the following quotation:

“Initially the development started under the impression that the
non-player characters (NPCs) and doors do not share many components.
Later on, the designer wanted to allow the player to have a conversation
with a door just as he can have a conversation with NPCs but since the
initial design only allowed NPCs to have the conversation component,
they found that pushing the component up the hierarchy was very
difficult and resolved to use a hack around the problem.” [22]

In contrast, property-centric style makes it is very easy to create new types in data.
If a new object is to be created there is no need to create a new type of class, all that
needs to be done is to create a new entity id and add the wanted properties.

5.2.1 Results
In Legend of Cube there are no static objects, everything is handled by the gameplay
foundation system and considered a game object. Walls, platforms, the player
character, decorations, spawn zones, etc., are all entities. This approach is used for
its implementational simplicity.

The gameplay foundation system is implemented in a property-centric style. Each
entity has a mask defining which properties it has. Listing 5.3 shows how such a
mask is defined, each bit in the integer is a boolean value representing whether the
entity has some specific property or not.

const UInt64 NO_PROPERTIES = 0;
const UInt64 POSITION = 1 << 0;
const UInt64 VELOCITY = 1 << 1;
const UInt64 ACCELERATION = 1 << 2;
...

// Can combine multiple properties with bitwise OR
UInt64 posAndVelMask = POSITION | VELOCITY;

Listing 5.3: Simplified example of how the property masks are
defined and can be combined.

Each entity’s mask and all property data is stored in a central class called World.
The masks and the property data itself is stored in equally sized arrays, i.e. the
struct-of-arrays layout. An entity is then simply an index, which can be used in
all these arrays, only the data available according to the property mask is valid.
Listing 5.4 shows a simplified example of the World class.

18



5. Software Architecture

class World {
UInt64 [] propertyMasks; // All entities has a mask
Vector3 [] positions; // POSITION
Vector3 [] velocities; // VELOCITY
...

}

Listing 5.4: Simplified example of how dynamic entities are stored
in Legend of Cube

A consequence of this pattern is that logic is no longer being applied to specific
types of objects. Rather logic is being applied to all entities in the world, which
have some specific properties. Listing 5.5 shows an example of how the position of
all entities with a velocity can be updated.

UInt64 posAndVelMask = POSITION | VELOCITY;

for (uint i = 0; i < world.NumEntities; i++)
{

// Bitwise AND to mask out the specific property bits
// then compare with precalculated mask to see if
// entity has the needed properties

if ((world.propertyMasks[i] & posAndVelMask) ==
posAndVelMask)

{
// Updates entity ’s position
world.positions[i] += world.velocities[i] * timeDelta;

}
}

Listing 5.5: Example of how a property mask can be used to
update the position of all entities with both the position and velocity
property.

With this structure, it is very simple to redefine what a specific object is. Take
a stationary wall for example. By simply adding the VELOCITY property to its
mask and setting a velocity the wall will start to move.

5.2.2 Discussion
The group found that using the property-centric system felt very unusual at first,
but it felt very flexible and powerful after people had gotten used to it. It was
convenient to not have to create a new class every time a new type of object was
created. It was also very useful to be able to quickly add properties to an existing
object if it was missing something.

In a sense, you are doing memory management on your own, as data can be accessed
even if it is not valid. At the start of the project, it was feared that this would
become a problem. In practice, this did not happen very often, and when it did, it

19



5. Software Architecture

was quickly found. We theorize it might become bigger problem in a larger project
with more people involved.

The property-centric architecture will likely make it easy to convert the engine into
a data-driven one. It is trivial to design a system where you choose properties and
values in an external format, using for example XML. That is really all that is
needed to create all kinds of objects supported by the engine.

5.3 Performance
Within the game industry, performance is often of high priority during development.
Mike Acton, engine director at Insomniac Games, claims that performance is so
important that if it was feasible, they would work only in assembly languages [23,
p. 7]. Similarly Jason Gregory, lead programmer at Naughty Dog, claims that games
need to perform as efficiently as possible [5, p. 152].

As a consequence of this need for performance, a concept called data-oriented
design has become common. In a talk at CppCon [23], Acton describes it as a
different way of thinking about programming, where data and how it is laid out in
memory is more important than the code itself. The motivation behind it is that
the primary bottleneck in modern systems often is bandwidth and memory latency,
not computational power.

5.3.1 Results and Discussion
Whenever possible, contiguous memory allocation is used. The most common data
structure used in Legend of Cube is arrays of value types. Value types are allocated
on the stack in C#, which means that the arrays will be contiguous in memory. This
alone hardly makes the game data-oriented, but it is still worth mentioning.

Data-oriented design was generally considered out of scope for this project. This was
due to three reasons. Firstly, it would take too much time. Secondly, it was thought
that C# lacked the amount of control needed to make Data-Oriented programming
work well. Thirdly, Legend of Cube is quite small in scope and it was assumed that
performance would not turn out to be a major problem. This assumption held,
even if some things turned out to be more expensive than they optimally needed to
be.

5.4 Stuttering
According to Gregory, a video game is often considered a soft real-time system [5,
pp. 9-10]. A real-time system is a system with hard deadlines, i.e. limits indicating
the latest time a task may finish. A video game is a soft real-time system since it is
unlikely that a missed deadline will be fatal. An example of a deadline, mentioned
by Gregory, is the need to render to the screen at least 24 times a second, otherwise
the objects will not look like they are moving properly.

20



5. Software Architecture

A potential problem when trying to meet the aforementioned deadlines is non-
deterministic delays. An example in C# is the garbage collector that runs sponta-
neously when the CLR (Common Language Runtime) decides it is necessary, which
leads to the program execution stopping for a short while until it is done [24]. This
introduces a short unpredictable delay into the game, which causes stuttering, i.e.
the game temporarily stops for a short while.

5.4.1 Results
Dynamic memory allocation is avoided during runtime in order to avoid spontaneous
garbage collection. The dynamic memory needed during a session is allocated once
when starting the game and then reused. This has some consequences, for example,
the amount of game objects that can exist at the same time is set and can not be
increased during runtime. For temporary variables, classes are avoided in favor
of structs, which are usually allocated on the stack and therefore not garbage
collected.

5.4.2 Discussion
No significant stuttering has been observed in Legend of Cube. It is therefore
assumed that the measures taken to prevent this from happening have had an effect.
The primary measure, not allocating dynamic memory during runtime, was not very
difficult, thanks to the architecture of the gameplay foundation system (covered in
section 5.2).

21



6
Physics

For the gameplay of a platform game to function, the player character needs to be
able to traverse the world and collide with objects, such as walls and floors. These
features can be achieved using some sort of physics simulation. Legend of Cube uses
a very simple bare-minimum physics engine, in order to make the desired gameplay
possible. This chapter covers the basic aspects of this physics engine.

6.1 Physics Simulation
In his book, Game Engine Architecture, Gregory suggests [5, p. 651] that there
are three design impacts to consider before adding physics to a game. They are as
follows:

• Predictability: It can be hard to predict how a physics simulation will
behave.

• Tuning and control: The laws of physics are fixed. It can be harder to control
and make something behave in a specific way.

• Emergent behaviors: Unexpected behaviors can emerge due to the unpre-
dictable nature of physics.

Besides these design impacts, there is also a choice to be made between developing a
custom physics engine, and using an existing one. According to Gregory, [5, p. 653]
writing a physics engine is both time-consuming and challenging.

6.1.1 Results
A bare-minimum physics engine was developed for Legend of Cube. This was
motivated by concerns that it might be more difficult to properly explore various
platforming mechanics, such as jumping, with an existing solution. I.e. a custom
solution would be more open for modification and control, to enable specifically
the kind of gameplay wanted. In order to avoid spending too much time, its
implementation was kept as simple as possible.

The choice to have physics in the game was made because it was thought necessary in
order to enable the development of responsive and good jump mechanics. There were
some concerns over the predictability aspect of the physics simulation, platforming
mechanics need to be predictable and behave exactly as the player expects. Except
for some minor edge-cases, this luckily enough never turned into a problem.

22



6. Physics

6.1.2 Discussion
Development of the physics engine took a significant amount of time. It turned out
to be a lot harder than expected to resolve collisions and rotations in a satisfactory
way. Some desired features, like the ability to stand on moving platforms, were
never implemented. It is hard to say for sure how much time it would have cost to
use an existing physics engine, but it would likely have reduced the development
time and allowed for more time to be placed on other things. In the end it was not
completely wasted time, as knowing how the physics worked internally did help
when designing movement mechanics, but in future projects an existing solution
will likely be used.

6.2 Updating the Simulation
Analytical solutions for calculating the next step of the physics simulation are
not usually possible [5, p. 692]. Therefore, the use of some sort of numerical
approximation is necessary. One common method is the explicit Euler method,
which works by assuming that the velocity and acceleration is constant during a
timestep [5, pp. 692-693], see equations 6.1 and 6.2 for assumptions made.

pos+ ∆pos = pos+ vel ·∆time (6.1)

vel + ∆vel = vel + acc ·∆time (6.2)

6.2.1 Results
The numerical approximation used by Legend of Cube is the previously men-
tioned explicit Euler method. It was mainly chosen for its simplicity and ease of
implementation.

23



6. Physics

// Example , not actually stored like this
struct PhysicalEntity {

Vector3 position;
Vector3 velocity;
Vector3 acceleration;

}

// Very simplified implementation
void Update(List <PhysicalEntity > entities , float delta)
{

foreach (var entity in entities)
{

entity.velocity += gravity * delta;
entity.velocity += entity.acceleration * delta;
entity.position += entity.velocity * delta;

}
}

Listing 6.1: Example code showing how the simulation is updated
using explicit Euler.

As one can conclude from Listing 6.1, the velocity and acceleration vectors are not
modified by the basic simulation (though velocity may be changed during collisions).
Therefore, the acceleration and velocity variables are often used as input for the
physics system from other systems. For example, the movement system modifies
both variables in order to perform jumps.

6.2.2 Discussion
The choice to use explicit Euler turned out well. Due to the simplicity of Legend of
Cube’s physics engine, no particular problems were encountered. If a more complex
physics simulation had been used, a better approximation might have been more
appropriate.

6.3 Bounding Volumes
An important part of a platform game is the ability to interact with the environment,
for example jumping on platforms. In order to accomplish this and give the
impression of solid geometry, the physics engine needs to be able to detect and
resolve collisions. Collision detection is a subject that covers various algorithms and
techniques used to determine if, when and where two objects collide [25, p. 1].

It is often too expensive to calculate intersections using the actual geometry of the
game world [25, p. 75], instead bounding volumes are used. A bounding volume
(henceforth abbreviated as BV) is a representation of a simple volume in space, e.g.
a sphere or a box. In general, it is cheaper to calculate intersection tests on BVs
than on more complex geometry [25, p. 75]. The idea is to fit the more complex
geometry to BVs and then only compute the more complex intersection tests when
necessary.

24



6. Physics

Figure 6.1: The left box is an AABB and must therefore be aligned with
the world’s coordinate system. The right box is an OBB and can therefore be
freely oriented.

Two common types of BVs are axis-aligned bounding boxes and oriented bounding
boxes (henceforth abbreviated as AABB and OBB respectively). The main difference
between these BVs is that OBBs can be rotated arbitrarily in the world, while
AABBs must be aligned with the world’s coordinate system, which is illustrated by
figure 6.1. Additionally, the intersection test between two OBBs is more expensive
than the AABB equivalent [25, pp. 76-77].

6.3.1 Results
For simplicity’s sake, only one BV is allowed per object and only OBBs are used.
Since the player character is a cube, a single OBB is a perfect fit and more complex
intersection testing algorithms are therefore not necessary. Additionally, the most
important structures in the game, i.e. walls and platforms, can easily be represented
by a single OBB. By using only one BV per object and sticking with only one
type of BV, the software architectural complexity is reduced while still allowing for
accurate player collisions. Figure 6.2 shows how OBBs are fit to the geometry in
Legend of Cube.

(a) In-game screenshot showing OBB
BVs.

(b) In-game screenshot showing the
same scene using normal rendering.

Figure 6.2: Comparison showing how OBBs are fit to the geometry in Legend
of Cube.

25



6. Physics

6.3.2 Discussion
Early during the development process, a choice between using AABBs or OBBs
as the primary BV was made. This was a fundamental choice about the nature
of the levels and gameplay in the game. Choosing AABB would mean forsaking
rotations of both the player cube and the levels themselves. Similarly, structures
like slopes would not be possible. This would not necessarily be a bad choice. A
limiting choice like this could potentially make the whole design more clear and
intuitive.

Ultimately, it was decided to only use OBBs in Legend of Cube, since they offer
a larger amount of freedom in the shapes they can represent. One disadvantage
of this approach is, as previously mentioned, that the intersection test between
two OBBs is more expensive than the AABB equivalent. It was deemed that this
was not a major problem, as there were more important optimizations available if
needed.

6.4 Contact with Surfaces
In a platform game, the player can often perform different actions depending on
whether the character is in contact with a surface or not. For example, if the
character is on the ground a jump can be made, or if the character is sliding on
wall, a wall jump could be performed. It is therefore crucial that these states can
be accurately queried from gameplay systems. The player will not feel in control if
a jump is not registered right before falling over the edge of a platform.

6.4.1 Results
The physics system in Legend of Cube determines if the player character is in
contact with a surface by checking if a collision occurred. This poses a problem
if the character is touching a surface but not actively moving towards it since no
collisions will be detected. Likewise, if the velocity towards the surface is low enough
it might not register as a collision and the contact state will be off for a single
frame.

A couple of modifications were introduced to combat these problems. The first
modification slightly increases the velocity into the surface every frame after the
first collision. This decreases the chance of the physics system temporarily missing
a collision due to the velocity being too low. The second modification attempts to
displace the player character a small distance into the last known collision axis, to
see if it is still in contact with the surface in question.

6.4.2 Discussion
The way contact with surfaces is handled in Legend of Cube could have been better.
The modifications that were made to make it work are very specific, and it is
difficult to know whether there are side effects yet to be discovered. To ensure that
there are no such problems, the contact-detection would likely need to be rewritten

26



6. Physics

completely. This is probably one of the areas that would be improved by using an
existing physics engine.

27



7
Graphics

The visual appearance of a game is vital for supplying the user with information
of what is happening in the game world. The main idea behind the visual style
of Legend of Cube was one of a gritty, dirty, industrial area with the cube being
very high tech and alien looking, to contrast the surrounding environment. Prior
to development, concept art was created to visualize this idea, as shown in Figure
7.1. The world is populated with exposed brick walls, piping, corroded metals
and various construction materials whilst the cube is of a grey color with a blue
light emitting from it. For creating a game with this visual appearance, it is
considered throughout the development aspects that affect the visual experience. In
the following sections, those aspects of the game’s development are detailed.

Figure 7.1: 3D rendered concept art showing the cube in an industrial
environment.

7.1 3D Models
In 3D games, models are generally used as the main graphical components, whereas
2D games utilize forward facing images, or animations, called sprites. 3D models
consist of points, vertices; and connecting lines, edges, which describe and define
their shape. As computer hardware becomes more powerful, it is possible to have
more vertices and edges, which thereby enables games to use more complex, and
realistic, shapes.

28



7. Graphics

7.1.1 Textures
When a 3D model is complete, it is often textured before being added to the game.
Texturing involves applying a color or, more complexly, an image to define the
surface of a given model. A model is not limited to a single texture. In order to
create a more realistic look, different textures, or maps, are applied to the models.
Each map contributes in its own way to the final surface, some define how glossy
the material appears, and others the roughness of the surface.

7.1.2 Result
As discussed in section 6.3.1, Legend of Cube makes use of OBBs only, and in
addition to that, each entity is restricted to one OBB and one 3D model. This puts
some constraints on the game’s 3D models since they cannot be of complicated
shapes if the player is expected to collide with them.

Collisions with misaligned or ill-fitting OBBs cause the models to intersect – if
the OBB is too small. If the OBBs are too large, they limit the models’ minimum
distance to each other – causing them to collide even though, visually, they do not
appear close enough. Therefore, only models whose exterior resembles a cuboid can
have a perfect fitting OBB and the relatively simplistic models in Legend of Cube
is a direct result to that.

In Legend of Cube there is support for up to four maps on any given model – namely
the diffuse-, normal- (see 7.4.1), specular- and emissive maps. See section 7.4 for
what each map represents.

7.2 Camera
All games present a set of challenges for the camera system. These challenges
includes how a player will interact with the camera, if at all, and how the camera
will behave in edge cases, such as when there is little to no room for the camera to
operate in, despite movement being required.

This section aims to present information on design decisions developers must make
by exploring some of the different alternatives available. Then the camera in Legend
of Cube is detailed, by first going through the specific camera requirements for the
game, followed by how the camera then was implemented.

7.2.1 Camera Representation
One common type of virtual camera is one based on perspective projection, which
simulates the function of real cameras. This is a type of camera that can be seen as
being located at a fixed point in a virtual world with a particular orientation. This
camera could be modelled in various ways, depending on the specific domain and
purpose. One model of such a camera can be seen in Figure 7.2.

29



7. Graphics

v

h
d

u
    

p

Figure 7.2: A representation of a virtual camera, with variables marked and
labeled.

The box on the lower left in Figure 7.2 is where a physical camera would be, however
it is not modelled as a three-dimensional object, but rather only as a point. The
variables in the figure are defined as following:

• Position, p ∈ R3, relative to the center of the world.
• View direction, d ∈ R3, describes the orientation of the camera. This could

additionally be referred to as look-at direction, as by Christie et al. [26].
• Up direction, u ∈ R3, which describes the roll of the camera, or rather what

is upwards in the camera’s perspective.
• Horizontal field of view, h ∈ [0, π).
• Vertical field of view, v ∈ [0, π).

7.2.2 Movement Mapping
In order for players to move the avatar in the game world, the directional input (up,
down, left, right), must be translated into vectors in the world’s coordinate system.
Mapping movement controls can be done in many ways and tend to differ between
genres. One way of orienting the movement is to align the “forward-vector” to the
camera’s forward direction – this way, the avatar moves away from the camera
when players input a forward command on their control device [27]. Following this
control scheme, a player who inputs “right” will subsequently cause the avatar to
move to the right on screen.

In many racing games, you can often find another control scheme. Here, the controls
are mapped to the vehicle itself in the way that “up” control the throttle and
thereby moving the vehicle forward along its own axis, independent of the camera
position or angle. Examples of games using this scheme are Burnout Paradise [28]
and Race Driver: Grid [29].

30



7. Graphics

7.2.3 Interactive Cameras
If developers wish to have a camera that the player can control, they must define
what aspects of it the interactivity will be limited to, if at all, and to what degree.
Christie and Oliver [30] state that a camera has seven degrees of freedom – three of
which correspond to location in the three dimensions, three to orientation namely
tilt, roll and pan, and last the seventh degree, which is the field of view degree.
Most of the time, limiting what degrees are available for the player to control, yield
better results than letting players assume full control of the camera. By doing so,
the player can focus on gameplay, instead of camera angles.

It is common practice in third-person 3D games that players will have control over
the camera’s orientation, although sometimes to a very limited degree, but not
its position – similar to a tripod. This way, players can examine the environment
whilst the camera remains at a fixed point, and only moves if the player moves the
avatar. Using this model, players will be less likely to lose track of the avatar when
it exits the frame.

An interactive camera grants the players permission to explore the world further,
but does in addition pose a set of problems of its own. Unlike a movie, developers
can not guarantee that players will look at what they are intended to. This could
in theory lead to confusion on the players’ part, since they can potentially fail to
notice important details.

There are ways to force the player to look wherever the developers need them to,
one of which is using jump cuts or cut-scenes, and to that way take full control of
the camera, which provides opportunity for greater cinematography [30]. Another
way of displaying critical information is to limit the degrees of freedom available
to the player. This way, developers avoid taking away all control from the player
but limiting their vision, to e.g. a specific direction, in order to convey critical
information. When making changes to the camera, developers must not make the
transitions too abrupt. Christie and Oliver [30] rightly point out that changes to
the camera’s location or orientation must transition smoothly to avoid disorienting
players.

7.2.4 Camera Behavior
In interactive applications, such as a game, events are not deterministic, but rather
depend on the actions of the user. This rules out the possibility of defining the exact
behavior of the camera in a scene, but rather there needs to be some algorithm,
or artificial intelligence, that determines the camera’s location in the scene over
time.

In a typical 3D application with a virtual environment, such as a 3D game, there is
often an underlying loop that continually updates a virtual world. The logic for
updating the camera could conceptually be seen taking place toward the end in such
a loop, as is shown in Listing 7.1. This is similar to the proposal, by Halper et al.
[31], to consider a “camera module” as a part of a game pipeline, with five abstract
steps, given in the order: story, action, camera, lighting followed by render.

31



7. Graphics

void Loop()
{

FetchInput ();
GameLogic ();
UpdatePhysics ();
UpdateCamera ();
RenderWorld ();

}

Listing 7.1: A simplified game loop in which the relative location
of camera updates can be seen.

In some games, there are cameras that, over time, smoothly catch up to the player.
One such camera implementation is detailed by Rabin [27], which describes the
camera in Super Mario 64, a platform game from 1996 [32]. The relation between
the player and the camera in Super Mario 64 is described by Rabin as the camera
being connected to the player character with a bungee cord, while in addition
floating vertically in the air somewhat above the player.

7.2.5 Camera Requirements
For LoC, there are several high-level requirements that the camera must fulfil. Firstly,
it must always adequately convey where the player is, relative to its surroundings.
Another important aspect is that its behavior is predictable. This makes it possible
for the player to learn, subconsciously, how the camera moves in different situations.
This means that the player can focus on other aspects of the game that are actually
meant to be challenging. Related to predictability is that the camera should act
smoothly, as a continuous motion. There should be no noticeable stuttering or
instant movement of the camera to a new location during regular gameplay.

Additionally, the camera needs to be interactive. This is so that the player can
look around and plan their route through the level, which is considered essential for
a platform game. However, the game should be playable without manual camera
interaction as well. This presents a challenge for the camera management in the
game, as well as a factor to take into account when designing the levels.

7.2.6 Result
The camera in Legend of Cube is specifically a third-person camera. The main idea
behind the behavior of the camera is that it moves the shortest distance possible to
get in a certain distance behind the player. This is similar to the idea behind the
camera in the previously mentioned Super Mario 64, as well as a number of newer
similar games, such as Psychonauts [33].

Internally, the camera is represented in a similar fashion to what is described in
section 7.2.1. One difference though, in LoC, as well as in other games, is that
the horizontal and vertical field of view (FOV) is dependent on one another. This
is because both the screen width and height are given constraints, and to fill the
available area while showing the scene proportionally, one must necessarily depend

32



7. Graphics

on the other. For LoC, the decision to control the vertical FOV was made. The
default vertical FOV is 70°, or π/3 radians, but it is user-selectable.

The mapping of movement input to character movement is relative to the camera’s
perspective. So that, giving the input to move forward on the controls will make
the player character move straight away from the camera, and vice versa.

Although the camera will follow the player character, the user can still control it
manually. Essentially the camera is in a different mode than previously described,
while the user is controlling the camera, as well as a short time afterwards. In
this mode, the camera’s position relative to the player will only be changed by the
user’s input, and the camera will not automatically fall behind the player while
moving.

As opposed to some third-person games, the camera is not controllable by mouse,
only by keyboard buttons, when using mouse and keyboard. This is partly to make
it clear to the user that the camera is not meant to require manual adjustment
during normal gameplay. Using a gamepad, the normal stick used for moving the
camera can be used.

When it is determined that a property of the camera should change, a smoothing
method is sometimes used. It can be referred to as critically damped oscillation,
e.g. by Haberman [34], and can be described as releasing a loaded spring, and not
having the spring movement pass the equilibrium point (or resting point), only
gradually getting closer over time. In the discrete logic of the game, it is essentially
implemented as given by the relationship

xn+1 = a · xn + (1− a) · xt

where xn is the camera property undergoing change at time nth iteration of camera
updates, xt is the current desired resting value, and a ∈ [0, 1] is a smoothing factor
that determines the rate of change. This technique is, for example, used when
making the camera rest at an angle slightly above the player character.

7.2.7 Discussion
We found that the camera implementation worked fairly well for our primary
level. It is however likely that if we were to design more levels, new issues would
arise. The camera is limited in several ways, and there are some obvious potential
improvements. Mainly, there is no check for if the view of the player is occluded
or if the camera is on the inside of other objects. This is commonly considered in
other games and would be implemented if more time was available.

7.3 Real-time Rendering
For most 3D games, there need to be a way to translate the state of the game world
to a two-dimensional image. For a physically realistic appearance, this conversion
often involves simulating the phenomenon of photons moving in the world and

33



7. Graphics

finding their way into a camera or an eye, which can be seen as a physical process
that generates a two-dimensional image from the state of the world.

For a game performance is essential, as discussed in section 5.3. This rendering
process is where performance likely is most important to be aware of. That which
is practically possible in real-time applications, with consumer-grade hardware,
is far from a theoretical, physically correct simulation of light phenomena. To
achieve continuous conversion of a 3D world to pixel colors, at a high rate, there
exists specialized hardware, a graphics processing unit (GPU), and a corresponding
graphics pipeline [35, pp. 11-27]. This hardware is often designed for use with the
triangle rasterization technique, which has found use in real-time 3D applications [35,
pp. 11-27]. The general idea of triangle rasterization is to geometrically transform
triangles to a space relative to the virtual camera and approximate the vector shape
to a discrete set of pixels, which then are colored through the process of shading,
described in section 7.4.

7.3.1 Result
For LoC, the rendering is similar to what is commonly used in games. That is,
it uses triangle rasterization, accelerated by the GPU hardware. This allows for
having large-scale and complex 3D environments. More precisely, rendering is done
through DirectX 9, which is what XNA is based on [36].

7.3.2 Discussion
There are limitations of XNA that were noticed during the development process.
Microsoft has not released an update to the framework since 2011 [37]. There would
likely have been advantages with using a more recent, up to date, foundation for the
game’s development. This is especially true in relation to graphics. However, we
still feel that XNA is a well-developed framework that strikes a reasonable balance
between usability and performance. We consider it a good fit, considering the scope
of the project.

7.4 Shading
For each pixel rendered, there is a point on an object in the scene it corresponds to.
As each object is represented by triangles, the point is somewhere on this triangle.
This triangle is colored by using a type of shader program, which are programs
running on the GPU. Particularly fragment shaders or pixel shaders are involved
in this process, as described by Akenine-Möller et al. [35, pp. 42-44]. Besides a
pixel shader, what is commonly needed as well is a vertex shader. This is, described
in a simplified way, a shader that transforms the triangles of the graphical model,
stored relative to the model center, to their final position, relative to the camera
perspective.

There are different types of light sources that could be used in a virtual environment.
Two common ones used are directional and point light sources. A directional light
source can be described as casting light from infinitely far away in some direction, so

34



7. Graphics

that light rays would be parallel [35, pp. 217-218]. This can be used to simulate the
sun’s light on earth. A point light source on the other hand is one that is infinitely
small and cast light in all directions.

Light simulation in 3D games is commonly based on the Phong reflection model,
presented by Phong [38]. It is a model for simulating shading in a scene caused by
a light source. It can briefly be described as dividing the shading into contribution
of the following three components [39]:

• Ambient: Light that reaches everywhere in the scene. This is an approxima-
tion of the fact that light will reflect off of surfaces and light up parts of the
scene that are not directly illuminated.

• Diffuse: Light that hits a surface and scatters in all directions up from
the surface. The diffuse part would be greater for objects with a rough
surface.

• Specular : Light that hits a surface and reflects off along a reflection vector.
As opposed to diffuse, the specular highlight is greater for objects with a
smooth surface.

In addition to this, emissive light can be added, which, as ambient, adds to the
color of materials, independent of a light source. It can additionally be referred to
as self-illumination and is used for objects that should glow on their own, but still
are not implemented as a full light source, which in addition would light up the
nearby environment. For an illustration of the four mentioned types of light, see
Figure 7.4.

A modified technique based on the Phong reflection model was proposed by Blinn
[40], and is referred to as the Blinn–Phong reflection model. The difference relates
to how the specular component is determined.

7.4.1 Normal Mapping
Normal mapping can be considered an implementation of a more general technique
called bump mapping, according to Akenine-Möller et al. [35, pp. 183-199]. The
general idea is to simulate more detailed 3D models, without actually increasing
the amount of polygons used, by letting the per-pixel lighting depend on a texture
that contains detailed information about the surface shape. As the name suggests,
smooth bumps on a surface could for example be simulated using this method.

What differentiates normal mapping is related to how the information is stored
in the texture [35, pp. 183-199]. One simple method is to store the height of
different parts of the texture in a black and white heightfield, where the brightness
relays the relative height at different points of a surface. For optimization reasons,
using modern GPUs, normal mapping is an alternative preferred format. Here, the
red, green, and blue channels of a texture describe the normal pointing up from
the surface. Commonly, the normal is stored in tangent space, which, with some
simplification, means that the normal is stored relative to the surface polygon it
appears on. For an example of normal mapping, see Figure 7.3. There, it can be

35



7. Graphics

seen that the technique is less effective when viewing a surface from a sharp angle,
like the top of the cube.

(a) Normal map for an in-
dented ring.

(b) Shaded cube model
(only 8 vertices) with a
normal map applied.

(c) Final rendering using
additional textures.

Figure 7.3: Example of normal mapping, showing a cube being lit from
behind the viewer. The model is one used early in development.

7.4.2 Result
The XNA framework provides XNA effects, which corresponds to one or more shader
programs. An option was to use one of the included effects for LoC. However, it was
found to be too limiting for what was needed in LoC. For example, it would not be
possible to have shadows with the included effects. For that reason, a custom XNA
effect was created, which is then used for rendering most game objects. Making the
XNA effect involved writing a custom vertex shader, as well as pixel shader.

The intended look for this game was to have the scene look realistically shaded,
rather than a more abstract, non-photorealistic, appearance. For achieving that, the
Blinn-Phong lighting model is used, by implementing it in a pixel shader. Figure
7.4 illustrates the different parts that are used to achieve the final result.

36



7. Graphics

(a) Ambient component (b) Diffuse component

(c) Specular component (d) Emissive component

(e) Resulting image

Figure 7.4: Scene in LoC where different light components are shown
separately.

The scene seen in Figure 7.4, and all levels in our game, are lit by two different
light sources. The first one is a directional light source, covering the entire scene.
The second one is a point light source that is located in the center of the player
character. This is to enhance the effect of the cube itself giving off light from each
side, in addition to the emissive effect seen in 7.4d. Due to being a light source, a
highlight on the platform can be seen in 7.4c.

In the game, to improve the appearance of some objects, the normal mapping
technique is used. For an example, see Figure 7.5. In it, the normal map enhances the
wood pattern, as well as makes the separation between planks more apparent.

37



7. Graphics

Figure 7.5: In-game screenshot of wood planks seen in Level 1.

7.4.3 Discussion
The visual appearance of the game is considered more than adequate for the
gameplay-related goals of the game, namely having good control of the character.
However, presenting the world in a clear way is vital for having the player be in
control, since information about the physical surroundings affect how the player
can plan their actions. In addition, we believe that improved visual appearance
could significantly add to a user’s overall impression of the game.

7.5 Shadows
As is described by Akenine-Möller et al. [35, pp. 333-373], shadows are an essential
part of a realistically rendered scene. Using the triangle rasterization process,
additional techniques need to be used for having shadows in rendered scenes.

Different techniques, with different advantages and disadvantages, have been devel-
oped for simulating shadows when using triangle rasterization. One technique used
in some games is a method called shadow mapping. As described by Akenine-Möller
et al. [35, pp. 333-373], the idea is to render the scene from the lights perspec-
tive and store the depth information, which will later be used for determining if
other positions in the scene are located behind what can be seen from the lights
perspective. This method utilizes the existing hardware that is normally used when
rendering a scene, which contributes to the efficiency of the technique.

7.5.1 Smooth Shadows
Using the simplest implantation of shadow mapping, there is a problem of shadows
showing aliasing artifacts, which can be described as the shadows looking very
blocky, or pixelated. Presented by Reeves et al. [41] is a technique called percentage-
closer filtering, abbreviated PCF, which attempts to solve some of these problems.
In addition to shadows not appearing as blocky, PCF can be made to give shadows
soft edges, which often is a desired effect.

38



7. Graphics

An essential idea with PCF is that a point can be partially lit. When checking if a
point is in shadow, instead of looking only at the exact location corresponding loca-
tion in the shadow map, the shadow map is sampled at nearby texture coordinates
as well. Then, the result is determined by averaging the result of the samples, which
gives a result, commonly in [0− 1], that determine what percentage of the point is
lit. This averaging will cause the smooth transitions from fully lit, to shadowed,
which are desired.

7.5.2 Cascaded Shadow Maps
One limitation of the shadow mapping technique is that the textures on which
the shadow maps are stored are of a limited size and resolution. A texture can
be made to cover a larger area with lower precision, or a smaller area with higher
precision. One observation that has been made is that greater precision will have
the greatest improvement on the final image if it is applied closer to the camera.
From this comes the idea of using multiple shadow maps that cover different parts
of the scene, and for each position using the most detailed one available [35, pp.
333-373]. This is called cascaded shadow maps. It has been detailed by Dimitrov
[42], and has been used in commercial games [35, pp. 333-373].

7.5.3 Result
As previously described, there are two light sources in the scene. Specifically, there
is one directional, and one point light. For the directional light source, it was
considered essential to have shadows, to give realism to the scene. The light point
light source however was considered enough, so that it was acceptable to exclude the
shadows it would cause. What is detailed hereon therefore only applies to shadows
from the directional light source.

In Legend of Cube, the technique used for shadows is shadow mapping, with PCF
filtering, and a simple version of cascading shadow maps. For example of shadows in
the game, see 7.6, or the previously shown 7.4e and 7.5. The resolution of the shadow
maps are fixed at 2048 pixels, both width and height. The PCF implementation is
done explicitly in the pixel shader code, rather than using hardware accelerated
PCF. This is due to DirectX 9 limitations.

For the levels in LoC, it was decided that more than one shadow map was needed
for both covering a large area and to give enough detail close to the player character.
This led to implementing a version of cascading shadow maps. Given the limitations
of the game, it was decided to have only two differently sized shadow maps. One
of them is set to be substantially larger than the other one. Both of them are
of a constant size relative to the world. For determining what area each would
cover, a very simple method was used. This is to center both shadow maps on
the camera’s position, rather than trying to optimally fit the shadow maps in the
camera’s frustum.

39



7. Graphics

Figure 7.6: In-game screenshot of the player cube in the middle of a jump.
A shadow of the cube can be seen on the left wall.

7.5.4 Discussion
In a game like LoC, shadows could not only be used for giving a visually convincing
image. They can additionally convey the relative location and size of objects. For
example, while the player cube is located in the air, if the shadow of the cube is
projected onto another visible object, it will hint at their position in relation to
each other. For that reason, we think the shadows can be useful from a gameplay
perspective. For example, the shadow in Figure 7.6 could have this effect.

40



8
Results

A large amount of effort was dedicated to the platforming gameplay during develop-
ment. The jumping and movement mechanics were evaluated extensively through
playtesting with both developers and independent users – evaluating control and
general playability. Based on feedback, both mechanics and the level, in which
the tests were conducted, were changed to improve the user experience. These
changes were often done by changing parameters within the physics engine, wherein
everything from gravitation, to collisions, is handled.

The physics engine in Legend of Cube was created primarily for exploring different
jump mechanics, and thus became somewhat limited. The physics engine worked
fine, given the scope of the project, despite some issues with contact and collision
detection. The limits of the physics engine, in conjunction with the software
architecture, put some constraints on the 3D models of the game. If the player is to
collide with another entity, that entity needs to assume the shape of a cuboid.

The third-person camera implemented for Legend of Cube moves the shortest
distance possible in order to get behind the player, if it is not manually operated.
Manual operation enables players to explore and see the way ahead when making
sharp turns. What the camera shows is transformed to an image on screen by
the rendering system, utilizing the GPU and a shading model commonly used in
real-time applications. The process includes determining what parts of the scene
are shadowed.

8.1 User Tests
As was described in section 2.3, user tests were performed in order to evaluate the
gameplay mechanics. After playing between five and ten minutes, three participants
had managed to complete the level while the rest had declared that the game
was too hard and gave up. The participants were then interviewed about their
experiences with the game. Interviews were performed since it has been shown to
be a good way to explore issues users might have, e.g. by Preece et al. [43]. The
participants were asked to rate their experiences in regard to the four aspects of
gameplay mentioned above. Consistency, freedom and predictability all scored very
high across all tests but intuition received a considerably lower mark, especially
from participants using a keyboard. Upon further questioning, it was revealed that
the reason for this was that the camera is controlled by the arrow keys and not the
mouse, which is the status quo in modern PC games. Another reason was that some
participants wished to invert the camera controls, but did not ask or check if such

41



8. Results

an option was available. Participants who gave low intuition scores complained that
it was sometimes difficult to know where to go next, one participant commented
“Hard to see where the finish line was”.

42



9
Discussion

The result of the user tests seem to show the goal of making the player feel in
control has, at least to some extent, been reached. However, it also shows that the
level was too hard for new players since only 25% of the test group could complete
it. There are reasons to believe that there are other factors then just the level
being too hard that prevented the testers from completing the level. Since many
testers gave intuition a low score, it can be reasoned that this played into why
many could not finish the level. Users using a keyboard often gave lower intuition
score because they did not like the controls; this could be because the developers
intended the gamepad to be the target controller. Another reason that users gave a
lower intuition score was that they thought it was hard to see the finish line. This
is a flaw in the level, since there is no established way in the game of how the goal
should look, like a finish line in a racing game. Nevertheless, the developers believe
that in future work an introduction level could be designed and implemented to
introduce new players to the game and its different mechanics in a more controlled
way, and that it would rectify most of the problems as to why many could not
complete the level.

For a long while before the basic functionality of the physics engine was implemented,
we feared that the resulting product would end up being a very basic prototype
without any interesting platforming mechanics. However, once the most needed
features of the physics engine were in place, such as collision detection and response,
things started to come together. Looking back, it is very satisfying to see how
far the game has come, from literally nothing, to being able to slide on walls and
perform wall jumps.

For us developers, what we consider the primary success of this game to be how
well it turned out as a whole. The movement mechanics are not perfect, but they
fulfill our goal of having the player feel in control, which is supported by our user
tests. The wall sliding and jumping mechanics in general are particularly satisfying
to use. The visuals clearly communicate how the player can traverse through the
level, while looking quite nice most of the time. The level design itself has multiple
paths to the goal allowing for more replay value and speedrunning potential. While
some more work could have been spent on making the camera behave perfectly, it
still shows what is needed most of the time.

Looking back, one of the things we might have reconsidered is the use of the
XNA framework. In general, its use seems to have been deprecated in favor of
complete game engines, like Unity and Unreal Engine. Using one of those engines
and an existing physics engine might have made it a bit harder to implement the

43



9. Discussion

exact platforming mechanics wanted, but would probably have speed up overall
development time and allowed us to focus more on the gameplay itself.

With a few more months of work, it is very possible that Legend of Cube could
be turned into a product that consumers may want to play. As it stands now,
the lack of levels is primarily what keeps the game from being complete. The
data-driven aspects of the engine could be expanded to allow for externally defined
levels, it might even be possible to create a level editor. Besides that, there are
a few inconsistencies in the platforming mechanics and the camera that could be
fine-tuned and improved to facilitate the players feeling of in control.

44



10
Conclusion

This thesis details several aspects of the development of a 3D platformer, with
special focus on making the player feel in control while playing. The game Legend
of Cube, developed by the authors, features one complete level, which highlights
all of the game mechanics designed. It runs on a custom game engine featuring a
physics engine, designed specifically to make it easier to explore potential game
mechanics.

The focus of making the player feel in control has been reached through researching
mainly game mechanics and level design, but the effects of graphics, camera and
physics on this subject has also been investigated. Through user tests, it has
been concluded that the goal of good player control has been, to some extent,
achieved; however, the process of achieving perfect controls is arguably an endless
journey.

The content of this thesis could be used to give insight about problem areas for
anyone who intends to develop a 3D platformer. Arguably, the speed and accuracy
of 2D platformers have not yet been matched in 3D. We feel that until this has been
accomplished, there is still work to be done trying to improve platform mechanics
in 3D. For that reason, the authors think that more studies on the topic of player
control in 3D platformers are needed.

45



Bibliography

[1] L. Parker, “The rise of the indie developer”, 2011. [Online]. Available: http:
//www.gamespot.com/articles/the-rise-of-the-indie-developer/1100-
6298425/ (retrieved 2015-05-18).

[2] Team Meat, Super meat boy, 2010. [Online]. Available: http://supermeatboy.
com/ (retrieved 2015-05-17).

[3] Xna game studio 4.0 refresh, Electronic Article. [Online]. Available: https:
/ / msdn . microsoft . com / en - us / library / bb200104 . aspx (retrieved
2015-05-11).

[4] MonoGame Team, Monogame. [Online]. Available: http://www.monogame.
net/ (retrieved 2015-05-17).

[5] J. Gregory, Game Engine Architecture, Second Edition. CRC Press, 2014,
isbn: 9781466560062.

[6] Xbox 360 controller for windows. [Online]. Available: http://www.microsoft.
com/hardware/en-us/p/xbox-360-controller-for-windows/52A-00004
(retrieved 2015-05-18).

[7] SpeedRunsLive, Frequently asked questions - speedrunslive. [Online]. Available:
http://www.speedrunslive.com/faq/ (retrieved 2015-05-18).

[8] Nintendo, Super mario 64, 1996. [Online]. Available: http://en.wikipedia.
org/wiki/Super_Mario_64 (retrieved 2015-05-17).

[9] Nintendo, Super mario sunshine, 2002. [Online]. Available: http : / / en .
wikipedia.org/wiki/Super_Mario_Sunshine (retrieved 2015-05-17).

[10] Tinybuild, Speedrunners, 2013. [Online]. Available: http://tinybuild.com/
speedrunners (retrieved 2015-05-17).

[11] T. Refenes, Team Meat. [Online]. Available: http://meyermike.com/wp/?p=
160&cpage=1#comment-68 (retrieved 2015-05-17).

[12] Super meat boy: customer reviews (steam store). [Online]. Available: http:
//store.steampowered.com/app/40800/#app_reviews_hash (retrieved
2015-05-17).

46

http://www.gamespot.com/articles/the-rise-of-the-indie-developer/1100-6298425/
http://www.gamespot.com/articles/the-rise-of-the-indie-developer/1100-6298425/
http://www.gamespot.com/articles/the-rise-of-the-indie-developer/1100-6298425/
http://supermeatboy.com/
http://supermeatboy.com/
https://msdn.microsoft.com/en-us/library/bb200104.aspx
https://msdn.microsoft.com/en-us/library/bb200104.aspx
http://www.monogame.net/
http://www.monogame.net/
http://www.microsoft.com/hardware/en-us/p/xbox-360-controller-for-windows/52A-00004
http://www.microsoft.com/hardware/en-us/p/xbox-360-controller-for-windows/52A-00004
http://www.speedrunslive.com/faq/
http://en.wikipedia.org/wiki/Super_Mario_64
http://en.wikipedia.org/wiki/Super_Mario_64
http://en.wikipedia.org/wiki/Super_Mario_Sunshine
http://en.wikipedia.org/wiki/Super_Mario_Sunshine
http://tinybuild.com/speedrunners
http://tinybuild.com/speedrunners
http://meyermike.com/wp/?p=160&cpage=1#comment-68
http://meyermike.com/wp/?p=160&cpage=1#comment-68
http://store.steampowered.com/app/40800/#app_reviews_hash
http://store.steampowered.com/app/40800/#app_reviews_hash


Bibliography

[13] Sourceruns, Bunnyhopping, 2015. [Online]. Available: http://wiki.sourceruns.
org/wiki/Bunnyhopping#GoldSrc (retrieved 2015-05-16).

[14] C. Bleszinski and E. Games, “The art and science of level design”, in 2000
Game Developers Conference Proceedings, 2000.

[15] B. Bates, Game Design (2nd Ed.) Thomson Course Technology, 2004, isbn:
1592004938.

[16] Dice, Mirror’s edge, 2009. [Online]. Available: http://www.mirrorsedge.com/.

[17] M. Brandse and K. Tomimatsu, “Empirical review of challenge design in
video game design”, English, in HCI International 2013 - Posters’ Extended
Abstracts, ser. Communications in Computer and Information Science, C.
Stephanidis, Ed., vol. 373, Springer Berlin Heidelberg, 2013, pp. 398–406,
isbn: 978-3-642-39472-0. doi: 10.1007/978-3-642-39473-7_80. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-39473-7_80.

[18] C. Fabricatore, “Gameplay and game mechanics: A key to quality in
videogames”, 2007.

[19] Number None, Inc., Braid, 2008. [Online]. Available: http://braid-game.
com/.

[20] Valve Corporation, Portal, 2007. [Online]. Available: http://orange.half-
life2.com/portal.html.

[21] Mike Bithell, Thomas was alone, 2012. [Online]. Available: http://www.
mikebithellgames.com/thomaswasalone/.

[22] e. a. Ahmed BinSubaih, “A survey of ‘game’ portability”, [Online]. Available:
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0705.
pdf (retrieved 2015-05-17).

[23] M. Acton, Data-oriented design and c++, A presentation by Mike Acton
given at CppCon 2014, 2014. [Online]. Available: https://www.youtube.com/
watch?v=rX0ItVEVjHc (retrieved 2015-05-15).

[24] Microsoft, Fundamentals of garbage collection. [Online]. Available: https://
msdn.microsoft.com/en-us/library/ee787088(v=vs.110).aspx (retrieved
2015-05-15).

[25] C. Ericson, Real-Time Collision Detection. Elsevier Science, 2004, isbn:
9780080474144.

[26] M. Christie, P. Olivier, and J.-M. Normand, “Camera control in computer
graphics”, in Computer Graphics Forum, Wiley Online Library, vol. 27, 2008,
pp. 2197–2218.

[27] S. Rabin, “Classic super mario 64 third-person control and animation”, in
Game Programming Gems 2, M. DeLoura, Ed., Charles River Media, Oct.
2001, pp. 425–432.

47

http://wiki.sourceruns.org/wiki/Bunnyhopping#GoldSrc
http://wiki.sourceruns.org/wiki/Bunnyhopping#GoldSrc
http://www.mirrorsedge.com/
http://dx.doi.org/10.1007/978-3-642-39473-7_80
http://dx.doi.org/10.1007/978-3-642-39473-7_80
http://braid-game.com/
http://braid-game.com/
http://orange.half-life2.com/portal.html
http://orange.half-life2.com/portal.html
http://www.mikebithellgames.com/thomaswasalone/
http://www.mikebithellgames.com/thomaswasalone/
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0705.pdf
http://www.dcs.shef.ac.uk/intranet/research/public/resmes/CS0705.pdf
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://www.youtube.com/watch?v=rX0ItVEVjHc
https://msdn.microsoft.com/en-us/library/ee787088(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee787088(v=vs.110).aspx


Bibliography

[28] Criterion Games, Burnout paradise, 2008. [Online]. Available: https://www.
mobygames.com/game/burnout-paradise (retrieved 2015-05-18).

[29] Codemasters, Race driver: grid, 2008. [Online]. Available: https://www.
mobygames.com/game/grid (retrieved 2015-05-17).

[30] M. Christie and P. Olivier, “Camera control in computer graphics: Models,
techniques and applications”, in ACM SIGGRAPH ASIA 2009 Courses,
ser. SIGGRAPH ASIA ’09, Yokohama, Japan: ACM, 2009, 3:1–3:197. doi:
10.1145/1665817.1665820. [Online]. Available: http://doi.acm.org/10.
1145/1665817.1665820.

[31] N. Halper, R. Helbing, and T. Strothotte, “A camera engine for computer
games: Managing the trade-off between constraint satisfaction and frame
coherence”, in Computer Graphics Forum, Wiley Online Library, vol. 20, 2001,
pp. 174–183.

[32] Moby Games, Super mario 64. [Online]. Available: https://www.mobygames.
com/game/n64/super-mario-64 (retrieved 2015-05-18).

[33] Double Fine Productions, Psychonauts. [Online]. Available: http://www.
psychonauts.com/ (retrieved 2015-05-18).

[34] R. Haberman, Mathematical models: Mechanical vibrations, population dynam-
ics, and traffic flow: An introduction to applied mathematics. 1998, vol. Classics
in applied mathematics, isbn: 0898714087.

[35] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time Rendering, Third
Edition. Taylor & Francis, 2008, isbn: 9781568814247.

[36] Microsoft, The XNA rendering pipeline. [Online]. Available: https://msdn.
microsoft.com/en-us/library/dd904179 (retrieved 2015-05-14).

[37] Microsoft, Microsoft XNA game studio 4.0 refresh, 2011. [Online]. Available:
https://www.microsoft.com/en-us/download/details.aspx?id=27599
(retrieved 2015-05-14).

[38] B. T. Phong, “Illumination for computer generated pictures”, Communications
of the ACM, vol. 18, no. 6, pp. 311–317, 1975.

[39] R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics”,
ACM Trans. Graph., vol. 1, no. 1, pp. 7–24, Jan. 1982, issn: 0730-0301. doi:
10.1145/357290.357293. [Online]. Available: http://doi.acm.org/10.1145/
357290.357293.

[40] J. F. Blinn, “Models of light reflection for computer synthesized pictures”,
SIGGRAPH Comput. Graph., vol. 11, no. 2, pp. 192–198, Jul. 1977, issn:
0097-8930. doi: 10.1145/965141.563893.

[41] W. T. Reeves, D. H. Salesin, and R. L. Cook, “Rendering antialiased shadows
with depth maps”, SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 283–291,

48

https://www.mobygames.com/game/burnout-paradise
https://www.mobygames.com/game/burnout-paradise
https://www.mobygames.com/game/grid
https://www.mobygames.com/game/grid
http://dx.doi.org/10.1145/1665817.1665820
http://doi.acm.org/10.1145/1665817.1665820
http://doi.acm.org/10.1145/1665817.1665820
https://www.mobygames.com/game/n64/super-mario-64
https://www.mobygames.com/game/n64/super-mario-64
http://www.psychonauts.com/
http://www.psychonauts.com/
https://msdn.microsoft.com/en-us/library/dd904179
https://msdn.microsoft.com/en-us/library/dd904179
https://www.microsoft.com/en-us/download/details.aspx?id=27599
http://dx.doi.org/10.1145/357290.357293
http://doi.acm.org/10.1145/357290.357293
http://doi.acm.org/10.1145/357290.357293
http://dx.doi.org/10.1145/965141.563893


Bibliography

Aug. 1987, issn: 0097-8930. doi: 10.1145/37402.37435. [Online]. Available:
http://doi.acm.org/10.1145/37402.37435.

[42] R. Dimitrov, “Cascaded shadow maps”, Developer Documentation, NVIDIA
Corp, 2007.

[43] J. Preece, Y. Rogers, and H. Sharp, Beyond Interaction Design: Beyond
Human-Computer Interaction. New York, NY, USA: John Wiley & Sons, Inc.,
2001, isbn: 0471402494.

49

http://dx.doi.org/10.1145/37402.37435
http://doi.acm.org/10.1145/37402.37435

	Glossary
	Introduction
	Purpose
	Problem Statements
	Scope
	Outline

	Method
	Development Process
	Backlog
	Version Control

	Development Tools
	User Testing

	Gameplay
	Gameplay Concepts
	Jump Mechanics
	Aspects of Interest
	Research
	Results
	Discussion

	Movement
	Results
	Discussion


	Level Design
	Level Design in Platform Games
	Results
	Discussion

	Learning the Game Through Level Design
	Puzzle Versus Skill-based Platform Games
	Method of Research

	Software Architecture
	Data-Driven Engines
	Discussion

	Gameplay Foundation System
	Results
	Discussion

	Performance
	Results and Discussion

	Stuttering
	Results
	Discussion


	Physics
	Physics Simulation
	Results
	Discussion

	Updating the Simulation
	Results
	Discussion

	Bounding Volumes
	Results
	Discussion

	Contact with Surfaces
	Results
	Discussion


	Graphics
	3D Models
	Textures
	Result

	Camera
	Camera Representation
	Movement Mapping
	Interactive Cameras
	Camera Behavior
	Camera Requirements
	Result
	Discussion

	Real-time Rendering
	Result
	Discussion

	Shading
	Normal Mapping
	Result
	Discussion

	Shadows
	Smooth Shadows
	Cascaded Shadow Maps
	Result
	Discussion


	Results
	User Tests

	Discussion
	Conclusion
	Bibliography

