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Abstract
Most car manufacturers today equip their cars with collision avoidance systems which can
act to avoid or mitigate a crash. Retrospective studies have shown that these systems
help reduce the number of crashes, however the intervening evasive maneuvers provoke
occupant displacements. Consequently the occupant’s position relative to the restraint
systems of the car is affected. Therefore, there is a need to investigate occupant safety
also for the pre-crash phase when these evasive maneuvers take place. There are an
extensive number of maneuvers to consider and the existing methods for simulating the
occupant during the pre-crash phase are inefficient with respect to time. For that reason,
a more efficient dynamic model of the occupant was developed to primarily compute the
head kinematics and secondarily T1 kinematics, when the occupant model is subjected
to the linear- and rotational accelerations that are induced by evasive maneuvers. The
model represents the upper body of an occupant, i.e. a front seat passenger or a driver,
which is restrained by the seat, the seat belt, as well as the arms if the model is a driver.
Two types of occupant models were proposed based on the inverted spherical pendulum
theory. The systems of differential equations were derived using Lagrangian mechanics
and implemented in Simulink. The models were tuned and validated based on pre-existing
volunteer data from vehicle maneuver studies. The results demonstrate that the models
were able to capture the occupant kinematics by showing similar dynamic behavior to the
kinematics of test subjects in volunteer tests. The computation time when simulating a
maneuver of approximately 4 seconds, resulted in a computation time of 0.7 seconds for
both models, which allows for efficient computation of an extensive number of pre-crash
maneuver simulations for analysis of occupant kinematics.

Keywords: INTEGRATED SAFETY, KINEMATICS, HUMAN BODY MODEL, PRE-
CRASH MANEUVER, KINEMATIC MODEL, OCCUPANT
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Nomenclature
CAS Collision avoidance systems
CoG Center of gravity
Corridor Statistical region containing the mean, the mean plus one standard

deviation and the mean minus one standard deviation of a dataset
Displacement The distance from the initial to the current position of a point in

a dynamic event
EMG Electromyography, i.e. a method for measuring muscle activity
ERR Electrical reversible retractor, i.e. seat belt pre-tensioner activated

during evasive events
FE Finite element, i.e. a numerical method for solving problems of

engineering and mathematical physics
HBM Human body model
Kinematics The study of motion, i.e. the velocities and accelerations of particles,

bodies and system of bodies of finite dimension, without reference
to its causes (forces, friction etc.)

Lateral The right-left direction of the car
Longitudinal The forward-rear direction of the car, i.e. the driving direction
Maneuver A move, or a series of moves, performed to control a vehicle,

here referring to a braking and/or steering action
Model A representation of a dynamic system, as described by mathematical

concepts
Occupant A person travelling in a car, either a driver or a passenger
Pre-crash The state in time before a crash, when a collision is unavoidable yet

possible to mitigate
PSO Particle swarm optimization
RMSE Root mean square error
Response The behaviour of a dynamic system during the influence of external

forces
Standard belt A standard configuration of the seat belt, without pre-crash

triggered systems
T1 The first vertebrae of the thoracic segment of the human vertebral

column, counting from the neck and downward
Tuning Setting of model parameters so that the modeled system response

resembles the real system response with minimal difference
VCSC Volvo Cars Safety Centre
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1| Introduction
Road traffic crashes account for more than 1.25 million deaths each year world wide, and
it is the leading cause of death for people in the ages 15-29 (World Health Organization,
2015). Moreover, between 20 to 50 million people suffer non-fatal injuries, many resulting
in disability and life-long consequences for the injured. Among the fatalities caused by
road traffic accidents, 31% are car occupants. In the European Union (EU) alone, over
26.000 people were killed in road traffic crashes in 2015, among them 46% were killed in
a car (European Road Safety Observatory, 2017). For every person killed in road traffic
crashes in EU there is an estimate of up to 4 permanently disabling injuries such as seri-
ous brain damage or spinal cord damage, 8 serious injuries and 50 minor injuries (World
Health Organization, 2015). As motorization is increasing world wide each year, the num-
ber of fatalities from road traffic crashes would be expected to increase. However, the
number of fatalities has plateaued since 2007 as a result of the progress in vehicle and
traffic safety, mostly due to development of safer infrastructure, improvement of passive
safety, and implementation of collision avoidance systems (CAS) in cars (World Health
Organization, 2015).

During the past fifteen years, considerable effort has been invested in the development of
collision avoidance systems, and today most car manufacturers offer this type of technol-
ogy (Aust, Jakobsson, Lindman, & Coelingh, 2015). These systems function to avoid or
mitigate a crash by warning the driver and/or intervening in the driving situation. The
intervening evasive maneuvers lead to occupant displacement (Schoeneburg, Baumann,
Fehring, Ag, & Cars, 2011; Östh, Ólafsdóttir, Davidsson, & Brolin, 2013; Ólafsdóttir,
Östh, Davidsson, & Brolin, 2013), thus the occupants may be out of their initial posi-
tions when facing a potential crash. Consequently occupant safety evaluation needs to be
performed, not only for the crash phase, but also for the events leading up to the crash
(Schoeneburg et al., 2011).

1.1 Background
An investigation of frontal crashes in the GIDAS (German In-Depth Accident Study)
database demonstrated the proportion of frontal crashes that contained a braking ma-
neuver prior to the crash with a deceleration greater than 4 m/s2, i.e. harsh braking
(Schoeneburg et al., 2011). In 49% of the cases, braking at or above this level was found.
In the remaining cases, no braking or insufficient braking was prevalent. Given that most
car manufacturers today equip their cars with CAS (Aust et al., 2015), which implies that
the car will brake for every case when the driver is not acting sufficiently, an increasing
number of crashes will be preceded by at least one type of mitigating maneuver. CAS
operate by warning the driver and/or intervening in a critical driving situation, through
applying braking and/or steering interventions to avoid or mitigate a crash (Aust et al.,
2015). The systems act based on environmental data obtained by radar, LiDAR (laser),
cameras and other sensors. For example, a retrospective study (Isaksson-Hellman & Lind-
man, 2016) showed a reduction of rear-end frontal collisions by 37% for cars equipped with
forward collision warning with autobrake and adaptive cruise control. Another retrospec-
tive study (Cicchino, 2016) showed injurious rear-end frontal crashes were reduced by 42%
for cars equipped with forward collision warning and emergency brake. Furthermore, a
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1. Introduction

reduction of 10% of the impact speed has been predicted to reduce the risk of occupant
fatalities by 30% and the risk of having a severe injury by 19% (Krafft, Kullgren, Lie,
Strandroth, & Tingvall, 2009).

The evasive maneuvers expose occupants to longitudinal, lateral, and rotational accel-
erations (Schoeneburg et al., 2011). As a result, occupant displacements can arise and
shift the occupants out of their initial positions when facing a potential crash, and alter
their positions relative to the restraint systems of the car. This effect has been found in
several volunteer studies when subjects have been exposed to different evasive maneuvers
in the magnitude of 1 g (Östh et al., 2013; Ólafsdóttir et al., 2013; Huber, Kirschbichler,
Prüggler, & Steidl, 2015; Ghaffari et al., 2018). Occupant head and chest excursion as a
result of the evasive maneuvers was found considerable in all tests. A simulation analy-
sis of the influence of evasive maneuvers (Antona, Ejima, & Zama, 2011) concluded that
maximum chest deflection and seat belt force were increased if the crash was preceded by
a braking maneuver, because of the obtained forward motion of the occupant. Another
volunteer study that investigated the effect of evasive maneuvers on volunteers (Mages,
Seyffert, & Class, 2011), demonstrated that occupants were realigned relative to the re-
straint systems. For example shoulder belt slip-off was present in lateral acceleration, and
longitudinal deceleration displaced the occupant’s head and chest nearer to the air-bag
inflation area. Subsequent crash simulations showed negative effects on the occupant in-
jury outcome. An existing solution for reducing the motion of the occupant during evasive
maneuvers, is to activate the seat belt force early on by applying the so called electrical
reversible retractor (ERR) function (M. Björklund, VCSC, personal comm., May 2018).
Studies have shown that reducing the slack of the seat belt during evasive maneuvers, as
performed by ERR, reduces occupant displacement (Ólafsdóttir et al., 2013; Mages et al.,
2011).

Assuming that a crash is unavoidable, the seconds preceding the impact are referred to as
the pre-crash phase. Considering the increasing number of cars equipped with CAS, there
has been an increasing interest in research and among car manufacturers to investigate
occupant safety during the pre-crash phase. Therefore methods and tools for evaluating
the occupant pre-crash kinematics are needed to gain knowledge of the holistic view on the
occupant safety. In general, full-scale anthropomorphic test devices (ATD), or crash test
dummies, are used when performing physical and virtual simulations of crashes. They
can provide data for analysis of impacts and injury outcome of a crash, and restraint
systems can be evaluated with respect to the interaction with the occupant. However,
ATDs cannot be applied to accurately reproduce human occupant kinematics during eva-
sive maneuvers since they contain significant differences in the mechanics compared to
humans, i.e. humans are less stiff and more viscoelastic (Muggenthaler, Adamec, Praxl, &
Schönpflug, 2005; Östh, 2014). Furthermore, in the pre-crash phase, muscle activation has
a considerable influence on occupant kinematics due to lower loads and longer duration
than for the crash phase (Östh et al., 2013). Valuable tools for simulating pre-crash occu-
pant kinematics are Human Body Models (HBM), which are highly detailed finite element
models (Östmann & Jakobsson, 2016). Besides kinematics, these models provide insight
of injury mechanisms and injury criteria down to a tissue level. More recent versions of
HBM, such as the SAFER THUMS v9.0.1 (Iraeus, Davidsson, & Brolin, 2017), incorpo-
rate muscles to account for muscular activity during the maneuvers. The high level of
detail in the HBM requires extensive computer capacity1.

1Simulation of a 2000 ms pre-crash and 150 ms crash with the SAFER THUMS v9.0.1 (the HBM used
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1. Introduction

Evasive maneuvers can include steering- and braking interventions in different order, and
can vary in duration, initial speed, and accelerations. Therefore an extensive number
of maneuvers need to be considered when evaluating pre-crash safety. Furthermore, oc-
cupants can voluntarily apply muscle tension during maneuvers with the magnitude of
around 1 g, in order to reduce motion (Östh et al., 2013). As a result, muscle activity of
the occupant has a major influence on occupant kinematics, and the response will vary
for every occupant that is exposed to a particular maneuver. Hence, at Volvo Cars Safety
Centre (VCSC) there is an need for a large number of pre-crash maneuver simulations,
and for that reason the use of the HBMs are limited. Moreover, it is of interest to study
how varying muscle activity among occupants affect the kinematics. These purposes call
for a more computationally efficient model.

1.2 Aim
The aim of this thesis is to develop a simplified occupant model that can be used to
predict the kinematics of the occupant head centre of gravity (CoG), i.e. longitudinal and
lateral displacement, during pre-crash maneuvers. The model needs to be computationally
efficient, meaning a simulation time of less than a few seconds. Furthermore, the model
is aimed to include the standard belt configuration as well as the ERR belt configuration.

1.3 Limitations
The kinematic model is limited to computing occupant kinematics in the terms of longitudinal-
and lateral head CoG (and T1) displacement. The model is only aimed for simulating the
response of evasive maneuvers during the pre-crash phase. The model only considers the
upper body of the occupant, and the lower body is neglected. The model includes restraint
systems such as the seat and the seat belt, however they are approximations of the real
systems. The model is designed to simulate a front seat passenger, and a driver model is
suggested. The model kinematics represent those of nine male test participants, and does
not represent any specific percentile in the population distribution.

at VCSC) using a rigid sled model with full interior takes 6.8 days on 240 CPUs (J. Östh, VCSC, personal
comm., 28th of May, 2018).
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2| Theory
In order to give a better understanding of the underlying theories to the methods applied,
the presented results, and the discussions brought up in this thesis, some theoretical
foundations are provided in the following sections.

2.1 Evaluation of pre-crash safety
Human body models (HBMs) are tools that are used to study human response in pre-crash
and in-crash simulations. There are two types of HBMs of which the first is the FE model
type, for which the anatomical structures are split into smaller elements that are defined
by nodal points, for which approximate solutions to the ruling differential equations are
computed. The other type is the multibody dynamic model (MB), for which the human
body is modeled using flexible and rigid bodies that are connected by kinematic joints.
The latter has been used primarily to simulate human kinematics in crashes, however, its’
purpose has lately been exchanged by the FE model as it can predict the kinematics as
well (Östh, 2014). FE HBMs have improved anthropometry compared to the MB model,
and incorporate models of human tissue which enables a more human-like response in sim-
ulations. This provides the possibility to study for example kinematics and injury outcome
down to a tissue level (Östmann & Jakobsson, 2016). As of today, several FE HBMs have
been developed. SAFER Vehicle and Traffic Safety Research Centre at Chalmers have
been executing further development of the THUMS v31 model, which represents a 50th
percentile male. The updated version of the model, SAFER THUMS v.9.0.1 here referred
to as the SAFER HBM (Iraeus et al., 2017), includes models of muscles that account for
muscle responses to enable human-like behavior during simulations of evasive maneuvers.
The muscle models are controlled using feedback control, i.e. stabilizing muscle activation
is provoked as a response to external forces (Östh, 2014). Figure 2.1 demonstrates the
SAFER HBM in its nominal seated position. The model has a high level of detail, and
contains around 2 million finite elements. Simulation of a 2000 ms pre-crash and 150 ms
crash sequence using the SAFER HBM on a rigid sled with full interior takes approxi-
mately 7 days2 (J. Östh, VCSC, personal comm., 28th of May, 2018).

At VCSC, a simplified tool for evaluating occupant pre-crash maneuver kinematic response
has been developed. It can compute occupant head displacements in the longitudinal and
vertical direction as an effect of pre-crash braking maneuvers.

1Initially presented by Iwamoto et al. (Iwamoto et al., 2002), and later improved by Toyota
2With the use of 240 CPUs
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2. Theory

Figure 2.1: The SAFER THUMS v9.0.1 model in nominal position (left), and interior
view during impact (right) where the red lines represent muscles. Images provided by J.

Östh, May 2018.

Feedback originating in various sensory organs is transmitted by afferent nerves and pro-
cessed by the brain or spinal cord to generate motor commands actuated by skeletal
muscles. Depending on the task and external loading condition, the contribution from the
various input signals originating from the visual, vestibular and somatosensory systems
are modulated by the central ner- vous system (CNS) (Keshner, 1995; Peterka, 2002;
Schouten et al., 2008) and integrated

2.2 Occupant kinematics in maneuvers
When external loads are acting on the body, postural control processes are excited by feed-
back from different sensory organs. These signals are then processed by the brain or the
spinal cord to initiate motorized movements that are created by the skeletal muscles, in or-
der to maintain stability and equilibrium (Peterka, 2002). The low magnitude linear- and
rotational accelerations, as well as the long duration of evasive maneuvers, apply external
loads on the occupant, which excite the occupant to apply voluntary tensing of muscles
in order to reduce motion (Ólafsdóttir, 2017). As a result, muscle activation will have a
strong influence on the occupant kinematics in this phase (Östh et al., 2013). In maneuver
tests where volunteers have been asked to alternate muscle states, relaxed or tensed, when
exposed to longitudinal and lateral maneuvers have shown that bracing during maneuver
loading results in reduced head- and chest displacements for both passengers and drivers
(Van Rooij, Elrofai, Philippens, & Daanen, 2013; Ejima, Ono, Holcombe, Kaneoka, &
Fukushima, 2007). Hence the kinematics, i.e. the displacement for different body parts,
will vary between occupants depending on the level and timing of muscular contraction.

Drivers respond differently to evasive maneuvers than passengers, since drivers have the
option of bracing against the steering wheel to assist in reducing the forward and lateral
motion (Ólafsdóttir et al., 2013). Results of volunteer tests of autonomous braking maneu-
vers, performed for the passenger position restrained by a standard seat belt (Ólafsdóttir
et al., 2013) versus the driver position (Östh et al., 2013) showed significant differences
between them. The mean longitudinal head displacement for the passengers was 176% of
that of the driver, and the mean chest displacement for the passengers was 154% of the

6



2. Theory

driver’s chest displacement3. Furthermore, volunteer tests have shown no sliding of the
pelvic region against the seat, as well as minor rotation of the torso around the vertical
axis during braking maneuvers primarily, due to the asymmetry of the three point seat
belt (Huber et al., 2015).

Head posture is controlled by the vestibular organ in the inner ear, which senses head
linear- and rotational acceleration and orientation (Angelaki & Cullen, 2008). Together
with muscle spindles in the muscles, which sense muscle lengthening (Keshner, 2009), acti-
vation of the muscles in the neck are controlled in order to maintain an upright posture of
the head. Furthermore, the visual system also influences the head’s posture as stabilizing
the gaze is of high priority (Wylie, 2009), i.e. if the head is rotated the occupant will by
reflex attempt to maintain the head horizontal relative to the visual direction. Figure 2.2
shows an example of the head kinematics for a braking maneuver. The top row represents
the behavior when the occupant model has active muscles, i.e. the gaze is maintained
horizontal, and the bottom row represents when the muscles are passive (Östh, Brolin,
Carlsson, Wismans, & Davidsson, 2012), i.e. there is a distinct rotation of the head. When
subjected to lateral accelerations and rotations, the occupant will maintain an upright po-
sition of the head by laterally flexing the cervical spine (Muggenthaler et al., 2005). For
initial movement towards the door, the occupant may also react by laterally flexing the
neck further for protection from proximity with the B-pillar (Huber et al., 2015).

Occupant behavior during maneuvers has been studied using volunteers as occupants, and
by exposing them to simulated evasive maneuvers. As stated in section 2.1, FE HBMs
are being developed to enable evaluation of human response during the pre-crash and the
crash phase. To have the models replicate human-like behavior during pre-crash simula-
tions, in-car volunteer tests undergoing evasive maneuvers have been performed in order
to provide data for tuning and validating the models (Östh et al., 2013; Ólafsdóttir et al.,
2013; Ghaffari et al., 2018), see section 3.3. The tests have also served for studying human
motion during maneuvers, justifying the need for further investigation and improvement
for safety during the pre-crash phase (Schoeneburg et al., 2011).

3Calculated by comparing the maximum mean head- and chest displacement for volunteers in the tests,
including 11 male and 9 female subjects (the same subjects were used for both studies) where passenger
mean head displacement = 195mm, driver mean head displacement = 111mm, passenger mean chest
displacement = 109.6mm, and driver mean chest displacement = 71mm.
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2. Theory

Figure 2.2: Head kinematics of the occupant model during a braking maneuver around
1 g, when restrained by a three point seat belt.

2.3 The three-point seat belt
The three point seat belt is the primary life-saving car safety invention (Håland, 2006),
and it consists of several subsystems that can be activated to improve its’ function for
critical situations such as crashes and evasive maneuvers. The functions that are of im-
portance in this context are stated below.

A significant part of the seat belt is the retractor (Håland, 2006), which is normally posi-
tioned in the lower part of the B-pillar. The seat belt webbing originates from the retractor
and it is pulled back into the retractor using a spool mechanism to reduce excessive length
and eliminate slack to give a snug fit across the thorax and shoulder. Besides retracting
the seat belt, the retractor includes several other mechanisms that help with injury re-
duction. The retractor locking mechanism typically locks the seat belt pay-out when the
vehicle decelerates or obtains a lateral acceleration above 0.45 g4. The function locks the
shoulder belt pay-out early in a crash, which restricts the occupants’ continued motion in
any direction (Håland, 2006). The locking mechanism is also activated with regards to the
belt pay-out rate. Another mechanism of the seat belt is the retractor pre-tensioner. This
is a pyrotechnical pulling mechanism that, in the course of a few milliseconds, rewinds
the retractor spool during a crash, which reduces remaining seat belt slack across the
thorax up to 200 mm. This action fixes the occupant into the backrest during the crash,
and as a result, the available displacement relative the interior is increased (Håland, 2006).

When the retractor locks the belt during an evasive maneuver, a force is applied on the
occupant. However, the force is delayed by the so called "film spool effect" (Svensson,
1978). It is caused by a slack in the seat belt retractor roll, as the belt is not tightly
rolled to begin with. At locking, the seat belt continues to pay-out as it tightens around
the retractor roll. This affects the seat belt force such that when the retractor locks,
the applied force on the occupant is very low up to the point when the slack has been
tightened, after which the force increases rapidly. This effect contributes to an extended
chest and head excursion (Svensson, 1978).

4g = 9.81 is the gravitational acceleration in m/s2
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2.3.1 Seat belt pre-crash pre-tensioning
During evasive maneuvers additional occupant protection can be achieved by initiating
restraints early on to ensure occupants into an upright position when facing the potential
crash (Östmann & Jakobsson, 2016). This can be attained by applying a pre-tensioning of
the seat belt during the maneuver, using an electrical reversible retractor (ERR) system.
The system consists of an electrical motor that is coupled to the retractor that can pull
the belt with a relatively low force, typically 100-300 N, during the evasive maneuver. The
system is triggered by external sensory information, for example by radar-, accelerometer-
and camera signals, the same sensors that help trigger CAS, such as emergency braking.
The action of the ERR will reduce the slack of the belt, and consequently the occupant
displacement is reduced (Ólafsdóttir et al., 2013; Östh et al., 2013). As opposed to the
pyrotechnical pre-tensioner that is deployed during a crash, the ERR applies a significantly
lower force magnitude and a slower webbing reduction. It is also reversible which means
it can be activated multiple times. The ERR and the pyrotechnical pre-tensioner serve for
different situations, and using current technology one system cannot replace the other.

The benefit of having an ERR seat belt was demonstrated in volunteer studies with pas-
sengers (Ólafsdóttir et al., 2013), where the effect of initiating seat belt pre-tensioning of
170 N 200 ms prior to a braking maneuver was investigated. When induced to steady state
braking, the head displacement was reduced by 66 mm for males and 81 mm for females,
and T1 displacement was reduced by 51 mm for males and 81 mm for females using the
pre-tensioned configuration. The resulting head and T1 displacement corridors, i.e. mean
± one standard deviation, in Figure 2.3, demonstrate how the retraction of webbing in the
pre-tensioned belt pulls the occupant backward into the seat directly after the activation
(dotted line). Furthermore, as found in EMG data recordings, muscle activity is initiated
earlier when having an ERR belt (Ólafsdóttir et al., 2013; Östh et al., 2013). Similar
experiments with passenger volunteers were performed for lateral maneuvers (Mages et
al., 2011), where ERR activation occurred 120 ms prior to the maneuver with a force of
110 N. The results were, for lateral maneuvers with initial direction right versus left, that
mean lateral head displacement was reduced by 9% and 15% respectively, and the mean
lateral chest displacement was significantly reduced by 44% versus 46%. The study con-
cluded that the reduction of lateral chest displacement could reduce the risk of shoulder
belt slip-off.
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Figure 2.3: Head and T1 longitudinal displacements of volunteers subjected to a
braking maneuver, using a standard belt and a pre-tensioned belt configuration. The

grey area represents the mean ± one standard deviation of the displacements. Data from
Olafsdottir et al., 2014.

2.4 Vehicle dynamics
In this section some relevant concepts of vehicle dynamics are explained, based on the
standard terminology of SAE international vehicle dynamics terminology J670 (Sayers,
1996). To show the vehicle orientation in space three angles are used, the roll angle φ,
pitch angle θ, and yaw angle ψ. The roll angle is the angle of rotation around the longi-
tudinal axis, measured in a counterclockwise direction. The pitch- and yaw angle are the
angles of rotation around the lateral and vertical axes respectively, see Figure 2.4.

The focus for this work will lie on planar motion, which will be the case for future ap-
plication of the model. Planar motion is whenever longitudinal and lateral accelerations
and yaw-angle, -velocities, and -acceleration are sufficient to describe the motion of the
vehicle. Roll angle, pitch angle and vertical motion will therefore be disregarded. The
coordinate system has a Z-up orientation, i.e. the vertical axis (z-axis) originates from
the vehicle CoG with positive direction pointing upwards. The longitudinal axis (x-axis)
points forward in the direction of travel and the lateral axis (y-axis) points to the left from
the vehicle CoG (Sayers, 1996).

Now, consider the situation of a vehicle rapidly approaching another slower vehicle from
behind. The first vehicle has to avoid a collision by braking and turning left. For simplicity,
assume a rigid vehicle, i.e. that the distances between points in the vehicle body remain
constant, and that the road is horizontal. The motion can then be assumed to take place
in the 2-dimensional plane spanned by the x- and the y-axis. The motion can be described
using the longitudinal acceleration, the lateral accelerations and the yaw angle. When
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the vehicle brakes, a negative acceleration (deceleration) will be perceived in the vehicle,
which slows it down. In the same manner, when the vehicle turns and changes direction,
a lateral acceleration will be perceived in the vehicle. By describing the motion only using
the longitudinal and lateral acceleration, one can visualize the motion as pure translation
in the horizontal plane. By adding the rotation, i.e. the yaw angle about the z-axis, the
motion can be clearly defined (Jazar, 2017).

Figure 2.4: Vehicle coordinate axes and orientation. Vehicle image courtesy of Volvo
Car Corporation.

2.5 Mathematical modeling
In this section, mathematical techniques and concepts are presented, including techniques
such as Lagrange’s equation of motion and concepts such as generalized coordinates, gen-
eralized forces and consequences of an accelerating reference frame.

2.5.1 Equations of motion
One fundamental concept in classical mechanics is the one of a particle. A particle is a
body whose size and shape can be neglected when describing its motion in contrast to
a body which has a propagation in space, whose inertia needs to be accounted for. One
could for instance consider the earth as a particle when observing its motion around the
sun, but not when considering earth’s rotation around its axis. The position of a particle
can be described by a position vector r with components in Cartesian coordinates, its
velocity (v = dr/dt), and its acceleration (a = d2r/dt2).

The number of independent quantities needed to uniquely determine the position of a
system of one or more particles are called degrees of freedom (DoF), and for a system
of N particles described in the Cartesian system, the DoF are 3N , i.e. 3 for the x, y, z
coordinates times N individual particles. These quantities are not necessarily restricted
to the Cartesian coordinates as they can be described using any reference system that is
convenient for describing the system at hand. Any quantities defining the positions of the
system are called generalized coordinates, and their time derivatives are called generalized
velocities, hereafter referred to as q and q̇ respectively.

If all coordinates and their time derivatives, i.e. velocities, are specified simultaneously
it means that the state of the system is completely determined and that the motion
can be calculated. This means that one can mathematically and uniquely calculate the
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accelerations q̈ at a given time instant t, given the velocity q̇ and the position q at that
instant. The relations are called the equations of motion and are second order differential
equations for q(t). By solving these differential equations the trajectory of the system can
be determined (Landau & Lifshitz, 1976).

2.5.2 Principle of Least Action and Lagrange’s Equations
The Principle of Least Action is the most general formulation for describing the motion
of a mechanical system. The starting point is the Action of a system, here denoted S. The
Action is defined as the integral between two instants of time t1 and t2 of the Lagrangian
function denoted L(q, q̇, t), which is defined as the difference in the kinetic energy and
the potential energy, L = T − V . The time instants correspond to two sets of values of
coordinates, q(1) and q(2), and the Principle of Least Action is the condition such that
the system moves between q(1) and q(2) which yields that the integral

S =
∫ t2

t1
L(q, q̇, t)dt (2.1)

is minimized.

Now, for simplicity, assume that a system has one DoF. To derive the differential equations
which minimize the integral in Eq.(2.1), the function q(t) has to be determined. Let
q = q(t) be the function which minimizes S. Since S is minimized by q, S is increased if
q(t) is replaced with

q(t) + δq(t) (2.2)

where δq(t) is arbitrary small everywhere in the interval [t1, t2]. This function, δq(t), is
called the variation of the function q(t). Since all functions in Eq.(2.2) must take the
values of q(1) and q(2) for t = t1 and t = t2 respectively, this yields

δq(t1) = δq(t2) = 0 (2.3)

The change in value of S when varying q(t), by adding δq(t) and expanding the resulting
integrand in powers of δq(t) and δq̇(t), yields that the Principle of Least Action can be
expressed as

δS = δ

∫ t2

t1
L(q, q̇, t)dt = 0 (2.4)

or
δS =

∫ t2

t1
(δT − δV )dt = 0 (2.5)

which often is referred to as the mathematical statement of Hamilton’s principal.

If the variation is carried out in Eq.(2.4) this yields

δS =
∫ t2

t1

(
∂L
∂q
q + ∂L

∂q̇
q̇

)
dt = 0 (2.6)

Here q̇ = dq/dt, and by integrating Eq.(2.6) by parts yields

δS =
[
∂L
∂q̇
δq

]t2
t1

+
∫ t2

t1

(
∂L
∂q
− d

dt

∂L
∂q̇

)
δqdt = 0 (2.7)
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From Eq.(2.3) it is observed that the first term in Eq.(2.7) is zero. What is left is an
integral which will vanish for all values of δq(t) and hence this is only true if the integrand
is equal to zero,

d

dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0 (2.8)

For a system which has more than one DoF, all functions qi(t), i = 1, 2, . . . , N must be
varied independently. This procedure is done analogously to the method described above,
and will yield the equations

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0 for i = 1, 2, ..., N (2.9)

In mechanics these equations are the Lagrange’s equations. If the Lagrange’s equations for
a given system can be determined, then Eq.(2.9) gives the relation between accelerations,
velocities and positions. These are the equations of motion (Landau & Lifshitz, 1976).

2.5.3 Generalized forces
One assumption in the derivation of Eq.(2.9) was that the virtual work could be expressed
as a variation of the potential energy, V . This is not always the case, and if some of the
forces acting on the system are not derivable from the potential energy, there is a possibil-
ity to divide the virtual work into two parts. The first part is the conservative virtual work,
denoted δW c, which, as the name suggests, is done by the conservative forces derivable
from a potential V . One such force may be the force induced on the system by the gravity
of the earth. The second part is the non-conservative virtual work, denoted δWnc, which
is done by the non-conservative forces applied on the system.

Non-conservative forces applied to the system of particles with mass mj , j = 1, 2, . . . ,m,
can be incorporated to the Lagrange’s Equations of motion by the means of generalized
forces. The generalized forces are obtained via the formulation of virtual work. The virtual
work of the applied forces, Fj , on the particles with mass mj , is given by

δW =
m∑
j=1
Fj · δrj (2.10)

where rj is the position vector of each particle and rj is a function of the generalized
coordinates qi, i = 1, 2, . . . , N i.e. rj(q1, q2, ..., qN ). The virtual displacement δrj is given
by

δrj =
N∑
i=1

∂rj
∂qi

δqi, for j = 1, 2, . . . ,m (2.11)

where δqi is the virtual displacement of the generalized coordinate. This yields the virtual
work as follows

δW = F1 ·
N∑
i=1

∂r1
∂qi

δqi + . . . + Fm ·
N∑
i=1

∂rm
∂qi

δqi (2.12)

By collecting the coefficients δqi this can be written as

δW =
m∑
j=1
Fj ·

∂rj
∂q1

δq1 + . . . +
m∑
j=1
Fj ·

∂rj
∂qN

δqN (2.13)
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where the expression for the generalized force is identified as

Qi =
m∑
j=1

bmFj ·
∂rj
∂qi

, i = 1, . . . , N (2.14)

The virtual work of the system particles can now be stated as

δW = Q1δq1 + . . . +QNδqN (2.15)

Note that Qi need not necessarily have the dimension of force, just as the generalized
coordinates need not have the dimension of length but can be polar or spherical coordi-
nates. For example, Qi can be torques τi, but in that case the variation term δqi must be
a differential angle, since τiδqi must always have the dimension of work.

By dividing the virtual work into one conservative part and one non-conservative part,
this yields

δW = δW c + δWnc = −δV +
N∑
i=1

Qnci δqi (2.16)

where the conservative part of the virtual work, δW c, can be expressed as the variation
of the potential energy, −δV 5. Recall the variation of the Lagrangian δL = δT − δV , by
substituting the expression in Eq.(2.16) into Eq.(2.5) this yields∫ t2

t1
δ(T − V )dt+

∫ t2

t1

N∑
i=1

Qnci δqidt = 0 (2.17)

Incorporating the definition of the Lagrangian, L = T − V , this yields∫ t2

t1
(δL+

N∑
i=1

Qnci δqi)dt (2.18)

which by using the techniques in Eq.(2.4) to Eq.(2.9) gives the Lagrange’s equations on
the following form:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= Qnci for i = 1, 2, ..., N (2.19)

(Stutts, 2017)

2.5.4 Rayleigh’s dissipation function
One special and important case of a non-conservative force that can be derived from a
potential, is the viscous damping force, which is often proportional to the velocity of a
particle. This yields the form of the the damping along the x-direction

Dfx = −kxvx (2.20)

The potential function for this force is called the Rayleigh’s dissipation function and is
defined, for a system of N particles, as

D = 1
2

N∑
i=1

(kxv2
i,x + kyv

2
i,y + kzv

2
i,z) (2.21)

5Forces derivable from a potential are called conservative forces and a conservative force can be described
as the negative gradient of a potential, i.e. W = −∇V , hence the minus sign on δV .
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For a system with more than one DoF, the generalized damping forces corresponding to
the generalized coordinate q are linear functions of the velocities

Dfi = −
N∑
i=1

kiq̇i (2.22)

Hence it is clear that the partial derivative of the dissipation function is the damping force
acting along the generalized coordinate qi

Dfi = −∂D
∂q̇i

(2.23)

In a reference system with generalized coordinates q, the Lagrange’s equations with dissi-
pation and generalized forces becomes:

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+ ∂D

∂q̇i
= Qnci for i = 1, 2, ..., N (2.24)

Hence the functions L and D, as well as the generalized forces Qnci , must be specified to
obtain the Equations of motion of the system (Goldstein, Poole, & Safko, 2000).

2.5.5 Inertial and non-inertial reference frames
In classical mechanics, an inertial frame of reference is a frame of reference where Newton’s
laws of motions, mr̈ = F holds. This means that if the net forces acting on a body is
zero, then the body is not accelerated, i.e. it is at rest or moving with constant velocity
in a straight line. In contrast to this, a non-inertial reference frame is a frame of reference
where Newton’s laws appear to be violated. A non-inertial reference frame can be used
when describing an object’s motion within a specific reference frame that accelerates rel-
ative the inertial frame. Many problems require the use of non-inertial reference frames.
For example, situations involving an occupant in an accelerating vehicle performing some
kind of evasive manoeuvre. Consider the situation of a vehicle entering a left turn, or
changing lane on the freeway with constant velocity. In the car, the passenger or driver
experiences a force which seems to pull him or her towards the right. This is the ficti-
tious force called the centrifugal force, which is required in order to explain the occupants’
movement towards the right. When a non-inertial reference frame is used, this phenomena
of fictitious forces can arise.

Now consider Figure 2.5 which describes an arbitrary general motion of a reference frame,
(x’,y’,z’), relative to an inertial reference frame, (x,y,z). An arbitrary general motion
refers to both the rotation of a frame, as well as translation of the origin of that frame. In
Figure 2.5, r points to the origin of the accelerating frame, and r′ is a position vector in
the accelerating frame. To describe the motion of an object in the moving reference frame,
i.e. the movement of the position vector r′, the fictitious forces acting on the object must
be accounted for. Newton’s equation can be modified to accommodate these fictitious
forces, and the new equation can be expressed as follows

m
d2r′

dt2

∣∣∣∣
M

= F −md2r

dt2

∣∣∣∣
I

−mdω

dt

∣∣∣∣
M

× r′ − 2mω × dr′

dt

∣∣∣∣
M

−mω × (ω × r′) (2.25)

For the full derivation of this equation, see Appendix B. In Eq.(2.25), I and M refer
to the Inertial- and Moving reference frames. F denotes loads directly applied to the
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object, and (d2r/dt2)|I is the acceleration of the reference frame. The three last terms
m(dω/dt)|M × r′, 2mω × (dr′/dt)|M , and ω × (ω × r′) are the fictitious forces. These
forces are called the Euler force, the Coriolis force and the centripetal force respectively,
where ω denotes the angular velocity of the moving reference frame (Greiner, 2003).

Figure 2.5: Relative position of the accelerating reference frame with coordinates
(x’,y’,z’) and the inertial reference frame (x,y,z).

2.6 Model tuning
The simplified occupant model response will be dependent on a set of parameters. These
parameters will be estimated such that the model output best fits the system which it is
intended to describe, i.e. some reference data. The practice of finding these parameters is
often referred to as model tuning. Other commonly used terms are parameter selection or
model fitting (Steele & Werndl, 2016).

An objective function can be defined to find the best fit parameters for the model, i.e. in
the optimization, an objective function is either minimized or maximized. This function
measures the error of the model output compared to some existing reference data. A
candidate for the objective function can be the root mean square error (RMSE) function,
defined as

RMSE =

√√√√ 1
n

n∑
t=1

(x1,t − x2,t)2 (2.26)

where n is the number of data points, x1,t and x2,t are the model output and reference
data respectively.

The RMSE computes the square root of the mean of the squared data point differences.
This function provides a measure of the accuracy of the model which can be improved
by finding better fitting parameters, referred to as minimizing the RMSE function (Fine
& Boynton, 2009). The best fit parameters can be determined using an optimization
algorithm which efficiently searches a defined search space, [Xmin,Xmax], by minimizing
the objective function. One such optimization algorithm which can be used for model
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tuning or model fitting is Particle Swarm Optimization (PSO).

2.6.1 Particle Swarm Optimization
PSO is a so called evolutionary component technique developed by J. Kennedy and R.
Eberhart, (1995). The original optimization algorithm was inspired by bird flocks to model
simple social behavior systems. PSO builds on straightforward concepts, and requires only
simple mathematical operators, making it computationally inexpensive both in terms of
memory requirements and speed. This makes PSO a simple yet powerful optimization
tool (Kennedy & Eberhart, 1995).

The algorithm is initialized with a population of random solutions. The population of
solutions is referred to as a particle swarm. Each particle, or solution, has a position in
an N dimensional solution space, which corresponds to value of the objective function.
In the initialization phase, each particle is assigned with a randomized velocity and the
particles are thereafter "flown" through the solution space to find an optimal solution.
Each particle in the swarm is evaluated in the optimization problem objective function,
and the individual particle keeps track of its own best position, i.e. the coordinates in
the solution space which gives the optimum solution value. This value is called a fitness
value, and its corresponding position is stored as pbest which is local to the particle itself.
A global best value and position gbest is computed and stored as well, recognized as the
best value obtained by any particle in the swarm (Kennedy & Eberhart, 1995).

2.6.2 Original PSO algorithm
The original algorithm for implementing PSO (Kennedy & Eberhart, 1995) is as follows:

1. Initialize the particle swarm with randomized positions and velocities on N dimen-
sions in the search space.

2. For each particle in the swarm, evaluate the cost function of the optimization problem
in N dimensions.

3. Compare each particle’s fitness value to the stored pbest. If the current fitness value
is better than pbest, then assign the new value to pbest and update the best position
of the particle to the current position.

4. Compare the fitness value of each particle in the swarm to the globally best solution,
gbest. If a particle has a better value then update gbest and its position to the fitness
value and position of that particle.

5. Update the velocity vij and position xij of each particle j in the swarm i according
to the following equations:

vij(t+ 1) = vij(t) + r1c1(pij(t)− xij(t)) + r2c2(pg(t)− xij(t)) (2.27)

xij(t+ 1) = xij(t) + vij(t+ 1) (2.28)

where t is the running index of the algorithm, r1 and r2 are two uniformly distributed
random numbers in the interval (0, 1), and c1 and c2 are acceleration constants. pij
is the locally best position in pbest, and pg is the globally best position so far in gbest.

6. Loop through step 2-5 until a stop criterion is met, for example a sufficiently good
fitness value, or until a maximum number of iterations has been performed.

The exploration of the solution space is highly dependent on the computed velocity of the
particles. Velocities that are too high may result in particles flying past good solutions.
On the other hand, too low velocities may result in that the particle swarm insufficiently
explores the solution space and gets trapped in local optima. Due to this, a parameter
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called Vmax is introduced and it is usually set to 10% − 20% of the dynamical range of
the decision variable in each dimension. So if the computed velocity in Eq.(2.27) exceeds
Vmax, the velocity is set to Vmax.

The acceleration constants, c1 and c2, in Eq.(2.27) are the cognitive and social acceleration
coefficients respectively. They represent the weight that pulls each particle towards their
own best solution pbest (cognitive) and the swarms best solution gbest (social). Adjustment
of these two parameters change how far from the target area in the solution space particles
are allowed to drift. High values results in rapid movement toward, or past, the target
area while low values allow particles to drift far from the target before being "pulled"
back. In early implementation of the PSO algorithm these constants were usually set to
c1 = c2 = 2.0 (Eberhart & Shi, 2001).

2.6.3 Constriction factor
To improve the original PSO algorithm, and to ensure convergence of the optimizer, Eber-
hart and Shi (Eberhart & Shi, 2001) suggest to introduce a constriction factor called
Clerc’s constriction factor to the velocity equation of the original algorithm. This yields
the modified velocity equation

vij(t+ 1) = χ[vij(t) + r1c1(pij(t)− xij(t)) + r2c2(pg(t)− xij(t))] (2.29)

where χ is the constriction factor and is determined

χ = 2
|2− φ

√
φ2 − 4φ|

, where φ = c1 + c2. (2.30)

When Clerc’s constriction factor is used, one usually sets c1 = c2 = 2.05. A "rule of
thumb" is also to limit the Vmax parameter to Xmax, i.e. the dynamic range of each
decision variable.

2.6.4 PSO example
Consider a test function for optimization problems e.g. the Booth function, which is
defined as

f(x, y) = (x+ 2y − 7)2 + (2x+ y − 5)2 (2.31)

where the global minimum is located at (x, y) = (1, 3). To find the global optimum one
can implement PSO as follows

1. Define a search space, x = [−10, 10] and y = [−10, 10]. Set the number of parti-
cles in the swarm nPop, and initialize the global fitness value as gbest = ∞ (for a
minimization problem).

2. Initialize the PSO algorithm by randomly distribute the nPop particles in the search
space and assign a randomly chosen initial velocity to each particle.

3. Now compute the objective function value for each particle and store the position
and fitness value in pbest.

4. Compare the fitness value of pbest to the global best fitness value in gbest. If the
current pbest is better (lower) than the stored value gbest then update gbest with the
new position and fitness value in pbest.

5. "Fly" the particles through the search space by updating the position and velocity
of each particle with Eq.(2.28) and Eq.(2.29).

6. Repeat step 3 to 5 until the global minimum is found or some pre-defined stop
criterion is met.
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In Figure 2.6, an illustration of implementing PSO for finding the global minimum of
Eq.(2.31) is presented, with nPop = 5 and the maximum number of iterations set to
16. The upper right corner is the first iteration or the initialization and as can bee seen
the particles (blue dots) of the swarm are spread out in the search space, x = [−10, 10],
y = [−10, 10]. As the algorithm iterates forwards the swarm moves closer to the global
minimum of (x, y) = (1, 3), which is seen in the other corners of Figure 2.6.

Figure 2.6: Iteration 1, 6, 11 and 16 from implementing PSO to find the global
minimum of Booth’s function in Eq(2.31).
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3| Methods
The approach for modeling the occupant kinematics was to first investigate a suitable
way for representing the human as an occupant in a car, and to define what affects the
occupant motion during an evasive maneuver. The components of the modeled system
were thereafter defined mathematically and implemented in Simulink and MATLAB (ver
2015b, The Mathworks Inc., Natick, MA, USA). The dynamics were computed using the
built-in ODE4 solver1. In order for the model to replicate occupant kinematics, data from
pre-existing volunteer maneuver studies were used for tuning and validating the model.

3.1 Model design
The simplified occupant kinematic model represents an occupant in a car, while the car
is performing an evasive maneuver. The model can represent a front seat passenger or
a driver. The model includes the torso and the head of the occupant, and the body is
restrained by muscle elements, a three-point seat belt, and the seat. The driver model
is also restrained by arms that are connected to the steering wheel to model the driver’s
bracing behavior when resisting longitudinal movement. With the vehicle accelerations
and rotations as input, the model can predict the occupant head CoG- and T1 displace-
ment with regards to their initial positions. A description of the model layout is given in
Figure 3.1.

Figure 3.1: Design layout of the simplified occupant kinematic model.

There are several components that affect the occupant motion. These are the accelerat-
ing vehicle body, gravity, the seat belt, the seat, the muscle resistance of the occupant’s
body, and the arms of the occupant when the occupant is a driver. Moreover, since the
occupant is located inside the moving car which has an acceleration and rotation, there
are also physical phenomena which are induced on the occupant, i.e. fictitious forces.

In total, three different reference systems are required to describe the model. The first is
the occupant reference system, which is a fixed local system placed in either of the two front
seats of the vehicle. The second is the vehicle reference system which holds the occupant
reference system, and is positioned in front of the car. The two systems accelerate relative
a third inertial reference system, see section 2.5.5. Figure 3.2 describes the three reference
frames in relation to one another. If the hip point coordinates Oocc and the coordinates

1ODE4 is a fixed step continuous explicit fourth order Runge-Kutta formula solver (MathWorks, 2018).
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where the acceleration and rotation data is recorded Prec differ, then recalculations of the
data using the equations of general plane motion, as derived in Appendix A, is needed.

Figure 3.2: Reference systems used to describe the simplified occupant kinematic
model, the occupant-, the vehicle-, and the inertial reference frame. Vehicle image

courtesy of Volvo Car Corporation.

3.1.1 Occupant models
Since the humans’ CoG is located in the upper body, the upright standing human is fre-
quently resembled as an inverted pendulum (Cavagna, Thys, & Zamboni, 1976; McGrath,
Howard, & Baker, 2015) in discussions about the human balance during standing and gait.
In previous studies, the human has been modeled with one- or multiple rods with one or
multiple point masses representing the total mass of the body. Based on this assump-
tion the occupant model, which represents the upper body of a sitting occupant, can be
modeled as an inverted pendulum using one or multiple rods. Contrary to gait modeling,
which mostly occurs in the longitudinal direction, occupant kinematics also includes the
lateral direction. Therefore the spherical inverted pendulum is suitable for modeling the
occupant. Two different pendulum designs were developed and evaluated based on their
behavior. The design concepts are based on connecting points at different joints and CoG
positions of the body, so that pendulum rods, are formed in between. As seen in Figures
3.4a and 3.5a, these points represent the head CoG, T1, sternum, and the hip joint. These
are positions that are featured as tracking points in the volunteer data, used later on for
tuning and validating the model.

The pendulum consists of one or two massless rigid rods that connect one or two particle
masses with a pivot point located at the hip point of the SAFER HBM, see Figure 3.4a and
3.5a. The point masses represent the sternum and head CoG coordinates of the SAFER
HBM. The length of the pendulum rods are constant and the motion of the pendulums
can be uniquely described with generalized coordinates. The mass and length parameters
of the pendulum were chosen to match the SAFER HBM.

The differential equations of the pendulum systems were derived using Lagrangian me-
chanics, as described in Section 2.5. Originally, all reference systems were arranged (x, y,
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z). In order to avoid singularities near the north-pole region, i.e. when the pendulum is
pointed straight up, a modification of the occupant reference system was necessary. The
new orientation yields that the z-axis is the longitudinal direction, positive indicates the
direction of travel. The y-axis is the lateral direction, positive indicates left and x-axis
is the vertical direction positive indicates downwards. The conversion of the reference
system is demonstrated in Figure 3.3.

The pendulum’s initial position is angled slightly backwards (104°, relative the longitudi-
nal axis) to resemble the initial sitting position of the occupant when it is leaning against
the backrest of the seat. The motion of the pendulum is restrained at the pivot point
by two torsional spring-damper pairs. When the pendulum is forced in any direction, the
spring-damper pair exerts a torque in the opposite direction of the motion, proportional to
the angle and the angular velocity respectively. These components simulate the muscular
resistance of the occupant when external forces are acting.

A seat model and a seat belt was added to further restrain the movement of the pendulum.
The seat model prevents the pendulum from falling backwards to the south-pole position
when only gravity is acting at the start of every simulation. The seat also prevents the
pendulum to move too far backwards. The seat belt restricts the pendulum movement
forward, i.e. when a sudden brake maneuver causes the pendulum to sling forward. The
restraint systems are further described in section 3.1.2. The differential equations, referred
to as the Equations of motion, for each design approach are given in section 3.2.

Figure 3.3: Conversion of the occupant pendulum reference system.

Inverted spherical pendulum

As a first design, the occupant was represented as a single inverted spherical pendulum as
seen in Figure 3.4. A massless rigid rod represents the distance between the hip point to
the sternum, where the mass, m, is positioned. The motion of the pendulum can, by using
spherical coordinates, be described as a system with two DoF. The rod length is denoted
r, which remains constant, and the generalized coordinates are the north-pole angle θ and
its’ azimuth ϕ.

As seen in Figure 3.4a, an imaginary line is drawn between the pivot point and the head
CoG with the length rhCoG. In order to apply the concept of a point mass the sternum
point is relocated to this line, i.e. the length of the rod r is equal to rs. The upper body
mass of the SAFER HBM, 46 kg, was used as the mass parameter. As output, the single
pendulum can compute the head CoG displacement.
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(a) Design concept of the single pendulum
based on the SAFER HBM.

(b) Representation of the single pendulum
in the occupant reference frame.

Figure 3.4: Design of the single pendulum model.

The position of the single pendulum can be described using spherical coordinates θ, ϕ
and r and a conversion to the Cartesian system is needed to describe the kinematics. The
positions of sternum and the head CoG are described using Eq. (3.1) and Eq. (3.2).

xs = −r sin θ sinφ
ys = r sin θ cosφ
zs = r cos θ

(3.1)

xhCoG = −rhCoG sin θ sinφ
yhCoG = rhCoG sin θ cosφ
zhCoG = rhCoG cos θ

(3.2)

Inverted spherical double pendulum

The second design is an inverted spherical double pendulum, i.e. it has two joints, see
Figure 3.5. The second joint is placed on the rod to represent a "neck joint" located at T1,
defined as a hinge joint which allows movement in the plane which the pendulum spans
with the longitudinal coordinate axis. This joint is restrained by one torsion spring-damper
pair. The double pendulum approach allows the head and sternum to move relative each
other in the longitudinal direction. A system with three DoF is yielded with two rigid
rods, and the generalized coordinates θ1, ϕ, and θ2. The motion of the lower pendulum
can be described by θ1, and ϕ. The motion of the upper pendulum can be described by
θ2, the angle of the upper rod relative a horizontal plane in the position of the T1 joint.

For the double pendulum, the mass of the upper body is divided into two point masses,
the first to represent the sternum and the second to represent the head. The sum of these
masses add up to 46 kg where the head mass is 6 kg, and the sternum mass is 40 kg,
as obtained from the SAFER HBM. As seen in Figure 3.5a, an imaginary line is drawn
between the pivot point and T1, denoted rT1. In order to apply the concept of point
masses, the sternum point is relocated to this line. Hence the length of the rod r is equal
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to the length between the pivot point and sternum, rs. The length of the rod extending
from T1 to the head CoG, is denoted rhCoG. The double pendulum can compute the head
CoG- and T1 displacements.

(a) Design concept of the double pendulum
based on the SAFER HBM.

(b) Representation of the double pendulum
in the occupant reference frame.

Figure 3.5: Design of the double pendulum model.

The position of sternum, T1 and the head CoG can be described using Eq. (3.3), Eq.
(3.4), and Eq. (3.5).

xs = −r sin θ1 sinφ
ys = r sin θ1 cosφ
zs = r cos θ1.

(3.3)

xT1 = −rT1 sin θ1 sinφ
yT1 = rT1 sin θ1 cosφ
zT1 = rT1 cos θ1.

(3.4)

xhCoG = xT1 − rhCoG sin θ2 sinφ
yhCoG = yT1 + rhCoG sin θ2 cosφ
zhCoG = zT1 + rhCoG cos θ2.

(3.5)

3.1.2 Restraint models
The restraint models maintain the initial position of the pendulum at the start of the
simulation. When there is a maneuver, the restraint models simulate the functions of the
physical restraint systems. Each restraint model exerts a force on the pendulum which
is included in the system’s Equations of motion as a generalized force, see section 2.5.3.
A visualization of the occupant pendulum and the restraint systems is demonstrated in
Figure 3.6.
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Figure 3.6: Representation of the occupant model and the restraint systems.

Seat model

The seat model restricts the pendulum from moving backwards from its initial position.
The seat is set to the angle of the pendulum initial position in order for the pendulum not
to fall down to the south-pole position at the start of each simulation. The seat model
also restricts the pendulum from moving too far back in the case of a high acceleration
forward, or in the rebound after a maneuver. The seat is modeled using three planes to
simulate the flat backrest of the seat and the side barriers which restrict the occupant’s
lateral movement, see Figure 3.7. When the pendulum intrudes the seat, a force is applied
on the point mass representing sternum. The force magnitude is proportional to the seat
intrusion and acts in the normal of the plane which the pendulum has intruded. The
force with respect to intrusion was approximated using a simulation in LS Dyna (R9.2
double precision, Livermore Software Technology Corporation) of an impactor with mass
46 kg hitting the backrest of a Volvo V60 seat with an impact speed of 1 m/s. As a
simplification, there is no friction applied if the pendulum moves laterally against the
seat.

Figure 3.7: Schematics of the seat model, consisting of three planes.

Seat belt model

The seat belt was modeled to resemble the actual seat belt locking mechanism, as de-
scribed in section 2.3, but assuming no sliding between the belt and the chest, i.e. no
displacement of the application point of the seat belt force along the pendulum rod. The
retractor locks the seat belt pay-out at a certain level of deceleration or lateral acceler-
ation, as well as at a certain rate of the seat belt pay-out. As stated in section 2.3, the
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acceleration limit used for the model is alim = 0.45 g. The threshold for the seat belt
pay-out rate was set to ulim = 80 mm/s.

When the seat belt pay-out is locked, a force is applied to the pendulum point mass
representing sternum. The force direction is the resultant of two vectors, where the first
vector is the vector between the pendulum sternum point mass and the seat belt D-ring
position which is located on the B-pillar, i.e. the second vertical supporting pillar of the
occupant cabin, near the roof. The second vector is the vector between the pendulum point
mass and the seat belt buckle position. The magnitude of the seat belt force depends on
the elongation dependent stiffness, as described in section 2.3.

ERR

The seat belt electrical pre-tensioning system, ERR, is modeled as an additional seat belt
force contribution which is triggered shortly before the maneuver. The force and activation
time can be varied, but when triggered the force is applied during the whole maneuver.
As seen in Figure 3.8, the function is implemented in the model as a step function with
an ramp-up to the force peak value. The slope at the ramp-up can also be varied.

Figure 3.8: The ERR model force pulse. T denotes duration and t denotes an
activation time instant.

Driver’s arms

Since a driver holds the steering wheel during normal driving conditions, the kinematics in
an evasive maneuver will be affected, see section 2.2. The arms are modeled with a spring-
damper pair which spans between the pendulum sternum point mass, and the steering
wheel. The spring-damper pair applies a force on the pendulum when the distance between
the steering wheel and the pendulum deviates from the initial length. The applied force
is proportional to the deviation and rate of change of this distance. The force direction
is either towards the pendulum or towards the steering wheel depending on whether the
distance is increasing or decreasing.
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3.2 Model equations of motion
The equations of motion for the two pendulum models were derived using Lagrangian me-
chanics techniques, as described in section 2.5.2. The total force acting on each pendulum
is the addition of the pendulum mass times the gravitational acceleration, the torques ex-
erted in the joints by the spring-damper pairs, the forces induced by the restraint systems,
as well as the fictitious forces due to the accelerating reference frame.

Inverted spherical pendulum
The equations to describe the motion of the inverted spherical pendulum are presented in
the equation system of Eq. (3.6).[
mr2 0

0 mr2 sin2 θ

]
︸ ︷︷ ︸

M(q)

[
θ̈
ϕ̈

]
︸︷︷︸
{q̈ii}

=
[

0 mr2ϕ̇ cos θsinθ
−mr2ϕ̇ cos θ sin θ −mr2θ̇ cos θ sin θ

]
︸ ︷︷ ︸

S(q,q̇)

[
θ̇
ϕ̇

]
︸︷︷︸
{q̇i}

+
[
mrg cos θ sinϕ
mrg cosϕ sin θ

]
︸ ︷︷ ︸

G(q)

−

[
kθθ
kϕϕ

]
︸ ︷︷ ︸
K(q)

−
[
cθθ̇
cϕϕ̇

]
︸ ︷︷ ︸
C(q̇)

+
[
Ftotalrêθ
Ftotalrêϕ

]
︸ ︷︷ ︸

N(q)

+
[
Frrêθ
Frrêϕ

]
︸ ︷︷ ︸
R(q)

(3.6)

Where Ftotal = Fsystem + Feuler + Fcoriolis + Fcentripetal, i.e. the resultant of the system
force and fictitious force vectors. Fr is the restraint system force resultant vector, and
Fr = Fsb + Fs + Fa (seat belt force, seat force, and driver’s arms force respectively).
These vectors are expressed as Cartesian vectors which are projected onto the spherical
unit vectors êθ and êϕ.

M(q) is the system mass matrix, S(q, q̇) is the coupling matrix, G(q), K(q), and C(q̇)
are the gravity and spring-damper contributions. N(q) and R(q) are the system plus
fictitious forces and restrains forces, respectively. By multiplying the inverse of the mass
matrix, M−1, to both sides of Eq.(3.6), the system of differential equations in Eq.(3.7)
was obtained.

{q̈i} = M(q)−1(S(q, q̇){q̇i}+G(q)−K(q)−C(q̇) +N(q) +R(q)). (3.7)

For the full derivation of these equations, see Appendix C.

Inverted spherical double pendulum
The system of equations that describes the motion of the inverted spherical double pen-
dulum can be represented using Eq.(3.8).

M(q){q̈i} = S(q, q̇){q̇i}+G(q)−K(q)−C(q̇) +N(q) +R(q) (3.8)

whereM(q) is the system mass matrix, S(q, q̇) is the coupling matrix, G(q), K(q) and
C(q̇) are the gravity and spring-damper contributions. N(q) and R(q) are the system-
plus fictitious forces and restraint forces, respectively. By multiplying the inverse of the
mass matrix,M−1, to both sides of Eq.(3.8) the system of differential equations in Eq.(3.9)
was obtained.

{q̈i} = M(q)−1(S(q, q̇){q̇i}+G(q)−K(q)−C(q̇) +N(q) +R(q)). (3.9)

The entries in each matrix and the full derivation of the equations of motion are presented
in Appendix D.
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3.3 Volunteer maneuver tests
Reference data from volunteer tests was required for tuning and validation of the model.
For this purpose, three data sources were selected out of pre-existing experimental studies
of volunteer maneuver tests. All tests were performed in real cars on test tracks, where
the volunteers were placed either in the front passenger’s seat or the driver’s seat. The
tests included braking-, lane-change, and lane-change plus braking (combined) maneuvers.
As stated in section 2.2, there are differences between passenger and driver kinematics in
evasive maneuvers. Therefore the passenger- and the driver model require different tuning
datasets which represent passenger- and driver kinematics respectively. Below are specifi-
cations of each volunteer study, and lastly a summary of the test datasets that were used
for either tuning or validation of the model are presented in Table 3.1.

3.3.1 SAFER Longitudinal maneuver tests
The SAFER Longitudinal2 volunteer study was published by J. Östh et al. 2013, and
J. Olafsdottir et al. 2013, and performed by Chalmers University of Technology, Auto-
liv Research AB, Umeå University, Volvo Group and Volvo Cars at SAFER Vehicle and
Traffic Safety Centre at Chalmers. The study is divided into two papers where the first
includes only occupants in the driver position (Östh et al., 2013), and the second includes
occupants in the front seat passenger position (Ólafsdóttir et al., 2013). Volunteers were
seated in a Volvo V60 model year 2012 that was subjected to harsh braking maneuvers
(deceleration of approximately 1.1 g). The volunteers consisted of eleven males and nine
females. The seat belt configurations were standard belt and ERR belt. The ERR force
was 170 N initiated 200 ms before the maneuver. The backrest of the seat was fixed to
112° relative the horizontal plane. The data acquired included displacement and rotation
of several points on the volunteers (among these the head CoG and the T1 vertebrae), car
longitudinal acceleration, interior forces (among these the arm’s bracing force against the
steering wheel, and seat belt force), and occupant muscular response.

3.3.2 SAFER Lateral maneuver tests
The SAFER Lateral volunteer study was published and submitted to the Ircobi Conference
2018 by G. Ghaffari 2018, and carried out by Chalmers, Autoliv Research AB, and Volvo
Cars at SAFER Vehicle and Traffic Safety Centre at Chalmers. The tests in the study
include lane-change and combined maneuvers, corresponding to a longitudinal decelera-
tion and lateral acceleration of approximately 0.5 g. 9 male volunteers were positioned as
passengers, and the tests were performed in a Volvo V60 model year 2016. Two seat belt
configurations were used, a standard belt and ERR belt set to a force of 170 N that was
initiated 200 ms prior to the maneuver. The backrest of the seat was fixed to 115° relative
the horizontal plane. The collected data included displacement and rotation of points on
the occupant body (among them the head CoG and the T1 vertebrae), car longitudinal
and lateral acceleration as well as rotation, interior forces (including the seat belt force),
and occupant muscular response.

2Names in italic are given as denotation of volunteer data sources in the following sections.
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3.3.3 Graz maneuver tests
The Graz volunteer study was published by P. Huber et al. 2015, and carried out by Graz
University of Technology at the Virtual Vehicle Research Centre in Graz, Austria. The
tests were performed with a Mercedes-Benz S-500 in which the volunteers were placed in
the front passenger seat and subjected to braking-, lane-change-, and combined maneu-
vers, for which accelerations were around 1 g. Among the volunteers were 19 males and 6
females. As opposed to the tests stated above, the maneuvers were performed by a driver
instead of a robot. The tests were performed using a modified seat for which the backrest
angle was fixed to 104° relative the horizontal plane. The data collected included car lon-
gitudinal and lateral acceleration and rotation, occupant head and sternum displacement
and rotation, and steering wheel angle.

Complete kinematic data for all three maneuver types, i.e. braking, lane-change and
combined maneuver, exists only for the passenger position. Therefore out of the passen-
ger model and the driver model, only the passenger model was selected for tuning and
validation.

Table 3.1: Summary of the datasets used for tuning and validation of the simplified
occupant kinematic model, collected from volunteer maneuver tests (Östh et al., 2013;
Ólafsdóttir et al., 2013; Ghaffari et al., 2018; Huber et al., 2015). Combined maneuver
denotes lane-change plus braking, SB is standard belt. Note that all datasets from the

presented volunteer studies are not included.

Data source Volunteers Maneuver Occupant
position

Belt
type

Application
(Tuning/
Validation)

No.

SAFER
Longitudinal

11 males
9 females Braking Passenger SB Validation 1

SAFER
Lateral 9 males

Combined Passenger SB Tuning 2
Lane-change Passenger SB Validation 3
Combined Passenger ERR Validation 4

Graz 19 males
6 females Combined Passenger SB Validation 5

3.4 Model tuning and validation
The PSO algorithm, described in section 2.6.1, was used to tune the model response to
fit the volunteer kinematic response. The parameters of interest were the spring stiffness
and the damper coefficients of the spring-damper pairs, i.e. kθ, kϕ, cθ, cϕ for the single
pendulum and kθ1 , kϕ, kθ2 , cθ1 , cϕ, cθ2 for the double pendulum, as well as the width of the
backrest of the seat, γseat (see Figure 3.7). A physical interpretation of the tuning of the
spring-damper pairs is to characterize the occupant tensing its muscles as a reaction to
the maneuver. The shoulder width of each volunteer in the tuning dataset is unknown,
and since the width of the occupant limits lateral movement against the seat, the distance
before the shoulder engages the lateral side barrier of the seat is unknown. The width of
the backrest was therefore optimized to provide a suitable seat geometry.

For the parameter tuning, dataset No.(2) from the SAFER lateral study was selected, see
Table 3.1 in section 3.3. Since the vehicle motion of a combined maneuver induces both
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longitudinal-, lateral-, and rotational motion on the occupant pendulum, this allowed for
tuning of all parameters for all states simultaneously. Furthermore, as the dataset contains
test data from 24 volunteers, the tuning of the models generated 24 datasets for each model
design. Figure 3.9 presents the mean longitudinal and lateral accelerations, yaw angle rate
of change, i.e. the angular velocity of the vehicle, as well as the mean seat belt force from
the 24 volunteer tests.

Figure 3.9: Mean signals obtained from the combined maneuver tests of the SAFER
Lateral study, dataset No.(2).

3.4.1 Particle swarm optimization
The objective function, for which the purpose is to minimize the difference between the
model output and the reference data, is based on the RMSE function, defined in section
2.6. Since the reference data contains several important states that the model aims to cap-
ture, i.e. the longitudinal and lateral displacement and the seat belt force, a weighted sum
of RMSE terms were used as the objective function. In order for the model response to ob-
tain similar energy content as the reference data (Keysight Technologies, 2016), frequency
spectrum analysis of the model output and reference data were compared and included in
the weighted sum of RMSE. The frequency spectrum of the signal was computed using
the Fast Fourier Transform.

The search space is defined by specifying the minimum and maximum value of each of the
parameters that are of interest. For the optimization of the models, 40 iterations were
run with 50 particles each. The amount of iterations and particles were chosen through
testing different setups where iterations and particles were varied, for which it was shown
that a larger number of particles and iterations gave a more accurate result compared to
for example 10 iterations and 20 particles.
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3.4.2 PSO setup
Tables 3.2 and 3.3 denote the search space boundaries for the two pendulum designs.
Tables 3.4 and 3.5 denote the weights given for the objective functions, and Eq.(3.10)
and Eq.(3.11) are the objective functions for the optimization of the two model designs.
The search space boundaries were set in order to reduce the risk of the algorithm getting
trapped in local optimum. Concurrently, a tight search space was undesired since the solu-
tions would then be more likely to end up in the boundary values indicating that optimal
values were not found. The weights of the objective function were selected to yield the
best fit of the model response.

Table 3.2: Search space boundary values for the Inverted spherical single pendulum.

Tuning
parameter Min value Max value Unit

kθ (Spring coeff.) kθ 50 1500 [Nm/rad]
kϕ (Spring coeff.) 50 1500 [Nm/rad]
cθ (Damper coeff.) 10 400 [Nm·s/rad]
cϕ (Damper coeff.) 10 400 [Nm·s/rad]
γseat (Seat width) 0.1 10 [°]

Table 3.3: Search space boundary values for the Inverted spherical double pendulum.

Tuning
parameter Min value Max value Unit

kθ1 (Spring coeff.) 50 1500 [Nm/rad]
kϕ (Spring coeff.) 50 1500 [Nm/rad]
cθ1 (Damper coeff.) 10 400 [Nm·s/rad]
cϕ (Damper coeff.) 10 400 [Nm·s/rad]
kθ2 (Spring coeff.) 10 400 [Nm/rad]
cθ2 (Damper coeff.) 10 400 [Nm·s/rad]
γseat (Seat width) 0.1 10 [°]

Table 3.4: Weights used in the
objective function for the inverted

spherical single pendulum.

Weight Value
w1 0.27
w2 0.18
w3 0.23
w4 0.17
w5 0.05
w6 0.10

Table 3.5: Weights used in the
objective function for the inverted

spherical double pendulum.

Weight Value
w1 0.12
w2 0.12
w3 0.12
w4 0.12
w5 0.08
w6 0.08
w7 0.08
w8 0.08
w9 0.08
w10 0.12

where w1, w2, ..., w6 in Table (3.4) denote the weights of the head longitudinal displace-
ment, head lateral displacement, seat belt force, and the frequency spectrum of the three
states respectively, for the inverted single pendulum. The weights w1, w2, ..., w10 in Ta-
ble (3.5) correspond to the head longitudinal displacement, head lateral displacement,
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T1 longitudinal displacement, T1 lateral displacement, seat belt force, and the frequency
spectrum of the five states respectively, for the inverted double pendulum. The objective
functions are defined in Eqs. (3.10) and (3.11), for the single and double pendulums re-
spectively.

minfobj,single = min
6∑
i=1

wiRMSEi (3.10)

RMSEi = RMSE1, RMSE2, ..., RMSE6 are the computed errors for the states, i.e. lon-
gitudinal head displacement, lateral head displacement, seat belt force, and the frequency
spectrum of the three states respectively.

minfobj,double = min
10∑
i=1

wiRMSEi (3.11)

RMSE1, RMSE2, ..., RMSE10 are the computed errors for the states, i.e. longitudinal
head displacement, lateral head displacement, T1 longitudinal displacement, T1 lateral
displacement, seat belt force, and the frequency spectrum of the five states respectively.
The RMSE for each state is computed as described in section 2.6.

3.4.3 Selection of parameter sets
After running the PSO algorithm for the two model designs, 24 parameter sets were
obtained for each model. The parameter sets contain values for the parameters of interest,
each representing the dynamic characteristics of one of the 24 volunteer tests in the dataset.
The two models were then simulated using all parameter sets, with the mean acceleration
and yaw from the maneuvers of the volunteer tests as input. The head displacement of the
model was then compared to the corridor, i.e. the mean and the first standard deviation,
of the volunteers’ head displacement as presented in Figures 3.10 and 3.11. Out of these
24 parameter sets, a family of 7 parameter sets for each model were selected based on the
criteria below.

1. the family must represent the whole spectrum of included individuals, which corre-
sponds to a varying muscle stiffness between individuals,

2. each selected parameter set must capture the dynamic behavior of the underlying
system.
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(a) Longitudinal head displacement. (b) Lateral head displacement.

Figure 3.10: The single pendulum model response of the 24 obtained parameter sets,
with the mean acceleration and rotation of the tuning dataset (No.(2)) as input, and the
corresponding head displacement corridors as reference (gray area). The vertical line

corresponds to the maneuver onset time.

(a) Longitudinal head displacement. (b) Lateral head displacement.

Figure 3.11: The double pendulum model response of the 24 obtained parameter sets,
with the mean acceleration and rotation of the tuning dataset (No.(2)) as input, and the
corresponding head displacement corridors as reference (gray area). The vertical line

corresponds to the maneuver onset time.

3.4.4 Model validation
To validate the response of the model, the model displacements of the parameter sets were
compared to the displacement corridors3 of the volunteer kineamatic data. The validation
was performed with respect to three volunteer datasets, including the maneuvers braking,
lane-change, and combined maneuvers. The input used was the mean car accelerations
and yaw from each corresponding volunteer test. To avoid double-counting of the tuning
data, different datasets were used for validation of the model than for the tuning. The
selected validation datasets were No.(1, 3, 5) as denoted in Table 3.1. The criteria for the
validation were the following,

1. the model response has similar dynamic behavior to the volunteer data,
2. the model response represents the variations in displacements as seen among the

volunteers of the dataset, within the time for the maneuver.

3For the Graz data the median and 0.16th and 0.84th quantiles were used.
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All criteria were evaluated based on visual interpretation of the results.

ERR validation

To validate the ERR function of the seat belt model, simulations of the double pendulum
model were run with the mean input from dataset No.(4), a combined maneuver. This
dataset which includes both longitudinal and lateral acceleration, and rotation, was se-
lected to study the reduction of the displacement both longitudinally and laterally. To
study the effect of the ERR function, the T1 displacement of the model with the ERR
belt configuration was compared to the corresponding displacement with the standard belt
configuration. The resulting displacement alterations between the two belt configurations
were then compared to the results found in the volunteer tests, as stated in section 2.3.1.

For the simulation, the configuration setup used in the volunteer tests, as stated in section
3.3 was used. Hence, the pulse was triggered 200 ms before the maneuver, with a peak
force of 170 N. The duration of the function as well as the slopes of the ramp-up, were
varied to obtain similar responses as for the volunteers.
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4| Results
The following sections present the results of the model tuning and validation.

4.1 Inverted spherical pendulum
Table 4.1 presents the members of the selected family of parameter sets for the single
pendulum model, given new set names. The letter S denotes the single pendulum. The
computation time of the model is 0.7 seconds1.

Table 4.1: The 7 parameter sets selected for the single pendulum model.

No. Name
1 SA
2 SB
8 SC
11 SD
17 SE
18 SF
23 SG

Figures 4.1, 4.2, and 4.3 present the single pendulum model head displacement response
for each parameter set in the selected family, with respect to the corridors of the vali-
dation datasets. The model input was the mean car accelerations and rotations for each
corresponding validation dataset.

As seen in Figure 4.1, the overall dynamic response is captured by the model for both lon-
gitudinal and lateral displacement when it is subjected to the lane-change maneuver from
dataset No.(3). For the lateral displacement, the model underestimates the leftward head
displacement for all the parameter sets, but overestimates rightward head displacement in
the rebound. The lateral head response of parameter set SC and SF, are slightly delayed
compared to the validation data.

Similarly to previous plots, as seen in Figure 4.2, the model kinematic response and dy-
namics correspond well with the response of the emergency braking maneuver of dataset
No.(1). During the maneuver, the seatbelt of the model locks to restrict further forward
motion of the pendulum head. However, the longitudinal displacement is underestimated
for all parameter sets. In this reference dataset, the lateral displacement was not recorded
due to little lateral motion and is therefore not included.

As seen in Figure 4.3, the model validation with respect to dataset No.(5) shows that
the model’s longitudinal displacement corresponds well with the volunteer data for the
combined pre-crash maneuver. However, the lateral head displacement is overestimated.
Once again, the model captures the dynamic response of the validation data. Again,
parameter set SC and SF are slightly delayed compared to the validation data.

1Intel i7 2.7GHz, 16GB RAM
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(a) Longitudinal head displacement. (b) Lateral head displacement.

Figure 4.1: Head displacement of the single pendulum compared to the corridor (gray
area) of the head displacement in volunteer dataset No.(3) SAFER lateral, a lane-change

maneuver. The vertical line corresponds to the maneuver onset time.

Figure 4.2: Head displacement of the single pendulum compared to the corridor (gray
area) of the head displacement in volunteer dataset No.(1) SAFER longitudinal, an

emergency braking maneuver. The vertical line corresponds to the maneuver onset time.

(a) Longitudinal head displacement. (b) Lateral head displacement.

Figure 4.3: Head displacement of the single pendulum compared to the corridor (gray
area) of the head displacement in volunteer dataset No.(5) Graz study, a combined

maneuver. The vertical line corresponds to the maneuver onset time.

38



4. Results

4.2 Inverted spherical double pendulum
In Table 4.2 the members of the selected family of parameter sets for the double pendulum
model are displayed, given new names. The letter D denotes the double pendulum. The
computation time of the model is 0.7 seconds2.

Table 4.2: The 7 parameter sets selected for the double pendulum model.

No. Name
1 DA
5 DB
6 DC
7 DD
9 DE
11 DF
17 DG

Below, the double pendulum model responses for the head CoG and T1 displacement are
presented with respect to the corridors of the validation datasets. The model input were
the mean car accelerations and rotations for each corresponding validation dataset.

Head displacement

Regarding the response for the lane-change maneuver in dataset No.(3), as seen in Figure
4.4, the overall dynamic response is captured by the double pendulum model for both
the longitudinal and lateral head displacements. For lateral head displacement the model
slightly underestimates the leftward head displacement for all parameter sets, but overes-
timates rightward head displacement in the rebound.

Observing the model response of the pure braking maneuver as seen in Figure 4.5, the
model captures the overall dynamics of dataset No.(1) and demonstrates a variation in
responses for the longitudinal head displacement. A similar reduction of forward motion of
the model’s head, due to the locking of the seat belt, can be observed during the maneuver
when comparing the response to the data. The timing of the model response corresponds
to the validation data except for parameter set DA which shows a lagging behavior in the
rebound phase of the movement.

As seen in Figure 4.6, the model response captures the kinematics of dataset No.(5), which
implicates a combined maneuver. However, most of the parameter sets overestimate both
the longitudinal and lateral head displacement. Again, parameter set DA shows a lagging
behavior for the longitudinal displacement.

2Intel i7 2.7GHz, 16GB RAM
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(a) Longitudinal head displacement. (b) Lateral head displacement.

Figure 4.4: Head displacement of the double pendulum compared to the corridor (gray
area) of the head displacement in volunteer dataset No.(3) SAFER lateral, a lane-change

maneuver. The vertical line corresponds to the maneuver onset time.

Figure 4.5: Head displacement of the double pendulum compared to the corridor (gray
area) of the head displacement in volunteer dataset No.(1) SAFER longitudinal, an

emergency braking maneuver. The vertical line corresponds to the maneuver onset time.

(a) Longitudinal head displacement. (b) Lateral head displacement.

Figure 4.6: Head displacement of the double pendulum compared to the corridor (gray
area) of the head displacement in volunteer dataset No.(5) Graz study, a combined

maneuver. The vertical line corresponds to the maneuver onset time.
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T1 displacement

The response for the longitudinal T1 displacement in the lane-change maneuver, as seen in
Figure 4.7a, has a similar dynamic response in terms of magnitude without any delays. The
lateral T1 response in Figure 4.7b shows that the response is somewhat underestimated
for all parameter sets. Again for the longitudinal T1 displacement response to the braking
maneuver as presented in Figure 4.8, the model gives a proper response with respect to
the dynamics. However, the response is oscillating.

(a) Longitudinal T1 displacement. (b) Lateral T1 displacement.

Figure 4.7: T1 displacement of the double pendulum compared to the corridor (gray
area) of the T1 displacement in volunteer dataset No.(3) SAFER lateral, a lane-change

maneuver. The vertical line corresponds to the maneuver onset time.

Figure 4.8: T1 displacement of the single pendulum compared to the corridor (gray
area) of the T1 displacement in volunteer dataset No.(1) SAFER longitudinal, an

emergency braking maneuver. The vertical line corresponds to the maneuver onset time.

4.3 ERR test
Figures 4.9 and 4.10 demonstrate the T1 displacement for the double pendulum, param-
eter sets DA, DC, DF and DG, when running simulations using the ERR belt and the
standard belt configuration. Simulations of parameter sets DB, DD, and DE are presented
in Appendix E.

The occupant model is slightly pulled back by the belt after ERR has been activated, as
can be seen in particular for the longitudinal displacement of parameter setDF . Moreover,
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the displacement is reduced in both longitudinal and lateral direction during the maneuver
for all parameter sets.

Figure 4.9: Longitudinal displacement of T1 for the double pendulum model, where
the solid line is the response with ERR, and the dotted line is with a standard belt.

Figure 4.10: Lateral displacement of T1 for the double pendulum model, where the
solid line is the response with ERR, and the dotted line is with a standard belt.
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This chapter will present a discussion about the modeling approach of the simplified
occupant kinematic model. Furthermore, a discussion about the results will be brought
up and lastly, proposals for further development will be suggested.

5.1 Methods discussion
When studying the kinematic behavior of a seated human, parallels can be drawn to an
inverted spherical pendulum. Assuming that the hip of the occupant when seated in a car
is fixed to the seat, and the flexion of the spine is modest, then the upper body geometry
is basically a lever with a distributed mass. Together with support from studies, where
human balance and locomotion have been simulated using inverted pendulum models (see
section 3.1), the idea to the design of the simplified occupant kinematic model was initi-
ated.

In order to build a computationally efficient model that was able capture such an ad-
vanced system as the human occupant kinematics, simplifications and generalization were
necessary. First, rigid bodies were used for the occupant pendulum. This implied that
the pendulum would not be able to bend in the same way as a human, to capture such
movement, as slouching of the back or extension and flexion of the neck as mentioned
in section 2.2 and as seen in Figure 2.2. The fixation of the hip point was regarded as
a minor simplification with regards to volunteer test results showing minimal or no slip
at low acceleration levels, as observed in section 2.2. The non-linear characteristic of the
volunteer muscular response cannot be fully captured with the linear spring-damper pairs.
However, these components allowed for straightforward tuning of the model.

Desirably the anthropometric data, i.e. the initial position coordinates of the hip point,
sternum, T1 and the head CoG, from each volunteer would have been used to set the
size of the occupant pendulum when tuning the model. Then it would have been possible
to include the length of the pendulum in the parameter sets. As of now, the dimensions
of the pendulum are based on the SAFER HBM and are the same for each parameter
set. An advantage of having the same pendulum size for each parameter set was that the
parameter sets were then more intuitively comparable. For example, as seen in Table 4.2,
parameter set DE seems to be stiffer than parameter set DG based on the values of the
spring coefficients kθ1 , kϕ, kθ2 . This is confirmed as the displacements of parameter set
DE are lower than the displacements of DG in Figures 4.4, 4.5, 4.6, 4.7 and 4.8.

The modeling of the seat required some generalizations. Firstly the most important func-
tion for the seat is to prevent the occupant pendulum from falling backwards towards the
south-pole position. Another function is to some extent prevent the occupant pendulum
from moving laterally when it is leaning against the seat. However, the widths of the
occupants in the volunteer study were unknown, as well as the friction between the seat
and the occupant, thus the relative movement between the occupant and the seat was
unknown. To generalize this characteristic three planes were used, one as the flat backrest
and two symmetrically angled planes as the side barriers. The width parameter, γseat, of
the backrest was tuned to optimize the response of the model. The results suggest that

43



5. Discussion

this was a valid assumption for the double pendulum since the values for γseat vary for the
parameter sets in Table 4.2. However, as seen in Table 4.1, this parameter does not vary
for the single pendulum model which suggests that it may be a redundant parameter for
this model.

Also the seat belt model was generalized. First, the area where the seat belt force is
applied was reduced to one point, since the pendulum lacks a width to enable for a dis-
tributed force. This further disables any rotation of the occupant model as an effect of
the asymmetric seat belt force distribution mentioned in section 2.2. Moreover, the belt
cannot slide on the chest nor slip off the shoulder. These aspects could be valuable to
predict, however not included in the scope of this work. Furthermore, the lap belt was
omitted for the model as a consequence of the fixed hip position.

Although simplifications were made, the tuning of the spring-damper pairs and the back-
rest width of the model compensated for many phenomena of the occupant kinematics.
This was also confirmed by the results for both the single and the double pendulum.

The approach to use a rigid body inverted pendulum for modeling the occupant has the
advantages of being physically intuitive and computationally efficient. However, besides
not allowing for any deformation, the inverted spherical pendulum owns the characteristic
of being unstable which infers that without any restraints it would return to its stable
point, i.e. pointing straight downwards. This instability was compensated for by the
spring-damper pairs, the seat, and the seat belt since they force the pendulum back
toward the initial position. The upper rod of the double pendulum is not as restrained
as the lower rod and thus exhibits a more unstable behavior. To prevent this behavior a
hinge joint, which is more numerically stable than the spherical joint, was applied as the
"neck-joint". This allowed for a longitudinal relative motion between the head and T1.

5.1.1 Tuning of model
The tuning of the model was executed with respect to a set of 24 volunteer evasive maneu-
ver tests, consisting of 9 male subjects. This produced 24 parameter sets that correspond
to the characteristics of each of the volunteers in the tests. The decision to tune the model
based on each individual test, and later select a family of seven parameter sets among
them, was made in order to produce a family of parameter sets that would represent a
variation in occupant kinematics. However, this family does not represent any specific
population group. In order to make the model more representative for the entire popula-
tion, a larger dataset which includes female volunteer data and different sized volunteers,
i.e. volunteers that represent a wider range of statures, is needed.

Despite the small number of volunteers that were included in the tuning dataset, there
were still clear variations in the kinematic behavior. This implied that the model, as it is,
was nevertheless able to capture a wide spectrum of occupant responses.
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5.2 Results discussion
The results of the single pendulum model in section 4.1 showed that the single pendulum
lateral displacement coincided well with the reference data. However, the longitudinal
displacement was limited, as seen in Figure 4.2. The maximum mean longitudinal dis-
placement of the reference data was approximately 170 mm during the maneuver, but
the model responded with a displacement of approximately 40 mm below this level for
most parameter sets. The believed reason behind the limitation is that the seat belt force
becomes too high at this longitudinal displacement. This may be due to that one of the
tuning states is the seat belt force. Hence this resulted in a compromise of both the lon-
gitudinal displacement and the seat belt force responses, as neither of them will therefore
be highly inaccurate but also, one repose will not be highly accurate while the other is
highly inaccurate. This means that the overall dynamic response can be captured but the
magnitude of the response might be underestimated.

The double pendulum model results, as stated in section 4.2, show a wider spectrum of
responses compared to the single pendulum, especially for the longitudinal head displace-
ment. For the longitudinal T1 displacement, the model response was satisfactory however,
the lateral displacement was somewhat underestimated. Since it was possible for the head
and T1 to move relative one another, the head displacement was improved compared to
the single pendulum. Just as for the single pendulum, the phenomena of the seat belt
force remained and limited the longitudinal movement of the lower pendulum rod to some
extent, i.e. T1 displacement, but the added hinge joint allowed for further movement of
the head. The spring-damper coefficients of the "neck-joint" were presumably given values
which let the upper rod compensate for the lack of longitudinal motion of the lower rod,
as a consequence of the "seat belt effect". A fallout might be that the longitudinal head
displacement in other maneuvers may be overestimated, which applied for the responses
in Figure 4.6a. The double pendulum model is more unstable than the single pendu-
lum model, which is presumably one reason for the oscillating property of the head CoG
and T1 responses, as seen in Figures 4.5 and 4.8. However, the outcome of these oscil-
lations are not regarded as having a negative outcome on the results of the model response.

As a part of the validation it was of interest to study pure braking maneuvers to under-
stand if the seat belt model interferes with the occupant pendulum model response, i.e. if
it introduces any unwanted lateral displacement during pure braking maneuvers. Consid-
ering that the seat belt force is applied in the sternum point and the force direction is the
resultant of two vectors as described in section 3.1.2, the concern was that it would impose
unwanted lateral movement when no lateral acceleration was present. However, as seen
in Figure 5.1 which shows the lateral head displacement response of the single pendulum
and the double pendulum models during a braking maneuver (dataset No.(1)), the lateral
displacement is below 15 mm during the entire maneuver. This implies that the seat belt
model behaves as expected, i.e. no lateral displacement is induced by the seat belt.
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(a) Lateral head displacement of the single
pendulum model.

(b) Lateral head displacement of the double
pendulum model.

Figure 5.1: Lateral head displacement for the models when subjected to a pure braking
maneuver, dataset No.(1).

When the ERR is activated, similarly to the volunteer response as seen in section 2.3.1, a
backward motion of the occupant pendulum T1 point was observed. However, the model
T1 displacement reduction was not as distinct as for the volunteers. One reason for this
result could be that the input mean acceleration for the model was lower than that of
the volunteer maneuver study, i.e. 0.5 g versus 1 g. Furthermore, the large reduction of
displacement in the volunteer tests when ERR is used, may be due to that muscle activity
was initialized earlier when ERR is active, as stated in section 2.3.1. This possibly affected
the volunteer stiffness. If this is the case, the model would need to be re-tuned to obtain
new parameter sets that would compensate for the change in muscular activity. The
model, as it is, can be used to provide a first prediction of the effect of ERR for different
maneuvers.

5.3 Future work
The applicability of the model would be improved by tuning the model for a wider range
of occupants, including females and a greater variety of stature. This would generate more
datasets for selection of the family of parameter sets, and as a suggestion two groups of
parameter sets representing males and females respectively. Furthermore, to make use of
the driver model, parameter tuning and validation is required using adequate data, i.e.
driver’s kinematic data. Note that the driver’s arms model extend the parameter sets with
two coefficients, i.e. the related spring and damper coefficients. This is only possible once
volunteer data representing drivers subjected to combined maneuvers becomes available.

The seat belt model could potentially be improved by modeling belt slip-off and gliding
against the chest. If gliding was possible, the limitation of the longitudinal displacement
for both models may be improved. Furthermore, it is important to be aware of when belt
slip-off occurs, and implementing this approach in the model could be valuable.

The response when having the ERR model could potentially be improved by re-tuning
the model with respect to volunteer datasets which include an ERR belt. This would pro-
vide another set of parameters which correspond to occupants restrained by the ERR belt.

To allow for an enhancement of the dynamic representation of the occupant kinematics,
the modeling of the muscle response could be developed. A suggestion is to study the
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muscle response data as collected by Östh et al. (2013) and Olafsdottir et al. (2013) to
identify activation times and magnitudes of voluntary muscular reflexes. Accordingly, a
type of "muscle response level model" could be designed and applied to the spring-damper
pairs. The spring-damper pairs could in this way be tuned with varying stiffness and
damping contributions over the time of the maneuver.

To further improve on the kinematic response the occupant could be modeled as a triple
pendulum. The first rod would connect the hip and sternum, the second rod would
be sternum to T1, and the third rod joins T1 and the head CoG. This would allow
the occupant model to better capture the slouching of the occupant during a maneuver.
However, this approach would require volunteer kinematic data that corresponds to to the
sternum point in addition to the point of T1 and the head CoG, which is not yet available.
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6| Conclusion
The development of the simplified occupant kinematic model resulted in a system that in-
cludes an occupant model derived as an inverted spherical pendulum, and restraint models
- the seat, the seat belt, and driver’s arms - applied as generalized forces. The occupant
model was first derived as a single pendulum, and then further developed into a double
pendulum. The model was tuned using pre-existing front seat passenger kinematic data
from volunteer maneuver tests, corresponding to a combined maneuver. The computation
time of the simplified occupant kinematic model, either the single pendulum model or the
double pendulum model, was 0.7 seconds for a maneuver with an approximate duration
of 4 seconds.

The results from the simulations showed that both designs of the pendulum model designs
were able to capture the dynamics of the occupant head kinematics during a pre-crash
maneuver by means of head displacement. However, the double pendulum captured the
longitudinal displacement to a greater extent than the single pendulum model although
the displacement was overestimated for some maneuvers. Since a larger displacement of
the head is more critical for the occupant when facing a potential crash, an overestimation
of the displacement is preferred rather than an underestimation. Furthermore, the double
pendulum was able to capture the T1 displacement in addition to the head displacement,
and the responses showed a wider spread of the displacements for the obtained parameter
sets. Therefore, the double pendulum is suggested as the model of choice.

The seat belt model and the ERR model were evaluated and compared, in which the seat
belt model obtained expected behaviour, while the ERR belt did not reduce the displace-
ment of T1 as much as desired.

With respect to the stated conclusions, the simplified occupant kinematic model which
was developed can be a suitable tool for running a large number of pre-crash maneuver
simulations.
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A| Appendix 1
A.1 General plane motion
The general plane motion is the translation and rotation of a rigid body in a two dimen-
sional plane. The motion can be decomposed into the superposition of one translating
motion and a rotational motion. Here follows the derivation of the equations which de-
scribe the general plane motion.

A.1.1 Motion relative a moving reference frame
A starting point to derive the equations describing general plane motion is to consider the
motion relative a moving reference frame. Consider particle A and B in Figure A.1, which
are moving along two independent trajectories in the plane with the fixed reference frame
(x, y). Let rA and rB be the position vector of the particles A and B in the fixed reference
frame. Attach a non-rotating reference frame in particle B, the position of particle A can
now be described by the position vector rA/B which is a position vector of particle A in
the moving reference frame of particle B. The position vector rA/B can be expressed as

rA/B = x′ê′1 + y′ê′2 (A.1)

where ê′1 and ê′2 are the basis vectors of the moving reference frame. Observe that since
the moving reference frame is non-rotating, as the basis vectors do not change in time.
Taking the derivative of the position yields the velocity as

vA/B = dx′

dt
ê′1 + dy′

dt
ê′2 (A.2)

which can be interpreted as the velocity of particle A relative to B. Now the position of
A can be expressed as

rA = rB + rA/B (A.3)

and by differentiating this expression the velocity and acceleration of A is obtained

vA = vB + vA/B (A.4)

aA = aB + aA/B (A.5)

these equations describe the motion of particle A observed relative a moving particle B.
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Figure A.1: Motion of a particle relative a moving reference.

Now consider a rigid body undergoing plane motion, see Figure A.2a. The position of the
two lines on the body can be specified by the two angles θ1 and θ2 measured from the
x-axis in a fixed reference frame. The angle β in between the two lines relates θ1 and θ2
in the following manner

θ2 = β + θ1 (A.6)

Since the body is rigid this preserves the distance between the lines, i.e. β is constant and
differentiation of Eq.(A.6) yields

dθ1
dt

= dθ2
dt

(A.7)

d2θ1
dt2

= d2θ2
dt2

(A.8)

This holds for any pair of lines in the body which implies that the body can be associated
with a unique angular velocity ω, defined as

ω = ωê3 = dθ1
dt
ê3 (A.9)

where ê3 is the basis vector perpendicular to the plane. Arguing analogously the body
can be associated with a unique angular acceleration ω̇, defined as

ω̇ = dω

dt
ê3 = d2θ1

dt2
ê3 (A.10)

and thus all lines on a rigid body in plane motion have the same angular displacement,
velocity, and acceleration, see Figure A.2b. Now consider the motion of a rigid body as
shown in figure A.2c with a point B0 taken as a reference. The motion can be considered
to occur in two stages, one pure translation of an arbitrary line A0B0 and one rotation
about the point B1 giving the final position A1B1. The motion is thus the sum of the
translation of the reference B0 described by the velocity and acceleration vB and aB and
the rotation characterized by the angular velocity and acceleration ω and ω̇ of the body.
This means that the motion of an arbitrary point within the rigid body is known when
the translation components, vB and aB and rotation components, ω and ω̇, are known.
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Figure A.2: Decomposition of rigid body motion.

A.1.2 Velocities and accelerations
To derive the equations that describe the motion in the plane, consider Figure A.3. The
figure is a schematic representation of a rigid body moving in the plane with an angular
velocity and acceleration, ω and ω̇, about the point B. Recall that the position and
velocity of A in the fixed reference frame now can be expressed as

rA = rB + rA/B (A.11)

vA = vB + vA/B (A.12)
where the index A/B means the position or velocity of A relative to B. As the rigid body
moves, A traces a circular path relative to B. Since the rigid body does not deform in
any way, the radius of that path is the length of the vector rA/B, i.e. |rA/B|. The angular
velocity of this motion is ω and the tangential velocity of A, vA/B, is the time derivative
of the rotating position vector rA/B, which is

vA/B =
drA/B
dt

= ω × rA/B (A.13)

Now the velocity of A can be expressed as

vA = vB + ω × rA/B (A.14)

which is the sum of a translational component vB and the rotational component ω×rA/B
of the motion. The acceleration of A in the fixed frame can be derived by an analogous
procedure. The acceleration of A is simply the time derivative of the velocity of A, recall
Eq.(A.5)

aA = aB + aA/B (A.15)
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where aA/B is the time derivative of vA/B which can be expressed as

aA/B =
d(ω × rA/B)

dt
= dω

dt
× rA/B + ω ×

drA/B
dt

= ω̇ × rA/B + ω × (ω × rA/B) (A.16)

This yields the resulting expression for the acceleration of point A

aA = aB + ω̇ × rA/B + ω × (ω × rA/B) (A.17)

and as for the velocity the acceleration is the sum of a translational component aB and a
rotational component ω̇ × rA/B + ω × (ω × rA/B).

Figure A.3: Decomposition of the general plane acceleration of point A relative the
reference point B.
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B.1 Fictitious forces in an accelerating reference frame
To derive the fictitious forces that may appear in an accelerating reference frame, first con-
sider the rotation of an ordinary Cartesian reference frame, denoted by the axes (x, y, z),
about the origin. The rotating reference system is denoted by the axes (x′, y′, z′) as shown
in Figure B.1. Note that the two coordinate origins coincide for the case of pure rotation.
For further readability the inertial reference system will be denoted I, and the moving
frame will be denoted M . For an observer resting in the primed reference frame, a vector
A(t) with its components (A′1(t), A′2(t), A′3(t)) that change with time can be represented
as follows

dA

dt

∣∣∣∣
M

= dA′1
dt
e′1 + dA′2

dt
e′2 + dA′3

dt
e′3 (B.1)

where the indexM refers to that the derivative is calculated in the moving reference frame.

Figure B.1: Relative position of the reference frames with coordinates (x,y,z) and
(x’,y’,z’).

Now, for the inertial reference frame both the vector A(t) and the unit vectors (e′1, e′2, e′3)
change with time. Hence when differentiatingA(t) the unit vectors should be differentiated
as well, thus we need to use the product rule for differentiation

dA

dt

∣∣∣∣
I

= dA′1
dt
e′1 + dA′2

dt
e′2 + dA′3

dt
e′3 +A′1ė

′
1 +A′2ė

′
2 +A′3ė

′
3 (B.2)

which yields the following results
dA

dt

∣∣∣∣
I

= dA

dt

∣∣∣∣
M

+A′1ė
′
1 +A′2ė

′
2 +A′3ė

′
3 (B.3)
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Since the following generally holds: d/dt(e′i · e′i) = e′i · ė′
i + e′i · ė′

i = d/dt(1) = 0. Hence
e′i · ė′i = 0, i.e. the derivative of a unit vector is always orthogonal to the vector itself and
thus the derivative can be written as linear combinations of two other unit vectors. This
can be expressed as follows

ė′
1 = a1e

′
2 + a2e

′
3 (B.4)

ė′
2 = a3e

′
1 + a4e

′
3 (B.5)

ė′
3 = a5e

′
1 + a6e

′
2 (B.6)

This yields that only 3 of the coefficients a1, a2, ..., a6 are independent. This is done by
first differentiating e′1 · e′2 = 0 which yields

ė′1 · e′2 = −ė′2 · e′1 (B.7)

Now, by multiplying Eq.(B.4) and correspondingly Eq.(B.5) by e′
1 results in

e′2 · ė′1 = a1 and e′1 · ė′2 = a3 (B.8)

and thus a3 = −a1. By an analogous procedure one find the that the following is true as
well, a5 = −a2 and a6 = −a4. The time derivative in the inertial reference frame of A(t)
can now be expressed as follows

dA

dt

∣∣∣∣
I

= dA

dt

∣∣∣∣
M

+A′1(a1e
′
2 + a2e

′
3) +A′2(a3e

′
1 + a4e

′
3) +A′3(a5e

′
1 + a6e

′
2) (B.9)

which also can be expressed as

dA

dt

∣∣∣∣
I

= dA

dt

∣∣∣∣
M

+ e′1(−a1A
′
2 − a2A

′
3) + e′2(−a1A

′
1 − a4A

′
3) + e′3(−a1A

′
1 − a4A

′
2) (B.10)

Recognize the evaluation rule of the vector product in the last three terms:

C×A =

∣∣∣∣∣∣∣
e′1 e′2 e′2
C1 C2 C3
A′1 A′2 A′3

∣∣∣∣∣∣∣ = e′1(C2A
′
3−C3A

′
2)−e′2(C1A

′
3−C3A

′
1)+e′3(C1A

′
2−C2A

′
1) (B.11)

and by setting C = (a4,−a2, a1) it follows that

dA

dt

∣∣∣∣
I

= dA

dt

∣∣∣∣
M

+C ×A (B.12)

where C is a vector. To find the meaning of C, consider the special case of pure rota-
tion around the z-axis in the inertial frame, i.e. the z-axis and the z’-axis coincide and
dA/dt|M = 0, i.e. the motion of the vectorA(t) in the moving frame vanishes. This means
that A(t) is fixed in the moving frame and rotates with the frame around the z-axis. Now
let θ be the north-pole angle by which A(t) is inclined from the rotation axis, see Figure
B.2. The component parallel to the angular velocity ω is not changed by the rotation.
The motion of A(t) in the inertial frame can then be described by the equation

dA

dt

∣∣∣∣
I

= ωA sin(θ) (B.13)
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which also equals
dA

dt

∣∣∣∣
I

= ω ×A (B.14)

Since the choice of the vector A(t) can be made arbitrarily, C must represent the angular
velocity ω of the rotating system M . By insertion in Eq.(B.12) this yields

dA

dt

∣∣∣∣
I

= dA

dt

∣∣∣∣
M

+ ω ×A (B.15)

Figure B.2: Change of the position vector A tightly fixed in a rotating reference frame.

B.2 D̂ operator

For readability the expressions are shortened and the operator D̂ = ∂/∂t is introduced.
This yields the two expressions

D̂I = ∂

∂t

∣∣∣∣
I

and D̂M = ∂

∂t

∣∣∣∣
M

(B.16)

which simplifies the Eq.(B.15) to

D̂IA = D̂MA+ ω ×A (B.17)

This operator can operate on arbitrary vectors and the expression looks as follows, with
A omitted

D̂I = D̂M + ω× (B.18)
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B.3 Newton’s equation in systems with pure rotation
Now consider Figure (B.2) again, instead of vector A, call the position vector for R
instead, i.e. R is the position vector in the accelerating system. In the accelerated system
the fictitious forces must be derived since Newton’s law mR̈ = F only holds in the inertial
system. Again consider the case of pure rotation, to obtain the modified Newton’s equation
for the accelerating reference system the first step is to differentiate Eq.(B.15)

R̈I = d

dt
(Ṙ)I = D̂I(D̂IR) = (D̂M + ω×)(D̂MR+ ω ×R) =

= D̂2
MR+ D̂M (ω ×R) + ω × D̂MR+ ω × (ω ×R) =

= D̂2
MR+ (D̂Mω)×R+ 2ω × D̂MR+ ω × (ω ×R)

(B.19)

By replacing the operator D with the usual differential quotient the following expression
for the acceleration is obtained

d2R

dt2

∣∣∣∣
I

= d2R

dt2

∣∣∣∣
M

+ dω

dt

∣∣∣∣
M

×R+ 2ω × dR

dt

∣∣∣∣
M

+ ω × (ω ×R) (B.20)

Multiplying the above equation with the mass m yields the force F

F = m
d2R

dt2

∣∣∣∣
M

+m
dω

dt

∣∣∣∣
M

×R+ 2mω × dR

dt

∣∣∣∣
M

+mω × (ω ×R) (B.21)

and finally, by rearranging this equation Newton’s equation in the accelerating system is
obtained

m
d2R

dt2

∣∣∣∣
M

= F − dω

dt

∣∣∣∣
M

×R− 2mω × dR

dt

∣∣∣∣
M

−mω × (ω ×R) (B.22)

The three terms m(dω/dt)|M ×R, 2mω× (dR/dt)|M and mω× (ω×R) are the fictitious
forces appearing due to the accelerating reference frame. They are called the Euler force,
Coriolis force and centripetal force respectively.

B.4 Newton’s equation in systems with arbitrary general
motion

Now consider an arbitrary general motion of the accelerating reference system, i.e. the
condition that the origins of the two reference systems should coincide is no longer applied.
This motion consists of both a rotation of the reference frame and a translation of the
origin. Consider Figure (B.3), here r points to the origin of the primed reference system
and r′ is a position vector in the primed reference system. Thus the position vector R in
the inertial system can be expressed as

R = r + r′ (B.23)
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Figure B.3: Relative position of the reference frames with coordinates (x,y,z) and
(x’,y’,z’).

Now Newton’s equation in the inertial system is expressed

m
d2R

dt2

∣∣∣∣
I

= FI = F (B.24)

and by inserting the expression of the position vector from Eq.(B.23) and performing the
differentiation as performed above, the following expression is obtained

m
d2r′

dt2

∣∣∣∣
M

= F −md2r

dt2

∣∣∣∣
I

−mdω

dt

∣∣∣∣
M

× r′ − 2mω × dr′

dt

∣∣∣∣
M

−mω × (ω × r′) (B.25)

(Greiner, 2003).
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C| Appendix 3
C.1 Equations of motion of an inverted spherical pendulum
The first approach to model the occupant was to model the upper body as an inverted
spherical pendulum consisting of a massless rigid rod, connecting a point mass to a pivot
point in the origin of a reference system. The point mass coordinates r = (x, y, z) can be
uniquely specified by a set of state variables (θ, ϕ, r), where θ is the north-pole angle, ϕ
is the azimuth, and r is the rod length, see Figure 3.4b in section 3.1. To avoid singu-
larities near the north-pole, i.e. the region near θ = nπ for n = 0, 2, 4, ..., the reference
frame in the model is rotated clockwise 90° around the y-axis, see Figure 3.3 in section 3.1.

Note that the z-axis is the longitudinal axis, positive indicates the direction of travel
of the vehicle. The y-axis is the same as the old system while the x-axis is the vertical axis
which points downwards to the "ground". The Cartesian coordinates of the point mass in
the new system are denoted

x = −r sin(θ) sin(ϕ)
y = r sin(θ) cos(ϕ)
z = r cos(θ)

(C.1)

The inverted spherical pendulum is configured with two spring-damper pairs acting in
the direction of θ and ϕ at the pivot point. The starting point of the derivation of the
equations of motion is the Lagrangian as described in section 2.5.1. The Lagrangian for a
system of particles can be defined by

L = T − V (C.2)

where T is the total kinetic energy of the system, defined as

T = 1
2

N∑
k

mkv
2
k (C.3)

where mk is the mass and v is the velocity of each particle, respectively. For the inverted
spherical pendulum, consisting of a massless rod and a single point mass, k = 1 and the
kinetic energy is thus calculated by the equation

T = 1
2mv

2 (C.4)

The square of the velocity v of the particle can be expressed in terms of the time derivatives
of the Cartesian states as follows

v2 = ẋ2 + ẏ2 + ż2 (C.5)

where the derivatives of the Cartesian states are

ẋ = −r(θ̇ cos θ sinϕ+ ϕ̇ sin θ cosϕ)
ẏ = r(θ̇ cos θ cosϕ− ϕ̇ sin θ sinϕ)
ż = −rθ̇ sin θ

(C.6)
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which by squaring each of the equations in Eq.(C.6) yields that v2 can be expressed in
terms of the generalized coordinates θ and ϕ as follows

v2 = r2(θ̇2 + ϕ̇2 sin2 θ) (C.7)

and thus, the kinetic energy of the inverted spherical pendulum is

T = 1
2mr

2(θ̇2 + ϕ̇2 sin2 θ) (C.8)

The potential energy V , of the pendulum is a combination of the mass of the pendulum
and the torsion springs included at the pivot point. The potential energy can be defined
as

V = mgx+ 1
2kθθ

2 + 1
2kϕϕ

2 = −mgr sin θ sinϕ+ 1
2kθθ

2 + 1
2kϕϕ

2 (C.9)

where m is the particle mass, g = 9.81 m/s2 is the gravitational constant, x is the vertical
distance from the pivot point to the mass particle and kθ and kϕ are the spring coefficients
of the torsion springs. The springs exert a torque on the pendulum proportional to the
angle of rotation, i.e. the spring coefficients is of unit Nm/rad. Combining Eq.(C.8) and
Eq.(C.9) the Lagrangian can now be expressed as

L = 1
2mr

2(θ̇2 + ϕ̇2 sin2 θ) +mgr sin θ sinϕ− 1
2kθθ

2 − 1
2kϕϕ

2 (C.10)

With the Lagrangian expressed in terms of the generalized coordinates we can now shift
focus to the dissipative forces of the system, the two dampers. The dampers will exert a
torque on the pendulum which is proportional to the angular velocity of the pendulum.
The dissipative potential function is called the Rayleigh’s dissipation function, and can be
defined, for the generalized coordinates, as follows

Dθ = 1
2cθθ̇

2 (C.11)

Dϕ = 1
2cϕϕ̇

2 (C.12)

with the damper coefficients cθ and cϕ which have the unit Nm·s/rad. Now, the Lagrange’s
Equations of motion can be expressed from Eq.(2.24) derived in section 2.5.1 as

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+ ∂D

∂q̇i
= Qnci for i = 1, 2, ..., N (C.13)

where qi = (θ, ϕ) are the generalized coordinates, q̇i = (θ̇, ϕ̇) are the generalized velocities
and Qnci are the generalized forces, i.e. forces induced on the pendulum from the seat, the
seat belt and the driver’s arms.

By performing all the differentiations in Eq.(C.13), we arrive at the following two equa-
tions which describe the motion of the pendulum, i.e. the Lagrange’s Equations of motion
are

θ̈ = (ϕ̇2 sin θ + g

r
sinϕ) cos θ − 1

mr2 (kθθ + cθθ̇) (C.14)

ϕ̈ = −2θ̇ϕ̇cos θ
sin θ + g

r

cosϕ
sin θ −

1
mr2 sin2 θ

(kϕϕ+ cϕϕ̇) (C.15)

These equations describe the motion of the pendulum when it is only affected by gravity
but since the vehicle accelerates, hereinafter referred to as vehicle or system acceleration,

XII



C. Appendix 3

some additional contributions need to be considered. The vehicle acceleration as well as
the fictitious acceleration, arising in an accelerating reference system, need to be included
since they induce forces on the pendulum. The forces induced by these accelerations exert
a torque about the pendulum pivot point which needs to be included in the equations of
motion. The additional terms are the System force, the Euler force, the Coriolis force and
the Centripetal force. The force induced by the accelerating reference system is expressed
as

Fsystem = masystem (C.16)

and the fictitious forces are expressed as follows

Feuler = −mω × r
Fcoriolis = −2mω × ṙ
Fcentripetal = −mω × (ω × r)

(C.17)

where m is the pendulum mass, asystem is the system acceleration, i.e. the acceleration
of the reference system, ω and ω̇ are the angular velocity and angular acceleration of the
accelerating reference system, and r and ṙ are the pendulum position and velocity in the
accelerating reference system. The total contribution of the system and fictitious forces
are added in a vector called Ftotal

Ftotal = Fsystem + Feuler + Fcoriolis + Fcentripetal (C.18)

The resulting torque which Ftotal induces on the pendulum is dependent on the pendulum
length r, and the direction as well as the magnitude of the force vector. Note here, that
Ftotal is expressed in Cartesian coordinates and hence a transformation into the spherical
coordinates is needed. Note that the dot product between a vector a and a unit vector b̂,
is the projection of a along the direction of b̂. This technique can used to express Ftotal
in the directions of the spherical unit vectors. The spherical unit vectors for our reference
system are defined as follows

êr =

dr

dr∣∣∣∣drdr
∣∣∣∣ =


− sin θ sinϕ
sin θ cosϕ

cos θ

 (C.19)

êθ =

dr

dθ∣∣∣∣drdθ
∣∣∣∣ =


− cos θ sinϕ
cos θ cosϕ
− sin θ

 (C.20)

êϕ =

dr

dϕ∣∣∣∣ drdϕ
∣∣∣∣ =


− cosϕ
sinϕ

0

 (C.21)

The directions of the spherical unit vector can be observed in Figure C.1.
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Figure C.1: Spherical unit vectors relative the Cartesian reference frame as defined in
Eq.(C.19), Eq.(C.20) and Eq.(C.21).

Note that êr points along the rigid rod which means there is no contribution of the portion
of Ftotal acting along êr. Since both êθ and êϕ are perpendicular to the pendulum rod,
the torque contribution to the system is the force acting along êθ and êϕ times the lever
from the pivot point. This expands Eq.(C.14) and (C.15) to the following equations

θ̈ = (ϕ̇2 sin θ + g

r
sinϕ) cos θ − 1

mr2 (kθθ + cθθ̇) + r

mr2Ftotal · êθ (C.22)

ϕ̈ = −2θ̇ϕ̇cos θ
sin θ + g

r

cosϕ
sin θ −

1
mr2 sin2 θ

(kϕϕ+ cϕϕ̇) + r

mr2 sin2 θ
Ftotal · êϕ (C.23)

The contributions of the restraint systems also need to be added to the equations of motion.
The restraint systems include the seat belt, the seat and, if the model is simulated as a
driver, the arms. The restraint systems induce forces on the pendulum which are defined
as Cartesian vectors, Fsb, Fs and Fa such that they are applied on the pendulum in the
sternum point, i.e. at the length r from the pivot point. Since these are Cartesian vectors
this means that their contribution to the equations of motion can be added in an analogous
procedure just as for the fictitious forces. This yields to the following equations

θ̈ = (ϕ̇2 sin θ + g

r
sinϕ) cos θ − 1

mr2 (kθθ + cθθ̇) + r

mr2Ftotal · êθ + r

mr2Fr · êθ (C.24)

ϕ̈ = −2θ̇ϕ̇cos θ
sin θ + g

r

cosϕ
sin θ −

1
mr2 sin2 θ

(kϕϕ+cϕϕ̇)+ r

mr2 sin2 θ
Ftotal · êϕ+ r

mr2 sin2 θ
Fr · êϕ
(C.25)

where Fr is the restraint system force resultant vector, Fr = Fsb+Fs+Fa. These equations
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can be expressed in the following equation system:[
mr2 0

0 mr2 sin2 θ

]
︸ ︷︷ ︸

M(θ)

[
θ̈
ϕ̈

]
︸︷︷︸
{q̈i}

=
[

0 mr2ϕ̇ cos θ sin θ
−mr2ϕ̇ cos θ sin θ −mr2θ̇ cos θ sin θ

]
︸ ︷︷ ︸

S(q,q̇)

[
θ̇
ϕ̇

]
︸︷︷︸
{q̇i}

+
[
mrg cos θ sinϕ
mrg cosϕ sin θ

]
︸ ︷︷ ︸

G(q)

−

[
kθθ
kϕϕ

]
︸ ︷︷ ︸
K(q)

−
[
cθθ̇
cϕϕ̇

]
︸ ︷︷ ︸
C(q̇)

+
[
Ftotalrêθ
Ftotalrêϕ

]
︸ ︷︷ ︸

N(q)

+
[
Frrêθ
Frrêϕ

]
︸ ︷︷ ︸
R(q)

(C.26)

M(q) is the system mass matrix, S(q, q̇) is the coupling matrix, G(q), K(q) and C(q̇)
are the gravity, spring and damping contributions. N(q) and R(q) are the system,
fictitious and restrains forces, respectively.
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D.1 Equations of motion of an inverted spherical double pen-

dulum
The second approach to model the occupant is a development of the first model. Instead
of modeling the occupant as a single rod a hinge joint was added to act as a "neck joint",
making it an inverted spherical double pendulum. The developed model is a double pen-
dulum in the sense that it has two rods, but the second rod can only move longitudinal
relative the first rod. As for the first single pendulum the rods are rigid and massless
which brings a three DoF system with the generalized coordinates (θ1, ϕ, θ2).

Just as for the first model the reference frame is rotated to avoid singularities near the
region pointing vertically upwards, see Figure 3.3 in section 3.1. Figure 3.5b in section 3.1
is a schematic figure of the double pendulum. The total mass of the upper body is divided
into two point masses, the first represents sternum m1 = 40 kg and the second represents
the head m2 = 6 kg. Each of the joints are constrained with spring-damper pairs which
restrain the rotations about the generalized coordinates.

The hinge joint is placed in the position of the T1 vertebra to approximately resemble the
"neck-joint". The first point mass is placed in the sternum position on the first rod while
the second point mass is placed at the end of the second rod to resemble the head. The
expressions for the Cartesian coordinates of the sternum and the T1 position only differ
by the lever lengths, first we introduce the expressions for the sternum positing denoted
(x1, y1, z1)

x1 = −r1 sin θ1 sinϕ
y1 = r1 sin θ1 cosϕ
z1 = r1 cos θ1.

(D.1)

where r1 is the rod length from the pivot point to sternum. The position of T1 is denoted
(x2, y2, z2) and is expressed as follows

x2 = −r2 sin θ1 sinϕ
y2 = r2 sin θ1 cosϕ
z2 = r2 cos θ1

(D.2)

where r2 is the rod length from the pivot point to the T1 vertebra. Note how the difference
in the sternum position and T1 position only differs by the lever length. The head center of
gravity position is computed relative the horizontal plane at the end of the first pendulum
rod, as can be seen in 3.5b in section 3.1. Thus, the head position is the addition of the
T1 position and the local head position, here denoted (x3, y3, z3)

x3 = x2 − r3 sin θ2 sinϕ
y3 = y2 + r3 sin θ2 cosϕ
z3 = z2 + r3 cos θ2

(D.3)

where r3 is the rod length from the T1 vertebra to the head CoG.
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The procedure to derive the equations of motion for the double pendulum is analogous to
the procedure in appendix C. We start by defining the Lagrangian of the system

L = T − V (D.4)

where T is the total kinetic energy, i.e. the sum of the kinetic energy of each of the two
point masses

T = 1
2m1v

2
1 + 1

2m2v
2
2 (D.5)

where the expression for v1 and v2 can be written

v1 = ẋ2
1 + ẏ2

1 + ż2
1 (D.6)

v2 = ẋ2
3 + ẏ2

3 + ż2
3 (D.7)

Squaring the time derivative of the Cartesian states and adding the terms together yields
the following expression for the kinetic energy

T = 1
2m1r

2
1

(
θ̇1

2 + ϕ̇2 sin2 θ1

)
+

1
2m2

(
r2

2(θ̇1
2 + ϕ̇2 sin2 θ1) + 2r2r3(θ̇1θ̇2 cos(θ1 − θ2) + ϕ̇2 sin θ1 sin θ2)+

r2
3(θ̇2

2 + ϕ̇2 sin2 θ2

)
.

(D.8)

The potential energy, V , is the combination of the potential energy of the two point
masses, and the potential energy stored in each of the three torsion springs which restrain
the joints of the pendulum. The expression for the potential energy can be defined as

V = m1gx1 +m2gx3 + 1
2kθ1θ

2
1 + 1

2kϕϕ
2 + 1

2kθ1θ
2
1

= −m1gr1 sin θ1 sinϕ−m2g(r2 sin θ1 sinϕ+ r3 sin θ2 sinϕ) + 1
2kθ1θ

2
1 + 1

2kϕϕ
2 + 1

2kθ1θ
2
1

(D.9)

This yields the Lagrangian

L = 1
2m1r

2
1

(
θ̇1

2 + ϕ̇2 sin2 θ1

)
+

1
2m2

(
r2

2(θ̇1
2 + ϕ̇2 sin2 θ1) + 2r2r3(θ̇1θ̇2 cos(θ1 − θ2) + ϕ̇2 sin θ1 sin θ2)+

r2
3(θ̇2

2 + ϕ̇2 sin2 θ2

)
+m1gr1 sin θ1 sinϕ+m2g(r2 sin θ1 sinϕ− r3 sin θ2 sinϕ)−

1
2kθ1θ

2
1 −

1
2kϕϕ

2 − 1
2kθ1θ

2
1

(D.10)

The Lagrangian is now expressed in terms of the generalized coordinates and we can shift
focus to the dissipative terms of the system, the three dampers. This is executed using
Rayleigh’s dissipation function just as for the single pendulum and the three terms become

Dθ1 = 1
2cθ1 θ̇1

2 (D.11)
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Dϕ = 1
2cϕϕ̇

2 (D.12)

Dθ2 = 1
2cθ2 θ̇2

2 (D.13)

The Lagrange’s equations of motion can now be derived via

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

+ ∂D

∂q̇i
= Qnci for i = 1, 2, ..., N (D.14)

where qi = (θ1, ϕ, θ2) are the generalised coordinates, q̇i = (θ̇1, ϕ̇, θ̇1) are the generalized
velocities, and Qnci are the generalized forces, i.e. forces induced on the pendulum from
the seat, the seat belt, and the driver’s arms.

Performing all the differentions in Eq.(D.14) yields the equations of motion for the dou-
ble pendulum. The additions of the forces induced by the accelerating reference system
and fictitious forces Ftotal and restraint forces Fr are added to the equation system as
previously described in Appendix C, i.e. we compute the force vectors and compute their
contribution in the directions of the spherical unit vectors. For space issues the following
abbreviations are used in the expressions of the equations

• cθ1 = cos θ1
• cϕ = cosϕ
• cθ2 = cos θ2
• sθ1 = sin θ1
• sϕ = sinϕ
• sθ2 = sin θ2
• s2θ1 = sin2 θ1
• cα = cos(θ1 − θ2)
• sα = sin(θ1 − θ2)

The full equation system can be seen on the following page.
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M(q) is the system mass matrix, S(q, q̇) is the coupling matrix, G(q), K(q) and C(q̇)
are the gravity, spring and damping contributions. N(q) and R(q) are the, system plus
fictitious forces and restrains forces, respectively.
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E| Appendix 5
E.1 Additional ERR results
Figure E.1 and E.2 present the longitudinal and lateral displacement of parameter sets DB,
DD and DE when an ERR equipped seat belt restrains the double pendulum occupant
model. The occupant model is slightly pulled back by the belt after ERR has been
activated. Moreover, the displacement is reduced in both longitudinal and lateral direction
during the maneuver for all three parameter sets.

Figure E.1: Longitudinal displacement of T1 for the double pendulum model, where
the solid line is the response with ERR, and the dotted line is with a standard belt.

Figure E.2: Lateral displacement of T1 for the double pendulum model, where the
solid line is the response with ERR, and the dotted line is with a standard belt.
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