
DF

PREDICTION OF BRAKE SQUEAL:
A DEEP LEARNING APPROACH

ANALYSIS BY MEANS OF RECURRENT NEURAL NETWORKS

MASTER’S THESIS IN COMPLEX ADAPTIVE SYSTEMS

NADJA GROCHEVAIA

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2020

MASTER’S THESIS 2020:05

Prediction of Brake Squeal: A Deep Learning Approach

Analysis by Means of Recurrent Neural Networks

NADJA GROCHEVAIA

DF

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2020

Prediction of Brake Squeal: A Deep Learning Approach
Analysis by Means of Recurrent Neural Networks
NADJA GROCHEVAIA

© NADJA GROCHEVAIA 2020.

Supervisor: Staffan Johansson, Volvo Car Corporation
Examiner: Marina Rafajlovic, Department of Physics

Master’s Thesis 2020:05
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2020

iv

Prediction of Brake Squeal: A Deep Learning Approach
Analysis by Means of Recurrent Neural Networks
NADJA GROCHEVAIA
Department of Physics
Chalmers University of Technology

ABSTRACT

Noise, vibration and harshness (NVH) is a principal field of research for the automotive
industry. Current research methods of brake NVH involve the finite element method
and complex eigenvalue analysis, both of which fall short in terms of their noise pre-
diction capabilities. Lately, research has shifted towards deep learning with the ap-
plication of machine learning algorithms to detect, characterise and predict noise in
commercial brake systems. This thesis investigates the possibility of implementing
novel data science techniques to predict the vibrational behaviour of brake structure
by means of deep neural network models, more specifically recurrent neural network
(RNN) architectures. Two versions of RNN with an encoder-decoder architecture were
evaluated: the long short-term memory (LSTM) and the gated recurrent unit (GRU)
networks. The networks were applied on two datasets of normal force between the
brake pad and the disc, measured in Newton: the sinusoidal data signal that corre-
sponds to the brake squeal and the quiet reference data. The effect of the multifea-
tured data on prediction accuracy was investigated as well. The results showed that the
LSTM network produced the most reliable results on the sinusoidal data signal with a
prediction length of 10 ms, which generated a weighted mean absolute percent error
(wMAPE) of 61.57% and a mean absolute error (MAE) of the normal force of 0.1647 N.
The corresponding results obtained by the GRU model were a wMAPE of 21.77% and a
MAE of 0.1804 N. The highest wMAPE and MAE values of 91.01% and 0.0442 N, respec-
tively, were obtained by the LSTM network on the multifeatured sinusoidal data signal
with a length of 2.5 ms. In general, shorter prediction lengths generated higher ac-
curacy and lower MAE scores. Moreover, predictions based on multifeatured datasets
generated overall slightly better results compared to the single featured data. Overall,
the outlook of data-driven applications on friction-induced dynamics seem promis-
ing. Future work, should focus on classification of various types of brake signals for a
better understanding of the brake squeal phenomenon.

Keywords: AI, ANN, brake squeal, deep learning, encoder-decoder, GRU, LSTM, RNN,
time series forecasting.

v

ACKNOWLEDGEMENTS

Firstly, I wish to express my sincere appreciation to my supervisor at Volvo Cars, Staffan
Johansson, for his reliable guidance, invaluable insight and undivided support. His
encouraging words and sense of professionalism allowed me to finish this thesis in a
timely manner.

I would also like to express my gratitude toward Tomas Björklund, Deep learning spe-
cialist at Volvo Cars, for his technical expertise and patience. Our discussions have had
a profound impact on my overall understanding of the subject matter.

Furthermore, I wish to pay special regards and thanks to postdoctoral research fellow
Marina Rafajlovic at Chalmers University of Technology, for taking on the role as Ex-
aminer.

Finally, I would like to acknowledge my friends and family for their unconditional love
and support, in particular my domestic partner John. They have been rallying behind
me from the very beginning and this thesis would not have been possible without their
unwavering encouragement.

Nadja Grochevaia, Gothenburg, October 2020

vii

CONTENTS

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 5
2.1 Review of brake noise . 5
2.2 Machine learning for brake noise . 6

3 Theoretical Prerequisites 9
3.1 Artificial neural networks . 9
3.2 Backpropagation . 11
3.3 Activation functions . 13
3.4 Recurrent neural networks . 14

3.4.1 Long short-term memory neural network 16
3.4.2 Gated recurrent unit neural network 18

3.5 Encoder-Decoder . 19
3.6 Regularisation for deep learning . 20

3.6.1 L2 regularisation . 20
3.6.2 Early stopping . 20
3.6.3 Dropout . 21

3.7 Optimisation for deep learning models . 21
3.7.1 Adaptive moments estimation . 21

3.8 Preprocessing of time series . 22

4 Method 23
4.1 Data description . 23
4.2 Data preprocessing . 25
4.3 Software and Hardware . 26
4.4 Experimental setup . 26
4.5 Model development . 28

4.5.1 Hyperparameter Search . 29
4.6 Model evaluation . 30

5 Results and discussion 33
5.1 Model comparison . 33
5.2 Hyperparameter search . 40

5.2.1 Batch size . 40
5.2.2 Number of hidden nodes . 40
5.2.3 Learning rate . 41

ix

CONTENTS

5.2.4 Regularisation parameter . 41

6 Conclusion 47
6.1 Future work . 48

Bibliography 49

A Historical Review I
A.1 Development of artificial neural networks I

B Additional Theory III
B.1 Two degree of freedom model . III
B.2 White Noise . IV

X

LIST OF FIGURES

2.1 Flowchart of the time series forecasting process 7

3.1 Illustration of the artifical neuron . 9
3.2 Architecture of the multilayer perceptron network 11
3.3 Illustration of example activation functions 14
3.4 Recurrent neural network unrolled along time 15
3.5 Long short- term memory unit . 16
3.6 Gated recurrent unit . 19
3.7 Encoder-decoder architecture . 19

4.1 Schematic illustration of the brake data collection process 23
4.2 Two raw normal force signals . 24
4.3 Two normal force signals and their respective short time Fourier transform 25
4.4 Fast Fourier transform of two normal force signals 25

5.1 Heatmap of MSE scores for various input-output ratios with LSTM RNN
encoder-decoder model . 37

5.2 Heatmap of ttest for various input-output ratios with LSTM RNN encoder-
decoder model . 37

5.3 LSTM RNN encoder-decoder prediction on the reference data signal with
a 100-20 input-output ratio . 38

5.4 LSTM RNN encoder-decoder prediction on the sinusoidal data signal with
a 100-20 input-output ratio . 39

5.5 LSTM RNN encoder-decoder prediction on the reference signal with a
100-100 input-output ratio . 39

5.6 LSTM RNN encoder-decoder prediction on the sinusoidal data signal with
a 100-100 input-output ratio . 40

5.7 Learning curves for various batch sizes . 42
5.8 Effects of tuning hidden nodes and batch size 42
5.9 Learning curves for various numbers of hidden nodes 43
5.10 Effects of tuning the regularisation parameter and learning rate 43
5.11 Learning curves for various values of the learning rate, η 44
5.12 Learning curves for various values of the regularisation parameter, λ . . . 45

B.1 Single mass model with two degrees of freedom III

xi

LIST OF FIGURES

XII

LIST OF TABLES

4.1 Hardware specifications . 26
4.2 Experimental setup for performance comparison of the LSTM and the

GRU RNN encoder-decoder models . 27
4.3 Additional experimental setup for performance of the LSTM RNN encoder-

decoder model on a quiet signal . 27
4.4 Default hyperparameters for model comparison 28

5.1 LSTM RNN encoder-decoder results for various input-output ratios of
the reference data signal . 33

5.2 GRU RNN encoder-decoder results for various input-output ratios of the
reference data signal . 34

5.3 LSTM RNN encoder-decoder results for various input-output ratios of
the sinusoidal data signal . 34

5.4 GRU RNN encoder-decoder results for various input-output ratios of the
sinusoidal data signal . 35

5.5 LSTM RNN encoder-decoder results for various input-output ratios of
the multifeatured reference data signal . 35

5.6 LSTM RNN encoder-decoder results for various input-output ratios of
the multifeatured sinusoidal data signal . 35

5.7 Alternative LSTM RNN encoder-decoder results for various input-output
ratios of the reference data signal . 36

5.8 Results from the hyperparameter search . 41

xiii

LIST OF TABLES

XIV

1 | INTRODUCTION

The automotive industry is constantly aiming to improve commercial road vehicles
with superior safety innovations, quality and comfort. The development process is
highly intricate, with numerous components continuously being manufactured and
improved in order to meet new industry standards. A principal field of research within
new automotive systems is noise, vibration and harshness (NVH), which deals with
disturbances experienced by passengers in the cabin of a vehicle [1]. Researchers have
identified various forms of NVH, such as aerodynamic, electrical and mechanical. Al-
though there are several causes of NVH, one of the biggest concerns for automotive
consumers is the noise and vibrations produced by friction brakes in commercial road
vehicles [2]. Problems relating to NVH often lead to considerable costs for both the
manufacturer and the consumer; therefore, industry researchers are continuously de-
veloping new numerical methods and experimental setups to gain a better under-
standing of NVH. The current research methodology includes the finite element method
and complex eigenvalue analysis, both of which fall short in their noise prediction ca-
pabilities with regard to human experience [2].

During the last decade, numerous researchers alongside the automotive industry have
been struggling with identifying the root cause of self-excited frictional vibrations in
dynamically unstable machine structures [2]. With ever more sophisticated research
methods, studies have illustrated the highly nonlinear and chaotic nature of NVH. To-
day, the majority of industry trials are still being conducted experimentally due to in-
sufficient prediction accuracy of the current numerical methods [3]. Despite the sub-
stantial progress made within data-driven sciences, the numerical modelling approach
has yet to show any conclusive results in terms of NVH. This has shifted the research
focus toward deep learning, where machine learning algorithms are being used to de-
tect, characterise and predict brake noise in commercial brake systems [3].

A recurrent neural network (RNN) is a type of artificial neural network (ANN) that is
capable of processing sequential data. The architecture of the RNN enables an inter-
nal memory state to change throughout time, i.e., a pattern of the current time series
is constantly updated and stored [4]. The two most common RNN units are the long
short-term memory (LSTM) and the gated recurrent unit (GRU). A network that pro-
cesses sequential data is tasked with remembering past observations and uses these to
predict future values. This means that a basic RNN model consisting single memory
units might perform poorly due to excessive workloads. [4]. In order to circumvent
this type of problem the so called encoder-decoder architecture is introduced. Instead
of using a single multi-tasking cell, the encoder-decoder model uses a combination of
two specialised cells: one for learning past values and another reserved for encoder
memory states that is used for predictions of future values [5].

1

1. INTRODUCTION

The data acquisition process involves brake signal measurements by means of a stan-
dard brake dynamometer, i.e., a set of sensors fitted on to each brake pad measures
the pressure at a fixed position [2]. Traditionally, brake noise is recorded using a mi-
crophone during a matrix test for a variety of braking applications [6]. Throughout this
procedure the brake pad is treated as a passive component, since it does not provide
any information of the real brake efficiency, nor does it detect any malfunctions [7].
In this thesis, a new means of brake data acquisition is introduced, made possible by
the so called ITT Smart Pad® designed by ITT Friction Technologies. The the embed-
ded sensors in the bake pad collects data in real-time, thus transforming an otherwise
passive component into an active one. The ITT Smart Pad® is capable of gathering
real-time data of normal force, temperature, torque etc. With this type of information,
new modes of analysis can be developed which might lead to a deeper understanding
of the principles that governs brake noise [7].

This thesis aims to investigate the possibility of implementing novel data science tech-
niques on classical mechanical engineering problems such as prediction of brake noise
by means of deep neural network models. The goal is to determine the adequacy of
such models for prediction of time dependent data series, i.e. whether a RNN is suit-
able for capturing typical brake noise patterns.

The NVH group at Volvo Cars would like to investigate the possibility of applying deep
learning methods to friction-excited vibrational structures, such as the physics be-
tween brake pads and discs. The objective for the future is to implement a prediction
model for mitigation of brake squeal directly into the car itself.

The first paper to provide insight into brake squeal using ANN was published by Sten-
der et al. [3]. Their work showed promising results in applications of deep learning
methods for detection, classification and prediction of brake squeal. Nevertheless,
classification of brake squeal is excluded from this thesis. Instead, the focus is set on
modelling an encoder-decoder RNN for prediction of the normal force signal. More-
over, a comparison between LSTM and GRU units will be conducted, along with an
analysis of the maximum predicted signal length without loss of accuracy. Further-
more, a hyperparameter search will be performed to determine the efficiency of the
model. Finally, the overall prediction performance of the model with univariate input
signals will be compared to that of a multivariate model.

Since the primary objective of this thesis is to investigate the efficacy of deep learn-
ing techniques to predict brake noise patterns; hence, conventional research methods,
such as FEM and CEA, will not be considered. Given the wide variety of RNN archi-
tectures suitable for time series forecasting, this thesis will be limited to the encoder-
decoder model. Also, time series forecasting will only be conducted on normal force
signals resulting from friction between the brake pad and disc. Each sensor on the
ITT Smart Pad® are addressed individually, whereas the instance of all five sensors be-
ing engaged simultaneously is treated separately. Furthermore, classification of brake
noise based on the fast Fourier transform of a signal is ruled out. Lastly, all computa-
tions will be performed on the CPU as in the classical approach, due to relatively small
datasets. Thus, usage of the GPU is deemed redundant and excluded from this thesis.

2

1. INTRODUCTION

This thesis consists of six chapters. Background presents a brief review of the brake
noise phenomenon, followed by an introduction of machine learning and its imple-
mentation on brake noise problems. Theoretical prerequisites will go deeper into the
architecture of ANN, where the requisite theory for implementation of neural networks
is presented. Then, the development of machine learning algorithms, such as the RNN
and the encoder-decoder architecture is discussed, along with relevant methods for
optimisation and regularisation. In Methodology, the ITT Smart Pad® raw dataset is
described, together with machine learning algorithms and data preprocessing meth-
ods. Also, the implemented deep learning models are explained in greater detail. In
Results, the model comparison and the hyperparameter search are presented, as well
as illustrations of predicted signals of varying lengths. Lastly, Conclusion is put forward
as a closing remark. Please see appendix A for a more in-depth historical review and
appendix B for additional theory.

3

1. INTRODUCTION

4

2 | BACKGROUND

This chapter gives a short review of the brake noise problem and the application of ma-
chine learning for brake squeal predictions. Although the interest in machine learning
is widespread, the coverage of the topic with respect to brake noise is limited [3].

2.1 REVIEW OF BRAKE NOISE

Brake noise caused by commercial road vehicles has been an area of concern within
the automotive industry for decades. Throughout the years a large body of research
has been published on brake noise using increasingly more sophisticated experimen-
tal techniques [3, 8, 9, 10]. In 1961, Spurr [9] introduced the first kinematic constraint
source model suggesting that brake noise arises due to frictionally induced dynamic
instabilities caused by surface asperities. The frictional forces produced by the model
varies with time, despite the friction coefficient being constant. Furthermore, North
[8] established himself as the first researcher to treat brake squeal as a high-tonal fric-
tionally induced vibration and characterised it as a type of dynamic instability. He also
pioneered the use of complex eigenvalue analysis to describe the inherent mechanisms
of dynamic instability.

According to Day [2], most brake noises occur during a braking application due to flex-
ural vibrations within the disc or drum of a vehicle. The combination of material and
geometric properties of each moving part greatly influence the frequency of the brake
noise. For instance, flexural vibrations produced by both the disc and drum of a pas-
senger car tend to have frequency components in the range of 1–16 kHz which is more
commonly known as squeal. This type of brake noise is particularly intrusive since it
constitutes the most sensitive portion of the human auditory range [2]. For more infor-
mation, the single mass model with two degrees of freedom is described in appendix
B.1.

The automotive brake system is driven into a self-excited state of instability due to
complex, non-stationary and multiphysical constraints. Furthermore, the chaotic na-
ture of self-excited instabilities in brake systems tend to generate numerical predic-
tions of limited quality. Today, there is still limited knowledge of the contributing fac-
tors to the cause of these instabilities. However, research show that brake squeal is
highly nonlinear, multiscalar and unpredictable [3].

In an era of big data and machine learning, the implementation of deep neural net-
works in brake systems was more or less inevitable. Prediction of a sequence with mul-
tiple times steps based on previously observed values is efficiently handled by means
of time series forecasting models [11]. Thus, the application of deep learning methods

5

2. BACKGROUND

in automotive brake systems is a step toward mitigation of brake squeal and ultimately,
minimised costs.

2.2 MACHINE LEARNING FOR BRAKE NOISE

Machine learning has seen an accelerated rate of development in the past few decades
and the application of artificial neural networks has improved many aspects of modern
day research disciplines. Various research areas such as natural language recognition,
image processing [3], object detection, etc., have shown vast improvements as a result
of enhanced processing capabilities and the discovery of cutting edge algorithms [4].
However, the overall development of numerical methods for brake systems has stag-
nated, which has shifted the focus toward implementation of machine learning meth-
ods within the field of mechanical engineering. Also, the ability to collect large datasets
from commercial brake tests has played a significant role in this development [3].

Huge advancements have been made in autonomous vehicles with cars now capable
of guiding themselves through rugged landscapes, avoid pedestrians and keep steady
speeds. However, limited progress has been made in brake systems in the past decade
with respect to application of machine learning [3]. When developing next genera-
tion brakes, major attention is drawn to material and design improvements, as well
as obtaining a more stable frictional constant between the brake disc and pad, inde-
pendent of running conditions. Furthermore, future brake systems powered by deep
learning are expected to have the potential of transforming brakes from a mere me-
chanical component to an active one that incorporates real time software [7]. Thus,
deep learning offers the potential capability of teaching the brake system how to act in
the next instance based on historical data of the trained network, given the condition
to primarily mitigate brake squeal.

The idea of implementing deep learning to predict the propensity of brake squeal has
gained traction in recent years. The first paper that gave insight into the brake squeal
problem using deep learning was published in 2020 by the aforementioned Stender et
al. [3]. Their work described applications of RNN as well as convolutional neural net-
works for vibrational detection, classification and prediction. The authors used image
processing to classify brake noise, which prompts the neural network to train on dif-
ferent images of noise in the frequency-time domain. They observed promising results
where the existence of noise could both be predicted and classified, based on a set of
specific load of parameters such as pressure, disc velocity, temperature etc.

Time series forecasting emerged from applications on financial time series, where deep
learning has been used for over 40 years. This particular application of deep learning
has been reviewed by Sezer et al. [12]. The authors studied over 200 scientific papers
throughout the period from 2005 to 2019, where they examined the most commonly
used models and programming languages for implementation of deep learning. The
study showed that more than half of the papers were utilising RNNs, in particular LSTM
units, which constituted more than 60% of the applied architectures. Meanwhile, ar-
chitectures such as convolutional neural networks or deep multiple layer perceptrons

6

2. BACKGROUND

are widely used for classification purposes. According to Sezer et al. [12], the most
ubiquitous framework was Python in combination with Keras and TensorFlow libraries
which corresponded to 60% of the preferred development environments. Another ob-
servation was that LSTM with an encoder-decoder structure tends to provide a more
successful forecast.

Figure 2.1: Flowchart of the time series forecasting process on the raw Smart Pad®
data (SPD). The analysed normal force data is collected by ITT Smart Pad® and saved
as MAT-files. The preprocessing procedure includes, e.g., normalisation and partition-
ing of the data into smaller sequences that can be fed into the network. Several RNN
models are applied to the prepared data and accuracy scores are generated for analysis.

The overarching strategy for brake signal forecasting has become evident as a result
of this literature review. However, the complexity lies within the endeavour of finding
the right model fit for brake squeal prediction. Still, the application of various RNN
models show great promise, especially in tandem with an encoder-decoder structure.
Before time series forecasting can be applied, the raw sequential data generally require
a range of transformations. This type of preprocessing play an intricate part in the
construction of deep learning models. A diagram of the whole process is illustrated in
figure 2.1.

7

2. BACKGROUND

8

3 | THEORETICAL PREREQUISITES

This chapter introduces the core concepts of machine learning with emphasis on two
RNN architectures, namely the LSTM and GRU networks. Various regularisation and
optimisation methods for mitigation of overfitting in deep learning networks are pre-
sented. The aim of this chapter is to familiarise the reader with the requisite theory for
comprehending this thesis.

3.1 ARTIFICIAL NEURAL NETWORKS

Artificial neural networks (ANNs) are dynamic computational models that take on dif-
ferent forms based on the type of problem. According to [13], the architecture of the
ANN is inspired by interconnected brain cells, or neurons. The nervous impulses be-
tween these neurons create a processing network that repeatedly sends information
through various connections. This allows separately weighted information to enter
the cell body, where it is processed and summed. The output is then transmitted to
the connection point which forwards the information to the next neuron. An impulse
is generated only if a specific excitation threshold is met, i.e., only a particular set of
values is propagated through the network, and over time a distinct configuration rep-
resenting the task is established [13].

The artificial neuron is a mathematical representation of the biological neuron, and it
forms the foundation of an ANN. An illustration of the artificial neuron is presented in
figure 3.1.

!"

!#

!$

%#

%"

%$

& '()* +

,-./0 1/223-4 5/-6037- 8639:037- ;/-6037- </0./0=>34?0@

Figure 3.1: A graphical representation of an artificial neuron, where xi for i = 1, . . . ,m
are inputs, wi are weights, g is the activation function and y is the output given by
equation (3.1).

As stated in [14], the neuron accepts multiple binary inputs xi for i = 1, . . . ,m and as-

9

3. THEORETICAL PREREQUISITES

signs a weight wi to each input xi based on their respective priority. The summing
junction collects all of the weighted entries and generates an impulse within the cell.
Then, the activation threshold θ determines whether the neuron produces an excita-
tory potential or remains inhibited. Finally, the activation function g limits the output
to a specific range of values for computational efficiency and can be represented by dif-
ferent types of functions such as linear, step, bipolar step, etc. Thus, the output signal
y for the artificial neuron is [14]:

y = g

(
m∑

i=1
wi xi −θ

)
.

One of the earliest interpretations of a simple connected neural network was the so
called perceptron. The perceptron output described in [13] is continuously compared
to the target values for all training samples. The perceptron algorithm uses the follow-
ing updating scheme, also known as Hebb’s rule:

ŷ ← sgn
(
w T x (µ) −θ)

,

w ← w +η(
y (µ) − ŷ

)
x (µ),

θ← θ+η(
y (µ) − ŷ

)
(−1),

where ŷ is the predicted output from the perceptron, w = [w1 w2 . . . wm]T are the

weights, x (µ) = [x(µ)
1 x(µ)

2 . . . x(µ)
m]T are the inputs and y (µ) is the target value. Note that the

learning rate, which determines how fast the training process approaches convergence
is denoted by η ∈ (0,1) and µ ∈Z+ is the pattern index for the training set [13].

The development of both the artificial neuron and the perceptron gave rise to an al-
ternative ANN, called adaptive linear element (ADALINE). According to [13], ADALINE
uses the delta rule, also referred to as the gradient descent method as its primary up-
dating scheme which performs the minimisation of the squared error. Moreover, the
squared error between the target value y (µ) and the output ŷ from the network related
to the total of p training samples is given by:

E(w) = 1

2

p∑
µ=1

(
y (µ) − ŷ

)2
. (3.1)

Now, given all training samples p provided for training process and the squared error
in equation (3.1), the gradient descent method is defined as:

w ← w −η∂E(w)

∂w
,

where
∂E(w)

∂w
=−

p∑
µ=1

(
y (µ) − ŷ

)
x (µ),

represents the gradient of the squared error in equation (3.1) in the case when the ac-
tivation function g is linear. The tendency to update weights distinguishes ADALINE

10

3. THEORETICAL PREREQUISITES

from the perceptron [13]. The stopping criterion for ADALINE training process using
mean square error (MSE) with respect to all training samples is given by:

Ē(w) = 1

2p

2∑
µ=1

(
y (µ) − ŷ

)2
,

and ∣∣Ē(
w current)− Ē

(
w previous)∣∣≤ ε,

where ε is the required precision for the weights convergence [13].

A combination of several interconnected layers of perceptrons forms a feed forward
ANN called a multilayer perceptron (MLP). A notable feature of MLPs is the addition
of nonlinear activation functions [13]. This is discussed in greater details in section
3.3. MLP uses a generalisation of the delta rule known as backpropagation as its pri-
mary learning algorithm (see section 3.2). A schematic illustration of the MLP during
forward propagation is presented in figure 3.2.

Figure 3.2: Architecture of the MLP network consisting of the input layer I (µ) with m
inputs, two hidden layers V (1,µ) and V (2,µ), respectively, and the output layer O(µ) with
n outputs. The weight matrix connecting the layers is denoted as w (L) for L ∈ Z+ and
the indices correspond to the number of neurons in each layer. Note that L = 3 in this
particular case.

3.2 BACKPROPAGATION

The learning algorithm described in [13] is divided into two parts. The forward phase is
initiated by the input layer I (µ). The entries xi are propagated through the network via
the hidden layers V (1,µ) and V (2,µ) until the output layer O(µ) is evaluated [13]. Hence,

11

3. THEORETICAL PREREQUISITES

forward propagation can be written as [13]:

V (1,µ)
j = g

(
b(µ)

j

)
, b(µ)

j =
m∑

i=1
w (1)

j ,i xi −θ(1)
j ,

V (2,µ)
k = g

(
b(µ)

k

)
, b(µ)

k =
M1∑
j=1

w (2)
k, j V (1,µ)

j −θ(2)
k ,

ŷ (µ)
l = g

(
b(µ)

l

)
, b(µ)

l =
M2∑

k=1
w (3)

l ,kV (2,µ)
k −θ(3)

l .

Moreover, the global performance of training process with respect to all patterns p in
the training set is determined by the MSE function as follows:

E
(

y (µ)
l , ŷ (µ)

l

)
= 1

2p

n∑
l=1

p∑
µ=1

(
y (µ)

l − ŷ (µ)
l

)2
. (3.2)

The MSE function given by equation (3.2), measures the local performance in terms
of results produced by the output neuron l , with respect to the training sample µ. By
dividing the squared error by all samples p in the training set, the MSE for the global
performance of the network is obtained. Although there are various error functions
that can be used depending on the nature of the problem, the MSE function is still the
most common option for regression problems [13].

The backward phase of the learning algorithm involves computation of the derivative
of the error function with respect to the weights of V (1,µ), V (2,µ) and O(µ) layers [13].
Thus, the derivative of the error with respect to w (3)

l ,k of the output layer is:

∂E

∂w (3)
l ,k

= ∂E

∂y (µ)
l

· ∂y (µ)
l

∂B (µ)
l

· ∂B (µ)
l

∂w (3)
l ,k

=∑
µ

(
y (µ)

l − ŷ (µ)
l

)
· g ′

(
B (µ)

l

)
·V (2,µ)

k .

(3.3)

The chain rule is then applied to the two hidden layers [13]:

∂E

∂w (2)
k, j

= ∂E

∂y (µ)
l

· ∂y (µ)
l

∂B (µ)
l

· ∂B (µ)
l

∂V (2,µ)
k

· ∂V (2,µ)
k

∂b(µ)
k

· ∂b(µ)
k

∂w (2)
k, j

=∑
µ,l

(
y (µ)

l − ŷ (µ)
l

)
· g ′

(
B (µ)

l

)
·w (3)

l ,k · g ′
(
b(µ)

k

)
·V (1,µ)

j

(3.4)

and

∂E

∂w (1)
j ,i

= ∂E

∂y (µ)
l

· ∂y (µ)
l

∂B (µ)
l

· ∂B (µ)
l

∂V (2,µ)
k

· ∂V (2,µ)
k

∂b(µ)
k

· ∂b(µ)
k

∂V (1,µ)
j

·
∂V (1,µ)

j

∂b(µ)
j

·
∂b(µ)

j

∂w (1)
j ,i

= ∑
µ,l ,k

(
y (µ)

l − ŷ (µ)
l

)
· g ′

(
B (µ)

l

)
·w (3)

l ,k · g ′
(
b(µ)

k

)
·w (2)

k, j · g ′
(
b(µ)

j

)
· x(µ)

i .

(3.5)

12

3. THEORETICAL PREREQUISITES

To obtain an expression for the error with respect to the thresholds, the partial deriva-
tives in equations (3.3)-(3.5) are evaluated with respect to θ(3), θ(2), and θ(1) [13]. All
expressions can then be simplified even further through the introduction of local gra-
dients:

δ
(3,µ)
l = g ′

(
B (µ)

l

)
·
(

y (µ)
l − ŷ (µ)

l

)
,

δ
(2,µ)
k =∑

l
δ

(3,µ)
l ·w (3)

l ,k · g ′
(
b(µ)

k

)
,

δ
(1,µ)
j =∑

k
δ

(2,µ)
k ·w (2)

k, j · g ′
(
b(µ)

j

)
,

which are substituted into both the error functions with respect to weights and subse-
quently, thresholds [13]. Thus, the various errors in equations (3.3)-(3.5) are simplified
as follows [13]:

∂E

∂w (3)
l ,k

=∑
µ

δ
(3,µ)
l ·V (2,µ)

k ,
∂E

∂θ(3)
l ,k

=∑
µ

δ
(3,µ)
l · (−1),

∂E

∂w (2)
k, j

=∑
µ

δ
(2,µ)
k ·V (1,µ)

k ,
∂E

∂θ(2)
k, j

=∑
µ

δ
(2,µ)
k · (−1), (3.6)

∂E

∂w (1)
j ,i

=∑
µ

δ
(1,µ)
j · x(µ)

i ,
∂E

∂θ(1)
j ,i

=∑
µ

δ
(1,µ)
j · (−1).

The expressions in equation (3.6) can be used to minimise differentiable error func-
tions in any gradient based optimisation algorithm. The updating scheme for weights
and thresholds in [13] are given by:

w ← w −η ∂E

∂w
, (3.7)

θ← θ−η∂E

∂θ
. (3.8)

Since the error is continuously propagated backward, these simplifications guarantees
that the algorithm is computationally efficient even for deeper networks, such as RNNs
[13].

3.3 ACTIVATION FUNCTIONS

The choice of the activation function affects the characteristics of an ANN due to the
format of the output layer determining the prediction values. According to [13], the
backpropagation algorithm is only feasible if the corresponding activation functions
are differentiable. In general, activation functions are categorised into two fundamen-
tal groups: partially differentiable and fully differentiable. Those of the first group are
applicable to feed forward networks, where the first order derivatives are nonexistent,
such as the bipolar or Heaviside’s step function. The latter group consists of functions
with well defined first order derivatives. The three activation functions presented in
figure 3.3 are examples of functions of class C∞, i.e., they are infinitely differentiable.

13

3. THEORETICAL PREREQUISITES

Plot Formula

0

Linear:

g (x) = x ∈R

0

−1

1

Hyperbolic tangent:

g (x) = ex −e−x

ex +e−x
∈ [−1,1]

0

1

Sigmoid:

g (x) = 1

1+e−x
∈ [0,1]

Figure 3.3: Illustration of the three most widely used activation functions in RNNs and
their mathematical.

Both sigmoid and hyperbolic tangent functions are applicable during training since
both of them are differentiable. However, in this thesis hyperbolic tangent is the pri-
mary function used throughout the various networks. Although the linear function
has a constant derivative, it is only used in the output layer for scaling purposes. This
ensures comparability between predicted values and target values [13].

3.4 RECURRENT NEURAL NETWORKS

The recurrent neural network (RNN) was developed as a generalisation of deep learn-
ing methods for sequential characters [15]. The RNN differs from previous ANN archi-
tectures in that it has a dynamic memory component for its input sequences. Instead
of processing each data point separately, the output from a neuron at a previous time
step affects the calculations in the current neuron. This dynamic memory feature is
the main reason why RNNs tend to outperform static ANNs on problems based on
temporally dependent time series [15].

Conventional RNNs have a dynamic looping mechanism that generates internal mem-
ory states, also known as hidden states. These can be altered through recurrent con-
nections from the previous output unit onto itself, effectively creating a folded network
[13]. Figure 3.4 depicts an unrolled RNN with a single layer and its corresponding fea-
tures.

14

3. THEORETICAL PREREQUISITES

Given a continuous sampling quantity x(t) at time instance ti ∈ R+, and under the
assumption of uniform sampling ti+1 = ti +∆t , the univariate times series are the fol-
lowing [16]:

x = (x(t1), x(t2), . . . , x(tn)).

Multivariate time series X (t) ∈ Rm×n measures multiple quantities, or features, in a
similar fashion [16].

Since the entries in a RNN are sequential, each new cell in the network accounts for the
historical data from previous time steps. This means that historical data needs to be
continuously fed into the network. Thus, the RNN has an additional time-dependent
memory state h(ti) solely dedicated to time series processing. At time ti the current
memory state is evaluated with respect to the current input W (1), which is fused with
the memory state of the previous time step weighted with W (2) as follows [15]:

h(ti) = g (h(ti−1), x(ti))

= g
(
W (1)x(ti)+W (2)h(ti−1)+θ)

,
(3.9)

where g (·) is the nonlinear, fully differentiable activation function andθ denotes thresh-
old values. The updated memory state in the multilayered RNN is then weighted with
W (3), producing an output at current time step which is forwarded in time as h(ti+1),
or to the next layer as y(ti) [15]. Upon termination, the predicted output produced by
the RNN is the following:

ŷ(ti) = g
(
W (3)h(ti)+θ)

.

A schematic illustration of this forward propagation process in presented in figure 3.4.

Figure 3.4: Illustration of a RNN unrolled along time t . The entries at each time step ti

are multi-featured time series X ∈Rm×n . The memory state is generated and processed
after the entries are weighted by W (1), W (2), and activated by g (·). If the RNN have
several stacked layers, the output can serve as input for the next layer.

Due to the dynamic nature of the RNN architecture, the basic backpropagation algo-
rithm presented in section 3.2, required minor modifications to the updating scheme.
Thus, the backpropagation through time (BPTT) was developed [17]. It was suggested

15

3. THEORETICAL PREREQUISITES

to treat the RNN as a basic feed forward network, enabling the application of back-
propagation between each time-dependent layer. Hence, the MSE in equation (3.2) is
modified to compute the error Et over a number of time series elements as follows [17]:

Et
(

y(ti), ŷ(ti)
)= 1

2n

n∑
i=1

(
y(ti)− ŷ(ti)

)2, (3.10)

where ŷ(ti) is the network estimation and y(ti) is the real output.

Furthermore, the error gradients of hidden layers evaluated in equations (3.3)-(3.5),
are instead represented as gradients of temporal layers in the RNN. Since the depth of
the network determines the number of partial derivatives, longer time series tend to
produce so called vanishing or exploding gradients, i.e., the partial derivatives of the
error with respect to the input values x(t) decreases or increases exponentially [18].
Hence, the computations performed by the network optimiser become increasingly
more complex as the distance between ti and tn increases, due to more information
being processed from the previous time step [18]. The optimisers used in this the-
sis are described in greater detail in section 3.7.1. To avoid this issue, Hochreiter and
Schmidhuber [19] developed an extension of the RNN that is more adept at handling
longer time sequences – the long short-term memory (LSTM) network.

3.4.1 LONG SHORT-TERM MEMORY NEURAL NETWORK

The LSTM cell introduces a secondary memory state, known as the cell state c(ti) along
with three additional gates [20]. This allows the LSTM unit to determine whether it
should hold the memory passed through these dedicated gates, or forget it all together.
The architecture of a basic LSTM unit is presented in figure 3.5.

!"#$

!"#$

% &

% %

'()*+,-

.()*-/()*-

0()*-

1()*-

2#34!

567!8$9::6#8;!"!6

567!8<6==8;!"!6>6==8;!"!6

?9::6#8;!"!6 @ @ @

A4!34!

B()*+,-

C()*-

B()*-

'()*-

B()*-

Figure 3.5: Architecture of the LSTM-cell. The previous hidden state h(ti−1) and in-
puts x(ti) go through the gates f (ti), i (ti), o(ti), and updates the memory state c(ti−1),
which in turn updates the next hidden state h(ti) prior to being fed into the next LSTM
cell.

16

3. THEORETICAL PREREQUISITES

The input gate i (ti) filters irrelevant information, preventing perturbations from oc-
curring in the current memory. Similarly, the output gate o(ti) prevents perturbations
from occurring in the subsequent cell [20]. The forget gate f (ti) on the other hand,
opens and closes during learning which allows new information to be added to c(ti)
or the memory to be deleted from h(ti−1). This process is known as a constant er-
ror carousel and it effectively mitigates the vanishing or exploding gradient problem
through truncation [21].

The cell state c(ti) and the hidden state h(ti) from current unit is forwarded in time to
the next LSTM cell according to [20]:

f (ti) =σ
(
W (f)

x x(ti)+W (f)
h h(ti−1)+θ f

)
forget gate (3.11)

i (ti) =σ
(
W (i)

x x(ti)+W (i)
h h(ti−1)+θi

)
input gate (3.12)

a(ti) = tanh
(
W (a)

x x(ti)+W (a)
h h(ti−1)+θa

)
input activation (3.13)

c(ti) = i (ti)¯a(ti)+ f (ti)¯c(ti−1) cell state (3.14)

o(ti) =σ
(
W (o)

x x(ti)+W (o)
h h(ti−1)+θo

)
output gate (3.15)

h(ti) = o(ti)¯ tanh(c(ti)) hidden state (3.16)

where ¯ is the element-wise vector product, W (gate)
x are the input weights and W (gate)

h
are the recurrent weights for all respective gates.

The learning process of a LSTM network resembles that of a basic RNN, but with some
additional steps [21]. Since there are four regular and four recurrent weights per gate,
the total number of gradients amounts to eight in the LSTM backpropagation calcu-
lation. Considering the error function in equation (3.10), the partial derivatives of the
error for a single time step ti are the following [21]:

∂Eti

∂W (gate)
x

= ∂Eti

∂ŷ(ti)
· ∂ŷ(ti)

∂V j
· ∂V j

∂V in
j

·
∂V in

j

∂W (gate)
x

= (ŷ(ti)− y(ti)) · tanh(c(ti)) · g ′(·) · x(ti),

(3.17)

and

∂Eti

∂W (gate)
h

= ∂Eti

∂ŷ(ti)
· ∂ŷ(ti)

∂V j
· ∂V j

∂V in
j

·
∂V in

j

∂W (gate)
h

= (ŷ(ti)− y(ti)) · tanh(c(ti)) · g ′(·) ·h(ti−1),

(3.18)

where ∂V j =
{
∂a(ti), ∂i (ti), ∂ f (ti), ∂o(ti)

}
for j = 1, . . . ,4 is the set of partial derivatives

for each gate [21]. Note that the superscript in refers to the interior product and g ′(·) is
the derivative of the activation function with respect to gate.

As the LSTM network unrolls along time, the total error of the network is the sum of all
gradients:

∂Et

∂W (gate)
=∑

i

∂Eti

∂W (gate)
(3.19)

17

3. THEORETICAL PREREQUISITES

where W (gate) refers to both regular and recurrent weights [21]. The updating scheme
for the weights and thresholds utilises the method of stochastic gradient descent ac-
cording to equations (3.7) and (3.8) and it is discussed further in section 3.7.

In order to measure the performance of a model, analysis of the training error and
validation data must be conducted; if the model performs well on the training set and
poorly on the validation set, then the model is considered underfitted. Thus, the model
learns at a slow rate, or not at all [22]. Conversely, if the model performs well on both
the training and validation set, then it is considered well fitted. However, if the per-
formance on the validation increases again passed a certain inflexion point, then the
model is overfitted [22]. There are several methods one could implement to circum-
vent poorly fitted networks; these are described in greater detail in section 3.6.

The purpose of training a network varies greatly depending on the problem. Some
areas of concern involve outputting class labels for an input sequence, so called su-
pervised learning, or predicting time steps in a real valued sequence. These kinds of
problems are classified as multi-step time series forecasting, or simply sequence to se-
quence regression problems. This type of prediction is particularly complex, especially
for input and output sequences with large discrepancies in length and non-monotonic
relationships. As the complexity increases, the more computational resources are re-
quired. Hence, Cho [5] developed an alternative version to LSTM, namely the gated
recurrent unit (GRU) which is computationally more efficient.

3.4.2 GATED RECURRENT UNIT NEURAL NETWORK

The GRU bears a resemblance to LSTM but with fewer parameters; instead of f (ti), i (ti)
and o(ti) gates in LSTM, the GRU uses z(ti) and r (ti) denoting the update and reset
gate, respectively. An illustration of the structural architecture is presented in figure
3.6.

The forward propagation through GRU unit is the following:

z(ti) =σ
(
W (z)

x x(ti)+W (z)
h h(ti−1)+θz

)
update gate (3.20)

r (ti) =σ
(
W (r)

x x(ti)+W (r)
h h(ti−1)+θr

)
reset gate (3.21)

a(ti) = tanh
(
W (a)

x x(ti)+ r (ti)¯W (a)
h h(ti−1)+θr

)
memory activation (3.22)

h(ti) = z(ti)¯h(ti−1)+ (1− z(ti))¯a(ti) hidden state (3.23)

where ¯ is the element-wise vector product, W (g ate)
x are input weights and W (g ate)

h are
the recurrent weights for all respective gates. Equations (3.20)-(3.23) indicate the order
traversal of each gate in figure 3.6.

The reset gate r (ti) together with the activation a(ti) prompts the hidden state to ig-
nore previously held memory; thus, only new information from the input is used due
to the reset gate being almost zero. This feature is similar to the forget gate in LSTM,
which effectively filters out any irrelevant information from the hidden state. More-
over, the update gate z(ti) has a similar functionality; it regulates the information that
enters the current unit [5].

18

3. THEORETICAL PREREQUISITES

!"#$"# %&'()

%&'(*+)

,-../012#3#/

4

50$"# 6&'()

7 7

8

#309

8
: ;

8 %&'()

</=#19-../012#3#/

>&'() ?&'() @&'()

Figure 3.6: Architecture of the GRU-cell. The previous hidden state h(ti−1) and inputs
x(ti) go through the gates r (ti), z(ti) and a(ti) to update the next hidden state h(ti),
which is fed into next GRU cell.

Despite, GRU having a simpler architecture with fewer parameters compared to LSTM,
it still shows great promise in terms of performance. In a study carried out by Chung et
al. [23] showed that GRU outperformed LSTM with respect to CPU times and parame-
ter updates for a given dataset.

3.5 ENCODER-DECODER

The encoder-decoder model was introduced by Sutskever [24] in 2014. The algorithm
was initially intended for natural language processing where it showed tremendous
potential, but recently it has been proven that the encoder-decoder model is applica-
ble to other types of data as well [5]. A schematic illustration of the encode-decoder
architecture is depicted in figure 3.7.

Figure 3.7: Architecture of the unrolled encoder-decoder neural network with a single
layer. The encoder encodes inputs x(tn) and generates encoder states which are passed
further to the decoder as the initial hidden state. The decoder is able to produce an
output sequence y(tm).

19

3. THEORETICAL PREREQUISITES

The encoder-decoder architecture consists of two different single- or multilayer RNNs;
the first RNN represents the encoder which processes the input x(ti) of length tn , while
h(ti) is updated sequentially according to equation (3.9) [22]. As the encoder nears the
end of the input sequence, the network generates a vector of all past entries that have
passed through the hidden state h(tn), which is transferred to the next RNN. The sec-
ond RNN constitutes the decoder; it uses h(tn) generated by the encoder as its initial
hidden state h′(t0) and produces the output sequence y(tm) [22]. Note that tm in the
decoder can have different lengths compared to the tn in the encoder.

Moreover, the decoder is constructed in such a way that it accepts empty inputs, and
together with h′(tm) an output y(tm) is produced and forwarded to the subsequent
cell [22]. Then, the decoder output is set to the real target sequence in preparation for
model training. In essence, the encoder maps a source sequence of variable length to
a fixed-length vector, whereas the decoder maps the representation of the vector back
to a target sequence of variable length.

3.6 REGULARISATION FOR DEEP LEARNING

The primary objective of regularisation methods is to ensure that an algorithm per-
forms well on any given input and not exclusively on the training data. The most com-
mon strategies in machine learning focus on reducing the test error and are collectively
referred to as regularisation. In terms of deep learning, these methods are generally
based on regularisation of estimators, i.e., reducing the variance at the expense of in-
creased bias. In doing so, a model plagued by overfitting where the variance constitute
the bulk of the estimation error, may instead match the true data-generating process.
There are currently various forms of regularisation methods and more effective strate-
gies are constantly being developed [4].

3.6.1 L2 REGULARISATION

The method of L2-regularisation forces the weights to tend toward zero by adding a
penalty term to the error or loss function [4]. Thus, the regularised loss determined by
the cross-entropy function is:

J̃
(
w (L),θ(L))= 1

p

∑
µ

E
(
ŷ (µ), y (µ))+ λ

2p

∑
L

∥∥w (L)
∥∥2

, (3.24)

where E is the loss function, p is the number of samples, L is the number of layers and
λ is the regularisation parameter. The norm in equation (3.24) is computed as follows:∥∥w (L)

∥∥2 = w 2
11 +w 2

12 + . . .+w 2
n(L+1)n(L) .

The loss function increases in proportion to the weights. Hence, L2-regularisation con-
ditions the network to favour small weights due to the added penalty term.

3.6.2 EARLY STOPPING

For large models with an inherent tendency of overfitting, a common occurrence is
that the training error tend to decrease as the validation error increases over time. This

20

3. THEORETICAL PREREQUISITES

indicates that a model with a superior validation error could be obtained by reverting
back to a parameter setting at an earlier point in time. As the validation error improves,
a copy of the model parameters is stored. Instead of returning the latest parameters,
the algorithm terminates when the currently best recorded validation error cannot be
improved further for a specific number of iterations. This regularisation method is
more commonly known as the early stopping and it is widely used in deep learning [4].

3.6.3 DROPOUT

Dropout is an inexpensive technique that addresses the issues of overfitting and slow
computation times in deep neural networks. The algorithm uses the concept of ran-
domly dropping neurons, along with their corresponding connections during training;
thus, reinforcing existing favourable neurons in the network and preventing them from
excessively co-adapting [4]. During training, dropout samples from a large number of
various thinned networks. Then, it averages the predictions of all the thinned networks
by applying a single unthinned network with considerably smaller weights. According
to Srivastava et. al [25], dropout improves the performance of a neural network for
several modes of application.

3.7 OPTIMISATION FOR DEEP LEARNING MODELS

The gradient descent method described in section 3.2 is one of the most common opti-
misation techniques used in deep learning models. The method uses the derivative to
determine the minimum of the error function, which in itself is a computationally ex-
pensive task, particularly in the context of deep learning. Another disadvantage is that
the model tends to slow down significantly for critically small gradients. In order to cir-
cumvent this problem, the stochastic gradient descent method (SGD) was introduced.
In SGD, the inputs are randomly shuffled prior to each epoch, which theoretically does
not always yield smaller errors. However, the oscillating nature of SGD prevents the
gradients of the error function from getting stuck in local minima [4].

3.7.1 ADAPTIVE MOMENTS ESTIMATION

In 2014, Kingma et. al [26] developed the adaptive moments estimator (ADAM), an op-
timisation method designed specifically for training deep neural networks. ADAM bor-
rows features from other optimisation algorithms, such as Momentum and RMSprop.
The algorithm adjusts the learning rate by means of squared gradients and exploits
momentum through moving averages of gradients [4].

ADAM uses estimates of the first- and second-order moment to tweak the learning
rates associated with each individual weight of the neural network. These estimates
are equivalent to the moving averages m(ti) and v(ti), which are defined as follows
[26]:

m(ti) ←β1 ·m(ti−1)+ (
1−β1

) · g (ti−1),

v(ti) ←β2 · v(ti−1)+ (
1−β2

) · g (ti−1)2,

21

3. THEORETICAL PREREQUISITES

where g ti is the gradient, and β1,β2 ∈ [0,1] are hyperparameters that regulate the ex-
ponential decay of each moving average. Since the first- and second-order estimates
are biased toward zero, these are therefore modified according to [26]:

m̂(ti) ← m(ti)

1−β1(ti)
,

v̂(ti) ← v(ti)

1−β2(ti)
.

(3.25)

Thus, the updating scheme for previously evaluated moving averages is given by [26]:

w (ti) ← w (ti−1)−η m̂(ti)√
v̂(ti)+ε

,

where m̂(ti) and v̂(ti) are the modified moving averages in equation (3.25). Note that
this updating scheme is suitable for thresholds as well.

3.8 PREPROCESSING OF TIME SERIES

The data need to be prepared before any deep learning techniques can be implemented
[11]. One common preprocessing technique is scaling, which consists of methods such
as normalisation and standardisation. Normalisation of data prevents larger values
from overriding smaller ones, which reduces the overall complexity of the data [11].
Thus, by scaling data to a specific range of values, the integrity of the data is maintained
without any major loss of information. The inputs x(ti) are normalised by means of
min-max normalisation as follows [27]:

xnorm(ti) =λ1 + (λ2 −λ1)

(
x(ti)−xmin

xmax −xmin

)
, (3.26)

where λ1,λ2 is the normalisation range. Typically, normalisation ranges are set to [0,1]
or [−1,1], depending on the type of problem as well as the deep learning model that is
being used. Standardisation is yet another preprocessing method that is widely used
on multi-featured data of varying scales. However, this technique is not required in this
thesis due the raw data being prestandardised.

22

4 | METHOD

In this chapter, a description of preprocessing of the brake pad data is presented, along
with the implementation of the time series forecasting model. Also, the RNN encoder-
decoder architectures consisting of LSTM and GRU units are defined.

4.1 DATA DESCRIPTION

The brake pad data used in this thesis was collected by ITT Friction Technologies. Ac-
cording to ITT [7], the proprietary brake pad technology (ITT Smart Pad®) is capable
of delivering real time data during brake applications. The brake pad can be equipped
with several embedded sensors that are distributed on the surface of the backplate fac-
ing the brake disc and the friction material. The sensors register signals excited by the
contact between the brake pad and the brake disc, such as normal force, shear force
and temperature [7]. However, only normal force signals were analysed in this thesis.
A schematic illustration of the data collection process is presented in figure 4.1.

Figure 4.1: Schematic illustration of the data collection process by means of ITT Smart
Pad®. The several sensors such as (a, b, c, d and e) are embedded in the brake pad,
collect signals such as normal force, shear force, temperature, etc.

In total, data of 20 different brake applications in drag condition with varying pres-
sures, given a constant temperature and velocity, were made available for analysis. The
metrics consist of force values in N measured between the Smart Pad® and the brake
disc. The duration of each brake application is 25 seconds and the signals generated
by the Smart Pad® were sampled at 40 kHz, i.e., a sampling rate Fs of 40k samples/sec-
ond. Hence, the bandwidth equals 20 kHz, which encompasses the entire frequency
spectrum of brake squeal (1–16 kHz). This yields signals with one million data points,
at approximately 30 MB each.

The MAT-files containing each brake application were loaded into Python by means of
the SciPy library. The files include signals from each individual sensor, along with their

23

4. METHOD

fast Fourier transform (FFT) counterparts. These signals were then stored in separate
arrays in preparation for preprocessing.

In order to gain a better understanding of the data, the short-time Fourier transform
(STFT) was applied to each signal. The STFT allows for visualisation of time-localised
frequencies, whereas the standard FFT shows averaged frequencies over the whole
time interval [28]. For visual purposes, two types of signals were chosen: a growing
sinusoidal signal with visible periodic self-oscillations, showed in grey in figure 4.2,
and a noisy reference signal with a wide range of frequency components, showed in
black. Both these signals are depicted in figure 4.2. Note that brake squeal is observed
in the sinusoidal signal, particularly noticeable at the end of the signal .

0.0 0.2 0.4 0.6 0.8 1.0
Time step

[
1
Fs
s
] ×106

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

N
or

m
al

 fo
rc

e
[N

]

Squeal
Non-squeal

9.975 9.980 9.985 9.990 9.995
Time step

[
1
Fs
s
] ×105

−0.10

−0.05

0.00

0.05

0.10

N
or

m
al

 fo
rc

e
[N

]

Squeal
Non-squeal

Figure 4.2: Two raw normal force signals generated by sensor a in the ITT Smart Pad®.
The growing sinusoidal signal with visible periodic self-oscillations is shown in grey
can be classified as squeal. The noisy reference signal with a wide range of frequency
components is shown in black and can be classified as non-squeal signal. The plot on
the bottom is a magnification of the one on the top.

Each individual signal from figure 4.2 is presented separately in figure 4.3, in addition
to their respective STFTs. The STFT of a signal was generated by means of the signal
package of the SciPy library in Python. Note that the signal on the bottom right shows
a slowly modulated frequency around 1.6 kHz, which could be classified as squeal
through the decibel conversion of the normal force signal.

Moreover, the FFT was performed on the raw normal force signal to verify the am-
plitude of significant frequency components. The FFT-data utilised in this thesis was
provided by ITT Friction Technologies, which could be observed in the figure 4.4. How-
ever, this type of analysis is beyond the scope of this thesis. Instead, the objective is to
investigate the learning processes of different RNN models and perform time series
forecasting on various normal force signals.

24

4. METHOD

Figure 4.3: Two normal force signals with different properties. The signal on the left is
the reference signal that is the sum of multiple low amplitude signals with frequencies
of approximately 5, 11 and 17 kHz. The signal on the right suggests that frictionally
induced sinusoidal vibrations of approximately 1.6 kHz with increased amplitude to-
wards the end of the measurement are present, which is observed in the short time
Fourier transform (STFT) to the bottom right. This specific feature can be classified as
squeal.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frequency [H] ×104

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Am
pl
itu

de

×10−3

Non-squeal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Frequency [Hz] ×104

0

1

2

3

4

5

Am
pl

itu
de

×10−2

Squeal

Figure 4.4: Fast Fourier transform of two normal force signals. The large magnitude
of the frequency component associated with signal to the right suggests the presence
of squeal. The signal to the left is a combination of various low-amplitude frequency
components.

4.2 DATA PREPROCESSING

Prior to implementation of deep learning networks, the time series data was thor-
oughly analysed. The data should not exhibit properties of white noise, i.e., it should
not entirely consist of sequences of random numbers since completely random se-

25

4. METHOD

quences cannot be predicted [11]. Evaluation of the average mean and variance of the
signals in the dataset revealed that none of the signals were white noise. See appendix
B.2 for the formal definition of white noise.

Each signal in the dataset was normalised between -1 and 1 as described in section
3.8. This procedure was easily implemented by means of the MinMaxScaler method
of the scikit-learn library in Python. Then, the data was reshaped accordingly to fit
the encoder-decoder architecture. The RNN encoder-decoder accepts data as three-
dimensional arrays; each sample is stored row-wise with sample lengths determined
by the column size and multiple tables constitute the number of features of the re-
shaped data. The length of each sample corresponds to the sum of the encoder and
decoder lengths. Thus, each variable is equivalent to a sampled data point in the se-
quence. Note that the decoder input is represented by a zero vector which forces the
model to memorise the entire input sequence fed into the encoder.

4.3 SOFTWARE AND HARDWARE

This project was developed in the integrated development environment Pycharm, with
Python 3.7 as the primary interpreter. The open-source neural network library, Keras,
was used to construct the various deep neural networks in this thesis. While Keras
is highly versatile, it does not offer functionality for tensor products. TensorFlow was
used as the backend engine. Hence, Keras in combination with TensorFlow were the
ideal choice for modelling intricate neural networks, such as RNNs with encoder-decoder
architectures. Moreover, the hardware specifications of the computer system used in
this thesis are presented in table 4.1.

Operating System: Windows 10
Processor: Intel® Core™ i5-6500 CPU @ 3.2 GHz

Memory (RAM): 16.0 GB
Graphics Card: Nvidia GeForce GTX 950

Table 4.1: Hardware specifications of the computer system used in this thesis.

4.4 EXPERIMENTAL SETUP

The experimental data was partitioned into three subsets: train, validation and test
in a 70 : 15 : 15 ratio. The training data was used for development and training of the
model, i.e., the network learns the parameters and patterns associated with the data
[11]. Likewise, the validation data was used to evaluate whether the model has mem-
orised these variables in the training set. Since the model was not subjected to the
validation data during training; thus, it acted as an adequate measure of how well the
model was fitted. Also, the test data was used to determine the most appropriate deep
learning model and for calculating the accuracy of the model.

For proper normalisation of the raw data, the scaler had to be fitted on the training

26

4. METHOD

set first. The normalisation parameters stored in the scaler were then applied to the
rest of the data (validation and test). This procedure was essential to avoid an overly
optimistic evaluation of the model. If rescaling was performed on the entire dataset
simultaneously, the trained model would likely lose some information about future
forecasts, which could result in biased predictions [11].

To compare the performance of the two RNN models implemented in this thesis and
how multifeatured data affects the prediction accuracy, a simple experiment was setup
according to table 4.2. Different lengths of the encoder input and the prediction of sev-
eral decoder outputs will provide some insight into the model’s performance accuracy
and time complexity of the analysed algorithms. The experiment was performed on
two types of signals, previously described in section 4.1.

Encoder input 100 200 300 400
Decoder output 100 200 300 400

Table 4.2: Experimental setup for performance comparison of the LSTM and GRU RNN
encoder-decoder models. Encoder input and decoder output time steps are expressed
in 1/Fs , where Fs is the sampling rate of the signal. Thus, these values are equivalent to
2.5, 5.0, 7.5 and 10 ms.

After finding the most efficient model, another type of experiments was conducted to
determine the ratio between encoder-decoder lengths that produces the lowest fore-
cast error. The experiment was performed on a quiet signal, i.e., a single featured signal
with without high-amplitude oscillations. The experimental setup is presented in the
table 4.3.

E. input
100 200 300 400

D
.o

u
tp

u
t 20 40 60 80

50 100 150 200
100 200 300 400
120 240 360 -

Table 4.3: Additional experimental setup for performance of the LSTM RNN encoder-
decoder model on a quiet signal. The encoder sequence length is set to values from
100 to 400 data points. The decoder output lengths were chosen as a percentage of the
encoder length. The encoder input (E.input) and the decoder output (D.output) time
steps are expressed in 1/Fs , where Fs is the sampling rate of the signal. Thus, these
values are equivalent to predictions of time steps between 0.5 ms to 10 ms.

A heat map representation of different length ratios, ranging from 10 to 200, was made
to gain a better understanding of the effect of varying encoder-decoder lengths on
accuracy of the prediction and its time complexity. Furthermore, the most efficient
model with the highest prediction accuracy and lowest time complexity was discov-
ered by means of a hyperparameter search. The model’s efficiency was determined

27

4. METHOD

based on parameters such as batch size, number of hidden neurons, learning rate and
regularisation parameter.

In order to compare models for different encoder-decoder lengths, some of the hyper-
parameters were held constant throughout the experiment (see table 4.4).

Hidden neurons Learning rate Batch size Decay Dropout Epochs
32 0.001 128 0.0001 0.1 200

Table 4.4: Default hyperparameters for model comparison.

The initial choice of the parameters was arbitrary. The number of hidden neurons is
the same in all layers for both the encoder and decoder. Therefore, the depth of the
architecture is constant throughout this thesis, i.e, the number of trainable parameters
are the same, namely 25377 in the LSTM model and 19041 in the GRU model. The
number of trainable parameters P was determined based on the number of cell gates
G , number of hidden neurons H and input dimension I :

P =G(H(H + I)+H). (4.1)

In this case, G = 4 for LSTM and G = 3 for GRU, given H = 32 and I = 1. Though, I = 32
for the layers in the decoder, since all encoder states are sent to the decoder in the
network. By calling summary() in Keras, the trainable parameters are easily obtained
for the evaluation.

4.5 MODEL DEVELOPMENT

The architecture of the RNN encoder-decoder used in this thesis was inspired by the
time series forecasting model created by Chevalier [29]. Due to its simplicity, the model
was slightly rewritten to fit the purpose of this thesis. Model is depicted in figure 3.7,
but instead of one layer of hidden neurons, two layers were implemented in both the
encoder and decoder for more effective learning. Note that 32 hidden neurons were
used in each layer, but different numbers of hidden neurons were tested as well (see
section 4.5.1). The pseudocode for of the RNN encoder-decoder model is presented in
the algorithm 1.

The layers are categorised by the index l = 0, . . . ,L, where l = 0 denotes the layer of
input terminals and l = L represents layer of outputs. The encoder and decoder are
represented by E and D , respectively, and the corresponding cell states are abbreviated
as c, while the hidden states are denoted by h. Note that the LSTM cells in algorithm 1
are completely interchangeable with GRU cells.

The implementation of the model in the algorithm 1 follows a standard procedure,
where a framework is first instantiated, i.e., a model is constructed prior to populating
it with data. Thus, the framework acts as an operations manual for the various ten-
sors in the model. Moreover, the justification of using a multilayer encoder-decoder
model was based on the findings put forward by Lambert [30]. He showed that a

28

4. METHOD

stacked RNN encoder-decoder architecture produced better results compared to its
single-layer counterparts. Hence, deep architectures with multiple layers are able to
learn complex patterns and generate higher level representations of the data.

Algorithm 4.1: Pseudocode for RNN encoder-decoder model

1 Initialise shape of input and output layers;
2 for l = 1, . . . ,L do
3 build encoder: E (l) ← LSTM cell;
4 end
5 Concatenate encoder E (l) into a single RNN layer;
6 Set in E : return_state = True ;

7 Generate encoder cell states E (L)
c and outputs E (L)

h ;

8 for l = 1, . . . ,L do
9 build decoder: D (l) ← LSTM cell;

10 end
11 Concatenate decoder D (l) into a single RNN layer;
12 Set in D : return_state = True and return_sequences = True;

13 Set initial decoder states to encoder states: D (0)
c ← E (L)

c ;

14 Generate decoder outputs D (L)
h ;

15 Build RNN model: set shape as input and D (L)
h as output;

The passage of cell states and hidden output states from encoder to decoder is gov-
erned by the argument return_state in Keras. It determines whether the last cell state
and the hidden output state are returned or not. Moreover, the argument return_sequence
gives access to the hidden sate outputs in its entirety. Finally, the model is connected
with dense layers that convert the hidden state outputs into prediction outputs ŷ(t)
by means of the linear activation function g (ŷ) = ŷ . The choice of activation function
used in the dense layer is significant since it defines the format of the prediction out-
put. Still, the linear activation function presented in figure 3.3 is the most widely used
function for time series regression problems.

4.5.1 HYPERPARAMETER SEARCH

After identifying an effective architecture, the model still has to be tuned since the per-
formance could almost always be improved upon [11]. There are various techniques
used during hyperparameter search, but for the purpose of this thesis, a sequential
search was performed. Each parameter, such as batch size, number of hidden nodes,
learning rate η, regularisation and parameter λ, were changed one at the time, while
keeping all other parameters constant. The diagnostics of the model training history
was recorded simultaneously, using training and validation loss curves as an indication
of the model performance.

Due to the stochastic nature of the network training process, several runs of the same
architecture are required to mitigate the variance of the results. In theory, the esti-
mated model should at least be repeated 30 times or more [11]. However, due to time
constraints and limited computer resources, a total of three runs for the hyperparam-
eter search was performed. The averaged results can provide some insight into how

29

4. METHOD

different parameter combinations affect the model performance.

4.6 MODEL EVALUATION

The goal of the network is to minimise the error between the actual and the predicted
values of the test set. By comparing the behaviours of the loss curves of training ver-
sus validation sets, the model can be regularised by some of the methods earlier men-
tioned in section 3.6.

There are several types of performance measurements for the evaluation of the mod-
els. The most common loss measurement for regression is the MSE and it is computed
according to equation (3.10). The MSE measures the overall expected deviation or vari-
ance between predicted and actual values [4]. Other metrics used for monitoring the
performance of the network is the mean absolute error (MAE), which calculates the
average magnitude of the errors in a set of predictions, without consideration of their
direction. The MAE shows the average absolute distance between the predicted and
the actual values, according to [13]:

MAE = 1

n

n∑
i=1

∣∣y(ti)− ŷ(ti)
∣∣, (4.2)

where the MAE is expressed in the same unit as the raw data.

The MSE and the MAE are scale-dependant performance metrics, where the calcu-
lated error is in the same scale as the dataset [31]. Since the network is applicable on
multifeatured datasets simultaneously, comparing performance of the model based on
different scales of the data would be odd and difficult to comprehend. However, in this
thesis only data of the same scale is investigated and the MAE can still be used for result
comparisons between network models.

To compare the forecast accuracy across time series, there are other so called scale-free
performance metrics that express the accuracy of the forecast in percent. The most
commonly used scale-independent accuracy measurement is the mean absolute per-
cent error (MAPE) [31]:

MAPE = 100

n

n∑
i=1

∣∣∣∣ y(ti)− ŷ(ti)

y(ti)

∣∣∣∣.
The MAPE calculates the relative error by dividing the absolute error of actual and pre-
dicted values by the true value. This is then averaged over the predicted data values.
However, if the data contains values, such as y(ti) = 0 or y(ti) ≈ 0, this will result in un-
defined or extreme values [31]. The solution to this problem is to generalise the MAPE
by weighting the percentage errors by the mean of actual values of the time series. This
alternative metric is known as MAE/Mean ratio, or weighted MAPE (wMAPE), and it is
computed as [31]:

wMAPE = 100
1
n

∑n
i=1

∣∣y(ti)− ŷ(ti)
∣∣

1
n

∑n
i=1 y(ti)

.

30

4. METHOD

This metric is applicable as long as the time series does not show seasonality or trends
[31]. The wMAPE is used as the accuracy parameter in this thesis, measured in percent.

31

4. METHOD

32

5 | RESULTS AND DISCUSSION

In this chapter, the findings obtained the experiments are presented and discussed.
The results from the model comparisons of the prediction length and time complex-
ity are summarised, along with the analysis of the hyperparameter search. These are
discussed in an attempt to investigate the applicability of brake pad data to recurrent
neural networks to predict brake squeal.

5.1 MODEL COMPARISON

The aim of this thesis was to find an appropriate RNN model for the time series fore-
casting and evaluate the applicability of the brake pad signal data on the prediction
of brake squeal. In order to compare the prediction capabilities of the LSTM and the
GRU RNN encoder-decoder architectures, an experimental scheme was set up based
on various prediction lengths, according to table 4.2.

Each model was trained three times for each encoder-decoder length ratio for 200
epochs and the average values were recorded. In order to compare the models, the
MSE and the MAE scores, along with the wMAPE, were recorded. Furthermore, the
time complexities during the training and evaluation process were recorded as well.
Encoder inputs and decoder outputs are given in 1/Fs , while the MSE and the MAE de-
note the magnitudes of error between the forecast and the actual values, measured in
N2 and N, respectively. The accuracy wMAPE is measured in percent.

The results obtained from the LSTM and the GRU models on the single reference signal
(quiet signal) and on the single sinusoidal signal are presented in tables 5.1 and 5.4.

Table 5.1: LSTM RNN encoder-decoder results for various input-output ratios. The
four models were trained on the reference data signal, with 25 377 trainable model
parameters.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 100 685.5 0.0152 0.0858 0.2921 58.91
200 200 2604 0.0235 0.1203 0.5154 54.26
300 300 2729 0.0350 0.1435 0.6346 29.43
400 400 3171 0.0494 0.1720 0.8211 28.90

The results obtained from the LSTM model applied on the multifeatured reference and
the sinusoidal brake data, respectively, are presented in tables 5.5 and 5.6.

In terms of time series forecasting performance, the most efficient network was the

33

5. RESULTS AND DISCUSSION

Table 5.2: GRU RNN encoder-decoder results for various input-output ratios. The four
models were trained on the reference data signal with 19 041 trainable parameters.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 100 1034 0.0303 0.1260 0.2583 50.54
200 200 3808 0.0411 0.1511 0.3557 43.13
300 300 9492 0.0570 0.1889 0.6672 11.55
400 400 10707 0.0660 0.2038 0.7145 10.95

Table 5.3: LSTM RNN encoder-decoder results for various input-output ratios. The
four models were trained on the sinusoidal data signal with 25 377 trainable model
parameters.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 100 642.3 0.0034 0.0459 0.2095 90.68
200 200 2054 0.0142 0.0533 0.3126 87.67
300 300 2607 0.0241 0.0652 0.6091 70.40
400 400 3125 0.0549 0.1647 0.7914 61.57

LSTM RNN encoder-decoder model with an accuracy of 90.68% and a MAE of 0.0459
N for the forecast of 100 time steps, corresponding to 2.5 ms of the sinusoidal signal.
Similarly, the GRU RNN encoder-decoder model had an accuracy of 89.66% with MAE
of 0.0499 N. The accuracy scores and the training times of the LSTM model were better
for all prediction lengths compared to the GRU model. The lower MAE scores for the
LSTM model indicate that the model is able to find the right pattern in the data more
often than the GRU model. Analysis of the time complexities during training of the
models revealed that the LSTM RNN was more efficient than the GRU RNN, despite
having more parameters, as previously discussed in the section 3.4.2. However, while
evaluating the time complexity of the test set, the GRU RNN performed slightly better
on a select few encoder-decoder ratios.

The same experimental setup was used on the reference data signal for investigation of
the network’s ability to learn and predict other types of signal patterns. The obtained
results were inadequate since the signal was more or less random compared to the sig-
nal with high-amplitude self-oscillations. These types of patterns are more complex
and therefore, more difficult to process by the DNNs. The LSTM network is still supe-
rior to the GRU network, producing better results in terms of prediction accuracy and
time complexity. It seems that LSTMs better suited for capturing long term temporal
dependencies. Thus, the LSTM RNN encoder-decoder produced better results for all
variations of input-output ratios.

According to the theory in section 3.4.2, networks comprised of GRU units should be
faster than LSTM networks, due to fewer trainable parameters, especially for shorter
input sequences. However, this was only reflected in the evaluation times, where the
GRU RNN was marginally faster than the LSTM RNN. In terms of accuracy, the GRU
RNN performed notably worse compared to the LSTM RNN. It seems that the train-
able parameters play a significant role in performance of accuracy measures between

34

5. RESULTS AND DISCUSSION

Table 5.4: GRU RNN encoder-decoder results for various input-output ratios. The four
models were trained on the sinusoidal data signal with 19 041 trainable model param-
eters.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 100 818.3 0.0039 0.0499 0.2027 89.66
200 200 2098 0.0163 0.0939 0.3175 85.57
300 300 8876 0.2356 0.1651 0.4311 66.91
400 400 9203 0.1871 0.1804 0.5913 21.77

the two models. Furthermore, the previously mentioned research on LSTM and GRU
was conducted in the context of language modelling. Thus, these results might not be
completely comparable with the brake signal predictions in this thesis.

Following experiment investigated the effect of using multifeatured data signal for time
series prediction. The experiment was performed on a reference signal and a sinu-
soidal signal. The additional four features were extracted from the embedded sensors
(b,c,d and e) on the brake pad (see figure 4.1). The results of the LSTM RNN encoder-
decoder based on five signals are presented in tables 5.5 and 5.6.

Table 5.5: LSTM RNN encoder-decoder results for various input-output ratios of the
multifeatured reference data signal.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 100 699.3 0.0161 0.0909 0.3012 61.24
200 200 1643 0.0308 0.1311 0.5581 51.58
300 300 2795 0.0305 0.1325 0.6791 32.88
400 400 3504 0.0548 0.1806 0.8251 30.17

Table 5.6: LSTM RNN encoder-decoder results for various input-output ratios of the
multifeatured sinusoidal data signal.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 100 664 0.0032 0.0442 0.2512 91.01
200 200 2165 0.0199 0.0556 0.3362 89.93
300 300 2632 0.0309 0.0691 0.6198 74.37
400 400 3190 0.0624 0.1653 0.8010 55.91

According to the obtained results in tables 5.5 and 5.6, the multifeatured data provided,
on average, more accurate predictions than single featured data. However, the training
time was slightly longer, and due to time constraints following experiments were solely
performed on single signal data for time series predictions.

An alternative experiment was setup according to table 4.3, where the effect of vari-
ous encoder inputs and decoder outputs on prediction accuracy was recorded. The

35

5. RESULTS AND DISCUSSION

results of these trials are presented in table 5.7. The various prediction lengths varied
between 20 and 400. Since prediction lengths of 400 time steps produced relatively low
accuracy scores, even longer predictions were excluded from this thesis. For the sake
of computational efficiency, each examined architecture was only trained once.

Table 5.7: LSTM RNN encoder-decoder model performance results for additional 15
input-output ratios of the reference data signal. Each model was trained for 200
epochs.

E. input D. output ttrain [s] MSE [N2] MAE [N] ttest [s] Accuracy [%]
100 20 514.7 0.0115 0.0748 0.1861 66.52
100 50 479.8 0.0145 0.0789 0.1901 64.14
100 100 685.5 0.0152 0.0858 0.2921 58.91
100 120 749.3 0.0264 0.1130 0.3031 47.12
200 40 1021 0.0111 0.0801 0.3817 65.86
200 100 2050 0.0201 0.0867 0.4262 61.11
200 200 2604 0.0235 0.1203 0.5154 54.26
200 240 1830 0.0331 0.1354 0.5176 40.54
300 60 2320 0.0128 0.0786 0.5055 50.97
300 150 2109 0.0152 0.0877 0.5167 48.33
300 300 2729 0.0350 0.1435 0.6346 29.43
300 360 2927 0.0561 0.1860 0.6401 29.19
400 80 3032 0.0300 0.1212 0.5497 47.54
400 200 2859 0.0211 0.1068 0.6579 43.99
400 400 3171 0.0494 0.1720 0.8211 28.90

The alternative experiment showed that longer encoder-decoder sequences result in
less accurate predictions and worse time complexities. Note that training and evalua-
tion times increase in proportion to the complexity of the task. The study was also con-
ducted on shorter encoder-decoder sequences to gain a better understanding of how
encoder input lengths affect the prediction accuracy. The results are summarised as
heatmaps in figures 5.1 and 5.2. The heatmaps illustrate the distribution of the model’s
performance scores (MSE) and the evaluation times for the analysed encoder-decoder
ratios.

Heatmaps provide a visual representation of how different encoder-decoder lengths
affect the prediction performance of the model and its evaluation time. The observa-
tions from the heatmap in figure 5.1 indicate that shorter encoder inputs yield lower
accuracy scores for the constant decoder output length. However, some of the MSE
scores were lower for the same decoder output prediction, despite encoder lengths be-
ing longer. This might be due to the stochastic nature of the model, as well as the fact
that the models only ran once. The heatmap in figure 5.2 shows that longer encoder-
decoder lengths require longer evaluation times in general.

36

5. RESULTS AND DISCUSSION

Figure 5.1: Heatmap of the MSE scores for various input-output ratios with the LSTM
RNN encoder-decoder model. The encoder lengths vary from 25 to 200, while the de-
coder lengths vary from 10 to 100.

Figure 5.2: Heatmap of the evaluation time ttest scores for various input- output ratios
with the LSTM RNN encoder-decoder model. The ttest was collected during the evalua-
tion of the test set. The encoder lengths vary from 25 to 200, while the decoder lengths
from 10 to 100.

It is difficult to get an intuitive sense of the learning process and discern potential over-

37

5. RESULTS AND DISCUSSION

fitting from the results above. Thus, some of the encoder-decoder ratios have been
visualised together with their learning curves. Figures 5.3-5.6 allows for a visual inter-
pretation of the predictions for the 100-20 and 100-100 input-output ratios, along with
their respective MSE loss function curves using early stopping method described in
section 3.6.2.

Figure 5.3 shows the plot of the test dataset prediction, in addition to the learning
curve. The prediction, previously unseen by the network, follows the real data signal
well. The performance score for the 100-20 input-output ratio, presented in table 5.7,
show that the accuracy of the model is 66.52 %. The learning curves are converging
simultaneously towards the same loss function value, which is an indication of a well
fitted model.

!

"!

!

"!

!"
#
#!

Figure 5.3: LSTM RNN encoder-decoder prediction on the reference data signal with
a 100-20 input-decoder ratio, in addition to the learning curve. The learning curve
demonstrates a well fitted model.

Furthermore, the prediction, previously unseen by the network, in figure 5.4 follows
the real data signal very well. The learning curve converges quickly towards the mini-
mum error due to the low complexity of the problem, and the obtained accuracy score
measured 93.93%, which is the highest accuracy obtained in this entire thesis.

The prediction in figure 5.5 follows the real data signal fairly well, with an accuracy of
58.91%. However, the network fails to map some of the signal points, which indicates
that the model is underfitted and might require additional training or other hyperpa-
rameters. The time series prediction in figure 5.6 follows the real, previously unseen,
data signal well with an accuracy score of 90.68%.

38

5. RESULTS AND DISCUSSION

!

"!

!

"!

!"
#
#!

Figure 5.4: LSTM RNN encoder-decoder prediction on the sinusoidal data signal with
a 100-20 input-output ratio, in addition to the learning curve. The learning curve
demonstrates a well fitted model.

!

"!

!

"!

!"
#
#!

Figure 5.5: LSTM RNN encoder-decoder prediction on the reference signal with a 100-
100 input-output ratio, in addition to the learning curve. The learning curve demon-
strates a somewhat underfitted model that requires further training.

39

5. RESULTS AND DISCUSSION

!

"!

!

"!

!"
#
#!

Figure 5.6: LSTM RNN encoder-decoder prediction on the sinusoidal data signal with
a 100-100 input-output ratio, in addition to the learning curve. The learning curve
demonstrates a well fitted model.

5.2 HYPERPARAMETER SEARCH

The results from the hyperparameter search are summarised in table 5.8. A total of four
additional values were tested for each of the four parameters. For the sake of compari-
son, all other variables in the model were held constant during this exercise, according
to table 4.4. The models were trained for 100 epochs.

5.2.1 BATCH SIZE

According to the batch size analysis, the lowest MSE and MAE scores were provided if
the data is divided into eight samples per training iteration. To gain a better under-
standing of the effects the batch sizes have on the training process, the learning curves
are presented in figure 5.7. However, smaller batch sizes resulted in much higher time
complexities for the learning process, which is observed in the figure 5.8b.

5.2.2 NUMBER OF HIDDEN NODES

Analysis of the number of hidden neurons showed that the lowest MSE and MAE scores
were provided for the network with 128 hidden nodes in its architecture. The effects of
varying the number of hidden nodes has on the training process are presented in fig-
ure 5.9. The learning process was slower when using fewer hidden nodes, since the
network still did not converge after reaching 100 epochs. Though, using too many hid-
den nodes makes the network too complex, causing fluctuations in the learning curve.
This is observed in figure 5.8a.

40

5. RESULTS AND DISCUSSION

Table 5.8: Hyperparameter search results. The values are averaged over three runs.
The best results are highlighted in bold, holding all other parameters constant (see
table 4.4).

(a) Batch size

Batch size MSE [N2] MAE [N]
8 0.0117 0.0760

16 0.0121 0.0776
32 0.0122 0.0778
64 0.0139 0.0847

256 0.0325 0.1329

(b) Number of hidden nodes

Neurons MSE [N2] MAE [N]
16 0.0327 0.1334
32 0.0234 0.1096
64 0.0177 0.0972

100 0.0204 0.0998
128 0.0158 0.0903

(c) Learning rate, η

η MSE [N2] MAE [N]
0.00008 0.0534 0.1866
0.0001 0.0494 0.1779
0.0008 0.0184 0.0955
0.001 0.0296 0.1267
0.01 0.0128 0.0799

(d) Regularisation parameter, λ

λ MSE [N2] MAE [N]
0.000001 0.0288 0.1184
0.00001 0.0361 0.1256
0.0001 0.0734 0.2179
0.001 0.0751 0.2248
0.01 0.0751 0.2255

5.2.3 LEARNING RATE

Analysis of the learning rate showed that the lowest MSE and MAE scores were ob-
tained for learning rates of 0.01. The results are represented by learning curves, pre-
sented in figure 5.11. It is evident that the learning rate affects the rate of the network
convergence. Small learning rates, such as η = 0.0001 was proven to be too slow. This
would require training much longer than 100 epochs. Though, a learning rate of 0.01
generated spikes in the learning curve, it still produced the lowest MSE score.

5.2.4 REGULARISATION PARAMETER

According to the analysis of the regularisation parameter, the lowest MSE and MAE
scores were obtained for the network using a regularisation parameter of 0.000001. The
findings are summarised in figure 5.12.

41

5. RESULTS AND DISCUSSION

!"
!
#!

(a) batch size = 8

!"
!
#!

(b) batch size = 16

!"
!
#!

(c) batch size = 64

!"
!
#!

(d) batch size = 256

Figure 5.7: Learning curves of training and validation sets for various batch sizes. Con-
vergence is reached faster with smaller batch sizes, which also produces the lowest
MSE score. The sudden spike in the learning curve is a sign of an underfitted model,
i.e., the training and validation sets do not provide enough information to efficiently
learn the problem.

16 32 64 100 128
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um

be
r

of
 p

ar
am

et
er

s

×105

(a)

8 16 32 64 256
Batch size

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 ti
m

e
of

 th
e

m
od

el
 [s

]

×103

(b)

Figure 5.8: Effects of tuning hyperparameters. Panel (a) shows the effect of increasing
number of hidden nodes on the number of trainable parameters. Panel (b) shows the
effect of increasing batch size on the time complexity of the training process. Since
this analysis is directly linked to the computational complexity of the algorithm, these
results were expected.

42

5. RESULTS AND DISCUSSION

!"
!
#!

(a) nodes = 16

!"
!
#!

(b) nodes = 32

!"
!
#!

(c) nodes = 64

!"
!
#!

(d) nodes = 128

Figure 5.9: Learning curves of training and validation sets for various numbers of hid-
den nodes. A low number of hidden nodes produces smooth convergence towards low
MSE scores. However, large numbers of hidden nodes makes the network more com-
plex, causing spikes in the learning curves, particularly for 64 and 128 hidden nodes.

!"
!
#!

(a)

!"
!
#!

(b)

Figure 5.10: Effects of tuning hyperparameters. Panel (a) shows the effect of the in-
creasing regularisation parameter on the MSE score. Panel (b) shows the effect of the
increasing learning rate.

43

5. RESULTS AND DISCUSSION

!"
!
#!

(a) η= 0.0001

!"
!
#!

(b) η= 0.0008

!"
!
#!

(c) η= 0.001

!"
!
#!

(d) η= 0.01

Figure 5.11: Learning curves of training and validation sets for various values of the
learning rate, η. Learning rates between 0.0008 and 0.001 produces smooth conver-
gence towards low MSE scores. The spikes in panel (d) indicate that the learning rate
is too high, causing numerical instability. However, this learning rate enables the most
optimal MSE score.

44

5. RESULTS AND DISCUSSION

!"
!
#!

(a)λ= 0.000001

!"
!
#!

(b)λ= 0.00001

!"
!
#!

(c)λ= 0.0001

!"
!
#!

(d)λ= 0.01

Figure 5.12: Learning curves of training and validation sets for various values of the
regularisation parameter, λ. Low values of the regularisation parameter provide the
best MSE scores.

45

5. RESULTS AND DISCUSSION

46

6 | CONCLUSION

In this chapter, a short summary of all findings and reflections accumulated through-
out this thesis, is presented. The outlook for future work within the field of NVH con-
cludes this chapter.

The model comparison was performed through analysis of accuracy scores for two
different types of data signals: single featured and multifeatured, for which various
input-output ratios were compared. The best performing architecture was the LSTM
RNN with two layers, which produced an accuracy score of 91.01% for prediction of
the multifeatured sinusoidal data signal of length 2.5 ms. Similarly, the single featured
input gave an accuracy score of 90.68%. Yet, the network struggled to forecast the ref-
erence signal; an accuracy score of only 61.24% was obtained with the multifeatured
input, whereas the single featured input produced 58.91%.

The results in figure 5.1 indicate that accuracy scores are, on average, directly propor-
tional to input lengths, and inversely proportional to output lengths. Furthermore, re-
sults show that the prediction accuracy is higher for time series of the sinusoidal data,
compared to the reference data. Hence, the sinusoidal data signals are less complex,
easier to learn, and more reliable. Moreover, the multifeatured input signals generally
provide better results, particularly in the case of sinusoidal data signals. This gives rea-
son to believe that the smart pad technology could prove itself useful in the research of
NVH. Though, the hyperparameter search revealed the importance of tuning the these
parameters and the impact they have on the learning curves. Thus, hyperparameters
should be prioritised during tuning of the algorithm.

The implementation of the network in a real application on board a vehicle is lim-
ited by the evaluation time for brake signal predictions. Evaluation times have to be
sufficiently short, which is primarily determined by both hardware and software. Al-
though the GRU RNN encoder-decoder performed slightly better in terms of evalua-
tion times ttest, compared to its LSTM counterpart; the accuracy scores were still rel-
atively low. However, the LSTM RNN encoder-decoder produced significantly higher
accuracy scores, particularly in terms of MAE scores. If an optimal set of hyperparam-
eters could be found for the GRU model, then the network could likely reach, or even
surpass the performance of the LSTM model. Likewise, if the LSTM model were to be
implemented on a more powerful computer system, then the evaluation times could
probably improve beyond those of the GRU model.

Since the body of literature in regard to RRNs for brake signal predictions as part of
brake squeal mitigation is fairly limited, it is difficult to compare the results obtained
in this thesis with any expected results. Instead, the aim of this thesis was to deter-
mine whether RNNs are suitable for predictions of different data signals with various

47

6. CONCLUSION

characteristics (single featured, multifeatured, "quiet" and sinusoidal). The conclusion
that could be drawn from this experiment is that RNNs hold great promise for NVH re-
search, and that RNNs can be employed to to learn vibrational responses in the brake
system. However, RNNs should be researched and analysed further.

6.1 FUTURE WORK

In the future, research could be extended to studies of the potential of combining clas-
sifiers with time series forecasting networks, and whether these are applicable on dif-
ferent types of brake signals, simultaneously. Thus, the study should examine whether
the network is capable of classifying the type of brake signal, e.g., sinusoidal or "quiet",
and in combination with a time series forecasting network, predicting future brake sig-
nal patterns, effectively mitigating brake squeal. Furthermore, investigation of deeper
architectures are encouraged for greater prediction accuracy.

The research for using multifeatured data for prediction of brake signals showed promis-
ing results. However, implementation of other features, such as temperature and hu-
midity, should be considered as another course of the research in the future.

Moreover, implementation of the model was done mainly on the CPU, since a relatively
small data set was used. However, future projects should focus on implementation of
time series forecasting models on the GPU for rapid manipulations of large data sets
with higher time complexities.

48

BIBLIOGRAPHY

[1] R. C. Dante, Handbook of Friction Materials and their Applications. Boston:
Woodhead Publishing, 2016.

[2] A. Day, Braking of Road Vehicles. Oxford: Butterworth-Heinemann, 2014.

[3] M. Stender, M. Tiedemann, D. Spieler, and S. Oberst, “Deep learning for brake
squeal: vibration detection, characterization and prediction,” Hamburg, Ger-
many, Tech. Rep., 2020.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[5] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder-decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing. ACL, 2014, pp. 1724–1734.

[6] Disc and Drum Brake Dynamometer Squeal Noise Test Procedure, apr 2013.
[Online]. Available: https://doi.org/10.4271/J2521_201304

[7] I. Inc., “Innovative itt smart pad® brake pad supported by "por fesr piemonte
2014-2020 fund",” ITT Blog, 2019, https://www.itt.com/newsroom/itt-blog.

[8] M. North, “A survey of published work on vibration in braking systems,” M.I.R.A.
Bulletin, no. 4, pp. 8–12, 1969.

[9] R. Spurr, “A theory of brake squeal,” Proceedings of the Institution of Mechanical
Engineers: Automobile Division, vol. 15, no. 1, pp. 33––52, 1961.

[10] N. Hoffmann, M. Fischer, R. Allgaier, and L. Gaul, “A minimal model for studying
properties of the mode-coupling type instability in friction induced oscillations,”
Mechanics Research Communications, vol. 29, no. 4, pp. 197–205, 2002.

[11] J. Brownlee, Introduction to time series forecasting with python, 1st ed. Jason
Brownlee, 2019, http://machinelearningmastery.com.

[12] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecasting
with deep learning,” Ankara, Turkey, Tech. Rep., 2019.

[13] I. N. da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves,
Artificial Neural Networks. Switzerland: Springer International Publishing, 2017.

[14] W. S. McCulloch and W. H. Pitts, “A logical calculus of the ideas immanent in ner-

49

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.4271/J2521_201304
https://www.itt.com/newsroom/itt-blog
http://machinelearningmastery.com

BIBLIOGRAPHY

vous activity,” The Bulletin in Mathematical Biophysics, vol. 5, no. 4, pp. 115–133,
1943.

[15] M. I. Jordan, Serial order: A parallel distributed processing approach. San Diego:
University of California, 5 1986.

[16] G. Dorffner, “Neural networks for time series processing,” Neural Network World,
vol. 6, pp. 447–468, 1996.

[17] P. J. Werbos, “Backpropagation through time: what it does and how to do it,” Pro-
ceedings of the IEEE, vol. 78, no. 10, pp. 1550–1560, 10 1990.

[18] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, no. 10, pp.
157–166, 3 1994.

[19] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural
nets and problem solutions,” International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, vol. 6, no. 2, pp. 107–116, 4 1998.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory.” Neural computa-
tion, vol. 78, no. 10, pp. 1735–1780, 10 1997.

[21] F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget: Contin-
ual prediction with lstm,” Neural Computation, vol. 12, no. 10, pp. 2451–2471, 10
2000.

[22] J. Brownlee, Long Short-Term Memory Networks With Python, 1st ed. Jason
Brownlee, 2019, http://machinelearningmastery.com.

[23] J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” CoRR, vol. abs/1412.3555,
2014. [Online]. Available: http://arxiv.org/abs/1412.3555

[24] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural
networks,” NIPS’14: Proceedings of the 27th International Conference on Neural
Information Processing Systems, vol. 2, p. 3104–3112, 2014.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014.

[27] I.A.Basheer and M.Hajmeer, “Artificial neural networks: fundamentals, comput-
ing, design, and application,” Journal of Microbiological Methods, vol. 43, pp. 3–
31, 2000.

50

http://machinelearningmastery.com
http://arxiv.org/abs/1412.3555
http://jmlr.org/papers/v15/srivastava14a.html

BIBLIOGRAPHY

[28] N. Kehtarnavaz, Digital Signal Processing System Design. Academic Press, 2008,
http://machinelearningmastery.com.

[29] G. Chevalier, “Signal forecasting with a sequence-to-sequence rnn model in
tensorflow,” https://github.com/guillaume-chevalier/seq2seq-signal-prediction,
Accessed: 26-05-2020.

[30] J. Lambert, “Stacked rnns for encoder-decoder networks : Accurate machine un-
derstanding of images,” 2016.

[31] S. Kolassa and W. Schütz, “Advantages of the mad/mean ratio over the mape,”
Foresight: The International Journal of Applied Forecasting, no. 6, pp. 40–43,
2007. [Online]. Available: https://EconPapers.repec.org/RePEc:for:ijafaa:y:2007:i:
6:p:40-43

[32] D. O. Hebb, The organization of behavior: A neuropsychological theory. New York:
John Wiley and sons, 1949.

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, no. 323, pp. 533–536, 10 1986.

[34] T. Hamabe, I. Yamazaki, K. Yamada, H. Matsui, S. Nakagawa, and M. Kawamura,
“Study of a method for reducing drum brake squeal,” SAE International, vol. 108,
no. 6, pp. 523–529, 1999.

51

http://machinelearningmastery.com
https://EconPapers.repec.org/RePEc:for:ijafaa:y:2007:i:6:p:40-43
https://EconPapers.repec.org/RePEc:for:ijafaa:y:2007:i:6:p:40-43

BIBLIOGRAPHY

52

A | HISTORICAL REVIEW

This chapter provides some additional historical review about the foundation of the
ANN that could be interesting for the reader.

A.1 DEVELOPMENT OF ARTIFICIAL NEURAL NETWORKS

The foundation of ANN was first introduced in 1943 by McCulloch and Pitts [14] in an
effort to describe brain activity and the different processes occurring in the neuron by
means of mathematical models. The result came to be known as the McCulloch-Pitts
artificial neuron or the linear threshold function [14].

In 1949, Hebb [32] introduced a theory that described a training method for neural
networks, which came to be known as Hebb’s rule. The method explained the pat-
tern learning process in an ANN, i.e., the weights within a given ANN are distributed
such that the shared connection between two simultaneously activated neurons is re-
inforced [32].

In 1960, Widrow and Hoff developed an alternative ANN architecture named the adap-
tive linear element (ADALINE). The model was capable of classifying more complex
patterns and perform linear regression. Despite the simple nature of the new architec-
ture, the algorithm improved the efficiency of conventional neural networks consider-
ably. The specific features that set ADALINE apart was the delta learning rule, which
later was implemented in the multilayer perceptron as well as in signal processing [13].

Although, the advancements of the ANN, perceptron and ADALINE were impressive at
the time, these were still linear classifiers limited to recognition of linearly separable
classes. The single neuron network did not have a negative feedback structure for the
values produced by the output layer; hence, forward propagation only occurred in one
direction. This lead to the development of the backpropagation algorithm, allowing a
new type of learning process for deeper networks to emerge.

In 1986, Rumelhart et al. [33] pioneered another learning strategy for neural networks.
Their method applied the chain rule to compute the gradient of the error function and
where each term is evaluated in reverse order, i.e., from the output to the input layer,
hence the name backpropagation.

Around the time backpropagation was introduced, Jordan [15] developed a generali-
sation of deep learning methods for sequential characters – the recurrent neural net-
work (RNN). The RNN differs from previous ANN architectures in that it has a dynamic
memory component for its input sequences; instead of processing each data point sep-
arately, the output from a neuron at a previous time step affects the calculations in the

I

A. HISTORICAL REVIEW

current neuron.

Due to the dynamic nature of the RNN architecture, the basic backpropagation algo-
rithm required minor modifications to the updating scheme for it to function properly.
Thus, in 1990 Werbos [17] developed an algorithm that unfolds the network back in
time, the so called backpropagation through time (BPTT). Werbos suggested treating
the RNN as a basic feed forward network, enabling the application of backpropagation
between each time-dependent layer.

II

B | ADDITIONAL THEORY

The purpose of this chapter is to give the reader additional tools for a deeper under-
standing of the theory presented in this thesis. The benchmark model that represents
the brake system is explained as well as the definition of the white noise.

B.1 TWO DEGREE OF FREEDOM MODEL

The frequency range of brake noise seems to be influenced by the dimensions of the
brake pad and the inherent vibrational mode of the disc; if the brake pad is short in
comparison to the natural wavelength of the disc, then the entire pad assembly can be
modelled as a rigid beam with two degrees of freedom, presented in figure B.1. Thus,
the overall shape of a disc brake enables vibrations to travel between two closely spaced
modes, generating a type of instability termed binary flutter [2].

In order to study the various mechanisms of the binary flutter, a minimal single mass
model with two degrees of freedom is introduced as in figure B.1. The conveyor belt

Figure B.1: Single mass model with two degrees of freedom representing the brake sys-
tem. The conveyor belt demonstrating the brake disc, is operating at constant velocity
vB while a constant force FN is applied perpendicularly to the point mass m, illustrat-
ing the brake pad. The mass is secured with two linear springs k1 and k2 at the angles
α1 respective α2, whereas k3 acts as a model for the perpendicular stiffness between
the mass and the surface of the belt. The law of friction is applied, where FF is the
frictional force with a constant friction.

demonstrating the brake disc, is operating at constant velocity vB while a constant
force FN is applied perpendicularly to the point mass m, illustrating the brake pad.

III

B. ADDITIONAL THEORY

The mass is secured with two linear springs k1 and k2 at the angles α1 respective α2,
whereas k3 acts as a model for the perpendicular stiffness between the mass and the
surface of the belt. Note that Coulomb’s law of friction is applied, where FF is the fric-
tional force with a constant friction [34].

The single mass model with two degree of freedom representing the brake system,
could be considered as a generalisation of the stick-slip phenomenon with the added
complexity of displacements normal to the friction surface. Hence, the equations of
motion relating to figure B.1 are represented as kinematic constraint model as follows
[10]: [

m 0
0 m

][
ẍ
ÿ

]
+

[
k11 k12

k21 k22

][
x
y

]
=

[
FF

FN

]
,

or more concisely,
M Ẍ +K X = F ,

where x, y are the degrees of freedom, M and K represent mass and stiffness, respec-
tively, and F is the force acting on the system. Note that the coefficients of the stiffness
matrix K are given by [10]:

k11 = k1 cos2α1 +k2 cos2α2,

k12 = k21 = k1 sinα1 cosα1 +k2 sinα2 cosα2,

k22 = k1 sin2α1 +k2 sin2α2.

This type of kinematic constraint model illustrates the underlying properties of mode
coupling, i.e, the frictional energy from the surface of the conveyor belt in figure B.1
is converted into vibrational energy in other parts of the system, effectively coupling
the friction force with vibrational modes. This transfer of energy between different vi-
brational modes is crucial in the pursuit of understanding binary flutter and ultimately
brake noise [10].

B.2 WHITE NOISE

White noise is defined by the time series of independent and identically distributed
values, with zero mean µ and unit variance σ2, as X ∈ N (µ = 0,σ2 = 1). Despite the
unpredictability of white noise, the analysed time dependent signal is expected to con-
tain some random component on top of the signal generated by underlying process,
according to [11]:

x(ti) = x̃(ti)+X (ti), (B.2)

where x̃(ti) is the filtered signal with additional noise X (ti) generate signal x(ti) for
the analysis. After predictions being made, the forecast errors should be white noise,
which means that the model succeeded to harness all information in the sequence and
that no further improvements to the model can be done [11].

IV

	List of Figures
	List of Tables
	Introduction
	Background
	Review of brake noise
	Machine learning for brake noise

	Theoretical Prerequisites
	Artificial neural networks
	Backpropagation
	Activation functions
	Recurrent neural networks
	Long short-term memory neural network
	Gated recurrent unit neural network

	Encoder-Decoder
	Regularisation for deep learning
	L2 regularisation
	Early stopping
	Dropout

	Optimisation for deep learning models
	Adaptive moments estimation

	Preprocessing of time series

	Method
	Data description
	Data preprocessing
	Software and Hardware
	Experimental setup
	Model development
	Hyperparameter Search

	Model evaluation

	Results and discussion
	Model comparison
	Hyperparameter search
	Batch size
	Number of hidden nodes
	Learning rate
	Regularisation parameter

	Conclusion
	Future work

	Bibliography
	Historical Review
	Development of artificial neural networks

	Additional Theory
	Two degree of freedom model
	White Noise

