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Abstract
With mass uptake of mobile broadband such as HSPA, LTE and advanced LTE there

will be a rapid increase of demand for capacity in the mobile backhaul. The traditional
frequency bands used for mobile backhaul microwave links are narrow and may become a
future capacity bottleneck. Line-of-sight MIMO is one possible technology for increasing
the spectral e�ciency of these links. By using multiple antennas at both the transmitter
and receiver the capacity of such systems could be multiplied using the same spectrum.

Line-of-sight MIMO works by making the signal streams orthogonal to each other
either by spatially separating the antennas at the transmitter and receiver or by using
orthogonally polarized antennas.

In this thesis both 2x2 spatially-separated and 4x4 spatially-separated and dual-polarized
line-of-sight MIMO are numerically investigated. Adaptive algorithms for a space-time-
equalizer are proposed and evaluated against detrimental a�ects such as frequency selective
channels, mast swing (antenna movement), polarization leakage and phase noise (corre-
lated and di�erential). The algorithms are either decision-directed or blind, those are
LMS and WRLS and CMA, SCMA and MCMA respectively.

The simulations show that line-of-sight MIMO needs higher system margins and a
more complex receiver structure. Convergence of blind algorithms can be di�cult to
achieve for some channel conditions as well as for di�erential phase noise. Mast swing
will further more put higher requirements on spatially-separated MIMO systems than on
its SISO counterpart.
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Chapter 1

Introduction

1.1 Background
Todays mobile tra�c is dominated by voice from GSM and WCDMA. In the not-so distant
future the tra�c will be dominated by broadband data. The evolution of HSPA and the
arrival of LTE will increase data rates of future wireless networks manyfold creating tougher
requirements on the capacity of the backhaul networks. A backhaul link is a link that connects
base stations to network controllers, these base stations are located on the �eld often making
them inaccessible to �ber- and DSL solutions. A microwave radio link is thus a commonly
used solution since it does away with a direct cable connection. It is very important that the
throughput of these radio links keep up with demand, preferably without requiring a purchase
of more spectrum which can be scarce and expensive.
Wireless MIMO technology allows for higher throughput for the same spectrum because of it's
ability to transmit and receive multiple streams simultaneously. For most applications MIMO
requires a non-line-of-sight- and a rich scattering environment to work properly but microwave
links usually have non of this. These links use highly directional antennas that have a direct
line-of-sight (LoS) component dominating the transmission. However, it may be shown that
at microwave frequencies it is possible to transmit multiple streams over a single frequency
band if the antennas at the transmitter and receiver are separated su�ciently. Combining this
with dual-polarized antennas it is possible to quadruple the throughput without making the
required antenna separation infeasible. Unlike the mobile MIMO channel which is inherently
random the LoS MIMO channel is determined by geometry which essentially remains static
over the operational lifetime. A properly installed link is thus more predictable than its
mobile counterpart.

1.2 Problem Description
This thesis was started to be able to better understand what requirements the LoS MIMO
channel would put on the system, both spatially separated and dual polarized systems. Adap-
tive algorithms for these systems were investigated, e.g. equalizers able to cancel inter-stream
interference and cross polarization distortion as well as conventional intersymbol interference.
The performance of these algorithms were investigated for di�erent channel conditions having
time-variant frequency selectivity due to mast swing. Phase noise tolerances were also inves-
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tigated as well as the e�ects of suboptimal antenna installation and high cross polarization
couplings. The algorithms considered were training-based, semi-blind and blind. The thesis
outcome should give a guideline of tolerances of such systems to channel e�ects as well as on
installation requirements.

1.3 Thesis Outline
The report consists of seven chapters and two appendices. The �rst chapter along with the
abstract give an overview of the work carried out. The second chapter is a high level overview
of wireless communication using microwaves. Chapter three discusses MIMO technology with
an emphases on LoS MIMO both spatially-separated and dual-polarized. Chapter four is a
theoretical overview of equalizers and adaptive algorithms for MIMO. Chapter �ve describes
how the simulations were carried out. Chapter six lists all the results obtained by simulations
and �nally chapter nine summarizes the results and gives some conclusions.

1.4 Notation
1.4.1 Abbreviations

ADC Analog to Digital Converter
ADSL Asymmetric Digital Subscriber Line
AWGN Additive White Gaussian Noise
BER Bit Error Rate
CIR Channel Impulse Response
CMA Constant Modulus Algorithm
CSIR Channel State Information at the Receiver
CSIT Channel State Information at the Transmitter
DAC Digital to Analog Converter
DD Decision Directed
DFE Decision Feedback Equalizer
DP Dual Polarized
DTFT Discrete-time Fourier transform
FIR Finite Impulse Response
GUI Graphical User Interface
IEEE The Institute of Electrical and Electronics Engineers
ISI Intersymbol Interference
LMS Least Mean Square
LoS Line of Sight
LS Least Square
LTE Long Term Evolution
MCMA Modi�ed Constant Modulus Algorithm
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
MLSE Maximum Likelihood Sequence Estimation
MMA Modi�ed Modulus Algorithm
MRLA Modi�ed Recursive Least Square
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MSE Mean Square Error
MTI Multiple-Transmitting-Interference
NLoS None-Line of Sight
PRBS Pseudorandom Binary Sequence
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
RLS Recursive Least Square
Rx Receiver
SCMA Simpli�ed Constant Modulus Algorithm
SIMO Single Input Multiple Output
SIP Superimposed Pilots
SISO Single Input Single Output
SNR Signal To Noise Ration
SP Single Polarized
STE Space Time Equalizer
SVD Singular Value Decomposition
Tx Transmitter
WiMAX Worldwide Interoperability for Microwave Access
WRLS Weighted Recursive Least Squares
XPD Cross-Polarization Discrimination
XPIC Cross-Polarization Interference Canceler

1.4.2 Symbols
α The mixing parameter for SCMA
β Roll-o�-factor for the root-raised Cosine �lters
βmax Maximum tilt of antenna masts
δ System delay in symbol periods
ŝ Estimated Signal (Hard Decision)
κ Condition Number
σ Singular Value
b The ground re�ection factor
µcma The stepsize of the CMA.
µlms The stepsize of the LMS in the Decision-Directed Mode
µmcma The step-size of the MCMA
ω Angular frequency
ωc Carrier Angular Frequency
H MIMO Channel Matrix
Bc Coherence bandwidth
Bs Signal bandwidth
C Capacity
c Eigenvalues
dR Rx antenna separation
dT Tx antenna separation
FMS Frequency of mast swing
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Fc Carrier frequency
Fs The sampling frequency
k Wavenumber
λ Weighting Factor for WRLS
L Number of �lter taps for each �lter in the STE
Ltr Number of training symbols
LH Tx and Rx antenna mast horizontal distance
LL Rx landscape height
LR Rx antenna mast height
Lt The placement of the central tap in each �lter in the STE
LT Tx antenna mast height
M Number of Rx antennas
N Number of Tx antennas
p(t) Matched Filter
Pb Bit Error Rate
Q Oversampling rate at the Tx �lter
R The average constant magnitude of Blind algorithm
RH Rank of matrix H
rn Received Symbol n
sn Transmitted Symbol n
TQs Symbol period of the oversampled signal
Tc Coherence time
Ts Symbol period
VMS Velocity of the antennas
yn Equalized Signal (Soft Decision)
M Modulation order for M-QAM

1.4.3 Operators
(·)T Transpose
(·)H Complex conjugate transpose (Hermitian transpose)
<{·} Real-part operator
={·} Imaginary-part operator
E[·] Expectation value operator
trace{·} The trace of a matrix
< ·, · > Inner product
L{·} Laplace transform operator
δ(·) Dirac's delta function
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Chapter 2

Wireless Microwave Systems

This chapter will give a high level overview of wireless digital communication. Basic system
designs are discussed as well as challenges that need to be overcome by these systems.

2.1 Overview
Communication devices have become so customary and their use so habitual that we hardly
ever take time to wonder how all of this can even be possible. The complexity of todays sys-
tems are immense but their basic design and operational principles have remained the same
for quite some time. This design and these principles can easily be understood at a high level.

Be it wireless cell phones or wired ADSL computer modems the purpose is the same, to com-
municate through an exacerbating channel. In order to do that the transmitter sends special
signals that are tailored in a way so that they are retrievable at the receiver. The receiver
may improve the quality of the received signal by applying signal processing in order to �lter
out noise, remove interfering signals and combat other depriving e�ects of the channel to get
an estimate of the symbols being sent.

Analog and digital communication di�er in the fact that digital signals have a �nite signal
set while analog transmission has an in�nite amount (is continuous). Wherever one desires
digital information at the endpoints of the system it is in fact necessary to use digital com-
munication. Seeing that the vast majority of information is stored and processed digitally
and the fact that digital communication can be designed to be functionally superior in almost
all cases compared to analog communication, it is no wonder that the vast majority of to-
day's communication systems are digital. From now on only digital systems will be considered.

For all communication systems there are two universal design parameters that need to be
optimized. These are spectral e�ciency and power e�ciency, both have a profound impact
on wireless links. Spectral e�ciency quanti�es the information content transmitted over a
given bandwidth and has the unit bits/Hz/s. Power e�ciency quanti�es the signal-to-noise
(SNR) requirement at the receiver to obtain a speci�c bit error rate (BER). Design and op-
timization needs then be done without adding excessive complexity to the system. One can
state that the brunt of the research e�ort done in recent times on digital wireless transmission

14



is concerned with optimizing for these three requirements.

A high level view of a communication system can be stated as follows. The transmitter takes
data and maps it into a sequence of suitable modulated and �ltered symbols that are sent
over a channel. The channel, which is comprised of a certain environment, then distorts the
signal by adding noise and interfering signals, spreading out the signal in time causing inter
symbol interference (ISI) and attenuating the signal power. The receiver then needs to undo
as much of the e�ects of the channel as possible before interpreting the transmitted data and
outputting (hopefully) the original data.

2.2 Basic System Design
A schematic representation of a communication system can be seen in Figure 2.1. Each block
represents a conceptual or logical part of the system and is useful in obtaining a high level
understanding.

Source/

Channel 

Encoder

Source

Modulator

Demodulator

Source/

Channel

Decoder

Channel

Sink

P(t)

P(t)

Mixer

Mixer

Figure 2.1: A schematic view of a basic communication system.

The transmitter is fed by some signal source (e.g. a voice signal) and the source encoder
converts that signal into a suitable digital format. The channel encoder then adds redun-
dancy (i.e. extra bits) to the bit sequence to enable error detection and/or error correction at
the receiver. The modulator then maps the bit sequence into discrete symbols. There are a
number of possible symbol sets but two of the more popular can be seen in Figure 2.2(a) and
Figure 2.2(b). The symbols (Si) are mapped onto a 2-D symbol space with an orthogonal
basis expressed using real- and imaginary numbers. Having the symbols in complex format
is a convenient expression, in a real transmitter the imaginary- and real parts are separated
before being signal processed and �nally mixed up to carrier frequency using the same carrier
but with a 90◦ o�set (in phase and quadrature phase). This phase o�set in the carrier realizes
the orthogonal basis expressed by the complex numbers. Transmission scheme like this are
called quadrature multiplexed and part of such transmitter can be seen in Figure 2.2(c). The
symbol Si is split into its real and imaginary parts before being processed and mixed up in
frequency using carriers with a 90◦ o�set.

The pulse shaping �lter is denoted as p(t), it maps the symbols onto a sequence of Nyquist
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pulses. If the time between symbols is denoted as Ts (symbol time) then a Nyquist pulse
must satisfy for some integer N the relation

p(NTs) =
{

1 if N = 0
0 if N 6= 0

This means that the pulse only has a value at the current sampling time but is zero for all
other sampling times. This can be seen in Figure 2.2(d) where three symbols have been sent
through a Nyquist pulse shaping �lter. At exactly the symbol time (multiples of the symbol
period) the surrounding symbols are zero so no interference between symbols is observed.
After the signal has gone through the pulse shaping �lter at the transmitter, and turned
analog using a DAC (Digital to Analog Converter), it is up converted using a mixer.

A mixer is an essential part for most wireless systems. A typical digital radio performs
its signal processing at the baseband, that is between 0 and B [rad/s]. In order to utilize
the available spectra in an e�cient way, the signal is upconverted to a frequency band pre-
allocated for the given application. It is also impractical to transmit a baseband signal so it
is necessary to upconverted to the carrier frequency ωc. Since all signals can be expressed
via Fourier analysis by a sum of sinusoids it is enough to consider only a signal xb(t) =
Ab sin(ωbt) where 0 ≤ ωb ≤ B and Ab is the amplitude. Mathematically a mixer performs
the upconversion in the following way

xc (t) = xb(t) sin (ωct) =
Ab

2
[cos((ωc − ωb)t)− cos((ωc + ωb)t)] (2.1)

where sin(ωct) is generated by an oscillator. From the expression in equation (2.1) it can be
seen that the signal frequency is now spaced between ωc −B and ωc + B.

Im{}

Re{}

Im{}

Re{}

Si
Si

Proc

Proc

Re{Si}

sin(ωt)

cos(ωt)

a) b)

c)

d)

Im{Si}

Figure 2.2: a) 16-PSK modulation format (signal constellation) where Si represents one
symbol b) 16-QAMmodulation format c) A quadrature multiplexed transmitter. d) 3 symbols
that have gone through a pulse shaping �lter.

At the receiver the signal is down converted with a mixer, �ltered with a matched �lter (same
kind of �lter as at the transmitter) to minimize the e�ect of noise and then sampled with
an analog to digital converter (ADC). Then it is sent through the demodulator followed by
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source/channel decoders which undoes the encoding operations at the transmitter. Finally
the data sink operates on the data in some way, e.g. reproduces a voice signal. A much more
detailed discussion can be found in many textbooks such as [1, 53].

2.3 The Wireless Channel
A channel is here de�ned as the paths over which an electrical signal traverses between a
transmitter (Tx) and receiver (Rx). That can include parts of the Tx and Rx, such as am-
pli�ers and oscillators, depending on preference. Wireless channels are specially challenging
compared to wired channels. The ether (or transmission media) is �rstly shared by all users
making it very prone to interference, secondly it is composed of the ever changing environ-
ment we all live in making it highly time varying. From a signal processing stand point the
channel can introduce noise and other interfering signals as well as inter symbol interference
(ISI) and fading. These e�ects will be discussed in the following sections.

2.3.1 Noise
Additive White Gaussian Noise (AWGN) is a common noise model for numerical and ana-
lytical analysis since it approximates many noise sources (e.g. thermal noise, shot noise and
black body radiation) that are fundamentally di�erent into a single expression. It is additive
so that it is added to the signal, it is white meaning that it has the same power for all fre-
quencies within the bandwidth of the system and it is Gaussian meaning that its real- and
imaginary values follow a Gaussian distribution. The ratio between signal- and noise power
is the signal-to-noise ratio (SNR) de�ned as

SNR =
E

[|r(t)|2]

E [|n(t)|2] =
Es

N0BTs
=

Eb

N0BTb
(2.2)

where Ts is the symbol time, Tb is the bit time, N0B is the noise power, Es and Eb are bit-
and symbol energies respectively, r(t) is the received signal and n(t) is the AWGN noise.
A second noise source (called phase noise) originates from the oscillators downconverting the
signal from the carrier frequency to the baseband. Instead of producing a perfect sinusoid as
is assumed in (2.1) the sinusoidal output has a small random phase and amplitude �uctuation

r(t) = A [1 + a(t)] cos (ωct + φ (t)) (2.3)
Here A is the amplitude of the wave, a (t) is the amplitude noise, φ (t) is the phase noise
and ωc is the carrier oscillator central angular frequency. The amplitude noise can usually
be neglected (because of amplitude limiting mechanisms) while the phase component is more
di�cult to handle. The origins and distribution of oscillator phase noise will not be discussed
here but the most important thing to note is that phase noise will rotate the signal constel-
lation (e.g. Figure 2.2) in a random manner and if left untreated will completely ruin the
reception. A detailed discussion on phase noise can be found for example in reference [22].
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2.3.2 Fading
A radio frequency (RF) signal that is transmitted from one location to another can reach
the endpoint along multiple paths. This is because the signal can be re�ected o� surfaces
and thus in a rich environment there is a multitude of copies of the same signal reaching
the receiver, each with its own delay, phase and signal strength. These di�erent copies of
the signal can combine constructively or destructively so that the signal power is attenuated
and we say that we are in a deep fade. Taking the Fourier transform of the channel impulse
response the response of the channel to di�erent frequencies can be visualized. If there is
a notable discrimination between di�erent frequencies within the signal bandwidth Bs the
channel is said to be frequency selective. If the channel is similar within the signal bandwidth
the channel is �at. The coherence bandwidth Bc quanti�es the bandwidth for which the
channel can be considered to be �at. So if the signal bandwidth is smaller than the coherence
bandwidth we have a �at channel but if the signal bandwidth is lower we have a frequency
selective channel. If the channel is known, that is if the power delay pro�le is known the
coherence bandwidth can be calculated, this is done in [20, ch.3].

Since the properties of a wireless channel depend on the surroundings which can be highly
erratic the channel also changes with time. These changes are either due to the movement
of the transmitter or receiver or because a change in the environment (e.g. a car moves).
Coherence time Tc quanti�es the speed of these changes and is a statistical measure of the
time period over which the channel impulse response is time invariant. If the symbol time Ts

is smaller than the coherence time, the channel is said to be slow fading meaning that each
symbol sees the same fading for the whole symbol period. If the symbol time is larger than
the coherence time the channel exhibits fast fading. [20, ch.3] treats the calculation of the
coherence time by using the Doppler spectrum.

A frequency selective channel will distort the signal making the entire system response
(matched �lters at the Tx and Rx as well as the channel) non-Nyquist. This will in turn
cause Intersymbol Interference (ISI) discussed in the next section.
These e�ects are summarized in Figure 2.3. The channel studied in this thesis is characterized
as exhibiting slow and frequency selective fading.

2.3.3 Intersymbol Interference
Intersymbol Interference (ISI) is observed when the current received symbol is a�ected and
distorted by the surrounding symbols. Looking at Figure 2.2(d) it can be seen that if one
symbol is shifted in time it will start a�ecting the surrounding symbols. Since in a multipath
environment each symbol can arrive at multiple time slots and/or shifted within its own it is
apparent that ISI can ruin the reception if not properly counteracted. Two other mechanisms
that can introduce ISI are symbol timing errors and non-Nyquist �lter pairs at the Tx and Rx.

The above e�ects can be seen by looking at the channel impulse response which can be made
to include Tx and Rx circuitry, that is �lters (p(t)) and analog/digital converters for example.
An example of a channel impulse response that causes ISI can be seen in Figure 2.4. To see
how this channel impulse response causes ISI it can be convolved with a symbol sequence sn.
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Figure 2.3: Channel characterization. There are four di�erent kinds of channels based on if
the signal bandwidth is smaller or larger than the coherence bandwidth and if the symbol
time is smaller or larger than the coherence time.

rn =
∑

i

hisn−i + nn = hδsn−δ +
∑

i6=δ

hisn−i + nn (2.4)

m

hc(m)
hδ

Figure 2.4: An example of a channel impulse response that would cause ISI. Tap marked by
hδ is the central tap seen in (2.4). The rest of the impulse response will then contribute to
ISI.

Here nn is the noise and hi is the channel impulse response. The �rst term in the equation
above now represents the desired symbol, delayed and with some gain hδ. The second term
is some undesired contribution from the surrounding signals multiplied with some channel
gains, this part represents the ISI.

2.4 Microwaves
Frequencies higher than 6 GHz are considered to be unusable for mobile communication
because of increased shadowing by obstruction during propagation [40]. These frequencies are
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thus more useful when there is a LoS path between transmitter and receiver1. Another issue
with these high frequencies is their increased attenuation. The received power is proportional
to the square of the wavelength due to the electrical e�ective area of the receive antenna, as
can be seen from the free space propagation equation [20, eq. 2.7]

Pr

Pt
=

[√
Gλ

4πd

]2

(2.5)

where G is the product of the antenna gains, Pr is the received power and Pt is the transmit-
ted power, d is the distance between the antennas and λ is the wavelength of the carrier. This
means that going from 0.3 GHz to 30 GHz introduces 10.000 fold attenuation for the same
setup. This can be compensated for in microwave links using highly directional antennas
(with large G).

Another more serious phenomenon that is encountered when going up in frequency is the
attenuation caused by rain. Figure 2.5 shows the attenuation per km in dB as a function
of frequency and rain rates for a horizontally polarized signal. The attenuation will di�er
somewhat for di�erent polarizations. For links operating at high frequencies even a short hop
length can experience outage when there is heavy rain. A common requirement for microwave
links is that they are operational 99.999% of the time (i.e. 5-9's availability) which corresponds
to a downtime of less than 5 min per year. The link then needs to be able to cope with all rain
conditions that appear on average for more than 5 min a year. Heavy rain that statistically
only is seen for 5 min/year for a given location is commonly referred to as 5 min rain. For a
certain location this sets an upper limit on the distance over which a microwave link can be
reliably operated. For Europe the 5 min rain rarely exceeds 50 mm/hr while in south Asia it
can exceed 100 mm/hr.

2.5 Dual Polarized Systems
Electromagnetic waves travel in 3D space along a straight line with orthogonal and oscillating
electric and magnetic �elds (plane wave approximation). The condition is that the �elds are
orthogonal to each other as well as the direction of propagation. A plane that is perpendicular
to the propagation direction will thus contain all of the electromagnetic �elds so that it is
su�cient to describe them within that plane. For a given wave either of the �eld components
(magnetic or electric) can be oscillating for example along the vertical axis requiring the other
�eld component to oscillate along the horizontal axis.
Since most waves of interest for microwave links travel along the earth surface one can speak
of a vertically- or horizontally polarized waves meaning that the electrical �eld is oscillating
in the vertical or horizontal direction respectively. Naturally the wave can be polarized along
any direction but the important thing is that each polarization can be broken down into
these two components that form an orthogonal basis. A dipole antenna is a good example of
a polarized antenna since it will only transmit and receive one polarization in the ideal case.
Having two ideal polarized antennas rotated so that they are orthogonal to each other results

1Today's microwave links operate in frequency bands between 6 and 38 GHz
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Figure 2.5: Signal attenuation caused by rain for di�erent frequencies for horizontally polar-
ized signals [12].

in two independent channels doubling the capacity of the system for a high SNR. A real sys-
tem will always experience imperfections leading to crosstalk between polarizations. This is
due to the fact that antennas can not be perfectly polarized and channel conditions may be in
such a way that they treat the polarizations di�erently (e.g. rain) resulting in leakage between
the channels. This leakage can be quanti�ed using the channel cross-polarization discrimi-
nation (XPD) factor. It describes how much power from one polarization leaks into another
polarization thus reducing the systems ability to separate between the two polarizations. It
is de�ned for the vertical- and horizontal components respectively as

XPDV =
E

{|hV,V |2
}

E {|hH,V |2} XPDH =
E

{|hH,H |2
}

E {|hV,H |2} (2.6)

where for example hV,H is the �at channel impulse response between the vertically polarized
Tx and horizontally polarized Rx. The higher the XPD the better isolation between di�erent
polarizations. Here these two XPDs are combined into one using the assumption that the
they are the same for both polarizations, i.e. XPD = XPDV = XPDH
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Chapter 3

MIMO Systems

Multiple-input-multiple-output (MIMO) systems are those having (as the name suggests)
more than one input and output, here this is taken to mean that both Tx and Rx have multiple
antennas operating over the same bandwidth. There has been a great interest in research into
wireless MIMO technologies for the last decade which was sparked by ground breaking work
done by Winters [50] and Foschini [16] in 1992. These papers predicted remarkable spectral
e�ciencies for wireless communication systems with multiple transmitters and receivers. As
time progressed interest would grow since the value of spectrum seemed to have no limits, this
was re�ected in the radio spectrum auctions in for example Germany and Britain during the
height of the dot-com boom in 2000. There companies bought relatively small bandwidths
for 100s of millions of pounds or Euros. The ability to squeeze even more bits through using
smaller portions of spectrum became very valuable indeed. The interest subsided though
slightly after the dot-com burst in 2001 but the technology never lost its appeal and now
there are quite a few standards incorporating MIMO (e.g. LTE, WiMAX and IEEE 802.11n)
and quite a few products using it. It can be said that MIMO is a proven technology with
an abundance of published material, a good overview of MIMO can be found for example
in [40]. A pre-condition for the great majority of this work is that the transmitter and/or
the receiver are in a rich scattering environment unlike the line of sight links examined in
this thesis. For a mobile scenario where the handset is surrounded by objects re�ecting the
signals from many di�erent directions without any path dominating, the technology is at its
best. In fact, the LoS MIMO path between multiple Tx's and Rx's have for practical mobile
applications been considered useless as the di�erence in path lengths is too short to reach
orthogonality between the received signals.
Moving the higher frequencies, e.g. microwaves, and requiring a �xed setup solves this prob-
lem, enabling MIMO to work even with only the direct paths present, but at the expense
of larger antenna spacings as well as requirements on the distance between transmitter and
receiver. It should be noted that the indoor environment can also be suitable since only short
distances are needed. LoS MIMO is a fairly recent research topic, papers focusing on the
indoor environment [25, 27] and outdoor environment [18, 14, 39] have been published on
LoS MIMO over the years but the main attention has always been on the classical MIMO
multipath environment. Excellent work on LoS MIMO has also been done by Bøhagen [5].

Besides spatial multiplexing, a second advantage of MIMO systems is that of adaptive di-
rectivity called beamforming or interference cancellation so that an array of non-directive
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antennas can be electrically controlled to have a large gain in some direction while cancelling
others (containing an interfering source for example). Diversity gain can also be obtained
from the added antennas. These techniques are called smart antenna techniques and are
discussed in [4, 23, 36].

3.1 Narrowband MIMO
A simple schematic view of a MIMO system can be seen in Figure 3.1. Here data enters the
MIMO transmitter and is processed and distributed between the Tx antennas. The signal is
transmitted over a channel described by the channel matrix H. The signals then arrive at
the Rx antennas combined, it is then the job of the MIMO receiver to separate and process
the incoming signal streams to reproduce (hopefully) the same data stream as at the Tx.

MIMO

Tx.

MIMO

Rx.

H...

si1

siN

...

ri1

riM

Data Data

Figure 3.1: A block diagram of a simple MIMO system with N transmit antennas and M
receive antennas.

Narrowband channels are called narrowband since they treat all the frequency components
within the bandwidth of the signal the same (symbol duration is much larger than the multi-
path delay spread Ts >> Tm), that is the frequency response is �at. That is to say that the
received signals are only attenuated, delayed and phase shifted which means that each chan-
nel gain can be described (neglecting delay) by a single complex number. The whole channel
which is made up of multiple paths can then be speci�ed by a channel matrix H. Having N
transmit antennas and M receive antennas and LB symbols to be transmitted through each
Tx antenna the system is described by




r11 · · · r1M
... . . . ...

rLB1 · · · rLBM


 =




s11 · · · s1N
... . . . ...

sLB1 · · · sLBN







h11 · · · h1M
... . . . ...

hN1 · · · hNM




+




n11 · · · n1M
... . . . ...

nLB1 · · · nLBM


 (3.1)

where rim is symbol number i from receive antenna m, sim are the transmitted symbols, hnm

are complex values describing the channel between transmit antenna n and receive antenna
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m and �nally nim represents the Gaussian noise. Using matrix notation (3.1) can simply
be written as r = sH + n. The scalar values of the channel matrix H can be written as
hnm = αnm exp (jθnm) where αnm and θnm are the amplitude- and phase of the channel
respectively.

The problem of the receiver is to counteract the e�ects of the channel, one way to do that is
to �nd a matrix B so that H ·B = I if N < M or B ·H = I if N ≥ M . Each Rx antenna
receives symbols from all Tx antennas so it is the job of the receiver to separate the data
streams to obtain an estimate of what was actually transmitted. Assuming receiver channel
knowledge, that is that H is known at the Rx, B can be found by using the Moore-Penrose
Matrix Inverse

B =

{ (
HHH

)−1 HH if N ≥ M

HH
(
HHH

)−1 if N < M
(3.2)

This can then always be done given that the inverse exists which is always the case if H is full
rank. The rank of H, denoted RH , de�nes how many linearly independent columns a matrix
has which again corresponds to the number of achievable independent parallel channels that
can be obtained. The rank always satis�es RH ≤ min(N, M) meaning that the number of in-
dependent channels obtainable from H is always equal or less than the lower antenna number
at the Rx or Tx. The Pseudoinverse in (3.2) will enhance noise1 and is not the optimal way if
there is some prior knowledge about the noise distribution and power (e.g. MMSE estimate 2).

When the channel is known at the receiver or transmitter it is called channel state information
at the receiver (CSIR) or channel state information at the transmitter (CSIT) respectively.
There are three basic schemes that are used to obtain CSIR and these are: Training based,
semi-blind and blind channel estimations. Training based methods [45] send training symbols
(symbols that are known at the Rx beforehand) and use them to compare what was received
and what was sent to calculate an estimate of the channel. These training symbols can then be
sent periodically in certain time slots within the symbol stream to keep track of the changing
channel. Blind methods (e.g. [52]) are based on the fact that the Rx knows the modulation
scheme and thus has some knowledge about how a transmitted signal should look like. It
can thus compare the shape of the received symbols to what could have been transmitted.
Since what was actually transmitted is unknown these methods can be slow to converge and
may su�er from some phase ambiguity even after convergence. Semi-blind methods use some
combination of training based and blind methods. The training data is sent only in the
beginning [37, 10, 24] or is embedded within the data symbols called superimposed pilots
(SIP) [8, 9, 48, 47, 26, 35]. They can get rid of the phase ambiguity as well as improving the
convergence speed compared to blind methods.
CSIT is then usually obtainable by the Rx sending information about the channel to the Tx
or the Tx using channel reciprocity where applicable.

1Since when removing the channel a�ects the noise is not considered.
2If N ≥ M then B = (HHH + σ2

wI)−1HH where σ2
w is the noise variance.
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3.1.1 Singular Value Decomposition and Condition Numbers
As mentioned before not all environments are suitable for MIMO transmission. If for example
the channel has one dominating path such as in a LoS environment then the capacity of the
MIMO system should su�er. To see this we need to apply some mathematical method from
linear algebra, namely singular value decomposition (SVD). For every N ×M matrix H one
can write

H = UΣVH (3.3)
where U and V are N × N and M × M unitary matrices 3 respectively. Σ is a M × N
diagonal matrix of singular values σi of H. If V is now known at the Tx (CSIT) and U
at the receiver (CSIR) then the symbols at the Tx can be multiplied by UH before being
transmitted and the received symbols multiplied by V after being received. This parallelizes
the MIMO channel into RH independent SISO channels with gains σ1, σ2, , . . . , σRH

(see
Appendix B for further discussion). This can be seen in Figure 3.2. Since now these singular
values represent the gain of each SISO channel the best channel matrix is the one that has
equal gains or in other words the singular values should be identical. The larger the ratio
between these singular values the worse the MIMO channel is. To describe the theoretical
performance of a MIMO channel one needs to know all the singular values. It is though clear
that it is always the smallest singular value that will a�ect the BER the most. In this thesis
the condition number is introduced as a measure on how good a MIMO channel is. The
condition number is the ratio between the largest- and the smallest singular value. When the
channel is perfectly conditioned the condition number is one but it will grow as the channel
condition worsen. The condition number is de�ned as

κ =
max(σi)
min(σi)

(3.4)

The number has no mathematically rigorous coupling to BER or penalty but a rule of thumb
is that if the condition number is large the penalty should be close to the square of the con-
dition number. That is the SNR needs to be raised by κ2 to achieve the same performance as
if the condition number was one. One has also to remember that penalty is usually expressed
in dB while condition number is in a linear scale.

As an example lets consider two 2x2 MIMO channels H1 and H2 given as

H1 =
[

1 ejπ/2

ejπ/2 1

]
and H2 =

[
1 1
1 1

]
(3.5)

Doing the SVD so that H1 = U1Σ1VH
1 and H2 = U2Σ2VH

2 we get the following singular
value matrices

Σ1 =
[ √

2 0
0

√
2

]
and Σ2 =

[
2 0
0 0

]

The singular values for the �rst channel are σ11 = σ12 =
√

2 while the singular values for the
second channel are σ21 = 2 and σ22 = 0. The condition numbers are thus

3A unitary matrix H satis�es HHH = HHH = I
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Figure 3.2: Using SVD the MIMO channel can be parallelized into RH independent SISO
subchannels with gains σk.

κ1 =
√

2√
2

= 1
κ2 = 2

0 →∞ (3.6)

The second channel is rank de�cient (RH = 1) and does in fact not support MIMO transmis-
sion while the �rst one is full rank (RH = 2) and is ideal for MIMO. This can also easily be
seen if we try to invert H1 and H2 since H2 is singular and not possible to invert.

3.1.2 Channel Capacity
The capacity of a SISO system is given by the Shannon-Hartley theorem

C = log2 (1 + γ̄) (3.7)
where γ̄ is the average SNR. The capacity of a MIMO system was derived by Telatar in 1995
[44]. The result is

C = log2

[
det

(
IM +

γ̄

N
HHH

)]
=

min(N,M)∑

i=1

log2

(
1 +

γ̄

N
λi

)
(3.8)

where λi is a eigenvalue of HHH. The eigenvalues and singular values are related by λi = σ2
i .

Looking back at the matrices de�ned in (3.5) the capacity can thus be calculated using the
singular values obtained in the previous example for a given SNR. Setting the SNR to 20 dB
the capacity becomes

C1 =
2∑

i=1

log2

(
1 + 100 ·

√
2
2
)
≈ 15.3 [bps/Hz]

C2 = log2

(
1 + 100 · 22

)
+ log2

(
1 + 100 · 02

) ≈ 8.6 [bps/Hz] (3.9)
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As can be seen the �rst channel has almost twice as high capacity compared to the second
one. This is because H2 has rank 1 and only supports one data stream. If the SNR has a
lower value the capacity gain of case 1 in the above equation will be reduced. Thus MIMO
works best at high SNR which is most often readily available when there is LoS.
It is also noteworthy to mention that if the Tx knows the channel (CSIT) he can allocate
more power to the better channel thus increasing the capacity (e.g. water�lling). Assuming
that the Tx in case 2 allocates double the power to the better channel and no power to the
other one and the SNR has the relatively low value of 4 dB the result becomes

C1 =
2∑

i=1

log2

(
1 + 2.5 ·

√
2
2
)
≈ 5.2 [bps/Hz]

C2 = log2

(
1 + 2.5 · 2 · 22

) ≈ 4.4 [bps/Hz] (3.10)

3.2 Line-of-Sight MIMO
A properly designed MIMO system in a rich multipath environment will have a low correla-
tion of phase and amplitude between di�erent receive antennas. Replacing the rich multipath
environment with one dominating LoS path will correlate the channels so that there will al-
ways be the same phase o�set and amplitude between the Tx- and Rx antennas pairs over
time. If the antennas are placed closely together the channel matrix will become a matrix
with all elements identical which is singular reducing the capacity to a SISO system (3.7).

In LoS the phase of each channel gain hnm is a function of the geometry and carrier fre-
quency but is not governed by a statistical distribution as in non-LoS MIMO. By varying the
separation between the transmitting and receiving antennas a static phase shift between the
antennas can be introduced thus e�ecting the channel matrix. This is illustrated in Figure
3.3 where the di�erent paths are marked hnm. The phase of the received signal stream will
depend on the length of the path (and carrier frequency) so di�erent paths can have di�erent
phases. The normalized channel matrix can then be expressed as

H =




h11 · · · h1M
... . . . ...

hN1 · · · hNM


 =




exp (jkd11) · · · exp (jkd1M )
... . . . ...

exp (jkdN1) · · · exp (jkdNM )


 (3.11)

where k = 2π/λ and dnm represents the physical distances between the antennas.

3.2.1 Optimal Antenna Separation
As mentioned earlier the LoS channel is described by the geometry (in units of wavelengths)
of the antenna placements. Finding the optimal con�guration is thus a geometrical problem.
To solve it some preferred antenna arrangement must be assumed. Here the antennas are
considered to be organized in linear arrays where the Tx- and Rx antennas are separated by dt

and dr respectively as shown in Figure 3.4. The total length of the arrays are then (N − 1)dt

and (M − 1)dr. The Tx and Rx antennas can be tilted in the plane of transmission by θt and
θr respectively and the Rx array can be rotated out of plane by φr as is shown in the right
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Figure 3.3: A schematic view of a 2x2 LoS MIMO system. There are four channels hij

describing the phase and amplitude of each path.

side of Figure 3.4. Considering the origin to be at Tx0 and denoting n and m to be the index
of Tx and Rx antennas respectively, starting with zeros and going up to N − 1 and M − 1,
then doing the derivation similar as in [5] the vectors describing the antenna placements are
given by

at
n = ndt sin(θt)nx + ndt cos(θt)nz

ar
m = [D + mdr sin(θr) cos(φr)]nx

+mdr cos(θt)nz + mdr sin(θr) sin(φr)ny

(3.12)

where nx, ny and nz are unit vectors along the x-, y- and z-axis respectively. To calculate the
distance between antenna m and n the absolute value of the di�erence of the vectors above
can be taken. This corresponds then to the Euclidean distance between the antennas

dnm = |ar
m − at

n| = [(D + mdr sin(θr) cos(φr) − ndt sin(θt))2

+ (mdr sin(θr) sin(φt))
2 + (mdr cos(θr)− ndt cos(θt))2 ]1/2 (3.13)

Using the approximation
√

A2 + B ≈ A+ B
2A if A >> B, which is true for the equation above

since the distance D is much larger than the antenna spacing, then (3.13) can be written as

dnm ≈ D + mdr sin θr cosφr − ndt sin θt

+
1

2D

[
(mdr cos θr − ndt cos θt)

2 + (mdr sin θr sinφr)2
]

= D + mdr sin θr cosφr − ndt sin θt

+
1

2D

[
m2d2

r cos2 θr + n2d2
t cos2 θt − 2mndtdr cos θt cos θr + m2d2

r sin2 θr sin2 φr

]

Here another simpli�cation has been made which is D +mdr sin(θr)−ndt sin(θt) ≈ D for the
denominator which is true since the distance between the Tx and Rx is much larger than the
antenna separation and is also true for small angles.
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Figure 3.4: Tx antennas and Rx antennas organized in an array. The separation between the
Tx and Rx antennas is dt and dr respectively, while θt and θr represents the angles of the
antenna arrays with respect to the z axis. D is the distance between the antenna arrays.

Now that the distances between the antennas have been calculated a criteria for the optimal
antenna separation should be found. One way to accomplish this is to note that the optimal
separation should give the highest capacity or in other words should maximize (3.8). This
corresponds to maximizing the product of the eigenvalues λi. It is known from linear algebra
that trace{W} =

∑
λi = NM for a normalized unit power matrix H if

W =
{

HHH, N ≤ M
HHH, N > M

Then it is easy to show that (3.8) is maximized by λ1 = λ2 = · · · = constant. This is obtained
if H has orthogonal rows for N ≤ M or orthogonal columns for N > M . De�ning the rows
of HLoS as hn, orthogonality between them can be expressed as < hn,hi >n6=i= 0. This
condition can then be used to produce the expression for the optimal antenna separation (if
N ≤ M)

< hn,hi >n 6=i =
M−1∑

m=0

exp (jk(dnm − dim))

=
M−1∑

m=0

exp
(

j2π
dtdr cos(θr) cos(θt)

λD
(i− n)m

)

· exp
(

jk[(i− n)dt sin(θt) +
1

2D
(i− n)2dt cos2(θt)]

)
= 0

⇒ sin (kdtdr cos(θr) cos(θt)(i− n)M/2D)
sin (kdtdr cos(θr) cos(θt)(i− n)/2D)

= 0

⇒ dtdr =
λD

M cos(θt) cos(θr)
K (3.14)

where K is a positive odd number usually chosen to be one since that gives the smallest
optimal antenna separation. Doing a similar derivation for the case N > M would yield
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the same expression only with M replaced with N . De�ning V = min(M, N) a general
requirement on the antenna separation is given as

dtdr =
λD

V cos(θt) cos(θr)
K (3.15)

Looking at the optimal antenna spacings given in (3.15) it can be seen that the separation
increases as the distance D increases and that it decreases as the carrier frequency fc increases
(since λ = c/fc). From an installation point of view it is often practical to chose θt = θr = 0
and K = 1. This is done in Figure 3.5 where the optimum antenna separation is plotted
against distance and for di�erent carrier frequencies.
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Figure 3.5: Optimal antenna separation for a 2x2 SS LoS MIMO system, plotted against
distance for a few carrier frequencies. If the separation at both the Tx and Rx is chosen to
be the same dt = dr = d then the values on the y-axis correspond directly to d.

Other geometries of the antenna setup at Tx and Rx can be chosen as well. One such ap-
proach is to arrange the antennas in an equilateral rectangle (minimum of 4 antennas needed
at Tx and Rx) also called uniform planar array. The calculations yield almost the same result
as for the linear antenna array as is shown in reference [6].

There might be a few di�erent reasons why the antennas are not placed with the optimal
separation. The most common ones are perhaps that the required separation might be too
large to accommodate at the site and that all transmission systems have some bandwidth, it
is only possible to optimize for one frequency. De�ning the parameter η as

η =

√
dtdr

(dtdr)opt
(3.16)

to quantify the deviation from optimality. Choosing dt = dr = d, then (3.16) reduces to
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η = d/dopt. The condition number as a function of η for a 2x2 LoS MIMO is plotted in
Figure 3.6. The condition number is at its lowest at η =

√
K where K = 1, 3, 5, . . . , the

condition number approaches in�nity for K = 0, 2, 4, . . . .
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Figure 3.6: The condition number as a function of η de�ned in (3.16) for a 2x2 LoS MIMO
system.

The condition number for a 2x2 LoS MIMO is derived analytically in Appendix A.1 and is
given by

κ =

√√√√2 + [2 + 2 cos(πη2)]1/2

2− [2 + 2 cos(πη2)]1/2
(3.17)

3.2.2 Vector Visualization for LoS MIMO
An alternative way of understanding a LoS MIMO system would be to use vector notation.
For a 2x2 LoS MIMO system it can be seen that for the optimum case there should be a
90◦ phase shift at the carrier between Tx antenna n and Rx antennas m 6= n (because of the
condition < hi,hn >i6=n= 0). This can be visualized graphically using a vector representation
of the signals. Consider �rst Figure 3.7a) where the Tx- and Rx antennas are phase locked
and there is a 90◦ phase shift at the carrier frequency between paths dnn and dnm where
n 6= m. Both receive antennas receive a signal that is a combination of both transmitted
signals only with di�erent phases. By rotating the received signals and combining them the
combined signal streams can be separated. This is true even though the transmitters are not
phase locked (Figure 3.7b-c). If however the phase di�erence between the direct- and diagonal
paths is less than 90◦ as it is in Figure 3.7d the resulting signals will have less power and are
thus more susceptible to noise. This corresponds to a suboptimal situation which can also be
seen from the high condition number of the LoS channel matrix.
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Figure 3.7: Separating the signals streams in a 2x2 LoS MIMO. All �gures assume that the
distances dii are a multiple of the wavelengths so that the received signal has the same phase
rotation as the transmitted one. 90◦ di�erence between the direct- and diagonal paths for
a-c, 45◦ for d. a) The Tx signals are phase locked (0◦ phase di�erence between them). b) 45◦
phase di�erence between Tx signals. c) 90◦ phase di�erence. It is interesting to note that
there is no signal strength at Rx antenna 2. d) 0◦.

Figure 3.7c) is an interesting special case. There Rx2 receives no power while Rx1 receives
double, this happens because the signals combine constructively at Rx1 while they combine
destructively at Rx2. Having a constant modulus signal constellation such as 4QAM the
symbols will always have the same power but will instead be rotated di�erently. If Tx2

transmits a symbol with a 90◦ phase shift compared to Tx1 as is depicted in Figure 3.7c) Rx2

receives no power. But if the receivers follows the simple procedure of rotating the received
symbol back 90◦ and summing up between the branches the correct symbols will still be
recovered.

3.2.3 Grating Lobes
A third approach for understanding LoS MIMO would be through grating lobes. Having
two spatially separated transmitting antennas operating in the same bandwidth and carrier
frequency will create gain patterns in the far �eld called grating lobes. For the setup in
Figure 3.8 the receiver will see di�erent signal strengths depending on the physical angle φ
and electrical angle α for a �xed Tx antenna separation and frequency. We will start with
the case when both Tx's are transmitting the same signal which will result in a static gain
pattern.
Calculating the distances d1 and d2 using the law of cosines one gets

d2
1 = d2

t

/
4 + D2 − dtD cos(φ)

d2
2 = d2

t

/
4 + D2 + dtD cos(φ)

(3.18)

The gain (relative to a single Rx antenna) can also be expressed as
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G(φ, α) =
1

Tsc

∫ Tsc

0
(sin(ωt + d1k) + sin(ωt + d2k + α))2 dt

= cos(d1k − d2k − α) + 1
= cos(k∆d + α) + 1 (3.19)

where ∆d = d2 − d1.

e
-jα

d1

d2

Tx1

Tx2

Rx

ø

D

dt

Figure 3.8: Two Tx antennas both transmitting the same signal. The observed signal strength
or gain will depend on the angle between the Tx and Rx.

The grating lobes should have the same shape independent of D if the receiver is situated in
the far �eld. For this to be true ∆d needs to be constant if φ and dt are constant.

(d2 − d1)2 =
(
d2

1 + d2
2 − 2d1d2

)

=
d2

t

2
+ 2D2 −

√
d4

t

4
+ 4D4 + 2d2

t D
2 − 4d2

t D
2 cos2(φ)

≈ d2
t

2
+ 2D2 − 2D2 − d4

t /4 + 2d2
t D

2 − 4d2
t D

2 cos2(φ)
2D2

= d2
t cos2(φ)− d4

t

16D2
(3.20)

where the approximation
√

A2 + B ≈ A + B
2A if A2 >> B was used in the third step. For

D >> d2
t (3.20) can be written as

∆d ≈ dt cos(φ) (3.21)
For two transmit antennas separated by a certain distance, (3.19) describes the power gain
of the received signal for an observer in the far �eld. Envisioning an observer moving around
the antenna array in the far �eld and measuring the signal strength it can be seen that as the
physical separation in wavelengths between the transmit antennas grows the faster the signal
strength will vary. Combining (3.19) and (3.21) it is easy to see how this is true

G(φ, α) = cos(k∆d + α) + 1 ≈ cos
(

2π

λ
dt cos(φ) + α

)
+ 1
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As the ratio dt/λ increases then the gain expressed above will vary faster as φ is varied. This
can also be visualized looking at Figure 3.8, the larger dt is the larger the change in ∆d for
some ∆φ. If now the transmitter would like to put the receiver in a null gain it can do so
by varying α. α represents the electrical angle that is the phase of the signal and thus a full
180◦ degree phase o�set is required to go from full gain to a null. The e�ects of changing α
and varying the frequency (or antenna separation) can be seen in Figure 3.9.
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Figure 3.9: Gain pattern (grating lobes) for two antennas separated by dt. The gain varies
faster with angle as the antenna separation increases in wavelengths. 1) α = 0 and dt = 2λ.
2) α = 0 and dt = 8λ. 3) α = π and dt = 2λ. 4) α = π and dt = 8λ.

As the derivation in section 3.2.1 showed, the separation between Rx antennas and Tx an-
tennas (denoted dr and dt respectively) should be in such a way that there is a 90◦ phase
shifts between the direct- and diagonal paths. Setting the antenna separations so that (3.14)
is satis�ed and plotting the gain each Rx antenna sees while rotating the Tx antenna array
an interesting pattern emerges. This can bee seen in Figure 3.10. When Rx2 has a deep fade
Rx1 has maximum gain and vice versa. In LoS MIMO we are usually interested in spatially
multiplexed systems so that each Tx antenna is transmitting di�erent symbol streams. If
the symbols on each Tx antenna have the same amplitude (by coincidence or because the
modulation is constant amplitude) then their phase di�erence correspond to α. Since α only
shifts the pattern seen in Figure 3.10 the situation can arise (for a 2x2 SS LoS MIMO) that
one antenna receives no signal while the other receives a combination from both Tx antennas.
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That situation is depicted also in Figure 3.7c and it is interesting to note that the signal
streams are still easily separable at the receiver.
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Figure 3.10: Gain pattern for an antenna arrangement satisfying (3.15). When one Rx has a
null gain the second Rx will experience a peak gain.

3.3 Wideband MIMO Model
The discussion so far was limited to narrowband MIMO or �at channel MIMO, that is channels
that could be described by a single complex number. Thus it was easy to express the MIMO
channels in matrix form H so that the received signal was r = sH + n. That can also be
expressed in a series form as

rm[j] =
N∑

n=1

hnmsn[j] (3.22)

Here m represent the index of the Rx antenna and j is the discrete symbol timing. Now a
wideband channel will act as a �lter so that the gains in (3.22) need to be replaced by �lters.
This can be accomplished by

rm[j] =
N∑

n=1

Lt∑

i=−Lt

hnm[i, j]sn[j − i] ⇔

rm =
N∑

n=1

hnm ∗ sn

where hnm represents the channel �lter between Tx antenna n and receive antenna m of
length 2Lt + 1 and sn is the vector representation of the symbols sent from Tx antenna n.
Expressing frequency selective MIMO channels in matrix form is a little bit more di�cult
and it requires some modi�cations to the channel matrix. In the most general case a N ×M
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MIMO system has NM channels where each one of them is made up of a certain number
of multipaths. The full channel is then considered to be made up of NM �lters that are
uncorrelated in the most general case. Equalizing such a channel is a much harder task than
equalizing SISO channels since NM independent �lters will be required in stead of just one.
Transmitting LB symbols (also called block length) the channel matrix can be expressed using
Toeplitz matrices 4 such as

Ψnm =




hnm [0] · · · hnm [−Lt] 0 · · · 0

hnm[1] hnm [0] · · · hnm [−Lt]
. . . 0

... . . . . . . . . . . . . ...
0 · · · 0 hnm [Lt] · · · hnm [0]




T

where the LB × LB matrix Ψnm describes the channel from transmit antenna n to receive
antenna m and 2Lt + 1 is the length of the channel �lter. Expressing the full MIMO channel
in this way gives

Ψ =




Ψ11 · · · Ψ1M
... . . . ...

ΨN1 · · · ΨNM




De�ning the signal matrix s as

s = [s1, . . . , sN ]
sn = [sn[1], . . . , sn[LB]]

where sn[i] is the ith symbol transmitted from Tx antenna n. Here s will be a 1 × NLB

vector. This enables the noise free received signal to be expressed as

r = sΨ (3.23)
where r is the received signal and will have the dimensions 1 × MLB. The matrix Ψnm

arranges the channel �lter taps in a convolutional matrix form. For a SISO channel there is
only one �lter so Ψ11 multiplied by the signal vector would represent the �ltering operation
of the channel. For a MIMO system there are multiple channel �lters that operate on the Tx
signal streams which are added up at the receiver. This may be conveniently expressed in
matrix form by (3.23).

3.3.1 Channel Capacity
The channel capacity was de�ned for a narrowband MIMO channel in Section 3.1.2. For a
frequency selective channel the capacity becomes frequency dependent. For a SISO channel
the capacity becomes [33]

C =
∫ ∞

−∞
log2

(
1 + γ|H(f)|2) df

4A Toeplitz matrix is a square matrix with equal values on its left-to-right diagonals.
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where H(f) is the transfer characteristic of the channel (including Tx and Rx �lters). A
MIMO channel is described by a channel matrix so that the capacity can be expressed as [34]

C =
min(N,M)∑

i=1

∫ ∞

−∞
log2 (1 + γλi(f)) df

where λi(f) is the ith eigenvalue of the positive de�nite matrix C(f) = HH(f)H(f). Here
H(f) represents the frequency dependent narrowband channel matrix.
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3.4 The LoS MIMO Channel
The LoS-MIMO channel di�ers from the non-LoS MIMO channel by the fact that there is one
dominating path so that the incoming phases are dominated by the geometry of the channel
and not scattering. Besides the LoS-path there can be secondary paths caused either by
atmospheric scintillation or a re�ection o� the ground. This results in a frequency selective
channel. A common model to use is the so called two ray model where the channel is described
using one direct path and one path that re�ects o� the ground and is received with a random
phase φ and a relative amplitude of 0 ≤ b < 1. The two paths have some delay di�erence τ
that is commonly set to 6.3 ns as in Rummler's model [3]. The impulse response of such a
channel is

h(t) = δ(t) + bδ(t− τ)ejφ ⇔
H(s) = L{h(t)} = 1 + be−τs+jφ (3.24)

Remembering that s = jω it can be seen from (3.24) that the channel introduces periodic
notches in the frequency spectrum which are illustrated in Figure 3.11. The channel spans
some bandwidth and will thus have a frequency response depending on where it is situated
in the spectrum of Figure 3.11. If one of the notches happen to be within the bandwidth the
channel will su�er from severe fading and ISI. The depth of the notches is given (in dB) by
Bn = 20 log10(1− b).
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Figure 3.11: Periodic notches for the Two Ray Model. τ = 6.3 ns, φ = 0 and b = 0.9 in
(3.24).

A LoS 2x2 SS-MIMO system with four frequency selective channels, denoted hnm is illustrated
in Figure 3.12. By varying the phase φnm of the ground re�ection the properties of the
channel �lters hnm are changed. Each channel can act as a lowpass- highpass or notch �lter
for example depending on φnm.
The N ×M LoS MIMO channel is made up of NM such �lters, each with its own realization
of φnm.
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Figure 3.12: A LoS 2x2 SS-MIMO system with four frequency selective channels.

3.4.1 Mast Swing
A common installation arrangement for backhaul links is that they are mounted on a tall
mast along with the mobile base stations which are placed on the top with the backhaul
antenna disks a little bit below. In heavy wind the mast might rock back and forth resulting
in periodic movement of the antennas. As the antennas move, the channel between Tx and
Rx will change since the channels are partly described by geometry. As long as the Rx does
not move out of the main beam of the Tx antenna the signal strength between any pair of Tx-
and Rx antennas should be relatively una�ected. By moving the mast the channel notches
can be seen across the bandwidth of each channel forcing the STE to adapt. Another e�ect
is that the movement at such high carrier frequencies will cause some di�erential frequency
o�set at the Rx. Since all real systems have to have some carrier recovery this is usually not
such a large problem.

3.5 Dual Polarized MIMO
Dual polarized MIMO systems make use of two orthogonal polarization states, often described
as vertical and horizontal polarization. The interference between the two states is called cross-
polarization discrimination (XPD) (de�ned in (2.6)) and depends both on the transmission
channels and the polarization mismatch between Tx and Rx. XPD is usually expressed in dB
and the larger it is the more isolation there is between the states.

The channel can lower the XPD and there have been quite a few papers on how the channel
treats the polarizations, e.g. [2, 30]. The results indicate that even in a scattering environ-
ment the XPD should be high (at least 5-15 dB) and for a non-scattering LoS channel it
is even higher. Thus DP MIMO schemes can provide high rank MIMO channels with good
condition numbers. References [15, 42] show the bene�ts of using DP MIMO in a Ricean
fading environment when the antennas are not con�gured for LoS. This is though not the
optimal comparisons for the purpose of this discussion since the antenna placements for a
SS MIMO system should be optimized for the LoS environment. In Ref. [7] this is done
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with the result that SS-SP MIMO outperforms its DP counterpart in low SNR because of the
added 3 dB array gain. The di�erence is reduced when the SNR is high which is common
in LoS environments. The SS-SP MIMO was also found to be more sensitive to polarization
mismatch than DP MIMO. Reference [12] shows that the XPD is not lowered signi�cantly
even for heavy rain which suggests that SS-SP MIMO should have superior performance even
while it rains because of reduced SNR. A bene�t of the DP MIMO system is that the antennas
may be combined, thus there is no need for spatial separation at the Tx and Rx site.
The largest bene�t for DP MIMO systems is though the relaxed requirements on antenna
separation, DP antennas can be situated as close together as the installation allows.

It is interesting to analyze 4x4 SS-DP MIMO systems since these can produce 4 fold capacity
compared to a SISO system (at a high SNR) while relaxing somewhat the requirements for
the separation. The narrowband channel matrix can be written as

H =




h1V,1V h1V,1H h1V,2V h1V,2H

h1H,1V h1H,1H h1H,2V h1H,2H

h2V,1V h2V,1H h2V,2V h2V,2H

h2H,1V h2H,1H h2H,2V h2H,2H


 =

[
H11 H12

H21 H22

]

=




√
1− αejkd11

√
αejkd11

√
1− αejkd12

√
αejkd12

αejkd11
√

1− αejkd11
√

αejkd12
√

1− αejkd12√
1− αejkd21

√
αejkd21

√
1− αejkd22

√
αejkd22

αejkd21
√

1− αejkd21
√

αejkd22
√

1− αejkd22


 (3.25)

or using the Kronecker product ⊗ as

H = HLoS ⊗WXPD =
[

ejkd11 ejkd12

ejkd21 ejkd22

]
⊗

[ √
1− α

√
α√

α
√

1− α

]

where α = E
{|hiH,iV|2

}
= E

{|hiV,iH|2
}
. Here hnV,mH denotes the gain between the vertically

polarized Tx antenna n and the horizontally polarized Rx antenna m. α measures the ratio of
the power for one polarization that is transferred to the other polarization and is constrained
by 0 < α ≤ 1. In terms of the XPD de�ned in (2.6) α can be expressed as

α =
1

XPD + 1
The condition number of (3.25) is plotted against XPD in Figure 3.13. As can be seen the
condition number drops o� quickly with increased XPD. If the antenna placement is subopti-
mal the system can be seen to be more sensitive to the XPD. Comparing this result to Figure
3.6 it can be seen that the condition numbers converge to the same value.

To calculate the condition number of (3.25) analytically, the eigenvalues of HHH should be
calculated �rst. The result is (given that θt = θr = 0)

40



2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10
Condition Number Vs XPD

C
on

di
tio

n 
N

um
be

r

XPD [dB]

 

 

η = 0.5
η = 0.7
η = 1

Figure 3.13: The condition number κ as a function of XPD for a 4x4 SS-DP MIMO as is
described in (3.25). This is done for η = 0.5, 0.7, 1 (see (3.16) for the de�nition of η). The
dots represent values calculated using (3.27).

c1 = (2− fa(a))
[
1− cos(πη2/2)

]

c2 = (2− fa(a))
[
cos(πη2/2) + 1

]

c3 = (2 + fa(a))
[
cos(πη2/2) + 1

]

c4 = (2 + fa(a))
[
1− cos(πη2/2)

]
(3.26)

where η is de�ned by (3.16) and fa(a) = 4
√

α− α2. The condition number is thus

κ =

√
max(c1, c2, c3, c4)
min(c1, c2, c3, c4)

(3.27)

Looking at (3.26) and (3.27) there are a few things to note. When α = 1/2 (XPD= 0 dB) then
c1 = c2 = 0 meaning that the channel can only support 2 data streams. This can perhaps be
seen intuitively since then there is no discrimination between the polarization states, that is
the 4x4 SS-DP MIMO has been reduced to a 2x2 equivalent.

3.6 Penalty
A perfect system setup, that is a full rank MIMO channel and a system that only introduces
white Gaussian noise, will have a certain BER for a given SNR. If a target BER is set then
the SNR that achieves that can be computed. If any imperfections are then introduced in
the system a higher SNR should be needed to get the same target BER. The di�erence in
SNR values is here termed as penalty. It is the penalty in power that has to be paid if this
imperfection is introduced. For example if there is a penalty of 3 dB present in a system the
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Tx power will have to be raised by 3 dB to achieve the same BER.

Assuming Gray coding and a square M-QAM constellation the BER can be calculated for a
SISO system as

Pb =
(

1− 1√
M

)
Q

(√
3k

M− 1
Eb

N0

)

where k = log2(M). For a MIMO system such as is depicted in Figure 3.2 there are M Rx
antennas 5 and equally many parallelized SISO channels with singular values σ1, . . . , σRH

.
The BER for a MIMO system using SVD is thus given as (similar as in [49, eq. 3.50])

Pb =
1

RH

RH∑

i=1

(
1− 1√

M

)
Q

(√
3k

M− 1
Eb

N0
σ2

i

)
(3.28)

The singular values (or gains) σi are calculated for 2x2 SS-SP LoS MIMO in (A.1) and for 4x4
SS-DP LoS MIMO in (3.26) (since the singular values are the square root of the eigenvalues of
HHH). Selecting the BER Pb = 10−3 and M = 16 (16QAM) the penalty can be numerically
calculated for a 2x2 SS-SP LoS MIMO and a 4x4 SS-DP LoS MIMO against η and XPD.
This has been done in Figure 3.14.

5M represents the constellation dimension while M represents the number of Rx antennas.
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Chapter 4

MIMO Equalization

This chapter introduces MIMO equalizers, one of the most important components in MIMO
receivers. MIMO equalizers, on one hand, work as a typical equalizer to remove the Inter-
Symbol-Interference (ISI) which is a common phenomenon mainly caused by a frequency
selective channel, such typical equalization techniques, especially for SISO equalizers, have
been extensively investigated in the literature [53], [20], [43]. On the other hand, in addition
to removing the ISI, MIMO equalizers cancel the Inter-Stream-Interference. Figure 4.1 shows
a schematic view of a 2x2 LoS MIMO system h21 and h12 interferes with h11 and h22 at Rx1

and Rx2 respectively.

Tx1

Tx2 Rx2

Rx1

h11

h12

h21

h22

Figure 4.1: A schematic view of a 2x2 LoS MIMO system. There are four channels hij

describing the phase and amplitude of each path.

Figure 4.2 shows how a MIMO Space Time Equalizer (STE) uses Constant Modulus Algo-
rithm (CMA) to remove both the ISI and Inter-Stream-Interference for a 2x2 SS-SP MIMO
system using 16QAM modulation. As shown in the �gure, the received signals are wildly
distributed before equalization. The right �gures show how the transmitted signals are recov-
ered using equalization. It is noteworthy that the recovered signals are shown after the phase
recovery loop is turned on otherwise these recovered signals might have a random rotation.
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Figure 4.2: 16-QAM constellation. Left �gures: The constellation of the transmitted symbols.
Middle �gures: The received symbols distorted by ISI and Inter-Stream-Interference. Right
�gure: The equalized symbols.

4.1 Equalizer types
Equalization techniques fall into two broad categories: linear- and non-linear equalizers. Com-
pared to non-linear equalizers, linear equalizers have larger noise enhancement which will be
discussed in the following section but they are more easily understood and simpler to imple-
ment. Due to the complexity of non-linear equalizers from a practical standpoint, only linear
equalizers are discussed and compared in this report. We look into MIMO linear equaliz-
ers consisting of trained algorithms such as Least Mean Square (LMS), and Recursive Least
Square (RLS) and blind algorithms such as Constant Modulus Algorithm (CMA), Modi�ed
Constant Modulus Algorithm (MCMA), Simpli�ed Constant Modulus Algorithm (SCMA)
and their variants. Figure 4.3 shows the categories of equalization techniques. All the equal-
izers in this thesis use a symbol-by-symbol transversal �lter structure which is shown in Figure
4.4 where w0 stands for the central tap.

4.2 Linear Equalizers
4.2.1 Linear equalizers structure and noise enhancement
Figure 4.5 illustrates a block diagram of a linear equalizer. As discussed above, linear equal-
izers typically su�er from noise enhancement hence they should balance ISI mitigation and
noise ampli�cation. Since the overall system is seen as a linear system in which the received
signal can be expressed as an addition of distorted signals caused by ISI and additive white
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Figure 4.3: Equalizer types, algorithms.

Gaussian noise (AWGN). This is expressed as

r(k) =
Lc∑

i=−Lc

h(i)s(k − i) + n(k) (4.1)

where r(k) is the kth sample of the discrete received signals at the receiver front end, s(k) is the
transmitted signal and n(k) is the Gaussian noise. Using the discrete time Fourier transform
(DTFT) and passing the received signals through the equalizer, the following equation is
derived

Y (ω) = R(ω)Heq(ω) = S(ω)H(ω)Heq(ω) + N(ω)Heq(ω) (4.2)

where the capital letters of the signals and channel response denote their discrete time Fourier
transform, ISI introduced by channel H(ω) can be removed by introducing an equalizer
Heq(ω), in the frequency domain, de�nes as
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Heq(ω) =
1

H(ω)
(4.3)

Y (ω) = S(ω) +
N(ω)
H(ω)

(4.4)

Here the last term is the colored Gaussian noise (frequency dependent), and all the ISI has
been successfully removed from the received signal. The inverse equalizer which has a fre-
quency response of Heq(ω) is often approximated by a �nite-impulse or transversal �lter as
illustrated in Figure 4.4 impulse responses are the �lter taps wi and the length of the �lter
taps L is expressed as L = 2Lt + 1. As can be seen in the �gure, the structure looks like a
convolution operation which convolves the equalizer taps with the received signals in order to
invert the CIR (Channel Impulse Response) and cancel the ISI. However, if H(ω) has deep
attenuation at any frequency within the bandwidth of transmitted signals, Heq(ω) will have
a high gain in the same range and the noise power range will be greatly enhanced. In this
case, even though the ISI is removed by the equalizer the system may still perform poorly
due to a reduced SNR. Thus the goal of equalization is not only to remove the ISI but also to
prevent enhancing the noise power too much. Conventional linear equalizers process equaliza-
tion approximately by inverting the channel response and the noise power will be enhanced.
Equalizers based on the minimum mean square error (MMSE) algorithms have the bene�t
that they are balancing ISI removal and noise enhancement as they are trying to minimize the
error between the estimated- and desired symbols. Both LMS and RLS are kind of MMSE
equalizers.
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4.2.2 MIMO Space Time Equalizer (STE)
In order to cancel both the ISI and the Inter-Stream-Interference, a MIMO STE has been
considered. A STE has to be able to not only initialize �lter taps but also to update the taps
iteratively as the channel change over time using some adaptive algorithm. A STE for both
2x2 SS-SP and 4x4 SS-DP MIMO systems are considered they can easily be extended into
a MIMO system with N transmitting and M receiving antennas. The channel between each
Tx and Rx antenna pair is considered to be an independent frequency selective channel with
additive white Gaussian noise (AWGN).

MIMO
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MIMO
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Figure 4.6: MIMO Space Time Equalizer diagram.

Figure 4.6 shows a block diagram of a MIMO STE where the overall system can be modeled
as a linear system shown in Figure 4.7. Here N and M denote the number of transmitting
and receiving antennas respectively. h and w denote the channel �lters and the equalizer
�lters respectively. The following equation shows the discrete output of the mth receiving
antenna

rm(k) =
M∑

m=1

sn(k) ∗ hn,m(k) + nm(k) (4.5)

here rm(k) is the discrete output of the mth receiving antenna at sampling time k and nm(k)
is the AWGN added at mth receiving antenna at sampling time k. sn(k) is the discrete
input to the nth transmitting antenna, hn,m(k) is the discrete channel response from the
nth transmitting antenna to mth receiving antenna. The above equation can be rewritten in
matrix form as follows

r = sΨ + n (4.6)
where r is the received signal with the dimension 1xMLB. s and Ψ are de�ned in (3.23) and
(3.3) respectively. The equalized signal can be described by the following matrix
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y(k) = rkW(k) (4.7)
here y(k) is a vector with M equalized symbols at sample time k, W(k) is the equalizer tap
matrix that is de�ned in (4.14), rk is the kth row vector of receiving matrix R that de�ned
in (4.18). Figure 4.8 shows how the real and imaginary part of the magnitudes of STE �l-
ter taps looks like after the equalizer converges. The �rst 43 taps are the coe�cients of the
equalizer w11 and the remaining 43 taps belong to the canceler w21 that cancels Inter-Stream-
Interference from Tx2.
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Figure 4.7: Structure of the MIMO space time equalizer.

4.3 Trained Equalization
There are two di�erent equalizer setting approaches, preset and adaptive. For the preset ap-
proach, the information of the channel response is obtained from the channel measurement or
channel estimation to set the equalizer �lter taps. For the latter approach, instead of estimat-
ing the channel, equalizer taps are automatically adjusted by periodically sending training
symbols and allowing the equalizer taps to adjust its parameters in response to these known
symbols and corresponding received signals.

Figure 4.9 illustrates how training sequences are organized in a transmission sequence. A
training sequence with LTR symbols is stored in front of the data package and sent together
with data repeatedly. Then �lter taps are adjusted per iteration by solving the error func-
tion between these known training symbols and corresponding received signals. A 2x2 SS-SP
MIMO STE under training mode is shown in Figure 4.10. Where the equalizer w11 and w22

are used to cancel the ISI that is introduced in the direct path channel between Tx1,Rx2 and
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Figure 4.8: Filter taps of a converged equalizer for 2x2 SS-SP MIMO

Tx2,Rx2 respectively. w12 and w21 cancel the Inter-Stream-Interference between Tx1,Rx2 and
Tx2,Rx1 respectively. They work together to recover the desired symbols at both receiving
antennas.

Training 

Symbols
Data

Total length:
DTRB
LLL +=

TR
L

D
L

Figure 4.9: Package structure of trained equalization.

4.3.1 Zero-Forcing Algorithm (ZF)
SISO system
The signal we desire after the equalization operation is the transmitted symbol with an integer
delay. In other words, after removing both the ISI and Inter-Stream-Interference, an equalized
signal seq(k) = s(k− δ) where δ is a time delay with an integer number is obtained. Received
signal can be expressed in a discrete time domain as

r(k) =
Lc∑

i=−Lc

h(i)s(k − i) + n(k) (4.8)

where s(k) and r(k) are the kth sample of the transmitted- and received signals and 2Lc +1 is
the channel length. The ZF (Zero Forcing) algorithm works by forcing the impulse response
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of the equalized channel to a delta function. In theory, any channel response can be perfectly
equalized by a ZF equalizer with in�nite number of taps. The upper plot in Figure 4.11 shows
the channel response through which signals are transmitted. The lower plot is the equalized
samples which are forced by the equalizer to zeros (2<n<8) except the center tap. From
Figure 4.4 the equalizer response, due to the channel response Hc, can be expressed as [20]

heq = Hcw (4.9)
w = H−1

c heq (4.10)

where heq and w are column vector given by

heq =




0
...
0
1
0
...
0




w =




w−L

w−L+1
...

w0

w1
...

wL




(4.11)

51



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4
The Channel Response

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1
The equalized samples with a 7−taps ZF equalizer

Figure 4.11: The upper plot: Channel response samples. The lower plot: Equalized samples
using a seven taps ZF algorithm.

Hc is the matrix of channel responses of the form

Hc =




hc(k) hc(k − 1) · · · hc(k − 2L)
hc(k + 1) hc(k) · · · hc(k − 2L + 1)
hc(k + 2) hc(k + 1) · · · hc(k − 2L + 2)

... ... . . . ...
hc(k + 2L) hc(k + 2L− 1) · · · hc(k)




Thus 4L samples of the channel response can be used to determine a Zero-Forcing equalizer
with 2L + 1 �lter taps. Although the Zero-Forcing algorithm is conceptually simple and
easy to implement, the impact of the noise enhancement impact is not taken into account.
Any noise added after the channel gets ampli�ed by a large factor if the channel has a deep
attenuation and this destroys the overall signal-to-noise ratio. Thus the zero-forcing equalizer
is not commonly used in most applications.

4.3.2 Least Square Algorithm (LS)
MIMO system
The least square algorithm is widely used to solve over-determined systems, i.e. systems with
more equations than unknowns. A STE with usage of LS algorithms is for considered and
equalized signal can be expressed as
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ym(k) =
M∑

j=1

rj(k)wj,m(k) (4.12)

where M denotes the number of receiving antennas, rj is the vector of received symbols at jth
receiving antenna and wj,m is the �lter taps for cancelling the ISI or Inter-stream-Interference
of the channel hj,m. The error function for the mth equalizer output is de�ned as

em(k) = sm(k)− ym(k) (4.13)
The index m stands for the mth receiving antenna, (4.12) is repeated for each of LB outputs
of mth equalizer corresponding to LB input signals. Now, collecting LB samples from the
mth receiving antenna, which is expressed as rm = [rm(1) rm(2) . . . rm(LB)]. Then,
LB samples of input signals from the nth transmitting antenna is collected and expressed as
sn = [sn(1) sn(2) . . . sn(LB)T]. Furthermore, the linear equalizer matrix can be written
as

W =




w1,1 w2,1 . . . wM,1

w1,2 w2,2 . . . wM,2
... ... . . . ...

w1,M w2,M . . . wM,M


 (4.14)

where M denotes the number of receiving antennas. In matrix (4.14) the i, jth element of the
linear equalizer matrix is a linear transversal �lter with maximum length of 2L+1 as described
in Figure 4.4. Thus the minimization problem over a block of LB samples is expressed as

wm = arg min ‖sm −Rwm‖2 (4.15)
where wm denotes the mth column vector of �lter matrix W and ‖ · ‖ is the vector norm
operation.sm is the mth column of S matrix as de�ned in (4.22) and R is introduced below.
This minimization problem has a unique solution, given by solving (4.16)

wm = (RH·R)−1·RH· sm (4.16)
sm is a vector of source signals of mth transmitting antenna, and R is formed as

R = [R1, . . . ,RM ] (4.17)
where,

Rm =




rm(Lt) rm(Lt − 1) . . . rm(1) 0 . . . 0
rm(Lt + 1) rm(Lt) . . . rm(2) rm(1) . . . 0

... ... ... ... . . . ...
rm(L) rm(L− 1) . . . rm(L− Lt) rm(L− Lt − 1) . . . rm(1)

... ... . . . ... ... . . . ...
0 . . . 0 rm(LB) rm(LB − 1) . . . rm(LB − Lt − 1)




(4.18)
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where rm(k) is the kth sample received at Rx antenna m. 2Lt +1 is the equalizer �lter length
and Lt is the index of central tap of the equalizer. M is the number of receiving antennas.
A derivation of the least square algorithm based on the MIMO equalizer can be found in the
Appendix A.

4.3.3 Least Mean Square Algorithm (LMS)
MIMO system
The LMS (Least Mean Square) algorithm was invented in 1959 by Stanford university profes-
sor Bernard Widrow and his �rst Ph.D student, Ted Ho�. It uses stochastic gradient descent
to start at some arbitrary initial point and iteratively moves towards the optimal point in
small steps. Due to its simplicity, the LMS algorithm becomes very popular in practical
applications. Furthermore, it can be applied in both training and DD (Decision-Directed)
modes. In training mode, as shown in Figure 4.9, by-the-receiver known symbols are added
and transmitted in front of the data in order to update the equalizer using LMS. In DD
mode, it assumes that the hard decisions of the received signals are correct and those es-
timated symbols can be treated as training symbols to update the �lter. Using the SGD
(stochastic gradient descent) the �lter updating process is expressed as

W(k + 1) = W(k)− µ∇wJ lms (4.19)
where ∇wJ lms is the gradient of the cost function that is to be minimized, and µ is the step-
size parameter that controls the convergence speed of the LMS algorithm. The remaining
part to compute is the MSE cost function of LMS algorithm J lms. The basic idea behind the
LMS algorithm is to minimize the MSE (Mean Square Error) between the estimated signal
and desired signal (for simplicity, the system delay δ is ignored )

em(k) = ym(k)− sn(k) (4.20)
where n,m stands for the nth transmitting and mth receiving antenna respectively. Here
n = m is set then the MSE cost function can be written as

J lms = E
{|em(k)|2}

= E
{|ym(k)− sn(k)|2}

= E
{|rkwi − sn(k)|2 }

where rk is the kth row vector of receiver matrix R which is the same as (4.18) and wm is mth
column vector of equalizer matrix de�ned in (4.14). It is worthwhile to note that the LMS
algorithm su�er from noise enhancement problems since noise impact is included within the
criterion so that the minimization of MSE includes the minimization of ISI terms plus noise
power [43]. The following equations can be derived based on the above J lms cost function
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J lms = E
{|em(k)|2}

= E {em(k)em(k)∗}
= E {(rkwm − sn(k)) (rkwm − sn(k))∗}
= E

{
(rkwm − sn(k))

(
rH
k wH

m − s∗n(k)
)}

= E
{
rkwmrH

k wH
m − rkwms∗n(k)− sn(k)rH

k wH
m + sn(k)s∗n(k)

}

= wmE
{
rmrH

m

}
wH

m −wmE {rks
∗
n(k)}

−wH
mE

{
sn(k)rH

k

}
+ E {sn(k)s∗i (k)}

E
{
rkrH

k

}
is the received signal autocorrelation matrix and E {sn(k)s∗n(k)} is desired signal

variance. Finally, substitution of later term in (4.19) for MSE cost function is done by fol-
lowing equations

∇wJ lms = E
{
rkrH

k

}
W − E

{
s(k)rH

k

}

W(k + 1) = W(k)− 1
2
µrH

k (rkW(k)− s(k)) (4.21)

where the matrix R and W are de�ned in (4.18) and (4.14) respectively. s(k) is the kth row
vector of the matrix S that is de�ned as

S =




s1(1) s2(1) . . . sN (1)
s1(2) s2(2) . . . sN (2)
... ... ... ...

s1(k) s2(k) . . . sN (k)


 (4.22)

where, N denotes the number of transmitting antennas.

Stability
The above equation (4.21) is achieved using LMS (Least Mean Square) algorithm, the step
size value µ has to be chosen so that it satis�es some condition to assure stability of the
algorithm [21]. This condition is

0 < µ <
2
λmax

(4.23)

where λmax stands for the largest eigenvalue of the autocorrelation matrix E
{
rkrH

k

}
. µ de-

termines the convergence speed, a large step-size value leads to a fast convergence but high
residual MSE. On the other hand, a small step-size makes the algorithm converge to relatively
low MSE but slowly. Therefore, one has to be careful when choosing the step-size, as a wrong
setting might ruin convergence due to a possible divergence problem.
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4.3.4 Recursive Least Square Algorithm (RLS)
SISO system
The Recursive Least Square algorithm, which is similar to the Least Mean Square algorithm,
aims for minimizing the sum of the squares of the error (the error between the equalized and
desired signal). By adding a weighting factor, RLS has much faster convergence speed and
lower MSE compared to LMS [17]. The error between the equalized and desired signal is
written as

e(k + 1) = s(k + 1)−wH(k)r(k + 1) (4.24)
where the equalizer �lter vector w and the received signal vector r have L (�lter length)
elements. s is the transmitted symbol and w(k) denotes the �lter taps for the kth iteration.
Then, the cost function for RLS can be written as

J rls(k) =
k∑

i=1

λk−i[s(i)−wH(k)r(i)]2 (4.25)

where 0 < λ ≤ 1 is the weighting factor and it is �xed for all k. The cost function is minimized
by taking the derivatives for all entries of vector w and setting the equation equal to zero [17].

∂J rls(k)
∂w(H)

=
k∑

i=1

λk−i(s(i)−wH(k)r(i))r(i) = 0 (4.26)

In short, w(k) can be achieved and written from above equation as

w(k) = Rcorr(k)−1rcorr(k) (4.27)
where,

Rcorr(k) =
k∑

i=1

λk−ir(i)rH(i)

rcorr(k) =
k∑

i=1

λk−is(i)r(i)

The basic goal of the recursive algorithm is to derive the equalizer �lter w(k + 1) based on
w(k) which leads to the following recursive relations [17]

Rcorr(k + 1) = λRcorr(k) + r(k + 1)rH(k + 1) (4.28)
and,

rcorr(k + 1) = λrcorr(k) + s(k + 1)r(k + 1) (4.29)
From (4.27) it can be obtained that
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w(k + 1) = R−1
corr(k + 1)(λrcorr(k) + s(k + 1)r(k + 1))

where,

λrcorr(k) = (Rcorr(k + 1)− r(k + 1)rH(k + 1))w(k)

and,

w(k + 1) = w(k) + R−1
corr(k + 1)r(k + 1)

[
(s(k + 1)− rH(k + 1)w(k))

]

The matrix R−1
corr(k + 1) in the above equation can be updated recursively with the help of

the matrix inversion lemma [17]. Given matrices A, U, B and V

(A + UBV)−1 = A−1 −A−1U(B−1 + VA−1U)−1VA−1 (4.30)
By using the matrix inversion lemma, no matrix inverse process is needed in (4.30) which
reduces the computation and complexity. A, U, B and V are chosen by the following
equations

A = λRcorr(k)
U = r(k + 1)
B = I
V = rH(k + 1)

then the matrix inverse lemma yields [17]

R−1
corr(k + 1) =

1
λ

[
R−1

corr(k)− R−1
corr(k)r(k+1)rH(k+1)R−1

corr(k)

λ+rH(k+1)R−1
corr(k)r(k+1)

]
(4.31)

In order to update the �lter taps by following (4.31), an invertible matrix R−1
corr(0) is needed.

MIMO system
In the 2x2 MIMO system, the above equations are modi�ed as

R−1
corr(k + 1) =

1
λ

[
R−1

corr(k)− R−1
corr(k)rH

k+1rk+1R
−1
corr(k)

λ+rk+1R
−1
corr(k)rH

k+1

]
(4.32)

W(k + 1) = W(k) + R−1
corr(k + 1)rH

k+1

[
s(k + 1)− rk+1W(k)

]
(4.33)

where rk stands for the kth row vector of matrix R that has the same format as the matrix
in (4.18) and W is the equalizer �lter taps matrix that has the same format as the matrix in
(4.14).
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4.4 Blind Equalization
Sending training symbols at the beginning to initialize the receiver can be impractical and
not e�ective for some applications [19]. The correct sampling point has to be known in order
to extract the training symbols before the equalizer converges. However, trained algorithms
need information from training sequences to converge. In addition to the above issues, the
training sequence will also consume bandwidth. So, in some cases, it is desirable to equalize
the channel without the aid of training sequence and it is called blind equalization ([51], [13],
[28], [38], [46]). Figure 4.12 illustrates the structure of a 2x2 MIMO equalizer using blind
algorithms.
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Figure 4.12: MIMO Equalizer using blind algorithm.

4.4.1 Constant Modulus Algorithms (CMA)
SISO system
Many modulation format have the constant modulus property such as PSK, FSK. The received
signal r(k) may then be described by

r(k) =
Lc∑

i=1

h(i)s(k − i) + n(k) (4.34)
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where s(k) is the transmitted signal and r(k) is the received distorted signal plus noise and Lc

is the channel length. The source is unknown but it has a constant amplitude value |s| = C
for all k. So, the objective is to construct a receiver weight matrix w such that equalized
signal y(k) can be denoted by

y(k) = wH(k)r(k) (4.35)
where w(k) is de�ned as w(k) = [w(k− L

2 ), w(k− L
2 +1), ...w(k), w(k+1), ....w(k+ L

2 )]T and L
is the �lter length. r(k) is de�ned as r(k) = [r(k−L

2 ), r(k−L
2 +1), ...r(k), r(k+1), ....r(k+ L

2 )]T

Thus the possible solution is to compute a w such that |y(k)| = C for all k where y(k) is
the output of equalizer. Again, a stochastic gradient descent (SGD) method is considered

w (k + 1) = w (k)− u∇wJcma (w) (4.36)

Jcma =
1
4
E

{(
|y(k)|2 −Rcma

)2
}

(4.37)

where Rcma is known as Godard radius [43] and it is a real constant and the value is cho-
sen based on source alphabet and p factor. It was noted [43] that by setting Rcma =
E

{|s(k)|2p
}

/E {|s(k)|p} and p = 2 the existence of a local minima of ∇wJcma that per-
fectly equalizes the distorted signals with an arbitrary phase rotation is assured in a SISO
system. By computing the gradient of the cost function we obtain (4.39) for updating the
weights [38] [41]

∇wJcma = y(k)(|y(k)|2 −Rcma)rH(k) (4.38)

w (k + 1) = w (k)− µy(k)(|y(k)|2 −Rcma)rH(k) (4.39)

MIMO system
In the MIMO case �lter taps are updated independently based on di�erent equalized signals
from each receiving antennas

ym(k) = rkwm(k) (4.40)

wm(k + 1) = wm(k)− µym(k)(|ym(k)|2 −Rcma)rH
k (4.41)

where wm(k + 1) is the mth column vector of the equalizer matrix that is de�ned in (4.17),
and ym(k) is the mth equalized signal for mth receiving antenna. rk is the kth row vector of
receiving matrix R that is de�ned in (4.18). It is noteworthy that the CMA not only removes
ISI but is phase blind. So, the equalized signals after CMA equalizer might have a constant
phase rotation that needs to be rotated back. Additionally, as shown in [11], the CM criterion
of (4.37) also works well for non-constant modulus cases such as 16QAM or 64QAM. But the
minimization of (4.37) does not ensure the recovery of all source signals in a MIMO system
because it may converge to recover the same source signal at many outputs. In order to solve
this problem, a cross-correlation term is introduced due to its computational simplicity [32].
Then (4.38) is rewritten as
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∇wmJcma (wm) = (1− α)ym(k)(|ym(k)|2 −R)rH
k + α

m−1∑

i=1

r̂mi(k)yi(k)rH
k , (m = 1, 2, ...M)

(4.42)
equation (4.39) will be modi�ed as

wm(k + 1) = wm(k)− µym(k)[(1− α)(|ym(k)|2 −R) + α

m−1∑

i=1

r̂mi(k)yi(k)]rH
k (4.43)

r̂mi(k + 1) = λr̂mi(k) + (1− λ)ym(k)y∗i (k) (4.44)
where α is the mixing parameter which is chosen between 0 and 1. r̂mi(k) = E [ym(k)y∗i (k)]
is the cross-correlation between the mth and the ith equalizer outputs and prevents the
extraction of the same signal at many outputs. λ ∈ [0, 1] is a parameter that controls the
length of the e�ective data window in the estimation. The �rst term in (4.42) ensures the
recovery of only one signal at each equalizer output and the cross-correlation term ensures
that each equalizer output is di�erent from other ones. α has to be selected carefully for
its optimum value in di�erent channel conditions. For example, higher α value is chosen
if equalizers are more likely to converge the same channel. Here if we assume a 2x2 Los
MIMO system with an optimal separation (Inter-Stream-Interference from Tx2 has a 90◦
phase shift compared with desired transmitted signals at Tx1). Initial �lter taps are set up
by the following matrix

↑

w11

↓

↑

w12

↓




0 0
... ...
0 0
e0 e−j π

2

0 0
... ...
0 0
0 0
... ...
0 0

e−j π
2 e0

0 0
... ...
0 0




↑

w21

↓

↑

w22

↓

(4.45)

where w1 = [w11 w12]T and w2 = [w21 w22]T. Each column vector wij has a length of
L taps. e0, e−j π

2 , e−j π
2 ande0 are the central taps for w11, w12, w21andw22 respectively. There

is another algorithm that uses the Gram-Schmidt orthogonalization procedure to force this
separation, more detailed discussion can be found in paper [31] for reader's interest. Figure
4.13 shows the initial �lters setting in the simulation system (also given in 4.45), where it is
assumed that the 2x2 SS-SP MIMO system starts with an optimal antenna separation.
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Figure 4.13: Filter initialization of STE for the 2 × 2 SS-SP MIMO

4.4.2 Modi�ed Constant Modulus Algorithm (MCMA)
SISO system
The CMA (Constant Modulus Algorithm) algorithm expects constellations with a constant
amplitude, which degrades the equalization performance when a M-QAM (M>4) modulation
is used since it has multi-modulus property. In order to improve the performance of the CMA
for M-QAM (M>4), a multi-modulus algorithm, called MCMA (Modi�ed Constant Modulus
Algorithm), has been proposed in [29]. In this algorithm the cost function for CMA (4.38) is
modi�ed to consider the real and imaginary parts separately. The modi�ed cost function is
written as

Jmcma(k) = JR(k) + JI(k) (4.46)
where JR(k) and JI(k) are the cost functions for the real- and imaginary parts of the equalizer
output y(k) = yR(k) + j · yI(k) respectively and they are de�ned as

JR(k) = E
{(|< {y(k)} |2 −RR

)2
}

(4.47)

JI(k) = E
{(|= {y(k)} |2 −RI

)2
}

(4.48)

Assuming the input data is complex numbers with two dimensions, RR and RI are the real
constants determined for the real and imaginary parts of the source signals respectively
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RR =
E

{|< {s(k)} |4}

E {|< {s(k)} |2} (4.49)

RI =
E

{|= {s(k)} |4}

E {|= {s(k)} |2} (4.50)

where <{s(k)} and ={s(k)} denote the real and imaginary part of source signals s(k) re-
spectively. The tap weights vector is updated using SGD to optimize the cost function

w (k + 1) = w(k)− µ∇wJcma (w) (4.51)
= w(k)− µe(k)rH(k) (4.52)

where the error signal e(k) = eR(k) + j ∗ eI(k) is given by

eR(k) = <{y(k)} (|< {y(k)} |2 −RR)
eI(k) = ={y(k)} (|= {y(k)} |2 −RI)

MIMO system
For MIMO systems, equalizer taps are updated independently for di�erent receiving anten-
nas which is similar to the Simpli�ed Constant Modulus Algorithm (SCMA) method. This
processing is expressed as

ym(k) = rkwm(k) (4.53)

em,R(k) = <{ym(k)} (|< {ym(k)} |2 −RR) (4.54)
em,I(k) = ={ym(k)} (|= {ym(k)} |2 −RI) (4.55)
em(k) = em,R(k) + j ∗ em,I(k) (4.56)

wm(k + 1) = wm(k)− µem(k)rH
k (4.57)

here rk is the kth row vector of receiving matrix R that is de�ned in (4.18) and ym(k) is
the kth sample of equalized signals on the mth receiving antenna. This algorithm modi�es
the CMA cost function so that the resulting cost functions becomes dependent of the phase
rotation. Hence, the MCMA can correct for some carrier frequency o�set and remove the
ISI simultaneously. As a result MCMA results in a performance improvement in convergence
speed and residual MSE �oor [29].
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4.4.3 Simpli�ed Constant Modulus Algorithm (SCMA)
MIMO system
A Simpli�ed Constant Modulus Algorithm (SCMA) has recently been proposed in [32]. In-
stead of projecting signal points onto a M-QAM constellation based on both real and imagi-
nary part, it only considers one dimension (either real or imaginary part due to their symme-
try) which is more �exible and less complicated compared to CMA or MCMA from practical
implementation point of view. This algorithm suggests to minimize the following cost function
for the mth Rx output and based on the real-part of signal in this thesis

J scma
m = E

{
(|< {ym(k)} |2 −Rscma)2

}
(4.58)

where <{·} stands for the real-part operation. R is given as

Rscma =
E

{|< {s(k)} |4}

E {|< {s(k)} |2} (4.59)

In order to force the separation of equalized signals at di�erent outputs, the same cross-
correlation term is used here as in (4.42) and the gradient of (4.58) is rewritten as

ym(k) = rkwm(k)

∇Jscma
wm

= (1− α)<{ym(k)} [(|< {ym(k)} |2 −R) + α
m−1∑

i=1

r̂mi(k)yi(k)]rH
k

wm(k + 1) = wm(k)− µ<{ym(k)} [(1− α)(|< {ym(k)} |2 −R) + α
m−1∑

i=1

r̂mi(k)yi(k)]rH
k

where α is the mixing parameter which is chosen between 0 and 1. And r̂mi(k) = E [ym(k)y∗i (k)]
is the cross-correlation between the mth and the ith equalizer outputs and prevents the ex-
traction of the same signal at many outputs. ym(k) is the kth equalized signal of mth receiving
antenna. rk is the kth row vector of receiving matrix R that is de�ned in (4.18). The cri-
terion of SCMA leads to the converge of the signal constellation that, in absence of noise,
corresponds to recovery of desired signal with a constant phase rotation that di�ers between
modulation formats. For QAM this rotation is π

2 . It is shown in [32] that the proposed
algorithm presents a lower computational complexity compared to the MCMA without any
loss in performance but it can be less stable than the other two algorithms in some speci�c
channel conditions.

4.5 Decision-Directed Mode (DD)
In addition to blind and training mode, there is another mode called Decision-Directed mode
that is commonly used. The DD (Decision-Directed) mode that has been implemented for a
2x2 MIMO system is illustrated in Figure 4.14. The structure only shows the output of the
equalizer for the �rst receiving antenna. The main idea of DD mode is that it assumes the
current hard decision of equalized symbol from previous iteration is correct and the channel
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is not changed during this iteration period so that �lter taps from previous iteration can be
used to equalize the received signals for the current iteration and treating equalized symbols
as training symbols to update the �lter taps for the current iteration. Then the training
mode algorithms such as LMS and RLS processes equalization without receiving any training
sequence from the transmitter. This is why blind equalization is normally followed by a DD
mode in order to signi�cantly improve the MSE of the estimation. Thus in DD mode perfect
initial convergence is not needed for the equalizer to converge to the optimal setting as long
as estimated signals are correct most of the time.
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Figure 4.14: 2×2 MIMO-STE under Decision-Directed Mode.

MIMO system
For RLS algorithm the error function of (4.24), in DD mode, can be rewritten as

em(k + 1) = ŝm(k + 1)− rk+1wm(k)

where rk+1 is the k + 1th row vector of R that de�ned in (4.18). wm(k) is the mth column
vector of W matrix that is de�ned in (4.14). ŝm(k + 1) is the hard decision of equalized
signal ym(k + 1) at sample time k + 1 on the mth receiving antenna. Then, �lter taps can be
updated by following equation

W(k + 1) = W(k) + R−1
corr(k + 1)rH

k+1[ŝ(k + 1)− rk+1W(k)]

For LMS algorithm, the error function is modi�ed as

em(k) = ŝm(k)− rkwm(k)

where ŝm(k) is the hard decision of equalized signal ym(k) at sample time k for the mth
receiving antenna. Equation (4.21) is rewritten as
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W(k + 1) = W(k)− 1
2
µrH

k (rkW(k)− ŝ(k))

4.6 Complexity comparison of di�erent algorithms
Since there is always a trade o� between the performance of the algorithms and their compu-
tation complexity. It is important and necessary to make a complexity comparison between
di�erent algorithms [31] and try to �nd a algorithm that might achieve the best balance.

Algorithm Multiplications Additions
CMA 2(4M · L + 3) · M (9M · L + 2) · M
MCMA 2(4M · L + 3) · M (9M · L + 5) · M
SCMA (4M · L + 3) · M (6M · L + 1) · M
LMS (8M · L + 2) · M (9M · L + 2) · M
RLS 4M2 · L(1 + 6L + M · L) 22M2 · L2 + 2M + 1 + 10M2 · L + 4M · L

Table 4.1: Comparison of complexity of di�erent algorithms per weight update.

In Table (4.1), L denotes the order of equalizers (number of �lter taps) and M is the number
of receiving antennas. From this table it can be seen that SCMA has the lowest computational
complexity. It is noteworthy that (as shown in the simulation section), SCMA has almost
the same performance as the MCMA algorithm but lower computation complexity. This
might be a big bene�t for the real implementation since SCMA only use the information from
one-dimension of signals to update weights instead of two. Compared with LMS, the RLS
algorithm has a faster convergence speed but much higher complexity which is shown in the
above table.
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Chapter 5

Simulations

The simulation software was written in Matlab using a modular architecture to enable easy
selection and combination of di�erent blocks. A graphical user interface (GUI) was con-
structed alongside the code to ease block selection and simulation parameters selection. The
simulator handles both 2x2 SS-SP LoS MIMO and 4x4 SS-DP LoS MIMO. All the simula-
tions are done at baseband using Matlabs 64 bit �oating point numbers making quantization
errors negligible. A block diagram of the entire 2x2 SS-SP LoS MIMO system can be seen
in Figure 5.1. It gives a good overview of the system design and makes it easier to visualize
how data is processed in the system. Both branches generate independent data which remain
separate until being combined by the MIMO channel. At the Rx the data streams are pro-
cessed separately with the exception of the STE which needs both data streams in order to
cancel the inter-stream interferences. Each Rx branch then outputs its estimate of the trans-
mitted symbol- and bit sequence and thus the branches have their own BER and MSE values.

Following the sequence of events necessary to generate and process a block of data bits gives
a better insight into the design. Data bits are generated using a uniform random distribu-
tion which are modulated in the modulator into a Gray coded M-QAM constellation. The
resulting symbol sequence is then �ltered using a oversampled root-raised-cosine �lter. The
�lter emulates an analog signal by an oversampling rate of 16, resulting in a symbol time
of TQs = (Q · Fs)−1 = 1.25 ns, and a roll-o� factor of β = 0.35. The signal then passes
through the LoS MIMO channel which will be discussed in Section 5.3. At the receiver ad-
ditive white Gaussian noise with zero mean is added to the signal. Independent realizations
of the AWGN is added to each signal stream. This is then followed by a matched �lter that
is not oversampled as in the Tx. Phase noise with a certain spectral density Sph(ω) is then
generated once (new realization for each symbol) and multiplied to both signal streams which
is consistent with the assumption of a synchronous system (one phase noise realization for the
whole system). The analog to digital converter then samples the signal at baud rate without
any timing errors. The signal then enters the space time equalizer (STE) where it is equalized
and the inter-stream interferences are cancelled. The STE tunes its equalizers by using the
error signals generated by the detectors. The detectors have phase trackers that rotate the
signal so to alleviate some of the phase noise. The sliced signal is then �nally feed to the
demodulator which outputs the estimated data sequence.

The following approximations where made for the design of the system (most of which can
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easily be dropped in future versions).

• The system is considered to be completely synchronous so that there is no need for a
symbol timing estimation at the ADC and no need for any phase adjustments between
the Rx signal streams in the STE. There is also no carrier frequency o�sets between Tx
and Rx.

• There are no quantization errors introduced to the system. The simulation is done at
a 64 bit �oating point number representation making it highly accurate.

• Between every Tx and Rx pair there are only two paths considered, one direct LoS path
and one ground re�ection. The direct paths all have the Rx power of one and all the
ground re�ected paths have the same amplitude b. All the ground re�ections have the
same delay as well τ = 6.3 ns. This is the Two Ray model.

• The Tx and Rx antennas can only move back and forth in a plane that is parallel to
the masts.

These assumptions ease the design of the simulation and allow for more easily interpretable
results.

A/DrrCosMod rrCos
Data

Mod rrCos
Data

EQ11

EQ21

EQ22

EQ12

Slicer

PhDet

Slicer

PhDet

A/DrrCos

-

MIMO

Ch.

AWGN

AWGN

Phase 

Noise

DeMod

DeMod

STE Detector

err.

-

err.

Figure 5.1: A block diagram representing the tentative design of the simulator for a 2x2
SS-SP LoS MIMO.

A 4x4 SS-DP LoS MIMO system will also be investigated. The design is almost the same as
shown in Figure 5.1 with the exception that there are four branches now at the Tx and Rx
and the design of the STE now includes 16 equalizers (including 8 XPICs). This is shown for
one polarization at the Rx in Figure 5.2. The dual polarized 4x4 channel matrix is modeled
using (3.25) which assumes that both the Tx and Rx have two dual polarized antennas (both
polarized antennas collocated). Each ground re�ection has though an independent phase o�-
set creating 16 independent frequency selective channels.

For convenience some basic simulation constants are summarized in Table 5.2. All of them
are kept constant during the simulations unless otherwise stated.
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Figure 5.2: A block diagram representing the tentative design of the vertically polarized Rx
for a 4x4 SS-DP LoS MIMO. The block diagram neglects all noise sources.

5.1 Goals
The goal of the simulation is to evaluate the performance of a LoS MIMO system, both 2x2 SS-
SP and 4x4 SS-DP, subjected to di�erent conditions and using di�erent adaptive algorithms.
The results should then work as a guideline for an implementation of a real system and help
to select algorithms and give an understanding of the impact of certain suboptimalities in
the installation of the system as well as response to di�erent channel conditions. To be more
speci�c the desired results are given in Table 5.1.

Section Description
6.2 Tolerance to low XPD
6.2 Tolerance to suboptimal antenna placements
6.6 Tolerance to phase noise
6.1 Tolerance to frequency selective channels
6.5 Tolerance to mast swing
6.4, 6.3 Evaluation of di�erent algorithms for STE

Table 5.1: Desired results obtained by simulation and the section where they are published
in the report.

The evaluation of di�erent adaptive algorithms (STE's) is perhaps the biggest task. For that
part the main focus will be on blind equalizers as well as training based methods to initialize
the system followed by Decision Directed (DD) adaptive algorithms to track the channel. For
these methods there are mainly three attributes that are investigated

• Convergence speed

• MSE- and/or BER-�oors

• Tolerance to mast swing and phase noise

68



5.2 Quantifying Performance
Comparing performance requires some measurable quantities that can be used to evaluate
di�erent setups and di�erent channel conditions. There will be mainly three quantities used
for comparison. The �rst one is the bit-error-rate (BER) de�ned as the ratio between the
number of bits received in error to the total number of bits received or more precisely

BER =
∑Lb

n=1 |bn − b̂n|
Lb

where bn is the nth transmitted bit (0 or 1) and b̂n is the nth estimated bit at the receiver.
Lb is the total length of the bit sequence. This is a very practical quantity to measure for
a real system since that will de�ne for a large part the actual performance of a real system.
Since the simulator does not use any error correction coding the BER can easily be lowered
by using a good coding scheme. The target BER is though often very low requiring very long
simulation times to get obtain reliable estimates. Another quantity that does not require such
long simulation times is the mean-square-error (MSE). It averages the square error between
the soft estimate of a symbol and the actual symbol transmitted

MSE =
∑LB

n=1 |sn − r̂n|2
LB

Where sn is the nth transmitted symbol and r̂n is the soft estimate of the nth received sym-
bol. LB is then the number of symbols transmitted.

The �nal quantity is the penalty described in Section 3.6. It quanti�es how much more the
Tx power needs to be increased between di�erent scenarios to achieve the same BER and is
usually speci�ed in dB. The target BER for the penalty will be 10−3. A baseline SNR needs
to be established for the penalty, that is usually the lowest achievable SNR for a certain BER.
For a SISO system with a �at channel and using 16QAM modulation the SNR is about 10.5
dB for a BER of 10−3. A 2x2 MIMO system will have a 3 dB array gain1 so the baseline
SNR will be considered to be 7.5 dB. Finding the penalty using simulation software can be
a challenge since the BER is an output and is a function of great many variables. The SNR
needed for a certain BER is desired to be found for a certain setup. For these simulations a
search algorithm inputs the SNR into the simulator and runs it successively until the desired
BER has been found. That SNR minus the baseline SNR is then the penalty.

5.3 The Channel
The frequency selective channels used by the simulator is the Two Ray channel described
in Section 3.4. The Tx and Rx antenna discs are mounted on two masts of height LT and
LR respectively. The Rx mast is situated on a hill of height LL and the horizontal distance
between the base of the masts is LH . The masts can then have a time varying tilt of βT for
the Tx and βR for the Rx to simulate mast movement in heavy wind. The setup can be seen
in Figure 5.3. Unless otherwise speci�ed the parameters for the channel setup are the same
as given in Table 5.2.

1Two Rx antennas doubles the received power.
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Figure 5.3: The setup of the Tx and Rx antennas. βT , βR, dT , dR, LT , LR, LL and LH can
all be varied.

The amplitude of the re�ected waves is b and for the purpose of the simulation it is bounded
between zero and one where one is the amplitude of the direct wave. Each ground re�ection
must traverse a longer path so there is a delay di�erence between the ground re�ection and
the direct path. This delay is set to be �xed in accordance to Rummler's model at 6.3 ns
which is a common standard but the phase o�set of the arriving direct path and ground
re�ection is random. For a 2x2 MIMO system there are 4 channels where each one has an
independent phase o�set between ground re�ection and direct path but otherwise share the
same parameters. For example the channel between Tx2 and Rx1 will have the same delay
and same ground re�ection amplitude as any other channel but it has an independent phase
o�set φ21. This phase o�set is enough to determine how the channel behaves. It can be
relatively �at or it can act as a lowpass-, highpass- or bandpass �lter. If the channels have a
deep notch then noise will be ampli�ed but attenuating channels do not necessarily represent
the worst case scenario. Since the channels produce collectively some frequency dependent
MIMO channel with some frequency dependent singular values as is discussed in 3.3 which
in�uence the performance it is not always easy to identify the worst case channel.

Since there are in�nitely many channel realizations it is necessary to narrow down the se-
lection to a few cases. Selecting the most interesting channels can be challenging since it is
not even clear what represents a worst case. The selection process thus becomes somewhat
ad-hoc. The channel responses displayed for the MIMO channels are obtained by measuring
the impulse responses seen between each Tx- and Rx antenna pair. This is done by trans-
mitting an impulse on one transmitter at a time instant and measuring the output from each
receiver. The impulse responses include the Tx- and Rx �lters as well as the ADC. Selecting
the channels for the 4x4 MIMO is clearly even harder since there are 16 independent chan-
nel responses making up the whole MIMO channel. To ease the selection the 4x4 MIMO
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channels are constructed from the 2x2 channels making the following simpli�cations that
both the polarizations and corresponding cross-polarized paths see the same channels as the
single polarized case. That is the channels between Txn and Rxm are the same for the SP
and DP cases independent of polarization (hnV mV = hnHmH = ahnHmV = ahnV mH where
a is some constant related to the XPD). This is made more apparent in the following sec-
tions where the two channels chosen for use in the simulations are described (frequency plots
are obtained using DTFT). They are denoted A and B and both have their de�ning attributes.

These channels are also realized as SISO channels by removing the paths hnm where n 6= m.
The BER for the resulting parallel channels are then averaged for penalty calculations.

5.3.1 Channel A: All Notches
2x2 SS-SP LoS MIMO: This channel has a notch between all Tx- and Rx pairs. This will
attenuate part of the spectrum of the signal by the full notch depth with a subsequent SNR
reduction at the receiver. The placement of the notches can be seen in Figure 5.4(a) where
the amplitude response is plotted from −Fs/2 to Fs/2 where Fs is the sampling frequency.
The depth of these notches depend on the amplitude of the ground re�ection selected here to
be b = 0.9. The channels act as FIR �lters and have thus a guaranteed linear phase response
which can be seen in Figure 5.4(b). Looking at the pole zero plot for the z-transform of the
impulse responses in Figure 5.4(c) it is noteworthy that all of the channels have a zero rather
close to the unit circle making them harder to invert at the Rx. Finally the condition number
along with the singular values is plotted in Figure 5.4(d) as a function of frequency.

4x4 SS-DP LoS MIMO: This channel is now signi�cantly more complex even though
it is constructed from the channel in Figure 5.4. The magnitude of the impulse response is
plotted in Figure 5.5 while the condition number and singular values are plotted in Figure
5.6.
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Figure 5.4: Channel A: Frequency response of the four SISO channels making up the 2x2
SS-SP LoS MIMO channel along with pole zero plots and a plot of the condition number and
singular values as a function of frequency. For these plots b = 0.9.
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Figure 5.5: Channel A: The magnitude of the impulse responses for the 4x4 SS-DP LoS
MIMO channel.
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Figure 5.6: Channel A: The condition number and singular values for the 4x4 SS-DP LoS
MIMO channel.
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5.3.2 Channel B: Ill conditioned
2x2 SS-SP LoS MIMO: This channel has only one deep notch but is very ill conditioned
since the condition number becomes very high for some part of the spectrum as is shown in
Figure 5.7(d). The magnitude response is seen to contain only one deep notch while the other
channels are relatively �at (Figure 5.7(a)). The phase is again linear as is expected and as
can be seen from Figure 5.7(b). Finally the pole zero plot shows that the channel containing
the notch has a zero closest to the unit circle (Figure 5.7(c)).
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(d) Condition Number and Singular Values

Figure 5.7: Channel B: Frequency response of the four SISO channels making up the 2x2
SS-SP LoS MIMO channel along with pole zero plots and a plot of the condition number and
singular values as a function of frequency. For these plots b = 0.9.

4x4 SS-DP LoS MIMO: The magnitude of the impulse responses is plotted in Figure
5.8 while the condition number and singular values are plotted in Figure 5.9. Some of the
notches in Figure 5.8 seem to be deeper than others, this is because of the XPD chosen to be
10 dB for the plots.
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Figure 5.8: Channel B: The magnitude of the impulse responses for the 4x4 SS-DP LoS
MIMO channel. Here XPD is 10 dB.
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Figure 5.9: Channel B: The condition number and singular values for the 4x4 SS-DP LoS
MIMO channel.
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5.3.3 Mast Swing
Mast swing will cause the antennas to move and this movement will change the channel. The
length of the direct path will change which in turn changes the phase of the direct path.
Since the ground re�ection phase is modeled as static this will change the o�set between the
phase of the ground re�ection path and the direct path causing the notches seen in Figure
3.11 to move across the channel. This forces the STE to adapt continuously to new channel
conditions and this movement sets a lower limit for the convergence speed of the adaptive
�lters.

How the channel behaves with mast swing in reality is poorly understood since the phase
o�set between the LoS path and the ground re�ection path evolves with an unknown distri-
bution as the antennas moves. If the model was entirely calculated from the geometry then
the conclusion could easily be drawn that the phase o�set hardly changes at all. A millimeter
wave re�ecting o� some unknown surface will though experience a phase shift that can di�er
even for only slight changes. This is enough to motivate that it is not prudent to assume
a static channel when the antennas are moving. Fixing the phase of the ground re�ection
while varying the LoS paths according to geometric calculations seems to be an intuitive
compromise representing a �bad enough� scenario. This is further motivated by the fact that
the ground re�ected path is modeled as having a static relative delay. Quantifying how much
a standard mast might move in heavy wind can also be quite di�cult. The values chosen in
table 5.2 are only motivated compromises explained below.

There have been measurements of the width (in degrees) of half of the 3-dB beam widths for
parabolic antennas commonly used for microwave links. There is quite a selection of antennas
with di�erent gains intended for di�erent frequency bands. A high half 3-dB beam width is
here considered to be 2.3◦. The value 2.3◦ is thus chosen to represent the highest possible tilt
of a mast. It is a well known fact that the frequency of oscillation for a pendulum made up
of a solid uniform rod of length L is

f =
1
2π

√
3g

2L

where g is the acceleration of gravity (9.8 [m/s2]). For a 10 m long rod the result is f ≈ 0.2
Hz. This value is used as the maximum frequency of mast swing for the simulations.

5.4 Space Time Equalizers
A space time equalizer is implemented at the receiver in order to compensate for inter-
symbol-interference, inter-stream-interference, cross-polarization-distortion and also to track
the channel changes. One scope of this master thesis is to analyze and evaluate di�erent
adaptive algorithms for space time equalizers. Due to the complexity of implementation is-
sues, only MMSE (Minimum mean square error) algorithms are analyzed and evaluated in
this thesis.

According to the properties of the chosen channels, a discrete-time baseband FIR equalizer
with 43 taps is set up in all simulations and the 21st tap is set as the center tap.
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5.4.1 Trained Decision Directed Equalization
The scheme used by the space time equalizers fall into two categories: Blind followed by
Decision Directed mode and Trained followed by Decision Directed mode. The trained al-
gorithms are mainly LS (Least Square) but LMS (Least Mean Square) and RLS (Recursive
Least Square) can also be applied in training mode. The Decision-Directed algorithms in-
clude LMS (Least Mean Square) and RLS (Recursive Least Square) along with some variants.

The trained algorithms use 200 and 400 training symbols for 2x2 SS-SP and 4x4 SS-DP MIMO
systems respectively to obtain the initial convergence. The weights update of equalizers will
then be switched to DD (Decision Directed) mode. The training sequences are modulated
from the same pseudorandom binary sequence (PRBS) so that each realization of the �lter
taps generated by training and the same algorithm should be similar (noise will also a�ect
the �lter).

5.4.2 Blind Equalization
Three di�erent blind algorithms will be compared and they are CMA (Constant Modulus Al-
gorithm), MCMA (Modi�ed Constant Modulus Algorithm), and SCMA (Simpli�ed Constant
Modulus Algorithm). Since the blind algorithms are phase independent it is assumed that
the blind algorithms are accompanied by a phase-recovery loop that rotates the constellation
into its correct place and this rotation acts per 100 symbols. It is also assumed that there is
no carrier frequency o�set between the transmitter and the receiver. After the initial conver-
gence of the blind algorithms, the STE will switch into Dicision-Directed mode to be able to
track the channel changes and improve the MSE.
The initial �lter taps are set based on the assumption of optimal antenna separation which
leads the inter stream interference from another transmitting antenna (2 × 2 MIMO) to have
a 90◦ phase shift compared to the desired signal. The initialization of the �lters are based on
this assumption. Thus all the central taps of the equalizers will be set to one or e−jπ/2 as is
shown in Figure 5.10.

5.5 Noise and Phase Tracking
White Gaussian noise is added to each Rx signal stream separately with a relative power
measured from one LoS signal stream. Thus the actual noise power is independent of ground
re�ections and how the LoS signals add at each Rx (if it is destructive or constructive ad-
dition). This results in a 3 dB array gain for a 2x2 MIMO system compared to a SISO system.

Phase noise is generated in the time domain and is applied on a symbol-to-symbol basis. The
system is considered to be synchronous and driven only by one oscillator at the Rx. Thus
only one realization of the phase noise is generated and applied to each stream. The streams
will thus have fully correlated phase noises. The Welch power spectrum of the phase noise
is shown in Figure 5.11. It is a 1/f2 noise with -85 dBrad2/Hz2 power at 100 kHz from the

2B dB[rad2]/Hz = B − 3 dBc/Hz
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Figure 5.10: Filter initialization of STE for the 2 × 2 SS-SP MIMO.
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Figure 5.11: The Welch power spectrum for the phase noise.

The phase tracker used to compensate for phase noise is shown in Figure 5.12. It is applied for
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each Rx branch as is shown in Figure 5.1. For handling di�erential phase noise (independent
phase noise realization for each Rx branch)3 NM phase trackers and phase rotators are
needed. One in front of every equalizer, inter-stream canceler and XPIC. This is due to the
relatively low bandwidth of these �lters.���� ��� ����� � 	���

Figure 5.12: Schematic view of the phase tracker.

The gains of the phase tracker were found by brute force search. The actual values chosen
can be seen in Table 5.2.

5.6 Simulation Parameters
The parameters used for the simulations are summarized in Table 5.2. They will be kept
constant during all simulations unless otherwise stated.

3In a microwave link with radios separated several meters the phase noise will be di�erential.
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Symbol Value Description
Fs 50 MHz The sampling frequency
Q 16 Oversampling rate at the Tx �lter
Fc 17 GHz Carrier frequency
β 0.35 Roll-o�-factor for the root-raised Cosine �lters
M 16 Modulation order for M-QAM
LT 10 m Tx antenna mast height
LR 10 m Rx antenna mast height
LH 1 km Tx and Rx antenna mast horizontal distance
dT 2.97 m Tx antenna separation
dR 2.97 m Rx antenna separation
LL 0 m Rx landscape height
βmax 2.3◦ Maximum tilt of antenna masts
FMS 0.2 Hz Frequency of mast swing
L 43 Number of �lter taps for each �lter in the STE
Lt 21 The placement of the central tap in each �lter in the STE
KI1 0.35 A gain for the phase tracker
KI2 10−4 A gain for the phase tracker
KP1 0.015 A gain for the phase tracker
µcma 5e-6 The stepsize of the CMA.
µmcma 5e-6 The stepsize of the MCMA
µlms 1e-4 The stepsize of the LMS in the Decision-Directed Mode
α 1 The mixing parameter for SCMA
b 0.9 The ground re�ection factor
SNR 35dB Signal-to-noise ratio
Ltr22 200 symbols Number of training symbols for 2x2 MIMO system
Ltr44 400 symbols Number of training symbols for 4x4 MIMO system
R 13.2 The average constant magnitude of Blind algorithm (16QAM)
W 0.98 Forgetting factor for RLS algorithm
BERt 10−3 Target BER for penalty calculations

Table 5.2: Parameters used during the simulations.
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Chapter 6

Results

Here the simulation results will be presented. When a relevant value used for a particular
simulation is not stated in the text the reader is referred to Table 5.2 for a list of default
values.

6.1 Frequency Selective Channels
Two MIMO channels are selected for the simulations, those are discussed in Section 5.3. It
is interesting to see how the system responds to these channels and try to get a feeling for
what requirements they put on the design. The length of the STE equalizer �lters will heavily
a�ect the performance since a too short �lter will lead to high- or even in�nite penalty.
Figure 6.1(a) plots the penalty versus �lter length for a 2x2 SS-SP LoS MIMO while Figure
6.1(b) does this for a 4x4 SS-DP LoS MIMO with three di�erent values of XPD. The channels
were static during the simulations and a long (600 and 2400 symbols for the 2x2 and 4x4 sys-
tems respectively) training sequence was used to initialize the STE using the LS algorithm,
the �lter taps were kept static after the training sequence. Looking at the plots it can be seen
that at a certain number of �lter taps a penalty �oor is reached. The penalty then slowly
grows as the number of �lter taps are increased since each tap introduces a slight estimation
error. For channel A the penalty �oor is reached at about 15 taps while for channel B it
takes about 43 taps. The penalty �oors for channel A and B are then at about 14- and 19
dB respectively. For a low XPD value it is even bene�cial to have more taps but for the
sake of complexity the number is chosen to be 43 for the simulations. Removing the ground
re�ection completely (b = 0) a penalty of 0.8 dB for the 2x2 MIMO is still observed. This
is due to the fact that the taps of the STE introduce some estimation errors which add up.
Increasing the number of training symbols to 6000 reduces this penalty to 0.2 dB.

It is interesting to see what kind of penalties are expected for a random channel realization,
that is random phase o�sets between the direct paths and ground re�ections while the b-values
and delays are kept �xed. This is done in Figures 6.2(a) and 6.2(b) for 50 random channel
realizations for 2x2- and 4x4 MIMO respectively.
The penalty can be negative since the ground re�ection can enforce the direct path which is
seen in some cases. None of the channel realizations exceed the penalty of channel B.

81



10 20 30 40 50 60
10

15

20

25

30

35

40

45

50
Penalty vs. Filter Length. 2x2 SS−SP LoS MIMO

Filter Length

P
en

al
ty

 [d
B

]

 

 

Ch. A
Ch. B

21 dB

(a) 2x2 SS-SP LoS MIMO

10 20 30 40 50 60
10

15

20

25

30

35
Penalty vs. Filter Length. 4x4 SS−DP LoS MIMO

Filter Length

P
en

al
ty

 [d
B

]

 

 

Ch
A
, XPD=30 dB

Ch
A
, XPD=15 dB

Ch
A
, XPD=8 dB

Ch
B
, XPD=30 dB

Ch
B
, XPD=15 dB

Ch
B
, XPD=8 dB

(b) 4x4 SS-DP LoS MIMO

Figure 6.1: Penalty (at BER of 10−3) as a function of �lter length for the STE.

Figure 6.3 shows how the penalty changes as a function of the ground re�ection amplitude
for both channel A and B. Channel A behaves as might be expected but channel B reaches
its highest penalty at b = 0.89 and then the penalty reduces as b increases. An explanation
for this is that the frequency dependent condition number has a peak at b = 0.89. Increasing
the strength of the ground re�ection further starts to improve the condition number.
It is interesting to compare these results to a SISO system. By removing the diagonal paths
of the 2x2 MIMO channels (that is removing h12 and h21) two parallel SISO channels are
obtained. The BER is then calculated as the mean of the two streams. Penalty is then plotted
against the number of �lter taps in Figure 6.4. For 13 �lter taps the penalty is seen to be 9-
and 8 dB for channel A and B respectively. This is a much lower penalty than seen for the
MIMO channels and with the added bene�t of smaller equalizer �lters.
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Figure 6.2: Penalty (at BER of 10−3) for a random channel realization.
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Figure 6.3: Penalty (at BER of 10−3) as a function of the ground re�ection amplitude.

6.2 Suboptimal Antenna Placements and XPD
Installing the Tx- or Rx antennas with suboptimal separation will negatively a�ect the per-
formance of the MIMO system since it lowers the condition number of the channel matrix.
There is thus a penalty associated with η 6= 1 (see (3.16)) and that is plotted for a �at channel
(b = 0) in Figure 6.5(a) for a 2x2 SS-SP LOS MIMO as a function of η. The system is not
so sensitive to changes in η if it is close to one. For η = 0.9 a penalty of less than one dB
is observed but the penalty grows quicker as η becomes smaller. This results is not in good
agreement with Figure 3.14 since direct matrix inversion and SVD are fundamentally di�erent
approaches (see Appendix B for further clari�cation).
In Figure 6.5(b) the penalty is given as a function of XPD for 3 di�erent η for a 4x4 SS-DP
LoS MIMO. As the XPD and η are lowered the penalty increases as expected.
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Figure 6.4: Penalty (at BER of 10−3) as a function of �lter length for the SISO representation
of channel A and B. Here the un-penalized SNR is considered to be 10.5 dB while it is 7.5
dB for the MIMO systems (array gain).
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Figure 6.5: Penalties (at BER of 10−3) for suboptimal antenna placement η and low XPD
values.

Added penalty is also expected for the frequency selective channels A and B when lowering the
XPD. This added penalty caused by low XPD values should as well grow similarly independent
of the channel realization. This can be seen in Figure 6.6 where the penalty is plotted against
XPD for channels A and B. The penalty di�erence between the channels is seen to be almost
constant at 5 dB.
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Figure 6.6: Penalty as a function of XPD for channel A and B.

6.3 Decision Directed Algorithms
It is important that an adaptive algorithm responds su�ciently fast to changes, that is that
it has fast enough convergence speed. For WRLS and LMS it is apparent that the weighting
factors and step-sizes will play an important role in determining the adaptation speed. Se-
lecting a static channel and setting the SNR to the very high value of 95 dB the convergence
speed can be seen by counting how many symbols it takes for the algorithm to reach its
residual MSE �oor. LMS and WRLS are analyzed in DD-mode, both started with the same
channel estimate obtained using LS and training.
Figure 6.7(a) shows the DD-LMS algorithm converging to its residual MSE of channel A. As
the step-size is increased the convergence becomes faster, in fact if the step-size is doubled only
half the symbols are needed to reach the noise �oor. A trade o� is that the actual MSE �oor
reached is higher if the step-size is larger. If the step-size is chosen too large the algorithm
becomes unstable and might diverge. The LMS with the step-size of µLMS = 6 · 10−4 needs
about 25 thousand symbols to reach the MSE-�oor.
Figure 6.7(b) shows how the WRLS algorithm behaves for the same setup. Three di�erent
weighting factors are chosen, λ1 = 0.98, λ2 = 0.99 and λ3 = 0.995. A lower weighting
factor means that the algorithm is able to adapt faster but with the penalty of a less re�ned
autocorrelation matrix which means that the residual MSE reached will lie higher. A higher
weighting factor will give a slower convergence but a more precise autocorrelation matrix
resulting in a better convergence. This can be seen by looking at Figure 6.7(b). λ3 results
in slower convergence than using λ1 but a lower MSE �oor. About 500 symbols were needed
to reach the MSE �oor for WRLS with λ1. A huge improvement compared to the LMS
algorithm.

6.4 Blind Algorithms
The convergence of blind algorithms such as CMA, MCMA or SCMA is quite sensitive to
their step-sizes. The step-size has to be carefully chosen in order to avoid divergence of the
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Figure 6.7: Convergence of the WRLS and LMS to their MSE-�oor.

algorithms. There is a trade o� between convergence speed and the residual MSE �oor, a
large step-size value leads to a fast convergence speed but relatively high residual MSE or
even instability and vice versa. In order to make a fair comparison, the same step-size is set
for all the blind algorithms when comparing the performance. This step-size is chosen by
simply searching for a suitable step-size for all the algorithms. A step-size of 5 · 10−6 is set
for the following simulations.
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The convergence of blind algorithms is simulated using a static channel (no mast swing) for a
few ground re�ection amplitudes (b factor). A larger b factor leads to a stronger inter-symbol-
interference. All the blind algorithms converge for both Rx1 and Rx2 when b = 0 as shown
in Figure 6.8(a), both channels behave exactly the same and the convergence performances
are the same. However, when b = 0.5 convergence is not always reached. Comparing the
performance for channel A and B (Figure 6.8(b) and 6.8(c) respectively) it can be seen that
it takes a longer time for algorithms in channel A to converge but a lower residual MSE �oor
is achieved. Channel B converges faster for MCMA and SCMA but CMA does not converge
for Rx2.
A much stronger Inter-symbol-Interference is introduced in Figures 6.8(d) and 6.8(e) by set-
ting b = 0.9. Both channel A and B become too di�cult for the STE to converge, convergence
fails for such a strong ground re�ection value and inter-symbol-interference.

6.5 Mast Swing
Mast swing will cause the channel to vary as the antennas move. A changing channel will
require adaptive algorithms that can adjust fast enough to compensate in real time. At high
carrier frequencies only a small change in the distance between the Tx and Rx will rotate
the constellation. This rotation in the LoS paths will cause a fast change in the frequency
selective channels. The mast swing velocities are given in the unit λ/s so that the results are
independent of the carrier frequency. Another reason for using that unit is that the a�ects
of the velocity of the mast swing depends on how the phases between the ground re�ection
and direct paths are changing in relation to the actual mast movement. A change of one
wavelength can be considered to be a change of 2π for those phases. Assuming a varying
direct path but a static ground re�ection then for the carrier frequency selected here (17
GHz) the relation 1 λ/s ≈ 0.02 m/s is valid1.

6.5.1 Decision Directed
Decision directed algorithms will diverge if they are fed with su�ciently many wrong symbol
decisions. If such an algorithm loses track once, the errors will saturate and the algorithm
will diverge to some false realization. If the algorithm adapts too fast then fewer decision
errors are needed to get it to diverge, if the algorithm on the other hand adapts too slowly
more decision errors will be made in a varying channel resulting again in divergence. Thus
for a particular system setup and channel there is an optimum selection of parameters for the
algorithm chosen. As the velocity of the mast increases it gets harder to adapt su�ciently
fast until the algorithm diverges for any parameter selection. To evaluate the performance of
the algorithms the squared-errors (SE) are plotted against the number of symbols received.
A moving average �lter is applied to the SE to smooth out the symbol-to-symbol variations
making it a moving mean-squared-error. The initial channel estimate is obtained by sending
training symbols in the beginning. For a BER of 10−3 a MSE of about -7 dB is needed for
16QAM and a pure Gaussian noise channel.

1The antennas move with slightly di�erent velocities because the mast is tilting.
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Figure 6.8: Convergence of blind algorithms for the static channel

WRLS
The DD-WRLS algorithm is applied for a 2x2 SS-SP LoS MIMO system for di�erent mast
swing velocities. Three weighting factors were used to get a comparison of the performance.
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Figures 6.9(a) and 6.9(b) plot the evolution of the SE for channel A and B respectively for
both receivers. The velocity of the mast is about VMS = 182 λ/s which means that the
constellation is rotated seven times during the entire simulation. That produces about seven
peaks which vary a little bit in shape due to the varying tilt of the masts. These peaks are
introduced when for example a notch moves into or out of the bandwidth of the channel
forcing an abrupt change in the equalizers.
There are three weights λ = 0.98, λ = 0.99 and λ = 0.995 chosen, and they are seen to give
di�erent results. The lower the weight the faster the algorithm will adapt (smaller exponential
window), thus it can become too susceptible to erroneous decisions. This is seen to happen
for the lower weights which loose track when there are decision errors (high MSE).
Choosing the weighting factor too large will make the algorithm too slow and at high velocities
it will lose track as can be seen in Figures 6.10(a) and 6.10(b) where λ = 0.999 performs
notably worse. None of the weights are able to keep track of the channel when the mast
velocity reaches VMS = 286 λ/s for channel B.

LMS
The LMS algorithm is much more sensitive to the velocity of the mast since its convergence
speed is much slower. Figures 6.11(a) and 6.11(b) show the SE for channel A at velocities
VMS = 4 λ/s and VMS = 8 λ/s respectively. A training sequence is transmitted every
106 symbols. A new channel estimate for every training sequence is obtained using the LS
algorithm. The step-size of µLMS = 6 ·10−4 is seen to be unstable since it diverges completely
even after receiving a training sequence2. The step-size of µLMS = 5 · 10−5 is too slow even
for this moderate mast swing velocity of VMS = 4 λ/s. At a velocity of VMS = 8 λ/s all the
step-sizes diverges for Rx2. As can be seen the adaptation speed is greatly inferior to the
WRLS algorithm. The step-size of µLMS = 0.0006 is seen to be unstable while the lowest
step-sizes are too slow even for a moderate mast swing.

Higher Order Modulation
A larger constellation requires a more precise channel estimate and thus more stringent re-
quirements on the DD-algorithm that is compensating for mast swing. Thus a reduced tol-
erance to mast swing is expected for 256QAM compared to 16QAM. Figures 6.12(a) and
6.12(b) show the evolution of the SE for the WRLS algorithm. It fails to track somewhere
between VMS = 46 and VMS = 91 λ/s which are much lower velocities than for 16QAM.

SISO Systems
The SISO channel is much easier to track since the channel conditions can not become as
complex as in the MIMO case. Figure 6.13(a) shows how the LMS adapts to mast swing for
�ve di�erent step-sizes. The two largest of them are seen to be unstable and the two smallest
do not have su�cient adaptation speed. Only one step-size of µLMS = 10−3 is able to track
at the mast swing velocity of VMS = 46 λ/s. The evolution of the SE at VMS = 2.3 kλ/s
is plotted for three di�erent weights of the WRLS algorithm in Figure 6.13(b). The weight
λ = 0.98 is able to track at this velocity.

2Only every 1:1000 symbol is plotted.
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Figure 6.9: Evolution of the squared error (SE) for three di�erent weights in the WRLS
algorithm in DD-mode in the presence of Mast Swing. VMS = 182 [λ/s].

It is clear that mast swing is a much easier to compensate for in SISO systems compared to
MIMO.
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Figure 6.10: Channel B: Evolution of the squared error (SE) for three di�erent weights for
the WRLS algorithm in DD-mode in the presence of Mast Swing.
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Figure 6.11: Channel A: LMS with a training sequence after every 10−6 Tx symbols.
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Figure 6.12: Channel A: Evolution of the squared error (SE) for three di�erent weights for
the WRLS algorithm in DD-mode in the presence of Mast Swing.
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Figure 6.13: Evolution of the squared error (SE) for a SISO representation of channel A.
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6.5.2 Blind Algorithms
Flat channel
For a �at channel, mast swing behaves as a phase rotator that constantly rotates the phase
of received signals, this results in a constant carrier frequency o�set between the transmitters
and receivers. Figure 6.14(a) illustrates the signal constellation of the equalized signals. The
plots to the left illustrate the constellation of signals along with the soft decisions of the
STE without su�ering any mast swing. The plots to the right illustrate the impact of carrier
frequency o�set that is caused by mast swing.

The rotation shown in Figure 6.14(a) is caused by a carrier frequency o�set and it is usually
compensated for by using a carrier frequency recovery loop[31]. However, in Figure 6.14(b)
and Figure 6.14(c) the algorithms MCMA and SCMA are able to accomplish blind equaliza-
tion and carrier phase recovery simultaneously without the use of a carrier frequency recovery
loop3.

The convergence of three blind algorithms is compared in Figure 6.5.2. In order to compare
the convergence of CMA with other blind algorithms, phase recovery is used for CMA, all
three algorithms use the same step-size. It can be seen that all algorithms have converged
after 20,000 symbols and that the residual MSE �oor is stable even when the mast swing
velocity equals to VMS = 131 λ/s. The conclusion is that the convergence of blind algorithms
is not a�ected by mast swing if there is a �at channel.

Frequency Selective Channel
Mast swing varies the MIMO channel so that the notch placements moves inside and outside
the bandwidth of the signals. After convergence, blind algorithms can track the channel for a
slow varying frequency selective channel but with a relatively high residual MSE �oor. One
solution is that the system uses blind algorithms to initialize the channel estimation and
then it switches into DD (Decision Directed) mode to track the faster channel changes and
improve the residual MSE simultaneously. Figure 6.16 shows the convergence of di�erent
blind algorithms with a mast swing velocity of VMS = 131 λ/s and the ground re�ection
factor b = 0.9.
As seen from Figure 6.16, all algorithms converge and the residual MSE �oor is relatively
stable for certain ranges (e.g. 100,000 to 300,000 symbols). The blind algorithms are able to
track the channel to some extent but often with a relatively high MSE. The blind algorithms
never diverge or lose track since they do not rely on previous decisions. They can thus over-
ride bad channel conditions and then converge again when the channel conditions become
better. Compared to LMS or WRLS, blind algorithm have a very high MSE which can result
in decision errors. Thus it is desirable to switch to DD (Decision Directed) mode to improve
the channel tracking and MSE as shown in Figure 6.5.1 for example.

Figures 6.17(a) and 6.17(b) shows square error curves when the step-size is set to µ = 1 ·10−5

for channels A and B respectively. CMA and SCMA can become unstable and fail. MCMA
3If no other carrier frequency o�set is introduced.
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Figure 6.14: The compensation of carrier frequency o�set using di�erent blind algorithms
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Figure 6.15: Convergence for a time varying �at channel

is though still able to converge for this step-size. This goes to show that the algorithms are
very sensitive to the step-size.
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Figure 6.16: Square error curve for a time varying frequency selective channel.
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Figure 6.17: Square error curves for a time varying frequency selective channel with a larger
step-size.
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6.6 Phase Noise
The amount of phase noise power that a communication system can tolerate is highly depen-
dent on the actual implementation of the PLL (or phase tracker). The power spectrum of the
phase noise is also important to consider as well as its correlation between Rx branches in a
MIMO system. This complicates simulations that aim to give a general result. Comparing
the performance for di�erent channel conditions using a �xed implementation can though be
enlightening.

The phase noise is simulated as 1/f2 noise and it has a power of -66 dB[rad2]/Hz power at
100 kHz from carrier (see Figure 5.11).

6.6.1 Decision Directed
Figures 6.18(a) and 6.18(b) show the MSE for di�erent powers of the phase noise for 2x2
SS-SP LoS MIMO and a corresponding SISO system respectively. The parameter Wph is
added to the spectrum shown in Figure 5.114. The simulations for both the MIMO and SISO
use the same implementation of STE and phase tracking and the phase noise is perfectly
correlated between the receivers.
The phase tracker should compensate for the phase noise before the STE so little noise
enhancement is observed for di�erent b factors other than the usual white Gaussian noise
enhancement. The step-size is seen to play only a minor role due to the fact that the channel
is static.
As can be seen from Figure 6.6.2 the MIMO and SISO systems behave similar for fully
correlated phase noise. For a di�erential phase noise the SISO system has the same tolerances
but a MIMO system will perform worse for the setup illustrated in Figure 5.1. Applying
di�erential phase tracking, that is a separate phase rotator in front of every equalizer, can
compensate for this. Di�erential phase noise is applied to the received signal in Figures
6.19(a) and 6.19(b) with and without a phase tracking respectively. Since the phase tracking
is not designed for di�erential phase noise the system is seen to be rather sensitive. For
very low phase noise power the simple phase tracking performs marginally better than no
phase tracking but is seen to saturate the error for higher noise powers. Now the channel will
enhance the phase noise power since the phase tracker does not compensate in front of the
inter-stream-cancelers and thus the performance is sensitive to the b factor.

6.6.2 Blind Algorithms
In Figures 6.20(a) and 6.20(b) the convergence and residual MSE for the blind algorithms
can be seen at di�erent phase noise power levels for fully correlated phase noise. Behind the
STE is a phase rotator that rotates the symbols back using the information from the last 10
symbols, this is done to obtain a SE curve. At high phase noise powers the phase will actually
vary quite a bit over 10 symbols raising the achievable residual MSE.
CMA is una�ected by the phase noise while MCMA and SCMA are somewhat a�ected by it5

4Wph is added equally to all frequencies.
5MCMA and SCMA both use not only amplitude but some phase information as well and are thus not

completely una�ected by phase noise.
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Figure 6.18: Channel A: The MSE for di�erent power of the phase noise spectrum for fully
correlated phase noise.

which can be seen by looking at Figures 6.20(a) and 6.20(b). Here MCMA and SCMA have
a higher residual MSE than CMA does.
Figures 6.21(a) and 6.21(b) show the response of the blind algorithms to di�erential phase
noise. Since the phase of the inter-stream-interference is constantly changing the STE can not
converge fast enough at high phase noise powers. The blind algorithms are able to converge
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Figure 6.19: Channel A: The MSE for di�erent power of the phase noise spectrum for di�er-
ential phase noise.

for Wph = −5 dB but fail for Wph = 0 dB for this speci�ed channel and step-size.
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Figure 6.20: Convergence of the blind algorithms in the presence of fully correlated phase
noise.
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Figure 6.21: Channel A: Evolution of the SE in the presence of di�erential phase noise for
the blind algorithms.
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Chapter 7

Conclusions and Discussions

The following conclusions have been drawn from the numerical analysis:

• Higher penalties can be seen for frequency selective LoS MIMO channels compared to
SISO. The channels also place a higher demand on the equalizers, both their struc-
ture and their size. Equalizing a LoS MIMO channel is thus harder than its SISO
counterpart.

• For a 2x2 SS-SP LoS MIMO system the penalty is below 1 dB if the separation between
the antennas at the Rx and Tx are within 10% of the optimal.

• Comparing a 2x2 SS-SP LoS MIMO to a SISO system with a similar setup, tolerable
mast swing velocity can be at least ten times lower for the MIMO system.

• For the equalizers WRLS outperforms LMS greatly for a time varying channel. The
mast swing velocity that can be tolerated is about 100 fold greater for WRLS than it
is for LMS.

• For the channels and system setup studied in this thesis the maximum mast swing
velocity that can be tolerated lies around 5 m/s for WRLS.

• Blind algorithms may not convergence in the presence of strong ground re�ection. How-
ever, since mast swing introduces a time varying channel it can assist the blind algo-
rithms by moving them out of an unfavorable channel condition.

• In the absence of phase tracking, convergence is di�cult to achieve in the presence of
di�erential phase noise for the blind algorithms. Having decision directed phase tracking
the blind algorithms need to be able to converge before phase tracking can be initiated.

• MCMA and SCMA are able to compensate for carrier frequency o�set in the kHz range.

• CMA is more tolerant to phase noise than MCMA and SCMA who use some phase
information.

• SCMA has lower computational complexity without loss in performances.

• Blind algorithms may converge to the same source signals. This issue can be avoid by
adding a cross-correlation term into the error functions.
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Implementing SS LoS MIMO will put higher requirements on the structure of the system than
on a SISO system, especially on signal processing. Channel conditions have a higher degree
of freedom which means that it can be harder to tolerate unfavorable channel conditions. For
wireless microwave links that need to be almost always operational this translates to larger
system margins with some associated cost.
Blind equalization is seen to be less reliable for MIMO than SISO and especially in the
presence of di�erential phase noise and strong ground re�ection. This might become a possible
issue for future systems.

7.1 Further Studies
There is much room for further studies in this �eld. There are many components that are
needed to build even a basic communication system. Their interaction as well as their im-
plementation is challenging to handle. In order to be able to interpret and focus on speci�c
phenomena in this thesis some simpli�cations were made to relax the requirement on the
design. These simpli�cations should be dropped for future research.
By dropping the approximation of a synchronous system the requirements on the system are
increased. Carrier frequency o�set recovery, symbol timing estimation, phase adjustment and
tracking between di�erent parts of the system and frame synchronization would for example
be needed. These are all candidates for further studies and simulations.
The simulations here have shown that in the presence of di�erential phase noise there can be
convergence issues with blind equalization if there is no phase tracking available. This could
represent an interesting research topic.
Blind algorithm may converge in order to recover the same source signals at many outputs.
Researches for improving and assuring the output separation are needed.
Symbol timing estimates, fractionally spaced equalizers, non-linear equalizers and coded sys-
tems are a few obvious extensions to the work already done. Another thing that might be
improved on is the channel modeling. With some real measurement data for LoS MIMO
channels some statistical representation of the channel could be made which should allow for
more typical results.

So to summarize the future work suggested is as follows.

• Handling di�erential phase noise

• Improving the convergence of the blind algorithms

• Fractionally spaced equalization and non-linear equalization

• Symbol timing estimates

• Using real channel measurements when available
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Appendix A

Derivations

A.1 Singular Values For 2x2 LoS MIMO
The singular values for a MIMO system are obtained by calculating the eigenvalues of W
where

W =
{

HHH if N ≤ M
HHH if N > M

}

For a 2x2 LoS MIMO we have

HLoS =
[

exp(jkd11) exp(jkd12)
exp(jkd21) exp(jkd22)

]
⇒

W = HLoSHH
LoS =

[
2 ejk(d11−d21) + ejk(d12−d22)

ejk(d21−d11) + ejk(d22−d12) 2

]

The eigenvalues are found by solving the following equation

det (W − cI) = 0

This yields

(2− c)2 − 2− ejk(d11+d22−d12−d21) − ejk(d12+d21−d22−d22) = 0

which gives
c = 2± [2 + 2 cos(kA)]1/2 (A.1)

where A = d11 + d22− d12− d21. The singular values are now the square roots of the ordered
eigenvalues c. The condition for optimality for the 2x2 MIMO system is that d11 − d12 = π

2k ,
thus we have Aopt = π

k . For η de�ned in (3.16) the eigenvalues in (A.1) become

c = 2± [
2 + 2 cos(πη2)

]1/2

Thus the singular values can be expressed as
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σ1 =
[
2 +

[
2 + 2 cos(πη2)

]1/2
]1/2

σ2 =
[
2− [

2 + 2 cos(πη2)
]1/2

]1/2
(A.2)

And �nally the condition number is
κ =

σ1

σ2

A.2 Derivation of the normal equations
For simpleness, we only proof the least square based on the output of the �rst receiving
antenna. It can be extended into any number of receiving antennas. We use y1 to express
the output of the equalizer at the �rst receiving antenna and we are assuming there are N
samples of the received signal.

y1(k) =
M ·L∑

j=1

rk,jwj (A.3)

For all k = 1, 2, . . . , N . M , L is the number of Rx antennas and equalizer �lter length re-
spectively. rk,j , wj is the k, jth element in R matrix and jth element in column vector W1.

eW1(k) = s1(k)−
M ·L∑

j=1

rk,jwj , (k = 1, 2, . . . , N). (A.4)

So to minimize the function under LS algorithm.

ε =
N∑

k=1

e2
W1

(k). (A.5)

where N is the number of samples from the �rst receiving antenna output before the equal-
ization operation. ε is minimized when its gradient with respect to each element of vector
W1 is equal to zero.

∂ε

∂W1
= 2

N∑

k=1

eW1(k)
∂eW1(k)

∂W1
= 0. (A.6)

since

eW1(k) = s1(k)−
M ·L∑

j=1

rk,jwj (k = 1, 2, . . . , N).

the derivative is

∂eW1(k)
∂W1

= −
M ·L∑

j=1

rk,j .
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Substitution of the expression for the residuals and derivatives into the gradient equations
obtains:

∂ε

∂W1
= −2

N∑

k=1

M ·L∑

j=1

rk,j(s1(k)−
M ·L∑

i=1

rk,iwi) = 0. (A.7)

After re-arrangement, the normal equation is re-written as:

N∑

j=1

M ·L∑

i=1

N∑

k=1

rk,j · rk,i·wi =
M ·L∑

j=1

N∑

k=1

rk,j · s1(k).

The normal equation is written in matrix notation as:

(RT R)W 1 = RT S1 (A.8)

Thus (4.16) is proved.
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Appendix B

Singular Value Decomposition

For every N ×M matrix H one can write

H = UΣVH (B.1)
where U and V are M ×M and N ×N unitary matrices respectively. Σ is a M ×N diagonal
matrix of singular values σk of H. These singular values have the property that σk =

√
λk

where λk is the ith largest eigenvalue of HHH. If the transmission system is designed in
such a way that it has transmitter precoding an receiver shaping that is if the sequence to be
transmitted is multiplied with UH and the received sequence with V the following result is
obtained [20, ch. 10] (see �gure 3.2 for reference)

r = (sH + n)V
= (sUΣVH + n)V
= (xUHUΣVH + n)V
= xUHUΣVHV + nV

= xΣ + ñ (B.2)

where ñ = nV has the same distribution as n since V is a unitary matrix (VHV = IM ). The
derivation above shows that with the proper precoding and receiver shaping a MIMO channel
can be parallelized into RH SISO channels which do not interfere with each other and are
only connected through the total power constraint.

B.1 Example: 2x2 MIMO
Using SVD the SNRs for a 2x2 MIMO are given by (seen from (B.2))

SNR1 =
σ2

1

σ2
n

SNR2 =
σ2

2

σ2
n

(B.3)

where σ2
n is the noise power. Equalizing using direct matrix inversion will though give a

di�erent result as is shown here
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r = sH + n (B.4)
y = rH−1 = sHH−1 + nH−1 (B.5)

= s + nVΣ−1UH (B.6)
= s + ñΣ−1UH (B.7)

Now the SNRs can be written as

SNR1 =
1

σ2
n|U11|2/σ2

1 + σ2
n|U21|2/σ2

2

=
σ2

1

σ2
n

σ2
2

σ2
2|U11|2 + σ2

1|U21|2

SNR2 =
σ2

2

σ2
n

σ2
1

σ2
2|U11|2 + σ2

1|U21|2

The SVD and direct matrix inversion approaches are thus not comparable.
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