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Suggesting Valid Hole Fits for Typed-Holes in Haskell
MATTHÍAS PÁLL GISSURARSON
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Most programs are developed from some sort of specification, and type systems allow
programmers to communicate part of this specification to the compiler via the types.
The types can then be used to verify that the implementation matches this partial
specification. But can the types be used to aid programmers during development,
beyond verification? In this thesis I present a lightweight and practical extension
to the typed-holes of GHC that improves user experience and facilitates a style of
programming called “Type-Driven Development”.

Útdráttur
Flest forrit eru þróuð útfrá einhverskonar hönnunarlýsingu á þeim kröfum sem gerðar
eru til forritsins, en tögunarkerfi leyfa forriturum að miðla hluta af þessari lýsingu til
þýðandans í gegnum tög. Þýðandinn getur svo notað þessi tög til þess að staðfesta
að útfærslan sé í samræmi við hlutlýsinguna sem tögin tjá. En er hægt að nota þessi
tög til þess að styðja við bakið á forriturum á meðan á þróun stendur, fremur en
bara til staðfestingar í lokin? Í þessari ritgerð kynni ég til sögunnar létta og hagnýta
útvíkkun á töguðum holum sem samþykkt hefur verið í GHC sem bætir upplifun
notenda og greiðir fyrir forritunarhætti sem kallast “Tagaknúin þróun”.

Keywords: Typed-Holes, Haskell, GHC, Type-Driven Development, Functional Pro-
gramming
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1
Introduction

Most programs are developed from some sort of specification: there is an idea about
what the program is supposed to do, but whether that idea is clearly stated in a
technical document or just a vague idea in the mind of the developer depends on the
environment and the rigour demanded of the software itself. This raises an important
question: does the implementation of the program fulfill the specification? This can
be checked by testing, but a more rigorous way to verify that the implementation
of the program fulfills the specification is to use type systems.
Type systems allow the programmer to tightly couple parts of the specification of a
program and its implementation by annotating their program with type signatures.
This partial specification can help the programmer avoid a wide variety of bugs and
allows the compiler to verify that the program behaves according to the part of the
specification encoded in the types [1]. It is important to note that usually only part
of the specification can be expressed in the type system, so while types play an
important role, they can only guarantee correctness up to the level of expressiveness
that the type system in question allows [1].
The research question I seek to answer in this thesis is the following: can we take
further advantage of the tight coupling between this partial specification described
by the types and the implementation, and use it to improve the user experience dur-
ing development? User experience is the third most important factor when choosing
open source software, after stability and security, so an improved user experience
would be a valued improvement overall [2]. In this thesis I present a lightweight and
practical extension to the typed-holes of GHC, which leverages the already present
type checking mechanisms to improve the user experience when developing Haskell
programs and facilitates a style of programming called “type-driven development
(TDD)”. It is lightweight compared to an interactive theorem prover and practical
in the sense that it is both easy to use and performs well, even for non-total programs
(like most Haskell programs).
In type-driven development, the programmer first writes the types of the various
parts of the program, and then writes the implementations of those parts. This
allows the programmer to “fill in the puzzle”, and to use the types to guide their
implementation [3].
The “Glasgow Haskell Compiler (GHC)” already facilitates this style of development
with the typed-holes feature. By using a typed-hole, the programmer can ask GHC
what type a particular expression is inferred to have, which helps them in figuring
out the “shape” of the next “piece of the puzzle” [4].
However, this still relies on the programmer to figure out what pieces are available
to them. When dealing with complex types or unfamiliar libraries, this can prove to
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1. Introduction

be a challenge, especially to beginners. By extending the typed-holes functionality
of GHC, we can improve the situation and facilitate TDD even in the presence of
these complex types or unfamiliar libraries. We do this by presenting a list of “valid
hole fits” when a typed-hole is encountered.
Valid hole fits are expressions that are valid fits in place of the hole, which is to
say that replacing the hole with the fit will result in a type correct program. By
using the information that the programmer has already imparted or the compiler
inferred, these fits can be used to guide the implementation of a specified program.
Additionally, this extension can enable libraries of functions with the same func-
tional type, but different non-functional properties, to be used in a practical way
for development, as explored in the evaluation.

1.1 Why Haskell and GHC?
The valid hole fits are implemented as an extension to GHC for Haskell.

1.1.1 Pros
Haskell has a wide adoption in both academia and industry [5]. It is one of the
more widely used strongly-typed functional programming languages, according to
the 2017 Stack Overflow developer survey [5]. The only other strongly-typed func-
tional programming language in that survey was Scala, [5]. However, Scala does not
have typed-holes, and the type-inference used by Scala requires the programmer to
provide more type annotations than the extended Hindley–Milner type system that
GHC implements for Haskell [6, 7].
GHC was chosen since it is the most widely used compiler for Haskell by far [8], and
already provides typed-holes which we can piggyback on to provide valid hole fits
for those holes.
Improving the type-driven development approach in GHC for Haskell would help
users gain additional value and improve their experience when using the strong
types of Haskell, without losing access to the wealth of libraries and study materials
available for Haskell.

1.1.2 Cons
As we will see in the evaluation, Haskell’s type system is not as expressive as we
would like. Having more expressive types would improve the valid hole fits extension
quite a bit. Then the user can impart more knowledge about the desired outcome to
the compiler. One way of having more informative types is to have dependent types,
where the type of a value is allowed to depend on the value itself, as implemented in
Agda and Idris [9, 10, 3]. Another way is to use refinement types, where invariants
can be encoded as a combination of types and predicates, such as implemented in a
restricted way in Liquid Haskell [11].
Haskell does not have fully dependent types at the time of writing, but extensions
such as type families and Generalized Algebraic Datatypes (GADTs) allow for type-
level computation, which allows for some approximation of fully dependent types

2



1. Introduction

[11]. An extension to Haskell that allows for fully dependent types is in development,
and is expected to be ready in 2021 [12].

1.2 Preliminary Background
This chapter provides preliminary background material on type systems, Haskell,
GHC and typed-holes, with more detailed background on the relevant parts of GHC
and the underlying type theory in Chapter 2.

1.2.1 Type Systems
Type systems were originally formalized by Russell and Whitehead as a way to avoid
paradoxes that threatened the foundations of mathematics. They have since become
standard tools in logic and computer science for proofs and the verification of pro-
grams [1]. Type systems can be used to couple the specification of the program to
the implementation, by annotating functions with types. This allows the program-
mer to communicate their intent to the compiler, and allows the compiler to check
whether the implementation does indeed fulfill the partial specification specified by
the types.
One specific type system, the Hindley–Milner type system, is of particular interest.
It is one of the most popular and widely studied type systems, and allows for global
inference of the types of untyped programs [13]. This means that programmers of
languages using Hindley–Milner as the basis for their type system (such as Haskell
and ML) need not provide a type to every expression. This makes using strong
static type system such as the Hindley–Milner system practical [13].

1.2.2 Type-Driven Development (TDD)
Similar to test-driven development, type-driven development is an approach to the
development of programs in which the programmer writes the types of their pro-
grams first, before they write the implementation of the program. This allows the
types to guide the development, rather than tacking them on afterwards only to
verify the correctness of the implementation [3].

1.2.3 Haskell & GHC
Haskell is a standardized, general-purpose purely functional programming language,
with non-strict semantics and strong static typing [14]. Haskell’s type system is a
an extension of the Hindley–Milner type system with type classes, type equality
coercions and constraints called System FC [15, 16].
The Glasgow Haskell Compiler is a state-of-the-art, open-source implementation
of Haskell, with two main components: the batch compiler GHC, and GHCi, an
interactive interpreter [17]. It is the most widely used compiler for Haskell [8]. The
Glasgow Haskell compiler implements a number of extensions, many of which have
later been incorporated into the updated standard for Haskell (Haskell 2010). One
of these extensions is the typed-holes functionality [18].

3



1. Introduction

1.2.4 Typed-Holes
Typed-holes in GHC were introduced in version 7.8.1 and implemented by Simon
Peyton Jones, Sean Leather and Thijs Alkemade [4]. Inspired by a similar feature
in Agda, typed-holes allow a user of GHC to have “holes” in their code, using an
underscore (_) in place of an expression. When GHC encounters a typed-hole,
it generates an error with information about that hole, such as its location, the
(possibly inferred) type of the hole and any relevant local bindings [18].

f :: [String]
f = _ "hello, world"

Figure 1.1: An example of a hole

As an example, the function f in figure 1.1 has a hole in place of a function appli-
cation. When this code is compiled, GHC will output a hole error :

Found hole: _ :: [Char] -> [String]
In the expression: _
In the expression: _ "hello, world"
In an equation for ‘f’: f = _ "hello, world"
Relevant bindings include

f :: [String] (bound at t.hs:2:1)

This message tells us quite a lot about what GHC knows or can infer about the
hole, like where it is, what its inferred type is and what local bindings are in scope
that mention any of the types mentioned in the hole.

1.3 Valid Hole Fits
My contribution in this thesis is to extend the typed-hole error message with a list
of valid hole fits. When the code in figure 1.1 is compiled with the latest version of
GHC, it will in addition to the previous message output a list of “valid hole fits”
like the following:

Valid hole fits include
lines :: String -> [String]
words :: String -> [String]
repeat :: forall a. a -> [a]

with repeat @String
fail :: forall (m :: * -> *). Monad m => forall a. String -> m a

with fail @[] @String
return :: forall (m :: * -> *). Monad m => forall a. a -> m a

with return @[] @String
pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a

with pure @[] @String
(Some hole fits suppressed;

use -fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)

Figure 1.2: The valid hole fits for the hole in figure 1.1
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These valid hole fits tell the user what bindings are in scope that they could use in
place of the hole, their type, and what types the quantified type variables in their
type would be if used in place of the hole.

1.3.1 Valid Refinement Hole Fits

While showing only valid hole fits that fit the hole exactly can be useful, especially
for beginners, it is often the case that the hole would need to be filled with a function
applied to some additional arguments. For example if we compile the following:

f :: Num a => [a] -> a
f = _

Figure 1.3: A hole with a type class constraint where fold would be a good match.

The valid hole fits will be:

Valid hole fits include
f :: [a] -> a
head :: forall a. [a] -> a

with head @a
last :: forall a. [a] -> a

with last @a
product :: forall (t :: * -> *). Foldable t =>

forall a. Num a => t a -> a
with product @[] @a

sum :: forall (t :: * -> *). Foldable t =>
forall a. Num a => t a -> a

with sum @[] @a

Additionally, the type of f includes as a given that the type a satisfies the constraint
Num a. When a quantified type variable such as a must satisfy some constraints,
the typed-hole error message will include a message that relates those constraints.
For the hole in f, it will state:

Constraints include Num a (from hf.hs:3:1-22)

If GHC is passed the flag -frefinment-level-hole-fits=N, the message is further
extended with a list of valid refinement hole fits. These are valid hole fits with
additional holes in them. If the code in figure 1.3 is compiled with the flag where
N = 2, the valid hole fits will be the following:

5
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Valid refinement hole fits include
foldl1 (_ :: a -> a -> a)

with foldl1 @[] @a
where foldl1 :: forall (t :: * -> *). Foldable t =>

forall a. (a -> a -> a) -> t a -> a
foldr1 (_ :: a -> a -> a)

with foldr1 @[] @a
where foldr1 :: forall (t :: * -> *). Foldable t =>

forall a. (a -> a -> a) -> t a -> a
foldl (_ :: a -> a -> a) (_ :: a)

with foldl @[] @a @a
where foldl :: forall (t :: * -> *). Foldable t =>

forall b a. (b -> a -> b) -> b -> t a -> b
foldr (_ :: a -> a -> a) (_ :: a)

with foldr @[] @a @a
where foldr :: forall (t :: * -> *). Foldable t =>

forall a b. (a -> b -> b) -> b -> t a -> b
const (_ :: a)

with const @a @[a]
where const :: forall a b. a -> b -> a

($) (_ :: [a] -> a)
with ($) @’GHC.Types.LiftedRep @[a] @a
where ($) :: forall a b. (a -> b) -> a -> b

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

where N controls how many additional holes we look for. These refinement hole fits
can help guide the programmer to a type correct implementation of their specifica-
tion, as specified by the types.

1.4 Motivating Examples

The following are a few scenarios for which the user experience can be improved. We
use Hoogle, the Haskell API search as a baseline. For more information on Hoogle,
see section 5.2.

1.4.1 Working with the Prelude

Recall that when we compile the following code with GHC 8.2.1:

f :: [String]
f = _ "hello, world"

The error message generated by the hole in f will be:

6
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Found hole: _ :: [Char] -> [String]
In the expression: _
In the expression: _ "hello, world"
In an equation for ‘f’: f = _ "hello, world"
Relevant bindings include

f :: [String] (bound at t.hs:2:1)

When we look up the type of the hole as inferred by GHC, [Char] -> [String]
in Hoogle, the first 6 results are:

• pyIncludes :: String -> [[Char]] from matplotlib,
• unintersperse :: Char -> String -> [String] from Cabal,
• splitSepList :: Char -> String -> [String] from bibtex,
• split :: Char -> String -> [String] from ghc,
• sepList :: Char -> [String] -> String from bibtex, and
• namedNumbers :: [Char] -> String -> [[Char]] from xmonad-contrib.

Only one of these results has the exact same type, and none is likely to be the one
that the user is looking for. If we change the type to String -> [String], the
expected lines and words from base show up as the first two suggestions, but a
beginner might not realize that they need to change the type in order to get more
relevant results. To improve the user experience, we would like to show relevant
functions that are in scope, which fit the hole and work even with type synonyms
at play.

1.4.2 The Lens Library
For a more advanced scenario, consider the following code which uses the lens
library. The lens library is a library that allows users to define “lenses”, which are
functions that allow users to “zoom-in” on parts of a data structure and operate on
that part without having to consider the rest of the data structure [19].

module LensDemo where

import Control.Lens
import Control.Monad.State

newtype Test = Test { _v :: Int }
deriving (Show)

val :: Lens’ Test Int
val f (Test i) = Test <$> f i

updTest :: Test -> Test
updTest t = t &~ do

_ val (1 :: Int)

In the code above, we define a simple data structure, Test, which contains a single
field of type Int, and we define a simple lens val to operate on that field. We then
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1. Introduction

want to write a function that updates val with the value 1 using do-notation, but
we are unsure how. To get a sense of what we can do, we add a hole, and compile.
When we compile this code with GHC 8.2.1, we get the following output:

Found hole:
_ :: ((Int -> f0 Int) -> Test -> f0 Test) -> Int -> State Test a0

Where: ‘f0’ is an ambiguous type variable
‘a0’ is an ambiguous type variable

In the expression: _
In a stmt of a ’do’ block: _ value (1 :: Int)
In the second argument of ‘(&~)’, namely ‘do _ value (1 :: Int)’
Relevant bindings include

t :: Test (bound at src/test.hs:12:9)
updTest :: Test -> Test (bound at src/test.hs:12:1)

As we can see, the type of the hole is quite complex, involving multiple ambiguous
type variables and a monad transformer. Copying this to Hoogle reveals no useful
suggestions, with the top 6 being:

• mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
from transformers

• mapState :: () => ((a, s) -> (b, s)) -> State s a -> State s b
from intro,

• mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
from rev-state,

• lift :: Monad m => T r s -> State s a -> StateT r m a
from data-accessor,

• scanner :: Parser token result -> Scanner st token
-> Scanner (State st token result) result

from yi-core, and
• step :: Methods queue set -> State queue label set

-> [State queue label set]
from set-cover.

None of these results is from the lens package, and none is relevant to the current
context. To improve the user experience in these cases, we would like to get more
useful suggestions that pertain to the types involved.
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2
Background

This chapter contains an overview of the parts of the GHC type checker that are
relevant to our implementation of typed-holes and their underlying theory. All the
concepts related here play a part in the implementation of valid hole fits in GHC,
as detailed in Chapter 3 and are presented as clarification of how they operate in
the context of GHC. Much of the documentation of the type checker and its parts is
spread throughout the GHC source code in various comments, so this chapter also
serves as an external academic reference of these concepts as they are used in the
context of GHC. For reference, we will use the source code for GHC version 8.4.2.

2.1 The Type Checker

Haskell is a language with a strong static type system that is an extension of the
Hindley–Milner type system [14, 15, 16]. The type system of Haskell defines a set
of base types, such as Int and Char, along with methods for combining base types
into more complex types, like function types. It also allows the construction of new
types using type constructors like Maybe and IO, and even allows the user to define
their own type constructors [14]. In fact, the base types are implemented as unary
type constructors (known as “type constants”) [14]. Users can specify the types of
variables and expressions by giving them a type signature of the form v :: T, where
v is a variable (usually a top-level function) or expression and T is a type in the type
system [14].
When GHC compiles a Haskell program, it does type checking (including type infer-
ence) in order to verify that the program is type-correct [20]. For a program to be
type-correct, it must pass the type checker [20]. A type checker has two functions:

• Type checking, which takes an expression e and a type T and decides whether
e has type T , denoted with e : T [21].

• Type inference, which takes an expression e and finds a type T such that e : T
[21].

A program passes the type checker if it is “well-typed”, i.e. if the type checker can
infer a type for each expression and variable in the program [1]. Since GHC allows
users to specify the types of variables and expressions, the type that the type checker
infers (the “actual” type) must match the type given by the user (the “expected”
type) [22]. The GHC type checker does type inference in two steps [23, 20]. First
it generates a collection of type constraints from the source syntax tree, and then
solves the gathered constraints [23, 20].
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2.2 Type Variables
Type variables are uninterpreted base types which can be substituted or instantiated
with other types [1]. A type substitution is a mapping from type variables to types,
and applying a substitution σ to a type variable T to obtain a type σT is called
instantiating the type variable [1]. They are used to allow for polymorphism on the
type level [1]. In the type checker, there are two main variants of type variables,
Skolems and Meta type variables. A third variant is a Runtime unknown, which is
used in the GHCi interactive context [22].

2.2.1 Skolems
Named after the similar process of converting a first order logic formula to skolem
normal form in mathematical logic, Skolemization in the context of GHC is when
a type is decomposed and fresh type constants are introduced for all quantified
type variables in the type and the type with all its arrows visible (i.e. not buried
under foralls) is returned. [22, 24]. The fresh type constants introduced during
skolemization are called skolem type variables (or just skolems) [7].
As an example, when the type Int -> forall a. Ord a => blah is skolemised,
the result of skolemization is the type Int -> blah, a list of skolems [a], the
givens for those skolems [d: Ord a] and a HsWrapper (see section 2.7.1 for more
information about wrappers) which GHC can use to go from an expression of the
return type to an expression of the original type [22].

2.2.2 Meta Type Variables
A Meta type variable is a unification type variable, used by the type checker to track
unifications. It has a level number to track when it is touchable by the type checker
and an IORef that the type checker uses to unify the variable with some type [22].
See section 2.3 and section 2.4 for more details.

2.3 Constraints
Type inference such as in Haskell can be carried out in two stages, by first gen-
erating constraints from the source program, and then solving those constraints
without regard to the source program [23]. This is done by using the previously
mentioned unification variables, which stand for uninterpreted types, and solving
the constraints produces a substitution that assigns a type to each unification vari-
able [23]. The most basic type of constraint is the type equality constraint of the
form t1 ∼ t2 where t1 and t2 are types [23]. Another common type of constraint is
the type class constraint of the form C t, where C is a type class and t is a type
[22]. To do type-inference for GADTs, we need a new sort of constraint, namely
implication constraints [23].
In the following, we will use as an example the constraints that arise when looking
for valid hole fits for the hole in f in the following piece of code:
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f :: forall a b. (a ~ b, Show b) => a -> String
f x = show _

Figure 2.1: Example of a hole with both given and imposed constraints.

2.3.1 Implication Constraints

An implication constraint is a set of wanted constraints with additional information
and invariants such as skolems, given constraints, and the level number of the impli-
cation constraint [22]. An implication constraint also has a TcEvBinds field which
contains the EvBindsVar which tracks the EvBindsMap of evidence during constraint
generation and simplification [23, 22]. See section 2.5 for more information on the
EvBindsMap.

2.3.1.1 Skolems

The set of skolems of an implication constraint is the set of type constants introduced
during the skolemization of the types involved in the constraints [22]. In our example
in figure 2.1, there are two skolems, a_a1q2 and b_a1q3, which are the constant used
to represent the forall quantified a and b in the type of f.

2.3.1.2 Given Constraints

The set of givens of an implication is the set of constraints which are known to hold
in the local context of the implication [23]. These can be constraints such as type
equality constraints and class constraints, and other kinds of constraints. They are
represented by evidence variables in GHC [23, 22].
In our example in figure 2.1, the givens are Show b_a1q3 and a_a1q2 ~ b_a1q3.

2.3.1.3 Wanted Constraints

The wanted constraints is the set of constraints that we want to solve. They need to
be deducible from the given constraints for the implication constraint to be soluble
[23]. They are split into two sets, a set of “simple” constraints and a set of “proper”
constraint [23]:

• The set of simple constraints is the set of implication constraints that do not
involve any local equalities, i.e. the set of constraints which do not have any
additional givens that are valid only locally in that constraint [23].

• The proper constraints are a set of constraints that contain additional local
equalities, which means that they are implication constraints with additional
givens (and possibly skolems) [23].

In our example, the wanted constraints contain only simple constraints: A type
class constraint Show a_a1q7, and a hole constraint, a_a1q7. A hole constraint is
a constraint used to represent a typed-hole, and consists of a unification variable
which must be unified in order to solve the hole [22].
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2.4 Type Checker Levels
Each meta type variable and implication has a level number, which is used to track
invariants and whether a meta type variable is touchable [22]. These invariants are:

• Implication Invariant: The level number of an implication is strictly greater
than (>) that of its parent [22].

• Given Invariant: The level number of a unification variable appearing in the
givens of an implication is strictly less than (<) the level number of the im-
plication it appears in [22].

• Wanted Invariant: The level number of a unification variable appearing as a
wanted in an implication is less than or equal to (≤) the level number of the
implication it appears in [22].

A unification variable is touchable if its level number is equal to (=) that of its
immediate parent implication [22]. During unification, we only unify touchable
unification variables [22].

2.5 Evidence
An evidence term is a term that witnesses that a constraint holds, and is, concep-
tually, an expression in GHC Core that implements the constraint [23, 22].
Evidence terms take a few different forms depending on what kind of constraint they
witness, with the main two forms being type equality coercions for witnessing type
equalities and dictionaries for witnessing type class constraints [23, 22]. Additional
forms are special cases including dictionaries for witnessing Typeable and HasField
constraints, and type coercions for witnessing explicit casts [22].

2.5.1 Evidence Variables
Evidence variables are used to track evidence during type checking, where the
TcEvBinds of an implication contains a mutable reference to an EvBindMap, which
maps evidence variables to evidence binds [22]. Evidence binds contain an evidence
term and whether this evidence is given or wanted [22]. During simplification, the
solver updates the EvBindsMap and maps the evidence variables in the wanted con-
straints to evidence binds, which are later used to provide the evidence needed for
the Core expressions [25, 22].

2.6 Simplification
GHC uses a simplifier to solve a set of wanted constraints. It first solves all the simple
constraints, matching evidence variables to givens and creating a substitution for
those evidence variables by filling up the EvBindMap. It then solves the proper
implications by using the substitution found when solving the simple constraints
[25, 22]. Simplification is run at a given type checker level which is controlled by
the TcM, the type checker monad, which controls which unification variables are
touchable [22].
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2.7 System FC (GHC Core)
GHC uses an intermediate language called System FC during compilation, which is
an extension of the polymorphic lambda calculus known as System F with support
for non-syntactic type equality [22, 15]. Often referred to as Core within GHC, it
allows GHC to operate on a much simpler but equivalent language which is easier
to type check and optimize than the source Haskell, with most optimizations being
expressed as Core-to-Core transformations [22]. Core uses explicit evidence-passing
for passing evidence such as type equalities or type class constraints [23, 22].

2.7.1 HsWrapper
A HsWrapper is a wrapper that contains information on how to go from one expres-
sion to another in GHC Core [22]. As an example, if e is an expression and we have
a wrapper

wp = \x :Int -> /\ a. \(d: Ord a) . <hole> x,

then
wp e = \x : Int -> /\ a. \(d: Ord a). e x,

is obtained by replacing the <hole> with the expression e. Note that type class
arguments are explicit in Core, as shown with the \(d: Ord a) in the wrapper
above [22]. If you have an e :: Int -> blah, then the application of wp to e is
wp e :: Int -> forall a. Ord a => blah, and wp will bind any type variables
and givens [22]. Here, <hole> is the identity wrapper, and not related to typed-holes.

2.8 Zonking
GHC relies heavily on mutability in the type checker for efficient operation. For
this reason, throughout much of the type checking process meta type variables are
represented by mutable variables (known as TcRefs) [22].
Zonking is the process of traversing the entire type expression and of ripping out
these mutable variables and replacing them with a real type. An unfilled type
variable is either ignored (such as in the middle of type checking) or replaced with a
value like Any (which means that it could be any type) [22]. These “real” types might
be type variables, so when we zonk before outputting we do so in a TidyEnv, which
ensures that if a type contains any free type-variables, these are prettified and added
to the environment. If we later use this environment to zonk another type before
outputting that contains a free type variable that we have already encountered, the
tidy environment ensures that it is zonked to the same representation [22].
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3
Implementation

In this chapter, I will go into detail on how we prepare a set of constraints and
invoke the type checker with the types of various global reader elements and local
identifiers to find valid hole fits for a given hole. For explanation of the various
terms and parts, refer to the background material on the relevant parts of the GHC
type checker in chapter 2. The code for the implementation is given in the appendix
in section A.1.

3.1 Finding Valid Hole Fits

The valid hole fit suggestions for typed-holes in GHC are implemented as an exten-
sion to the error reporting mechanism of GHC.
When GHC encounters a hole, it creates a hole constraint within the type checker.
Holes are treated as type errors, and all reporting of type errors is postponed until
the end of the compilation. This allows the compiler to continue type checking the
rest of the program, to gather as much information as it can and report as many
errors as it can.
We look for valid hole fits when the error reporting mechanism for a typed-hole is
invoked. This means that we are free to put an emphasis on utility over performance,
since the performance cost is only incurred when the code would not have compiled
in any case. However, we do take care to not be too slow, since we want typed-holes
and valid hole fits to be viable in an interactive environment like GHCi.
The process is roughly as follows (as visualized in 3.1):

1. Gather candidates from the context (local and global).
2. Gather constraints from the context that are relevant to the hole.
3. Filter the candidates by the following:

(a) Generate a subtype wrapper that maps the type of the candidate to the
type of the hole, and gather any emitted constraints.

(b) Invoke the type checker/constraint solver to check whether the associated
constraints along with the relevant constraints are soluble, given any
givens associated with the hole.

(c) Accept those candidates where the constraints are soluble, since that
means that the candidate fits the hole.

4. Sort the fits found according to the size of type application or by subsumption.
5. Append a list of valid hole fits to the typed-hole error message.
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Local context Global environment

Candidates

Relevant Constraints

Givens

Type checker/ 
Constraint Solver

Filter by checking 
whether type can 
be made to match

Output

Sort by approximate relevance 
(by size or by subsumption)

Type of hole

Generate subtyping wrapper 
from the type of the candidate 

to the type of the hole 

Figure 3.1: Finding valid hole fits

3.1.1 The Inputs
When reporting a typed-hole error, we generate the valid hole fits message by invok-
ing the findValidHoleFits function. This function is passed the hole constraint
that caused the error, the unsolved simple constraints that were in the same set of
wanted constraints as the hole constraint, and the implications that these wanted
constraints are nested within. We also pass along the tidy type environment of the
error reporter.
This tidy type environment is used when we zonk the types and type variables before
we output them to the user (see section 2.8 on zonking). By maintaining a consistent
environment throughout the error reporting process, we ensure consistency in that
if a type-variable is reported twice, it has the same representation in the output. We
return a (possibly) updated type environment along with the generated message, to
ensure that any later error reports have consistent variable naming as well.
A hole is represented with a CHoleExpr constraint. This constraint contains infor-
mation about the hole such as its type, its type checker level, its location, and the
local bindings of the hole, which contain identifiers such as the arguments to the
function the hole is contained in and any identifiers bound in a where or let clause.
The simple constraints are constraints that were not solved during simplification,
most likely due to their solution being dependent on some type variable bound by
the type of the hole. From these simple constraints, we find “relevant constraints”,
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which are constraints that mention any of the free type variables in the hole. Since
there might be two holes that each have their own free variables, we filter out the
passed simple constraints to only include any relevant constraints, which might be
solved by filling in the hole.
These constraints may include type class constraints such as Show a or Num a, where
a is the type of the hole. By taking care to include these unsolved constraints, we
make sure that we do not suggest any hole fits that might be invalid due to not
fulfilling the constraints on the type of the hole.
The implications that the hole is nested in contain information about the bound
skolems such as any givens. This means that if we have a function f, where
f :: Show a => a -> String and a definition, f x = show _, then these impli-
cations contain the information that a fulfills the constraint Show a, and thus we
can suggest x :: a as a valid fit for the hole.
The findValidHoleFits function is run in the type checker monad, TcM, which
carries with it a lot of the context that findValidHoleFits needs and some implicit
inputs. The most important of these are the global reader elements, which are the
identifiers that are in scope in the current context. They are the identifiers that are
defined either locally in the module or in scope via an import. Other implicit inputs
include the flags used to control the sorting and display of the found fits. Additional
implicit inputs, such as what language extensions are enabled, come into play when
we invoke the simplifier, but they are not explicitly handled otherwise.
We take the global reader elements and the local bindings, and we remove any
bindings which are shadowed by more local bindings. We then pass these candidates
to the findSubs function, which runs the main “loop” of the process and iterates
through the possible candidates and checks whether they are a match.

3.1.2 Checking for a Match
When seeing whether an element is a match, we start by looking it up to find its
identifier. For local bindings, we can just return the identifier that we retrieved
when we got the local bindings from the hole. For global elements, we have to look
the element up in the type checker monad, and find the identifier if it is either an
Id or a data constructor, or throw it away if it is something other than an identifier,
such as a type constructor or a type coercion. We then pass the type of the identifier
to the fit checker.
The fit checker is wrapped with the withoutUnification wrapper, which takes the
list of free variables in the types that we are to check, and makes sure (by copying
their mutable parts) that any side-effects that the hole fit checker might have on
these variables is reverted after the check. We also have to make sure that we do
not affect the implications that the hole is wrapped in during the check, so we make
sure to replace the EvBindsVar that they contain with a fresh one, so that any
evidence gathered during the check is discarded afterwards. We then pass this to
the tcCheckHoleFit function.
The tcCheckHoleFit function encapsulates our interaction with the simplifier. There,
we start by creating a subtype wrapper with tcSubType and capturing any con-
straints generated. We then add the relevant constraints to these constraints, and
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pass this to the simplifier. If the simplifier says that it managed to simplify and solve
all the constraints, we accept the fit and return the subtype wrapper, otherwise we
reject it.

3.1.3 Gathering the Output

If the tcCheckHoleFit function reports a match, we take the returned HsWrapper,
unwrap any type applications and gather the list of types that the type would need
to be applied to. These are the “type application” arguments that we display in
the output. These applications might refer to unified type variables, so we zonk the
types in the wrapper before outputting.

We then wrap the fits in the HoleFit type, which contains the element, the id, the
type, the refinement level (the number of additional holes) and the type application
wrapper types. These are then returned as the valid hole fits from the findSubs
function.

We then take these fits and tidy them by zonking them with the tidy type environ-
ment. This means that we resolve all type variables if possible, and have consistent
names for these type variables in the output, e.g. if the type variable a appears in
the output, then any type variable called a in the valid hole fits output will be that
same type variable.

3.1.4 Sorting the Output

After we have found the valid hole fits and tidied them, we sort them so that the
most relevant fits appear before less relevant fits. As an approximation for relevance,
we use the size of the types in the wrapper needed for the type applications. This
means that if we would need to instantiate the identifier at many large (i.e. complex)
types, it is less relevant than if we need only to instantiate it at few simple types.
The most relevant fit is then the one where we do not need to instantiate at all,
which means that it is an exact fit.

An alternative sorting method of sorting by subsumption is available via a flag.
Subsumption is when one type is more or equally general than another type [7].
This sorting method sorts by creating a subsumption graph of each of the fits, i.e.
checks for each fit which (if any) other fits it is subsumed by. The valid hole fits are
then sorted by a graph sort, so that more general fits (i.e. those that subsume other
fits) appear after less general fits. This, however, is much more time consuming, so
we do not use this method unless the flag is set. As an example, the subsumption
graph for (_ "hello, world") :: [String] is:
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lines
words

read repeat

return

pure

mempty

fail

Figure 3.2: Subsumption graph of the hole fits in
(_ "hello, world") :: [String]

The output will then be as follows, shown here compared with the output when
sorting by size (the default):

Valid hole fits include
lines :: String -> [String]
words :: String -> [String]
read :: Read a => String -> a

with read @[String]
repeat :: a -> [a]

with repeat @String
mempty :: Monoid a => a

with mempty @([Char] -> [String])
return :: Monad m => a -> m a

with return @[] @String
pure :: Applicative f => a -> f a

with pure @[] @String
fail :: Monad m => String -> m a

with fail @[] @String

(a) Sorting by subsumption.

Valid hole fits include
lines :: String -> [String]
words :: String -> [String]
repeat :: forall a. a -> [a]

with repeat @String
fail :: Monad m => String -> m a

with fail @[] @String
return :: Monad m => a -> m a

with return @[] @String
pure :: Applicative f => a -> f a

with pure @[] @String
read :: Read a => String -> a

with read @[String]
mempty :: Monoid a => a

with mempty @([Char] -> [String])

(b) Sorting by size (the default).

Figure 3.3: The valid hole fits of (_ "hello, world") :: [String] when sorting
by subsumption vs. sorting by size (forall quantifiers removed for clarity).

3.2 Finding Refinement Hole Fits
For refinement hole fits, we do very much the same as before. However, to simulate
the additional holes, we check whether a slightly different type is a fit. Instead of
looking for fits of the type of the hole, we check for fits of the type v -> t, where t
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is the type of the hole and v is a fresh type variable. To check for fits with multiple
holes in them, we check for a fit for the type v1 -> · · · -> vn -> t, where v1, . . . , vn

are all fresh type variables. This allows us to suggest functions whose type would
match the type of the hole if they were passed arguments of the right type.
We create these fresh type variables by creating a new open type kind and a new
flexible type variable, which we create at the level of the hole. We then wrap the
type of the hole by making a function type with these variables as type variable
types.
We then run the check as we did before for valid hole fits, but using the newly
wrapped type of the hole in place of the original type of the hole. When we find
a fit, we have to take additional care to make sure that these fits are concrete, i.e.
that all the fresh type variables got unified with some type. Otherwise, we would
get matches like id (_ :: a0 -> t) (_ :: a0), where a0 can be any type at all.
However, when dealing with complex types such as the free monad, matches like
these can be useful, like in the case of fmap (_ :: a0 -> Free f b) (_ :: f a0).
We therefore allow the user to specify that matches like these are desirable with the
flag -fabstract-refinement-hole-fits.
Additionally, when we find a fit, we zonk the fresh type variables and find which
type they ended up being unified with. This allows us to display the type that these
new holes must have in order for the refinement to be a valid hole fit.
The sorting and output of these refinement hole fits is the same as for valid hole
fits, except that we output the additional holes and their types as well.
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4
Evaluation

The goal of this thesis is to show how type systems can be used to go beyond
verification to improve the user experience, and to extend the typed-holes of GHC to
facilitate type-driven development in Haskell. To determine whether I have achieved
this goal, I will evaluate the valid hole fits on a few practical examples in addition
to the motivating examples we saw earlier.

4.1 A Note on Performance

When implementing the valid hole fits, performance was not my primary concern,
since any performance hit would only be taken when the code being compiled con-
tains a typed-hole, which is an error. However, care was taken to make sure that the
performance was not too slow for practical use. As such, the valid hole fits perform
reasonably well, with speeds that make interactive use bearable when the default
flags are used. For most of the following examples, the runtime is 0.1−0.3 seconds,
with higher levels of -frefinement-level-hole-fits taking longer.
There are some degenerate cases where finding the valid hole fits can take a long
time, such as when the type of the hole is an unconstrained type variable, since
this makes it so that everything in scope is a valid hole fit. This degrades perfor-
mance considerably when using the -fsort-by-subsumption-hole-fits flag, since
it forces us to sort the entire prelude by subsumption, which can take upwards of 5
minutes. However, when using the default sorting method of sorting by size, even
this degenerate case takes only 0.8 seconds.

4.2 Evaluation of Motivating Examples

4.2.1 Working with the Prelude

In our “Working with the Prelude” motivating example, we considered the following
code.

f :: [String]
f = _ "hello, world"

For which GHC 8.2.1 reports the error message:
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Found hole: _ :: [Char] -> [String]
In the expression: _
In the expression: _ "hello, world"
In an equation for ‘f’: f = _ "hello, world"
Relevant bindings include

f :: [String] (bound at t.hs:2:1)

Recall that when we looked up the type _ :: [Char] -> [String] in Hoogle,
none of the results were from the Prelude, and only one of them had the exact type.
However, when we compile this with GHC with my extension, we now get:

Valid hole fits include
lines :: String -> [String]
words :: String -> [String]
repeat :: forall a. a -> [a]

with repeat @String
fail :: forall (m :: * -> *). Monad m => forall a. String -> m a

with m ~ [], a ~ String
return :: forall (m :: * -> *). Monad m => forall a. a -> m a

with m ~ [], a ~ String
pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a

with f ~ [], a ~ String
(Some hole fits suppressed;

use -fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)

which includes the lines and words functions that we expected to find in Hoogle,
but would not be found unless we looked for String -> [String]. The rest of
the suggestions are not that useful, but they match the expected type and the user
is shown how the function is instantiated, which can help newer users learn the
prelude.

4.2.2 The Lens Library
For the lens library, we used as a motivating example the following code:

module LensDemo where

import Control.Lens
import Control.Monad.State

newtype Test = Test { _v :: Int } deriving (Show)

val :: Lens’ Test Int
val f (Test i) = Test <$> f i

updTest :: Test -> Test
updTest t = t &~ do

_ val (1 :: Int)

Recall that when compiled with GHC 8.2.1, we got the following message:
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Found hole:
_ :: ((Int -> f0 Int) -> Test -> f0 Test)

-> Int -> State Test a0
Where: ‘f0’ is an ambiguous type variable

‘a0’ is an ambiguous type variable
...

When compiled with the new version, we now get the same message, but we addi-
tionally get the following:

Valid hole fits include
(#=) :: forall s (m :: * -> *) a b. MonadState s m =>

ALens s s a b -> b -> m ()
with (#=) @Test @(StateT Test Identity) @Int @Int

(<#=) :: forall s (m :: * -> *) a b. MonadState s m =>
ALens s s a b -> b -> m b

with (<#=) @Test @(StateT Test Identity) @Int @Int
(<*=) :: forall s (m :: * -> *) a. (MonadState s m, Num a) =>

LensLike’ ((,) a) s a -> a -> m a
with (<*=) @Test @(StateT Test Identity) @Int

(<+=) :: forall s (m :: * -> *) a.
(MonadState s m, Num a) =>
LensLike’ ((,) a) s a -> a -> m a

with (<+=) @Test @(StateT Test Identity) @Int
(<-=) :: forall s (m :: * -> *) a.

(MonadState s m, Num a) =>
LensLike’ ((,) a) s a -> a -> m a

with (<-=) @Test @(StateT Test Identity) @Int
(<<*=) :: forall s (m :: * -> *) a.

(MonadState s m, Num a) =>
LensLike’ ((,) a) s a -> a -> m a

with (<<*=) @Test @(StateT Test Identity) @Int
(Some hole fits suppressed;
use -fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)

These are all functions from within the lens library, relevant to the context that we
are in, and likely to be functions that we might be looking for!
Here, we have a clear advantage by plugging in to the type checker machinery of
GHC itself, and have more information available than we can easily pass to Hoogle.
This means that we can suggest matches such as (#=), (<#=) and (<*=) which fit the
hole, even though their type is very far from the type of the hole lexicographically.

4.3 Exercises from Programming in Haskell
To evaluate the usefulness of valid hole fits for beginners, we will use a typed-hole-
driven approach to solve a few select exercises from Graham Hutton’s introductory
text, Programming in Haskell [17]. We will evaluate whether the suggestions listed
contain the desired function, how early it is displayed in the list of suggestions
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and what steps must be taken for the typed-hole suggestions to be useful, if at all
possible.
To show the full power of the valid hole fits, I assume for these exercises that the
user has set the more useful flags for beginners, which are:

• -frefinement-level-hole-fits=N with N = 1 or N = 2 to include the
refinement fits, and

• -fshow-type-app-vars-of-hole-fits, which uses a variable based approach
to displaying what type application would be used.

These flags are not the default in GHC at the moment. In the case of
-frefinement-level-hole-fits=N there is a lot of output and it is hard to choose a
sensible default forN , and in the case of -fshow-type-app-vars-of-hole-fits the
syntax used is less intuitive to those familiar with the TypeApplications extension.
However, these flags may become the default later, if well received by the community.
For beginners, these flags can be set in either the source file (provided by an instruc-
tor for students to fill in), or in a configuration file for GHC or GHCi.

4.3.1 Exercises
• In exercise 1.7.3, students are asked to implement the product function for

multiplying the elements of a list. Let us see how that works with the typed-
holes. We begin by copying the sum example earlier in the book, but replacing
* with +:

myProduct :: [Int] -> Int
myProduct [] = 1
myProduct (n:ns) = _a * _b

When we compile this piece of code, the list of valid hole fits for both _a and
_b (since they are the same type) are:

Valid hole fits include
n :: Int (bound at ex.hs:5:12)
maxBound :: forall a. Bounded a => a

with a ~ Int
(imported from ‘Prelude’ at ex.hs:1:8-9

(and originally defined in ‘GHC.Enum’))
minBound :: forall a. Bounded a => a

with a ~ Int
(imported from ‘Prelude’ at ex.hs:1:8-9

(and originally defined in ‘GHC.Enum’))
Valid refinement hole fits include

myproduct (_ :: [Int])
where myproduct :: [Int] -> Int
(bound at ex.hs:4:1)

...

Here we see both the identifiers used in the correct solution, n and
myproduct (_ :: [Int]) are at the top of the list of suggestions in each list
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respectively.

So the correct implementation, namely

myProduct :: [Int] -> Int
myProduct [] = []
myProduct (n:ns) = n * (myproduct ns)

can be found by trying the candidates each in turn until the example given,
product [2,3,4] = 24, gives the correct output.
We see from this example that the typed-hole suggestions can be useful, and
as noted, the desired identifiers are at the top of the lists of suggestions. The
user still has to choose between the correct identifiers, and identifiers like
minBound and maxBound might not be very relevant to those just starting out,
even though they are valid hole fits. As noted in the future work section, using
dependent types would improve this situation, since then the expected output
could be written as an annotation as is done in Liquid Haskell [26].

• In exercise 4.8.1, students are asked to implement halve :: [a] -> ([a], [a]),
a function which splits an even-lengthed list into two halves. When they com-
pile the following code:

halve :: [a] -> ([a], [a])
halve = _

the output is:

Found hole: _ :: [a] -> ([a], [a])
Where: ‘a’ is a rigid type variable bound by

the type signature for:
halve :: forall a. [a] -> ([a], [a])

at ex.hs:6:1-25
In the expression: _
In an equation for ‘halve’: halve = _
Relevant bindings include

halve :: [a] -> ([a], [a]) (bound at ex.hs:7:1)
Valid hole fits include

halve :: [a] -> ([a], [a])
return :: forall (m :: * -> *). Monad m => forall a. a -> m a

with m ~ ((,) [a]), a ~ [a]
pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a

with f ~ ((,) [a]), a ~ [a]
mempty :: forall a. Monoid a => a

with a ~ ([a] -> ([a], [a]))
Valid refinement hole fits include

break (_ :: a -> Bool)
where break :: forall a. (a -> Bool) -> [a] -> ([a], [a])
with a ~ a

span (_ :: a -> Bool)
where span :: forall a. (a -> Bool) -> [a] -> ([a], [a])
with a ~ a

splitAt (_ :: Int)
where splitAt :: forall a. Int -> [a] -> ([a], [a])
with a ~ a

...
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Here, the splitAt function is the only function that mentions anything that
is a number, like Int, and is indeed the correct solution. If you read the
refinement as “splitAt an Int”, it is very suggestive of what it does.

• In the first part of exercise 7.9.3, students are asked to redefine the map f
function using foldr. We start by writing

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr _a _b

For the latter hole, we get:

Found hole: _b :: [b]
Where: ‘b’ is a rigid type variable bound by

the type signature for:
mymap :: forall a b. (a -> b) -> [a] -> [b]

at hutton.hs:3:1-31
Or perhaps ‘_b’ is mis-spelled, or not in scope
In the second argument of ‘foldr’, namely ‘_b’
In the expression: foldr _a _b
In an equation for ‘mymap’: mymap f = foldr _a _b
Relevant bindings include

f :: a -> b (bound at hutton.hs:4:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:4:1)

Valid hole fits include
mempty :: forall a. Monoid a => a
with a ~ [b]

so we can replace _b with mempty.

Let us now try to work out the first hole:
mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr _ mempty

When compiled, we get:

Found hole: _ :: a -> [b] -> [b]
Where: ‘a’, ‘b’ are rigid type variables bound by

the type signature for:
mymap :: forall a b. (a -> b) -> [a] -> [b]

at hutton.hs:4:1-31
In the first argument of ‘foldr’, namely ‘_’
In the expression: foldr _ mempty
In an equation for ‘mymap’: mymap f = foldr _ mempty
Relevant bindings include

f :: a -> b (bound at hutton.hs:5:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:5:1)

Valid hole fits include
seq :: forall a b. a -> b -> b

with a ~ a, b ~ [b]
mempty :: forall a. Monoid a => a

with a ~ (a -> [b] -> [b])
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but none of these matches seem useful. Let us try binding the first argument:

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr k mempty

where k x = _

When we compile the above, we now get:

Found hole: _ :: t
Where: ‘t’ is a rigid type variable bound by

the inferred type of k :: p -> t
at hutton.hs:5:9-15

In the expression: _
In an equation for ‘k’: k x = _
In an equation for ‘mymap’:

mymap f
= foldr k mempty
where

k x = _
Relevant bindings include

x :: p (bound at hutton.hs:5:11)
k :: p -> t (bound at hutton.hs:5:9)
f :: a -> b (bound at hutton.hs:4:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:4:1)

Here, we hit a snag due to GHC inferring a too general type for k to be useful.
To get any further, we either have to resort to -XScopedTypeVariables to
give k the signature a -> [b] -> [b], or we can bind the variable with a
lambda expression. Let us go the latter route, since newcomers will likely be
uncomfortable with adding extra extensions.

We write:

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr (\x -> _) mempty

and when compiled, this gives us:
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Found hole: _ :: [b] -> [b]
Where: ‘b’ is a rigid type variable bound by

the type signature for:
mymap :: forall a b. (a -> b) -> [a] -> [b]

at hutton.hs:3:1-31
In the expression: _
In the first argument of ‘foldr’, namely ‘(\ x -> _)’
In the expression: foldr (\ a -> _) mempty
Relevant bindings include

x :: a (bound at hutton.hs:4:19)
f :: a -> b (bound at hutton.hs:4:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:4:1)

Valid hole fits include
cycle :: forall a. [a] -> [a]

with a ~ b
init :: forall a. [a] -> [a]

with a ~ b
reverse :: forall a. [a] -> [a]

with a ~ b
tail :: forall a. [a] -> [a]

with a ~ b
id :: forall a. a -> a

with a ~ [b]
mempty :: forall a. Monoid a => a

with a ~ ([b] -> [b])
Valid refinement hole fits include

(++) (_ :: [b])
where (++) :: forall a. [a] -> [a] -> [a]
with a ~ b

filter (_ :: b -> Bool)
where filter :: forall a. (a -> Bool) -> [a] -> [a]
with a ~ b

map (_ :: b -> b)
where map :: forall a b. (a -> b) -> [a] -> [b]
with a ~ b, b ~ b

drop (_ :: Int)
where drop :: forall a. Int -> [a] -> [a]
with a ~ b

dropWhile (_ :: b -> Bool)
where dropWhile :: forall a. (a -> Bool) -> [a] -> [a]
with a ~ b

scanl1 (_ :: b -> b -> b)
where scanl1 :: forall a. (a -> a -> a) -> [a] -> [a]
with a ~ b

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Now we are getting somewhere. We see that none of the valid hole fits would
do what we want to do here, so let us keep going with the refinement hole fit
(++) _ by writing:

28



4. Evaluation

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr (\x -> (++) _ ) mempty

When we compile that, we get:

Found hole: _ :: [b]
Where: ‘b’ is a rigid type variable bound by

the type signature for:
mymap :: forall a b. (a -> b) -> [a] -> [b]

at hutton.hs:3:1-31
In the first argument of ‘(++)’, namely ‘_’
In the expression: (++) _
In the first argument of ‘foldr’, namely ‘(\ a -> (++) _)’
Relevant bindings include

x :: a (bound at hutton.hs:4:19)
f :: a -> b (bound at hutton.hs:4:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:4:1)

Valid hole fits include
mempty :: forall a. Monoid a => a

with a ~ [b]
Valid refinement hole fits include

cycle (_ :: [b])
where cycle :: forall a. [a] -> [a]
with a ~ b

init (_ :: [b])
where init :: forall a. [a] -> [a]
with a ~ b

repeat (_ :: b)
where repeat :: forall a. a -> [a]
with a ~ b

reverse (_ :: [b])
where reverse :: forall a. [a] -> [a]
with a ~ b

tail (_ :: [b])
where tail :: forall a. [a] -> [a]
with a ~ b

fail (_ :: String)
where fail :: forall (m :: * -> *).

Monad m =>
forall a. String -> m a

with m ~ [], a ~ b
(Some refinement hole fits suppressed;

use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

No clear path forward presents itself, so let us think for a bit. We need a [b]
according to the hole, and we have both x :: a and f :: a -> b. Let us try
writing:

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr (\x -> (++) [_]) mempty
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When we compile this, we get:

Found hole: _ :: b
Where: ‘b’ is a rigid type variable bound by

the type signature for:
mymap :: forall a b. (a -> b) -> [a] -> [b]

at hutton.hs:2:1-31
In the expression: _
In the first argument of ‘(++)’, namely ‘[_]’
In the expression: (++) [_]
Relevant bindings include

x :: a (bound at hutton.hs:3:19)
f :: a -> b (bound at hutton.hs:3:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:3:1)

Valid refinement hole fits include
f (_ :: a)

where f :: a -> b

Let us use the suggested f and write:

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr (\x -> (++) [f _]) mempty

When compiled, this gives us:

Found hole: _ :: a
Where: ‘a’ is a rigid type variable bound by

the type signature for:
mymap :: forall a b. (a -> b) -> [a] -> [b]

at hutton.hs:2:1-31
In the first argument of ‘f’, namely ‘_’
In the expression: f _
In the first argument of ‘(++)’, namely ‘[f _]’
Relevant bindings include

x :: a (bound at hutton.hs:3:19)
f :: a -> b (bound at hutton.hs:3:7)
mymap :: (a -> b) -> [a] -> [b] (bound at hutton.hs:3:1)

Valid hole fits include x :: a

We can now finish our definition with:

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr (\x -> (++) [f x]) mempty

Note that if it had suggested (:) (_ :: b), the next refinement suggestion
would have been f (_ :: a), and we would end up with:

mymap :: (a -> b) -> [a] -> [b]
mymap f = foldr (\x -> (:) (f x)) mempty
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which is very concise. The suggestions do not consider (:) however, since it
is built-in syntax and not an identifier in scope. The same goes for \x -> _
and [_], which is also built-in syntax and thus not considered. It would be
nice to add these capabilities, and we have noted that in future work.

• In exercise 12.5.4, students are asked to define Functor and Applicative
instances for ZipList, where pure should create an infinite list of copies of its
argument, and <*> should apply each argument function to the corresponding
argument value at the same position. The exercises provides the following
skeleton to fill in:

newtype ZipList a = Z [a] deriving Show

instance Functor ZipList where
-- fmap :: (a -> b) -> ZipList [a] -> ZipList [b]
fmap g (Z xs) = undefined

instance Applicative ZipList where
-- pure :: a -> ZipList [a]
pure x = undefined

-- <*> :: ZipList (a -> b) -> ZipList [a] -> ZipList [b]
(Z gs) <*> (Z xs) = undefined

We begin by writing:

instance Functor ZipList where
-- fmap :: (a -> b) -> ZipList [a] -> ZipList [b]
fmap g (Z xs) = _

and when we compile, we get:

Found hole: _ :: ZipList b
Where: ‘b’ is a rigid type variable bound by

the type signature for:
fmap :: forall a b. (a -> b) -> ZipList a -> ZipList b

at hutton.hs:7:4-7
In the expression: _
In an equation for ‘fmap’: fmap g (Z xs) = _
In the instance declaration for ‘Functor ZipList’
Relevant bindings include

xs :: [a] (bound at hutton.hs:7:14)
g :: a -> b (bound at hutton.hs:7:9)
fmap :: (a -> b) -> ZipList a -> ZipList b (bound at hutton.hs:7:4)

Valid refinement hole fits include
Z (_ :: [b])

where Z :: forall a. [a] -> ZipList a
with a ~ b

...

We use Z _ and continue by writing:
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instance Functor ZipList where
-- fmap :: (a -> b) -> ZipList [a] -> ZipList [b]
fmap g (Z xs) = Z _

But the list of suggestions does not have anything that contains the type a.
However, we know that we need to use a somewhere in the definition, and that
we want to do something with xs, so let us try the following:

instance Functor ZipList where
-- fmap :: (a -> b) -> ZipList [a] -> ZipList [b]
fmap g (Z xs) = Z (_ xs)

When we compile the above, we get:

Found hole: _ :: [a] -> [b]
Where: ‘a’, ‘b’ are rigid type variables bound by

the type signature for:
fmap :: forall a b. (a -> b) -> ZipList a -> ZipList b

at hutton.hs:7:4-7
In the expression: _
In the first argument of ‘Z’, namely ‘(_ xs)’
In the expression: Z (_ xs)
Relevant bindings include

xs :: [a] (bound at hutton.hs:7:14)
g :: a -> b (bound at hutton.hs:7:9)
fmap :: (a -> b) -> ZipList a -> ZipList b (bound at hutton.hs:7:4)

Valid hole fits include
mempty :: forall a. Monoid a => a

with a ~ ([a] -> [b])
Valid refinement hole fits include

map (_ :: a -> b)
where map :: forall a b. (a -> b) -> [a] -> [b]

...

Since we have g :: a -> b we choose map, and finish the definition by writing:

instance Functor ZipList where
-- fmap :: (a -> b) -> ZipList [a] -> ZipList [b]
fmap g (Z xs) = Z (map g xs)

For the second part of the exercise, we write:

instance Applicative ZipList where
-- pure :: a -> ZipList [a]
pure x = _

and when we compile, we get:
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Found hole: _ :: ZipList a
Where: ‘a’ is a rigid type variable bound by

the type signature for:
pure :: forall a. a -> ZipList a

at hutton.hs:11:3-6
In the expression: _
In an equation for ‘pure’: pure x = _
In the instance declaration for ‘Applicative ZipList’
Relevant bindings include

x :: a (bound at hutton.hs:11:8)
pure :: a -> ZipList a (bound at hutton.hs:11:3)

Valid refinement hole fits include
pure (_ :: a)

where pure :: a -> ZipList a
Z (_ :: [a])

where Z :: forall a. [a] -> ZipList a
with a ~ a

pure (_ :: a)
where pure :: forall (f :: * -> *).

Applicative f =>
forall a. a -> f a

with f ~ ZipList, a ~ a
id (_ :: ZipList a)

where id :: forall a. a -> a
with a ~ (ZipList a)

head (_ :: [ZipList a])
where head :: forall a. [a] -> a
with a ~ (ZipList a)

last (_ :: [ZipList a])
where last :: forall a. [a] -> a
with a ~ (ZipList a)

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

We know that we want to return an infinite list of copies and that we can not
use the pure function since that is the function we are defining, so we go with
Z _ and write:

instance Applicative ZipList where
-- pure :: a -> ZipList [a]
pure x = Z _

which, when compiled, gives us:
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Found hole: _ :: [a]
Where: ‘a’ is a rigid type variable bound by

the type signature for:
pure :: forall a. a -> ZipList a

at hutton.hs:11:3-6
In the first argument of ‘Z’, namely ‘_’
In the expression: Z _
In an equation for ‘pure’: pure x = Z _
Relevant bindings include

x :: a (bound at hutton.hs:11:8)
pure :: a -> ZipList a (bound at hutton.hs:11:3)

Valid hole fits include
mempty :: forall a. Monoid a => a

with a ~ [a]
Valid refinement hole fits include

cycle (_ :: [a])
where cycle :: forall a. [a] -> [a]
with a ~ a

init (_ :: [a])
where init :: forall a. [a] -> [a]
with a ~ a

repeat (_ :: a)
where repeat :: forall a. a -> [a]
with a ~ a

...

We want pure to return an infinite list, which is what repeat does, and we
have x :: a in the relevant bindings, so we can finish the definition with:

instance Applicative ZipList where
-- pure :: a -> ZipList a
pure x = Z (repeat x)

Now for the last part of the second exercise. Within the Applicative instance
definition for ZipList, we write:

-- <*> :: ZipList (a -> b) -> ZipList a -> ZipList b
(Z gs) <*> (Z xs) = _

and when we compile, we get:
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Found hole: _ :: ZipList b
Where: ‘b’ is a rigid type variable bound by

the type signature for:
(<*>) :: forall a b. ZipList (a -> b) -> ZipList a -> ZipList b

at hutton.hs:14:10-12
In the expression: _
In an equation for ‘<*>’: (Z gs) <*> (Z xs) = _
In the instance declaration for ‘Applicative ZipList’
Relevant bindings include

xs :: [a] (bound at hutton.hs:14:17)
gs :: [a -> b] (bound at hutton.hs:14:6)
(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b

(bound at hutton.hs:14:10)
Valid refinement hole fits include

Z (_ :: [b])
where Z :: forall a. [a] -> ZipList a
with a ~ b

(<*>) (_ :: ZipList (a -> b)) (_ :: ZipList a)
where (<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b

pure (_ :: b)
where pure :: forall (f :: * -> *).

Applicative f =>
forall a. a -> f a

with f ~ ZipList, a ~ b
id (_ :: ZipList b)

where id :: forall a. a -> a
with a ~ (ZipList b)

head (_ :: [ZipList b])
where head :: forall a. [a] -> a
with a ~ (ZipList b)

last (_ :: [ZipList b])
where last :: forall a. [a] -> a
with a ~ (ZipList b)

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

We want to return a ZipList and know how to handle [b], so we go with Z _
and write:

-- <*> :: ZipList (a -> b) -> ZipList a -> ZipList b
(Z gs) <*> (Z xs) = Z _

which, as we encountered when defining pure, does not output anything that
contains the type a. We do know that we want to use the xs, so we write:

-- <*> :: ZipList (a -> b) -> ZipList a -> ZipList b
(Z gs) <*> (Z xs) = Z (_ xs)

which, when compiled, gives us:
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Found hole: _ :: [a] -> [b]
Where: ‘a’, ‘b’ are rigid type variables bound by

the type signature for:
(<*>) :: forall a b. ZipList (a -> b)

-> ZipList a -> ZipList b
at hutton.hs:14:10-12

In the expression: _
In the first argument of ‘Z’, namely ‘(_ xs)’
In the expression: Z (_ xs)
Relevant bindings include

xs :: [a] (bound at hutton.hs:14:17)
gs :: [a -> b] (bound at hutton.hs:14:6)
(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b

(bound at hutton.hs:14:10)
Valid hole fits include

mempty :: forall a. Monoid a => a
with a ~ ([a] -> [b])

Valid refinement hole fits include
map (_ :: a -> b)

where map :: forall a b. (a -> b) -> [a] -> [b]
with a ~ a, b ~ b

scanl (_ :: b -> a -> b) (_ :: b)
where scanl :: forall b a. (b -> a -> b) -> b -> [a] -> [b]
with b ~ b, a ~ a

scanr (_ :: a -> b -> b) (_ :: b)
where scanr :: forall a b. (a -> b -> b) -> b -> [a] -> [b]
with a ~ a, b ~ b

fmap (_ :: a -> b)
where fmap :: forall (f :: * -> *).

Functor f =>
forall a b. (a -> b) -> f a -> f b

with f ~ [], a ~ a, b ~ b
(<*>) (_ :: [a -> b])

where (<*>) :: forall (f :: * -> *).
Applicative f =>
forall a b. f (a -> b) -> f a -> f b

with f ~ [], a ~ a, b ~ b
concatMap (_ :: a -> [b])

where concatMap :: forall (t :: * -> *) a b.
Foldable t =>
(a -> [b]) -> t a -> [b]

with t ~ [], a ~ a, b ~ b
(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Here, (<*>) wants an argument of type _ :: [a -> b], which we have from
gs in the relevant bindings. We can now finish up the definition with:

(Z gs) <*> (Z xs) = Z ((<*>) gs xs)
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But wait! This does not do what we want it to do!
Instead of applying each element of gs to the corresponding argument value
at the same position in xs, it applies each element of gs to each element of
xs, so instead of getting [g1 x1, g2 x2, g3 x3] that we want, we get
[g1 x1, g1 x2, g1 x3, g2 x1, g2 x2, g2 x3, g3 x1, g3 x2, g3 x3].
Let us try again, but this time, we know that we want to use gs and xs, so
we write:

(Z gs) <*> (Z xs) = Z (_ gs xs)

which, when compiled, gives us:

Found hole: _ :: [a -> b] -> [a] -> [b]
Where: ‘a’, ‘b’ are rigid type variables bound by

the type signature for:
(<*>) :: forall a b. ZipList (a -> b)

-> ZipList a -> ZipList b
at hutton.hs:14:10-12

In the expression: _
In the first argument of ‘Z’, namely ‘(_ gs xs)’
In the expression: Z (_ gs xs)
Relevant bindings include

xs :: [a] (bound at hutton.hs:14:17)
gs :: [a -> b] (bound at hutton.hs:14:6)
(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b

(bound at hutton.hs:14:10)
Valid hole fits include

(<*>) :: forall (f :: * -> *).
Applicative f =>
forall a b. f (a -> b) -> f a -> f b

with f ~ [], a ~ a, b ~ b
mempty :: forall a. Monoid a => a

with a ~ ([a -> b] -> [a] -> [b])
Valid refinement hole fits include

zipWith (_ :: (a -> b) -> a -> b)
where zipWith :: forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
with a ~ (a -> b), b ~ a, c ~ b

...

we are implementing a ZipList, so let us choose zipWith. We write:

(Z gs) <*> (Z xs) = Z (zipWith _ gs xs)

which, when compiled, outputs:
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Found hole: _ :: (a -> b) -> a -> b
Where: ‘a’, ‘b’ are rigid type variables bound by

the type signature for:
(<*>) :: forall a b. ZipList (a -> b)

-> ZipList a -> ZipList b
at hutton.hs:14:10-12

In the first argument of ‘zipWith’, namely ‘_’
In the first argument of ‘Z’, namely ‘(zipWith _ gs xs)’
In the expression: Z (zipWith _ gs xs)
Relevant bindings include

xs :: [a] (bound at hutton.hs:14:17)
gs :: [a -> b] (bound at hutton.hs:14:6)
(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b

(bound at hutton.hs:14:10)
Valid hole fits include

($) :: forall a b. (a -> b) -> a -> b
with r ~ ’GHC.Types.LiftedRep, a ~ a, b ~ b

($!) :: forall a b. (a -> b) -> a -> b
with r ~ ’GHC.Types.LiftedRep, a ~ a, b ~ b

id :: forall a. a -> a
with a ~ (a -> b)

...

We want to apply the function, so we choose the application operator ($), and
finish up with:

(Z gs) <*> (Z xs) = Z (zipWith ($) gs xs)

and we are done!
As we see, the valid hole fits work well for some of the exercises, but not as well for
others. In the mymap example, we had to resort to lambda expressions to get any
further, or we would have to enable -fabstract-refinement-hole-fits and try to
work our way through using (.), which does not really improve the user experience.
In the same example, we also saw that the suggestions are not that useful when the
correct answer uses built-in syntax, and not a function. This may not be too big
an issue, as users are likely to learn the built-in syntax much earlier than they learn
the functions in the Prelude.
We also saw that we had to do a lot of choosing, and our choices were based on what
types were mentioned and what types we had available in the relevant bindings. As
we saw in the ZipList example, the choices can sometimes be misleading, and even
if the types match, the behavior might not be as intended.
We could improve the sorting of the valid hole fits by using this information, that is
by ranking highest those functions whose arguments are any identifier in the relevant
bindings.

38



4. Evaluation

4.4 The Free Monad

The free monad is an interesting concept from category theory [27, 28]. The free
monad Free is a monad over a functor f for which there exists a transformation
s :: f a -> Free f a that is universal in the sense that for every monad m over f
and every transformation s’ :: f a -> m a there exists a unique monad morphism
t :: Free f a -> m a where s’ = t . s.

It is an interesting test for the valid hole fits, since the types of the free monad and
the operations we are defining are very descriptive. In Haskell, we can define the
free monad like this:

data Free f a
= Pure a
| Free (f (Free f a))

Figure 4.1: The Free Monad

We can use the typed-holes to help us write the monad instance for the free monad.
If we compile the following:

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = _

GHC will tell us that it has:
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Found hole: _ :: Free f b
Where: ‘b’ is a rigid type variable bound by

the type signature for:
(>>=) :: forall a b. Free f a -> (a -> Free f b) -> Free f b

at tfree.hs:9:10-12
‘f’ is a rigid type variable bound by

the instance declaration
at tfree.hs:7:10-36

In the expression: _
In an equation for ‘>>=’: Free f >>= g = _
In the instance declaration for ‘Monad (Free f)’
Relevant bindings include

g :: a -> Free f b (bound at tfree.hs:10:14)
f :: f (Free f a) (bound at tfree.hs:10:8)
(>>=) :: Free f a -> (a -> Free f b) -> Free f b

(bound at tfree.hs:9:10)
Constraints include Functor f (from tfree.hs:7:10-36)
Valid refinement hole fits include

g (_ :: a)
where g :: a -> Free f b

Pure (_ :: b)
with Pure @f @b
where Pure :: forall (f :: * -> *) a. a -> Free f a

Free (_ :: f (Free f b))
with Free @f @b
where Free :: forall (f :: * -> *) a. f (Free f a) -> Free f a

(>>=) (_ :: Free f a) (_ :: a -> Free f b)
where (>>=) :: Free f a -> (a -> Free f b) -> Free f b

fail (_ :: String)
with fail @(Free f) @b
where fail :: forall (m :: * -> *). Monad m => forall a. String -> m a

return (_ :: b)
with return @(Free f) @b
where return :: forall (m :: * -> *). Monad m => forall a. a -> m a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Indeed, the correct choice here is Free (_ :: f (Free f b)). Let us compile again
with that hole:

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = Free _

We get (after enabling -fabstract-refinement-hole-fits to allow fresh type vari-
ables to appear in fits):
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Valid refinement hole fits include
fmap (_ :: a2 -> Free f b) (_ :: f a2)

with fmap @f @a2 @(Free f b)
where fmap :: forall (f :: * -> *).

Functor f =>
forall a b. (a -> b) -> f a -> f b

(<$>) (_ :: a5 -> Free f b) (_ :: f a5)
with (<$>) @f @a5 @(Free f b)
where (<$>) :: forall (f :: * -> *) a b.

Functor f =>
(a -> b) -> f a -> f b

(<$) (_ :: Free f b) (_ :: f b3)
with (<$) @f @(Free f b) @b3
where (<$) :: forall (f :: * -> *).

Functor f =>
forall a b. a -> f b -> f a

id (_ :: t0 -> f (Free f b)) (_ :: t0)
with id @(t0 -> f (Free f b))
where id :: forall a. a -> a

head (_ :: [t0 -> f (Free f b)]) (_ :: t0)
with head @(t0 -> f (Free f b))
where head :: forall a. [a] -> a

last (_ :: [t0 -> f (Free f b)]) (_ :: t0)
with last @(t0 -> f (Free f b))
where last :: forall a. [a] -> a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Here the correct choice is fmap _ _, with a2 ∼ Free f a. We fill in that refinement
and continue:

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = Free (fmap _ _)

For the latter hole, we get:

Valid hole fits include f :: f (Free f a)

We fill that in and look for refinements for:

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = Free (fmap _ f)

When we compile the above, we get:
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Valid refinement hole fits include
fmap (_ :: a -> b)

with fmap @(Free f) @a @b
where fmap :: forall (f :: * -> *). Functor f =>

forall a b. (a -> b) -> f a -> f b
(<*>) (_ :: Free f (a -> b))

with (<*>) @(Free f) @a @b
where (<*>) :: forall (f :: * -> *). Applicative f =>

forall a b. f (a -> b) -> f a -> f b
(<$>) (_ :: a -> b)

with (<$>) @(Free f) @a @b
where (<$>) :: forall (f :: * -> *) a b. Functor f =>

(a -> b) -> f a -> f b
(=<<) (_ :: a -> Free f b)

with (=<<) @(Free f) @a @b
where (=<<) :: forall (m :: * -> *) a b. Monad m =>

(a -> m b) -> m a -> m b
(<*) (_ :: Free f b)

with (<*) @(Free f) @b @a
where (<*) :: forall (f :: * -> *). Applicative f =>

forall a b. f a -> f b -> f a
(<$) (_ :: b)

with (<$) @(Free f) @b @a
where (<$) :: forall (f :: * -> *). Functor f =>

forall a b. a -> f b -> f a
(Some refinement hole fits suppressed;

use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Here, we should choose (=<<) (_ :: a -> Free f b), since we know from the
relevant bindings that g :: a -> Free f b.
We now write:

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = Free (fmap ((=<<) _) f)

which, when compiled, gives us:

Valid hole fits include g :: a -> (Free f b)

We then replace the hole with g:

instance Functor f => Monad (Free f) where
return a = Pure a
Pure a >>= f = f a
Free f >>= g = Free (fmap ((=<<) g) f)

and we have completed our definition!
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As the evaluation shows, the valid hole fits can be of great use when dealing with
category theoretical structures such as the free monad. The theory makes it so
that we can write type signatures that match the domain accurately, and the valid
hole fits always found the correct refinement, and displayed it early in the list
of valid fits or refinements. We did have to enable some extra flags, notably the
-fabstract-refinement-hole-fits so that it would find the correct match, but
when we did it both found the match and displayed it at the top.
We also had to enable the -XMonoLocalBinds extension. -XMonoLocalBinds makes
GHC infer less polymorphic types for local bindings by default [18]. This is good for
typed-holes in general, since the less polymorphic the type is, the more accurate the
valid hole fits can be. In this case, the inferred type of (>>=) is too polymorphic.
Instead of

(>>=) :: forall a b. Free f a -> (a -> Free f b) -> Free f b

GHC infers the more polymorphic type of

(>>=) :: (Functor f1, Functor f2) => forall a b.
Free f1 a -> (a -> Free f2 b) -> Free f2 b

and while correct in the case of Free f >>= g = _, this is not the type of
Free (fmap ((=<<) g) f), which we want in the end. Enabling -XMonoLocalBinds
makes GHC infer the correct target type, which allows the full power of the valid
hole fits to come into play.

4.5 Looking Up Functions with Non-Functional
Properties

One use case for typed-holes is to interact with functions with non-functional prop-
erties. Non-functional properties are properties which are annotations to the types
themselves. These annotations can include the security level of the computation,
the computational complexity of the computation or even the power usage of the
circuit that the function would generate. These non-functional properties are often
expressed only in comments and documentation, but it is possible to wrap a type
within a newtype and add these properties to the type system as explicit annota-
tions.

4.5.1 Sorting Algorithms

Consider the following library of sorting functions, annotated with non-functional
properties like computational complexity, memory complexity and stability (for the
definition of the O notation annotation and full sorting library, see the source in
section A.2.1 in the appendix):
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newtype Sorted (cpu :: AsymptoticPoly) -- The minimum operational complexity
-- this algorithm satisfies.

(mem :: AsymptoticPoly) -- The minimum space complexity this
-- algorithm satisfies.

(stable :: Bool) -- Whether the sort is stable or not.
a -- What was being sorted.
= Sorted {sortedBy :: [a]}

mergeSort :: (Ord a, n >=. O(N*.LogN), m >=. O(N), IsStable s)
=> [a] -> Sorted n m s a

mergeSort = ...

insertionSort :: (Ord a, n >=. O(N^.2), m >=. O(One), IsStable s)
=> [a] -> Sorted n m s a

insertionSort = ...

quickSort :: (Ord a, n >=. O(N*.LogN), m >=. O(N))
=> [a] -> Sorted n m False a

quickSort = ...

heapSort :: (Ord a, n >=. O(N*.LogN), m >=. O(One))
=> [a] -> Sorted n m False a

heapSort = ...

Figure 4.2: The Sorting library, for full implementation see section A.2.2 in the
appendix

Since the functions are annotated with non-functional properties, the valid hole fits
enables a search for functions with those properties. As shown by the definition of
O notation type we can also find fits that satisfy more strict properties, that is with
better complexity. If we need a stable sort with quadratic computational complexity
and linear memory complexity for integers, we can search with the following:

{-# LANGUAGE TypeInType, TypeOperators #-}
module Main where

import Sorting
import ONotation

mySort :: Sorted (O(N^.2)) (O(N)) True Integer
mySort = _ [3,1,2]

And the valid hole fits will find those sorting functions defined in our library for
which those non-functional properties hold:
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Valid hole fits include
insertionSort :: forall a (n :: AsymptoticPoly) (m :: AsymptoticPoly)

(s :: Bool).
(Ord a, n >=. O (N ^. 2), m >=. O One
, Sorting.IsStable s) =>

[a] -> Sorted n m s a
mergeSort :: forall a (n :: AsymptoticPoly) (m :: AsymptoticPoly)

(s :: Bool).
(Ord a, n >=. O (N *. LogN), m >=. O N
, Sorting.IsStable s) =>

[a] -> Sorted n m s a

If we instead need O(N log(N)) computational complexity but it can be unstable,
we can search for that with:

{-# LANGUAGE TypeInType, TypeOperators #-}
module Main where

import Sorting
import ONotation

mySort :: Sorted (O(N*.LogN)) (O(N)) False Integer
mySort = _ [3,1,2]

Which results in:
Valid hole fits include

heapSort :: forall a (n :: AsymptoticPoly) (m :: AsymptoticPoly).
(Ord a, n >=. O (N *. LogN), m >=. O One) =>
[a] -> Sorted n m ’False a

quickSort :: forall a (n :: AsymptoticPoly) (m :: AsymptoticPoly).
(Ord a, n >=. O (N *. LogN), m >=. O N) =>
[a] -> Sorted n m ’False a

mergeSort :: forall a (n :: AsymptoticPoly) (m :: AsymptoticPoly)
(s :: Bool).
(Ord a, n >=. O (N *. LogN), m >=. O N
, Sorting.IsStable s) =>

[a] -> Sorted n m s a

And finally, if we need constant memory complexity, we can search for that with:

{-# LANGUAGE TypeInType, TypeOperators #-}
module Main where

import Sorting
import ONotation

mySort :: Sorted (O(N*.LogN)) (O(One)) False Integer
mySort = _ [3,1,2]

We will find that the output is:
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Valid hole fits include
heapSort :: forall a (n :: AsymptoticPoly) (m :: AsymptoticPoly).

(Ord a, n >=. O (N *. LogN), m >=. O One) =>
[a] -> Sorted n m ’False a

As we can see, if we had a larger library of sorting algorithms or other types of
functions such as for example adder circuits from Lava annotated with timing in-
formation, we could access the information embedded in the type annotation easily
with the valid hole fits [29].

4.5.2 DCC
Consider a module using the Dependency Core Calculus (DCC ), a small extension
of the lambda calculus designed to secure pure computation using graded monads
and type family lattices [30]. DCC allows us to encode the privacy of functions
and values in Haskell. Privacy annotations can be used to verify that information
is not being leaked to an attacker by returning private data in publicly accessible
functions, unless explicitly acknowledged by the programmer.
For this evaluation, we use an implementation of DCC based on the paper “Encoding
DCC in Haskell” [30], the source for which can be found in section A.3.1 in the
appendix. The module assumes that we want to keep the name, location and age
of the user private, but allows public access to some derived data, like whether the
user is allowed to drink and what restaurants are nearby. In this example, we use
H to denote high–security private information, and L to denote low–security public
information.
Let us assume that a library author has authored a library for interacting with data
about a user to display information about nearby restaurants. To ensure that data
is not accidentally leaked by programmers using the library, the library authors have
made use of DCC annotations to mark which functions can be used to get public
data from the private information:

bestNearbyRestaurant :: T H User -> T L (Maybe Restaurant)
bestNearbyRestaurant = ...

isInGothenburg :: T H User -> T L Bool
isInGothenburg = ...

isAllowedToDrink :: T H User -> T L Bool
isAllowedToDrink = ...

readPublic :: T L a -> a
readPublic = ...

getUserInfo :: IO (T H User)
getUserInfo = ...

Figure 4.3: The Restaurant Info library (see section A.3.2 in the appendix for the
full implementation)
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Here the information about the user is private, and can only be obtained via the
getUserInfo function, which annotates it with a security level of H, for high–
security. To make use of this information, programmers can apply the functions
included to read data derived from the private information that is allowed to be
public, such as such as whether they are legally allowed to drink, whether they are
in Gothenburg, and what restaurants are near the users location.
When a programmer would like to use this library to add a restaurant recommen-
dation feature to their app, they might wonder what they can do with the private
information that they access and how they can go from private to public. Then they
could write:

{-# LANGUAGE MonoLocalBinds #-}
import RestaurantInfo

main :: IO ()
main = do

-- Get information about the user
user <- getUserInfo
-- What can I do with it?
print $ readPublic $ _ user

And the valid hole fits will tell them that:
Valid hole fits include

bestNearbyRestaurant :: T ’H User -> T ’L (Maybe Restaurant)
isAllowedToDrink :: T ’H User -> T ’L Bool
isInGothenburg :: T ’H User -> T ’L Bool

which are precisely the functions that the programmer can use to access the private
information contained within the user data type.

4.6 The PiSkjerm Project
The PiSkjerm project is a hobby project to evaluate the usefulness of valid hole
fits for typed-holes for real world Haskell. The project was based on using the API
provided by the transportation authority for Gothenburg and the rest of Västra
Götaland, “Västtraffik”, to display information about upcoming bus departures from
nearby bus stops on a small eInk display on a Raspberry Pi. The full source is
available in section A.4 in the appendix.
The project uses a simple translation of the DSL provided by the “InkyPhat” library
by the screen vendor to interact with the screen. As the InkyPhat library is only
available for Python, we interact with the screen by spawning a sub-process and
sending commands and receiving responses via a file handle.
During the project, a lot of issues emerged with the cross-compilation tool-chain.
For example, invoking the time functions in Haskell would cause a segmentation
fault. We mitigate these flaws by using the Python interpreter to perform queries
relating to time and the network (which uses the time library). Both versions are
available in the source, and can be toggled by a build-time flag.
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We will only look at how the valid hole fits helped when we were writing the initial
part of the application, which fetches a token from Västtrafik, which is later used
to authenticate requests to the API.

4.6.1 Fetching the Token

The Västtraffik API uses OAuth2 token authentication. which means that prior
to requesting any information about departures, we first have to get a token to
authenticate our API access. We get a “key” and a “secret” from the Västtraffik
API when we register, and we need to use those to get the token.

4.6.1.1 Getting the Credentials

Since we do not want to check the key and secret into our code base, we pass them
to the PiSkjerm application by environment variables “VASTTRAFIKKEY” and
“VASTTRAFIKSECRET”. But how can we read those from the environment? Well,
we start by importing System.Environment, and then we need to find a function
that returns the values. We can ask GHC with the following code:

getAuthCredentials :: IO (String, String)
getAuthCredentials = do key <- _a "VASTTRAFIKKEY"

secret <- _b "VASTTRAFIKSECRET"
return (key, secret)

Here we have two holes, _a and _b, which both have types IO String. When we
compile, we get:
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Found hole: _b :: [Char] -> IO String
Or perhaps ‘_b’ is mis-spelled, or not in scope
In the expression: _b
In a stmt of a ’do’ block: secret <- _b "VASTTRAFIKSECRET"
In the expression:

do key <- _a "VASTTRAFIKKEY"
secret <- _b "VASTTRAFIKSECRET"
return (key, secret)

Relevant bindings include
key :: String (bound at skjerm.hs:5:25)
getAuthCredentials :: IO (String, String) (bound at skjerm.hs:5:1)

Valid hole fits include
readFile :: FilePath -> IO String
getEnv :: String -> IO String
readIO :: forall a. Read a => String -> IO a

with readIO @String
fail :: forall (m :: * -> *). Monad m => forall a. String -> m a

with fail @IO @String
return :: forall (m :: * -> *). Monad m => forall a. a -> m a

with return @IO @String
pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a

with pure @IO @String
(Some hole fits suppressed;
use -fmax-valid-hole-fits=N or -fno-max-valid-hole-fits)

getEnv has the exact type we are looking for, and sounds very much like the function
we want.
We finish our definition by writing:

module Main where
import System.Environment

getAuthCredentials :: IO (String, String)
getAuthCredentials = do key <- getEnv "VASTTRAFIKKEY"

secret <- getEnv "VASTTRAFIKSECRET"
return (key, secret)

main :: IO ()
main = getAuthCredentials >>= print

and test it,

$ ../inplace/bin/ghc-stage2 skjerm.hs
[1 of 1] Compiling Main ( skjerm.hs, skjerm.o )
Linking skjerm ...
$ VASTTRAFIKKEY="TestKey" VASTTRAFIKSECRET="TestSecret" ./skjerm
("TestKey","TestSecret")

and it works!
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4.6.1.2 Fetching the Token

To fetch the token we need to use the network. We do not want to deal with any
https hassle ourselves, so we use the req library and add Network.HTTP.Req to
our imports.
Now, we want to create a request, which is done by using the req function. To
use the valid hole fits effectively, we need to know the return type, so let us launch
GHCi to explore. The responses from GHC can be quite long, so we cut off the end
of the messages with ... in the interest of brevity.

*Main> import Network.HTTP.Req
*Main Network.HTTP.Req> :t req
req

:: (HttpBodyAllowed (AllowsBody method) (ProvidesBody body),
MonadHttp m, HttpMethod method, HttpBody body,
HttpResponse response) =>

method
-> Url scheme
-> body
-> Data.Proxy.Proxy response
-> Option scheme
-> m response

We see that the return type should be a monad which has a MonadHttp instance, and
the response needs to be a HttpResponse. But what types have those instances?
Let us ask GHCi:

*Main Network.HTTP.Req> :i MonadHttp
class Control.Monad.IO.Class.MonadIO m =>

MonadHttp (m :: * -> *) where
...
instance MonadHttp Req -- Defined in ‘Network.HTTP.Req’
*Main Network.HTTP.Req> :i HttpResponse
class HttpResponse response where
...
instance HttpResponse BsResponse -- Defined in ‘Network.HTTP.Req’
*Main Network.HTTP.Req>

Since we want a ByteString, we can use Req BsResponse as our target type. We
proceed with the definition by focusing on each of the holes in order.
For the first hole, we write:

tokenRequest :: Req BsResponse
tokenRequest = req _ undefined undefined undefined undefined

which, when compiled, returns:
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Valid hole fits include
CONNECT :: CONNECT

(imported from ‘Network.HTTP.Req’ at Main.hs:8:1-23)
PATCH :: PATCH (imported from ‘Network.HTTP.Req’ at Main.hs:8:1-23)
POST :: POST (imported from ‘Network.HTTP.Req’ at Main.hs:8:1-23)
PUT :: PUT (imported from ‘Network.HTTP.Req’ at Main.hs:8:1-23)
TRACE :: TRACE (imported from ‘Network.HTTP.Req’ at Main.hs:8:1-23)

We want to do a post request, so we choose POST and continue by writing:

tokenRequest :: Req BsResponse
tokenRequest = req POST _ undefined undefined undefined

For this next hole we get:

Found hole: _ :: Url scheme0
Where: ‘scheme0’ is an ambiguous type variable
In the second argument of ‘req’, namely ‘_’
In the expression: req POST _ undefined undefined undefined
In an equation for ‘tokenRequest’:

tokenRequest = req POST _ undefined undefined undefined
Relevant bindings include

tokenRequest :: Req BsResponse (bound at Main.hs:17:1)
Valid refinement hole fits include

http (_ :: Data.Text.Internal.Text)
where http :: Data.Text.Internal.Text -> Url ’Http

https (_ :: Data.Text.Internal.Text)
where https :: Data.Text.Internal.Text -> Url ’Https

...

We are doing a request to a https service, so we choose https, and proceed to the
next hole by writing:

tokenRequest :: Req BsResponse
tokenRequest = req POST (https "api.vasttrafik.se/token") _ undefined undefined

Here we get:
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Found hole: _ :: body0
Where: ‘body0’ is an ambiguous type variable
In the third argument of ‘req’, namely ‘_’
In the expression:

req POST (https "api.vasttrafik.se/token") _ undefined undefined
In an equation for ‘tokenRequest’:

tokenRequest
= req POST (https "api.vasttrafik.se/token") _ undefined undefined

Relevant bindings include
tokenRequest :: Req BsResponse (bound at Main.hs:19:1)

Valid hole fits include NoReqBody :: NoReqBody
Valid refinement hole fits include

ReqBodyBs (_ :: ByteString)
where ReqBodyBs :: ByteString -> ReqBodyBs

...

We want to send a ByteString specified by Västtraffik, so we choose ReqBodyBs,
and proceed to the next hole by writing:

tokenRequest :: Req BsResponse
tokenRequest = req POST (https "api.vasttrafik.se/token")

(ReqBodyBs "grant_type=client_credentials")
_ undefined

Which gives us:

Found hole: _ :: Data.Proxy.Proxy BsResponse
In the fourth argument of ‘req’, namely ‘_’
In the expression:

req POST (https "api.vasttrafik.se/token")
(ReqBodyBs "grant_type=client_credentials")
_ undefined

In an equation for ‘tokenRequest’:
tokenRequest

= req POST (https "api.vasttrafik.se/token")
(ReqBodyBs "grant_type=client_credentials")
_ undefined

Relevant bindings include
tokenRequest :: Req BsResponse (bound at Main.hs:19:1)

Valid hole fits include
bsResponse :: Data.Proxy.Proxy BsResponse
...

and since we are expecting a bytestring response, we choose bsResponse. We pro-
ceed to the final hole by writing:

tokenRequest :: Req BsResponse
tokenRequest = req POST (https "api.vasttrafik.se/token")

(ReqBodyBs "grant_type=client_credentials")
bsResponse _
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and we get:

Found hole: _ :: Option ’Https
In the fifth argument of ‘req’, namely ‘_’
In the expression:

req POST (https "api.vasttrafik.se/token")
(ReqBodyBs "grant_type=client_credentials")
bsResponse _

In an equation for ‘tokenRequest’:
tokenRequest

= req POST (https "api.vasttrafik.se/token")
(ReqBodyBs "grant_type=client_credentials")
bsResponse _

Relevant bindings include
tokenRequest :: Req BsResponse (bound at Main.hs:19:1)

Valid hole fits include
mempty :: forall a. Monoid a => a

with mempty @(Option ’Https)
Valid refinement hole fits include

oAuth2Bearer (_ :: ByteString)
where oAuth2Bearer :: ByteString -> Option ’Https

oAuth2Token (_ :: ByteString)
where oAuth2Token :: ByteString -> Option ’Https

basicAuth (_ :: ByteString) (_ :: ByteString)
where basicAuth :: ByteString -> ByteString -> Option ’Https

...

Here we are setting the options for the request. Since the only thing we need to set
is the basic authentication used to pass our key and secret, we choose basicAuth.
Since we can not do IO at that point, we will just add them as arguments and finally
arrive at:

tokenRequest :: ByteString -> ByteString -> Req BsResponse
tokenRequest key secret = req POST (https "api.vasttrafik.se/token")

(ReqBodyBs "grant_type=client_credentials")
bsResponse (basicAuth key secret)

But how do we perform the request? Let us check:

performReq :: Req BsResponse -> IO ByteString
performReq = _

We compile this and get:

53



4. Evaluation

Found hole: _ :: Req BsResponse -> IO BsResponse
In the expression: _
In the expression: _ r
In an equation for ‘performReq’: performReq r = _ r
Relevant bindings include

r :: Req BsResponse (bound at Main.hs:23:12)
performReq :: Req BsResponse -> IO BsResponse

(bound at Main.hs:23:1)
Valid hole fits include

performReq :: Req BsResponse -> IO BsResponse
Valid refinement hole fits include

runReq (_ :: HttpConfig)
where runReq :: forall (m :: * -> *) a.

Control.Monad.IO.Class.MonadIO m =>
HttpConfig -> Req a -> m a

with runReq @IO @BsResponse
...

Great, so we need to use the runReq with some configuration. But what can we use
for configuration? We can ask GHC by writing:

performReq :: Req BsResponse -> IO BsResponse
performReq r = runReq _ r

When we compile this, we get:

Found hole: _ :: HttpConfig
In the first argument of ‘runReq’, namely ‘_’
In the expression: runReq _ r
In an equation for ‘performReq’: performReq r = runReq _ r
Relevant bindings include

r :: Req BsResponse (bound at Main.hs:21:12)
performReq :: Req BsResponse -> IO BsResponse

(bound at Main.hs:21:1)
Valid refinement hole fits include

id (_ :: HttpConfig)
where id :: forall a. a -> a
with id @HttpConfig

Prelude.head (_ :: [HttpConfig])
where Prelude.head :: forall a. [a] -> a
with Prelude.head @HttpConfig

Prelude.last (_ :: [HttpConfig])
where Prelude.last :: forall a. [a] -> a
with Prelude.last @HttpConfig

asTypeOf (_ :: HttpConfig) (_ :: HttpConfig)
where asTypeOf :: forall a. a -> a -> a
with asTypeOf @HttpConfig

(!!) (_ :: [HttpConfig]) (_ :: Int)
where (!!) :: forall a. [a] -> Int -> a
with (!!) @HttpConfig
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This time, the valid hole fits do not help, and nothing useful is suggested. So we
go into the documentation of the req package, and find that HttpConfig defines
a Data.Default instance. It is not suggested, since Data.Default is not in the
Prelude, and thus not in scope at the time of checking. If we add Data.Default
to the imports, we get:

Found hole: _ :: HttpConfig
In the first argument of ‘runReq’, namely ‘_’
In the expression: runReq _ r
In an equation for ‘performReq’: performReq r = runReq _ r
Relevant bindings include

r :: Req BsResponse (bound at Main.hs:22:12)
performReq :: Req BsResponse -> IO BsResponse

(bound at Main.hs:22:1)
Valid hole fits include

def :: forall a. Default a => a
with def @HttpConfig

and so we can fill the hole with def.
We are almost there, but first: How do we get a ByteString from a BsResponse?
Let us ask GHC by compiling:

toBS :: BsResponse -> ByteString
toBS = _

GHC responds with the following message:

Found hole: _ :: BsResponse -> ByteString
In the expression: _
In an equation for ‘toBS’: toBS = _
Relevant bindings include

toBS :: BsResponse -> ByteString (bound at Main.hs:25:1)
Valid hole fits include

toBS :: BsResponse -> ByteString
responseBody :: forall response.

HttpResponse response =>
response -> HttpResponseBody response

with responseBody @BsResponse
...

which tells us that we can use responseBody.
Let us put it all together:
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{-# LANGUAGE OverloadedStrings #-}
module Main where

import System.Environment

import Network.HTTP.Req
import Data.ByteString.Char8
import Data.Default

getAuthCredentials :: IO (String, String)
getAuthCredentials = do key <- getEnv "VASTTRAFIKKEY"

secret <- getEnv "VASTTRAFIKSECRET"
return (key, secret)

tokenRequest :: ByteString -> ByteString -> Req BsResponse
tokenRequest key secret = req POST (https "api.vasttrafik.se/token")

(ReqBodyBs "grant_type=client_credentials")
bsResponse (basicAuth key secret)

performReq :: Req BsResponse -> IO BsResponse
performReq r = runReq def r

toBS :: BsResponse -> ByteString
toBS = responseBody

main :: IO ()
main = do (key, secret) <- getAuthCredentials

response <- performReq (tokenRequest (pack key) (pack secret))
print $ toBS response

We now build and run with:

$ VASTTRAFIKKEY="REDACTED" VASTTRAFIKSECRET="REDACTED" ./PiSkjerm

But alas, it fails! The exception is the following message:

PiSkjerm: VanillaHttpException (HttpExceptionRequest Request {
host = "api.vasttrafik.se%2Ftoken"
port = 443
secure = True
requestHeaders = [("Authorization","<REDACTED>")]
path = ""
queryString = ""
method = "POST"
proxy = Nothing
rawBody = False
redirectCount = 10
responseTimeout = ResponseTimeoutDefault
requestVersion = HTTP/1.1

}
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It seems like the url is being encoded, so we need to find some other way to combine
the domain and path part of the URL. Let us ask GHC:

tokenRequest :: ByteString -> ByteString -> Req BsResponse
tokenRequest key secret =
tokenRequest key secret = req POST (_ (https "api.vasttrafik.se") "token")

(ReqBodyBs "grant_type=client_credentials")
bsResponse (basicAuth key secret)

GHC tells us:

Found hole: _ :: Url ’Https -> [Char] -> Url ’Https
In the expression: _
In the second argument of ‘req’, namely

‘(_ (https "api.vasttrafik.se") "token")’
In the expression:

req
POST
(_ (https "api.vasttrafik.se") "token")
(ReqBodyBs "grant_type=client_credentials")
bsResponse
(basicAuth key secret)

Relevant bindings include
secret :: ByteString (bound at Main.hs:18:18)
key :: ByteString (bound at Main.hs:18:14)
tokenRequest :: ByteString -> ByteString -> Req BsResponse

(bound at Main.hs:18:1)
Valid hole fits include

(/~) :: forall a (scheme :: Scheme).
http-api-data-0.3.8.1:Web.Internal.HttpApiData.ToHttpApiData a =>
Url scheme -> a -> Url scheme

with (/~) @[Char] @’Https
...

so we fix the url part of token request to read:

((/~) @[Char] (https "api.vasttrafik.se") "token")

with the type application @[Char] to avoid issues with OverloadedStrings.
We now compile and run, and we get:

$ VASTTRAFIKKEY="REDACTED" VASTTRAFIKSECRET="REDACTED" ./PiSkjerm
"{\"scope\":\"am_application_scope default\",\"token_type\":\"Bearer\",

\"expires_in\":3600,\"access_token\":\"REDACTED\"}"

It works! We are done.
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4.6.2 Discussion
As we saw, the valid hole fits can get us quite far when working with real world
libraries such as the req library. However, the onus of figuring out what modules to
import is still on the programmer (such as when we import the System.Environment
module when we get the credentials). We had to resort to GHCi to find which
instances we were going to target, and it did not find the def due to Data.Default
not being in scope, but otherwise we only had to let the types and the names of
the functions guide us. The bug we encountered arose when the types were not
specific enough, but the valid hole fits could help us out of that situation as well.
My conclusion is that the valid hole fits can certainly improve the user experience
when writing real world Haskell.
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5.1 Typed-Hole Suggestions in PureScript
PureScript is a statically typed functional programming language that compiles into
JavaScript [31]. PureScript implements a type-directed search for suggestions when
it encounters typed-holes, which was the inspiration for the valid hole fits in this
thesis [32]. Similar to the feature in GHC, it searches through any imported libraries
and the local module and uses subsumption to find values that work [32].
As an example the following PureScript snippet has a hole in f denoted with ?hole:

module Main where

import Prelude

import Data.Monoid

lines :: String -> Array String
lines = mempty

words :: String -> Array String
words = mempty

f :: Array String
f = ?hole "hello, world"

When this snippet is compiled, the compiler outputs:

Hole ’hole’ has the inferred type

String -> Array String

You could substitute the hole with one of these values:

Control.Applicative.pure :: forall a f. Applicative f => a -> f a
Control.Monad.Eff.Exception.Unsafe.unsafeThrow :: forall a. String -> a
Data.Array.singleton :: forall a. a -> Array a
Data.Monoid.mempty :: forall m. Monoid m => m
Data.Unfoldable.singleton :: forall f a. Unfoldable f => a -> f a
Main.lines :: String -> Array String
Main.words :: String -> Array String
Partial.Unsafe.unsafeCrashWith :: forall a. String -> a
Unsafe.Coerce.unsafeCoerce :: forall a b. a -> b

in value declaration f
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In contrast to my implementation, the PureScript implementation does not im-
plement refinement suggestions, though considering functions with additional argu-
ments is mentioned in the future work section in Hegemann’s thesis [32]. In addition,
the list of suggestions is sorted by name, which puts very general suggestions like
unsafeThrow earlier than exact matches such as lines, even though lines has the
exact same type and is defined in the same module. This is also mentioned as a
problem in the future work section of Hegemann’s thesis [32].

5.2 Hoogle

Hoogle is a Haskell API search engine, which allows you to search many standard
Haskell libraries by either function name, or by approximate type signature [33].
Hoogle is not based on using the GHC type checker, but uses information extracted
from Haddock documentation stored in a binary database [33].
It has a few advantages over using the valid hole fits to search for valid fits:

• Hoogle searches for approximate types, and allows for the re-ordering of argu-
ments and dropping of arguments, which the valid hole fits do not.

• Since the search does not rely on the GHC type checker, it is much faster.
• With its speed advantages, it can search all of the packages on Hackage for a

match in reasonable time rather than just the functions that are in scope.
• Hoogle allows users to search by function name, which is useful if you want to

achieve something specific, but are unsure what type it has.
However, as we saw in the evaluation, there are quite a few disadvantages as well:

• Since Hoogle is not based on the type checker, it can miss some very important
details which are easy to handle when using the type checker, such as type
synonyms.

• The search in Hoogle is not so good when it comes to expanded types, and can-
not handle ambiguous type variables, and thus fails to find the lens operators
as we saw in the evaluation.

• Hoogle is based on the Haddock documentation only, meaning that functions
that are local to the module and un-exported functions are not included in the
search [33].

• Hoogle does not run any type-family based computation, which means that
use-cases such as the Sorting library are not possible with Hoogle.

Hoogle is a great tool, and will undoubtedly continue to be used in tandem with the
valid hole fits.

5.3 Type-Driven Development in Dependently Typed
Languages

As discussed in the introduction, typed-holes are more useful in dependently typed
languages, since dependently typed languages can encode much more precise invari-
ants on the type level than is possible in Haskell. However, being dependently typed
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means that type inference is undecidable, which means that more type signatures
must be written by the programmer [10].

5.3.1 Typed-Holes in Agda
Agda is a dependently typed functional programming language based on intuition-
istic type theory, which offers both typed-holes and automatic searching for fits for
typed-holes [10, 34, 35]. The typed-holes of Agda inspired the typed-holes in GHC
[4].

5.3.1.1 Example

Let us take a look at an example, in which we use the typed-holes in Agda [34]. We
use the emacs agda-mode, which is the recommended way to program in Agda.
Imagine we have a data type for the natural numbers, and another data type which
encodes a judgment of whether a natural number is even or not, that is a constructor
that can only construct even numbers.

data N : Set where
zero : N
suc : N -> N

data _even : N -> Set where
ZERO : zero even
STEP : \forall x -> x even -> suc (suc x) even

Imagine that we want to prove that four is even:

proof : suc (suc (suc (suc zero))) even
proof = ?

When we invoke the “Load” command in agda-mode with C-c C-l to type check
the program, Agda will convert the question mark into a hole, like this:

proof : suc (suc (suc (suc zero))) even
proof = { }0

And the following will appear in a separate Emacs buffer:

?0 : suc (suc (suc (suc zero))) even

This states that the type of hole 0 is suc (suc (suc (suc zero))) even.
Next, we can use the “Split obligation” command. The “Split obligation” command
is invoked by placing the cursor into the hole and writing STEP ? ?, and then
pressing C-c C-space. This splits the hole into two more holes:

proof : suc (suc (suc (suc zero))) even
proof = STEP { }1 { }2
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?1 : N
?2 : suc (suc zero) even

This tells us that for the first hole we have to provide something of the type of
the natural numbers, and for the second hole we need to provide something of type
suc (suc zero) even. If we put the cursor onto the second hole and run C-C C-r
(the “refine” command), Agda will automatically figure out that there is only one
constructor that fits that type, namely STEP. The agda-mode command will then
replace the hole with that constructor and two additional holes, resulting in:

proof : suc (suc (suc (suc zero))) even
proof = STEP { }1 (STEP { }3 { }4)

?1 : N
?3 : N
?4 : zero even

Placing the cursor into hole number 4 and running C-c C-r will replace it with the
only constructor of type zero even, namely ZERO.
Resulting in:

proof : suc (suc (suc (suc zero))) even
proof = STEP { }1 (STEP { }3 ZERO)

?1 : N
?3 : N

The remaining holes can be solved automatically from the constraints on them.
These constraints can be shown by running the “Show constraints” command, in-
voked by typing C-c C-=. This will in our case print out:

?1 : suc (suc zero)
?3 : zero

If we invoke the “Solve constraints” command with C-c C-s, Agda will now fill these
holes with the only valid options, namely 2 and 0 [34].

5.3.1.2 The Auto command in Agda

Agda can also do a search for valid hole fits, with the Auto command. Formerly
known as Agsy, it can be invoked in agda-mode by hovering over a hole and invoking
it with C-c C-a [34, 35]. It will then search for type inhabitants and fill the hole if
found [35].
As in the example above, if we have:

proof : suc (suc (suc (suc zero))) even
proof = STEP { }1 (STEP zero ZERO)
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Then placing the cursor inside { }1 and invoking the auto command with C-c C-a
would replace the hole with (suc (suc zero)) resulting in:

proof : suc (suc (suc (suc zero))) even
proof = STEP (suc (suc zero)) (STEP zero ZERO)

The Auto command is quite powerful, and works for small enough problems of almost
any kind. It can construct terms beyond single identifiers or identifiers applied to
additional holes. It can attempt case-splitting and refinement, and it can even do
equality reasoning [35]. By default, it replaces the hole with the first solution found,
but it can also list valid solutions. It can take “hints”, which can be identifiers or
definitions in the current module that can help the Auto command find a match
quicker [35].

5.3.1.3 Discussion

As discussed in the introduction, a dependently typed setting brings a lot more
power to typed-holes beyond what is possible in Haskell. However, this comes at
the price of much more explicit typing of functions and values by the programmer.

5.3.2 Idris
Type-Driven development is an approach that is highly encouraged when working
with Idris, and indeed the title of the primary text on Idris is Type-Driven Devel-
opment with Idris, which is written by Edwin Brady the author of Idris [3].
Idris also has typed-holes, which can be placed and inspected in the Idris REPL [3].
As an example, one could write:

module Main

main : IO ()
main = putStrLn (?convert ’x’)

When loaded into the REPL, the user can inspect the hole:

*Hello> :t convert
--------------------------------
convert : Char -> String

Holes can be automatically lifted to top-level functions in Atom, the editor of choice
for Idris, with a built-in command [3].
Idris also implements expression search, which allows users to search for expressions
with a given type either from the command line or by invoking Ctrl-Alt-S on a
hole [3]. The search command is based on type isomorphism, and as such can find
types such as b -> a -> a when searching for a -> b -> a [36].
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Idris> :search e -> List e -> List e
= Prelude.List.(::) : a -> List a -> List a
Cons cell

= Prelude.List.intersperse : a -> List a -> List a
Insert some separator between the elements of a list.

> Prelude.List.delete : Eq a => a -> List a -> List a

< assert_smaller : a -> b -> b
Assert to the totality checker than y is always structurally
smaller than x (which is typically a pattern argument)

< Prelude.Basics.const : a -> b -> a
Constant function. Ignores its second argument.

The list displays functions that are either exact matches (denoted with =), more
specific matches (denoted with <) and more general matches (denoted with >) [36].
The ordering is based on the “edit distance”, i.e. the length of the chain of rewrite
rules needed to get from one type to the other [36].
Idris also has the :proofsearch command, which works similarly to the Auto com-
mand in Agda, and constructs terms of the correct type [36].

5.3.2.1 Discussion

Idris has very powerful tools for type-driven development, and there are certainly
ideas there that could be used to improve the typed-holes in GHC even further.
Showing more specific types is something that would definitely be useful in GHC,
and would resolve our problem with GHC inferring types which are too general as
discussed in the first item of future work in section 6.2, and encountered in our
evaluation of the free monad example in section 4.4. This could be implemented in
our extension by running an inverted subsumption check in addition to the regular
subsumption check when looking for valid hole fits. We explore this idea further in
the second item of the future work section, 6.2.

5.3.3 Liquid Haskell

Liquid Haskell does not have any typed-hole features at the term level beyond those
already present in GHC, and does not offer any proofsearch or type-directed search
like Agda and Idris do. Liquid Haskell does however have holes at the type level,
similar to the PartialTypeSignatures extensions. This allows users to use under-
scores to represent holes in refinement types, which Liquid Haskell can then replace
with types inferred from GHC or gleaned from the type signature if possible [11].
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5.4 Program Synthesis
Finding valid hole fits for typed-holes can be viewed as simplistic program synthesis,
that considers only one term (which might contain additional holes) and only takes
into account a target type. A number of type-directed program synthesizers exists,
many of which target completion of partial expressions like valid hole fits. These
include:

• Prospector is an early type-directed program synthesizer that targets com-
pletion, and predates the other synthesizers presented here. Prospector
helps users navigate the API jungle by synthesizing jungloids (unary expres-
sions) in response to user queries from an input type to an output type [37].
These jungloids are synthesized based on a type graph built from API method
signatures, mined jungloids from a corpus of programs and downcasts, and are
ranked by the distance between the input and output type within this graph
[37]. Prospector was originally integrated with the Eclipse IDE, but does
not seem to be publicly available any more [37].

• Perelman et al. developed an algorithm for type-directed completion of partial
expressions for C#/Java [38]. Their algorithm allows for information to be
omitted, similarly to the additional holes in refinement hole fits [38]. They
distinguish between guessing method names and method arguments, while in
our case both are simply identifiers with different types [38]. They found that
type distance was the most important metric when ranking completions [38].

• InSynth offers type-directed completion for Java and Scala, based only on
the type [39]. InSynth generates entire expressions that can include higher
order functions [39]. InSynth uses a machine learning based approach that
uses weights to rank completions, and these weights can be assigned by the
user or mined from a corpus of code [39]. InSynth has been deployed in an
IDE for Scala [39].

• Djinn is a command line tool (not integrated with GHC) that generates
Haskell code from a type [40]. In Djinn, users have to manually add types and
functions to be considered, and it does not instantiate polymorphic functions
[40]. Djinn is available from Hackage [40].

• Synquid is an algorithm developed by Polikarpova et al., that can synthesize
programs from polymorphic refinement types in an ML-like language [41]. By
leveraging the more expressive refinement types, they can synthesize programs
that provably satisfy a rich specification, such as sorting algorithms and BST
operations [41]. Synquid is available as a command line tool and web interface
from the Synquid repository [41].

None of these is integrated into a language or with the type checker of a language,
but are rather stand-alone tools or IDE plugins.
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As we can see from the evaluation, the valid hole fits extension improves the user
experience and facilitates a type-driven development approach. It does this in a
lightweight way for a variety of practical scenarios for both newcomers and advanced
users, such as when working with real world libraries such as lens or req or more
advanced categorical objects such as the free monad. The implementation makes
use of the already present type checking mechanisms of GHC, and integrates well
with the typed-holes in a non-intrusive manner.

6.1 Impact

My contributions to the Glasgow Haskell Compiler have been accepted, with some
available from version 8.4.1, while later additions such as local bindings, refinement
hole fits and sorting of the output will be available starting with version 8.6.1.
I had a poster on the topic accepted into the ACM student research competition
at ICFP 2017. While there I got insightful feedback on how to extend the feature
to handle more general cases than simple type equality, and worked with Simon
Peyton Jones on the original implementation. I also gave a talk at Lambda Days
2018, where I explained typed-holes to a non-expert audience and showed how the
valid hole fit suggestions could be used in practice. I received great feedback on the
feature from both beginners and advanced users alike, which informed the further
development of the feature.

6.2 Future Work

• One issue that comes to light when working with typed-holes as seen in the
evaluation is that the type inferred by GHC might be too polymorphic for the
valid hole fits to be useful, as we encountered in the evaluation in section 4.4.
As an example, consider the function f x = (_+x)/5. Here, GHC will infer
that f :: Fractional a => a -> a. However, pi :: Floating a => a is
a valid fit for the hole in f, but only if the inferred type of f was the stricter
f :: Floating a => a. Since we use the type that GHC infers in this case, it
is not suggested as a valid hole fit. If this were the first time we are referencing
f, giving it a more strict type would not be a problem, but we might have
written
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a :: Floating a => a
a = f 1

b :: Fractional a => a
b = f 2

and then filling in the hole with pi would make the program invalid! What is
worse is that these invocations are not limited to even the module, but could
have an effect in another module or even another package!
One option is to suggest these fits only in the case that we are looking for a
fit for a hole for a local binding and not a global element, or suggesting that
the user enable -XMonoLocalBinds like we did in the evaluation of the free
monad example. Then we could be sure that the suggestion would not change
the meaning outside the scope we are considering.
Another is to suggest to the programmer that they could use this fit if the
constraints were tightened to the new constraints, but warning that this may
not be valid.

• As mentioned in the discussion on the type-directed search feature of Idris,
we could additionally show more specific fits than the type of the hole by also
running an inverted subsumption check in addition to the regular subsumption
check. Then, if the inverted subsumption check is a match, this means that
the type of the match is more specific than the type of the hole. These matches
could then be output as a separate list of suggestions. These fits would not be
valid in all cases (as discussed in the item above), but they could certainly be
useful in many cases.

• As we encountered during our evaluation of exercises from Hutton in section
4.3, the current implementation does not consider (:) and other functions
that are treated as built-in syntax. However, these can often be the identifier
that the user is looking for, and would improve the user experience if added.

• IDE integration. The valid hole fits would be more useful to the programmer
if it were integrated into their IDE. One such approach would be enhanced
auto–completion based not just on names (as they usually are), but also on
the type itself. For this to work, the compilation process would need to be very
quick, and the IDE able to ask for the output for this particular expression
quickly.

• Adding valid hole fits to Liquid Haskell. One problem with the valid hole
fits is that they only care about the type of the hole, with no way to hint
to the compiler that the desired function must have some specified behavior.
One solution would be to integrate the valid hole fits into the Liquid Haskell
compiler. In Liquid Haskell, refinement types are used to provide stricter
guarantees than the current type system of Haskell can offer by encoding
invariants on the type level [42]. In Liquid Haskell, these are expressed via
additional annotations to functions, for example

{-@ isPositive :: x:Int -> {v:Bool | v <=> x > 0} @-} ,

which states that the isPositive function only returns true if its input x is
positive [42]. By integrating similar checks into the valid hole fits, we could
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suggest only those functions which fit these more precise refinement types,
similar to how Synquid operates (but within Haskell) [41].

6.3 Reflection
I certainly learned a lot from this project. I gained a lot of experience in working
with and extending GHC, as well as a good understanding of some parts of the type
checker. I now know how to effectively work with the latest GHC from the HEAD
branch, and how to get it to work even when building libraries with a lot of depen-
dencies such as lens. During the PiSkjerm project, I also became acquainted with
cross-compilation of Haskell programs for the Raspberry Pi, contributed to the mo-
bile Haskell user guide, and contributed a Docker image to make cross-compilation
easier for others. I am also proud of having contributed to GHC and added a feature
that has been well received by the community.
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A
Appendix

A.1 The Implementation
My contributions to GHC were originally spread around several modules, but they
were consolidated to one module as the extension grew in scope. The TcHoleErrors
defines the findValidHoleFits functions which the hole error reporter calls in
TcErrors.
{-# OPTIONS_GHC -fno-warn-orphans #-} -- We don’t want to spread the HasOccName

-- instance for Either
module TcHoleErrors ( findValidHoleFits ) where

import GhcPrelude

import TcRnTypes
import TcRnMonad
import TcMType
import TcEvidence
import TcType
import Type
import DataCon
import Name
import RdrName ( pprNameProvenance , GlobalRdrElt (..), globalRdrEnvElts )
import PrelNames ( gHC_ERR )
import Id
import VarSet
import VarEnv
import Bag
import ConLike ( ConLike(..) )
import Util
import TcEnv (tcLookup)
import Outputable
import DynFlags
import Maybes
import FV ( fvVarList, fvVarSet, unionFV, mkFVs, FV )

import Control.Arrow ( (&&&) )

import Control.Monad ( filterM, replicateM )
import Data.List ( partition, sort, sortOn, nubBy, foldl’ )
import Data.Graph ( graphFromEdges, topSort )
import Data.Function ( on )

import TcSimplify ( simpl_top, runTcSDeriveds )
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import TcUnify ( tcSubType_NC )

{-
Note [Valid hole fits include ...]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
‘findValidHoleFits‘ returns the "Valid hole fits include ..." message.
For example, look at the following definitions in a file called test.hs:

import Data.List (inits)

f :: [String]
f = _ "hello, world"

The hole in ‘f‘ would generate the message:

• Found hole: _ :: [Char] -> [String]
• In the expression: _

In the expression: _ "hello, world"
In an equation for ‘f’: f = _ "hello, world"

• Relevant bindings include f :: [String] (bound at test.hs:6:1)
Valid hole fits include

lines :: String -> [String]
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘base-4.11.0.0:Data.OldList’))
words :: String -> [String]

(imported from ‘Prelude’ at mpt.hs:3:8-9
(and originally defined in ‘base-4.11.0.0:Data.OldList’))

inits :: forall a. [a] -> [[a]]
with inits @Char
(imported from ‘Data.List’ at mpt.hs:4:19-23

(and originally defined in ‘base-4.11.0.0:Data.OldList’))
repeat :: forall a. a -> [a]

with repeat @String
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘GHC.List’))
fail :: forall (m :: * -> *). Monad m => forall a. String -> m a

with fail @[] @String
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘GHC.Base’))
return :: forall (m :: * -> *). Monad m => forall a. a -> m a

with return @[] @String
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘GHC.Base’))
pure :: forall (f :: * -> *). Applicative f => forall a. a -> f a

with pure @[] @String
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘GHC.Base’))
read :: forall a. Read a => String -> a

with read @[String]
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘Text.Read’))
mempty :: forall a. Monoid a => a

with mempty @([Char] -> [String])
(imported from ‘Prelude’ at mpt.hs:3:8-9

(and originally defined in ‘GHC.Base’))
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Valid hole fits are found by checking top level identifiers and local bindings
in scope for whether their type can be instantiated to the the type of the hole.
Additionally, we also need to check whether all relevant constraints are solved
by choosing an identifier of that type as well, see Note [Relevant Constraints]

Since checking for subsumption results in the side-effect of type variables
being unified by the simplifier, we need to take care to restore them after
to being flexible type variables after we’ve checked for subsumption.
This is to avoid affecting the hole and later checks by prematurely having
unified one of the free unification variables.

When outputting, we sort the hole fits by the size of the types we’d need to
apply by type application to the type of the fit to to make it fit. This is done
in order to display "more relevant" suggestions first. Another option is to
sort by building a subsumption graph of fits, i.e. a graph of which fits subsume
what other fits, and then outputting those fits which are are subsumed by other
fits (i.e. those more specific than other fits) first. This results in the ones
"closest" to the type of the hole to be displayed first.

To help users understand how the suggested fit works, we also display the values
that the quantified type variables would take if that fit is used, like
‘mempty @([Char] -> [String])‘ and ‘pure @[] @String‘ in the example above.
If -XTypeApplications is enabled, this can even be copied verbatim as a
replacement for the hole.

Note [Nested implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For the simplifier to be able to use any givens present in the enclosing
implications to solve relevant constraints, we nest the wanted subsumption
constraints and relevant constraints within the enclosing implications.

As an example, let’s look at the following code:

f :: Show a => a -> String
f x = show _

The hole will result in the hole constraint:

[WD] __a1ph {0}:: a0_a1pd[tau:2] (CHoleCan: ExprHole(_))

Here the nested implications are just one level deep, namely:

[Implic {
TcLevel = 2
Skolems = a_a1pa[sk:2]
No-eqs = True
Status = Unsolved
Given = $dShow_a1pc :: Show a_a1pa[sk:2]
Wanted =

WC {wc_simple =
[WD] __a1ph {0}:: a_a1pd[tau:2] (CHoleCan: ExprHole(_))
[WD] $dShow_a1pe {0}:: Show a_a1pd[tau:2] (CDictCan(psc))}

Binds = EvBindsVar<a1pi>
Needed inner = []
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Needed outer = []
the type signature for:

f :: forall a. Show a => a -> String }]

As we can see, the givens say that the information about the skolem
‘a_a1pa[sk:2]‘ fulfills the Show constraint.

The simples are:

[[WD] __a1ph {0}:: a0_a1pd[tau:2] (CHoleCan: ExprHole(_)),
[WD] $dShow_a1pe {0}:: Show a0_a1pd[tau:2] (CNonCanonical)]

I.e. the hole ‘a0_a1pd[tau:2]‘ and the constraint that the type of the hole must
fulfill ‘Show a0_a1pd[tau:2])‘.

So when we run the check, we need to make sure that the

[WD] $dShow_a1pe {0}:: Show a0_a1pd[tau:2] (CNonCanonical)

Constraint gets solved. When we now check for whether ‘x :: a0_a1pd[tau:2]‘ fits
the hole in ‘tcCheckHoleFit‘, the call to ‘tcSubType‘ will end up writing the
meta type variable ‘a0_a1pd[tau:2] := a_a1pa[sk:2]‘. By wrapping the wanted
constraints needed by tcSubType_NC and the relevant constraints (see
Note [Relevant Constraints] for more details) in the nested implications, we
can pass the information in the givens along to the simplifier. For our example,
we end up needing to check whether the following constraints are soluble.

WC {wc_impl =
Implic {

TcLevel = 2
Skolems = a_a1pa[sk:2]
No-eqs = True
Status = Unsolved
Given = $dShow_a1pc :: Show a_a1pa[sk:2]
Wanted =

WC {wc_simple =
[WD] $dShow_a1pe {0}:: Show a0_a1pd[tau:2] (CNonCanonical)}

Binds = EvBindsVar<a1pl>
Needed inner = []
Needed outer = []
the type signature for:

f :: forall a. Show a => a -> String }}

But since ‘a0_a1pd[tau:2] := a_a1pa[sk:2]‘ and we have from the nested
implications that Show a_a1pa[sk:2] is a given, this is trivial, and we end up
with a final WC of WC {}, confirming x :: a0_a1pd[tau:2] as a match.

To avoid side-effects on the nested implications, we create a new EvBindsVar so
that any changes to the ev binds during a check remains localised to that check.

Note [Valid refinement hole fits include ...]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the ‘-frefinement-level-hole-fits=N‘ flag is given, we additionally look
for "valid refinement hole fits"", i.e. valid hole fits with up to N
additional holes in them.
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With ‘-frefinement-level-hole-fits=0‘ (the default), GHC will find all
identifiers ’f’ (top-level or nested) that will fit in the hole.

With ‘-frefinement-level-hole-fits=1‘, GHC will additionally find all
applications ’f _’ that will fit in the hole, where ’f’ is an in-scope
identifier, applied to single argument. It will also report the type of the
needed argument (a new hole).

And similarly as the number of arguments increases

As an example, let’s look at the following code:

f :: [Integer] -> Integer
f = _

with ‘-frefinement-level-hole-fits=1‘, we’d get:

Valid refinement hole fits include

foldl1 (_ :: Integer -> Integer -> Integer)
with foldl1 @[] @Integer
where foldl1 :: forall (t :: * -> *).

Foldable t =>
forall a. (a -> a -> a) -> t a -> a

foldr1 (_ :: Integer -> Integer -> Integer)
with foldr1 @[] @Integer
where foldr1 :: forall (t :: * -> *).

Foldable t =>
forall a. (a -> a -> a) -> t a -> a

const (_ :: Integer)
with const @Integer @[Integer]
where const :: forall a b. a -> b -> a

($) (_ :: [Integer] -> Integer)
with ($) @’GHC.Types.LiftedRep @[Integer] @Integer
where ($) :: forall a b. (a -> b) -> a -> b

fail (_ :: String)
with fail @((->) [Integer]) @Integer
where fail :: forall (m :: * -> *).

Monad m =>
forall a. String -> m a

return (_ :: Integer)
with return @((->) [Integer]) @Integer
where return :: forall (m :: * -> *). Monad m => forall a. a -> m a

(Some refinement hole fits suppressed;
use -fmax-refinement-hole-fits=N or -fno-max-refinement-hole-fits)

Which are hole fits with holes in them. This allows e.g. beginners to
discover the fold functions and similar, but also allows for advanced users
to figure out the valid functions in the Free monad, e.g.

instance Functor f => Monad (Free f) where
Pure a >>= f = f a
Free f >>= g = Free (fmap _a f)

Will output (with -frefinment-level-hole-fits=1):
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Found hole: _a :: Free f a -> Free f b
Where: ‘a’, ‘b’ are rigid type variables bound by

the type signature for:
(>>=) :: forall a b. Free f a -> (a -> Free f b) -> Free f b

at fms.hs:25:12-14
‘f’ is a rigid type variable bound by

...
Relevant bindings include

g :: a -> Free f b (bound at fms.hs:27:16)
f :: f (Free f a) (bound at fms.hs:27:10)
(>>=) :: Free f a -> (a -> Free f b) -> Free f b

(bound at fms.hs:25:12)
...
Valid refinement hole fits include

...
(=<<) (_ :: a -> Free f b)

with (=<<) @(Free f) @a @b
where (=<<) :: forall (m :: * -> *) a b.

Monad m =>
(a -> m b) -> m a -> m b

(imported from ‘Prelude’ at fms.hs:5:18-22
(and originally defined in ‘GHC.Base’))

...

Where ‘(=<<) _‘ is precisely the function we want (we ultimately want ‘>>= g‘).

We find these refinement suggestions by considering hole fits that don’t
fit the type of the hole, but ones that would fit if given an additional
argument. We do this by creating a new type variable with ‘newOpenFlexiTyVar‘
(e.g. ‘t_a1/m[tau:1]‘), and then considering hole fits of the type
‘t_a1/m[tau:1] -> v‘ where ‘v‘ is the type of the hole.

Since the simplifier is free to unify this new type variable with any type, we
can discover any identifiers that would fit if given another identifier of a
suitable type. This is then generalized so that we can consider any number of
additional arguments by setting the ‘-frefinement-level-hole-fits‘ flag to any
number, and then considering hole fits like e.g. ‘foldl _ _‘ with two additional
arguments.

To make sure that the refinement hole fits are useful, we check that the types
of the additional holes have a concrete value and not just an invented type
variable. This eliminates suggestions such as ‘head (_ :: [t0 -> a]) (_ :: t0)‘,
and limits the number of less than useful refinement hole fits.

Additionally, to further aid the user in their implementation, we show the
types of the holes the binding would have to be applied to in order to work.
In the free monad example above, this is demonstrated with
‘(=<<) (_ :: a -> Free f b)‘, which tells the user that the ‘(=<<)‘ needs to
be applied to an expression of type ‘a -> Free f b‘ in order to match.
If -XScopedTypeVariables is enabled, this hole fit can even be copied verbatim.

Note [Relevant Constraints]
~~~~~~~~~~~~~~~~~~~

As highlighted by Trac #14273, we need to check any relevant constraints as well
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as checking for subsumption. Relevant constraints are the simple constraints
whose free unification variables are mentioned in the type of the hole.

In the simplest case, these are all non-hole constraints in the simples, such
as is the case in

f :: String
f = show _

Where the simples will be :

[[WD] __a1kz {0}:: a0_a1kv[tau:1] (CHoleCan: ExprHole(_)),
[WD] $dShow_a1kw {0}:: Show a0_a1kv[tau:1] (CNonCanonical)]

However, when there are multiple holes, we need to be more careful. As an
example, Let’s take a look at the following code:

f :: Show a => a -> String
f x = show (_b (show _a))

Here there are two holes, ‘_a‘ and ‘_b‘, and the simple constraints passed to
findValidHoleFits are:

[[WD] _a_a1pi {0}:: String
-> a0_a1pd[tau:2] (CHoleCan: ExprHole(_b)),

[WD] _b_a1ps {0}:: a1_a1po[tau:2] (CHoleCan: ExprHole(_a)),
[WD] $dShow_a1pe {0}:: Show a0_a1pd[tau:2] (CNonCanonical),
[WD] $dShow_a1pp {0}:: Show a1_a1po[tau:2] (CNonCanonical)]

Here we have the two hole constraints for ‘_a‘ and ‘_b‘, but also additional
constraints that these holes must fulfill. When we are looking for a match for
the hole ‘_a‘, we filter the simple constraints to the "Relevant constraints",
by throwing out all hole constraints and any constraints which do not mention
a variable mentioned in the type of the hole. For hole ‘_a‘, we will then
only require that the ‘$dShow_a1pp‘ constraint is solved, since that is
the only non-hole constraint that mentions any free type variables mentioned in
the hole constraint for ‘_a‘, namely ‘a_a1pd[tau:2]‘ , and similarly for the
hole ‘_b‘ we only require that the ‘$dShow_a1pe‘ constraint is solved.

-}

data HoleFitDispConfig = HFDC { showWrap :: Bool
, showWrapVars :: Bool
, showType :: Bool
, showProv :: Bool
, showMatches :: Bool }

debugHoleFitDispConfig :: HoleFitDispConfig
debugHoleFitDispConfig = HFDC True True True False False

-- We read the various -no-show-*-of-hole-fits flags
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-- and set the display config accordingly.
getHoleFitDispConfig :: TcM HoleFitDispConfig
getHoleFitDispConfig

= do { sWrap <- goptM Opt_ShowTypeAppOfHoleFits
; sWrapVars <- goptM Opt_ShowTypeAppVarsOfHoleFits
; sType <- goptM Opt_ShowTypeOfHoleFits
; sProv <- goptM Opt_ShowProvOfHoleFits
; sMatc <- goptM Opt_ShowMatchesOfHoleFits
; return HFDC{ showWrap = sWrap, showWrapVars = sWrapVars

, showProv = sProv, showType = sType
, showMatches = sMatc } }

-- Which sorting algorithm to use
data SortingAlg = NoSorting -- Do not sort the fits at all

| BySize -- Sort them by the size of the match
| BySubsumption -- Sort by full subsumption
deriving (Eq, Ord)

getSortingAlg :: TcM SortingAlg
getSortingAlg =

do { shouldSort <- goptM Opt_SortValidHoleFits
; subsumSort <- goptM Opt_SortBySubsumHoleFits
; sizeSort <- goptM Opt_SortBySizeHoleFits
-- We default to sizeSort unless it has been explicitly turned off
-- or subsumption sorting has been turned on.
; return $ if not shouldSort

then NoSorting
else if subsumSort

then BySubsumption
else if sizeSort

then BySize
else NoSorting }

-- HoleFit is the type we use for valid hole fits. It contains the
-- element that was checked, the Id of that element as found by ‘tcLookup‘,
-- and the refinement level of the fit, which is the number of extra argument
-- holes that this fit uses (e.g. if hfRefLvl is 2, the fit is for ‘Id _ _‘).
data HoleFit = HoleFit { hfElem :: Maybe GlobalRdrElt -- The element that was

-- if a global, nothing
-- if it is a local.

, hfId :: Id -- The elements id in the TcM
, hfType :: TcType -- The type of the id, possibly zonked
, hfRefLvl :: Int -- The number of holes in this fit
, hfWrap :: [TcType] -- The wrapper for the match
, hfMatches :: [TcType] } -- What the refinement

-- variables got matched with,
-- if anything

-- We define an Eq and Ord instance to be able to build a graph.
instance Eq HoleFit where

(==) = (==) ‘on‘ hfId

-- We compare HoleFits by their gre_name instead of their Id, since we don’t
-- want our tests to be affected by the non-determinism of ‘nonDetCmpVar‘,
-- which is used to compare Ids. When comparing, we want HoleFits with a lower
-- refinement level to come first.
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instance Ord HoleFit where
compare a b = cmp a b

where cmp = if hfRefLvl a == hfRefLvl b
then compare ‘on‘ (idName . hfId)
else compare ‘on‘ hfRefLvl

instance Outputable HoleFit where
ppr = pprHoleFit debugHoleFitDispConfig

instance (HasOccName a, HasOccName b) => HasOccName (Either a b) where
occName = either occName occName

instance HasOccName GlobalRdrElt where
occName = occName . gre_name

-- For pretty printing hole fits, we display the name and type of the fit,
-- with added ’_’ to represent any extra arguments in case of a non-zero
-- refinement level.
pprHoleFit :: HoleFitDispConfig -> HoleFit -> SDoc
pprHoleFit (HFDC sWrp sWrpVars sTy sProv sMs) hf = hang display 2 provenance

where name = case hfElem hf of
Just gre -> gre_name gre
Nothing -> idName (hfId hf)

ty = hfType hf
matches = hfMatches hf
wrap = hfWrap hf
tyApp = sep $ map ((text "@" <>) . pprParendType) wrap
tyAppVars = sep $ punctuate comma $

map (\(v,t) -> ppr v <+> text "~" <+> pprParendType t) $
zip vars wrap

where
vars = unwrapTypeVars ty
-- Attempts to get all the quantified type variables in a type,
-- e.g.
-- return :: forall (m :: * -> *) Monad m => (forall a . a) -> m a
-- into [m, a]
unwrapTypeVars :: Type -> [TyVar]
unwrapTypeVars t = vars ++ case splitFunTy_maybe unforalled of

Just (_, unfunned) -> unwrapTypeVars unfunned
_ -> []

where (vars, unforalled) = splitForAllTys t
holeVs = sep $ map (parens . (text "_" <+> dcolon <+>) . ppr) matches
holeDisp = if sMs then holeVs

else sep $ replicate (length matches) $ text "_"
occDisp = pprPrefixOcc name
tyDisp = ppWhen sTy $ dcolon <+> ppr ty
has = not . null
wrapDisp = ppWhen (has wrap && (sWrp || sWrpVars))

$ text "with" <+> if sWrp || not sTy
then occDisp <+> tyApp
else tyAppVars

funcInfo = ppWhen (has matches && sTy) $
text "where" <+> occDisp <+> tyDisp

subDisp = occDisp <+> if has matches then holeDisp else tyDisp
display = subDisp $$ nest 2 (funcInfo $+$ wrapDisp)
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provenance = ppWhen sProv $
parens $

case hfElem hf of
Just gre -> pprNameProvenance gre
Nothing -> text "bound at" <+> ppr (getSrcLoc name)

getLocalBindings :: TidyEnv -> Ct -> TcM [Id]
getLocalBindings tidy_orig ct
= do { (env1, _) <- zonkTidyOrigin tidy_orig (ctLocOrigin loc)

; go env1 [] (removeBindingShadowing $ tcl_bndrs lcl_env) }
where

loc = ctEvLoc (ctEvidence ct)
lcl_env = ctLocEnv loc

go :: TidyEnv -> [Id] -> [TcBinder] -> TcM [Id]
go _ sofar [] = return (reverse sofar)
go env sofar (tc_bndr : tc_bndrs) =

case tc_bndr of
TcIdBndr id _ -> keep_it id
_ -> discard_it

where
discard_it = go env sofar tc_bndrs
keep_it id = go env (id:sofar) tc_bndrs

-- See Note [Valid hole fits include ...]
findValidHoleFits :: TidyEnv --The tidy_env for zonking

-> [Implication] --Enclosing implications for givens
-> [Ct] -- The unsolved simple constraints in the

-- implication for the hole.
-> Ct -- The hole constraint itself
-> TcM (TidyEnv, SDoc)

findValidHoleFits tidy_env implics simples ct | isExprHoleCt ct =
do { rdr_env <- getGlobalRdrEnv

; lclBinds <- getLocalBindings tidy_env ct
; maxVSubs <- maxValidHoleFits <$> getDynFlags
; hfdc <- getHoleFitDispConfig
; sortingAlg <- getSortingAlg
; refLevel <- refLevelHoleFits <$> getDynFlags
; traceTc "findingValidHoleFitsFor { " $ ppr ct
; traceTc "hole_lvl is:" $ ppr hole_lvl
; traceTc "implics are: " $ ppr implics
; traceTc "simples are: " $ ppr simples
; traceTc "locals are: " $ ppr lclBinds
; let (lcl, gbl) = partition gre_lcl (globalRdrEnvElts rdr_env)

-- We remove binding shadowings here, but only for the local level.
-- this is so we e.g. suggest the global fmap from the Functor class
-- even though there is a local definition as well, such as in the
-- Free monad example.
locals = removeBindingShadowing $ map Left lclBinds ++ map Right lcl
globals = map Right gbl
-- If the type is an unbound type variable with no relevant
-- constraints, we’ll (correctly) match anything in scope. However,
-- this is not very useful, so in that case we only check the local
-- bindings.
to_check = if null relevantCts && isTyVarTy hole_ty

then locals else locals ++ globals
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; (searchDiscards, subs) <-
findSubs sortingAlg maxVSubs to_check (hole_ty, [])

; (tidy_env, tidy_subs) <- zonkSubs tidy_env subs
; tidy_sorted_subs <- sortFits sortingAlg tidy_subs
; let (pVDisc, limited_subs) = possiblyDiscard maxVSubs tidy_sorted_subs

vDiscards = pVDisc || searchDiscards
; let vMsg = ppUnless (null limited_subs) $

hang (text "Valid hole fits include") 2 $
vcat (map (pprHoleFit hfdc) limited_subs)

$$ ppWhen vDiscards subsDiscardMsg
-- Refinement hole fits. See Note [Valid refinement hole fits include ...]
; (tidy_env, refMsg) <- if refLevel >= Just 0 then

do { maxRSubs <- maxRefHoleFits <$> getDynFlags
-- We can use from just, since we know that Nothing >= _ is False.
; let refLvls = [1..(fromJust refLevel)]
-- We make a new refinement type for each level of refinement, where
-- the level of refinement indicates number of additional arguments
-- to allow.
; ref_tys <- mapM mkRefTy refLvls
; traceTc "ref_tys are" $ ppr ref_tys
; refDs <- mapM (findSubs sortingAlg maxRSubs to_check) ref_tys
; (tidy_env, tidy_rsubs) <- zonkSubs tidy_env $ concatMap snd refDs
; tidy_sorted_rsubs <- sortFits sortingAlg tidy_rsubs
-- For refinement substitutions we want matches
-- like id (_ :: t), head (_ :: [t]), asTypeOf (_ :: t),
-- and others in that vein to appear last, since these are
-- unlikely to be the most relevant fits.
; (tidy_env, tidy_hole_ty) <- zonkTidyTcType tidy_env hole_ty
; let hasExactApp = any (tcEqType tidy_hole_ty) . hfWrap

(exact, not_exact) = partition hasExactApp tidy_sorted_rsubs
(pRDisc, exact_last_rfits) =

possiblyDiscard maxRSubs $ not_exact ++ exact
rDiscards = pRDisc || any fst refDs

; return (tidy_env,
ppUnless (null tidy_sorted_rsubs) $

hang (text "Valid refinement hole fits include") 2 $
vcat (map (pprHoleFit hfdc) exact_last_rfits)

$$ ppWhen rDiscards refSubsDiscardMsg) }
else return (tidy_env, empty)

; traceTc "findingValidHoleFitsFor }" empty
; return (tidy_env, vMsg $$ refMsg) }

where
-- We extract the type, the tcLevel and the types free variables
-- from from the constraint.
hole_ty :: TcPredType
hole_ty = ctPred ct
hole_fvs = tyCoFVsOfType hole_ty
hole_lvl = ctLocLevel $ ctEvLoc $ ctEvidence ct

-- We make a refinement type by adding a new type variable in front
-- of the type of t h hole, going from e.g. [Integer] -> Integer
-- to t_a1/m[tau:1] -> [Integer] -> Integer. This allows the simplifier
-- to unify the new type variable with any type, allowing us
-- to suggest a "refinement hole fit", like ‘(foldl1 _)‘ instead
-- of only concrete hole fits like ‘sum‘.
mkRefTy :: Int -> TcM (TcType, [TcTyVar])
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mkRefTy refLvl = (wrapWithVars &&& id) <$> newTyVars
where newTyVars = replicateM refLvl $ setLvl <$>

(newOpenTypeKind >>= newFlexiTyVar)
setLvl = flip setMetaTyVarTcLevel hole_lvl
wrapWithVars vars = mkFunTys (map mkTyVarTy vars) hole_ty

sortFits :: SortingAlg -- How we should sort the hole fits
-> [HoleFit] -- The subs to sort
-> TcM [HoleFit]

sortFits NoSorting subs = return subs
sortFits BySize subs

= (++) <$> sortBySize (sort lclFits)
<*> sortBySize (sort gblFits)

where (lclFits, gblFits) = span isLocalHoleFit subs

-- To sort by subsumption, we invoke the sortByGraph function, which
-- builds the subsumption graph for the fits and then sorts them using a
-- graph sort. Since we want locals to come first anyway, we can sort
-- them separately. The substitutions are already checked in local then
-- global order, so we can get away with using span here.
-- We use (<*>) to expose the parallelism, in case it becomes useful later.
sortFits BySubsumption subs

= (++) <$> sortByGraph (sort lclFits)
<*> sortByGraph (sort gblFits)

where (lclFits, gblFits) = span isLocalHoleFit subs

isLocalHoleFit :: HoleFit -> Bool
isLocalHoleFit hf = case hfElem hf of

Just gre -> gre_lcl gre
Nothing -> True

-- See Note [Relevant Constraints]
relevantCts :: [Ct]
relevantCts = if isEmptyVarSet (fvVarSet hole_fvs) then []

else filter isRelevant simples
where ctFreeVarSet :: Ct -> VarSet

ctFreeVarSet = fvVarSet . tyCoFVsOfType . ctPred
hole_fv_set = fvVarSet hole_fvs
anyFVMentioned :: Ct -> Bool
anyFVMentioned ct = not $ isEmptyVarSet $

ctFreeVarSet ct ‘intersectVarSet‘ hole_fv_set
-- We filter out those constraints that have no variables (since
-- they won’t be solved by finding a type for the type variable
-- representing the hole) and also other holes, since we’re not
-- trying to find hole fits for many holes at once.
isRelevant ct = not (isEmptyVarSet (ctFreeVarSet ct))

&& anyFVMentioned ct
&& not (isHoleCt ct)

unfoldWrapper :: HsWrapper -> [Type]
unfoldWrapper = reverse . unfWrp’

where unfWrp’ (WpTyApp ty) = [ty]
unfWrp’ (WpCompose w1 w2) = unfWrp’ w1 ++ unfWrp’ w2
unfWrp’ _ = []
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-- We only clone flexi type variables, and we need to be able to check
-- whether a variable is filled or not.
isFlexiTyVar :: TcTyVar -> TcM Bool
isFlexiTyVar tv | isMetaTyVar tv = isFlexi <$> readMetaTyVar tv
isFlexiTyVar _ = return False

-- Takes a list of free variables and makes sure that the given action
-- is run with the right TcLevel and restores any Flexi type
-- variables after the action is run.
withoutUnification :: FV -> TcM a -> TcM a
withoutUnification free_vars action

= do { flexis <- filterM isFlexiTyVar fuvs
; result <- setTcLevel deepestFreeTyVarLvl action

-- Reset any mutated free variables
; mapM_ restore flexis
; return result }

where restore = flip writeTcRef Flexi . metaTyVarRef
fuvs = fvVarList free_vars
deepestFreeTyVarLvl = foldl’ max topTcLevel $ map tcTyVarLevel fuvs

-- The real work happens here, where we invoke the type checker using
-- tcCheckHoleFit to see whether the given type fits the hole.
fitsHole :: (TcType, [TcTyVar]) -- The type of the hole wrapped with the

-- refinement variables created to simulate
-- additional holes (if any), and the list
-- of those variables (possibly empty).
-- As an example: If the actual type of the
-- hole (as specified by the hole
-- constraint CHoleExpr passed to
-- findValidHoleFits) is t and we want to
-- simulate N additional holes, h_ty will
-- be r_1 -> ... -> r_N -> t, and
-- ref_vars will be [r_1, ... , r_N].
-- In the base case with no additional
-- holes, h_ty will just be t and ref_vars
-- will be [].

-> TcType -- The type we’re checking to whether it can be
-- instantiated to the type h_ty.

-> TcM (Maybe ([TcType], [TcType])) -- If it is not a match, we
-- return Nothing. Otherwise,
-- we Just return the list of
-- types that quantified type
-- variables in ty would take
-- if used in place of h_ty,
-- and the list types of any
-- additional holes simulated
-- with the refinement
-- variables in ref_vars.

fitsHole (h_ty, ref_vars) ty =
-- We wrap this with the withoutUnification to avoid having side-effects
-- beyond the check, but we rely on the side-effects when looking for
-- refinement hole fits, so we can’t wrap the side-effects deeper than this.

withoutUnification fvs $
do { traceTc "checkingFitOf {" $ ppr ty

; (fits, wrp) <- tcCheckHoleFit (listToBag relevantCts) implics h_ty ty
; traceTc "Did it fit?" $ ppr fits
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; traceTc "wrap is: " $ ppr wrp
; traceTc "checkingFitOf }" empty
; z_wrp_tys <- zonkTcTypes (unfoldWrapper wrp)
-- We’d like to avoid refinement suggestions like ‘id _ _‘ or
-- ‘head _ _‘, and only suggest refinements where our all phantom
-- variables got unified during the checking. This can be disabled
-- with the ‘-fabstract-refinement-hole-fits‘ flag.
-- Here we do the additional handling when there are refinement
-- variables, i.e. zonk them to read their final value to check for
-- abstract refinements, and to report what the type of the simulated
-- holes must be for this to be a match.
; if fits

then if null ref_vars
then return (Just (z_wrp_tys, []))
else do { let -- To be concrete matches, matches have to

-- be more than just an invented type variable.
fvSet = fvVarSet fvs
notAbstract :: TcType -> Bool
notAbstract t = case getTyVar_maybe t of

Just tv -> tv ‘elemVarSet‘ fvSet
_ -> True

allConcrete = all notAbstract z_wrp_tys
; z_vars <- zonkTcTyVars ref_vars
; let z_mtvs = mapMaybe tcGetTyVar_maybe z_vars
; allFilled <- not <$> anyM isFlexiTyVar z_mtvs
; allowAbstract <- goptM Opt_AbstractRefHoleFits
; if allowAbstract || (allFilled && allConcrete )

then return $ Just (z_wrp_tys, z_vars)
else return Nothing }

else return Nothing }
where fvs = mkFVs ref_vars ‘unionFV‘ hole_fvs ‘unionFV‘ tyCoFVsOfType ty

-- We zonk the hole fits so that the output aligns with the rest
-- of the typed hole error message output.
zonkSubs :: TidyEnv -> [HoleFit] -> TcM (TidyEnv, [HoleFit])
zonkSubs = zonkSubs’ []

where zonkSubs’ zs env [] = return (env, reverse zs)
zonkSubs’ zs env (hf:hfs) = do { (env’, z) <- zonkSub env hf

; zonkSubs’ (z:zs) env’ hfs }
zonkSub env hf@HoleFit{hfType = ty, hfMatches = m, hfWrap = wrp}

= do { (env, ty’) <- zonkTidyTcType env ty
; (env, m’) <- zonkTidyTcTypes env m
; (env, wrp’) <- zonkTidyTcTypes env wrp
; let zFit = hf {hfType = ty’, hfMatches = m’, hfWrap = wrp’}
; return (env, zFit ) }

-- Based on the flags, we might possibly discard some or all the
-- fits we’ve found.
possiblyDiscard :: Maybe Int -> [HoleFit] -> (Bool, [HoleFit])
possiblyDiscard (Just max) fits = (fits ‘lengthExceeds‘ max, take max fits)
possiblyDiscard Nothing fits = (False, fits)

-- Sort by size uses as a measure for relevance the sizes of the
-- different types needed to instantiate the fit to the type of the hole.
-- This is much quicker than sorting by subsumption, and gives reasonable
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-- results in most cases.
sortBySize :: [HoleFit] -> TcM [HoleFit]
sortBySize = return . sortOn sizeOfFit

where sizeOfFit :: HoleFit -> TypeSize
sizeOfFit = sizeTypes . nubBy tcEqType . hfWrap

-- Based on a suggestion by phadej on #ghc, we can sort the found fits
-- by constructing a subsumption graph, and then do a topological sort of
-- the graph. This makes the most specific types appear first, which are
-- probably those most relevant. This takes a lot of work (but results in
-- much more useful output), and can be disabled by
-- ’-fno-sort-valid-hole-fits’.
sortByGraph :: [HoleFit] -> TcM [HoleFit]
sortByGraph fits = go [] fits

where tcSubsumesWCloning :: TcType -> TcType -> TcM Bool
tcSubsumesWCloning ht ty = withoutUnification fvs (tcSubsumes ht ty)

where fvs = tyCoFVsOfTypes [ht,ty]
go :: [(HoleFit, [HoleFit])] -> [HoleFit] -> TcM [HoleFit]
go sofar [] = do { traceTc "subsumptionGraph was" $ ppr sofar

; return $ uncurry (++)
$ partition isLocalHoleFit topSorted }

where toV (hf, adjs) = (hf, hfId hf, map hfId adjs)
(graph, fromV, _) = graphFromEdges $ map toV sofar
topSorted = map ((\(h,_,_) -> h) . fromV) $ topSort graph

go sofar (hf:hfs) =
do { adjs <-

filterM (tcSubsumesWCloning (hfType hf) . hfType) fits
; go ((hf, adjs):sofar) hfs }

findSubs :: SortingAlg -- Whether we should sort the subs or not
-> Maybe Int -- How many we should output, if limited
-> [Either Id GlobalRdrElt] -- The elements to check whether fit
-> (TcType, [TcTyVar]) -- The type to check for fits and refinement

-- variables for emulating additional holes
-> TcM (Bool, [HoleFit]) -- We return whether or not we stopped due

-- to running out of gas and the fits we
-- found.

-- We don’t check if no output is desired.
findSubs _ (Just 0) _ _ = return (False, [])
findSubs sortAlg maxSubs to_check ht@(hole_ty, _) =

do { traceTc "checkingFitsFor {" $ ppr hole_ty
-- If we’re not going to sort anyway, we can stop going after
-- having found ‘maxSubs‘ hole fits.
; let limit = if sortAlg > NoSorting then Nothing else maxSubs
; (discards, subs) <- go [] emptyVarSet limit ht to_check
; traceTc "checkingFitsFor }" empty
; return (discards, subs) }

where
-- Kickoff the checking of the elements.
-- We iterate over the elements, checking each one in turn for whether
-- it fits, and adding it to the results if it does.
go :: [HoleFit] -- What we’ve found so far.

-> VarSet -- Ids we’ve already checked
-> Maybe Int -- How many we’re allowed to find, if limited
-> (TcType, [TcTyVar]) -- The type, and its refinement variables.
-> [Either Id GlobalRdrElt] -- The elements we’ve yet to check.
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-> TcM (Bool, [HoleFit])
go subs _ _ _ [] = return (False, reverse subs)
go subs _ (Just 0) _ _ = return (True, reverse subs)
go subs seen maxleft ty (el:elts) =

do { traceTc "lookingUp" $ ppr el
; maybeThing <- lookup el
; case maybeThing of

Just id | not_trivial id ->
do { fits <- fitsHole ty (idType id)

; case fits of
Just (wrp, matches) -> keep_it id wrp matches
_ -> discard_it }

_ -> discard_it }
where discard_it = go subs seen maxleft ty elts

keep_it id wrp ms = go (fit:subs) (extendVarSet seen id)
((\n -> n - 1) <$> maxleft) ty elts

where fit = HoleFit { hfElem = mbel , hfId = id
, hfType = idType id
, hfRefLvl = length (snd ty)
, hfWrap = wrp , hfMatches = ms }

mbel = either (const Nothing) Just el
-- We want to filter out undefined and the likes from GHC.Err
not_trivial id = nameModule_maybe (idName id) /= Just gHC_ERR
lookup :: Either Id GlobalRdrElt -> TcM (Maybe Id)
lookup (Left id) = return $ Just id
lookup (Right el) =

do { thing <- tcLookup (gre_name el)
; case thing of

ATcId {tct_id = id} -> return $ Just id
AGlobal (AnId id) -> return $ Just id
AGlobal (AConLike (RealDataCon con)) ->

return $ Just (dataConWrapId con)
_ -> return Nothing }

-- We don’t (as of yet) handle holes in types, only in expressions.
findValidHoleFits env _ _ _ = return (env, empty)

subsDiscardMsg :: SDoc
subsDiscardMsg =

text "(Some hole fits suppressed;" <+>
text "use -fmax-valid-hole-fits=N" <+>
text "or -fno-max-valid-hole-fits)"

refSubsDiscardMsg :: SDoc
refSubsDiscardMsg =

text "(Some refinement hole fits suppressed;" <+>
text "use -fmax-refinement-hole-fits=N" <+>
text "or -fno-max-refinement-hole-fits)"

-- | Reports whether first type (ty_a) subsumes the second type (ty_b),
-- discarding any errors. Subsumption here means that the ty_b can fit into the
-- ty_a, i.e. ‘tcSubsumes a b == True‘ if b is a subtype of a.
tcSubsumes :: TcSigmaType -> TcSigmaType -> TcM Bool
tcSubsumes ty_a ty_b = fst <$> tcCheckHoleFit emptyBag [] ty_a ty_b
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-- | A tcSubsumes which takes into account relevant constraints, to fix trac
-- #14273. This makes sure that when checking whether a type fits the hole,
-- the type has to be subsumed by type of the hole as well as fulfill all
-- constraints on the type of the hole.
-- Note: The simplifier may perform unification, so make sure to restore any
-- free type variables to avoid side-effects.
tcCheckHoleFit :: Cts -- Any relevant Cts to the hole.

-> [Implication] -- The nested implications of the hole
-> TcSigmaType -- The type of the hole.
-> TcSigmaType -- The type to check whether fits.
-> TcM (Bool, HsWrapper)

tcCheckHoleFit _ _ hole_ty ty | hole_ty ‘eqType‘ ty
= return (True, idHsWrapper)

tcCheckHoleFit relevantCts implics hole_ty ty = discardErrs $
do { (wrp, wanted) <- captureConstraints $ tcSubType_NC ExprSigCtxt ty hole_ty

; traceTc "Checking hole fit {" empty
; traceTc "wanteds are: " $ ppr wanted
-- We add the relevantCts to the wanteds generated by the call to
-- tcSubType_NC, see Note [Relevant Constraints]
; let w_rel_cts = addSimples wanted relevantCts
; if isEmptyWC w_rel_cts

then traceTc "}" empty >> return (True, wrp)
else do { fresh_binds <- newTcEvBinds

-- We wrap the WC in the nested implications, see
-- Note [Nested Implications]

; let outermost_first = reverse implics
setWC = setWCAndBinds fresh_binds
w_givens = foldr setWC w_rel_cts outermost_first

; traceTc "w_givens are: " $ ppr w_givens
; rem <- runTcSDeriveds $ simpl_top w_givens
-- We don’t want any insoluble or simple constraints left, but
-- solved implications are ok (and neccessary for e.g. undefined)
; traceTc "rems was:" $ ppr rem
; traceTc "}" empty
; return (isSolvedWC rem, wrp) } }

where
setWCAndBinds :: EvBindsVar -- Fresh ev binds var.

-> Implication -- The implication to put WC in.
-> WantedConstraints -- The WC constraints to put implic.
-> WantedConstraints -- The new constraints.

setWCAndBinds binds imp wc
= WC { wc_simple = emptyBag

, wc_impl = unitBag $ imp { ic_wanted = wc , ic_binds = binds } }

A.2 The Sorting Library

A.2.1 ONotation
{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies,

UndecidableInstances, ConstraintKinds #-}
module ONotation where
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import GHC.TypeLits
import Data.Type.Bool
import Data.Type.Equality

-- We define a very simplistic O notation, with sufficient expressiveness
-- to capture the complexity of a few simple sorting algorithms
data AsymptoticPoly = NLogN Nat Nat

-- Synonyms for common terms
type N = NLogN 1 0
type LogN = NLogN 0 1
type One = NLogN 0 0

-- Just to be able to write it nicely
type O (a :: AsymptoticPoly) = a

type family (^.) (n :: AsymptoticPoly) (m :: Nat) :: AsymptoticPoly where
(NLogN a b) ^. n = (NLogN (a * n) (b * n))

type family (*.) (n :: AsymptoticPoly) (m :: AsymptoticPoly) :: AsymptoticPoly where
(NLogN a b) *. (NLogN c d) = NLogN (a+c) (b+d)

type family OCmp (n :: AsymptoticPoly) (m :: AsymptoticPoly) :: Ordering where
OCmp (NLogN a b) (NLogN c d) = If (CmpNat a c == EQ) (CmpNat b d) (CmpNat a c)

type family OGEq (n :: AsymptoticPoly) (m :: AsymptoticPoly) :: Bool where
OGEq n m = Not (OCmp n m == ’LT)

type (>=.) n m = OGEq n m ~ True

infix 4 >=.
infixl 7 *., ^.

A.2.2 The Sorting Library
{-# LANGUAGE TypeInType, TypeOperators, TypeFamilies, ConstraintKinds #-}

module Sorting ( mergeSort, heapSort
, quickSort, insertionSort
, Sorted, sortedBy) where

import Data.Type.Bool
import ONotation
import Data.List (sort)

-- Stable sorts must be stable, but unstable can be, but don’t need to.
type IsStable s = (s || True) ~ True
-- We encode in the return type of the sorting function its average complexity,
-- memory use and stability.
newtype Sorted (cpu :: AsymptoticPoly) -- The minimum operational complexity

-- this algorithm satisfies.
(mem :: AsymptoticPoly) -- The minimum space complexity this

-- algorithm satisfies.
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(stable :: Bool) -- Whether the sort is stable or not.
a -- What was being sorted.
= Sorted {sortedBy :: [a]}

-- Merge sort is O(N*Log(N)) on average in complexity, so that’s the
-- minimum complexity we promise to satisfy. Same goes with memory, which is
-- O(N), and as we all know, mergesort is a stable sorting algoritm.
mergeSort :: (Ord a, n >=. O(N*.LogN), m >=. O(N), IsStable s)

=> [a] -> Sorted n m s a
mergeSort = Sorted . sort

insertionSort :: (Ord a, n >=. O(N^.2), m >=. O(One), IsStable s)
=> [a] -> Sorted n m s a

insertionSort = Sorted . sort

-- Note that we don’t actually check the complexity (as evidenced by them all
-- being implemented with sort, a smooth applicative merge sort). With more
-- dependent types however, some of these properties might be verifiable.
quickSort :: (Ord a, n >=. O(N*.LogN), m >=. O(N)) => [a] -> Sorted n m False a
quickSort = Sorted . sort

heapSort :: (Ord a, n >=. O(N*.LogN), m >=. O(One)) => [a] -> Sorted n m False a
heapSort = Sorted . sort

A.3 DCC

A.3.1 The DCC Library
The following implementation of DCC is taken from the “Encoding DCC in Haskell”
paper [30]:
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}

module Lattice where

-- Two point lattice
data Lattice = H | L deriving (Show, Eq)

type family l <= h where
H <= L = False
_ <= _ = True

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE CPP #-}

module DCC where

import Control.Monad
import Control.Monad.Trans
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import Data.Type.Bool

import Lattice

# if !MIN_VERSION_base(4,11,0)
import Data.Semigroup ( Semigroup, (<>) )
# endif

-- The ‘T‘ monad family from the DCC paper
newtype T (l :: Lattice) a = T { unT :: a }

{- Notion of protected at -}
type family ProtectedAt (t :: *) (l :: Lattice) where

ProtectedAt (T l’ a) l = l <= l’

-- This diverges from the original DCC calculus,
-- this is not a problem as () can not transmit any
-- information
ProtectedAt () l = True

-- This line requires ‘UndecidableInstances‘, but since the type family is closed
-- and _obviously_ total, we don’t need to worry!
ProtectedAt (s, t) l = (ProtectedAt s l) && (ProtectedAt t l)
ProtectedAt (s -> t) l = ProtectedAt t l
ProtectedAt s l = False

-- The bind from the DCC paper
infixl >>>=

-- Superbind
(>>>=) :: (s ‘ProtectedAt‘ l) ~ True => T l a -> (a -> s) -> s
t >>>= f = f (unT t)

-- T is most surely a monad
instance Monad (T l) where

return = T
(>>=) = (>>>=)

instance Applicative (T l) where
pure = return
(<*>) = ap

instance Functor (T l) where
fmap = liftM

class MonadT mt l where
liftT :: T l a -> mt a

instance MonadT (T l) l where
liftT = id

instance (MonadT inner l, Monad inner, MonadTrans mt) => MonadT (mt inner) l where
liftT = lift . liftT

instance Semigroup m => Semigroup (T l m) where
(<>) = liftM2 (<>)
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instance Monoid m => Monoid (T l m) where
mempty = return mempty

# if !MIN_VERSION_base(4,11,0)
mappend = liftM2 mappend

# endif

A.3.2 The Restaurant Info Library
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE Safe #-}
module RestaurantInfo ( Lattice(..), T -- We don’t export the constructors for T

-- since then users could use unT at will.
, User(..) , Loc , Restaurant
, getUserInfo, readPublic
, bestNearbyRestaurant, isInGothenburg, isAllowedToDrink
) where

import DCC
import Lattice
import Data.List ( sortOn )
import Data.Maybe ( listToMaybe )

type Loc = (Int, Int)
data Restaurant = Restaurant { name :: String

, coords :: Loc
, rating :: Int } deriving (Show)

data User = User { firstName :: String
, lastName :: String
, location :: Loc
, age :: Int } deriving (Show)

lookupRestaurants :: Loc -> [Restaurant]
lookupRestaurants (0,0) = [ Restaurant "Bhoga" (0,0) 3

, Restaurant "Koka" (1,2) 1]
lookupRestaurants _ = []

trust :: (a -> b) -> T H a -> T L b
trust f = T . f . unT

-- Exported functions:

bestNearbyRestaurant :: T H User -> T L (Maybe Restaurant)
bestNearbyRestaurant = trust (listToMaybe . reverse . sortOn rating

. lookupRestaurants . location)

isInGothenburg :: T H User -> T L Bool
isInGothenburg = trust (inGothenburg . location)

where inGothenburg (x,y) = (x >= -5) && (x <= 5) && (y >= -5) && (y <= 5)

isAllowedToDrink :: T H User -> T L Bool
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isAllowedToDrink = trust ((>= 20) . age)

-- We allow reading of public information
readPublic :: T L a -> a
readPublic = unT

-- Info on the user can be read, but only in a private
-- environment.
getUserInfo :: IO (T H User)
getUserInfo = (pure . pure) $ User "Matthias Pall" "Gissurarson" (0,0) 26

A.4 The PiSkjerm Project

A.4.1 Screen Handling
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE CPP #-}
module InkyPhat ( runInky, runInkyLoop

-- commands
, text, paste, display, setRotation, clear

-- Data
, image, size, dimensions, readString
-- Types
, Color (..) , Font (..), Image
, InkyException (..), InkyIO

) where

import System.Process
import Control.Concurrent
import GHC.IO.Handle (Handle, hClose, hFlush, hFlushAll, hWaitForInput)
import Data.Maybe (fromMaybe)
import Control.Monad (join)

import Control.Monad.Reader
import Control.Monad.Except
import Data.Text
import qualified Data.Text as T

import Prelude hiding ( hPutStrLn, hGetLine )
import Data.Text.IO

import Text.Read (readEither)

data InkyException = ValueParseError Text
| PythonError Text
| NoDataError deriving (Show, Eq)

type InkyIO = ExceptT InkyException (ReaderT (Handle, Handle, Handle) IO)

-- To avoid issues with FFI, we’ll just go the easy
-- interpeter way.
sendCommand :: Text -> InkyIO ()
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sendCommand cmd =
do (stdin, _, _) <- ask

dlog cmd
liftIO $ do hPutStrLn stdin cmd

hFlushAll stdin

dlog :: Text -> InkyIO ()
# if debug
dlog = putStrLn
# else
dlog _ = return ()
#endif

readValue :: Read a => Text -> InkyIO a
readValue cmd = do val <- readEither . unpack <$> readString cmd

case val of
Left err -> throwError (ValueParseError $ pack err)
Right v -> return v

readString :: Text -> InkyIO Text
readString cmd =

do (stdin, stdout, stderr) <- ask
liftIO $ hFlushAll stdout
sendCommand $ "print(" <> cmd <> ")"
--- We wait at max 30 seconds for output
val <- liftIO $ readWithTimeout stdout (30*1000)
case val of

Just v -> do dlog v
return v

_ -> do err <- liftIO $ readWithTimeout stderr (5 * 1000)
case err of

Just e -> throwError (PythonError e)
_ -> throwError NoDataError

where
readWithTimeout :: Handle -> Int -> IO (Maybe Text)
readWithTimeout handle timeout
= do hasOutput <- hWaitForInput handle timeout

if hasOutput then Just <$> hGetLine handle
else return Nothing

initialCommands :: [Text]
initialCommands

= [ "import inkyphat"
, "from urllib import request"
, "from datetime import datetime"]

data Color = Black | White | Red deriving (Show)

class InkyPhatVal a where
toIPVal :: a -> Text

instance InkyPhatVal Color where
toIPVal Black = "inkyphat.BLACK"
toIPVal White = "inkyphat.WHITE"
toIPVal Red = "inkyphat.RED"
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-- We only have the one font for now
newtype Font = Font Int

instance InkyPhatVal Font where
toIPVal (Font a) =

"inkyphat.ImageFont.truetype(inkyphat.fonts.PressStart2P,"
<> pack (show a) <>")"

display :: InkyIO ()
display = sendCommand "inkyphat.show()"

clear :: InkyIO ()
clear = sendCommand "inkyphat.clear()"

type Image = Text

setRotation :: Int -> InkyIO ()
setRotation rot =

sendCommand $ "inkyphat.set_rotation(" <> pack (show rot) <> ")"

image :: Text -> Text -> InkyIO Image
image name loc =

do sendCommand $ name <> " = inkyphat.Image.open(’" <> loc <> "’)"
return name

paste :: Image -> (Int, Int) -> InkyIO ()
paste img loc =

sendCommand $ intercalate "," ["inkyphat.paste(" <> img
, pack (show loc) <> ")"]

text :: (Int, Int) -> Text -> Maybe Color -> Maybe Font -> InkyIO ()
text xy text color font =

sendCommand $ intercalate "," ["inkyphat.text(" <> pack (show xy)
, "’" <> text <> "’"
, toIPVal col
, toIPVal fon <> ")" ]

where fon = fromMaybe (Font 12) font
col = fromMaybe Black color

size :: Image -> InkyIO (Int, Int)
size img = readValue $ "(" <> img <> ".size[0], " <> img <> ".size[1])"

dimensions :: InkyIO (Int, Int)
dimensions = readValue "(inkyphat.WIDTH, inkyphat.HEIGHT)"

runInkyLoop :: InkyIO a -> IO ()
runInkyLoop loop
= do r <- runInky loop

case r of
Left err -> print err
_ -> return ()

runInkyLoop loop
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runInky :: InkyIO a -> IO (Either InkyException a)
runInky action =

do (Just stdin, Just stdout , Just stderr, proc)
<- createProcess $ cp { std_in = CreatePipe, std_out = CreatePipe

, std_err = CreatePipe }
r <- flip runReaderT (stdin, stdout, stderr) $

runExceptT $
do mapM_ sendCommand initialCommands

action
terminateProcess proc
mapM_ hClose [stdin, stdout, stderr]
return r

where cp = shell "python3 -i"

A.4.2 Types and Functions for Bus Lines
{-# LANGUAGE OverloadedStrings, DeriveAnyClass, DeriveGeneric,

TypeSynonymInstances, DuplicateRecordFields #-}
module BusTimes where

import System.Environment
import Data.Aeson
import Data.Aeson.Types

import GHC.Generics (Generic)

import Data.List (nub)

import qualified Data.ByteString.Base64 as B64
import Data.ByteString.Char8 (ByteString, pack, unpack)

getAuthCredentials :: IO (String, String)
-- First we have to read the secrets from the environment,
-- so we add System.Environment to the import list and try
-- getSecret = _
-- one of he matches is the getEnv function!
-- Let’s use that and get the key and secret
-- getAuthCredentials = do key <- _b "VASTTRAFIKKEY"
-- secret <- _a "VASTTRAFIKSECRET"
-- return (key, secret)
--
-- One of the matches is getEnv, which sounds like what
-- we want. Let’s try that:
getAuthCredentials = do key <- getEnv "VASTTRAFIKKEY"

secret <- getEnv "VASTTRAFIKSECRET"
return (key, secret)

-- It works!

-- The token is the base64 encoded string "key:secret",
authToken :: String -> String -> String
authToken key secret = encodeToken $ key ++ ":" ++ secret

where
-- We need to base64 encode this authorization,
-- so let’s use the base64-bytesting package.
encodeToken :: String -> String
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encodeToken token = result
where

-- First we need to get to bytestring
toBS :: String -> ByteString
-- toBs = _
-- pack has the right type and sounds reasonable, let’s use that!
toBS = pack
-- Next we need to turn the bytestring into base64 string
b64ed :: ByteString
-- b64ed = _ $ toBs token
-- B64.encode sounds like what we need!
b64ed = B64.encode $ toBS token
-- And finally, we need to turn it back into a string
result :: String
-- result = _ b64ed
-- unpack should to the trick!
result = unpack b64ed

-- Now, let’s try to fetch a token!

data TokenResponse = TR { scope :: String
, token_type :: String
, expires_in:: Int
, access_token :: String
} deriving (Show, Generic, FromJSON)

data BusResponse = BR { departureBoard :: DepartureBoard} deriving Show

instance FromJSON BusResponse where
parseJSON = withObject "BusResponse" $ \v -> BR <$> v .: "DepartureBoard"

data DepartureBoard = DB { departure :: [Departure] } deriving Show

instance FromJSON DepartureBoard where
parseJSON = withObject "DepartureBoard" $ \v -> DB <$> v .:? "Departure" .!= []

data Departure = DP { direction :: String
, track :: String
, sname :: String
, rtTime :: Maybe String
, rtDate :: Maybe String
, time :: String
, date :: String
} deriving (Show, Generic, FromJSON)

type Token = String
type BusStop = Integer

data BusLine = BL { name :: String
, track :: String
, departures :: [String] } deriving (Show, Eq)

getLines :: BusResponse -> [BusLine]
getLines (BR (DB dep)) = concatMap getLine names

where names = nub $ map sname dep
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getLine name = map toLine tracks
where dtrack = track :: Departure -> String

tracks = nub $ map dtrack $ filter ((== name) . sname) dep
-- filter fusion, yay!
getTrack tr = filter ((== name) . sname)

. filter ((== tr) . dtrack )
concreteTime d = case rtTime d of Just t -> t; _ -> time d
toLine tr = BL name tr $ map concreteTime $ getTrack tr dep

-- Req networking

A.4.3 Handling of Known Lines and the Main Loop
{-# LANGUAGE TypeApplications, OverloadedStrings, CPP #-}
module Main where

import BusTimes
import InkyPhat

import Data.Maybe
import Control.Monad.Reader (lift)
import Data.Aeson
import Data.Time
import qualified Data.ByteString.Lazy.Char8 as B (pack)
import Data.Text hiding ( map, concatMap, zip

, length, replicate, any
, filter, null, take)

import qualified Data.Text as T
import Control.Concurrent
import Data.Text.Encoding as E
import System.Environment

import Data.List (sort)
import Control.Monad.Except

-- We have a flag in the cabal file that allows us to chose between using the
-- python interpreter for time and network queries or using a native haskell
-- implementation. However, the native implementation segfaults when run on
-- the device, due to a bug in the cross-compilation toolchain, hence the
-- possiblity to choose.
# if PYTHON_HACKS
import PythonHacks
# else
import ReqNetworking
# endif

getToken :: InkyIO (Maybe TokenResponse)
getDateTime :: InkyIO (Text, Text)
getBusTimes :: Token -> BusStop -> InkyIO (Maybe BusResponse)
# if PYTHON_HACKS
getToken = pyGetToken
getDateTime = pyGetDateTime
getBusTimes = pyGetBusTimes
#else
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getToken = liftIO hsGetToken
getDateTime = liftIO hsGetDateTime
getBusTimes t s = liftIO (hsGetBusTimes t s)
#endif

löviksVägen :: BusStop
löviksVägen = 9021014004663000
hovåsNedre :: BusStop
hovåsNedre = 9021014003235000

nearby :: [BusStop]
nearby = [löviksVägen, hovåsNedre]

setup :: InkyIO Image
setup = setRotation 180 >> image "vt" "vt.png"

fontheight :: Int
fontheight = 12
fontwidth = fontheight
linespace :: Int
linespace = 2

-- From Gabriel Gonzalez’s tweet.
leftpad :: Char -> Text -> Int -> Text
leftpad c i n = T.replicate (n - T.length i) (singleton c) <> i

rightpad :: a -> [a] -> Int -> [a]
rightpad c i n = i ++ replicate (n - length i) c

printBusTimes :: [Text] -> InkyIO ()
printBusTimes msgs =

do (inkyW, inkyH) <- dimensions
let (x,y) = (2, inkyH ‘div‘ 2 - fontheight * length msgs ‘div‘ 2)

pr (m,i) = text pos m Nothing Nothing
where pos = (x, y + i*(fontheight + linespace))

mapM_ pr $ zip msgs [0.. ]
where pos = fromMaybe

printTime :: InkyIO ()
printTime = do (date, time) <- getDateTime

(inkyW, _) <- dimensions
let pos = ((inkyW - 16*fontwidth) ‘div‘ 2,18)
text pos (T.unwords [date, time]) (Just Red) Nothing

printName :: InkyIO ()
printName = do (inkyW, _) <- dimensions

let pos = ((inkyW - 14*fontwidth) ‘div‘ 2,2)
-- Strætóferðir means "Bus Trips"
text pos "Strætóferðir" (Just Red) (Just (Font 14))

printLogo :: Image -> InkyIO ()
printLogo img
= do (inkyW, inkyH) <- dimensions

(logoW, logoH) <- size img
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let (vx,vy) = ((inkyW - 10*14 - logoW -10) ‘div‘ 2, inkyH -2-14)
posText = (vx + logoW+2, vy -4)
posLogo = (vx, vy-logoH+14-2)

-- Västtrafik is the name of the Gothenburg transport authority.
text posText "Västtrafik" (Just Red) (Just (Font 14))
paste img posLogo

updateDisplay :: Image -> [Text] -> InkyIO ()
updateDisplay img times
= do { clear

; printName
; printTime
; printBusTimes times
; printLogo img
; display }

-- Note [Known Lines]
-- We only want to show known lines, i.e. those that we take from our house,
-- and we want to display 82 first, then Rosa, and then the others.
-- Additionally, we want to show the 158 when it is running (in the morning),
-- but otherwise show the 82 going to Brottkärr, since we can only fit 3
-- lines comfortably on the display at once. This is why we do ‘take 3‘
-- when choosing what to output, which selects the 158 if availble, but
-- the 82B otherwise.
data KnownLine = B82 [String]

| BRosa [String]
| B158 [String]
| B82B [String] deriving (Eq, Ord)

-- These are the lines going in the right direction that we are interested in.
toKnownLine :: BusLine -> Maybe KnownLine
toKnownLine (BL "82" "A" d) = Just $ B82 d
toKnownLine (BL "82" "B" d) = Just $ B82B d
toKnownLine (BL "ROSA" "A" d) = Just $ BRosa d
toKnownLine (BL "158" "A" d) = Just $ B158 d
toKnownLine (BL n t d) = Nothing

knownDepartures :: KnownLine -> [String]
knownDepartures (B82 d) = d
knownDepartures (B82B d) = d
knownDepartures (BRosa d) = d
knownDepartures (B158 d) = d

instance Show KnownLine where
show (B82 _) = "82"
show (B82B _) = "82B"
show (BRosa _) = "ROSA"
show (B158 _) = "158"

renderLine :: TimeOfDay -> KnownLine -> Text
renderLine now kl =

T.unwords $ map to5 $ [pack (show kl) <> ":"] <> dpts
where to5 s = leftpad ’ ’ s 5

dpts = rightpad "-" (map toDp $ knownDepartures kl) 2
-- We want to show how many minutes there are until the bus departs.
-- Note that we check for > 0, since the date might be in the past
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-- if the bus is waiting at the stop or too much time has passed
-- since the request was made.
toDp t = if mins > 0 then pack (show mins) <> "min"

else "Núna!" -- "Núna" means "Right now".
where mins = floor (lt - nowSecs) ‘div‘ 60

lt = timeOfDayToTime $ read @TimeOfDay (t <> ":00")
nowSecs = timeOfDayToTime now

loop :: Image -> InkyIO ()
loop img =

do (date, time) <- getDateTime
-- We could save the token and re-use it if it hasn’t expired, but since
-- the performance is limited by the screen refresh time anyway, we don’t
-- bother.
mb_token <- fmap access_token <$> getToken
case mb_token of

Just token ->
do stops <- catMaybes <$> mapM (getBusTimes token) nearby

let now = read @TimeOfDay ( unpack time ++ ":00")
-- See Note [Known Lines]
toDisplay = take 3 $ sort $ mapMaybe toKnownLine

$ concatMap getLines stops
busTimes = map (renderLine now) toDisplay
-- "Engar ferðir núna" means "No trips right now", which we
-- display when the buses have stopped running (usually quite
-- late at night).
msg = if null busTimes then ["Engar ferðir núna!"] else busTimes

updateDisplay img msg
_ -> return ()

liftIO $ threadDelay $ 60 * 1000 * 1000
loop img

main :: IO ()
main = runInkyLoop $ setup >>= loop

A.4.4 Networking
{-# LANGUAGE OverloadedStrings #-}

module PythonHacks (
urlRequest, pyGetToken, pyGetBusTimes, pyGetDateTime

) where

import Data.ByteString (ByteString)
import qualified Data.ByteString as B
import qualified Data.Text.Encoding as E

import qualified Data.Text as T
import Data.Text hiding (map, null)

import Prelude hiding (hPutStr, hPutStrLn, hGetLine, putStrLn)
import qualified Data.Aeson as JSON

import Control.Monad.Reader
import Control.Monad.Except
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import BusTimes
import InkyPhat

-- The Nice request libraries segfault on the pi,
-- so we’ll just use the already available python interpreter
data AuthHeader = Basic String | Bearer String

instance Show AuthHeader where
show (Basic s) = show ("Basic " <> s)
show (Bearer s) = show ("Bearer " <> s)

urlRequest :: Text -> [(Text,Text)] ->
AuthHeader -> ByteString -> InkyIO Text

urlRequest url params auth body
= readString readCmd
where reqCmd = "request.Request(" <> intercalate "," args <> ")"

readCmd = "request.urlopen(" <> reqCmd <> ").read().decode(’utf8’)"
args = [ (pack $ show urlArg)

, "headers={’Authorization’:" <> (pack $ show auth) <> "}"]
<> (if B.null body then mempty else ["data=b’" <> E.decodeUtf8 body <> "’"])

urlArg = if null params then url
else (url <> "?"<> ( intercalate "&" $ map paramToUrl params))

paramToUrl (name,arg) = name <> "=" <> arg

-- | We use these to get the information via Python,
-- since the network libraries segfault on the pi
-- unless the TZ variable is set to a non-file base timezone.
-- Use these if you must.
pyGetToken :: InkyIO (Maybe TokenResponse)
pyGetToken = do (key, secret) <- liftIO getAuthCredentials

let auth = authToken key secret
url = "https://api.vasttrafik.se/token"
body = "grant_type=client_credentials"

JSON.decodeStrict . E.encodeUtf8 <$> urlRequest url [] (Basic auth) body

pyGetBusTimes :: Token -> BusStop -> InkyIO (Maybe BusResponse)
pyGetBusTimes token stop =

do (date, time) <- pyGetDateTime
res <- E.encodeUtf8 <$> urlRequest url (params date time) (Bearer token) ""
case JSON.eitherDecodeStrict res of

Left err -> throwError $ ValueParseError (pack err)
Right v -> return v

where url = "https://api.vasttrafik.se/bin/rest.exe/v2/departureBoard"
auth = Bearer token
params date time = [ ("id", pack $ show stop)

, ("maxDeparturesPerLine", pack $ show 2)
, ("format","json")
, ("timeSpan", pack $ show 59)
, ("date", date)
, ("time", time)]

pyGetDateTime :: InkyIO (Text, Text)
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pyGetDateTime = do d <- readString "datetime.now().strftime(’%Y-%m-%d’)"
t <- readString "datetime.now().strftime(’%H:%M’)"
return (d,t)

{-# LANGUAGE OverloadedStrings, TypeApplications #-}
module ReqNetworking (

hsGetToken, hsGetDateTime, hsGetBusTimes
) where

import BusTimes

-- Req networking
import Network.HTTP.Req
import Data.Default
import Control.Monad.IO.Class
import Data.Time
import Data.Time.Format.ISO8601
import Data.Text (Text)
import qualified Data.Text as T
import Control.Retry

import qualified Data.ByteString.Char8 as B
import qualified Data.Aeson as JSON

config :: HttpConfig
config = def {httpConfigRetryPolicy = delay }

where
-- We default to delaying for 5 sec and trying 10 times.
delay :: RetryPolicy
delay = constantDelay (5000*1000) <> limitRetries 5

hsGetToken :: IO (Maybe TokenResponse)
hsGetToken = fmap Just $ runReq config $

do (key, secret) <- liftIO getAuthCredentials
let auth = basicAuth (B.pack key) (B.pack secret)

url = (/~) @[Char] (https "api.vasttrafik.se") "token"
-- We need a body, but how? Let’s ask!
body :: ReqBodyBs
-- body = _ ("grant_type=client_credentials" :: ByteString)
body = ReqBodyBs "grant_type=client_credentials"

responseBody <$> req POST url body jsonResponse auth

hsGetDateTime :: IO (Text, Text)
hsGetDateTime =
do now <- zonedTimeToLocalTime <$> getZonedTime

return (toDate now, toTime now)
where toDate = T.pack . iso8601Show . localDay

toTime = T.pack . Prelude.take 5 . iso8601Show . localTimeOfDay

hsGetBusTimes :: Token -> BusStop -> IO (Maybe BusResponse)
hsGetBusTimes token stop = runReq config $

do (date, time) <- liftIO hsGetDateTime
res <- responseBody <$> req GET url NoReqBody bsResponse (auth <> params date time)
case JSON.eitherDecodeStrict res of

Left err -> liftIO $ print err >> return Nothing
Right v -> return v

where url = https "api.vasttrafik.se" /: "bin" /: "rest.exe" /: "v2" /: "departureBoard"
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auth = oAuth2Bearer $ B.pack token
params date time = "id" =: stop

<> "maxDeparturesPerLine" =: (2 :: Integer)
<> "format" =: ("json" :: String)
<> "timeSpan" =: (59 :: Integer)
<> "date" =: date
<> "time" =: time
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