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Deep Learning for Robust Road Object Detection
DONAL SCANLAN, LUCIA DIEGO SOLANA
Department of Mathematical Sciences

Chalmers University of Technology

Abstract

Recent neurophysiological research has suggested that humans begin to discriminate
objects in their visual field within one twentieth of a second. Our visual perception
thus allows us to undertake complex, dynamic tasks, such as driving, in a seemingly
effortless fashion. Emulating the efficiency with which we process our environment is
an important step in the ongoing development of autonomous drive (AD) function-
alities and advanced driver-assistance systems (ADAS). Important considerations
in utilising convolutional neural networks (CNN) for automated object detection
systems include robust performance but also high inference speed and modest mem-
ory requirements however. To this end, several light-weight CNN have emerged,
designed specifically for real-time processing in embedded systems. In this study,
one such model (SqueezeDet) is analysed in greater detail. Two modifications to
the original network structure are also studied: the addition of residual connections
and novel gated residual connections. Preliminary results suggest that the latter
addition improves mean average precision in the KITTI object detection data-set
by 1%, with particularly improved recall for distant objects. This is achieved with
only a small inflation in the number of parameters (0.7%). On the other hand,
adding standard residual connections lead to significant performance depreciation
(3%). With the inclusion of a pre-training stage (classification on ImageNet) , the
original architecture outperforms the modified network however. We suspect that
saturation of the activation function in the gating mechanism during pre-training
plays an important role in its under-performance following training for object de-
tection.

Keywords: Deep Learning, Neural Networks, Machine Learning, Autonomous Driv-
ing, Convolutional Neural Networks (CNN), Object Detection, KITTI Database,
SqueezeDet.
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Introduction

1.1 Problem Description

Even with significant advances in image classification, the use of deep learning meth-
ods in locating multiple objects in a computationally efficient and robust way is still
unresolved. Considerable effort has been invested as of late in the augmentation
of convolutional neural network methods to propose and classify bounding boxes
which encapsulate objects of interest in single images. Object detection is, however,
far from a trivial task. Further to the difficulties experienced in classification; such
as object occlusion, truncation, and intraclass variation, the complication of having
zero or more instances of each class per frame is introduced.

Despite these issues, humans interpret visual information rapidly, subconsciously,
and effectively. Recent neurophysiological research has suggested that we begin to
discriminate objects in our visual field within one twentieth of a second [1]. Our
visual perception thus allows us to undertake complex tasks such as driving in a
seemingly effortless fashion. Considerable effort has gone into progressing deep
learning as a means of emulating our ability to perceive our environment. As of
late, the leaderboards of many visual perception challenges have been dominated by
large convolutional neural network (CNN) models, some with upwards of 100 million
parameters. Important considerations in utilising CNN for automated object detec-
tion systems include robust performance but also high inference speed and modest
memory requirements however.

In the active safety department at Volvo Cars, work on sensors and systems for
vehicles with AD functionalities is underway. Developing deep learning based tools
which are capable of predicting the two-dimensional location of objects in an ego-
vehicle’s field of view can be integrated into systems for adaptive cruise control and
collision avoidance.

1.2 Project Objectives

The goal of this project is to develop a system capable of detecting cars, pedestrians,
and cyclist in real time without substantial memory requirements. Different deep
learning-based methodologies have been proposed to achieve this, and a thorough
study of them is undertaken here. This represents the first stage of this project.
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Figure 1.1: Left: an artificial neuron. Right: collection of neurons which form an
artificial neural network.

Next, the model most suitable for the task is implemented and novel changes are
applied with the hope of improving detection properties without significantly inflat-
ing the model size. Furthermore, different CNN training strategies are analysed.
The KITTI object detection data-set acts as a training and testing environment for
making a comparative study of the different architectures. The 2012 ImageNet clas-
sification challenge data-set will also be used to pre-train the network, an approach
advocated by most in the CNN-based object detection field.

1.3 Machine Learning

Over the past few decades, machine learning has become more and more ubiquitous
in information technology. Despite this, the branch is still in its nascence. Simply
put, machine learning describes a plethora of techniques which share a data-driven
approach to problem solving. In this way, algorithms ‘learn’ to recognise patterns in
a set of training data without being explicitly programmed to do so. Such approaches
have, for the most part, replaced highly specific feature extraction programs in areas
such as computer vision.

Artificial neural networks (ANN) are a class of machine learning algorithms which
have shown great promise in tackling many persistent problems in computer sci-
ence. Taking loose inspiration from the information processing structure of the
brain, ANN consist of small inter-connected computational units called neurons.
Neurons are generally segmented into layers: information is passed to the network
through an input layer, is disseminated and transformed across multiple hidden lay-
ers, and values describing some abstract feature of the input information is given
by the output layer following training. The transformations are parameterised by
weights and biases which are known as trainable parameters, in the sense that they
are optimised to best predict some aspect of the input data (see figure 1.1). This is
done by quantifying, through a differentiable loss function, the similarity between
the target labels and the outputs inferred by the ANN. Using calculus and some
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optimisation strategy, the learnable parameters are modified with the aim of im-
proving the likeness of the labels and the predictions generated by the ANN.

Convolutional neural networks (CNN) were developed to bring the robustness of
ANN to image processing applications without massive inflation of the number of
parameters and inference time. This is achieved through the use of the convolution
operation which allows for a single set of parameters (called a filter in this context)
to be used at multiple spatial locations of the input. Such a procedure, known as
parameter sharing, fits naturally into image recognition problems when we expect
local features, which may be useful in predicting more abstract properties of the
data, to be present at any position in the input image [2].

1.4 Deep Learning

Deep learning can be thought of as a specific manifestation of ANN, with the discrim-
inating factor being the number of layers used in the network. Models which have
many hidden layers (more colloquially known as deep networks) can extract features
from data at various levels of abstraction through many layers of affine transfor-
mations and non-linear functions. The success of deep neural networks (DNN) has
come at the confluence of many trends: the widespread collection of various types
of data, greater amounts of labelling for that data, falling hardware prices allow-
ing for large-scale distributed computing, and more efficient network architectures
just to name a few. Deep CNN have been successfully applied to many non-trivial
problems; for example, aiding in the win of a computer against a world-champion
at the ancient Chinese game of Go [3] and even recognising the onset of blindness
through retinal images of patients with diabetes [4]. DNN have also been applied to
problems which are solved intuitively by humans but confound computers. There-
fore it is natural that such methods have played a major role in the development of
automatic object detection systems over the past few years.
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Background

In this section, we give an introduction to the basics of Convolutional Neural Net-
works (CNN). We describe the motivation for the original development of CNN and
break down its structure into the key operations. Following this we go through dif-
ferent methodologies for applying CNN to the task of object detection. In section
2.2, we characterize how these networks are optimised to handle complex tasks like
object detection by manipulation of the loss gradient.

2.1 Convolutional Neural Networks

While CNN have gained significant popularity in recent years, they have history
which stretches back to the 1980’s. These neural network models are designed
specifically to efficiently process images. They do this by combining a large number
mathematical operations.

2.1.1 Development

Over the last few decades, many different approaches for visual recognition have
been developed. In 1980 Fukushima constructed a biologically inspired hierarchical
and shift-invariant model for pattern recognition, known as a meocognitron. This
network had the ability to recognize given patterns, including cases where there was
a shift in position or a distortion in shape. The model was trained in an unsuper-
vised manner, i.e. the target for a given training input was undefined. The network
consists of an input layer followed by a hierarchy of connected layers. Neurons in
these layers are either simple or complex cells, the former extracting local features
of the input and the latter handling combinations of these features. An example of
their inter-connection can be seen in figure 2.1, where the last layer of cells give the
classification corresponding to the stimulus presented to the network [5].

In 1986, Rumelhart et al. created a supervised learning algorithm using gradient
descent [6]. Four years later, LeCun et al. applied this backpropagation algorithm
to a multilayer neural network for recognizing handwritten digits [7]. However,
there were some outstanding performance issues: this network had poor in-built
invariance with respect to translations or distortions of the inputs and therefore
struggled to handle the variability in handwriting samples. Input images had to
be size-normalized and centered in the input field. It became evident that in many
object recognition problems that local features and the deformable organisation of
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Figure 2.1: Diagram of Fukushima’s neocognitron. Inspired by early investigations
of animal visual processing, the network is composed of layers of simple cells (‘S-
cells’), which extract local features, and complex cells (‘C-cells’), which handle the
deformation and translation of these features [5].

them are of more interest, and network design should take this into account [8].

The problems described above led to the creation of a new model with stronger shift
invariance which responds to hierarchies of local features. This new network was
called the convolutional neural network (CNN) [8]. CNN’s were used extensively in
the 1990’s, but were largely abandoned due to the lack of computing power. They
were primarily replaced by support vector machines and complicated hand-crafted
feature extraction approaches. Renewed hope in the perceptive abilities of CNN was
awoken in 2012, when A. Krizhevsky et al. utilised a CNN to win the ImageNet
Classification Challenge [9]. In the interim, CNN have developed significantly, and
are now the default approach to solving many computer vision tasks [10].

2.1.2 Operations

A CNN is generally composed of different layers of operations, each with their own
function. At test time, an image is fed to the first layer, and feature information
is propagated through each layer producing an output. This is compared against
a label (or ground truth) for that input. This is sometimes known as the forward
pass.

2.1.2.1 Convolution

Convolution is the workhorse of a CNN. Assume we have an input image of width,
height, and depth W; x H; x D;. Convolution can be thought of as sliding a filter
along the its width and height, computing dot products of the filter and the window
of the input it covers at evenly-spaced locations (as seen in figure 2.2). This filter
has a size of W), x Hy x Dy, where D) = D;, and it encodes a pattern in its values
(or weights). Filter weights are trainable parameters that are modified to extract

6
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features of importance for the task at hand. The output of convolving one filter in
multiple spatial position of the input is called a feature map and is a response to the
similarity of this pattern to local features in the input. At this stage of processing,
global features of the image are less of a concern. Therefore the sliding convolution,
which uses the same weights across many spatial locations, is an appropriate choice
in that it reduces the number of redundant, spatially-separated pixel interactions,
introduces equivariant response to feature translation, and allows for variable input
size.

The size of a feature map depends on the spatial dimensions of the input and filter
and the stride applied to the convolution operation. Here, stride is defined as the
number of pixels the filter shifts per convolution operation. To preserve the resolu-
tion, it is common to apply zero-padding to the input i.e. the width and height of
the input image are framed with zeros. The size of the feature map is given by:

W, = (W; =W, +2P)/S+1  H,=(H;— H,+2P)/S+1 (2.1)

Input
stride
I Filter

0o oo B | B e

e Qutput
0|1]1 0|0 T .

000 i T T

oj1]2 1|0 1 1 0 H
oj1 0 T 0 — EI _
ojlo 0o o 0 1|0 aammmmTT
0|0 1 1 1 1)j0
O 0 0 0 0 0 D
;;:Irexter't

Figure 2.2: Convolutional layer of a CNN model. In this example, the image, of
size 5 x 5 x 1, is zero-padded and then convolved with a filter of size 3 x 3 x 1. A
stride of 2 was used in the convolution to produce a feature map of size 3 x 3 x 1.
Using k filters, our output is a volume of size 3 x 3 X k.

where P is the pad extent and S is the stride. A single feature map has a depth of
1, and k£ filters are applied to the input per layer, giving a output feature volume
of depth k. Further convolutions can be applied to this feature volume, with the
output of this step describing combinations of the local features extracted in the
previous layer. Thus, pixels (neurons) in an activation map of a typical CNN have
progressively larger receptive fields with network depth (i.e. they are exposed to
information from greater spatial tracts of the input image) and respond to more
complex features present in the input image [11].

2.1.2.2 Activation

The activation function is used to limit the output of a neuron and to also introduce
non-linearities to the linear activations generated by a convolution layer. The input

7
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to such functions are typically the output of a convolution layer. There are several
activation functions used in neural networks with some popular examples being:

1. Sigmoid Historically, it is the most widely-used activation function. It takes
real values and transform them into the range [0,1]. It is given by o(x) =
H%, with the output tending to 0 for large negative values and to 1 for
large positive values. Nowadays, it is rarely used because it usually saturates
at extreme values resulting in a vanishing gradient. Moreover it is not zero
centered [12].

2. Hyperbolic Tangent It is calculated as tanh(z) = 1%%21 — 1 with outputs
ranging in the interval [—1,1]. Like the sigmoid function, activations easily
saturate, but it has the benefit of zero centered output [12].

3. ReLU (Rectified Linear Unit) Recommended as the default in DNN; this
activation function is computed as f(z) = maz(0,z). Forward and backward
passes can be computed far more efficiently than for the above mentioned
functions. Furthermore, training algorithms have been shown to converge
faster than with sigmoid and hyperbolic tangent functions as ReLU is piecewise
linear. However, some neurons never become activated (i.e. only output 0)
reducing the representation capacity of the network [12].

2
Sigmoid
1.5 Hyperbolic Tangent
ReLU
1+
c
il
S o5 /
ks
< /
0
0.5
R — I I L | | .
-2 1.5 -1 0.5 0 0.5 1 1.5 2

Input

Figure 2.3: Example of activation functions commonly used in ANN.

2.1.2.3 Pooling

In CNN, it is common practice to preserve the width and height resolution during
convolution. Pooling layers are responsible for reducing this resolution, making for
smaller and more manageable representations by down-sampling. This operation is
applied to each feature map outputted by a layer independently. The most popular
pooling approach is known as maz pooling (see figure 2.4), although variations in-
clude average and Ly norm pooling [11].
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—Max Pool—®
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Figure 2.4: An example of max pooling with a 2 x 2 window and a stride of 2.
At each window location, the maximum pixel value is extracted. Max pooling is
typically applied to each feature map in a feature volume independently.

The results of this operation is an output volume with size W, x H, x D,:

W,=W; —W)/S+1 H,=(H;—Hp)/S+1 D, =D, (2.2)

As such, pooling layers generate local feature-wise summary statistics. Beside com-
pressing feature representations, another benefit of this is that it offers approximate
invariance to limited feature translations; in other words, the exact spatial location
of the feature with the highest activation is discarded.

2.2 Training

In training a CNN, forward passes for a number of images are computed. The out-
putted predictions are then compared to ground-truths to generate a loss. Using
calculus, the sensitivity of this loss with respect to changes in network parameters
can be found. This step is often referred to as the backward pass. With these gradi-
ents, the network’s trainable parameters can be modified with the goal of decreasing
the loss across the entire training data-set.

2.2.1 Loss function

In the context of artificial neural networks, loss functions are differentiable functions
which characterise the similarity of a label with some features predicted by the net-
work given an input. For object detection training, we typically optimise networks
for a multi-task that includes classification and regression elements. In quantifying
classification performance, cross-entropy is one of the most common loss functions
used. In regression, the loss function varies from network to network, but is gener-
ally some variation of the L; or L, loss function, as can be seen in [14] and [19]. A
significant issue when defining a loss function is to avoid saturating and vanishing
gradients which can halt the learning process. For this reason, log terms appear
regularly in error quantification. A detailed description of the loss function used in
this study is given in 3.4.1.
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2.2.2 Backpropogation

Through backpropogation, losses calculated during training can be used to stimulate
changes in network parameters, allowing the mastering of complex and varied tasks.
This is done by calculating the analytic gradient of the loss function with respect to
the network outputs, and using the chain rule to drive the error gradient backwards
through the entire network. The logic is that parameters which have more significant
effect on the final output will share more of the error gradient. A simple explanation
to the back-propagation algorithm can be found in [27], where it is defined as follows.
To calculate the gradient of a scalar z (e.g. the loss function) with respect to its
precursor x in the graph, start by computing the gradient with respect to each
ancestor of z. Then, multiply the present gradient by the Jacobian of dz. Keep
multiplying by Jacobians going backwards through the network until it arrives to
x. The final result is the sum of the gradients arriving from different tracks at any
node reached by going backwards.

2.2.3 Updating

In optimising CNN, the loss gradient with respect to the model parameters is cal-
culated for each sample in a subset of the training data known as a mini-batch (as
described in section 2.2.2). Common mini-batch sizes are powers of two, with the
final loss gradient given by the average over the mini-batch. This is then used to
update the parameters of the network in a multitude of ways.

Intuitively, the loss gradient describes the extent and direction of change in loss
experienced by increasing convolution parameters by one unit. This information
can be used to alter the parameters in such a way that the network ’descends’ in
the loss landscape. Gradient descent is the most common and straightforward way
in which this is done. For a given filter, its weights w are updated in each iteration
as follows:

W w1 (2.3)

Here, 7 is the learning rate and it is common practice to initialise it by trial and error
and gradually decrease it over iterations. Despite its popularity, gradient descent
is often the slowest to converge at a minimum loss setting, sometimes not even
achieving convergence at all. Steep loss ’cliffs’ may encourage massive unwanted
parameter changes while shallow inclines hinder speedy convergence. Momentum
was introduced to alleviate these problems, where an exponentially decaying moving
average of previous gradients is introduced:

V4= av — W4—w—v (2.4)

Tow

Here v € [0, 1] is a new hyperparameter controlling the contribution of the gradients
[27].

AdaGrad is one of many updating procedures that includes an adaptive learning rate.
The motivation for this is that in deep networks, the gradients for shallow layers are

10
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typically much smaller than deeper layers, and learning rates should accommodate
for this [28]. Here:

L
Aw = ——1 @8— w4+ w+ Aw (2.5)

Vr+6  Ow

where r < r + (gﬁ ® gi) is a sum of the squares of past gradients. ¢ is a constant

that avoids the division by zero. The mathematical symbol ® represents element-
wise multiplication. The main problem of this method is the accumulating sum
of gradients in r. Thus, the learning rate becomes iteratively smaller, decelerating
the learning process. The benefit of this method over the Momemtum approach
is a reduction in the number of hyperparameters while still retaining the desirable
properties. With RMSProp, the updating rule looks much the same as AdaGrad
with one key difference:

oL 8L>

repr+(1—p)<

w0 © o0 (2.6)

r is now the weighted sum of squared gradients. p is a parameter that controls the
decay of the moving average and it is usually set to 0.9. This configuration performs
better in non-convex functions than AdaGrad and it was developed specifically to
solve AdaGrad’s monotonically decreasing learning rate [27].

Adaptive Moment Estimation, or Adam, is another adaptive learning rate optimiza-
tion algorithm that can be seen as a combination of Momentum and RMSProp.

OL . s
S < P18 + (1 - pl)% S < 1—7p§ (27)
oL OL ~ r
TFP27"+(1_p2)<aw®8w> 7’<—1_pt (2.8)
2
S
w 7754_\/? W 4— w w (2.9)

where s and r are estimate of the first and second moments respectively. § and 7 are
the bias correction of these estimates, as the first and second momentum are usually
biased towards zero during the first steps. p; and p, are called decay rates and they
are usually set to 0.9 and 0.999 respectively. Empirically, it has been shown that
Adam is relatively robust to the choice of hyperparameters [27].

2.2.4 Regularisation

Regularisation has been defined as “any modication we make to a learning algo-
rithm that is intended to reduce its generalization error but not its training error’.
In other words, the goal is to encourage an algorithm to generalise well beyond the
training set and, in a sense, estimate the true distribution from which the data is
sampled from. Thus, we are concerned with managing the variance induced by esti-
mating other data generating processes and the bias brought about by excluding the
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true data generating process from the model respectively. One of the most preva-
lent forms of regularisation is the Lo loss, more colloquially known as weight decay.
Here, we introduce a new parameter Ly(w) = £||w]|? to the loss function which is
parameterised by the constant ¢. The motivation behind this loss is that weight ma-
trices with lower, more evenly distributed values are encouraged over sparse weight
matrices with high values. This pushes the network to exploit all available input
data regardless of whether or not it improves training error [27]. Dropout is another
regularisation technique used to complement L, regularization. To avoid overfitting
during training, neurons are de-activated with probability 1 — p i.e. their output is
set to 0. This approach provides a way of simulating different architectures without
requiring excessive computation or memory requirements [29]. The probability p
and the constant ¢ are both hyperparameters that are fixed before starting train-
ing. p is usually set to 0.5 while phs is chosen by heuristics. There also exists a
repertoire of data set augmentation techniques including affine transformation and
colour distortions of the input which help decrease over-fitting and are discussed in
section 3.1.3.

2.3 Object Detection

Object detection is the task of generating class labels for, and bounding-boxes which
surround, one or more objects in an image. In 2015, a machine surpassed human-
level performance in the ImageNet classification challenge for the first time [13].
In comparison to classification, object detection is a far more complex undertaking
and super-human performance through deep learning remains elusive. The diffi-
culty arises from the need to locate multiple objects, with the class and number of
instances not specified a priori. Overcoming this in an efficient way could be an
important step in the development of autonomous driving agents.

As stated, the main outputs of many CNN-based object detectors are bounding
boxes coupled with confidence scores. These two concepts are important during the
development of this thesis, thus, a good understanding of them is necessary. We in-
terpret an ideal bounding box to be the minimal axis-parallel rectangle that contains
all parts of an object. Depending on the visibility of the objects and the database
used, the bounding boxes are treated differently. This issue will be discussed in
section 5. Ideally, confidence scores can be used to estimate the probability that
an object lies within the bounding box. These scores are normalised between 0 and
1, and are often erroneously referred to as probabilities in the literature (e.g. [14]).
Furthermore, confidence in this context should not be confused with the notion of
confidence in the context of statistics (e.g confidence intervals).

2.3.1 Classical Methods

Prior to the application of deep learning methods to computer vision problems, auto-
matic object detection systems were mainly based on extracting feature descriptors
such as histograms of orientated gradients (HOG) or scale-invariant feature trans-
form (SIFT) with subsequent classification by SVM. HOG features are computed
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by dividing an image into a number of overlapping blocks, computing intensity gra-
dients for each pixel, and quantising the gradient orientation into several bins. The
histograms for each block are then concatenated and fed to the classifier. In locating
objects, a ’sliding window’ approach is taken i.e. features are extracted and classi-
fied from sub-images at multiple scales, aspect ratios and evenly spaced locations.
While producing state-of-the-art results in the early 2000’s, such methods lacked
robustness with regard to occlusion and deformation, and performance did not gen-
eralise beyond a small set of classes. Deformable parts models were introduced to
give flexibility to such classifiers, although the resulting accuracy and run speed
were still prohibitive for many applications [15].

SIFT is a proprietary approach to object detection developed by David G. Lowe.
With this method, keypoints are extracted from labelled images and stored in a
database. When a new image is to be processed, a match process between the
new image features and those in the database is realized using Euclidean distance.
Following this, a Hough transform is performed to identify clusters from a specific
object and the probability that a particular feature vector represents an object in
the image is computed. The verification is performed as a least-squares solution
applied to the parameters obtained from the affine transformation [16].

2.3.2 Sliding Window CNN Methods

Many of the attempts to tackle object detection using CNN going back to the early
1990’s also relied heavily on sliding window processing. Such methods have been
successfully applied to several domains, including face, pedestrian, and text detec-
tion. In 2013, one such network, namely OverFeat, won the 2013 ImageNet joint
classification and localisation challenge (where localisation refers to predicting the
location of a single object of interest) and obtained competitive results in the detec-
tion challenge. This method extracts features for each window and feeds them to a
classification network and bounding-box regression network, the latter refining the
window to more tightly envelop an object. The resulting class scores and regressed
bounding-boxes are then aggregated using a greedy merging algorithm to produce
the final class and location predictions [17].

Despite its successes, and efforts to share computations between windows, one major
drawback remains; many of the windows processed are redundant or superfluous,
only partially containing objects of interest and thus considerably inflating the run-
ning time. Furthermore, particularly in the case of OverFeat, the quality of the final
output is highly reliant on the ability of an external algorithm, which cannot be
optimised in the same manner as the network, to integrate the information from
multiple windows.

2.3.3 Regional CNN (R-CNN)

The genesis of R-CNN came in 2014, when a group at UC Berkley aimed to gen-
eralise the successes achieved with CNN to the task of object detection. Their
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Figure 2.5: Fuast R-CNN architecture: a ROI is projected onto the output features
maps, pooled to a standard size and then passed to a fully-connected feed-forward
network which generates class confidence scores as well as position and scale offsets
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method combines an independent region proposal algorithm and a CNN, which
suggests object-containing regions and compresses them into a fixed length feature
vector respectively. Each feature vector is then classified by class-specific support
vector machines (SVM) and the set of classified region proposals reduced using non-
maximum suppression (NMS). NMS is a greedy algorithm which sorts detections
by their object confidence scores, takes the highest scoring detection and removes
lower-scoring detections which have an IOU greater than some threshold, repeat-
ing the procedure until all detections have been considered. Finally, localisation
is refined by linear regression of the features extracted by the CNN, leaving the
expected bounding-boxes of objects in the input image. The introduction of the
SVM classifier brought with it a constraint of having a fixed input size, which was
surpassed by warping image regions (regardless of its size, location, or aspect) to
pre-defined dimensions before processing by the CNN. Another major drawback of
R-CNN was it’s high computational cost; a result of passing warped sub-images
individually through the CNN (with around 2,000 regions being generated at test
time), the need for a separate algorithm for region proposals and refinement, and
the introduction of class-specific classifiers [10].

2.3.4 Fast R-CNN

Fast R-CNN retained many of the core notions of R-CNN but introduced several
refinements. One such was the Region-of-Interest (ROI) pooling layer. With Fast
R-CNN, the entire image is first processed by a CNN (which we will hereafter refer
to as a feature extractor in this context), producing a single set of features maps for
the whole image. As with R-CNN, region proposals are generated externally. On
the contrary, each spatial region is then projected onto the feature maps, and the
associated volume is pooled to standard dimensions. The proceeding fully connected
layers take as input these features and output softmax class confidence scores and
bounding-box regression offsets (see figure 2.5) [18].
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2.3.5 Faster R-CNN

Despite the streamlining achieved by Fast R-CNN, it still places the requirement on
some external method to propose ROI’s, which is a bottleneck in terms of running
time. Like Fast R-CNN, Fuaster R-CNN exploits the feature extractor output for
classification and regression, but in contrast, uses this information in generating
region proposals through the novel Region Proposal Network (RPN). In this way, a
single set of feature maps is generated from the input image, which is then passed to
two sibling networks; the RPN which generates region proposals, and a Fast R-CNN
network for classification and regression of these ROI (note that the names region
proposals and ROI are used interchangeably). Thus, Faster R-CNN represents a
consolidation of CNN object detection architecture which can be trained in a single
stage end-to-end, as seen in figure 2.6.

The RPN is modelled as a fully convolutional network which operates on the feature
extractor output maps. The features are first passed through an 3 x 3 convolution
layer, followed by a 1 x 1 convolution layer, with the output predicting £ bounding-
box locations and object confidence scores for each spatial location (see figure 2.7).
Here, k is a hyperparameter describing the number of anchors, with anchors (or box
priors) being reference shapes of different scales and aspect ratios in the input image
(see figure 2.8). Thus, W; x H; x k ROI are predicted. It is important to make the
distinction here that the 4 bounding-box coordinates produced by the RPN describe
the region proposals with respect to deformations of the anchors. Further to the
speed up in run time enjoyed by Fast R-CNN as a result of sharing convolutional
features across region proposals, a considerable speed improvement is compounded
by replacing expensive external proposal methods [14].

2.3.6 Region-based Fully Convolutional Network (R-FCN)

One unresolved issue with Faster R-CNN is its speed at test time, which prohibits
application in many domains. To counter this, several works have driven the pro-
gression of shared convolution features between region proposals. As with Faster
R-CNN, a RPN is applied to the output of the feature extractor to generate re-
gion proposals. Unlike Fuster R-CNN, the Fast R-CNN classification sub-network is
replaced by a fully convolutional network which generates class-specific and position-
sensitive feature maps for the whole input image (figure 2.9). This is implemented as
follows: the feature extractor output is fed to another CNN, whose last layer gives an
output of depth k*(C +1), where k? are the number of activation maps per class and
C + 1 is the number of classes plus background. The novel ROI pooling operation
(see figure 2.10) enforces strict spatial constraints on the activations. Through train-
ing, the output feature maps should have an increased sensitivity to the position of
objects in the input image. The goal here is to address the dilemma of balancing a
network’s translation invariance for image classification versus the translation vari-
ance needed for object detection. With R-FCN, the final pooling layer is the only
per-region operation, resulting in a significant reduction in per-region computations
as well as inference and training speed [19].

15



2. Background

nput image

! )
CHMM feature extractor

i
h /

!

region proposals

Fast R-CHN d——

object bounding boxes and classifications

Figure 2.6: Faster R-CNN architecture: firstly, an input image is processed by a
feature extractor. The output feature maps are then passed to an RPN to generate
region proposals, which are subsequently passed to the ROI pooling layer of the Fast
R-CNN module along with the feature maps.
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Figure 2.7: Region Proposal Network architecture: at each of the H x W spatial
locations, class-agnostic object confidence scores and coordinate offsets are predicted
for k anchors (reference shapes). The resulting set of region proposals for the whole
feature volume is reduced through non-maximum suppression.

Figure 2.8: Illustrated is a sample image from the KITTI data set. A grid is
imagined to overlay the input image, with H x W intersection points (shown in
red). At each intersection point, the RPN predicts the translation and scaling for
a set of k anchors centred at that point (three examples are shown in white), with
the original anchor dimensions specified a priori.
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Figure 2.9: R-FCN architecture: the input image is processed by a feature ex-
tractor. The output feature maps are then passed to an RPN to generate region
proposals. Concurrently, the feature maps are processed by a second CNN. The
output feature maps of the second network have a depth of k? per class (including a
background class). These maps are passed to a position-sensitive ROI pooling layer

along with the region proposals. This pooling is illustrated in more detail in figure
2.10.
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Figure 2.10: R-FCN pooling: the region proposals obtained in the RPN network
are individually projected onto the output feature maps. The area of each ROI is
divided into k£ x k cells, and a single cell is taken from a each feature map, i.e. the
number of cells is the same as the depth of the feature maps per class. Max-pooling
is applied to the set of pixels inside each cell (for illustration purposes, the black dots
in the image represent the pixels with the biggest value) and then an unnormalised
class confidence score is obtained by averaging the results of the pooling.

2.3.7 You Only Look Once (YOLO)

YOLO reframes object detection as a single regression problem, where there is a
more direct feed-forward mapping from image pixels to object location and class
predictions. The input image is imagined to be divided by a grid into S? cells. This
image is processed by a network consisting of 24 convolutional layers followed by
two fully-connected layers. The output is a volume with a width and height S, and
a depth of (C'+ B(4+ 1)). Here, C is the number of classes and B is the number
of bounding boxes predicted per cell of the input. The 4 and 1 relate to the offset
coordinates with respect to the cell boundary and the confidence score respectively,
where confidence is interpreted as the certainty that an object of interest has a
centre which lies within that cell multiplied by the intersection-over-union between
the ground truth and predicted bounding boxes. The need for a class-agnostic
RPN has thus been bypassed. Instead, YOLO can be thought of as an RPN which
generates class probability distributions and gives harder offset coordinates. Such
methods are sometimes grouped under the name Single Shot detectors along with
approaches like the Single Shot MultiBox Detector [20] and SqueezeDet [21] (the
latter being the model analysed in this study and is discussed in greater detail in
section 3.3.1). While exhibiting competitive inference speed, its accuracy is not
acceptable for many applications [22].

2.3.8 Other Notable Works

While Faster R-CNN represents a step change in terms of accuracy and speed, issues
still remain. A significant one is poor detection of objects which are small in the
input image [23]. Two factors contribute to this under-performance. Firstly, Faster
R-CNN only exploits features maps from the final layer of the feature extractor in
generating bounding-boxes and assigning classes. However, it follows from pooling
operations that feature maps deeper in the CNN have more granular spatial res-
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olution. Furthermore, depending on the size of a neuron’s receptive field, spatial
information in the input image may be diffused to a greater extent in feature maps
deeper in the network (increasing translational invariance).

Multiscale CNN [23] and PVANet [24] are a small selection of works which aim to
address this issue. They do so by employing features maps outputted from multiple
layers of the feature extractor and not just from the final layer. Other work has
refined this concept further, introducing Scale Dependent Pooling whereby feature
maps are taken from a specific layer based on the size of the region proposal. This
has the benefit of reducing the amount of redundant information being processed in
classifying the regions [25]. The reasoning behind such modifications is that objects
which are small in the input image will have higher activations in earlier layers.
Accuracy improvements, with only minor cost incursions, have also been exhibited
by iteratively cycling bounding-boxes through a Fast R-CNN network [26].

2.4 Conclusion to CNN

To summarise, CNN is a flexible methodology which has found particular use in the
task of object detection. Traditionally, results in this task were not sufficient for
utilization in real time systems. However, with the development of more effective
architectures and optimisation strategies, along with several other factors, the field
is approaching this paradigm. CNN-based object detectors can be coarsely divided
into two categories: those that propose and classify regions-of-interest (e.g. RCNN),
and those that generate predictions for evenly spaced locations of the input image
(e.g. YOLO). The latter have, in general, an advantage in terms of processing speed
and will thus be explored in this thesis.
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Data & Methods

In this section, we describe the data-sets used to train and evaluate the CNN-based
object detection models. The architecture of the chosen method is explained in
greater detail, along with the loss functions and the hyper-parameter values chosen
to tune the network. We also characterise two novel modifications made to the
network, giving motivation for these changes.

3.1 Data

Important consideration in choosing a training and testing data-set include size, but
also to what degree they matches the application’s target environment. Here, we
are concerned with detecting road objects in standard driving environments. For
this reason, the KITTI object detection data-set was favoured over those available
from MS-COCO and PASCAL. Classification data-sets are often used as a pre-
training stage to prime networks for object detection training. Here, we consider
the ImageNet 2012 challenge data-set for this purpose.

3.1.1 KITTI Vision Benchmark Suite

The KITTI database is a project of the Karlsruhe Institute of Technology and Toy-
ota Technological Institute of Chicago. It was created with the purpose of reducing
the bias between application performance tested in silico versus the real world, and
for providing real-world benchmarks with novel difficulties to the computer vision
community. To achieve this, a standard station wagon was equipped with two high-
resolution color and grayscale video cameras and driven around the city of Karlsruhe,
Germany. While there is not much variation in lighting and weather conditions, the
data-set contains images depicting an array of driving environments [30].

KITTI consists of eight different sets of data, each having its own specific purpose.
For example, the stereo data set contains images taken from two cameras with a
small separation between them, which can be used to evaluate stereo matching meth-
ods. The odometry data collection functions as a testing and training environment
for determining the position and orientation of the ego-vehicle by analyzing differ-
ent sequences of images. Other groups of data are designed for tracking, semantic
segmentation or optimal flow purposes. Following calibration of the sensors and
data-collection expeditions, the raw images are rectified. Then, distinct approaches
are applied to annotate data depending on its type. In the case of the object de-
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Partly occluded

Figure 3.1: Sample images from KITTI object detection database with ground
truth bounding box annotation and class labels.

tection images, each object was tracked manually, and the hired annotators marked
the bounding boxes as visible, semi occluded, fully occluded or truncated [30].

In this thesis, the object detection database will be used. It consists of 7481 train-
ing images and 7518 test images in color png format of approximate size 375 x 1242
pixels. Training images are annotated with bounding boxes which describe the po-
sitions of 8 categories of objects (car, van, truck, pedestrian, person sitting, cyclist,
tram, and miscellaneous) plus ‘Don’t care’ regions. The latter label refers to regions
in which detections are not counted in evaluation metrics e.g. image regions con-
taining distant objects. KITTI also provides an evaluation platform that calculates
the precision and recall on the test data for 3 categories: namely cars, pedestrians,
and cyclist. Evaluation metrics include recall, precision and mean average preci-
sion (mAP). Recall is defined as the ratio between the number of correctly assigned
detections and all ground truths, whereas precision is the ratio of the number of
correctly assigned detection and all detections. In object detection it is common
for a CNN to output confidences on its predictions. Precision and recall can thus
be evaluated at different confidence thresholds generating a precision-recall curve
for each object class. Integrating this curve gives the average precision (AP), with
numerical integration often used. The mAP is computed by averaging the AP over
the set of classes and different difficulty categories: easy, moderate and hard.

In evaluating performance, detections are assigned to ground truths if they share a
class label and have an intersection-over-union larger than 70% for cars and 50% for
cyclists and pedestrians. A detected object with a height smaller than 25 pixels is
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not considered in evaluation, and detection of vans is not identified as a false positive
for cars. Each image contains ground-truths for at most 15 cars and 30 pedestrians.
Performance can be evaluated at three different difficulty levels, assessed based on
the minimum object size, maximum occlusion level (the extent to which an object is
blocked from view), and maximum truncation level (the extent to which an object
is out-of-frame) [30]. Samples images from the training set can be seen in figure
3.1. Test result submission involves sending a zip file containing 7518 text files
corresponding to each image in the test set to the evaluation server. Inside the
text file, the category of the object (i.e. car, pedestrian and cyclist), the bounding
boxes coordinates and the confidence score must be written, alongside other values
for truncation or occlusion, which are not necessary in this thesis and are set to a
default value specified in the KITTI development Kit.

3.1.2 ImageNet

ImageNet is a database which consists of over 14 million URL’s to third party
images, each with manually annotated class labels. These labels are organised ac-
cording to the WordNet hierarchy and describe synonym sets or synsets. Each label
is typically composed of several equivalent words or phrases describing a tangible
concept. The tree structure of the data set allows grouping of images at various
levels of granularity, with children or hyponym sets having more precise descriptors
of member images. Every synset has a unique WordNet ID (wnid) and 20,000 such
exist at time of writing [31]. Although for the most part, ImageNet contains only a
single class label per image, this hasn’t hindered its use in training algorithms for
computer visions tasks other than classification; such as image segmentation, action
recognition, and object detection. This practice is commonly known as transfer
learning and involves training a network on a primary task and data set (e.g. classi-
fying ImageNet images), preserving the trained variables and possibly extending this
network, and subsequently training on a secondary task and data set (e.g. object
detection on KITTI). If the secondary data-set is relatively small and the number of
trainable parameters high, it is advised to freeze some, or all, the layers which have
been transferred from the primary to the secondary network to prevent over-fitting
i.e. allow no further optimisation of the parameters in these layers [32].

Regardless of the task or training data set, the weights learned by the first layer
of a CNN tend to simulate colour blobs or Gabor filters [33]. With increasing
network depth however, the specificity of the features to the the training environment
tends to increase. Furthermore, research has suggested that training a network
on data with objects and scenes similar to those found in the secondary task can
improve performance on the secondary task. Reducing the number of classes, but
increasing the number of images per class, has also been shown to improve the
performance of the network in both the secondary task in some instances [33]. Thus,
the similarity between the primary and secondary data and task, along with the
issue of fragile co-adaption of successive layers, plays an important role in transfer
learning. However, in order to make a fair comparison with the results outlined
n [21], the ImageNet 2012 Large Scale Recognition Challenge data-set was used,
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Figure 3.2: Top: Training image with minimum saturation alteration (factor of
0.75). Bottom: The same image with maximum saturation alteration (factor of
1.25).

consisting of approximately 1.3 million training and 50,000 validation images from
1,000 synsets.

3.1.3 Data augmentation

As mentioned in section 2.2.4, artificially expanding data is common practice in
deep learning applications as a means of preventing over-fitting. This is particularly
important when a limited number of training samples is available. In this study,
colour distortions are applied to the input image after reading from disk. Such a
procedure has the benefit of preventing inflation of memory requirements. Explicitly,
alterations to the brightness and saturation of the image are exercised in random
order and to a random extent, with the alteration factors sampled from a uniform
distribution between a minimum and maximum value (see figure 3.2). For primary
training of the network, horizontal mirroring of images is also applied randomly.

3.2 TensorFlow

TensorFlow is an open source software library for machine learning applications
created by Google’s Brain Team. It was developed to satisfy the company’s need for
a flexible, scalable, and portable platform for machine learning at both research and
production level. It is currently employed within the company in several products
(e.g. Gmail) and by third parties such as Snapchat, Uber, and Twitter. Data flow
graphs are a central element of TensorFlow, where nodes in the graph represent
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mathematical operations (like convolution and pooling) and graph edges serve as
multidimensional data arrays (tensors) communicated between them. TensorFlow
can map such graphs onto a variety of devices, such as mobile devices, or CPU/GPU
clusters. The library can be accessed using API like Python, C and C++ [34].

3.3 Network Architecture

In this section, we describe the model chosen following the state-of-the-art review
summarised in section 2.3. An outline of the novel modifications to this architec-
ture which are made in this thesis is also given.

3.3.1 SqueezeDet

High accuracy and recall across a variety of environments, high inference speed, small
model size and energy efficiency are important considerations in the context of ob-
ject detection in embedded systems. Belonging to the Single Shot Detector family,
SqueezeDet is a fully convolutional neural network for object detection which was
developed to address these concerns [21]. The SqueezeDet architecture is composed
of a convolutional layer, ten sequential fire modules, and a final convolutional layer
which outputs predictions of object locations and class labels for a given input image.

SqueezeDet is small in its model size. The main contribution to this is its feature
extractor (SqueezeNet) which is composed of sequential fire modules. As observed
in figure 3.3, this module consists of a 1 x 1 convolutional layer that compresses
the feature volume without decreasing the spatial resolution. This first operation
is known as the squeeze layer. To the output of this layer, two parallel convolution
operations are applied, one layer with 1 x 1 convolutions and another with 3 x 3
convolutions. This parallel procedure is called the expand layer, as the depth of the
feature volume is increased at this stage [21]. The reasoning behind the fire module is
that the ezpand layer incur a high computational cost which can be relieved by first
compressing the feature representations. Along with all other Single Shot Detectors,
the benefit of architectures such as SqueezeDet over R-CNN based approaches is
the complete sharing of computations between all ROI, which has repercussions for
both the inference speed and the integration of global contextual information into
each prediction.

3.3.2 Residual layer connections

As outlined in section 2.1.2.1, CNN are composed of stacked convolutional layers
which are capable of extracting features which increase in complexity with network
depth. Deeper networks have given rise to state-of-the-art results in many domains.
However significant complications have come with these advancements; most notably
the problem of performance saturation whereby accuracy begins to degrade beyond
a certain network depth. He et al. [35] (among many others) have shown compre-
hensive empirical evidence of this phenomenon. In particular, a CNN was trained
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Figure 3.3: Fire module: first the input feature volume is passed to the squeeze
layer where 1 x 1 convolutions are applied, with s; representing the number of filters.
The output of this operation is passed through an expand layer, composed of two
parallel convolutional layers. One is a 1 x 1 layer with e; filters and the other is a
3 x 3 layer with e, filters. The output of both is concatenated along the depth to
generate the fire module output.

for classification on the ImageNet data set. Subsequently, several convolutional lay-
ers were added, and the network trained again. Counter-intuitively, the resulting
accuracy was lower than that achieved with the shallower network. Evidently, the
additional layers were not able to mimic identity mappings i.e. reproduce the input
in each layer, and output predictions similar to those generated by the shallower net-
work. Inspired by shortcut or skip connections seen in feed-forward neural network,
residual connection were introduced as a way of hard-coding the identity mapping.
Essentially, the feature maps from different layers are added element-wise, with the
feature maps from shallower layers thus ’skipping’ several layers of linear mappings
and non-linear activation function. Further to increases in accuracy achieved with
this architecture, faster training convergence has been observed in many applica-
tions [35].

With highway networks, residual connections are compounded with a gating mech-
anism. For an input to a network layer z;, the output y; is typically an affine
transform of the input (H(x;, W,;)) with parameters W, ;, passed through some
non-linear activation function. In residual connections, the input to the following
layer x;,4 is simply the sum of z; and y;. In highway networks, the transformation
undertaken in a single layer is given by:

Tit1 = H(l’l, W‘Li) . T(ZL‘Z, Wh,i) + ZT; - (1 — T(ilfl, Whﬂ')) (31)

Where T'(a,b) is a transformation with the same dimensionality as = and y, and is
a set of linear transformations (a convolution layer) followed by a sigmoid function
in application. Such connections allow for more complex regulation of information
preservation over the depth of the network. This approach takes inspiration from
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Figure 3.4: SqueezeDet structure with feature map dimensions after each opera-
tion.
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the adaptive informational flow of long short-term memory (LSTM) networks, al-
though the routing occurs across different feature representation spaces rather than
a temporal dimension [36].

3.3.3 Novel modifications

In this study, three different network architectures are analysed. The first is the
SqueezeDet network illustrated in figure 3.4 and described in detail in [21]. This
network is an extension to the SqueezeNet model, developed as a compact, high-
performance solution to object classification tasks [37]. In total, the model has
approximately 2.5 million trainable parameters.

Despite empirical evidence suggesting that the incorporation of residual connections
into many different architectures can ameliorate performance, this addition to the
SqueezeDet network seems not yet to have been reported. Residual connections were
however analysed in the context of SqueezeNet performance on the ImageNet classi-
fication task (where Top-5 accuracy improved by over 2%) Here, our second network
is constructed by adding residual connections to bypass the second, fourth, sixth,
eighth, and tenth fire modules (figure 3.5). In this case, the residual connections are
not parameterised and thus there is no inflation of the model size compared to the
original architecture.

Taking inspiration from highway networks, we also integrate gated residual con-
nections into fire modules, as illustrated in figure 3.5, to generate the third archi-
tecture. Here, the input (x;) and output (H(z;, W,,)) feature volumes are added
elementwise as in plain residual connections. Next, however, the resulting feature
volume is transformed by a single 3 x 3 convolutional filter with zero-padding to
preserve the resolution. The output of this step is an activation map with the same
width and height as the input and output of the fire module, but with a depth of
one. This map is then passed through a sigmoid activation function and the out-
put (T(x; + H(z;, W), Wh.i)), which we refer to as the gate mask, contains values
bounded between 0 and 1. The final output of the gated residual fire module is
given by:

Tip1 = H(xi, Wayi) O T2+ H (2, Wai), W) + 2 O (1 =T (2 + H(xi, Wa), Whii))

(3.2)
where  represents element-wise multiplication by the mask broadcasted across the
depth of the feature volume. Thus, this extension to residual connections facili-
tates explicit spatial discrimination with regard to the residual routing of feature
information. The adaptive mechanism for controlling residual connections may help
preserve activations from shallow layers which can coupled to small objects. An-
other interesting property of this approach is that the mask is two-dimensional with
bounded values, and thus the flow of information can be easily visualised and inter-
preted for a given input image. This may help alleviate the notion that the network
is a ‘black box’ which defies our understanding.
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Figure 3.5: Top: Residual fire module. Bottom: Gated residual fire module.
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In designing the gated residual fire module, we take careful consideration in the
number of supplementary parameterised operations in order to retain to high infer-
ence speed of the original network. For this reason 7T is an affine transformation by
a single convolution with the output passed through a non-linear function. Thus, for
an input feature volume of size W x H x D, a further 3 x 3 x D trainable parameters
are added. Highway networks do not feature the broadcast multiplication operation,
instead opting for element-wise multiplication of the mask and feature volumes. To
achieve this, one would require 3 x 3 x D x D parameters for the gate mechanism.

3.4 Training

Here, we breakdown the multi-task loss function used to train our models. Fur-
thermore, we descrbe the choice of hyperparameters and how these networks are
intialised.

3.4.1 Loss Functions

Loss functions are an important consideration in the design of a CNN, as they
are the sole metric that CNN are optimised for. In object detection, three sets of
outputs are produced which are compared against ground-truths to generate a loss
for a given parameter setting. The total loss for a single image is the sum of three
separate losses, which are replicated from [21]:

Liotar = Lpor + Lconf + Leiass (33)

One set of network outputs is the bounding box offsets (or deltas), which encode the
translation of the center of an anchor and the deformation of its width and height to
generate a bounding box prediction. In this case, we compare the deltas predicted
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by the network, (6x”k,5ywk,5wl ks Oh; i) with the ground truth bounding box
deltas (6%] ks 5y” ks 5w” ks 5h” «)- Here, k refers to the anchor index centered at
the grid intersection point (4, 7). To calculate the ground truth deltas, we apply the
following formula:

She. = log(h® /hy) (3.4)

Where (2, y“, wY, h%) denotes the coordinates of the ground truth bounding box.
These deltas are calculated in a pre-processing stage to improve training speed,
with each ground truth assigned to an anchor based on having the highest IOU.
(Zi, 9, Wi, lAzk) are the centre coordinates, width, and height of the anchor k£ centered
at grid point (7, j). The bounding box regression loss is calculated as follows:

Wo Ho

A ox
Lbbom = b Z Z ZI .7, k 5$l gk 5‘rz] k) + (5yi7j:k - 6yzG,j,k)2

Ob]zlj 1k=1

(6wi7j7k 5wz 2 k) + <5hi7j7k 6h’z 2 k) ] (35)

I; j 1 is a mask calculated in the pre-processing stage, with values 1 if anchor £ cen-
tered at grid point (7, j) has the largest overlap (IOU) with a ground truth, and 0
otherwise. Ay 18 a hyperparameter to regulate the contribution of the bounding
box regression loss to the overall loss. Ny,; is the number of objects per image, and
is used to normalize the loss.

The second network output is the object confidence score, which is interpreted as
an estimate of the probability that an object lies in that anchor multiplied by the
IOU between the predicted and ground truth bounding boxes:

Fo Ho K conf el 2 /\conf
conf - Z Z Z ' ,]k 72,] k — '71‘7j7k) W H K — Nob] (1

i=1j=1k=1 0]

2
- [i7j7k)7i,j,k

(3.6)
7i.jk is the predicted object confidence score returned by the network and %Gj 5 Sim-
plifies to IOU%*?. The term on the left is the contribution of the positive anchors
to the loss (anchors which have been assigned to ground truths), while the term
on the right is to penalize negative anchors (anchors that should return zero object
confidence). Again, \' 7 and A, . are hyperparameters used to regulate the con-
tribution of these losses.

The last network output is the classification score, that is interpreted as an estimate
of the probability that the object inside a bounding box belongs to one of the C'
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classes. The classification loss between ground truth labels (I¢) and the classes
predicted by the network (p.) is given by the cross-entropy:

1W0HOKC

class = Z Z Z Z ] 7, k( lOg(pc>> + (1 - lf)(_log(l - pc))) (37)

obu 1j=1k=1c=1

Note that the classification loss is different from that described in the original paper
which is clearly erroneous in its omission of the minus sign [21]. In training, the
total loss is calculated for each image, and the average value is used in optimising
the network.

3.4.2 Hyperparameter selection

The majority of hyperparameters used are set to values described in [21]. The
mini-batch size used is 20. In order to adjust the influence of the bounding box and
confidence score loss functions, three weighting hyperparameters are set as A\ppor = 5,
N o= 7 =15, Appy = 100. Weight decay is also added to the loss equation with a factor
of 107%. The parameter ¢ = 0.0001 is used to avoid dividing by zero. The model
is trained to recognize three categories of objects (cars, pedestrians, and cyclists)
and for each grid intersection point in the input image, predictions for 9 anchors
are made. Thus approximately 15,000 detection proposals are made for each image.
Unlike the original implementation described by [21], the Adam optimizer is chosen
as the updating algorithm with an initial learning rate of 0.0001. Learning rate
decay is implicit within TensorFlow’s Adam implementation.

3.4.3 Parameter initialization

Initialising a network’s parameters to zero lead to issues with the backpropogation of
error. It is therefore common to sample initial values for parameters from a Gaussian
distribution with zero mean and a standard deviation smaller than one. Low initial
values can introduce the problem of gradients that prohibit quick learning. On
the other hand, large initial values can lead to unstable training. With Xavier
initialization [38], the weights are initialised using a Gaussian distribution with zero
mean and a variance specified by the following formula:

Var(W) = (3.8)

Nin
Where n;, is the number of input neurons. It also ensures that all neurons have
the same output distribution initially and it has shown to improve convergence [38].
The above formula follows from a series of assumptions and variance properties.

First, the output of a linear network is given by s = > ; W;z;, then assuming that
W; and z; are independent, the variance of s is:
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Var(s) = Var()_ Wiz;) =Y Var(Wz;)
i=1 i=1

= Z[E(I/I/Z»)]QVar(a:i) + [E(z))*Var(W;) + Var(W;)Var(x;) (3.9)

i=1
If both input z; and weights W, have zero mean:

Var(s) =>_ Var(W;)Var(z;) (3.10)
i=1

Finally, assume that all x; are identically distributed and that all W; are identically
distributed. Then if we want s to have the same variance as all inputs x, the variance
of every weight W has to be 1/n. This means that the variance of the output is
the same as the input but scaled by Var(W)/n, such that Var(W)/n = 1 &
Var(W) =1/n = 1/n;, [38]. All biases are initialised to zero except for those in the
gated residual connection (where —1 is instead taken). This strategy is employed to
encourage the flow of information in the residual channels as outlined in [36].

3.5 Testing

While training, checkpoints storing all the weights and bias values are periodically
saved to disk. To test a network, variables are restored from a checkpoint, testing
images are fed to the network and a filtering algorithm is applied to the network’s
output. The first step in filtering is to calculate the confidence of each detection,
which is given by the product of the object confidence and classification scores. The
top k predictions with the highest confidences in each image are retained. NMS is
then applied to these detections within each image and class with a threshold of 0.4
(refer to figure 3.6). This filtering algorithm returns the bounding boxes, confidences
and classes for the final detections in each image.

3.6 Conclusion to Data & Methods

Artificial augmentation of the data-set is advised as a way to prevent over-fitting
of the network, particularly for environments like the KITTI object detection set
which are limited in size compared to large-scale sets like that available from the
ImageNet 2012 classification challenge. The SqueezeDet architecture is chosen as
the main focus of this work for its promising performance and inference time. We
suspect that the addition of residual and gated residual connections to this network
may improve its detection capabilities. The training and testing procedures for these
networks are replicated from [21] for comparison purposes.
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Car.0.86  Car.0.818r0.68

Figure 3.6: Top: 64 detections with the highest confidence scores outputted from
a residual squeeze network trained from scratch. Bottom: The same detections
filtered by NMS and a confidence threshold of 0.5.
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Results

In this thesis, two approaches to network training have been implemented. The
first involves training solely on the KITTI object detection data-set, while the other
also includes a pre-training stage of optimising the network for image classification.
The first training procedure is used to optimise all three networks (which we refer
to as SqueezeDet, Residual SqueezeDet, and Gated SqueezeDet) and this is followed
by a comparative evaluation. The second training procedure is then applied to
SqueezeDet and Gated SqueezeDet and its performance is contrasted against the
results reported in [21].

4.1 Training strategy I: training solely on KITTI

The first training strategy involves optimising the three different network architec-
tures on 6981 images from the KITTI object detection training set for 100, 000 iter-
ations (approximately 286 epochs), with the parameters outlined in section 3.4.2.
Each run took approximately 27 hours to complete. Every 200 iterations, the bound-
ing box, object confidence, and classification losses were recorded for mini-batches
from the training set. As shown in figure 4.1 (a), the total of the three losses over
the training data is near indistinguishable between the different models. To monitor
over-fitting, a validation set was constructed with the other 500 pictures from the
training set. The losses on mini-batches from the validation set were recorded at
the same frequency (illustrated in figure 4.1 (b)). For all networks, we see a rapid
decrease in validation loss within the first quarter of training. Beyond this point,
the validation loss gradually increases, more significantly for Residual SqueezeDet
than the other two models. These results suggest that some of features learned by
the networks beyond after 20,000 iterations were specific to the training set (i.e.
over-fitting on the training data had occurred).

Counterintuitively, performance improves substantially between 20 and 100 thou-
sand iterations in terms of KITTI’s evaluation metrics on the validation set (figure
4.2), despite the increase in validation loss. Examining the contribution of each of
the individual losses (figure 4.1 (d)), we see that the object confidence and clas-
sification losses continue to decrease while the bounding box loss increases after
approximately 20, 000 iterations. Clearly, the total loss function does not accurately
represent the end performance of an algorithm. It could be the case that the er-
ror incurred by the localisation of objects is over-weighted compared to the other
losses. This seems appropriate when we recall that detections are recognised as true
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Figure 4.1: Loss curves for the three models trained solely on KITTI data. (a)
Total training loss. (b) Total validation loss. (c¢) Individual training losses for Gated
SqueezeDet. (d) Individual validation losses for Gated SqueezeDet
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Figure 4.2: mAP over iterations of training on the KITTI validation set of 500
images.

positives only if they surpass a fixed IOU threshold with a ground-truth, while the
object confidence and classification scores play an important role in the filtering of
detections, and the generation of precision/recall curves for example. One possible
cause of the localisation over-fitting could be the fact that the anchors are designed
specifically for the data-set.

car pedestrian cyclist mAP
Network E M H E M H E M H
SqueezeDet 89.1 8.2 77.0|733 69.1 61.6|76.0 764 70.2]| 75.3

Residual SqueezeDet | 84.5 839 746 |79.1 740 651 |61.3 649 65.7| 72.6
Gated SqueezeDet | 82.9 84.0 73.3 | 784 723 63.7]764 769 76.5| 76.1

Table 4.1: Average precision for each object class in the different difficulty cat-
egories (E: easy, M: moderate, H: hard) measured on the validation set for each
network trained solely on KITTI. Results are reported for the networks at their
highest mAP.

Table 4.1 shows the final performance of each network on the validation set quantified
using KITTI’s evaluation metrics (see section 3.1.1 for more details). Here we see
that the addition of gated residual connections to SqueezeDet have led to an mAP
increase of 0.8%. Surprisingly, these results suggest that without gating mechanisms,
standard residual connection lead to decrease in mAP (nearly 3%). At more fine-
grained level, SqueezeDet, Residual SqueezeDet, and Gated SqueezeDet perform best
in one category across all difficulty levels. It is important to state here that a
relatively small number of examples are used to do this comparative study, a result
of the limited amount of labelled training data compared to other popular data-sets.
Samples from the test set with predictions generated by the 3 networks are shown
in figure 4.3 and more detailed performance metrics can be found in appendix A.
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Figure 4.3: Cropped images from the KITTI test dataset with detections (over a
confidence threshold of 0.5) generated by the 3 networks trained from scratch.
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Figure 4.4: SqueezeNet model used in the pre-training stage, optimisation for
ImageNet classification.

4.2 'Training strategy II: training on ImageNet
and KITTI

Here we describe the second training strategy undertaken in this work: pre-training
on ImageNet and then applying transfer learning for object detection on KITTI
data.

4.2.1 Pre-training

In this section we describe the pre-training applied to the SqueezeNet architecture.
This network is composed of a convolutional layer, 8 fire modules, a dropout layer,
and a second convolutional layer, with the final classification scores given by global
averaging pooling of the output feature maps passed through a softmaz activation
function (figure 4.4). Here, fire modules 2, 4, 6, 8 are replaced by gated fire mod-
ules to construct Gated SqueezeNet. Due to the protracted training time, and the
model’s poor performance when trained from scratch (as reported in section 4.1),
Residual SqueezeNet was not considered for pre-training. As described in section
3.4.2, the 2012 ImageNet Large Scale Visual Recognition Challenge data-set is used
for pre-training, composed of approximately 1.3 million training images and 50,000
validation images. Each sample focuses on an instance of one of 1,000 classes. The
networks was trained for 1,000,000 iterations with a mini-batch size of 64 images,
using the Adam optimizer and an initial learning rate of 0.0001. The cross-entropy
between the predictions and one-hot labels is taken as the loss function.

In figure 4.5, we see cross-entropy and top-1 accuracy for the SqueezeNet and Gated
SqueezeNet models over iterations for mini-batches from the training and validation
data-sets. Top-1 accuracy refers to the percentage of samples whereby the network’s
highest scoring class prediction matches the label. This metric is often used in
conjunction with top-5 accuracy (the percentage of samples whereby one of the
network’s top 5 highest scoring class matches the label). After approximately 49
epochs of training, both networks reach a top-1 accuracy of close to 50% and 45%
for the training and validation data respectively. That being, the rate at which
accuracy increases is greater for Gated Squeeze in the first quarter of training. These
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Figure 4.6: SqueezeDet model used in secondary training: object detection on
KITTL

results can be compared with the 57.5% top-1 validation accuracy outlined in the
original SqueezeNet publication, although this model was trained for approximately
70 epochs with a batch size of 512 using the Momentum optimiser [37]. In neural
network training, the usual procedure is to cease training when the validation loss
begins to consistently rise above a certain acceptable threshold. Due to the lengthy
training time (approximately one week), network optimisation was not continued
after 1 million iterations despite the fact that there were no signs of the network
over-fitting to the training data.

4.2.2 Transfer Learning

In figure 4.6, we see how transfer learning is realised using a pre-trained SqueezeNet
network. Explicitly, the parameters learned for the first convolutional layer (Conw, )
and the first eight fire modules are used to initialise the same layers in the SqueezeDet
model. A further two fire modules and a convolutional layer (C'onvs) are added to
complete the network, with parameters initialised using the Xavier method (see
section 3.4.3). The same procedure is used in applying transfer learning to the
Gated SqueezeDet model. It is important to note that only half of the 7,480 train-
ing images are used to optimise the SqueezeDet and Gated SqueezeDet networks in
secondary training, with the other half utilised as a validation set. There are several
ways to now approach secondary training. Depending of the size of the data-set,
it is advised to freeze a subset of layers [39]. By freezing, we refer to fixing the
parameters of a layer i.e. the weights and biases are not updated during secondary
training. In theory, as KITTI is considered a relatively small data-set, it should be
beneficial to freeze all, or most, layers which are initialised for the pre-trained model.

As advised in the literature, the first convolution layer and the first eight fire mod-
ules were frozen during secondary training on the KITTI data-set. The resulting
performance for the SqueezeDet and Gated SqueezeDet models can be observed in
table 4.2 and figure 4.7. Here, we see that pre-training the networks on ImageNet
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and subsequently training on a smaller KITTI data-set produces poorer mAP than
training solely on a larger set of KITTI image for both models. Following this, it
was decided to undertake secondary training with only Conv, frozen, a technique
used by the original author of SqueezeDet. This approach leads to a 30 % increase
in mAP as shown in table 4.3 and figure 4.7. However, the performance does not
match that achieved in [21]. Tt is difficult to compare these results, as the top-1 vali-
dation accuracy reached by [21] in ImageNet is 12.2 % greater than ours. Relatively
speaking however, it can be seen that our implementation of SqueezeDet performs
better than Gated SqueezeDet with a 5 % difference in validation mAP.

car pedestrian cyclist mAP

Method E M H E M H E M H
Gated SqueezeDet | 49.84 41.65 36.1 | 45.01 39.18 35.61 | 25.2 27.18 26.75 | 36.28
SqueezeDet 50.8 4298 36.99 | 49.47 41.46 37.76 | 25.66 28.93 26.81 | 37.87

Table 4.2: Average precision for each object class in the different difficulty cat-
egories. The models are measured on the validation set for the two pre-trained
networks where the three last layer were trained and the rest were retrieved from

ImageNet.
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Figure 4.7: mAP over iterations of training on the KITTI validation set of 3,740
images. Left: both networks have the first convolution layer and the first 8 fire
modules frozen from the networks trained on ImageNet. Right: both networks have
just the first convolution layer frozen and the first 8 fire modules initialized from

the network trained on ImageNet

4.3 KITTI evaluation submission

Following both training procedures, it was decided to further evaluate the novel
Gated SqueezeDet model which was not pre-trained. Performance on the KITTI
test data can be observed in table 4.4. As can be seen, its detection capacity is
far from the state-of-the-art results, with a mAP of just 13.2%. Considering the
performance gap with the results in the previous sections, Gated SqueezeDet has
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car pedestrian cyclist mAP | FPS?
Method E M H E M H E M H

SqueezeDet! 90.2 847 739 | 89 754 721 | 771 683 658 | 76.7 | 57.2
Gated SqueezeDet | 81.37 75.8 67.29 | 67.95 59.28 54.5 | 55.82 55.72 53.83 | 63.52 o8
SqueezeDet (ours) | 82.26 80.34 68.42 | 73.63 64.03 57.36 | 67.17 62.18 58.56 | 68.21 63

Table 4.3: Average precision for each object class in the different difficulty cate-
gories. The three models are measured on the validation set for the two pre-trained
networks when the first convolution layer is frozen and the 8 following fire mod-
ules were initialized with the network trained in ImageNet. 1. Taken from [21]. 2.
Inference speed was recorded on a unit with a Titan X GPU running Windows 10.

clearly overfitted to type of data observed in both the training and validation sets
to a considerable degree. It’s important to note that test results are not given in
[21] and evaluation can only be completed once, so no comparison can be made with
the original architecture.

car pedestrian cyclist mAP | FPS
Method E M H E M H E M H
iDST-VC 90.88 90.55 81.04 - - - - - - 0.25
Tu Simple 90.77 90.33 82.86 | 86.78 77.04 72.40 | 81.38 74.26 64.88 | 80.07 | 0.625
RRC 90.61 90.22 87.44 | 84.14 75.33 70.39 | 84.96 76.47 65.46 | 80.55 | 0.27
Gated SqueezeDet | 17.44 17.46 15.05 | 16.83 14.37 13.65 | 9.49 7.46 7.04 | 13.2 58

Table 4.4: Methods with the state-of-the-art performance in each of the object
categories on KITTI object detection testing data-set by June 2017.

4.4 Conclusion

When trained solely on the KITTI data-set, the addition of novel gated connections
improves performance on the validation set by close 1% mAP. However, with in-
clusion of a pre-training stage (image classification on ImageNet), object detection
performance is considerable depreciated compared to the original architecture. Fur-
thermore, performance on the KITTI test data indicatse that Gated SqueezeDet has
experienced considerable overfitting on the training data.
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Discussion

In this section, we interpret the results outlined in section 4. The work done in this
thesis highlights several interesting research questions in terms of network structure,
data, task, and extensions, which are discussed here. It is important to preface this
section by stating that a major limiting factor to the scope of this project was the
computational complexity of training and evaluating deep learning algorithms.

5.1 Analysis of Results

As described in section 4.1, our Gated SqueezeDet network outperforms both
SqueezeDet and Residual SqueezeDet in terms of mAP on the validation set of 500
images. This is achieved with just a 0.7% inflation in the number of parameters
compared to the original architecture. One theory as to why the addition of gated
residual connections creates this performance disparity relates to the size of objects
when projected onto the image plane. Cyclist and pedestrian detection made a major
contribution to Gated SqueezeDet’s increased performance. These object classes are
generally much smaller than cars but one must also take into account that instances
of the cyclist class in the KITTI data-set are much more uniformly distributed over
distance from the ego-vehicle (see figure 5.1). Across all object categories, Gated
SqueezeDet shows a greater capacity to recall objects more than 60 metres away
from the ego-vehicle. Gated SqueezeDet is the only model to recall instances further
than 80 metres from the ego-vehicle as shown in figure 5.2, although there are very
few ground-truths at this range. Many authors have suggested that smaller objects
in the input image result in high activations in shallower layers of the network. They
have attempted to tackle the issue by applying classifiers directly on intermediate
feature maps [23] [25] [40]. As shown in the left column of figure 5.3, the Gated
SqueezeDet network has learned to discard a large portion of the information from
two of the fire modules in response to the given input image, instead opting to route
information through the residual connections. In effect, activations coupled to small
objects may be preserved to a greater extent by the final layer of the network. It
must be stated that this line of thinking is highly speculative however, and requires
more stringent investigation. It does raise the idea that pedestrian and cyclists de-
tection may be improved for a SqueezeDet model with fewer fire modules.

Applying some sort of pre-training step is the default approach used in CNN-based

object detectors. This technique usually leads to an increase in performance on
the secondary task. SqueezeDet achieves a higher mAP than Gated SqueezeDet on
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Figure 5.1: Distribution of ground-truths over distance from ego-vehicle for the
training set of 6981 images (left) and the validation set of 500 images (right).
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Figure 5.2: Distribution of recall over distance from ego-vehicle in each object
category for the validation set of 500 images.
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Figure 5.3: A sample test image (top) with the associated gate masks generated in
each of the Gated Fire Modules for the network trained solely on KITTI (left column)
and the network which was trained both on ImageNet and KITTI. Black pixels
illustrates areas of the feature maps which have been completely routed through
the residual channel, whereas white pixels described regions where information has
come solely from the previous fire module.
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Figure 5.4: Distribution of the values in the gated mask in a mini-batch (y-axis)
over training iterations (x-axis). Each line represents a percentile in the distribution,
from top to bottom: maximum p+ 1.50, p+o, p+ 0.5, p, £ — 0.5, p — o, p — 1.5,
minimum, where i, are the mean and standard deviation respectively. Left: network
which has not been pre-trained. Right: network which has been pre-trained.
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Figure 5.5: Visualisation of some of the filters in the first layer of our trained
Gated SqueezeDet model. Note that the filter are of size 3 x 3 x 3 but have been
smoothed for illustrative purposes.

KITTI using this approach. This runs contrary to the results observed when the
models are trained solely on KITTI. One contribution to Gated SqueezeDet’s under-
performance may be the sigmoid activation function which is used to generate the
mask in the gating mechanisms. As shown in figure 5.3, masks generated for the
pre-trained and KITTI-trained networks are mostly saturated i.e. the pixels take
values of either 0 or 1 and thus the partial derivative tends to 0. As shown in 5.4,
the gradient through the sigmoid function appears to have vanished during primary
training and thus the gating mechanisms do not adapt as much to the secondary
task. Clearly further evaluation and consideration of the design this unit is required.
The lack of time prevented further training of SqueezeDet and Gated SqueezeDet on
ImageNet which may explain the performance disparity when compared to the re-
sults outlined in [21].

Despite the advancements in detection performance achieved by CNN, these meth-
ods are often seen as ’'black boxes’. There remains much to be understood about
how these networks reason in generating predictions e.g. what features of a pedes-
trian are most important in discriminating it from the background or other objects
of interest. A rudimentary way of illustrating the features extracted by our CNN

48



5. Discussion

can be achieved by visualising the filters of the first convolution layer. These filters
are applied directly to the input image so they can be can be depicted in the same
colour space. As shown in figure 5.5, local combinations of colours seem to play an
important role in the detection process, and not just edges of specific orientations. It
is no surprise then that our network trained on colour images performs significantly
poorer on the same images in grayscale (explicitly, a drop in mAP from 76 to 41%
on the validation set is observed). Other investigative tools include occlusion test,
whereby we would block certain parts of an object from view and see how it affects
performance, and abstraction test, in which we perform testing on synthetic data.
Finally, while the focus of this study was the SqueezeDet architecture, an invetigation
of the contemporary CNN-based object detection methods should be undertaken.
An implementation in Tensorflow of the most important networks should lead to a
better understanding of the contemporary architectures and their main character-
istics. This will allow us to carry out a fair comparison between SqueezeDet, and
its modifications, and other models such as YOLO or R-FCN. Another interesting
research question is how the integration of the novel gated connections developed in
this work would effect the performance of these models.

5.2 Network Structure

Humans often rely on a binocular view of an object over time in characterising it. It
follows from this that an interesting extension to our model would be the inclusion
of some notion of temporality. There are several ways this could be incorporated;
possibly the simplest being to feed the network several sequential images in one for-
ward pass and expand the network to incorporate 3D convolutions. Recurrent neural
units offer a more complex way for CNN to process multiple temporally correlated
images. Long short-term memory (LSTM) is a type of recurrent neural network
unit which has been shown to better capture long-term temporal dependencies in
data. This structure features input, forget, and output gates analogous to reading,
deleting, and writing memory operations respectively [41]. One issue with this ap-
proach is the significant inflation in training time though. Of course, extraneous
input images do not have to come from distinct instances of time, but can come
from spatially displaced cameras analogous to the stereo vision apparatus of many
animals. Images from two horizontally removed cameras are available in the KITTI
object detection data-set, however data from only one of them was used in this study.

The main motivation of this work was to analyze the SqueezeDet model described
in [21], and evaluate the effect on performance of two structural modifications. For
this reason, it was important to replicate the original model as close as possible,
and the majority of the hyperparameters were duplicated from the original paper.
That being said, only a limited model design space exploration was undertaken in
[21]. Here KITTI object detection mAP was reported for finer image resolution,
increased number of anchors per grid point, and a greater number of trainable pa-
rameters. For the SqueezeNet model in the context of image classification, the change
in performance related to altering the squeeze ratio (the extent to which the feature
representation volume is compressed by the squeeze layer in the fire modules) and
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Figure 5.6: Examples of redundant detections not removed through filtering by
NMS.

the number of filters in the 3 x 3 expand layers was also studied in [37]. As with
all deep learning networks, the hyperparameter space is very high dimensional and
significant tracts of it are unexplored, with design decisions often boiling down to
heuristics.

While significant focus has been placed on the input and structure of the CNN,
post-processing of the over 15,000 detections generated per image presumably play
an important role. Despite this, non-maximum surpression (NMS) has remained the
default filtering algorithm for most contemporary CNN-based object detection sys-
tems. As shown in 5.6, redundant detections still contribute to precision degradation
even after NMS. Soft NMS differs from the original algorithm by only a single line
of code, yet delivers close to a 2% improvement in mAP in the PASCAL VOC 2007
detection challenge when appended to both Faster R-CNN and R-FCN. This is done
while retaining the computational complexity of standard NMS [42]. The distinction
with this algorithm is that a detection which has an IOU with another detection of
the same class greater than some threshold has its confidence score penalised. Work
has also been invested into developing a CNN-based NMS replacement, allowing
for complete end-to-end training of the detection and filtering stages. With T-Net,
a 4-layered CNN, detections are re-scored rather than discarded, with experiments
showing improved precision and recall on a pedestrian detection data-set [43].

5.3 Data

The KITTI object detection data-set consists of a training set of 7481 images, which
is quite limited in size compared to the training sets found for other image recogni-
tion challenges. This is one of the motivations behind the use of transfer learning
and data augmentation in this study. Despite its size, KITTI presents a variabil-
ity in driving environments with depictions of motorways, cities and secondaries
roads. That being said, the performance of our networks trained solely on KITTI
data does not generalise well to new data. In figure 5.7, we see that our Gated
SqueezeDet model trained solely on KITTI data gives very inconsistent predictions
on Udacity images, even when those images are downsampled to match KITTI res-
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olution. Understandably, performance appears to be better on images which liken
those found in KITTI (e.g. the middle and bottom images). For the top image, the
network generates only pedestrian false positives. Here, the poor recall may come
from the fact that the difference in camera placement is more pronounced for nearby
objects (Udacity camera is fixed to the car’s dashboard while the KITTI camera is
roof-mounted). There is a clear need for more work in quantifying this phenomenom.

Another issue is that of KITTI’s bounding boxes, which were annotated through
crowd-sourcing. In the case of occluded objects, the ground truth labels are de-
signed to encapsulate all parts of the article. Thus the annotator must estimate
the position of object parts blocked from view. This leaves room for annotation
error. It also implies that networks trained on KITTI can not be tested on other
data-sets such as those available from Udacity, as their bounding boxes cover only
what is visible of an object (see figure 5.8) [44]. Moreover, inconsistencies in the
image labelling can found throughout the KITTI data-set as seen in figure 5.9.

As explained in section 3, the ImageNet 2012 classification challenge data set was
chosen for network primary training, which is the current default training procedure
for detection networks. The study made by [33] in the context of PASCAL image
recognition challenges suggests that a smaller set containing objects and scenes sim-
ilar to the secondary task (object detection) could improve performance. Similarly,
reducing the number of classes but increasing the number of images per class may
ameliorate detection accuracy. Due to the lack of time, these theories were not
explored in this study.

5.4 Task

Predicting the location of cars, pedestrians, and cyclists in a 2 dimensional view
plane should be an important step in developing AD and ADAS functionalities and
was the output of models studied in this work. That being said, road environments
typically contain a much broader array of object classes which could be integrated
into the decision processes. KIT'TI training data contains ground-truth annotations
for 8 classes of object, 5 of which were ignored by our models. Rather than increas-
ing the number of classes, discriminating objects into more fine-grained categories
could also be of interest. For example, it may be of more use to classify an object
as a specific type of car. SubCNN received competitive results in the KITTI ob-
ject detection challenge. One interesting facet of this approach is classification of
objects into subcategories. Here, subcategories are groupings of objects with sim-
ilar pose and shape. Thus using 2D bounding box and subcategory predictions,
one can estimate the occupancy of that object in 3D space [45]. One drawback
of this method is the low inference speed resulting from it’s R-CNN type archi-
tecture with a much more extensive region proposal network. Other works have
focused on explicitly utilising the 2D properties outputted by an object detector
network in regressing the pose and 3D dimensions of objects of interest [46]. The
benefit of such an approach is that it could be more easily integrated into our model.
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Figure 5.7: Detection predictions on Udacity data generated by our Gated
SqueezeDet network trained solely on KITTI data (confidence threshold of 0.5).

Figure 5.8: Examples of ground truth labels for occluded objects in the KITTI
(left) and Udacity (right) data-sets.
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Cycilst

Figure 5.9: Examples of inaccurate ground-truth labels in the KITTI training
data-set. Left: a single pedestrian has be labelled as two pedestrians. Right: the
bounding box for the cyclist includes significant redundant space.

As discussed in section 5.2, the effect modifying the network to utilise information
from several instances of time on detection performance is an outstanding question.
While this may aid in giving instantaneous predictions, it could also be exploited
as part of some tracking system where the goal is continually detect specific object
instances over time. Several recent works have looked at integrating neural networks
in object tracking pipelines. For example, [47] employ a fully connected feed for-
ward network to predict the confidences associated with image-patch samples close
to the object’s location in the previous frame. Tracklets are produced by using these
confidence scores as inputs to a particle filter. Recently, efforts have focused on end-
to-end deep learning algorithms which map directly from image pixels to object
tracklets. [48] has demonstrated single object tracking at 100 fps with a recurrent
CNN. Here predicting the movement of an object from one frame to the next is
treated solely as a regression problem. The object-containing crop predicted by the
previous time step is encoding using a CNN. This area is expanded, extracted from
the current frame, and passed though the same network. The encodings from the
previous and current time-steps are amalgamated, and the offset between the frames
are regressed through fully connected layers. Both the aforementioned methods re-
quire initialisation with bounding boxes which could be provided by our model.
Traditionally object detection and tracking have been treated as two distinct prob-
lem, and integrating them in an efficient way is an open question.

Action classification is another task which would benefit from sequences of data.
Generally, this involves not only estimating the location of objects, but also classi-
fying the type of activity they are undertaking. This field is becoming of particular
interest in applications such as sport and retail space analysis. In the same light,
discerning whether a pedestrian is standing still, on their mobile phone, jogging
etc. could give greater insight into their expected behaviours. Several works have
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explored the application of DNN in this domain [49] [50]. As with all the tasks
discussed in in this section, there is a significant lack of annotated data which
specifically depicts driving environments.
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Conclusion

Recent breakthroughs in object detection have come predominately from CNN-based
methods. These models can be coarsely divided into two groups. On the one hand,
you find a lineage that began with R-CNN [10] concerned with classifying and re-
fining regions-of-interest (ROI). With Fast R-CNN [18], greater sharing of convolu-
tional features between ROI was facilitated by the novel ROI pooling layer. Despite
the improvement, both methods rely on computationally expensive external ROI
proposal algorithms. Through the introduction of anchors (reference shapes in the
input image), Faster R-CNN [14] integrated ROI-proposal into the network struc-
ture incurring a significant decrease in inference time. By replacing the Fast R-CNN
module with fully convolutional layers and near complete sharing of convolutional
features, R-FCN [19] took a step closer to commercialisation of this technology. On
the other hand, there is a family of approaches that have been recently termed as Sin-
gle Shot Detectors (SSD). Such approaches share a more direct mapping from image
pixels to detections, bypassing the need for class-agnostic region proposing parallel
to more general feature extraction for detection. Instead, the image is processed by
a single-track network once, and predictions are generated for evenly-spaced loca-
tions in the input. You Only Look Once (YOLO) [22] was one of the first detection
methods to surpass processing rates of 50 frame per second, however strong spatial
constraints contributed to poor accuracy across many detection challenges.

Traditionally, the latter group held an advantage in terms of processing speed but
lacked in detection precision and recall. Further to reliable performance, low mem-
ory and energy requirements are important considerations in integrating this tech-
nology into AD systems, considerations which have largely been unaddressed. To
this end, SqueezeDet [21] was developed as a light-weight SSD with a model size
of approximately 8 MB, one or two orders of magnitude smaller than many of it
counterparts. The main contribution to its modest memory requirement is the fire
module, composed of a squeeze layer which significantly compresses intermediate
image representations, followed by an expand layer which applies computationally
expensive convolution operations. In this study, two structural modification to the
SqueezeDet architecture were proposed and analysed; the introduction of residual
connection (Residual SqueezeDet) and novel gated connections (Gated SqueezeDet).
Two separate training procedures were used; one in which training was carried out
using only the KITTI object detection data and another which also included a pre-
training stage on the ImageNet 2012 classification challenge data.

The original network, along with the two modified networks, were trained soley on
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KITTI, with the majority of the hyperparameters replicated from [21]. After 100, 000
iterations of training using the Adam optimiser, it emerged that Gated SqueezeDet
held a 0.8% improvement in validation mAP compared to SqueezeDet, with notice-
ably increased recall for distant objects. This is achieved with only a small inflation
in the number of parameters (0.7%). On the other hand, adding standard resid-
ual connections lead to significant performance depreciation (2%). Due to Residual
SqueezeDet’s poor mAP, only SqueezeDet and Gated SqueezeDet were optimised
with the inclusion of a pre-training stage. Both networks were trained for approxi-
mately 49 epochs on the ImageNet data-set, reaching a top-1 validation accuracy of
45%. The first convolutional layer and following 8 fire modules were next initialised
using the parameters learned in pre-training. Two additional fire modules and a final
convolutional layer were appended to the network and were subsequently trained for
object detection on KITTI with the first convolutional layer frozen. After 100, 000
iterations of training, SqueezeDet exhibited substantially improved validation mAP
compared to Gated SqueezeDet (5%).

One reason as to why Gated SqueezeDet exhibits poor performance through transfer
learning may be the sigmoid activation function used in the gating mechanism. The
saturation of this function leads to a vanishing gradient in the primary task which
appears to halt learning in the gating mechanism during the secondary task. Thus,
further investigation of the gating mechanism design must be undertaken to better
facilitate transfer learning with this network. Furthermore, training on 49 epochs
of ImageNet data were not sufficient to reach a 60% top-1 accuracy and therefore
performance cannot be compared to the results outlined in [21]. The results outlined
in section 4.3 suggest that the Gated SqueezeDet is susceptible to over-fitting, an
issue that may be resolved with more variability in the training and validation data.

There were several limitations to the scope of the project. One significant hurdle
was restrictions in available data. KITTI presents a relatively good variability in
driving environments, but not in weather and light conditions. Also, KITTI’s small
data-set size may prevent the networks from learning more general representations of
objects. Another major limitation was the available time and computational power
for the project. Granted more resources, several extensions could be implemented
to the networks. Examples include exploring other tasks so as action classification,
object tracking and 3D bounding box prediction.

To summarize, architectures based on the SqueezeDet model have shown promising

capacity to be commercialised due to their high inference rates. Further investiga-
tion is, however, required in order to rectify their detection performance.
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Appendix 1

car pedestrian cyclist mAP

Method E M H E M H E M H
SqueezeDet 81.5 82.0 744|743 70.6 63.6| 727 747 722 | 74.0
Residual SqueezeDet | 82.8 83.0 74.0 | 67.5 65.8 574|539 61.2 60.8| 67.3
Gated SqueezeDet | 82.3 80.0 72.6 | 79.9 74.7 658 | 70.3 74.8 7T4.2 | 75.0

Table A.1: Average precision for each object class in the different difficulty cate-
gories (E: easy, M: moderate, H: hard) measured on the validation set for a second
run.
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Figure A.1: mAP over iterations of training on the KITTI validation set of 500
images on a second run. We observe that Gated SqueezeDet overfit after 80000
iterations, being SqueezeDet better at the end, but slightly worst before.
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Figure A.2: Precision/recall curves for the networks on the different object cate-

gories (left column: car, middle column: pedestrian, right column: cyclist) evaluated
on the validation set.

IT



A. Appendix 1

Figure A.3: Sample images from the KITTI testing data with detections generated
by the SqueezeDet trained from scratch (confidence threshold of 0.5.
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Figure A.4: Sample images from the KITTI testing data with detections generated
by the Residual SqueezeDet trained from scratch (confidence threshold of 0.5.
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Figure A.5: Sample images from the KITTI testing data with detections generated
by the Gated SqueezeDet trained from scratch (confidence threshold of 0.5.
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Gated SqueezeDet: Car
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Figure A.6: Precision/recall curves for the networks on the different object cate-
gories (left column: car, middle column: pedestrian, right column: cyclist) evaluated
on the validation set composed of 3740 images. Both networks have the first con-

volution layer frozen in the training and the first 8 fire modules initialized from the
network trained in ImageNet .
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