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Automatic registration of anatomical structures between stereo-endoscopic images
and CT images
SOPHIE BECKMANN
Department of Electrical Engineering
Chalmers University of Technology

Abstract

In today’s field of medical technology, image-guided surgery has become an essential
component making image processing and analysis indispensable. Imaging systems
such as (stereo-)endoscopy allow intra-operative 3D reconstructions and linkage with
pre-operative data, e.g. CT images. To achieve this, image and point cloud registra-
tion algorithms are utilized where two or more images/point clouds are transformed
into a common coordinate system. For this master’s thesis, the aim is to develop
and implement a modular framework for the registration of anatomical structures
between stereo-endoscopic images in form of point clouds among each other as well
as with 3D models from CT images.

The implementation is primarily based on Open3D and includes an analysis and
registration pipeline. The analysis pipeline includes downsampling, normal estima-
tion, feature extraction based on Fast Point Feature Histograms and correspondence
estimation. In the registration pipeline the user can select between two global reg-
istration methods, namely RANSAC and TEASER, and three variants of the ICP
algorithm, namely point-to-point ICP, point-to-plane ICP and colored ICP. In addi-
tion, a semi-automatic approach was implemented for the global registration between
endoscopic point clouds and 3D CT models where the user selects correspondences.

The framework is evaluated on three datasets of which two are acquired utilizing
stereo-endoscopes for ENT surgeries and laparoscopy. Objects are a medical head
phantom and a specimen. An additional dataset are stereo frames from a porcine
cadaver where ground truth data in form of a pose graph is available.

The results show that generally, TEASER performed more accurately than RANSAC,
but differences between the ICP variants are neglectable. The automatic registration
with CT data failed indicating that the estimated correspondences have a tremendous
outlier ratio. However, the semi-automatic approach is an acceptable solution.

In conclusion, this thesis demonstrates that point cloud registration in the medical
field is possible specifically among an imaging modality but remains challenging
when utilizing differing modalities.

Keywords: image processing, image analysis, point cloud registration, medical image
analysis, computer tomography, stereo endoscopy, iterative closest point, teaser,
ransac
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List of Acronyms

CT Computer Tomography.

DoF Degrees of Freedom.

ENT Ear, Nose and Throat.

FPFH Fast Point Feature Histrogram.

GNC-TLS Graduated Non-Convexity Truncated Least Squares.

ICP Iterative Closest Point.

PCA Principal Component Analysis.
PFH Point Feature Histrogram.

RANSAC RAndom SAmple Consensus.
RMSE Root Mean Square Error.

SIFT Scale-Invariant Feature Transform.
SKB Semantic Kernels Binarized.
SPFH Simple Point Feature Histrogram.
STAN STereoscopic ANalyzer.
SURF Speeded Up Robust Features.

TEASER Truncated least squares Estimation And SEmidefinite Relaxation.
TIM Translation Invariant Measurement.
TLS Truncated Least Squares.
TRIM Translation and Rotation Invariant Measurement.
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Nomenclature

Below is the nomenclature of sets and variables that have been used throughout this
thesis.

Sets

P Target point cloud

Q Source point cloud

K Correspondence set

Variables

R Rotation

t Translation

T Transformation
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1
Introduction

Image processing and image analysis are two essential components in today’s medical
field and its use increases continuously [1]. This rise also includes point cloud
registration algorithms where two or more clouds of points in a 3D space are aligned
[2, 3]. This chapter gives an introduction into the topic of this thesis and contains the
background, aim, limitations and ethical considerations. Furthermore, an overview
of the following chapters is given.

1.1 Background

In the medical field, imaging techniques are used to visualize the human anatomy
and physiology [1]. Therewith, diseases and abnormalities of the patient can be
examined and evaluated. Imaging technologies include non-invasive techniques e.g.
ultrasound, x-ray and Magnetic Resonance Imaging (MRI) as well as invasive tech-
niques for instance endoscopy. The different imaging modalities yield varying signals
and thus, are used in different diagnostic or therapeutic situations of the patient’s
treatment. In addition, the practitioner may decide to combine several techniques
to take advantage of their differing imaging modalities during a procedure e.g. by
combining pre-operative date with intra-operative data.

One non-invasive technology that uses ionizing radiation in the form of x-rays is
Computer Tomography (CT) [1]. Here, the anatomical structures of the body are
displayed as slices which can then be reconstructed into 3D models [4]. These models
may then be used to measure anatomical structures e.g. to manufacture a patient
specific implant [5]. Figure 1.1 displays such a measurement.

Figure 1.1: Reconstructed model from Computer Tomography (CT) slices by [4]

1



1. Introduction

Endoscopy, on the other hand, is a (minimally) invasive technique [1]. It is an optical
imaging technology allowing the practitioner to see internal body parts and is used to
examine a variety of physiological systems. For instance, endoscopy is used in a wide
field of surgical scenarios: Ear, Nose and Throat (ENT) and abdominal surgeries
as well as for arthroscopy. Today, most endoscopes incorporate one or two digital
cameras as well as light sources as visualized in Figure 1.2.

Figure 1.2: Stereo endoscope comprising two cameras and two light sources.

By incorporating two cameras, these systems can take advantage of stereo vision
comparable to how most species observe the world using two eyes while focusing
with both on the same object [6, 7]. This results in an inward movement of the eyes
which is referred to as convergence. This convergence causes perceived binocular
disparity and enables depth perception despite our eyes mapping a 3D world into a
2D space. As a result, objects appear in 3D and hence, this allows us to see with a
precise position and distance estimation [8].

In image capturing systems, this effect is primarily achieved by two cameras focused
on the same object equivalent to how our eyes are positioned. In the medical field,
applications using stereo vision are surgical microscopy, endoscopy and robotic-
assisted surgery [9]. These applications can provide a more realistic true-to-scale
representation of the human anatomy than ordinary 2D images. Thereby, the
perceived depth impression of the surgical scene allows a more rapid and effective
performance and improves the training of medical staff [9–11]. Figure 1.3 shows the
left and right stereo view of a mouth phantom captured with a stereo endoscope.

(a) Left stereo view (b) Right stereo view

Figure 1.3: Left (a) and right (b) stereo views of an ENT head phantom depicting
corresponding feature points near the mouth / oral cavity

From a stereo pair, the depth can be calculated for each image pixel allowing a

2



1. Introduction

3D reconstruction in form of a point cloud (see Figure 1.4). A point cloud is a
representation of an object or environment as data points usually in a 3D space.
Hence, a point cloud does not only store the x and y coordinates of an image, but also
the depth z. In medical imaging, point clouds enable contactless and radiation-free
measurements e.g. to manufacture implants designed specifically for each patient [4].
However, due to the medical topography and the endoscope’s limited field-of-view,
some areas are out of sight and not included in the point cloud with a single-shot [12].
Hence, for an authentic representation, several point clouds have to be acquired from
different viewpoints and transformed into one common coordinate system which is
referred to as point cloud registration.

Figure 1.4: Reconstructed point cloud of a mouth phantom

In point cloud registration, similar to image registration, two or more point clouds
of the same 3D scene are aligned by using feature extraction and determining
correspondences between the clouds [12, 13]. A registration algorithm estimates
the transformation between each pair of point clouds by employing said correspon-
dences and applies the transformation to locate each point cloud within a common
global coordinate system. Then, the data of the point clouds is fused yielding one
large-scale point cloud. In addition to overcome the line-of-sight problem, point
cloud registration is used in surgical navigation [14, 15]. However, registration prob-
lems in the medical field are especially challenging since a static world assumption
is not applicable most of the time. For instance, soft tissue, patient movement
and blood flow alter images, and hence also point clouds, considerably [1]. This
lowers the accuracy of the registration result or may even hinder a proper registration.

This thesis is conducted in cooperation with the Fraunhofer Institute for Telecom-
munications, Heinrich Hertz Institute (HHI) which is a research institute in Berlin,
Germany [16]. Specifically, it is carried out within the Capture and Display Systems
group of the Vision and Imaging Technologies department at HHI. The research
group focuses on ultra-high definition 3D scene analysis and display solutions which
are used in media, industrial and medical applications [17].

3



1. Introduction

1.2 Aim

In this thesis, the imaging devices are stereo-endoscopes for ENT surgery and
laparoscopy. Therefore, the aim of this master’s thesis is to develop a modular frame-
work for point cloud registration obtained from stereoscopic images in the context
of endoscopic surgery. This includes feature extraction, correspondence estimation
and a selection of algorithms which register point clouds (semi-)automatically. In
addition, the registration with 3D CT data is evaluated.

For data acquisition, three 3D endoscopes are used in combination with a selection of
objects: a specimen where CAD model functions as a reference and a medical head
phantom for which a CT model is available. Additionally, reconstructed point clouds
from the SCARED Challenge based on the method of Rosenthal et al. is utilized
(see [18]). For this dataset, pose information between the stereo pairs is available
since the dataset was obtained with a da Vinci Xi surgical robot by [18].

The evaluation compares the different registration methods and their application on
different datasets and test scenarios.

1.3 Limitations

Since this thesis project is conducted in a restricted time period, several limitations
have to be set. Only a selected number of registration methods will be implemented
and evaluated. Furthermore, only the quality of the registrations is evaluated; the
time for the estimation is not taken into account.

1.4 Ethical Considerations

Ethical considerations include the utilized data and how this thesis is of importance
to society. No patient data was used and was therefore no concern within the
scope of this thesis. One dataset was acquired within the scope of a challenge us-
ing porcine cadavers [18]. Here, the ethical decisions rest with the challenge organizer.

This thesis is important to society to improve the training and performance of
surgeries as well as the creation of implants. The registration framework can be
used as a basis to observe surgeries more precisely and to train medical staff with
3D reconstructions of the human body. In addition, more accurate measurements for
implants and prostheses can be made without exposing the patient to radiation.

1.5 Outline of this thesis

This thesis comprises six chapters. This chapter, Chapter 1, is an introduction and
overview of the topic containing the aim, the limitations and the ethical considera-

4



1. Introduction

tions.

Chapter 2 explains the fundamental theory. This includes the point cloud acquisition
process based on the stereo principle and the analysis of point clouds. For the point
cloud registration, two global registration methods and three variants of a local
registration method are presented.

Chapter 3 describes the methods. In particular, the objects and reference data
which are aimed to be registered as well as the endoscopes and software used for the
acquisition process are mentioned. In addition, the three test scenarios are outlined.

Chapter 4 presents the results obtained with the previously explained methods.

Chapter 5 discusses the results and gives remarks about possible improvements and
future research.

Chapter 6 provides a conclusion.
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2
Theory

This chapter provides a detailed description of the theory on which this thesis and
its methods are based on. First, the camera models for image and point cloud
acquisition, their parameters and crucial aspects are outlined. Subsequently, feature
extraction and correspondence estimation is presented. Then, an overview of point
cloud registration including its mathematical fundamentals is given in addition to
the presentation of a selection of registration methods.

2.1 Image and Point Cloud Acquisition

In computer vision, 3D images and point clouds can be obtained by active techniques
which emit a signal e.g. laser light and observe the back-scattered signal [12]. Passive
techniques, on the other hand, make use of matching points in two or more images
of the same scene either taken from one camera in motion or by several cameras.
In this thesis, point clouds are obtained by two identical cameras facing the same
direction and hence, only this acquisition process is outlined [12, 19].

2.1.1 Interior Orientation of a Camera

The interior orientation of a camera is based on the pinhole camera model, a widely
used and also the most basic representation of image capturing devices [7, 19]. The
model is illustrated in Figure 2.1.

Figure 2.1: The principal of a pinhole camera model based on [19]. The image point P ′

is defined by the principal distance c and the depth z from the perspective
centre O, through which all light rays r pass, to the object point P .
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The cube represents the interior of the camera, while the outer part is referred to
as the exterior [7, 19]. The perspective centre O is the pinhole through which all
light rays r pass. Inside the camera, the distance between the image plane and
the perspective centre is the principal distance c. Outside the camera, the distance
between the object and the perspective centre is indicated as the object distance or
depth z. The light rays travel from the object point P in the exterior through the
pinhole onto the image plane at the back of the camera creating the image point
P ′. In digital imaging, colour images are often generated utilizing a CMOS-based
sensor and hence, each point P ′ is represented by a pixel consisting of the three color
channels red, green and blue within a 2D grid.

Beyond spatial position of the perspective centre and the principal distance within the
camera coordinate system, physical cameras have optical distortions and alignment
offsets w.r.t. to the sensor and cannot be formulated with the pure pinhole model.
For instance, a camera often incorporates a lens and hence, an external perspective
O and an internal perspective centre O′ can be defined. For these cameras, the
principal distance c is approximately equal to the focal length f , if the focus is set
to infinity. Furthermore, the perspective centre may have an offset and consequently,
the principal point H ′ does not lie in the center of the image coordinate system (see
Figure 2.2). As a result, the position of the point P ′ is shifted.

Figure 2.2: The interior orientation of a camera based on the pinhole camera model
including an offset of the perspective centre O [19].

The offset of the perspective centre can be taken into account using the measured
coordinates of the image point P ′ (x′

p, y′
p), the coordinates of the principal point H ′

(x′
h, y′

h) and the correction values error in the image plane (∆x′, ∆y′) [19]. Then,
the vector r can be defined as follows:

r =






x′

y′

z′




 =






x′
p − x′

h − ∆x′

y′
p − y′

h − ∆y′

−c




 (2.1)

The interior orientation parameters are determined by single camera calibration (see
subsection 2.1.4).
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2.1.2 Exterior Orientation of a Camera

The exterior orientation of the camera defines its position and orientation within a
global coordinate system (see Figure 2.3) and is described by six parameters [19].

Figure 2.3: The exterior orientation of the camera and image coordinate systems
according to [19]. The vector X0 in conjunction with the angles φ, ω and κ

define the position and orientation of the camera coordinate system.

The vector X0 specifies the position of the perspective centre O along the X, Y and
Z axes while the rotation matrix R incorporates the angles ω, φ and κ:

X0 =






X0

Y0

Z0




 (2.2)

R =






r11 r12 r13

r21 r22 r23

r31 r32 r33




 with R = Rω · Rφ · Rκ (2.3)

The rotation matrix can be calculated using Euler angles. Alternatively, rotations and
spatial orientations of objects in 3D space may be described by quarternions [19–21].
The quaternions model is a four dimensional numerical system introduced by William
Rowan Hamilton in 1843 which avoids ambiguity resulting in singularities compared
to when using Euler angles to describe rotations. Furthermore, it simplifies the
calculations and decreases computational time. For the model, Hamilton extended
the real numbers with three imaginary units: i, j and k. The skew field H of
Hamilton’s quaternions is defined as follows:

H := {q = q0 + q1 · i + q2 · j + q3 · k | q0, q1, q2, q3 ∈ R} (2.4)
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A unit quaternion is defined as q2
0 + q2

1 + q2
2 + q2

3 = 1 with q0 ≥ 0. The rotation
matrix of the unit quaternion q around a vector p is then described by:

R = q · p · q∗ (2.5)

=








q0

q1i

q2j

q3k















0
xi

yj

zk















q0

−q1i

−q2j

−q3k








(2.6)

=






q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

o − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3




 (2.7)

A more detailed derivation of the rotation matrix can be found in section A.1.

2.1.3 Lens Distortion

The image forming process often comes with image distortions due to the non-linear
characteristics of lenses, so that straight lines in the real world are no longer straight
lines in the image [19, 22]. The ideal situation without distortion effects is depicted
in Figure 2.1 where the angle of incidence of the light rays is equal to the angle
of emergence. However, camera lenses cause aberrations resulting in radial and
tangential distortions. Radial distortions occur when light rays have a greater angle
difference between incidence and emergence at the edges than at the centre. Tangen-
tial distortions arise when a lens is tilted and de-centred. In practice, only radial
distortion (see Figure 2.4) are compensated while tangential distortions may be
neglected due to increased assembling/manufacturing quality.

The ideal case with no distortions is referred to as orthoscopic. A (radial) barrel
distortion is caused when the aperture is closer to the object resulting in a wider
field of view of the lens than the size of the image sensor. Consequently, straight
lines appear curved inwards. Pincushion distortion, on the other hand, occurs when
the aperture is moved towards the image and therefore, the field of view is smaller
than the size of the image sensor. As a result, straight lines are curved outwards.

The radial distortions can be described by an infinite series [22]:

xu = xd(1 + k1r
2
d + k2r

4
d + ...) (2.8)

yu = yd(1 + k1r
2
d + k2r

4
d + ...)

where mu = (xu, yu) and md = (xd, yd) describe the undistorted and distorted image
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2. Theory

(a) Barrel distortion (b) Orthoscopic (c) Pincushion distortion

Figure 2.4: Principles of radial lens distortion based on [19]. Radial distortions cause
straight lines to curve (a) inward and (c) outward compared to the
undistorted ideal case in (b).

point respectively, the distorted radius is denoted by rd =
√

x2
d + y2

d and where k1

and k2 are the radial distortion parameters. The order of the polynomial indicates
the accuracy with which the distortion is eliminated.

2.1.4 Single Camera Calibration

Single camera calibration includes the internal and external orientation as well as the
elimination of lens distortion. Usually, the calibration process is carried out by taking
several pictures with different viewpoints of a calibration pattern e.g. a chequerboard
pattern with a known dimension and structure. Based on detected corner points
geometric characteristics can be derived e.g. different angles and distances [23]. This
allows to estimate the camera and lens parameters based on the made observations
compared to the underlying chequerboard reference data with the help of 2D-3D
point correspondences.

For the determination of the interior orientation of each camera, the intrinsic camera
parameters are stored in the 3x3 matrix K, referred to as the camera calibration
matrix [7, 19]:

K =






fx s cx

0 fy cy

0 0 1




 (2.9)

The focal lengths in x and y dimensions are denoted by fx and fy respectively while
(cx, cy) indicate the optical center in pixel coordinates also referred to as the principal
point [7, 19]. The skew s describes the inclination between the sensor axes and the
optical axes e.g. due to the rare case of non-squared pixels. In practice, the skew
may be set to zero and the optical center to half the width in both x and y direction.
As a result, the focal lengths are the only unknown intrinsic parameters.

Together with the extrinsic parameters, namely the rotation R and the translation
t, the (total) projection matrix P = K[R|t] can be specified [7, 19]. Then, the
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projection between the known image point (x, y, z) and the corresponding known
homogeneous object point (X, Y, Z, 1) has the following form:






x

y

z




 =






fx s cx

0 fy cy

0 0 1











r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3













X

Y

Z

1








(2.10)

Both, the intrinsic and the extrinsic parameters, are then estimated using a linear
equation system consisting of several projections.

Radial lens distortions are eliminated by assuring that straight lines in the 3D space
also appear straight in the image plane [22]. With the usage of a calibration pattern
the radial distortion parameters in Equation 2.8 are estimated to the desired degree
of accuracy.

2.1.5 Stereo Camera Calibration

Besides the process of single camera calibration, it needs to be extended to stereo
camera calibration, which describes the pose of the cameras w.r.t each other using the
pinhole model. The ideal stereo model consists of two axis-parallel, non-convergent
camera as shown in Figure 2.5 [19].

Figure 2.5: Special case: Stereo model consisting of two axis-parallel, non-convergent
cameras Cl and Cr according to [19]. The focal length f and the stereo
base b are crucial parameters to calculate the depth z.
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Two identical cameras, Cl and Cr, face an object with parallel axes [19]. The distance
between their perspective centres is the stereo base b. The depth z is given by the
perpendicular distance from the stereo base to the object point P . The ratio of
the depth and the stereo base specifies the accuracy with which the object point
is represented in the image planes I1 and I2 respectively. The points p1 and p2 are
corresponding image points in their respective image planes.

Assuming parallel axes, the disparity d is obtained by the distance or pixel difference
in horizontal direction between two corresponding image points pi and pj from their
respective image [19, 24]:

dij = pi − pj (2.11)

The acquisition of the relationship between the point p1 and the corresponding point
p2 is referred to as image matching and is based on finding feature points in each
image [12, 19]. Local features focus on edge elements and striking regions within an
image. These are efficient, relatively stable across a moderately wide range of per-
spectives and enable a unique identification as well as an accurate localization. The
location of a local feature is obtained by a feature detector while a feature descriptor
represents the characteristics of that feature. Since the location is distinctive, it is
often referred to as a keypoint while its characteristic representation is a keypoint
descriptor.

A variety of different keypoint detectors and descriptors exist to find matching image
points [12, 19]. For 2D imaging, popular and robust feature detectors and descriptors
include Scale-Invariant Feature Transform (SIFT) and Speeded Up Robust Features
(SURF). Both methods make use of the Gaussian blurr, however, the approach of
approximation differs, and the keypoint descriptor is stored in form of a histogram
[25, 26]. Another feature descriptor is Semantic Kernels Binarized (SKB) proposed
by Zilly et al. where a located keypoint is described by filtered semantic kernels i.e.
edges, ridges, corners, blobs, and saddles [27]. This method reduces the runtime
and descriptor size compared to the former methods considerably and is specifically
designed for real-time applications.

The relationship between corresponding points in stereo imaging is described by the
fundamental matrix F [7, 19, 28]. This 3 × 3 matrix depends on the extrinsic and
intrinsic camera parameters and must satisfy the following condition for all i:

x′T
i Fxi = 0. (2.12)

Here, xi represents a set of points in one (e.g. left) image and x′
i are the corresponding

points in another (e.g. right) image [7, 28]. The respective initial projection matrices
are defined as

P = K[I|0] (2.13)

P ′ = K ′[R|t]

13
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where I is the identity matrix, R the rotation, t the translation and where K and
K ′ represent the corresponding calibration matrices. Then, the fundamental matrix
is defined as follows:

F = K ′−T [t]×RK−1 with t = −RC (2.14)

Here, C describes the camera centre of the right camera.

In stereo image matching, it is often assumed that the corresponding points lie along
a horizontal line as presented in Figure 2.6 [19]. In this ideal case, the axes of the
cameras are parallel and hence, the obtained images lie within the same plane. The
figure shows that the image acquisition of the object point P takes place along
the projection lines r1 and r2 passing through the image points p1 and p2 and the
perspective centre of the cameras O1 and O2. The project lines in conjunction with
the stereo base form the epipolar plane. The intersection of the epipolar plane with
the image planes is referred to as the epipolar lines k1 and k2. In this ideal case
the epipolar lines are parallel to the horizontal direction of the images and hence,
the image point q2 of an additional object point Q only results in a horizontal shift
along the epipolar line. Consequently, by assuming parallel axes of the cameras,
the correspondence-problem is simplified to a horizontal line and hence, for the
calculation of the disparity only the horizontal direction has to be taken into account.

Figure 2.6: Epipolar geometry for parallel image axes based on [19]. The object point
P is captured along the projection lines r1 and r2 resulting in the image
points p1 and p2.

Assuming parallel-axes, the following applies to the parameters in Equation 2.14:
K ′ = K, R = I and t = (1, 0, 0)T . As a result, the fundamental matrix has the form:

F =






0 0 0
0 0 −1
0 1 0




 (2.15)
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2.1.6 Stereo Rectification

Although it is generally assumed that the two cameras have parallel axes as described
in the previous section, this is usually not the case in real-life scenarios [19, 28].
Instead, the cameras converge resulting in convergent image planes as visualized in
Figure 2.7. For the user, this leads to exhaustion and eye strain. Furthermore, the
epipolar lines are slanted and as a consequence, image matching and the calculation
of the disparity between corresponding points is hindered as the correspondence
search is no longer one-dimensional search problem.

Figure 2.7: Epipolar geometry for convergent image axes based on [19]

These slight geometrical distortions can be corrected using image rectification [28, 29].
This method transforms the image planes parallel to the baseline by incorporating
roll, tilt, y-shift and zoom and facilitates the challenge of finding corresponding
feature points between images. It may be implemented in various ways of which some
approaches apply a calibration process. However, calibration might not be sufficient
or the data is not available and hence, correspondence-based rectification processes
are utilized. These approaches use robust feature detectors such as SIFT, SURF
or SKB to determine correspondences between the images (see subsection 2.1.5).
Although these descriptors are robust, outliers are still present and hence, a technique
such as RANSAC is applied (see subsection 2.3.2).

When roll, tilt, y-shift and zoom are estimated, they are stored in two homography
matrices H and H ′ which are then applied onto their corresponding projection matrix
in Equation 2.13 [28]. The rectifying homographies have the following form:

H = KRT K−1 (2.16)
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2.1.7 Point Cloud Generation

From the rectified images, a point cloud can be reconstructed in 3D based on the esti-
mation of the disparity map and the calibration data. The disparity map visualizing
the horizontal shifts in pixel coordinates is generated according to Equation 2.11. To
improve the disparity map, an iterative sweep method as presented by Waizenegger
et al. may be utilized [30].

Then, with the usage of the determined stereo camera calibration data, the depth
values can be calculated for each pixel pair:

zij =
b · f

dij

(2.17)

However, in real-life scenarios, the projection lines r1 and r2 as visualized in Figure 2.6
do not meet. Hence, the depth is estimated by finding the shortest distance between
the projection lines. Together with the x and y coordinates, the data is stored in
form of a point cloud.
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2.2 Point Cloud Analysis

Point cloud registration is the process of fusing multiple point cloud of the same
object or environment in to one common point cloud. In order to register point
clouds, they must first be analyzed. This includes normal estimation, the calculation
of geometric features and correspondence estimation [12, 19].

2.2.1 Normal Estimation

A normal vector n = (nx, ny, nz)T describes the orientation of the surface in a point
p [8]. A variety of methods exist to compute normal vectors in point clouds of which
most perform eigenvalue decomposition. Furthermore, normals are determined by
taking the neighboring points into account by applying a k nearest neighbors (k-NN)
algorithm e.g. by using a k-d tree and/or radius search.

A k-dimensional tree (or k-d tree) is a binary tree often used in range and nearest
neighbor search [31]. Each level of a tree represents one dimension. For point cloud
registration, usually a 3D tree is used and hence, the tree consists of three levels.
For each dimension, the median of values is determined splitting the dataset (here:
point cloud) in two. Hence, for three dimensions, the dataset is split into eight cells
referred to as leaf cells. These leaf cells may then be split again.

For the normal estimation, the centroid (or mean) µ of the neighborhood of a point
p and the 3 × 3 covariance matrix Σ are determined [8, 32]:

µ =
1

k

k∑

i=1

pi (2.18)

Σ =
1

k

k∑

i=1

(pi − µ)T (pi − µ) (2.19)

Then, the eigen vectors ~vm and eigen values λm of the covariance matrix are obtained
which fullfill the following condition:

Σ · ~vm = λm · ~vm with m ∈ {0, 1, 2} (2.20)

Both, the eigen values and vectors, can be acquired by Principal Component Analysis
(PCA), a method which extracts the principal components of a dataset by the size
of the variance [8, 32]. For an m-dimensional dataset, m uncorrelated principal
components and hence m eigen vectors and values are obtained. The eigen vector
with the smallest corresponding eigen value constitutes the normal vector.

2.2.2 Fast Point Feature Histograms

Most image and point cloud registration methods depend on the calculation of
geometrical features [19]. A variety of different approaches exist with which features
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can be extracted; however, the current state-of-the-art approach for point cloud
registration is called Fast Point Feature Histrogram (FPFH) and was presented by
Rusu et al. in 2009 [33, 34]. An FPFH is based on Point Feature Histrogram (PFH)
which are pose-invariant local features that describe the geometrical properties at
a point p [34]. Their computation makes use of the neighborhood and the normal
vector of a point.

A Point Feature Histrogram (PFH) describes the mean curvature at a query
point pq to encode the geometrical properties of the immediate neighborhood. Fig-
ure 2.8 illustrates the region of influence for a query point pq (blue). The radius of the
sphere whose centre lies at pq defines the k neighbors which are then interconnected
to a mesh. For each point pair, four features are computed and stored in a 16-bin
histogram.

Figure 2.8: Influence region for a Point Feature Histogram based on [34]. The query
point (blue) is connected with its nearest neighbors (green) within a defined
radius

For two points pi and pj, their interconnection is computed using their normal vectors
ni and nj where the point pi has the smaller angle ϕ [32]. Their relationship is then
calculated using a Darboux frame which is visualized in Figure 2.9.

Figure 2.9: Darboux frame based on [32]. The normal vectors of the two points pi and
pj are denoted by ni and nj .

In the frame, the vectors u, v and w constitute the Cartesian coordinate system at
the point pi:
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u = ni

v = u ×
(pj − pi)

‖pj − pi‖
(2.21)

w = u × v

Then, four features can be calculated to describe the difference between the normal
vectors ni and nj. This includes the angles α, φ and θ as well as the Euclidean
distance d:

α = v · nj

ϕ =
u · (pj − pi)

d
(2.22)

θ = arctan(ω · nj, u · nj)

d = ‖pj − pi‖

A Simple Point Feature Histrogram (SPFH) takes only the interconnections
to the nearest neighbors of the query point pq into account as visualized in Figure
2.10a [34]. Hence, the neighbors are not fully interconnected as with the PFH.

(a) SPFH (b) FPFH

Figure 2.10: Influence region and relationships for (a) Simple Point Feature Histogram
and (b) Fast Point Feature Histogram according to [34]. The query point
(blue) is connected with its nearest neighbors within a defined radius. In
(b), the second neighbors are incorporated as well.

A Fast Point Feature Histrogram (FPFH) is computed on the basis of the
SPFH (see 2.10b). Here, first the SPFH for a point pq with its k neighbors is
calculated. Then, in a subsequent step, the SPFH calculation is repeated for each
neighboring point pk. The final FPFH is calculated by incorporating the weight wk

which describes the distance between a query point pq and its neighboring point pk:
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FPFH(pq) = SPFH(pq) +
1

k

k∑

i=1

1

ωk

· SPFH(pk) (2.23)

Each feature is stored in a 33-bin histogram. Notice how some interconnections in the
illustration are counted twice since the connection lies within the radius of two SPFH.

An advantage of the FPFH compared to the PFH is the complexity [32, 34]. For
the PFH the following applies: for each neighborhood with k neighbors, k−1

2
of these

relationships are calculated resulting in O(n · k2) computations where n denotes
the number of points within a point cloud. By using the FPFH, the amount of
computations can be reduced to O(n · k).

2.2.3 Correspondence Estimation

For some registration methods, correspondences between the to be registered point
clouds have to be estimated in beforehand. The correspondence problem is ill-posed
since a robust and unique solution may not exist: there might not be a corresponding
point, several points may be eligible as a corresponding point because of ambiguous
structures in the object or the presence of noise [19]. In general, the solutions assume
several conditions e.g. constant intensities, steady lightning and ambient effects
as well as stable object texture for the duration of the image acquisition process.
However, for real point clouds it is not uncommon to have more than 95% of outlier
correspondences [35].

The estimation of correspondences based on FPFH descriptors can be conducted
as follows: let P be the target point cloud and Q the source point cloud. Corre-
spondences are estimated by comparing the feature histogram of a point pi in P
with histograms of points in Q [33, 34]. The histogram which is most similar to the
target point is selected and the correspondence is saved in the correspondence set
K = {pi, qi}.
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2.3 Point Cloud Registration

In point cloud registration, similar to image registration, two or more point clouds
are aligned to map an object or a scene usually in a 3D space [2, 3]. Mathematically,
the registration of two point clouds can be outlined as follows: let {P , Q} be two
point clouds of finite but possibly of different size where P denotes the target point
cloud and Q indicates the source point cloud [36]. In general, both point clouds are
expected to be within a real vector space of the same dimension R

d. In case of point
clouds taken from stereo images, a 3D vector space i.e. R3 is assumed. A registration
algorithm yields to find the optimal transformation of the source point cloud to map
onto the target point cloud given a correspondence set and hence, the best alignment
between these point clouds.

A distinction is made between correspondence-based registration algorithms and
simultaneous pose and correspondence registration methods [3]. Both approaches
assume that there is a finite number of correspondences between the two point clouds.
These are computed by finding a matching point in the target point cloud with
respect to a point in the source point cloud e.g. by feature matching or by finding the
smallest distance between points. The latter, also estimates the pose of the source
point cloud concurrently.

Additionally, a difference is drawn between global registration and local registration
methods. Global registration methods yield a coarse alignment between point clouds
and do not require an initial alignment [37]. Furthermore, these methods usually
operate on down-sampled point clouds for more efficiency. Local registration methods,
on the other hand, refine the result of a global registration method and strive for the
most accurate registration achievable.

2.3.1 Types of Transformations

For the registration, the type of transformation and its number of DoF have to
be selected in accordance with the problem definition. Here, a distinction is made
between linear transformations and non-rigid ones [38]. Linear transformations keep
straight lines parallel and include translation, rotation and scaling as visualized in
Figure 2.11. Non-rigid transformations, on the other hand, do not preserve angles
and might not maintain parallelism.

Figure 2.11: Types of transformations in 2D space according to [19, 39]
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The rigid transformation (also referred to as Euclidean transformation) comprises
six DoF in 3D space including three translations and three rotations and hence, a
minimum of three correspondences is needed to find an adequate solution [2, 40].
Mathematically, the relationship between a point in the target point cloud P and a
point in the source point cloud Q can be expressed as follows:

P = tRQ (2.24)
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(2.25)

The similarity transformation incorporates seven DoF involving three translations,
three rotations and a scaling factor [2, 19, 40]:

P = tRsQ (2.26)
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The affine transformation keeps straight lines parallel but does not preserve angles
since in addition to including three translations, three rotations and three separate
scaling factors, three angles for the shear h are considered as well [2, 19, 40]. Hence,
in 3D space, this transformation has twelve DoF and is denoted as follows:

P = tRsQ (2.28)
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The projective transformation (also known as homography) maps one plane to
another via a central projection and comprises 15 DoF [19, 40]. In contrast to the
affine transformation, this transformation does not preserve parallelism, but straight
lines are still kept straight. In addition to the parameters incorporated in the affine
transformation, the projective transformation includes the projection vector c:

P = tRscQ (2.30)
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22



2. Theory

2.3.2 Random Sample and Consensus (RANSAC)

RAndom SAmple Consensus (RANSAC) is an iterative algorithm to find a suitable
model for a set of data and was published by Fischler and Bolles in 1981 [41]. In
point cloud registration, this method is classified as a global and correspondence-
based registration algorithm [3]. The algorithm uses random sub-sampling to find
a model with the greatest amount of inlier correspondences which is also referred
as consensus set [7, 33]. It is especially known for being robust in the presence of
outliers. Algorithm 1 describes its procedure for point cloud registration.

Algorithm 1 RANSAC

Input: Point clouds Q = {qi} and P = {pj}, correspondence set K = {pi, qi},
number of correspondences Nk, inlier threshold D, distance threshold d

Output:

function ransac(Q, P , D, d)
N = ∞ ⊲ Number of iterations
Ndone = 0 ⊲ Number of iterations
while N > Ndone do

Select Nk random correspondences
Compute transformation T based on that subset and apply to Q
Determine inlier correspondences within the distance threshold d

if number of inliers ≥ inlier threshold D then
Re-calculate the transformation T with all inliers and terminate

else
Select a new subset

end if
Update N based on Equation 2.32

end while
Use the best result

end function

Figure 2.12 illustrates this algorithm. The green points are points within the target
point cloud P while the red ones represent the source point cloud Q. The distance
threshold d specifies if a data point is an inlier or not and therefore, if it is classified
as part of the consensus set [7].

For the algorithm, several parameters have to be set: the distance threshold, the
number of iterations and the acceptance rate for the largest consensus set [7]. In
general, the distance threshold is chosen empirically i.e. the data point is an inlier
with a probability of α. In practice, the probability for a data point to be an inlier is
set to 95% and therefore, α is specified as 0.95. The amount of subsets and therefore
the number of iterations N is chosen adequately high to make sure with a probability
p that there exists at least one subset without outliers. Generally, this probability p

is set to 0.99. The relationship between this probability, the number of iterations,
the probability w that any point is an inlier and the size of the subset s is the following:
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Figure 2.12: Illustration of the RANSAC algorithm for point cloud registration based
on [7]. Given correspondences between the target point cloud (green) and
the source point cloud (red), the transformation is estimated. The
distance threshold d defines which correspondences are inliers.

N =
log(1 − p)

log(1 − ωs)
(2.32)

Hence, if the dataset contains a large amount of outliers, the number of iterations
has to be set greater than when less outliers are present. The third parameter
which has to be chosen is the acceptance rate for the size of a consensus set [7].
A general rule is to set this rate similar to the proportion of inliers in the entire dataset.

Since the proportion of outliers is often unknown and therefore, the number of
iterations cannot be estimated appropriately, and adaptive procedure may be chosen
[7]. Here, the algorithm is initialized using an estimated worst-case scenario for the
proportion of outliers ǫ = 1 − ω. Then, the number of iterations may be updated in
case larger consensus sets are found. In this way, the number of iterations N can
be initialised with infinite iterations and be decreased adaptively with each subset
which has a larger consensus set than any subset beforehand.

2.3.3 Truncated least squares Estimation And SEmidefinite
Relaxation (TEASER)

Truncated least squares Estimation And SEmidefinite Relaxation (TEASER) is
a fast and certifiable point cloud registration method and was proposed by Yang
et al. in 2020 [3]. This method is a global correspondence-based approach and
its distinctive characteristic compared to other registration algorithms is that the
registration result has to be certified. This means that the algorithm must present a
certificate for the solution’s quality or alternatively proclaim failure. Furthermore,
the scale, the rotation and the translation are determined consecutively and in addi-
tion, it yields a higher accuracy and robustness than current state-of-the-art methods.

Assume (pi, qi) is the i-th correspondence in a correspondence set K based on the
two point clouds P and Q [3]. The correspondences comply to the following function
where ǫi signifies noise:
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pi = s · Rqi + t + oi + ǫi (2.33)

The vector oi is a vector of zeros if the correspondence is an inlier or a vector of
arbitrary numbers in case of an outlier correspondence. The correspondence is an
inlier if the target point pi is equivalent to a 3D transformation of the source point
qi plus noise. It is an outlier, if pi is an arbitrary vector.

Most solvers use convex functions as a basis [42]. Those are functions where a line
segment between any two points on the graph of that function lies above the graph
[43]. An example of a convex function is least squares. Although convex functions
are widely used, they are sensitive to outliers since large residuals dominate the
cost. The TEASER algorithm relies on Truncated Least Squares (TLS) estimation,
a non-linear and non-convex least squares method visualized in Figure 2.13 [3, 44].
As demonstrated, for large residuals the cost is constant while for small residuals,
the cost is equal to the least squares function.

Figure 2.13: Truncated least squares according to [44].

Mathematically, the TLS registration has the following form:

min
s>0, t∈R3, R∈SO(3)

N∑

i=1

min(
1

βi

‖pi − (sRqi + t)‖2, c̄2) (2.34)

Hence, a least squares solution is computed for small residuals i.e. if ( 1
βi

‖pi − (sRqi +

t)‖2 ≤ c̄2). In case of large residuals, the measurements are discarded. Furthermore,
it is assumed that the inlier noise ǫi is smaller than the bound βi: ‖ǫi‖ ≤ βi. Addi-
tionally, it can be assumed that c̄ = 1.

A continuation of the above is Graduated Non-Convexity Truncated Least Squares
(GNC-TLS) [3, 42]. This method is initiated with a convex function (here: least
squares) and gradually changes to a non-convex function until a robust estimation is
achieved. As visualized in Figure 2.14, this is accomplished by steadily increasing
the factor µ in a surrogate function in an iterative optimization process.
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Figure 2.14: Graduated non-convexity truncated least squares as presented by [42].

As stated, in TEASER, the scale, rotation and translation are decoupled and
estimated consecutively [3]. This is achieved by applying measurements that are
invariant to translation and/or rotation. Translation Invariant Measurements (TIMs)
are based on the idea that the absolute locations of the points in P are affected by
the translation t, but the relative positions are not. For two correspondence pairs
ki = (pi, qi) and kj = (pj, qj), the distance between the points pi and pj has the
following form:

pj − pi
︸ ︷︷ ︸

p̄ij

= sR(qj − qi
︸ ︷︷ ︸

q̄ij

) + ✘
✘
✘✘(t − t) + (oj − oi

︸ ︷︷ ︸

ōij

) + (ǫj − ǫi
︸ ︷︷ ︸

ǭij

) (2.35)

Notice that the translation is eliminated by subtraction and the relationship only
depends on the scale and rotation. Hence, a TIM can be obtained by calculating p̄ij

and q̄ij and satisfies the following model:

p̄ij = sRq̄ij + ōij + ǭij (2.36)

Here, ōij is zero if both correspondences ki and kj are inliers or otherwise an arbitrary
vector.

Translation and Rotation Invariant Measurements (TRIMs) are built on the concept
that although relative locations of TIMs are still affected by the rotation R, their
distances are not. Hence, the norm of every TIM is calculated to construct a rotation
invariant form:

‖p̄ij‖ = ‖sRq̄ij + ōij + ǭij‖ (2.37)

= ‖sRq̄ij‖ + õij + ǫ̃ij (2.38)

Then, for an inlier measurement and by taking the rotation invariance of the norm
into account as well as the scale being s > 0, the following TIM can be formulated
by dividing the above term by ‖q̄ij‖:

sij = s + os
ij + ǫs

ij with sij =
‖p̄ij‖

‖q̄ij‖
, os

ij =
õij

‖q̄ij‖
and ǫs

ij =
ǫ̃ij

‖q̄ij‖
(2.39)
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In addition, the term αij = δij

‖q̄ij‖
is phrased where |ǫ̃ij| ≤ δij.

Based on these measurements, the scale, the rotation and the translation can be
estimated based on adjusted TLS equations. At first the scale is computed using
TRIMs and the following adaption of Equation 2.34:

ŝ = arg min
s

N∑

n=1

min(
(s − sn)2

αn

, c̄2) (2.40)

Then the rotation is determined using TIMs and the previously estimated scale:

R̂ = arg min
R∈SO(3)

N∑

n=1

min(
‖p̄n − ŝRq̄n‖2

δ2
n

, c̄2) (2.41)

Finally, the translation is estimated:

t̂j = arg min
tj

N∑

i=1

min(
(tj − [pi − ŝR̂qi]j)

2

β2
i

, c̄2) with j = 1, 2, 3 (2.42)

Here, j corresponds to the j-th entry of the translation vector i.e. each component
for the vector is estimated independently.

TEASER also makes use of graph theory to discard outliers [3]. In general, a graph
G(V , E) consists of a set of vertices or points V and a set of edges or lines E where
the connection between two vertices forms an edge. In the case of TEASER, the
vertices constitute the correspondences and the edges are established by the TIMs
and TRIMs. In a first stage, gross outliers of sij are rejected by the TLS function
resulting in a pruned graph G ′(V , E ′) where E ′ is a subset of E . To discard even more
outliers, a maximum clique inlier selection is applied in a second stage. A clique
is a subset of the vertices V where all vertices within that subgraph are pairwise
adjacent. The maximum clique inlier selection aims to find the subgraph with the
greatest clique number i.e. greatest amount of vertices.

The procedure of TEASER is summarized in Algorithm 2.
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Algorithm 2 TEASER

Input: correspondence set K = {pi, qi} and bounds βi for i = 1, ..., N , threshold c̄2,
graph G(V , E)

Output: Estimation of the scale, rotation and translation: ŝ, R̂, t̂

function teaser(K, βi, c̄2, G(V , E))
% Compute TIMs ∀i, j ∈ E
p̄ij = pj − pi

q̄ij = qj − qi

δ̄ij = βi + βj

% Compute TRIMs ∀i, j ∈ E
sij = ‖p̄ij‖

‖q̄ij‖

αij = δ̄ij

‖q̄ij‖

% Estimation of s
ŝ = estimation_of_s(sij, αij: ∀i, j ∈ E , c̄2)

% Update graph G
G ′(V , E ′) = grossOutlierRemoval(G(V , E))
G(V ′, E ′′) = maxClique(G ′(V , E ′))

% Estimation of R and t
R̂ = estimation_of_R({p̄ij, q̄ij, δi,j: ∀i, j ∈ ξ′′}, c̄2, ŝ)
t̂ = estimation_of_t({pi, qi, βi: i ∈ V ′}, c̄2, ŝ, R̂)

end function

2.3.4 Iterative Closest Point (ICP)

The Iterative Closest Point (ICP) algorithm is a popular local registration method
for overlapping 3D shapes and was introduced by Besl and McKay in 1992 [45]. This
method estimates correspondences between two point clouds and aligns these by
computing a rigid transformation. Hence, this algorithm depends both on correspon-
dence search and pose estimation. By now several variants of the algorithm exist,
but its fundamental procedure is outlined in Algorithm 3.

Apart from the target point cloud P and the source point cloud Q, the algorithm
needs an initial transformation T0 computed by a global registration method as an
input [45]. In addition, two convergence criteria can be defined: the maximum error
E and/or the maximum number of iterations Nmax.

First, the correspondence set K = {ki} with Nk correspondences is computed: for
each point q in the source point cloud Q, the closest point in the target point cloud
P is estimated by finding the point p yielding the smallest distance:
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Algorithm 3 ICP

Input: Point clouds Q = {qi} and P = {pj}, initial transformation T0

Output: Transformed source point cloud Q

function ICP(P , Q, T0)
T = T0 ⊲ Transformation
while E > d || N < Nmax do

for i = 1 to Nq do
ki = findClosestPoint(qi, P)

end for
T = minimizeError(K)
Q = applyTransformation(Q, T )
N = N + 1

end while
end function

e(q, P) = min
p∈P

‖p − q‖ (2.43)

Then, by minimizing the error E(R, t), the transformation is estimated. Figure 2.15
visualizes the error function for three common ICP variants.

(a) Point-to-point (b) Point-to-plane

Figure 2.15: Variants of the ICP method according to [45, 46]. pi denotes the target
point, ni indicates its normal vector and qi signifies the source point.

For the standard version of the ICP algorithm, also referred to as point-to-point ICP,
the error function has the following form:

E(R, t) =
Nk∑

i=1

‖(pi − (Rqi + t)‖2 (2.44)

Another version of the ICP algorithm is the point-to-plane ICP which enhances
performance by employing surface normal information [46, 47]. Here, the error
function includes the surface normal ni for every target point pi:

E(R, t) =
Nk∑

i=1

‖(ni(pi − (Rqi + t)‖2 (2.45)
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An additional variation is the colored-ICP where in addition to the geometric
properties, the color is incorporated [48]. Here, the error function has the following
form:

E(R, t) =
Nk∑

i=1

‖(Cp(f((Rqi + t) − C(q))‖2 (2.46)

Cp is the continuous color function defined on the tangent plane of p and the function
f(Rqi + t) − C(q)) projects the point q onto that tangent plane.

After estimating the transformation with one of the error functions, the result is
applied to the source point cloud. Another iteration begins if the error is greater
than the defined threshold or if the number of iterations N is below the previously
defined maximum.

2.3.5 Multiway Registration

So far, only pairwise registration was discussed. However, in many cases more than
two point clouds have to be aligned. A pose graph, as visualized in Figure 2.16,
displays a registration process for multiple point clouds.

Figure 2.16: Pose graph consisting of nodes {xi} and edges {Tij} based on [49]

For each point cloud at node {xi}, the edge or relative transformation {Tij} is
estimated with reference to an adjacent point cloud {xj} [49]. Then, the position
of each point cloud within the common global coordinate system is calculated
by multiplying the position of the first point cloud with the subsequent relative
transformations.

2.3.6 Evaluation

The evaluation of point cloud registration is predominantly based on quality mea-
sures. Two important parameters are the accuracy and precision whose difference is
illustrated in Figure 2.17 [19]. Accuracy describes how close a result is in comparison
to a ground truth or other measurement standard. Hence, a higher accuracy implies
a higher level of agreement. Precision, on the other hand, describes the spread or
variance from repeated measurements.
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The evaluation of point cloud registration is preferably done in comparison to a
ground truth. However, in many cases ground truth data is not given.

(a) Accurate + precise (b) Accurate (c) Precise

Figure 2.17: Assessment of measurement tasks: accuracy vs. precision according to [19]

The Root Mean Square Error (RMSE) is a widespread positional relative accuracy
measure to calculate actual-target comparison e.g. the difference between measured
values and the ground truth [19]:

RMSE =

√
∑n

i=1(Xi − X̄)2

n
(2.47)

where Xi describes the measured value and n is the number of data points. The
smaller the value of the RMSE, the better the registration. The RMSE lends a
comparatively high weight to large errors since the errors are squared before being
averaged.

In the open-source library Open3D, the primary result metrices for pairwise reg-
istration are the fitness F , the amount of inlier correspondences with respect to
the size of the target point cloud, and the inlier RMSE, the RMSE of all inlier
correspondences:

F =
Nk

Np

(2.48)

RMSE =

√
√
√
√

∑Nk
i=1(pi − qi)2

Nk

(2.49)

Here, Nk is the size of the inlier correspondence set and Np the number of points
in the target point cloud. For both measures applies, that in case of no inlier
correspondences, the measure is set to 0. Within this thesis, the RMSE is the inlier
RMSE as presented in Open3D.

In case of ground truth available as a pose graph, the euclidean distance between
each estimated pose {xi, yi, zi} and the ground truth pose {x̄i, ȳi, z̄i} is calculated:
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di =
√

(xi − x̄i)2 + (yi − ȳi)2 + (zi − z̄i)2 (2.50)

In addition, median, mean and standard deviation are calculated to evaluate multi-
way registration.
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Methods

In this chapter, the methods of the project are outlined. This includes an overview
of the hardware, the software as well as objects and reference data. In addition, the
specifications for the registration algorithms are defined and the testing configurations
and pipelines are specified.

3.1 Point Cloud Acquisition and Reference Data

A number of different objects and reference data are used to evaluate the registration
pipeline, as listed in Table 3.1.

Table 3.1: Objects and reference data

Company/Project Type Figure Ground truth

Fraunhofer HHI Specimen CAD model

SCARED Challenge Point clouds Pose graph

PHACON Throat assistent CT model

The data from the Stereo Correspondence and Reconstruction of Endoscopic Data
(SCARED) challenge was acquired by Allan et al. by employing a da Vinci Xi surgical
robot where each stereo pair was captured using an endoscope [18]. Ground truth
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data is available as pose graphs and in the context of the challenge, Rosenthal et
al. computed point clouds from stereo pairs which are aimed to be registered (see [18]).

The hardware of this project includes three digital laparoscopes/endoscopes with
their respective camera control units which are specified in Table 3.2.

Table 3.2: Endoscope systems

Company Endoscope Light source Application

AESCULAP EinsteinVision 2.0 EinsteinVision 2.0 Laparoscopy

AESCULAP EinsteinVision 3.0 - Laparoscopy

Xion EndoSURGERY 3D Spectar MATRIX LED Duo
Endoscopy,

microsopy

Note that the available Einstein Vision 3.0 does not possess a light source. Instead,
only the external surgical light marLED® by KLSmartin is utilized. Additional
hardware includes the RODEON TurnTable manufactured by Dr. Clauß Bild- und
Datentechnik GmbH which is controlled using the RODEONmdodular software.

The calibration of the endoscopes was previously conducted. Hence, the internal and
external camera parameters are known. For the lens distortion, an accuracy of three
radial distortion parameters was selected. For the EndoSURGERY 3D Spectar by
Xion, an additional calibration has to be performed before every application. This is
conducted using the XION 3D ALIGN, an external tool consisting of a plane with
a dot matrix and an attachment mount for the endoscope. Figure 3.1 displays the
calibration setup for this system.

Figure 3.1: Calibration of the EndoSURGERY 3D Spectar endoscope by Xion.

For the acquisition of point clouds, the STereoscopic ANalyzer (STAN) is utilized.
The app is an image analysis software displaying stereo images in real-time developed
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by Fraunhofer HHI [29, 50]. Within a stereo pair, the software determines SKB
features in each image and displays them color-coded corresponding to the object
distance. A rectification process is applied transforming the right image to be in
plane with the left. In addition, the disparity map is displayed and if applicable
smoothing options in form of median and/or bilateral filters are available. Point
clouds can be stored along with the respective stereo image pair.

To remove background that should not be stored as part of the point cloud, a chroma
keying feature is implemented in STAN. The implementation converts the RGB color
of each pixel into the HSV color space. The HSV color space represents colors by
hue, saturation and value and is therefore more suitable for this application [51].
When saving a point cloud, pixels which are in the defined HSV range, i.e. with a
hue between 40 and 81, a saturation between 51 and 255 and a value between 51
and 255, are not stored, mainly rejecting green color information e.g. green screen.
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3.2 Point Cloud Analysis and Registration

The point cloud analysis and registration pipeline is implemented using C++14.
The implementation is predominantly based on Open3D version 14, an open-source
library for 3D data processing and visualization [33]. Open3D is installed from
source with CUDA 11.3 support for parallel computing on the GPU. Additionally,
TEASER++ is installed from source for the employment of the global registration
method TEASER [3]. The implementation is executed on a Dell Precision T3600
work station with an NVIDIA GeForce GTX 980 graphics card and 32GB RAM.

An overview of the analysis and registration process including the available options
is given in Figure 3.2.

Figure 3.2: Overview of the point cloud registration pipeline
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In a first step, the analysis of the point clouds acquired by stereoscopic endoscpic/mi-
croscopic images is carried out. This includes the preprocessing of point clouds,
namely outlier removal and downsampling as well as normal estimation conducted
both on the input point clouds and the downsampled clouds. Additionally, feature
extraction based on FPFHs is performed on the downsampled point clouds.

In a subsequent step, multiway registration is conducted: each neighboring two point
clouds are registered by applying pairwise registration. Here, several options for
global and local registration methods are available of which all estimate a similarity
transformation. Each registration result is saved in a pose graph from which the
transformations are applied after iterating through all point clouds.

In an additional optional step, the registered stereoscopic endoscopic/microscopic
are registered with a reconstructed 3D CT model. Here, point clouds are first down
sampled and normal as well as FPFH estimation is conducted. Then, pairwise global
and local registrations are performed with one of the listed options and finally, the
resulting transformation is applied. The following sections specify the parameters
within each step.

3.2.1 Analysis

As stated, the analysis includes the removal of outliers, downsampling and normal
estimation for all point clouds and feature extraction for downsampled clouds.
Table 3.3 presents the parameters for the preprocessing step with the chosen values.

Table 3.3: Parameters for Preprocessing

Preprocessing Step Parameter Value

Outlier removal
nb_neighbors 30

std_ratio 2.0

Downsampling voxel_size 0.1 ... 1.0

Normal estimation max_nn 30

Feature extraction max_nn 30

Outlier removal is conducted by applying a statistical based approach implemented
by Open3D. The statistical outlier removal deletes points that are on average farther
distant from their neighbors. Here, the number of neighbors and the standard
deviation ratio have to be set.

For downsampling the voxel size, i.e. the size of each 3D point, has to be chosen
in accordance with the sensor specifications (here: in mm). A small voxel size
corresponds to a high resolution point cloud while a large voxel size results in a low
resolution point cloud. Defining the voxel size is a trade-off between computation
time and the accuracy of the registration. Additionally, the RAM may restrict the
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process to a larger voxel size due to memory shortage.

Normal estimation and feature extraction are conducted by taking a maximum
number of nearest neighbors into account.

3.2.2 Global Registration

The global registration includes an implementation for the RANSAC and TEASER
algorithms. Both methods make use of downsampled point clouds, the estimation of
normals and features. For TEASER, the correspondences are computed as well.

For RANSAC, Open3D provides the function RegistrationRANSACBasedOnFeature-

Matching which first estimates correspondences based on FPFHs and then applies
the RANSAC algorithm [33]. The function takes the source and target point clouds
as an input as well as the corresponding FPFHs and the parameters listed in Table 3.4
are set.

Table 3.4: Parameters for RANSAC

Parameter Value

mutual_filter true

distance_threshold 1 ... 10

TransformationEstimation PointToPoint

RANSACConvergenceCriteria
max_iterations 100

max_validation 0.999

The mutual filter applies a reverse check for correspondence estimation to make
sure that correspondences from source to target are also valid when estimated from
target to source. The distance threshold is set to in accordance with the sensor
specifications (here: in mm). For the convergence criteria, the maximum number of
iterations and the maximum validation have to be set.

The TEASER registration takes the calculated correspondences as an input (see
Algorithm 2) and the parameters specified in Table 3.5 are set. The value for the
noise bound is defined and as suggested by the authors (see Yang et al. [3]), the
value for c̄2 is set to 1. Since the point clouds vary in scale, scale estimation is
conducted. For the rotation estimation, the number of iterations, the GNC factor,
the type of estimation algorithm and the cost threshold are specified. Since this
methods estimates scaling, rotation and translation subsequently, the transformation
is computed according to Equation 2.26.
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Table 3.5: Parameters for TEASER

Parameter Value

General
noise_bound 0.5 ... 2

cbar2 1

estimate_scaling true

Rotation

rotation_max_iterations 1000

rotation_gnc_factor 1.4

rotation_estimation_algorithm GNC_TLS

rotation_cost_threshold 1000

For the registration with the CT model, a semi-automatic approach was implemented
where the user selects correspondences between the point clouds. Figure 3.3 displays
the interactive selection of five features in the CT mesh. To register a point cloud
with the CT, the user has to select points within the acquired point cloud close to
the location within the mesh.

Figure 3.3: Selection of correspondences by the user
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3.2.3 Local Registration

For local registration, one of the three ICP variants may be selected to refine the global
registration result: point-to-point, point-to-plane or colored ICP. All functions take
the source and target point clouds as an input. However, point-to-plane and colored
ICP additionally require the estimation of normal vectors in advance. Table 3.6
summarizes the parameters for this registration. Although the error functions differ
between the ICP variants, the same threshold and convergence criteria can be applied.
Here, the distance threshold is specified as the value of the voxel size.

Table 3.6: Parameters for ICP

Parameter Value

distance_threshold 0.25

ICPConvergenceCriteria

max_iteration 100

relative_fitness 1e-6

relative_rmse 1e-6

3.3 Test Setup

Three tests are conducted to evaluate the registration process and to compare its
varying methods. These tests are classified based on the available objects and
reference data listed in Table 3.1.

3.3.1 Test 1: Specimen

The specimen is placed approximately at the centre of the RODEON TurnTable.
Point clouds are acquired using the EinsteinVision 2.0 endoscope system mounted
at a fixed position 55mm far away from the centre of the turning table. A green
cloth placed underneath the specimen, the external light source and the application
of the chroma keying feature ensure that under- and background are not captured.
In addition, the point clouds are clipped to a distance between 15 and 70mm when
saved to preserve as little outliers as possible (see Figure 3.4). The turning table is
rotated with an angle difference of 5° for 90° resulting in 18 captured point clouds.

As for the registration, both global registration methods are applied for a comparison.
Local registration and the registration with the CAD model is not applied. For
downsampling a voxel size of 0.5mm is utilized and the distance threshold and noise
bound are set to 5mm and 1mm respectively.
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Figure 3.4: Setup for acquiring point clouds of the specimen utilizing the RODEON
TurnTable and the EinsteinVision 2.0 endoscope

3.3.2 Test 2: SCARED Challenge Data

From the SCARED data challenge the selected datasets listed in Table 3.7 are
registered.

Table 3.7: Selected SCARED Challenge Test Data

Dataset Number of Frames Point clouds (first and last frame)

1 10 ...

2 9 ...

3 15 ...

The selected three datasets correspond to a selection of frames from the following
datasets of the SCARED challenge:

• Dataset 1: Training, Dataset 1, Keyframe 1, every 20th frame
• Dataset 2: Training, Dataset 3, Keyframe 3, every 50th frame
• Dataset 3: Challenge, Dataset 9, Keyframe 1, every 50th frame + 3 frames
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For dataset 3, three additional frames are used apart from selecting every 50th frame
to minimize great changes in movement.

For these datasets a voxel size of 1mm is used to downsample the point clouds. For
dataset 1, a distance threshold of 1mm to 10mm is utilized for RANSAC while the
noise bound for TEASER is set to 0.25mm to 1mm. For the other datasets, the
distance threshold and the noise bound have values of 10mm and 1mm respectively.
All three local registration methods are applied and compared. The registration with
a CT is, however, not conducted since CT data is unavailable for this dataset.

3.3.3 Test 3: Throat Assistant

In this setup, the throat assistant is placed on the TurnTable while point clouds
are acquired with the EinsteinVision 3.0 or the EndoSURGERY 3D Spectar system.
To remove any background with the usage of the chroma keying feature, the throat
assistant is positioned on a green cloth in addition to a green background.

For the capturing using the EinsteinVision 3.0, the endoscope is placed 35mm far
away from the tip of the nose of the throat assistant and the point clouds clipping
parameter is specified as 15mm for near plane and 70mm for far plane. The turn
table is rotated for a total of 30°.

The EndoSURGERY 3D Spectar system is placed 10mm far away from the throat
assistant and points that are not within range of 5 and 60mm are discarded. Here,
the turn table is rotated for 20°.

The captured point clouds are inserted into the analysis and registration pipeline.
The voxel size is set to 0.5mm. To register the endoscopic point clouds, TEASER
with a noise bound of 1mm is used a global registration method while local registra-
tion is done with point-to-plane ICP. The registration result is then automatically
registered with the CT model utilizing a voxel size of 1mm and with a noise bound of
2mm for TEASER. Additionally, the semi-automatic approach where the user has to
select correspondences is utilized. Point-to-plane ICP is performed on the both results.
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Results

Within this section, the results are outlined based on the previously described
methods. For point cloud acquisition and point cloud analysis, exemplary results for
a selection of point clouds is given. Then, the point cloud registration algorithms
are evaluated based on the test setups.

4.1 Point Cloud Acquisition

Within point cloud acquisition, the rectification of the stereo images and the ap-
plication of the chroma keying feature are essential for an acceptable registration.
Figure 4.1 displays the disparity map before and after rectification as well as after
additionally applying median and bilateral filters. In the disparity map, blue signifies
that an area or object is close to the camera while red indicates that it is further
away. Before applying rectification, the disparity is not filled and appears noisy
resulting in a distorted point cloud. The disparity map and the point cloud appear
less distorted after applying rectification and the result improves after additionally
applying median and bilateral filtering.

(a) Before (b) Rectified (c) Rectified + filtering

Figure 4.1: Example of disparity maps and point clouds before and after applying
rectification and filtering. Each pair is displayed (a) before applying any
processing steps, (b) after rectification and (c) after the additional
application of median and bilateral filtering.
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Figure 4.2 displays the removal of the background using the chroma keying feature
both for the specimen and the throat assistant. Note that the point clouds where
not captured at exactly the same time resulting in slightly differing clouds apart
from the background removal.

(a) Original point cloud (b) Chroma keying (c) Chroma keying +
median filter

Figure 4.2: Example of point clouds before and after chroma keying. Point clouds are
shown (a) before chroma keying, (b) after chroma keying and (c) after the
additional application of a median filter.

In Figure 4.3, the acquisition process for a stereo pair with few SKB features (specif-
ically at the front teeth) is outlined. In the disparity map, the depth of the front
teeth is represented by a blue hue, the edges are signified with a green hue and the
palate ranges from yellow to orange. Although the palate is farther away as the tooth
at the bottom right of the image, regions near the front teeth are represented by a
green hue within the disparity map. As a result, red points are in plane with the
front teeth in the point cloud although in reality, the palate is further to the back.

(a) Feature points (b) Disparity map (c) Point cloud

Figure 4.3: Example of a point cloud with few SKB features at sharp edges.
Comparison between the (a) left image of the stereo pair with feature
points, (b) the corresponding disparity map and (c) the resulting point
cloud. Note that in (c), background points where removed for visualization.

44



4. Results

4.2 Point Cloud Analysis

Within point cloud analysis, removal of outliers, downsampling and normal esti-
mation are presented. Outlier removal on a point cloud of the throat assistant is
displayed in Figure 4.4. In 4.4b outliers are displayed in red while inliers remain grey.

(a) Before

(b) Removal (c) After

Figure 4.4: Example of outlier removal on a selected point cloud. The point cloud (a)
before and (c) after outlier removal. In (b) outliers are highlighted in red
while inliers are gray.

Downsampling for different voxel sizes is presented in Figure 4.5. On the left hand
side, a point cloud from the throat assistant captured by the EinsteinVision 2.0
endoscope is visualized while the point cloud on the right hand side corresponds to
the first frame of the SCARED Dataset 1. Note that the point size for (c) and (d)
was increased for better visualization.

The normal estimation for each point incorporating 30 nearest neighbors on a
downsampled point cloud with a voxel size of 0.5 is given in Figure 4.6.
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(a) Original point clouds

(b) voxel size: 0.1

(c) voxel size: 0.5

(d) voxel size: 1.0

Figure 4.5: Example of downsampled point clouds with different voxel sizes. The
original point clouds in (a) were downsampled with voxel sizes between 0.1
and 1.0mm as visualized in (b) - (d).

Figure 4.6: Normal estimation using 30 nearest neighbors on a downsampled point
cloud with a voxel size of 0.5
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4.3 Test 1: Specimen

The result for the specimen using both global registration methods are visualized in
Figure 4.7 from two different viewpoints. The point clouds are colored uniformly for
better visualization and the pink arrows and circles specify visible inaccuracies. For
both methods, the point clouds capturing the curved side of the object face the same
direction. However, the red point cloud in TEASER is flipped by approximately
180°. In addition, both methods show a visible offset at the edges and planes are
shifted lengthwise. In the lower images, the bottom arrows signify areas where the
density of points is less compared to other parts of the registered point cloud.

(a) RANSAC (b) TEASER

Figure 4.7: Point clouds after global registration for the specimen using (a) RANSAC
and (b) TEASER. The pink arrows indicate discrepancies to the original
object.

Figure 4.8 visualizes the corresponding pose graphs. It is apparent that the reg-
istration algorithms do not yield the same transformations. While the poses with
RANSAC proceed primarily in one direction, the poses with TEASER vary greater
in direction with abrupt changes.
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Figure 4.8: Pose graph after global registration using RANSAC (blue) and TEASER
(green) for the specimen.
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4.4 Test 2: SCARED Challenge

Within this section, the results for the selected datasets of the SCARED challenge
are presented. For each of the three datasets, the utilized frames are displayed and
results after the application of selected registration methods are shown. For dataset 1,
the results for different distance thresholds are outlined additionally.

4.4.1 Dataset 1

Dataset 1 consists of ten point clouds of which the corresponding left frames are
visualized in Figure 4.9.

Figure 4.9: Left images of SCARED Dataset 1. The first frame is at the upper left
while the last frame is at the lower right.

RANSAC

The registered point clouds following the application of RANSAC for selected dis-
tance thresholds are displayed in Figure 4.10. While the registration for a threshold
of 1mm clearly does not find an acceptable transformation, the alignment is more
accurate with greater thresholds.

(a) 1mm (b) 5mm (c) 10mm

Figure 4.10: Point clouds after RANSAC registration with varying distance thresholds
for SCARED Dataset 1. The registration was conducted using a threshold
of (a) 1mm, (b) 5mm and (c) 10mm.
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Figure 4.11 displays the pose graphs and euclidean distances for the selected distance
thresholds in comparison with the ground truth. None of the pose graphs lead into
the same direction as the ground truth and pose changes occur abruptly. A distance
threshold of 1mm results in the greatest euclidean distance for most poses (5 of 9
poses), while a threshold of 10mm results in the lowest values (7 of 9 poses).

(a) Pose graph (b) Euclidean distance

Figure 4.11: Pose graphs and euclidean distances in comparison with the ground truth
after RANSAC registration with varying distance thresholds for SCARED
Dataset 1. Registration was performed with a threshold of 1mm, 5mm
and 10mm.

Table 4.1 outlines the statistical analysis for the RMSE, fitness and euclidean distance
depending on the distance thresholds. Note, that the RMSE and fitness depend only
on the estimated inliers and not the entire point clouds.

Table 4.1: Statistical analysis of the RMSE, fitness and euclidean distance after
RANSAC registration with varying thresholds for SCARED Dataset 1. The
euclidean distance is given in mm.

1mm 5mm 10mm

RMSE
median 0.650 2.021 2.306

average 0.648 ± 0.012 1.947 ± 0.435 2.510 ± 0.587

Fitness
median 0.133 0.962 0.999

average 0.157 ± 0.095 0.898 ± 0.164 0.998 ± 0.004

Euclidean
distance

median 46.995 28.101 12.799

average 61.407 ± 53.45 26.178 ± 12.229 11.721 ± 5.946
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While the RMSE has its lowest values at a distance threshold of 1mm, the fitness
has its highest and therefore more optimal value with a threshold of 10mm. The
euclidean distance has its lowest median and average values at 10mm.

TEASER

The registered point clouds following the application of TEASER for selected noise
bounds are displayed in Figure 4.12. While at least one of the point clouds from
the dataset is misaligned when applying a noise bound of 0.25mm, the registrations
for the other selected noise bounds do not show striking aberrations although the
registration results differ.

(a) 0.25mm (b) 0.5mm

(c) 1mm (d) 2mm

Figure 4.12: Point clouds after TEASER registration with varying noise bounds for
SCARED Dataset 1. The results for noise bounds of (a) 0.25mm, (b)
0.5mm, (c) 1mm and (d) 2mm are displayed.

The corresponding pose graphs along with the euclidean distances are visualized in
Figure 4.13. While with smaller noise bounds, the resulting pose graphs lead away
from the ground truth and show drastic changes in direction, the pose graphs for
noise bounds of 1mm and 2mm demonstrate smaller changes in direction. However,
these noise bounds still visibly differ from the ground truth. For a noise bound of
0.25mm, the euclidean distance of the last registration is considerably larger than
for the other poses exceeding an euclidean distance of 140mm.
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(a) Pose graph (b) Euclidean distance

Figure 4.13: Pose graphs and euclidean distances in comparison with the ground truth
after TEASER registration with varying noise bounds for SCARED
Dataset 1. The noise bounds include distances of 0.25mm, 0.5mm, 1mm
and 2mm.

The statistical analysis for the maximum clique and the euclidean distance are given
in Table 4.2. The maximum clique increases with a greater distance of the noise
bound. The euclidean distance, shows a minimal median at 0.25mm while the average
is the smallest when using a bound of 1mm.

Table 4.2: Statistical analysis of the maximum clique and euclidean distance after
TEASER registration with varying noise bounds for SCARED Dataset 1.
The euclidean distance is given in mm.

0.25mm 0.5mm 1mm 2mm

Maximum
clique

median 8 14 29 71

mean 7.889 ± 0.928 14.333 ± 2.646 29.444 ± 5.028 72 ± 12.207

Euclidean
distance

median 8.617 15.786 9.555 12.111

mean 27.668 ± 42.913 13.994 ± 8.393 8.070 ± 4.290 9.085 ± 5.613
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The point clouds after the registration process employing TEASER with a noise
bound of 1mm and the differing ICP variants are displayed in Figure 4.14. Visually,
no striking differences between the methods can be detected.

(a) TEASER (b) Point-to-point ICP

(c) Point-to-plane ICP (d) Colored ICP

Figure 4.14: Point clouds after TEASER registration with additionally applying each
of the ICP variants for SCARED Dataset 1. The point clouds after global
registration with (a) TEASER and the additional application of (b)
point-to-point ICP, (c) point-to-plane ICP and (d) colored ICP are
displayed.

Figure 4.15 presents the RMSE and fitness for the three ICP variants for each of
the nine registrations. For registration 3, point-to-plane ICP terminates after 69
iterations and colored ICP after 79 iterations. For the RMSE of all registrations,
point-to-plane ICP and colored ICP converge faster within the first 20 iterations than
point-to-point ICP. However, in some cases and for instance for registration 4, the
RMSE increases again after 65 iterations. The fitness increases for all registrations
and local registration methods.

The final values for the RMSE and fitness for the ICP variants are outlined in
Table 4.3.
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(a) RMSE

(b) Fitness

Figure 4.15: RMSE and Fitness for the ICP variants depending on the iterations for
the SCARED Dataset 1. In beforehand, TEASER was applied as the
global registration method. The differing line types indicate the local
registration method while each color signifies the registration.

Table 4.3: Statistical analysis of the RMSE and fitness for the local registration for
SCARED Dataset 1. Measurements are given in mm.

point-to-point ICP point-to-plane ICP colored ICP

RMSE
median 0.146 0.146 0.146

mean 0.146 ± 0.005 0.145 ± 0.006 0.145 ± 0.007

Fitness
median 0.271 0.299 0.30

mean 0.338 ± 0.181 0.367 ± 0.182 0.351 ± 0.197
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4.4.2 Dataset 2

Dataset 2 consists of nine point clouds of which the corresponding left frames are
visualized in Figure 4.16.

Figure 4.16: Left images of SCARED Dataset 2. The upper left image corresponds to
the first frame while the lower right is the last frame.

The point clouds after employing each of the two global registration methods are
shown in Figure 4.17. With RANSAC, the result is distorted while with TEASER,
the result appears cleaner.

(a) RANSAC (b) TEASER

Figure 4.17: Point cloud after applying each global registration method for SCARED
Dataset 2. The results for (a) RANSAC and (b) TEASER are displayed.

The median and average values for the registration with RANSAC are outlined in
Table 4.4.

Table 4.4: RMSE and fitness after RANSAC registration for SCARED Dataset 2.

RMSE
median 3.623

average 3.480 ± 0.900

Fitness
median 0.991

average 0.973 ± 0.036
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Figure 4.18 displays the point clouds after the registration process employing
TEASER and the differing ICP variants. After applying any of the ICP meth-
ods, several sharp edges appear to be smoothed but no differences can be observed
between the methods.

(a) TEASER (b) Point-to-point ICP

(c) Point-to-plane ICP (d) Colored ICP

Figure 4.18: Point clouds after TEASER registration with additionally applying each
of the ICP variants for SCARED Dataset 2. The point clouds after global
registration with (a) TEASER and the additional application of (b)
point-to-point ICP, (c) point-to-plane ICP and (d) colored ICP are
displayed.

The RMSE and the fitness depending on the number of iterations for each ICP variant
and for each registration are presented in Figure 4.19. Note that for Registration
1, point-to-plane ICP terminates after 49 iterations while colored ICP runs for 90
iterations. For Registration 4, point-to-plane ICP terminates after 67 iterations and
colored ICP after 89 iterations.

While the RMSE converges within the first 40 iterations for most registrations regard-
less of the local method, for Registration 5, the RMSE decreases significantly between
40 and 60 iterations for point-to-plane as well as for colored ICP and between 60 and
80 iterations for point-to-point ICP. For Registration 8, the RMSE increases within
the first 20 iterations and although the error decreases afterwards for all variants,
the curve does not appear exponential as for the other registrations.
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(a) RMSE

(b) Fitness

Figure 4.19: RMSE and Fitness for the ICP variants depending on the iterations for
SCARED Dataset 2. In beforehand, TEASER was applied as the global
registration method. The differing line types indicate the local
registration method while each color signifies the registration.

The comparison to the ground truth in form of the pose graph is given in Figure 4.20.
While the registration with RANSAC results in a pose graph with abrupt pose
changes, the registration with TEASER appears to be closer to the ground truth.
The application of any of the ICP variants after the registration utilizing TEASER
alters the pose graph, but the direction remains.

The analysis of the euclidean distances for the global registration methods is given
in Table 4.5 while the analysis of the RMSE, fitness and euclidean distances for the
local registration methods is presented in Table 4.6.
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(a) Pose graph (b) Euclidean distance

Figure 4.20: Pose graphs and euclidean distances in comparison with the ground truth
after global and local registration for SCARED Dataset 2. Global
registration includes RANSAC (blue), TEASER (green) and TEASER
with any of the ICP variants (brown).

Table 4.5: Statistical analysis of the euclidean distance for the global registration for
SCARED Dataset 2. Measurements are given in mm.

RANSAC TEASER

median 12.838 6.550

mean 12.601 ± 7.222 12.302 ± 12.275

maximum 27.151 36.437

Table 4.6: Statistical analysis of the RMSE, fitness and euclidean distance for the local
registration for SCARED Dataset 2. The euclidean distance is given in mm.

point-to-point ICP point-to-plane ICP colored ICP

RMSE
median 0.138 0.138 0.138

mean 0.138 ± 0.007 0.136 ± 0.007 0.137 ± 0.007

Fitness
median 0.364 0.395 0.380

mean 0.363 ± 0.113 0.378 ± 0.109 0.372 ± 0.108

Euclidean
distance

median 6.874 7.776 6.831

mean 10.693 ± 10.038 10.969 ± 9.865 10.271 ± 9.583
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4.4.3 Dataset 3

The left images of dataset 3 consisting of 15 frames are displayed in Figure 4.21.

Figure 4.21: Left images of SCARED Dataset 3. The upper left image corresponds to
the first frame while the lower right is the last frame.

The point clouds after the registration utilizing RANSAC and TEASER are dis-
played in Figure 4.22. Both registration results are orientated to the first point
cloud. Although both methods generally align the rounded surface at the centre,
the registrations differ visibly at the sides. With RANSAC, the sides show an offset
while with TEASER, they appear to be aligned. Other differences are that with
TEASER, one change of brightness is visible creating an edge at the centre and the
point clouds of the later frames are tilted backwards.

(a) RANSAC (b) TEASER

Figure 4.22: Point clouds after applying each global registration method for SCARED
Dataset 3. The results for (a) RANSAC and (b) TEASER are displayed.

The median and average values for the registration with RANSAC are outlined in
Table 4.7.

Table 4.7: RMSE and fitness after RANSAC registration for SCARED Dataset 3.

RMSE
median 1.787

average 1.831 ± 0.369

Fitness
median 0.951

average 0.931 ± 0.069
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The application of each of the three ICP variants onto the registration result of
TEASER is presented in Figure 4.23. While the application of any of the three ICP
variants mitigates the edge at the centre, no variances can be observed between them.

(a) TEASER (b) Point-to-point ICP

(c) Point-to-plane ICP (d) Colored ICP

Figure 4.23: Point clouds after TEASER registration with additionally applying each
of the ICP variants for SCARED Dataset 3. The point clouds after global
registration with (a) TEASER and the additional application of (b)
point-to-point ICP, (c) point-to-plane ICP and (d) colored ICP are
displayed.

The pose graphs and the corresponding euclidean distances for both global registra-
tion methods and the additional application of the ICP variants with TEASER are
visualized in Figure 4.24. While the registration with RANSAC results in a deviated
pose graph compared to the ground truth, the first poses with TEASER follow the
direction of the ground truth, but drift away after five frames. The application of
any of the ICP variants results in a slight change of the pose graph.

The euclidean distances reveal that they increase steadily for most frames and
methods exceeding a distance of 40mm for the last four poses for all methods. The
application of the local registration methods influences the euclidean distance mini-
mally.

The statistical analysis of the euclidean distances for both global registrations is
outlined in Table 4.8 while the analysis of the RMSE, fitness and euclidean distances
for the local registration methods is presented in Table 4.9.
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(a) Pose graph (b) Euclidean distance

Figure 4.24: Pose graphs and euclidean distances in comparison with the ground truth
after global and local registration for SCARED Dataset 3. Registration
includes RANSAC (blue), TEASER (green) and TEASER with any of the
ICP variants (brown).

Table 4.8: Statistical analysis of the euclidean distance for the global registration of the
SCARED Dataset 3. Measurements are given in mm.

RANSAC TEASER

median 30.526 17.055

mean 28.542 ± 17.624 23.654 ± 19.833

maximum 51.721 57.149

Table 4.9: Statistical analysis of the euclidean distance for the local registration of the
SCARED Dataset 3. Measurements are given in mm.

point-to-point ICP point-to-plane ICP colored ICP

RMSE
median 0.131 0.130 0.130

mean 0.132 ± 0.011 0.131 ± 0.011 0.131 ± 0.011

Fitness
median 0.623 0.633 0.633

mean 0.607 ± 0.142 0.616 ± 0.130 0.616 ± 0.130

Euclidean
distance

median 17.209 17.618 17.738

mean 23.969 ± 19.982 24.320 ± 20.289 24.391 ± 20.308
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4.5 Test 3: Throat Assistant

Within this section, the registration results for the different endoscope system in
combination with the throat assistant are outlined.

4.5.1 EinsteinVision 3.0

With the EinsteinVision 3.0 endoscope, seven point clouds of the throat assistant
were acquired. Figure 4.25 displays the left image for each stereo pair. Chroma
keying was utilized for the last three frames to exclude unwanted background at the
top left.

Figure 4.25: Left image of each stereo pair rotated by 90° of the throat assistant
captured with the EinsteinVision 3.0 endoscope

The resulting registered point clouds after performing global registration with
TEASER and additional local registration with point-to-plane ICP are displayed in
Figure 4.26. The global registration results in a recognizable reconstruction of the
throat assistant, but the edges of the teeth are noisy and the nose is slightly tilted
to the left. After applying local registration, the teeth show less distortions and the
nose appears to be straight. The uniformly colored result demonstrates the output
after applying both global and local registration. In some areas, e.g. tongue and
teeth, two or more point clouds are interlaced while in others, e.g. at the tip of the
nose, one cloud dominates the visualization.
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(a) TEASER (b) TEASER +
point-to-plane ICP

(c) TEASER +
point-to-plane ICP
(uniform colors)

Figure 4.26: Point clouds after employing TEASER and point-to-plane ICP for the
throat assistant captured with the EinsteinVision 3.0. The point clouds
after applying (a) TEASER and additionally (b - c) point-to-plane ICP
are visualized. In (a) and (b) point clouds are shown in original colors
while in (c) each point cloud is colored uniformly.

The registration with the CT model after a applying TEASER and point-to-plane
ICP is visualized in Figure 4.27. Clearly, the algorithm does not find an acceptable
solution. Point-to-plane ICP terminates after the first iteration with an RMSE and
fitness of 0.
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Figure 4.27: Point clouds and CT mesh after employing TEASER and point-to-plane
ICP for the throat assistant captured with the EinsteinVision 3.0

The registration with the CT model after selecting five correspondences and applying
point-to-plane ICP is shown in Figure 4.28. No significant changes are visible between
the two results, but minor variations are observable at the columella (nose bridge
between the nostrils), the front teeth as well as the molar teeth in the upper jaw.
With the application of point-to-plane ICP, the inlier RMSE reduces from 0.1609
in the first iteration to 0.1584 after 100 iterations while the fitness increases from
0.1422 to 0.2173.

A detailed view of the registration result is given in Figure 4.29. It can be observed
that although the tip of the nose of the endoscopic point cloud is closely aligned
with the CT model, a gap is present at the nasal root. In addition, the depictions of
the nostrils, the tongue and the upper molar teeth show an offset.
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(a) Pick Points (b) Pick Points + point-to-plane ICP

Figure 4.28: Point clouds and CT mesh after employing Pick Points and point-to-plane
ICP for the throat assistant captured with the EinsteinVision 3.0. The
point clouds after applying (a) Pick-Points and additionally (b)
point-to-plane ICP are visualized.

Figure 4.29: Detailed view of the point clouds after employing Pick Points and
point-to-plane ICP for the throat assistant captured with the
EinsteinVision 3.0
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4.5.2 EndoSURGERY 3D Spectar

With the EndoSURGERY 3D Spectar endoscope, twelve point clouds were acquired
of the throat assistant. The corresponding left images of each stereo pair are displayed
in Figure 4.30.

Figure 4.30: Left images of the acquisition of the throat assistant utilizing the
EndoSURGERY 3D Spectar endoscope. The first frame is at the upper
left while the last frame is at the lower right.

The registration results after applying TEASER and additionally point-to-plane ICP
are displayed in Figure 4.31. The application of TEASER results in a recognizable
partial reconstruction of the object. However, discrepancies are visible particularly
at the nose. After the additional application of point-to-plane ICP, the inner side
of the nose is aligned more precisely, the hard plate within the mouth consists of
increased different shades of red and the nose is tilted slightly backwards.

The registration with the CT utilizing TEASER and point-to-plane ICP is displayed
in Figure 4.32. After 100 iterations of point-to-plane ICP, the fitness is at 0.048
while the RMSE is 0.1899.

The registration with the CT model after selecting five correspondences and applying
point-to-plane ICP is shown in Figure 4.34. In the upper view, differences are
observable below and on the nose while the lower view also reveals variations at the
molar teeth.

Detailed views of the final registration are displayed in Figure 4.34. While the upper
lip and the front teeth appear to be aligned, the front of the nostrils and the left
side of the upper molar teeth disappear in the CT model.
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(a) TEASER (b) TEASER + point-to-plane ICP

Figure 4.31: Point clouds after employing TEASER and point-to-plane ICP for the
throat assistant captured with the EndoSURGERY 3D Spectar. The
point clouds after applying (a) TEASER and additionally (b)
point-to-plane ICP are visualized.

Figure 4.32: Point clouds and CT mesh after employing TEASER and point-to-plane
ICP for the throat assistant captured with the EndoSURGERY 3D
Spectar
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(a) Pick Points (b) Pick Points + point-to-plane ICP

Figure 4.33: Point clouds after employing Pick Points and point-to-plane ICP for the
throat assistant captured with the EndoSURGERY 3D Spectar and the
CT model. The point clouds after applying (a) Pick-Points and
additionally (b) point-to-plane ICP are visualized
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Figure 4.34: Detailed view of point clouds and CT mesh after employing Pick Points
and point-to-plane ICP for the throat assistant (EndoSURGERY 3D
Spectar)
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All test-setups show that point cloud registration on medical datasets is possible.
The accuracy of the results is influenced by the acquisition, type of object or data,
point cloud analysis and the registration method(s) with the utilized parameters.
This chapter discusses the previously outlined results classified by each step within
the pipeline.

5.1 Point Cloud Acquisition

Acquisition

The acquired data greatly influences how well a registration result represents a
real-world scenario. An accurate calibration of the stereo systems is crucial to obtain
an accurate depth estimation for point cloud acquisition. Additionally, rectification
as well as bilateral and median filtering are necessary to acquire clean and noise-free
point clouds.

The type of endoscope also influences the quality of the acquired point clouds. For
instance, an incorporated light source facilitates the acquisition process and the user
does not have to adjust an external light source. Another aspect is the stereo base. A
small stereo base, as with the EndoSURGERY 3D Spectar, results in a less accurate
depth estimation. Hence, the endoscope needs to be closer to the object and more
point clouds have to be captured for the same surface compared to the EinsteinVision
systems. However, endoscopes with a small stereo base are specifically designed for
microscopy requiring a small tube diameter.

With chroma keying, most of the unwanted background can be removed and although
some green pixels remain, they may be eliminated in outlier removal and/or do not
influence the registration process. In practice, chroma keying is not necessary for
acquiring point clouds of internal body organs. However, it simplifies test-setups as
presented in this thesis.

Objects and Data

Point cloud registration is specifically challenging on symmetrical objects, objects
with a significant amount of blind spots from differing viewpoints, on environments
that are primarily based in one plane as well as point clouds from differing modalities.
This is shown for the registration using the specimen, for dataset 1 of the SCARED
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challenge and the registration with the CT. The registration of the specimen is
particularly challenging since the object is symmetrical and steep edges result in
blind spots. Hence, when the object is rotated, one side of the ledge disappears while
another emerges resulting in a small overlap between the acquired clouds. This and
the additional symmetric property of the object lead to falsely aligned point clouds
which is signified by the abrupt changes of the pose graph.

The results for the SCARED challenge Dataset 1 show that although there are only
subtle differences between neighboring captured frames and hence point clouds, both
global registration methods do not find optimal transformations even for greater
distance thresholds or noise bounds. This can be explained by the predominantly
planar geometry of the environment. For predominantly planar surfaces, surface
normals point primarily in one direction resulting in similar geometric features for
all points. This leads to rotation offsets between registered clouds.

The result for the CT registration with TEASER suggests that correspondence
estimation is specifically challenging on data with differing modalities. The results
also indicate that the head phantom, specifically the nose, was not static and was
instead titled forward compared to the CT model. To improve the registration
result, prior segmentation of the CT could decrease the outlier rate. The interactive
approach where the user selects several correspondences for the global registration
does result in an acceptable transformation and may even be faster than an automatic
correspondence estimation. However, this approach does not necessarily yield the
same result after repeating the registration depending on how many correspondences
are chosen and how accurate the user selects correspondences.

Another aspect is optical characteristics of the material or tissue, specifically reflectiv-
ity. For the specimen, after the registration of either global registration method, one
side of the object appears with less density. However, these points do not actually
represent this side of the object but are shadow points that result from the reflective
behavior of the objects material (see Figure 4.7). A removal of these shadow points
could improve the registration result and lead to more clarity. However, within this
thesis shadow points only emerge for this specimen and such a filter is unnecessary
for the other datasets.

In general, medical point cloud registration rarely incorporates objects which are as
symmetrical as the specimen. However, certain tissues may be reflecting specifically
if (body) fluids are present.

5.2 Point Cloud Analysis

Outlier Removal

Outlier removal is necessary for point clouds that contain a significant amount of
noise that could potentially influence the registration result. In addition, outlier
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points decrease the quality and visual clarity of a point cloud distracting the user
from the essentials.

The chosen values for the outlier removal, namely the number of points within the
neighborhood of a point and the standard deviation ratio, remove scattered outliers
sufficiently. However, since outlier removal is a statistical method, clusters of outliers
are not identified as such. These clusters can influence a registration result and may
be irritating to the user. This particularly occurred for the acquisition using the
EinsteinVision 3.0 endoscope system for the throat assistant where dark background
areas are in plane with areas at the front in the point cloud. Hence, these outliers have
to be eliminated by hand or an implementation of a more complex algorithm is needed.

Downsampling

Downsampling is crucial to decrease the computation time but also to ensure that
the program does not terminate unexpectedly due to memory shortage. The latter is
specifically critical for the global registration using TEASER. For downsampling, the
voxel size has to be set in accordance with the sensor resolution and the specifications
of the utilized PC.

Normal Estimation

Normal estimation influences feature extraction and correspondence estimation and
hence, both global registration methods substantially. Within this thesis, only the
PCA based estimation of surface normals was utilized. As visible in Figure 4.6, this
method results in slanted surface normals at sharp edges specifically at the border of
point clouds. Other methods including deep learning approaches may result in more
accurate estimations.

Feature Extraction and Correspondence Estimation

The quality of the feature extraction directly influences the correspondence estimation
and the resulting inlier ratio. All results for RANSAC suggest that the the amount
of outlier correspondences is greater than 90% since this method generally performs
well even with greater outlier ratios [3].

Although FPFHs are widely used for feature extraction in point cloud registration,
adaptions and other approaches could improve the correspondence estimation, specif-
ically the registration with the CT. For example, instead of computing a feature
descriptor for each point, a 3D keypoint detector such as Normal Aligned Radial
Feature (NARF) in conjunction with the FPFH descriptor could accelerate the
correspondence estimation [52, 53]. In addition, a variety of deep learning methods
have emerged for geometrical feature extraction. Methods like 3D-SmoothNet [54]
or MS-SVConv [55] may yield more inlier correspondences albeit these methods were
trained on indoor or outdoor scenes and not on medical datasets.
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5.3 Global and Local Registration

As stated, all test-setups show that point cloud registration on medical datasets is
possible. Despite that, the registration methods yield differing registration results
with varying quality. Compared to datasets of indoor or outdoor scenes, areas with
inaccuracies are visually harder to detect since medical point clouds do not show
distinctive objects. However, the global registration results show that TEASER
generally results in more accurate transformations than when utilizing RANSAC.
Solely for the registration with the specimen, the result with RANSAC is better. For
local registration, the visual differences between the ICP variants are neglectable.

Transformation

Within this thesis, solely the similarity transformation was utilized for all registration
methods. However, medical images often include non-rigid deformations. On the
other hand, non-rigid transformations have more DoF and hence, are more difficult
to estimate.

Maximum Clique

For TEASER, the maximum clique may indicate the quality of the registration result
before terminating the transformation estimation. As presented for SCARED Dataset
1 (see subsection 4.4.1), a larger voxel size for the downsampling step and a smaller
noise bound lead to a smaller maximum clique and hence, less inlier correspondences
to align the point clouds. However, a small noise bound is preferred to align the
point clouds closely to each other.

RMSE and Fitness

The RMSE and fitness differ greatly between the registration methods. With
RANSAC, the fitness is above 0.9 for all datasets where a distance threshold of
greater than 5mm was utilized and the RMSE is above 1.5mm. For TEASER and
the additional application of any ICP variant, the fitness is on average above 0.25
while the RMSE lies below 0.15mm. Hence, although a fitness close to one signifies
a good registration, the RMSE is significantly larger with RANSAC indicating that
the registered point clouds are not as closely aligned as with TEASER.

If several registrations are conducted with the same registration method, a higher
RMSE signifies a poorly aligned point cloud compared to an acceptable registration
results in the same dataset. If a point cloud is aligned poorly, all further registrations
rely on that result. Hence, even if the later point clouds are aligned accurately, the
overall registration result is poorly. The RMSE indicates a poor registration result
compared to the other results and hence, an extension of the algorithm may be
helpful to adjust the registration parameters to adaptively improve the result.

For the ICP variants, the fitness generally correlates with the inverse of the RMSE.
Both decrease significantly within the first 40 iterations, but small changes occur
afterwards. This indicates that 40 iterations are sufficient to improve the global
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registration result while reducing the computation time. If a point cloud was poorly
aligned with the global registration method, a fluctuation of the RMSE indicates
that ICP does not find an accurate solution.

Pose Graph

The comparison between the estimated poses and the ground truth data for the
SCARED datasets show that although a registration may visually appear to be
accurate, a significant difference can be seen between the estimated poses and the
ground truth. For all datasets and methods, the median and average of the euclidean
distances are greater than 9mm. For the registration with TEASER, the estimated
pose graphs approximately follows the ground truth for the first poses of SCARED
Dataset 2 and 3 but drift further apart after several poses. In this case, Simultaneous
Localization And Mapping (SLAM) [49] may be useful to optimize the pose graph.
However, this may be challenging since the point clouds acquired within this thesis do
not follow a closed-loop pose graph. Another approach to optimize the registration
result is bundle adjustment [56].

Even if no ground truth is available, the visualization of the pose graph may be
beneficial for the user to detect falsely aligned point clouds. If point clouds are
captured continuously, abrupt changes in the pose graph indicate poor registration
results.

5.4 Other Aspects

Color

Since the input point clouds were acquired from different viewpoints, they vary in
brightness. Hence, after the registration is conducted, points representing the same
spatial position do not necessarily have the same color. This is specifically impacting
small details, but may also be irritating for larger regions. A filtering algorithm
e.g. based on the HSV color model could merge color components based on the
brightness. Another option may be to remove points from the source point cloud
after the registration that have a drastic color change compared to the target point
cloud at the same spatial position.

Resolution

The resolution of the final registered point cloud depends on the number of registered
point clouds, the resolution of each point cloud and the components of the employed
PC. If the result comprises a small number of point clouds, the entire final point
cloud can be saved. However, if a large number of point clouds are registered and
hence a large number of points, they must be reduced in size, otherwise they may
not be storable or cannot be visualized.
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The aim of this thesis was to develop a modular framework for point cloud regis-
tration obtained from stereoscopic images in the context of endoscopic surgery. It
can be concluded, that point clouds from stereo-endoscopic images can be registered
automatically although the results indicate a substantial amount of outlier correspon-
dences. However, in some instances the registration results in form of a pose graph
differ greatly from the ground truth specifically for subsequent results. As a result,
although the registration result appears to be accurate, distances and angles may
not represent the real-life scenario correctly. The global (coarse) registration with
TEASER generally performed more accurately than RANSAC. For the local (fine)
registration, any of the ICP variants improve the registration result and differences
are neglectable.

For the user, a pose graph can be an indication for poor registration results even if
ground truth data is unavailable. In addition, if several registrations are conducted,
outlier RMSE and fitness within the dataset signify poorly aligned point clouds.
Overall, point clouds with substantial symmetry, small overlapping areas, planar
geometry and from differing modalities are difficult to align.

The automatic registration with the CT utilizing TEASER failed. This indicates that
the estimated correspondences have a tremendous outlier ratio. By segmentation
or adding a keypoint detector, automatic registration with a CT may be possible.
However, an interactive approach where the user selects correspondences between
the endoscopic point clouds and the point cloud obtained from the CT data is an
acceptable solution. A substantial disadvantage of this approach is that this does
not yield the same solution for multiple repetitions.

Generally, both the registration for registering endoscopic point clouds among each
other and the registration with the CT may be improved by adapting the analysis
pipeline, namely downsampling, normal estimation, feature extraction and corre-
spondence estimation. Other approaches e.g. for feature description including deep
learning methods may yield more inlier correspondences and hence, a better registra-
tion result. However, current deep learning feature descriptors for point clouds are
generally trained on indoor or outdoor scenes; the utilization with medical datasets
has to be explored.

Other future advancements of the framework may include the usage of a non-rigid
transformation to transform the source point cloud. In addition, SLAM based
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optimization after applying global registration as well as deep learning approaches
for the global registration may yield more accurate registrations. The adaptions of
color, specifically the brightness, for overlapping regions between point clouds could
improve the visual clarity of the result.
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A
Appendix 1

A.1 Derivation of the Rotation Matrix Using Quater-

nions

In this section, the rotation matrix will be derived using quaternions. The funda-
mentals of quaternions and a more detailed outline can be found in From Natural to
Quaternions by Kramer and von Pippich and Quaternion Algebra by Voight [20, 21].
Furthermore, Siciliano and Khatib give an overview of position and orientation for
different numerical systems in Springer Handbook of Robotics [57].

The skew field of Hamilton’s quaternions is defined as follows:

H := {q = q0 + q1 · i + q2 · j + q3 · k | q0, q1, q2, q3 ∈ R} (A.1)

Furthermore, a multiplication table for the operators i, j and k is given:

i2 = j2 = k2 = −1 (A.2)

ij = k, ji = −k

jk = i, kj = −i

ki = j, ik = −j

Note, that the multiplication is distributive and associative, but not commutative!

The inverse of the quaternion q is denoted as q∗ and defined as:

q∗ =








q0

−q1i

−q2j

−q3k








(A.3)

The rotation from coordinate frame A to coordinate frame B is the multiplication

pB = q · pA · q∗ =








q0

q1i

q2j

q3k















0
xi

yj

zk















q0

−q1i

−q2j

−q3k








(A.4)
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The first multiplication gives the following result:

q · pA = q0xi + q0yj + q0zk (A.5)

+ q1xi2 + q1yij + q1zik

+ q2xji + q2yj2 + q2zjk

+ q3xki + q3ykj + q3zk2

The imaginary parts can then be substituted with the terms from the multiplication
table in (A.2). Sorting by the imaginary part results in:

q · pA = − q1x − q2y − q3z (A.6)

+ i · (q0x + q2z − q3y)

+ j · (q0y − q1z + q3x)

+ k · (q0z + q1y − q2x)

This term is then multiplicated with the inverse of q:

q · pA · q∗ = (−q1x − q2y − q3z) · (q0 − q1i − q2j − q3k) (A.7)

+ i · (q0x + q2z − q3y) · (q0 − q1i − q2j − q3k)

+ j · (q0y − q1z + q3x) · (q0 − q1i − q2j − q3k)

+ k · (q0z − q1y − q2x) · (q0 − q1i − q2j − q3k)

With the use of (A.2) and again, sorting by the imaginary parts, this results in:

q · pA · q∗ = − q0q1x − q0q2y − q0q3z + q0q1x + q1q2z − q1q3y (A.8)

+ q0q2y − q1q2z + q2q3x + q0q3z + q1q3y − q2q3x

+ i · (q2
1x + q1q2y + q1q3z + q2

0 + q0q2z − q0q3y

− q0q3y + q1q3z − q2
3x + q0q2z − q1q2y − q2

2x)

+ j · (q1q2x + q2
2y + q2q3z + q0q3x + q2q3z − q2

3y

+ q2
0y − q0q1z + q0q3x − q0q1z + q2

1y + q1q2x)

+ k · (q1q3x + q2q3y + q2
3z − q0q2x − q2

2z + q2q3y

+ q0q1y − q2
1z + q1q3x + q2

0z − q0q1y − q0q2x)

The imaginary part becomes zero and sorting by x, y and z results in:

q · pA · q∗ = i · (x(q2
0 + q2

1 − q2
2 − q2

3) + 2y(q1q2 − q0q3) + 2z(q0q2 + q1q3)) (A.9)

+ j · (2x(q0q3 + q1q2) + y(q2
0 − q2

1 + q2
2 − q2

3) + 2z(q2q3 − q0q1))

+ k · (2x(q1q3 − q0q2) + 2y(q2q3 − q0q1) + z(q2
0 − q2

1 − q2
2 + q2

3))

In matrix form, the rotation matrix is then written as:

R =






q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

o − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3




 (A.10)
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