
Automatic geometry alteration when
designing for additive manufacturing

How automated geometry alteration can be utilized to reduce
support structures in additive manufacturing

Master’s thesis, 2019

Julian Martinsson

Department of Industrial and Materials Science
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Automatic geometry alteration when designing
for additive manufacturing

How automated geometry alteration can be utilized to reduce
support structures in additive manufacturing

Julian Martinsson

Department of Industrial and Materials Science
Chalmers University of Technology

Gothenburg, Sweden 2019

Master’s thesis (2019)

© Julian Martinsson 2019.

Supervisor: Olivia Borgue, Department of Industrial and Materials Science
Examiner: Ola Isaksson, Department of Industrial and Materials Science

Division of Product development
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Abstract

The space industry has developed an interest in converting some of its production
from traditional manufacturing to metal additive manufacturing. This may prove
beneficial to the space industry due to their generally low production volumes, and
their need to minimize product mass. The transition from traditional to additive
manufacturing can be difficult, and requires designers to take heed of a new set
of design and manufacturing constraints. To aid the designers this thesis project
has aimed to create a software which automatically alters the geometry of 3D STL-
models. The purpose of the alterations is to reduce the model’s need for support
structures. Reducing the support structures is necessary to reduce material waste,
and to decrease the time required to process the model after it has finished printing.
A prototype software was created which can handle simple geometries, but struggles
when the model complexity increases. Two main problems were encountered: diffi-
culty to handle overhang surfaces that point directly down, and unintended software
behavior which caused issues mostly prevalent in high complexity models. These
issues could not be resolved during the course of this project, but could likely be
overcome in the future. Finally, this thesis project resulted in the creation of a
software prototype capable of altering the geometry of low complexity models.

Preface

This serves as the punctuation of my time as a student at Chalmers University
of technology, where I studied mechanical engineering and product development.
Six months of dedication has yielded the master’s thesis that lies before you. It
has no doubt been rough, but it has also been an interesting experience that I am
likely never to forget. And though it sometimes seemed as though I were stumbling
through the dark, I in fact always had a guiding light. And for that, I wish to
thank Olivia Borgue for her enthusiastic and talented supervision, Ola Isaksson for
his commitment and advice, and my family for their support.

ii

Contents

List of Figures iv

1 Background 1
1.1 A brief introduction to AM . 1
1.2 The space industry: a suiting candidate 2
1.3 Problems . 3
1.4 The current toolkit . 4

1.4.1 Support structure generation 4
1.4.2 Orientation optimization . 4
1.4.3 Automatic geometry alteration 4

1.5 Impact on society . 5
1.5.1 The ethical and societal context 5
1.5.2 The potential impact of this project 5

2 Aim 7
2.1 Demarcations . 7

3 Theory 8
3.1 Metal additive manufacturing . 8

3.1.1 Overhang . 8
3.1.2 Support structures . 9

3.2 Computer aided additive manufacturing 10
3.2.1 The STL file format . 10
3.2.2 Voxel representation . 11

4 Method 12
4.1 Interviews . 12
4.2 Benchmarks . 12
4.3 Concept generation and selection . 13
4.4 Creating the prototype . 13

5 Results 14
5.1 Interviews . 14

5.1.1 The problem with orientation optimization 14
5.1.2 Strict requirements in space technology 14

5.2 Problem detection algorithm . 14

iii

Contents

5.2.1 Generated problem detection concepts 15
5.2.2 Evaluation of concepts . 16
5.2.3 Concept selection and result 17

5.3 Basic problem correction algorithm 17
5.3.1 Generated correction concepts 18
5.3.2 Concept evaluation and selection 18
5.3.3 Focus on one face at a time 21
5.3.4 Performing the change . 22
5.3.5 The meta algorithm . 23
5.3.6 Problems with the basic problem correction 25

5.4 Advanced problem correction algorithm 26
5.4.1 Addressing the problems with curved geometries 26
5.4.2 Dealing with leaks . 27
5.4.3 Overhang without an angle 27

5.5 Final prototype . 28
5.5.1 User interface . 29
5.5.2 Performance of the single face algorithm 30
5.5.3 Orientation optimization . 32
5.5.4 Angle injection . 35

6 Discussion 37
6.1 Geometry alteration and the space industry 37
6.2 Further development . 37

6.2.1 Improving the performance . 37
6.2.2 Improving the results . 38
6.2.3 Improving the experience . 38
6.2.4 Improving integration . 38

6.3 Use cases . 39

7 Summary 40

Bibliography 43

Appendices I

A Timetable II

B Benchmarks III

iv

List of Figures

1.1 Simplified sketch of a laser powder bed fusion system. 2
1.2 Area close to the top has darkened due to having close to insuffi-

cient heat dispersion. Could have been avoided by reducing the angle
(increasing ϕ), or by introducing support structures. 3

3.1 Illustration of the overhang angle, and how it relates to the workpiece
and the substrate. 8

3.2 Illustration of three different overhang angles. a: 60°, b: 45°, c: 25°.
Overhang a is stable, b is on the edge of stability and instability and
c is potentially unstable. 8

3.3 Support structure of a 0° overhang (also referred in this thesis as a
"flat overhang"). Notice how the support structure is made of the
same material as the part itself. 9

3.4 The structure of an STL-file. This example contains only two faces,
but an STL-file could in theory contain any number of faces. Both
binary and ASCII STL-files represents the data using similar archi-
tectures (the binary version contains slightly more information which
is not relevant to understanding how the file is structured). The col-
ored variant contains slightly more information that is not relevant
for this thesis. 10

3.5 A voxelized cylinder. Each cube represents a voxel. The entire model
is a representation of a 303 matrix consisting of ones and zeros. Each
element that contains the number "one" is drawn using a cube, while
all the other elements that contain zero remain unrendered. 11

5.1 2-dimensional illustration of a voxelized structure. The original struc-
ture is represented by the green (supported faces) and the red (unsup-
ported faces) contour. The greyed out grid elements represents the
voxel representation of the original structure. The dark grey voxel
lacks proper support, as it does not have an adjacent voxel directly
or diagonally underneath it. 15

5.2 Concept of how machine learning might be able to be used to recog-
nize problematic areas of a model using image recognition. The areas
highlighted with the color red would be considered as problematic
areas, identified by the machine learning algorithm. 15

v

List of Figures

5.3 The first successful problem detection experiment. The Z-direction
represents the printing direction. The red faces represent surfaces
that possesses an overhang angle that is too small (in this example
too small is considered to be ϕ < 45°). The green surfaces are problem
free. This early in development there was no regard for surfaces that
touched the ground, which has resulted in the lower "feet" also being
registered as problematic surfaces, despite them being supported by
the substrate (the substrate is not visible in this figure). 17

5.4 Voxel conversion information loss. Figure a) is an image of the origi-
nal STL-file containing the arch-sphere benchmark. Figure b) shows
a version of the arch-sphere that has been converted to a voxel for-
mat, and then back into STL again. The visibly jagged edges, and the
increased face density are results of the imperfect conversion process. 20

5.5 On display is the cylinder benchmark, before and after it passed
through the problem correction algorithm. In b) the model is shown
after it has passed through the algorithm, which has evened out the
bottom section and given the top half of the inside of the cylinder a
45° slope. 21

5.6 This figure depicts the single face algorithm (SFA). Seen in the figure
is a single face, and its components: the two roaming vertices, the
anchor vertex, and the normal vector. The two red arrows represents
the change vectors, which are calculated using the SFA. The change
vectors always points in the same direction as the normal vectors
projection on the XY-plane, and are later used to resolve problematic
overhang angles. In this example the desired minimum overhang is
45°. Thus, the change vectors strive to push the roaming vertices in
a manner that would result in a 45° overhang. 21

5.7 The meta algorithm. This algorithm shows how the detection algo-
rithm (purple) works together with the correction algorithm (green)
in order to produce results. The queue does not keep the faces in any
particular order. 24

5.8 "Blobbing" on a surface with a high face density, seen from two dif-
ferent perspectives. This particular model is of the handle of a teapot. 25

5.9 Rounded surface flattening. If a vertex touches the ground, and
the surrounding vertices does not, then the surrounding vertices are
brought down to ground level. This could reduce both the need for
support structures and the need for machining in post processing. The
bright blue dot represents the vertex that is touching the ground, and
the green dots represent the surrounding vertices. 26

5.10 This figure displays the algorithm in use. In this case the algorithm
has detected a curved surface where only one vertex touches the
ground. It has thus flattened the surrounding vertices, reducing the
need for support structures. After flattening the bottom, the SFA
pushed out the vertices at the bottom, creating a stable 45° overhang. 27

5.11 The final version of the prototype. 29

vi

List of Figures

5.12 A diagram of how the weight of a face is determined based on the over-
hang angle. The value is multiplied by the area of the face, thus giving
larger overhang surfaces a larger penalty. In this diagram ϕmin = 45°.
The values in this diagram are not derived from calculations, only
trial and error. A more thorough study into orientation optimization
would likely yield in a different looking diagram. 32

5.13 Screen capture of the output from the orientation optimization algo-
rithm. The top result has the lowest weight, and is in this case also
grounded. 34

5.14 Orientation optimization of an antenna component. The result is
grounded at the base of the antenna, but the bracket structure will
need plenty of support if this product is to be printed in the orien-
tation shown in (b). However, in (a) it would be necessary to use
support structures inside and underneath the funnel, which would
likely be more problematic. 34

5.15 The cylinder after being processed by the orientation optimization
algorithm. The result is grounded with no problematic overhangs. . . 35

5.16 The arch-sphere benchmark model after run through both the orienta-
tion optimization algorithm, and the geometry alteration algorithm.
This did not work as intended. 35

5.17 From left to right: The first image shows the unaltered original model.
The second shows the same model, but the flat overhang has had an
angle injected. The third shows how the single face algorithm now
can take an advantage of the introduced angle, and thus pushes it to
form a shape that does not need support. 36

A.1 This figure displays the ideal Gantt chart for the project. II

vii

List of Figures

viii

1
Background

The modern manufacturing industry relies on two types of processes: "forming"
(such as casting and injection moulding) and "subtractive manufacturing". In sub-
tractive manufacturing one piece of material is transformed into the desired shape
by essentially subtracting material from it through for example carving or drilling.
Additive manufacturing (AM) flips this on its head by instead incrementally adding
material to a workpiece from the ground up. With this new technology an entire
landscape of new opportunities has surfaced [1].

AM was recognized early for its potential as a prototyping tool in the product
design phase. However, the technology has improved vastly over the years. This
development has pushed AM from being merely a prototyping tool into becoming
a means of manufacturing [1]. The combination of these developments and the
possibility to "print" metal at low cost has attracted the attention of the space
industry [2]. AM is a manufacturing technology that is well suited for the low
production volumes typically associated with the space industry. As an added bonus,
utilizing AM to build parts from the ground up would allow for the creation of designs
that have less weight and a reduced amounts of interfaces [3].

To fully embrace AM designers will need to learn how to create products in a new
way. AM may prove beneficial to the space industry, but it does come with a new
set of requirements and problems. One of those problems is the lack of tools to
help designers who are used to designing for traditional manufacturing to transfer
over to AM. As will be expanded upon later in this section, one particular type of
tool appears to be missing in the designer’s toolkit today. Specifically, a tool that
automatically reshapes the geometry of models to make them more suited for AM,
thus making the job of designers slightly easier.

1.1 A brief introduction to AM
Additive manufacturing is an industrial production technology which manufactures
a product by building it layer by layer, from the bottom up. AM using metals can
be done in many different ways. Three of the more common types are: powder feed,
wire feed and powder bed fusion [4]. This thesis will focus primarily on laser powder
bed fusion.

Laser powder bed fusion, also known as Selective Laser Melting (SLM) spreads a
thin layer of powder over the workspace, which is then melted using a laser. After the

1

1. Background

laser has finished working on the current layer, a new coating of powder is provided
on top of the old one, and the process repeats itself until the component is done [1].
A sketch of a powder bed fusion system can be seen in figure 1.1. To transfer heat
away from the workpiece "support structures" are used [5]. These support structures
are usually created out of the same material as the component, and they also double
as a physical support of overhanging geometries. Once the printing process is done
the material quality of the product is close to that of its traditionally manufactured
relative, rendering AM as a viable way to manufacture metal components [6].

Figure 1.1: Simplified sketch of a laser powder bed fusion system.

1.2 The space industry: a suiting candidate
The space industry currently relies a lot on casting, which has many downsides [3].
1) Creating new casts is expensive. Making matters worse is the fact that things
do not always go as planned. The casts might need to have their designs changed
several times during a development cycle. When this happens the expenses grow,
and resources are wasted. 2) Using casts results in long lead times. It takes time to
design a new cast, and a lot of different factors need to be considered in order to avoid
failure. 3) As a consequence to the previously mentioned problems, the practice of
prototyping is reduced in the space industry. Rapid prototyping cycles in order to
quickly test different designs can be an incredibly useful strategy to employ [7], but
is less prevalent within the space industry. This reduces the willingness to attempt
new designs, and so engineers often use old designs to minimize risk [8]. Leaning on
old designs halts innovation. 4) Products within the space industry are generally
not mass produced. The volumes are generally low. This means that traditional
manufacturing can be quite cost-ineffective. However, some authors claims that
additive manufacturing could potentially be able to counter some of these flaws [3].

As a result of utilizing AM casts are no longer required. This has two significant
benefits: A new model can be created and printed with a significantly shorter lead
time, and the large overhead costs for creating a new models shrinks. This opens up
the possibility to utilize prototyping more often, and thus possibly makes innovation
more likely [8].

2

1. Background

Another large benefit for the space industry is the potential to reduce weight by using
less materials. It has been demonstrated that the aerospace industry has a lot to
gain from embracing AM, as less weight means less fuel [9]. This is especially true for
more complex parts that are difficult to create using traditional manufacturing [10],
in such cases the machining process itself becomes time consuming and costly, and
so the benefits goes beyond mere materials saving. But in order to take advantage of
any of these benefits all parts needs to be redesigned to utilize the inherent properties
of AM as much as possible.

1.3 Problems

Figure 1.2: Area close to the top has darkened due to having close to insufficient
heat dispersion. Could have been avoided by reducing the angle (increasing ϕ), or
by introducing support structures.

When manufacturing using AM some of the limitations of traditional manufacturing
are alleviated, but are replaced with a new set of constraints. In order to design
for AM a new way of thinking is required. Due to the heat produced during SLM
thought must always be put in to how that heat should disperse. Not taking the
heat dispersion into account may cause issues when printing overhanging features
that lack proper support structures [6]. The powder itself does not transfer heat
efficiently, and thus the heat builds up in the overhanging feature, resulting in poor
surface quality [5]. An example of insufficient heat dissipation can be seen in figure
1.2. However, it is not as easy as simply inserting more support structures. The
support structures themselves also result in reduced surface quality as they are
directly attached to the surface of the product, and need to be removed manually
after the printing process [6]. As a consequence of this the optimal solution would
be to avoid the need for support structures as much as possible.

It can be challenging to embrace a new technology, and AM is no exception. To
tackle this challenge there are two generic strategies available: 1) Design new prod-
ucts with AM in mind (otherwise known as Design for Additive Manufacturing or
DfAM) [3], or 2) do not change design methodology, but make it compatible with
AM during the finishing touches. While the second strategy might be more ap-
pealing to engineers who lack experience with AM, the first strategy will obviously

3

1. Background

generate the best results. The problem is, as mentioned, the lack of experience and
tools to make this strategy work [8].

1.4 The current toolkit
While designers lack a complete toolkit to aid in the creation of products compatible
with AM, some tools have already emerged. In this section existing tools will be
examined, as well as pointing out what the current toolkit is missing.

1.4.1 Support structure generation
Inserting support structures manually can be a tedious and difficult task, and would
likely lead to waste of materials and suboptimal results. To avoid this automatic
support structure generators have been developed in a variety of ways [11]. An
example of a software that can generate support structure for metal additive man-
ufacturing is "Materialise Magics", which is a software developed by the company
"Materialise" [12].

These tools do not only help by generating support structures, but they also help
highlight problems for the designer. If an abundance of support structures are
needed, then that might prompt the designer to rethink the geometry of the product.
If used in this manner support structure generators can be used to acquire feedback
on a products AM feasibility.

1.4.2 Orientation optimization
Orientation optimization is used to find the best orientation in which the product
can be printed. This is often done by rotating the product into different orien-
tations, and evaluating mathematically which orientation is most suitable for AM
[11]. Sometimes different orientations are given weights based on how suitable they
are [13]. This tool is often used in concert with support structure generation to
minimize waste of material.

1.4.3 Automatic geometry alteration
Support structure generation and orientation optimization are relatively known tools
among those who utilize AM. However, there is one type of tool which does not
seem to be available to designers, specifically automatic geometry alteration (AGA).
Research has been done on generating self supporting structures using voxels [14],
but there appears to be a gap when the aim is to modify an existing geometry.
An AGA tool directly modifies the geometry of the part to reduce (or completely
remove) its need for support structures. A thorough patent search on "Google
Patents" yields no relevant results when using terms such as "automatic geometry
alteration" combined with "additive manufacturing" or "3D printing". This suggests
that the idea of having an algorithm alter the geometric composition of a part is
novel.

4

1. Background

1.5 Impact on society
Improving manufacturing within the space industry does not come without its share
of moral dilemmas. But, there are also reasons for why continuing to develop AM
may have a positive impact on society.

1.5.1 The ethical and societal context
As it turns out our civilization might already have reached a point of no return
when it comes to orbital debris. As of 2017 it has been reported that three to four
satellites are lost every year due to collisions with orbital debris [15], and for each
collision more debris is added [16]. This results in a "catch-22" scenario, we need to
launch things in to orbit in order to learn, and improve technology. But, launching
things into orbit might eventually prevent us from doing so in the future. However,
if the quality could be improved of the things we launch into orbit, then we could
also improve their lifespan. This is significant, because if the lifespan of satellites
is prolonged, then the need for launching new satellites in order to replace old and
broken satellites might be reduced.

There is also cause for concern related to military and security. AM can already
be used to create weapon parts, and thus improving the technology could further
emphasize this problem. Once organizations with malicious intent gains access to
a printer and weapon schematics nothing can stop them from printing all sorts of
devastating technology [17]. It could also be used by national military powers in
order to create weapons and wage war.

Another important social aspect of the development of AM is its potential impact
on the environment. In short, it might still be too early to say what effects AM
will have. There are both positive and negative ways in which AM technology could
interact with the industry to impact the environment. These are a few examples:
1) When creating components using AM less material is wasted. However, the
material that is used can not be reused. 2) AM makes it easier to create light
weight components, which could have a positive impact on the environment if for
example used in aircraft to reduce the required amounts of fuel. This is especially
important for the space industry, where weight always needs to be minimized. 3)
AM might mitigate overproduction since products could be created on demand to a
higher degree. This would reduce the need for large warehouses, and transportation
[4, 18].

1.5.2 The potential impact of this project
This thesis project aims to in the end help designers create better products. If
the end result of this project helps designers create more qualitative products, then
it is possible that the lifespan of satellites can be increased. This could result in
companies having less reasons to launch an excessive amount of man made objects
into orbit. But, it might also result in making the technology more accessible and
easy to use, resulting in an increase of launches to orbit. A similar duality can

5

1. Background

often be found when discussing the potential usage of technology, as technology has
always been a double-edged sword. Developing it often creates equal opportunities
to help people, as well as to cause destruction. This is inevitable, but this particular
technology (AGA) is unlikely to create any significant new threats. It could however
make it easier to manufacture such technology. In summary, it is hard to tell how
AGA could impact the looming issues with orbital debris and AMs potential for
weapons manufacturing.

From an environmental perspective AGA could prove beneficial. Since one of the
primary concerns is to reduce the required amount of support structures, then AGA
might cut down the usage of materials during manufacturing, thus reducing waste.
Additionally, by helping designers embrace AM low weight designs can be utilized
to a broader extent. This could result in reduced fuel consumption during space
operations.

Finally, there is at least one more potential problem that needs to be highlighted.
When implementing automation of any task, a couple of questions ought to be con-
sidered: will the automation result in the loss of jobs? Or, will it merely result
in alleviating tedious tasks from employees, allowing them to focus on other mat-
ters? This question can not be answered generally, but only on a case-by-case basis.
Arguably it would be necessary to monitor the results of the geometry alteration
software in order to keep quality under control. This would also provide a new task
in the wake of the alleviated one. But, in order to reduce costs some companies
may choose to rationalize away such quality controls. This would not only be a
problem because of the loss of jobs. It would also be a questionable to put too much
trust into an automatic algorithm, which if left unchecked might not always produce
desirable results.

6

2
Aim

The primary question that this thesis aims to answer is: "How can the geometry
of a product be automatically altered to reduce the need for support structures while
maintaining product functionality?". To attain AGA a software was be developed,
which was fitted into a graphical user interface.

2.1 Demarcations
In order to make this project feasible and focused two major demarcations will be
set.

Focus on geometric alteration
This project will focus primarily on modifying the geometry of a part in order to
reduce support structures. This also includes changing the orientation of the part
in the printer to minimize the need for support structures. This project will not
involve optimizing support structure type and density as that would make the scope
of this project too wide.

Optimize for laser powder bed fusion
There are many different ways in which the additive manufacturing process can be
performed. However, in this project focus will be to optimize support structures
for SLM. There are two reasons for this: 1) Taking into account all different types
of AM is too broad of a scope, and 2) Laser powder bed fusion is one of the main
technologies in which the space industry is interested.

7

3
Theory

3.1 Metal additive manufacturing
In this section a few concepts surrounding the SLM process that are important in
the context of this project will be brought up. At the heart of this section is the
importance of overhang and support structures.

3.1.1 Overhang

Figure 3.1: Illustration of the overhang angle, and how it relates to the workpiece
and the substrate.

Figure 3.2: Illustration of three different overhang angles. a: 60°, b: 45°, c: 25°.
Overhang a is stable, b is on the edge of stability and instability and c is potentially
unstable.

Overhang describes a section of the workpiece that hangs above the substrate with-
out direct support from underneath. Figure 3.1 demonstrates how this angle is
measured. Depending on the sharpness of the angle there is more or less potential

8

3. Theory

for problems such as warping due to reduced heat dispersion, or in extreme cases
collapse due to the lack of physical support [19]. A general rule of thumb is that an
angle can be considered stable if it exceeds 45°, while angles smaller than that risk
being problematic [20, 21]. In reality the exact angle may change depending on the
material and laser scan speed [19]. See figure 3.2 for an example. Throughout the
rest of the report, the overhang angle of a particular face will be referred to with
the symbol ϕ, and the minimum allowed angle of a particular face will be referred
to as ϕmin.

3.1.2 Support structures

Figure 3.3: Support structure of a 0° overhang (also referred in this thesis as a
"flat overhang"). Notice how the support structure is made of the same material as
the part itself.

In order to get around the issues of overhang, designers can elect to utilize support
structures. These structures help during the printing process both by providing
physical support for overhanging features, and also a structure through which the
heat can disperse. An example of a support structure can be seen in 3.3.
Unlike when printing in polymer materials, the support structures used when print-
ing in metal are made out of the same material as the workpiece. This makes it
relatively hard to remove the support structures, as they often need to be removed
manually. This can have negative implications on several aspects of the manufactur-
ing process [1]. Primarily, putting in time and resources to manually remove support
structures from each printed product is inherently wasteful. One could also argue
that since the support structures are removed they do not provide any value to the
final product, and are thus a waste of material. In some cases it is not possible to
remove the support structures due to their placement, which could potentially have
detrimental effects on product performance (for instance, if the support structures
were placed inside of a pipe used for transporting a fluid they would obstruct the
flow).

9

3. Theory

3.2 Computer aided additive manufacturing
This section contains important concepts surrounding how computers can help with
metal additive manufacturing.

3.2.1 The STL file format
The .stl-file is a file format that is commonly utilized when 3D printing. It describes
a three dimensional object by providing a set of faces. These faces are described
using the coordinates of their respective vertices, and their normal vectors. One
face consists of three vertices and one normal vector. It is also possible to extract
the normal vector by utilizing the vertices to perform cross multiplication, as the
vertices are always specified in a specific order to make such a calculation possible
[22]. Figure 3.4 depicts a schematic of a typical STL file. STL files exists in three
common variations: 1) The ASCII variation, which is a plain text format that is easy
to read and parse, but results in large file sizes. 2) The binary variation, which is far
more compact than its ASCII relative, and requires another parsing technique. 3)
The colored binary variation, which has the exact same file structure as the regular
binary variation, except it contains additional color information.

Figure 3.4: The structure of an STL-file. This example contains only two faces,
but an STL-file could in theory contain any number of faces. Both binary and
ASCII STL-files represents the data using similar architectures (the binary version
contains slightly more information which is not relevant to understanding how the
file is structured). The colored variant contains slightly more information that is
not relevant for this thesis.

10

3. Theory

3.2.2 Voxel representation
Voxel representation utilizes a three-dimensional matrix where each element is a
boolean value (true or false, often represented by a one and a zero). Each element
represents a limited amount of space in the actual object. If the object possesses
matter in a certain point in space, then that corresponding point is set to "true"
in the matrix. See figure 3.5 for an example of a voxelized cylinder. The process
of converting an existing geometry to a voxel representation of the same object is
referred to as "voxelization" [23]. Using this type of representation for a model often
requires large amounts of memory due to how large the matrices tend to become,
especially at higher resolutions. Processing such large matrices can be very resource
heavy and time consuming.

Figure 3.5: A voxelized cylinder. Each cube represents a voxel. The entire model
is a representation of a 303 matrix consisting of ones and zeros. Each element that
contains the number "one" is drawn using a cube, while all the other elements that
contain zero remain unrendered.

11

4
Method

There needs to be a thorough understanding of what types of geometries causes
problems, and how such problems can be mitigated or countered. To create such
an understanding a literature study was conducted, which formed the basis for the
introduction and theory sections of this thesis. The conclusions from the literature
study were used as a guideline during the development of the software. On top of
the literature study two interviews were conducted. The first interview was with
an expert in the subject of metal additive manufacturing, and the second with a
manager from within the space industry. An initial time plan was created, which
can be seen in appendix A.

4.1 Interviews

During this project two interviews were performed. The first interview was held
with a researcher at Chalmers, who is an expert on the subject of metal additive
manufacturing. The interview was semi structured in order to extract as much
information as possible. These were the the topics of discussion:

• Quality issues associated with support structures
• Importance of model orientation
• Expectations from a geometry altering software

The second interview was held with a manager at a Swedish aerospace technology
company. This company manufactures satellite components, and recently started
exploring additive manufacturing. This interview mainly focused on how geome-
try alteration could be of use to them, which helped steer the development of the
software in the right direction.

4.2 Benchmarks

In order to measure success when testing the software a set of benchmark models
were created. The benchmark models provide a variety of challenging features, and
also range in model complexity. These benchmarks makes it possible to find issues
with an algorithm, as well as its potential strengths. All benchmarks are listed
together with depicting figures in appendix B.

12

4. Method

4.3 Concept generation and selection
For concept synthesis the method of choice was brainstorming. Using this technique
a set of concepts were created both for the problem detection algorithm, and the
problem correction algorithm. When selecting a concept for problem detection a
thorough evaluation of each concept was conducted in order to find which concept
best suited the needs of this project, and eliminate the others. When selecting a
concept for geometry alteration (problem correction) a weighted Pugh matrix was
utilized [24]. Instead of having a customer provide requirements for the final product
all criteria were derived from problems that were uncovered during the literature
study. On top of the criteria that were derived from the literature study three other
criteria were put into place as a consequence of the research question, the resources
available during the course of this project, and the project time limit. These criteria
were:

1. The concepts should maintain product shape and functionality.
2. The concept should be able to be run on an average modern computer (referred

to as processing time).
3. The concept should be realizable during the set time of this thesis project

(referred to as complexity to construct).

The first criteria is a direct consequence of the research question, which specifically
states that product functionality needs to be maintained. Criteria two was a ne-
cessity due to the computing power that was available during this project, this is
synonymous to minimizing processing time. Criteria three handles potential knowl-
edge gaps in the concept, and the time it would take to close this gap. This criteria
is derived from the thesis project time limit.

4.4 Creating the prototype
The programming language of choice was Python. The reasoning behind this is that
Python has a vast mathematical library, similar to Matlab. The reason Python was
selected rather than Matlab is because Python is free, flexible, easy to integrate into
other applications, can be converted into a single executable program, and comes
with the possibility of creating a GUI to ease interfacing with the script which was
deemed necessary for the creation of a presentable prototype.

The development itself was divided into two stages. The first stage was the creation
of a problem detection algorithm which needed to be able to identify problematic
angles, and provide information about where in the model they exist. The second
stage was to create a geometry alteration algorithm, also referred to as a problem
correction algorithm. The purpose of the problem correction algorithm is to fix the
problems detected by the algorithm created in the first stage.

13

5
Results

5.1 Interviews
The interviews provided some valuable insight into how AM is to be used in the
space industry, and also some problems with the existing tools. This section will
cover two important pieces of information that were uncovered during interviews,
which came to be of high importance.

5.1.1 The problem with orientation optimization
During the interview with the researcher at Chalmers, some important points regard-
ing orientation optimization was brought up. Software that automatically orients
the model to find an optimal printing orientation can be used to minimize support
structures, but there are some common issues. An important issue is that the sup-
port structures that are generated in the new orientation may be hard to remove. It
is often preferable to remove support structures from flat surfaces, for such surfaces
are easier to process (for example, when milling). The researcher also mentioned
that they do not take heat dispersion into account, which may cause problems during
printing.

5.1.2 Strict requirements in space technology
When interviewing a manager from within the space industry manufacturing branch
an important detail was brought up: some surfaces may not be altered. For exam-
ple: any surface that compose the inside of a waveguide, or surfaces that influence
the geometry of interfaces with other parts. Some of these surfaces should also be
avoided when placing support structures. For example, if an orientation of a waveg-
uide requires internal support structures which can not be machined away then that
would make the waveguide useless. This suggests the need for a way for the user
to select important surfaces on the model which under no circumstances are to be
touched, either by support structures or geometry altering algorithms.

5.2 Problem detection algorithm
Before starting the development of the software a brainstorming session was held to
generate ideas for how problems could be detected in an STL-model. The session
resulted in three different strategies, which will be presented in the following section.

14

5. Results

5.2.1 Generated problem detection concepts
These are the concepts that were generated for detecting problems in an STL ge-
ometry.

Voxel parsing strategy

Figure 5.1: 2-dimensional illustration of a voxelized structure. The original struc-
ture is represented by the green (supported faces) and the red (unsupported faces)
contour. The greyed out grid elements represents the voxel representation of the
original structure. The dark grey voxel lacks proper support, as it does not have an
adjacent voxel directly or diagonally underneath it.

This strategy would implicate examining each individual voxel to determine wether
or not that voxel is supported. This could be done merely by checking if an activated
voxel has another activated voxel adjacent to it in the layer directly underneath. See
figure 5.1 for an example. Utilizing voxel parsing is likely to be taxing for the system
memory due to the large matrices involved. However, it does have the benefit of
being a rather simple and easy to understand approach.

Machine learning strategy

Figure 5.2: Concept of how machine learning might be able to be used to recognize
problematic areas of a model using image recognition. The areas highlighted with
the color red would be considered as problematic areas, identified by the machine
learning algorithm.

An image recognition algorithm based on machine learning could be used to identify
problematic areas of an object, a concept of which can be seen in figure 5.2. Several

15

5. Results

images of cross sections from the object could be used. Those images could possibly
be divided into a grid, to make it easier to extract the coordinates of any problematic
areas. In that case each element of that grid would be examined by the algorithm.
If the algorithm finds a problem in a given grid element then that specific element
could be translated into coordinates in the CAD-model, thus pointing out the error
on the actual model.

Normal vector analysis strategy
The STL-file format contains all the information needed to calculate potentially bad
overhang angles. Thus, an algorithm could parse through all of the faces stored in
the STL-file, retrieve their normal vectors and compare that normal vector to the
Z-unit vector. In this way the overhang angle ϕ can be calculated for each individual
face. If the angle is underneath a specified threshold value then that particular face
can be flagged as a problem.

5.2.2 Evaluation of concepts
After the creation of the strategies they were all evaluated in detail. In this section
the potential pros and cons of each strategy is explored.

Voxel parsing strategy
Voxelization was attempted. However, the process of converting the STL-file to
a voxel matrix with an acceptable resolution proved to be very time consuming.
Which brings up another problem with voxelizing: it requires some amount of user
interaction in order to set the resolution (voxel density), which might require several
attempts before an adequate result is yielded. A high resolution is always better,
but there is a significant trade-off between resolution and performance, as high
resolution voxel matrices puts a lot of strain on system memory. Compared to the
other methods, this approach requires the most computer resources, and takes the
longest time to process. It also becomes complicated to make ϕmin variable using
this approach, but relatively straight forward when ϕmin = 45°. Because of the
invariability of ϕmin and the long processing time this strategy was discarded.

Machine learning strategy
The machine learning approach was dismissed for several reasons. Primarily, com-
pared to the other methods this is by far the most advanced to develop. The machine
learning strategy would also require a large data set in order to reliably be able to
classify a geometry as problematic or not. It would also be problematic to make
the minimum overhang angle (ϕmin) variable. Making ϕmin variable could be done
using separate training data sets with different values of ϕmin, but that would put
further emphasis on the problem that such data sets are not available for use in this
project, and would take too long to create.

Normal vector analysis strategy
It is possible to detect problematic overhangs using the information that exists inside
the STL file format. By extracting the normal vectors of each face the difference
between the normal vector and the negative Z-unit vector can be used to determine

16

5. Results

whether or not a face has a problematic overhang. Since the STL-format contains
all the necessary information to conduct such an analysis the normal vector analysis
works without issues on both basic and complex geometries. It is also a very fast
method since it does not require the model to be converted into voxels (as in the
voxel parsing strategy) or a set of images (as proposed in the machine learning
strategy).

5.2.3 Concept selection and result
The results of the investigation of problem detection strategies resulted in the choice
of developing a normal vector analysis algorithm. Primarily because of its ability
to detect problems in all kinds of geometries no matter the complexity, but also
because of how quickly it could do so. Figure 5.3 displays the first version of problem
detection using normal vector analysis. This early version did not take into account
that faces which touch the ground does not require support, as they are already
supported directly by the substrate. When the detection algorithm was integrated
into the final prototype this issue was fixed. This was done by identifying the
ground level by looking for the lowest Z-index in the model. Any vertices that share
the lowest Z-value that is associated with the ground level must be touching the
ground/substrate.

Figure 5.3: The first successful problem detection experiment. The Z-direction
represents the printing direction. The red faces represent surfaces that possesses
an overhang angle that is too small (in this example too small is considered to be
ϕ < 45°). The green surfaces are problem free. This early in development there
was no regard for surfaces that touched the ground, which has resulted in the lower
"feet" also being registered as problematic surfaces, despite them being supported
by the substrate (the substrate is not visible in this figure).

5.3 Basic problem correction algorithm
In this section a way of correcting the detected problems will be explored. Somehow
the geometry is to be altered to reduce or remove the overhang surfaces. Again, a

17

5. Results

set of strategies were generated through brainstorming.

5.3.1 Generated correction concepts
These are the concepts that were generated for altering the geometry of an STL
model.

Voxel support strategy
This strategy could be seen as an extension of the voxel parsing problem detection
strategy. Once an unsupported voxel is detected, then the empty space beneath
that unsupported voxel is filled, in order to support it. Again, this has the benefit
of being a clear and easy to understand approach. However, it also inherits the flaws
of the voxel parsing strategy, meaning that it requires a lot of computing resources
and time for such a method to be applied to an actual model.

Hybrid strategy
This approach serves as a hybrid between handling the problem using vectors, and
handling it using voxels. The idea is to first run the normal vector analysis problem
detection, and then use the information gathered to run a focused voxel support
algorithm. This means that only the voxels relevant to the problematic overhangs
would be handled by the algorithm, which would likely result in a swifter processing
time. This could result in a faster overall performance than the first mentioned
voxel support strategy, but it would likely be much more complicated to develop.

Vertex manipulation strategy
The vertex manipulation strategy aims to utilize the STL-format as much as pos-
sible. Since the STL-format contains all faces, normal vectors and vertices, then it
could be possible to directly alter the position of the vertices in order to correct any
problematic overhang angles. Using the normal vector analysis strategy for problem
detection it should be possible to directly identify which vertices should be targeted
for manipulation.

5.3.2 Concept evaluation and selection
Before development of a problem correction algorithm could start, a concept needed
to be selected. To aid in this process a Pugh matrix was utilized which can be
seen in table 5.1. This tool helped create an understanding of how the different
solutions might perform from the perspective of the different requirements. During
this evaluation the voxel parsing strategy will be referred to as VP, the vertex
manipulation strategy as VM, and the Hybrid will keep its title as "Hybrid".

Since this product development projects does not have a customer from which to
extract requirements, the requirements were instead based on feasibility, how well
different concepts solves the core problem and if the tool is in fact usable. Each
criteria has its own weight, which represents how important it is. Each concept is
"scored" in each separate criteria with one of three different scores: -1, 0 or 1. A
score of "-1" means that performance for the specified criteria is expected to be bad.

18

5. Results

A score of "0" means that the performance is unknown or mediocre. A score of "1"
translates to the concept having the potential of performing well.

Concept selection pugh matrix
Criteria Weight(1-3) VP VM Hybrid
Solves core problem
Eliminates problematic angles 3 1 1 1
Maximum overhang angle is variable 2 0 1 1
Maintains product shape/functionality 3 0 0 0
Usability
Processing speed 2 -1 1 0
Utilises the STL-format as input and output 3 0 1 0
Feasibility
Complexity to construct 1 1 -1 -1
Score
Sum 1 3 1
Weighted sum 2 9 4

Table 5.1: A Pugh matrix used to aid in selecting a suitable problem correction
concept to develop. The three concepts are "Voxel parsing" (VP), "Voxel Manipula-
tion" (VM) and the Hybrid.

Solves core problem
Problematic overhang angles are the prime issue which needs to be solved, and its
place on the list of criteria is thus self explanatory. At the time when these concepts
were conceived it was thought that they all possessed the capacity to eliminate
problematic angles. For this reason they all score full points in the "Eliminates
problematic angles" category.

Different materials and different circumstances may warrant a variety of values for
the minimum overhang angle. When looking at the variability of ϕmin then VP
scores lower because it is harder to handle small adjustments to angles using only
voxels, while the VM and Hybrid concept both treat angles using vectors, which is
much easier.

The product functionality must remain intact after all problematic angles have been
dealt with. However, it is impossible to make a blanket statement for any of the
concepts regarding whether or not that concept will maintain product functionality.
For this reason all concepts receive no points in this category as it can only be judged
on a case-by-case basis.

Usability
The first category under "Usability" treats processing speed. This category is im-
portant because a method that takes too long will likely never be used. VP scores
the lowest because of how time consuming parsing voxels can be. The hybrid comes
next because it too utilizes voxels, but possibly in a more efficient manner. VM gets

19

5. Results

the highest score since it only utilizes vector and matrix operations, which is likely
to take the least amount of time.

(a) Before conversion to voxels (b) After conversion to voxels

Figure 5.4: Voxel conversion information loss. Figure a) is an image of the original
STL-file containing the arch-sphere benchmark. Figure b) shows a version of the
arch-sphere that has been converted to a voxel format, and then back into STL
again. The visibly jagged edges, and the increased face density are results of the
imperfect conversion process.

The next category touches upon interoperability. Most CAD-software can import
and export STL-files, which is a widely used format when utilizing any sort of 3D-
printing technology. Therefor the concept should be able to import and export to
STL without any issues to prevent complications to the work flow of any designer
who is using it. In this category VP and Hybrid scores lower than VM. However,
this is not because they can’t import or export from/to STL, but because they need
to at some point convert STL to voxels, and back again. This conversion of data
structure can cause loss of information (see figure 5.4a for a visible example), and
other issues.

Feasibility
Finally, the Pugh matrix touches upon the issue of complexity, which was an esti-
mation of how hard it would be to realize the concepts. VP appears to be the easiest
to implement due to its straight forward "brute force" nature, and thus scores the
highest in this category. VM and the Hybrid both receive a lower score due to their
high complexity and knowledge gaps as it is not clear how any of these two methods
would work in detail.

Final selection
Vertex Manipulation aggregated the highest score, and was thus selected for further
development. Early tests suggested that there was some merit to this solution, as
can be seen in figure 5.5 which depicts the result of one of the benchmark models
being run through an early version of the algorithm.

20

5. Results

(a) Before (b) After

Figure 5.5: On display is the cylinder benchmark, before and after it passed
through the problem correction algorithm. In b) the model is shown after it has
passed through the algorithm, which has evened out the bottom section and given
the top half of the inside of the cylinder a 45° slope.

5.3.3 Focus on one face at a time

Figure 5.6: This figure depicts the single face algorithm (SFA). Seen in the figure
is a single face, and its components: the two roaming vertices, the anchor vertex,
and the normal vector. The two red arrows represents the change vectors, which are
calculated using the SFA. The change vectors always points in the same direction
as the normal vectors projection on the XY-plane, and are later used to resolve
problematic overhang angles. In this example the desired minimum overhang is 45°.
Thus, the change vectors strive to push the roaming vertices in a manner that would
result in a 45° overhang.

In order to develop a comprehensive geometry alteration algorithm it was decided
that the algorithm should focus on one face at a time. That way, it would be easy
to understand and debug. The SFA does exactly that. It accesses one single face
from the STL-file and attempts to correct the problematic angle, if it has one. Here
is how it works:

21

5. Results

Step 1: Gather all of the vertices of the face, and sort them by their respective
Z-index. If they all have the same Z-index, then ϕ = 0° in which case the algorithm
stops.

Step 2: Mark the highest vertex as the "anchor" vertex. The anchor vertex will
remain stationary throughout the rest of the algorithm. The other two vertices are
considered "roaming" vertices as long as they do not share Z-index with the anchor.
The purpose of a roaming vertex is to eventually move in order to increase ϕ. An
example of how this might look can be seen in figure 5.6.

Step 3: For each roaming vertex, calculate how far that vertex needs to move in
order to increase ϕ to ϕmin (which by default is 45°). In this calculation, the original
normal vector of the face is used. This is of high importance. The normal vector is
used as a guide in this calculation in order to determine the direction in which to
push the vertices. The reason the original normal vector is used is because it helps
maintain the shape of the model even after it has passed through the algorithm a
few times. The calculation is performed as such:

txy = ~va,z − ~vr,z

tan(ϕmin)
~nxy = [nx, ny, 0]

n̂xy = nxy

|nxy|
~w = ~va − ~vr

|~wxy| = ~w · n̂xy

d = |~wxy| − txy

v∗ = d · n̂xy

where
txy is how far the roaming vertex should be from the anchor in the xy-plane
~va is the coordinate vector of the anchor vertex
~vr is the coordinate vector of the roaming vertex
ϕmin is the smallest allowed overhang angle
~n is the original normal vector of the face.
d is the distance vr needs to be pushed in the n̂xy-direction to correct the angle.
v∗ is the change vector, which later will be used to alter vr.

Step 4: Store in memory that the roaming vertex needs to have its coordinates
changed by v∗ to correct the angle for this face. The algorithm is now done.

5.3.4 Performing the change
The reason why v∗ is not directly used to change the position of the individual
roaming vertices in the last step of the algorithm is because several faces may share
the same vertex. Thus, if a vertex is moved to correct one face, it could potentially
alter the state of another adjacent face and cause new problems. To counter this,

22

5. Results

all values of v∗ that are calculated for each face are stored in memory together with
a relation to their respective vertices. Once the SFA has been executed for each face
in the model, another loop is initiated. This loop runs through each vertex in the
model. The loop calculates the mean change vector for each vertex, as such:

v̄∗ =

N∑
i=1

v∗
i

N

where
v̄∗ is the mean change vector for a particular vertex
N is the amount of change vectors stored for a particular vertex
v∗ is a change vector

After the mean change vector (v̄∗) has been calculated it is simply added to the
current coordinate vector of the vertex, thus changing the position of the vertex:

vnew = vold + v̄∗

where
vnew is the new updated vertex position vector
vold is the old vertex position vector
v̄∗ is the mean change vector.

5.3.5 The meta algorithm
In order to tie everything together, there is a meta algorithm which determines when
to do what. The meta algorithm is illustrated in figure 5.7. The meta algorithm
starts off by reading whatever STL-file the user wishes to process. It then searches
for faces with problematic overhang angles (what constitutes a problematic angle
can be specified by the user, but it defaults to 45°). The algorithm then enters a loop
where it calculates change vectors for the vertices inside each problematic face using
SFA (see 5.3.3). Once it has performed this calculation for each problematic face it
applies all of the suggested changes at the same time using the method described in
5.3.4. Once the change vectors have been applied, the problem detection algorithm
is repeated, and the loop starts over. The loop keeps running until one of three
situations occur:

• The loop has reached its max amount of iterations.
• The problem detection algorithm fails to find any more problematic faces, thus

there is nothing left to correct.
• The amount of problematic faces has stopped changing after n iterations, where

n is a number defined by the user. This is referred to as convergence.

23

5. Results

Figure 5.7: The meta algorithm. This algorithm shows how the detection al-
gorithm (purple) works together with the correction algorithm (green) in order to
produce results. The queue does not keep the faces in any particular order.

24

5. Results

5.3.6 Problems with the basic problem correction
The problems with the algorithm can be divided into two categories. The first
category of problems affect how the algorithm operates. The second category is
performance, which translates to speed and reliability.

Operational problems
The basic problem correction algorithm as presented thus far has three known op-
erational issues:

1. It can’t handle faces with an overhang angle of 0°(ϕ = 0°).
2. It often has problems with curved geometry.

(a) Swelling or "blobbing" around high density curved surfaces. See figure
5.8.

(b) Inability to provide a solution for curved surfaces that touch the ground
3. Since the SFA focuses on one face at a time, it does not take into account if

the change vectors it proposes will cause a collision with another face. This
can result in invalid geometries.

Figure 5.8: "Blobbing" on a surface with a high face density, seen from two different
perspectives. This particular model is of the handle of a teapot.

In order to take on these issues the focus needed to be shifted away from solely
looking at one face at a time. Evidently, a few other components besides the SFA
were required to make the problem correction algorithm more versatile.

Performance problems
One major problem which relates to both speed and reliability is the issue of vertex
identity. One of the core routines of the algorithm is to identify each unique vertex.
Checking if two vertices are the same could be as simple as checking the equality of
each of the coordinate components (eg. x1 = x2, y1 = y2, z1 = z2, where the indices 1
and 2 represent two different vertices). However, due to how different CAD software
exports to STL there is sometimes a slight difference between how two separate
adjacent faces represent the same vertices. Thus, if the algorithm checks for equality
of each coordinate component, then two vertices that are actually the same might
be considered to be different by the program. This is referred to as a leak, meaning
that the surface of the model is not closed. Leaks can cause some models to be
ripped apart in the problem correction process, rendering the process unreliable.

25

5. Results

5.4 Advanced problem correction algorithm

The advanced problem correction algorithm aims to provide solutions to the issues
with the basic problem correction algorithm. This section will bring up possible so-
lutions for the problems that were encountered when developing the basic correction
algorithm (see section 5.3.6), and why some problems could not be solved.

5.4.1 Addressing the problems with curved geometries
Curved surfaces sometimes resulted in unexpected consequences when running the
basic problem correction software. Two of the most prominent issues that were
encountered was issues with curved surfaces that touched the ground, and a disfig-
urement caused by the algorithm malfunctioning, referred to as "blobbing".

Grounded curved surfaces
One problem which could be fixed in the advanced algorithm was the problem with
curved surfaces that touch the ground. As mentioned in the interview with the
researcher at Chalmers (see 5.1.1), it is often preferable to remove support structures
from flat surfaces. With this in mind it was possible to develop an addition to the
meta algorithm which deals with rounded surfaces that touch the ground.

(a) Curved grounded surface (b) After processing

Figure 5.9: Rounded surface flattening. If a vertex touches the ground, and the
surrounding vertices does not, then the surrounding vertices are brought down to
ground level. This could reduce both the need for support structures and the need
for machining in post processing. The bright blue dot represents the vertex that is
touching the ground, and the green dots represent the surrounding vertices.

In order to treat rounded surfaces that touch the ground the algorithm looks for one
specific property: a vertex that touches the ground, while all surrounding vertices
does not. An illustration of such a situation can be seen in figure 5.9a. Once a
vertex which fits that description is encountered the algorithm "flattens" the vertices
surrounding it, thus creating a flat base from which the rest of the model can be
printed from (see figure 5.9b). By providing such a base the need for support
structures in the surrounding area may be mitigated or resolved. It is important to
consider heat dissipation when moving from a narrow geometry to a wide geometry,
so while this technique might reduce the need for support structures it might not
remove it completely.

26

5. Results

(a) Curved grounded
surface

(b) After processing

Figure 5.10: This figure displays the algorithm in use. In this case the algorithm
has detected a curved surface where only one vertex touches the ground. It has thus
flattened the surrounding vertices, reducing the need for support structures. After
flattening the bottom, the SFA pushed out the vertices at the bottom, creating a
stable 45° overhang.

Blobbing
This problem seems to be caused by how the direction of pushing vertices is defined.
As described in 5.3.3, the SFA only pushes vertices in the direction of the normal
vector projected onto the XY-plane. This seems to sometimes create these "blobs"
on curved surfaces with a high face density. This problem could not be solved within
the time frame of this project.

5.4.2 Dealing with leaks
In order to deal with leaks the method for controlling vertex equality was changed.
Rather than comparing the individual coordinates of each vertex, the distance be-
tween the vertices is measured. If the distance falls within a tolerance threshold, the
vertices are considered to be equal. To ensure that there are no leaks present, the
algorithm then gathers each edge that exists within the model. Once all edges has
been gathered, if any edge does not belong to exactly two faces, then there must be
a leak. If such a leak is encountered, the user is prompted. To counter the leaks, the
user can then choose to increase the vertex equality threshold, making vertices that
are further from each other count as equal, thus reducing the probability of leaks.

5.4.3 Overhang without an angle
A major problem with the SFA is its inability to deal with overhangs where the
normal vector lacks an angle. From now on such overhang surfaces will be referred
to as "flat overhangs". Since the SFA pushes vertices based on the projection of the
normal vector onto the XY-plane, then a normal vector that is perpendicular to the
XY-plane would result in the vertices not being pushed at all. This renders the SFA
completely inapplicable to flat overhangs. To deal with this problem a handful of
ideas were generated.

27

5. Results

Introduce an angle
It might be possible to force an angle upon a flat overhang, thus making it possible
to apply the SFA onto it. However, this solution breeds new problems. Mainly,
in which direction should the flat overhang be tilted? Tilting it in an improper
direction might have devastating implications on product functionality.

Merge
In some cases it might be possible to merge the edges of a flat overhang, which
would eliminate that surface completely. But similar to introducing an angle, this
proposition requires the algorithm to figure out which edges ought to be merged in
order to preserve functionality. It also becomes useless if the flat overhang has an
uneven amount of edges, such as a triangularly shaped flat overhang. In such cases
it may be possible to merge all vertices instead.

Orient model to avoid flat overhangs
An orientation optimization algorithm could be developed which penalizes any ori-
entation which has flat overhangs. This would not actually solve the problem, but
it would provide a way to move around it.

Utilize voxels on flat overhangs
Once the SFA has finished running and can no longer find any edges to solve the
model could be converted into voxels. Then, using voxel problem correction the flat
overhangs could be eliminated by either adding or removing voxels. This again has
issues related to conservation of functionality.

In the end two of these solutions were implemented as optional methods the user
can elect to utilize in the final prototype, depending on the situation. Specifically a
method for introducing an angle, referred to as "angle injection", and a method for
orienting the model to avoid flat overhangs, referred to as "orientation optimization".
The reason they were not integrated to be used at all times is because of the varying
results these methods would generate. In some cases they would work as intended,
while in other cases they broke the models. Any user who would want to attempt to
use these implementations would need to be prepared to experiment to get decent
results.

5.5 Final prototype

In this section the final version of the prototype will be presented. The final proto-
type contains both the detection and correction algorithms, as well as an option to
optimize the orientation of the model to minimize required support, and an option
to utilize the angle injection algorithm to deal with flat overhangs. All of these
features together with some other optional settings are packaged into a graphical
user interface.

28

5. Results

5.5.1 User interface

Figure 5.11: The final version of the prototype.

To make demonstrations and usage easier of the software that was created during
this project, a graphical user interface (GUI) was developed. The GUI makes it
simple to select an STL-file, and an output path. The user can then elect to use the
correction algorithm (referred to in the GUI as "Geometric alteration", the orienta-
tion optimization algorithm, or both. A screen capture of the GUI can be seen in
figure 5.11. The GUI provides an array of settings to experiment with:

• Set the input STL file, and the name and path of the output file.
• Customize the minimum allowed overhang, which defaults to 45°
• Determine how long the algorithm is allowed to run before self-terminating by

setting an appropriate number of max iterations.
• Choose a "0 phi strategy", which determines how the meta algorithm deals with

flat overhangs. In the prototype it is only possible to choose between "None",
which ignores the flat overhangs, and "Inject", which attempts to introduce
an angle to any encountered flat overhangs. This was briefly touched upon in
section 5.4.3.

• Activate or deactivate orientation optimization, which can be run with or
without grounded results only.

• If orientation optimization is deactivated, the user can specify a predetermined
orientation, to which the model will orient itself immediately.

• Finally, it is possible to set the ground and angle tolerances, which has been
fine tuned to 0.01 and 0.017 respectively during development. However, it is

29

5. Results

possible that some scenarios calls for these tolerances to be changed.

Besides the settings the user can also view the process of the algorithm in the
progress output area to the right. This area provides a short description of what
the algorithm is working on at any given moment. The program contains a custom
made STL file loader which can handle all three STL variations (see 3.2.1), but it
can only output ASCII STL-files, which may result in the output file being a lot
larger than the input file.

The performance of the final prototype can be seen in section 5.5.2. All benchmark
models were run through the final prototype with a minimal overhang set to 45°,
and max iterations set to 100. The 0 phi strategy and orientation optimization
options were turned off. The tolerance values were left at their default values. All
models were successfully treated except for "U-shape 0" which had a flat overhang
that could not be treated by the final prototype without the "0 phi strategy" setting
set to "inject" (the result of doing this can be seen in section 5.5.4).

5.5.2 Performance of the single face algorithm
This section will present the benchmarks as how they looked after being processed
by the prototype software. Orientation optimization and angle injection was not
utilized. All results are presented in table 5.2.

30

5. Results

Table 5.2: The results of using the final prototype on the benchmark models. In
these results orientation optimization and angle injection was turned off. How the
models looked before processing can be seen in appendix B.

Label Model Notes

Cube The cube remained unchanged, as
expected.

U-shape 0

This model could not be corrected
using only the SFA due to the flat
overhang. As a consequence this
benchmark did not change when
run through the SFA algorithm.

U-shape arch
The algorithm correctly pushed
the vertices that made up the
arch into a triangular shape.

Cylinder

Again, the top half of the inner
cylinder has been reshaped into
an easier to print triangle. The
bottom of the cylinder has also
been corrected slightly.

Angular

The algorithm has successfully
managed to solve this multi-
directional problem. This proves
that the change aggregation me-
chanic works.

31

5. Results

Sphere

Again, the sphere requires the
change aggregation mechanic to
work properly. In this benchmark
we can also see the grounded
curved surface flattening at the
bottom.

Arch-sphere

The algorithm correctly solved
what was initially thought to be
the hardest benchmark to alter
automatically.

As can be seen in the table the final prototype was able to process all of the bench-
mark models. All problematic overhangs has been eliminated except for the model
that is labeled "U-shape 0". This particular model has a flat overhang (ϕi = 0°),
and could for this reason not be treated by the SFA. In sections 5.5.3 and 5.5.4 two
methods are depicted that were implemented into the final prototype in an attempt
to solve this problem.

5.5.3 Orientation optimization

Figure 5.12: A diagram of how the weight of a face is determined based on the
overhang angle. The value is multiplied by the area of the face, thus giving larger
overhang surfaces a larger penalty. In this diagram ϕmin = 45°. The values in this
diagram are not derived from calculations, only trial and error. A more thorough
study into orientation optimization would likely yield in a different looking diagram.

32

5. Results

In order to address the problem with flat overhangs it was deemed necessary to
develop a couple of methods for experimental purposes. The first of these two
methods is an orientation optimization algorithm which penalizes solutions that has
flat overhangs. This is done by assigning each face a "weight" based on its angle
and size, where flat overhangs would receive a very high weight. A diagram of how
weight is calculated can be seen in figure 5.12.

The reason the size (or area) of the face is used to calculate the weight instead of
the expected support structure volume, is because the purpose of this optimization
is to reduce support structure contact, not support structure materials. It is also
not always obvious how to calculate the expected support volume, since the support
might not always stem from the ground, but instead from another part of the model.

The weight of each face is calculated for every rotation. The total weight is then
saved along with the orientation, making it easy to extract the best orientation by
looking at which orientation had the lowest total weight.

Not only could it help mitigate the issues related to flat overhangs, but implement-
ing such an algorithm could also be the first step in solving two of the problems
which surfaced during the interviews: 1) Existing orientation optimization tools of-
ten suggest orientations which require support structures that are hard to remove
(for example support structures on rounded surfaces), and 2) Some products have
surfaces that should not be in contact with support structures.

If each orientation is to have a weight based on the angle of each face, then it is also
feasible to implement a method which also weighs an orientation based on weather
or not the product is grounded (meaning, it has at least one flat surface that runs
parallel to the ground), and a way of giving a large penalty for any orientation that
would require alteration or support of a "strict surface" (a surface that is not allowed
to be changed or supported).

An example of how this can be done was developed and implemented into the existing
software. It rotates the model in 5° intervals around the X and Y axis (this could
easily be changed to a smaller step size, but was intentionally left at 5° per step
to save time and resources), leaving the Z axis alone as rotating around the Z-axis
does not result in a meaningful change. The rotation is done by multiplying each
vertex in the model with a rotation matrix. For each new orientation, the total
weight is calculated and stored. When all different orientations has been evaluated
the orientation of the model is set to the one which received the lowest weight. To
make all options available to the user the 10 best orientations are presented, along
with their weight and whether or not they are properly grounded. The user can also
elect to only show results that are grounded. The program provides this information
to the user through text, an example of which can be seen in figure 5.13.

The orientation optimization algorithm did not work well together with the SFA.
The fault lies within the SFA, and how it selects a direction in which to push vertices.
As will be discussed further in 6.2.2 it might be possible to solve this problem if given
more time. However, it did manage to reduce flat overhangs where possible, and

33

5. Results

also suggest grounded orientations. The results of the development of the orientation
optimization algorithm can be seen in section 5.5.3.

Figure 5.13: Screen capture of the output from the orientation optimization algo-
rithm. The top result has the lowest weight, and is in this case also grounded.

In figure 5.14 a figure of an antenna is shown before and after orientation optimiza-
tion. In this example the orientation optimization algorithm has managed to find a
grounded orientation which should be easier to print than the original orientation.
The orientation optimization algorithm has deemed this orientation to be stable
because it has a large flat surface touching the ground. It has also attempted to
minimize the amount of surfaces that would require support structures. In this sit-
uation the bracket structure would need plenty of support, the funnel would likely
not require as much support, and none of the support structures would need to be
inside of the funnel.

(a) Before (b) After

Figure 5.14: Orientation optimization of an antenna component. The result is
grounded at the base of the antenna, but the bracket structure will need plenty of
support if this product is to be printed in the orientation shown in (b). However,
in (a) it would be necessary to use support structures inside and underneath the
funnel, which would likely be more problematic.

In figure 5.15 the orientation optimization has been used on the cylinder benchmark
model. Again, a grounded orientation was produced, with no problematic overhangs.
The result in this case is arguably an improved orientation in comparison to the

34

5. Results

original, which had plenty of problematic overhangs on the top of the inside of the
cylinder.

Figure 5.15: The cylinder after being processed by the orientation optimization
algorithm. The result is grounded with no problematic overhangs.

In the final figure 5.16 the arch-sphere benchmark model was put through both the
orientation optimization algorithm, and the problem correction software. This did
not work as intended, as the resulting model has had some of its surfaces distorted
to a high degree.

Figure 5.16: The arch-sphere benchmark model after run through both the orien-
tation optimization algorithm, and the geometry alteration algorithm. This did not
work as intended.

5.5.4 Angle injection
In order to provide an alternative to orientation optimization, a method for intro-
ducing angles to flat overhangs was introduced. As mentioned in section 5.4.3, one
of the main issues with introducing an angle to a flat overhang is determining in
which direction that angle should be introduced. The angle injection algorithm uti-
lizes neighbouring faces to the flat overhang to determine the direction. It looks

35

5. Results

for adjacent faces that are on a lower position along the Z-axis. If such a face is
found, then the edge that connects the neighbouring face to the targeted overhang
is lowered to a midpoint between the lowest and highest vertices of both faces.

During tests this turned out to be an unreliable way to create angles where there
originally was none. It worked on simple geometries such as the benchmark model
"U-shape 0". However, the algorithm would require much more work in order to
be able to successfully process more complicated geometries. Figure 5.17 shows the
performance of the angle injection module "U-shape 0". After an angle has been
"injected" the single face algorithm processes the new angle. In this way the angle
injection algorithm works in concept with the SFA to attempt to solve the problem.

Figure 5.17: From left to right: The first image shows the unaltered original model.
The second shows the same model, but the flat overhang has had an angle injected.
The third shows how the single face algorithm now can take an advantage of the
introduced angle, and thus pushes it to form a shape that does not need support.

36

6
Discussion

6.1 Geometry alteration and the space industry
Adding material to a product in order to reduce its need for support structures
might reduce the amount of material needed to create it, and it might also reduce
time spent in post processing. However, when launching a product into space each
gram costs a large amount of money, and so the manufacturer needs to consider the
available options carefully. If the cost of materials and post processing of the part
is less then the increased cost of launching the altered part, then one of the major
benefits of AM (as explained in 1.2) is cancelled out. A solution to this problem
could be to use a subtractive geometry alteration algorithm, which removes material
rather than adding.

One important thing to note is that, no matter if an additive or subtractive geometry
alteration algorithm is used, there will always be a problem with maintaining func-
tionality. Part geometry is often strictly specified by customer requirements. Such
components may not be suited for automatic geometry alteration. However, struc-
tural components may be better suited for automatic alteration, but would require
thorough examination afterwards due to potential changes to mass and mechanical
properties.

6.2 Further development
If more time were to be put into this project, then there are a number of things that
could be explored and improved. This ranges from basic things such as performance,
to adding new features.

6.2.1 Improving the performance
The current algorithm has many performance issues that could be resolved. The two
most important issues exists within the problem correction algorithm, and in the
problem detection algorithm. The problem correction algorithm is single threaded,
which means it does not utilize the resources available efficiently. Reworking this
could make the algorithm a lot faster. The problem detection algorithm has the
same problem. The inefficiency of the problem detection algorithm causes significant
slowdown in many parts of the program, as it is used repeatedly inside the meta
algorithm, and the orientation optimization. Thus, improving the efficiency of the

37

6. Discussion

problem detection algorithm would likely yield in a large performance boost and
should be prioritized if the project is to continue.

6.2.2 Improving the results
The two largest issues that was encountered during the project was the flat overhang
issue, and the blobbing issue (see 5.3.6 for more information about these issues).
These issues prevented the quality of the results from reaching its full potential.
While these two problems exists it is hard to motivate using the software for any
industrial application. Therefore any further development should focus on solving
the issue of flat overhangs and blobbing.

In order to solve the issue of blobbing, the first piece of code that should be put
under review is the core of the SFA. More specifically, the choice of pushing direc-
tion. It is likely that always pushing vertices in the direction of the normal vector’s
projection onto the XY-plane is the reason for blobbing, and perhaps there is a
better way to extract the preferred direction of movement. Finding a better way
to extract a proper vertex pushing direction might also improve the results of using
the orientation optimization algorithm together with the SFA.

Another aspect which might help make the results more meaningful would be to take
heat dispersion into consideration. Even if all angles are perfect, then situations may
arise where, for example, the model is suggested to be printed in a way which makes
a thin cross section be printed before a thick cross section. An example of this was
presented in the background section of this thesis (see 1.2). A means of compensating
for this could be implemented into the orientation optimization, which could analyze
the area of vertical slices of the model, and aggregate the results of that analysis
into the weight of that orientation.

6.2.3 Improving the experience
A feature which would have improved the GUI significantly is a 3D graphical view
of the STL-model. This graphical display could be used to visualize different orien-
tations, making it easier for the user to select an optimal orientation after running
the orientation optimization algorithm. Such a display could also be used as an
interface which the user could utilize to select "strict surfaces" (surfaces that may
not be altered, or touched by support structures), which would allow the user an
extra layer of control. Implementing support for strict surfaces into the orienta-
tion optimization algorithm and the meta algorithm is an easy step, compared to
implementing a means for the user to select such surfaces.

6.2.4 Improving integration
An idea which was far outside of the scope for this project is to directly apply
geometry alteration to a CAD-file. While this is a much more complicated task, it
may assist in overcoming some of the obstacles that were encountered when altering
the STL format. Primarily, a CAD file can contain constraints and measurements,

38

6. Discussion

which could allow the user to specify to what degree the model is allowed to be
modified. By applying such a principle it would be possible to avoid problems with
collisions, which was one of the problems which could not be solved during this
project. Having the modifications done directly to the CAD model would also make
it easier for the designer to control and edit the results.

6.3 Use cases
In its current state the software should not be relied upon to make intelligent deci-
sions regarding a products geometry. However, it may be used as a guide to identify
problems, and sometimes it might even help the designer by hinting at a possible
solution. But the software does struggle with more complex designs, and might only
be of use in "blocky" low complexity models.

If the project is continued, and the software improved upon, then the potential use
cases might expand. But even if the software is developed to its full potential it
should always be used under supervision. The models needs to be examined after
processing to ensure that the functionality is maintained, and any hypothetical
specifications are met.

39

7
Summary

The original question that laid the foundation for this thesis was "How can the
geometry of a product be automatically altered to reduce the need for support
structures while maintaining product functionality?" (see chapter 2). The results
produced during this thesis project shows one way to tackle this problem, but there
is still much that needs to be done. The performance of the final prototype on
the benchmark models was better than expected, but the benchmark models all
had one thing in common: they lacked an actual function. The benchmark models
were simply models made to test the software’s performance in different types of
situations. From that perspective the tests were successful, but they failed to test
the software’s ability to preserve product functionality.

The software was applied on other models as well, but it quickly ran into problems.
Geometries with complicated geometries resulted in "blobbing", which caused lumps
to form on some curved surfaces. The most severe problem which was encountered
was that of "flat overhangs", in other words overhang surfaces that point straight
down at the substrate. Such surfaces completely lack an overhang angle, and could
thus not be treated by the algorithm which requires at least a small angle in order
to know in which direction to alter the geometry. Two separate algorithm was
created which attempted to deal with flat overhangs. These algorithms were added
as modules to the final prototype. The first module changed the orientation of the
model to reduce the changes of flat overhangs. The other module directly treated
flat overhangs, but could only handle very basic flat overhang cases. These modules
proved that the problem is not impossible to solve, but requires a lot more work.
As for the lumps that were erroneously formed on complex curvature, this issue is
likely to be a bug in the SFA (5.3.3), and could probably be resolved if given enough
time.

The final question is, could the space industry benefit from this sort of technol-
ogy? During the interview with the manager from within the space industry it was
revealed that customer requirements sets yields in strict specifications on geome-
try. And so it is often the case that geometry can only be altered within a narrow
tolerance before becoming unusable. This does not necessarily mean that the tech-
nology is useless, as it could still be used to give a designer helpful feedback on the
manufacturability of their model, and guide them in the right direction.

Adding additional features to the technology could result in it being useful not only
for feedback, but also for finalizing a design. One of these features could be the
ability of a designer to select certain surfaces that are not allowed to be altered.

40

7. Summary

This would result in the software skipping those surfaces, which would help preserve
functionality. Another step towards taking this technology to the next level would
be to have it operate directly on CAD models. Since CAD models can contain a lot
more information than an STL-file, including measurements, tolerances and many
other attributes, the software could incorporate this information into its decision
making to yield better results.

In conclusion, this project resulted in the development of a proof of concept in the
form of a prototype. It is a long way from a final fully functional product. Geometry
can be altered automatically to reduce the need for support structures, but a separate
mechanism needs to be developed which preserves product functionality, such as the
ability of the user to specify alteration constraints.

41

7. Summary

42

Bibliography

[1] Ian Gibson, David Rosen, and Brent Stucker. Additive Manufacturing Technolo-
gies. [electronic resource] : 3D Printing, Rapid Prototyping, and Direct Digital
Manufacturing. New York, NY : Springer New York : Imprint: Springer, 2015.,
2015.

[2] Dimitar Dimitrov, Kristiaan Schreve, and Neal de Beer. Advances in three
dimensional printing–state of the art and future perspectives. Rapid Prototyping
Journal, 12(3):136–147, 2006.

[3] Christo Dordlofva, Angelica Lindwall, and Peter Törlind. Opportunities and
challenges for additive manufacturing in space applications. In 12th Biennial
Norddesign 2016 Conference" Highlighting the Nordic Approach", Trondheim,
Norway, 10-12 August 2016, volume 1, pages 401–410. The Design Society,
2016.

[4] William E Frazier. Metal additive manufacturing: a review. Journal of Mate-
rials Engineering and Performance, 23(6):1917–1928, 2014.

[5] M Cloots, A Spierings, and K Wegener. Assessing new support minimizing
strategies for the additive manufacturing technology slm. In Solid Freeform
Fabrication Symposium (SFF), Austin, TX, Aug, pages 12–14, 2013.

[6] Daniel Thomas. The development of design rules for selective laser melting.
PhD thesis, University of Wales, 2009.

[7] Steven C Wheelwright and Kim B Clark. Revolutionizing product development:
quantum leaps in speed, efficiency, and quality. Simon and Schuster, 1992.

[8] Angelica Lindwall, Christo Dordlofva, and Anna Öhrwall Rönnbäck. Additive
manufacturing and the product development process: insights from the space
industry. In 21st International Conference on Engineering Design (ICED17),
Vancouver, Canada, 21-25 August 2017, volume 5, pages 345–354, 2017.

[9] Christian Lindemann, Ulrich Jahnke, Matthias Moi, and Rainer Koch. An-
alyzing product lifecycle costs for a better understanding of cost drivers in
additive manufacturing. In 23th Annual International Solid Freeform Fabri-
cation Symposium–An Additive Manufacturing Conference. Austin Texas USA
6th-8th August, 2012.

[10] Jeff Allen. An investigation into the comparative costs of additive manufacture
vs. machine from solid for aero engine parts. Technical report, ROLLS-ROYCE
PLC DERBY (UNITED KINGDOM), 2006.

[11] Giorgio Strano, L Hao, RM Everson, and KE Evans. A new approach to the
design and optimisation of support structures in additive manufacturing. The
International Journal of Advanced Manufacturing Technology, 66(9-12):1247–
1254, 2013.

43

Bibliography

[12] Materialise magics support structure generation software.
https://www.materialise.com/en/software/magics/modules/
metal-support-generation-module. Accessed: 2019-06-14.

[13] LongFei Qie, ShiKai Jing, RuiChao Lian, Ying Chen, and JiHong Liu. Quanti-
tative suggestions for build orientation selection. The International Journal of
Advanced Manufacturing Technology, 98(5-8):1831–1845, 2018.

[14] Martin Leary, Luigi Merli, Federico Torti, Maciej Mazur, and Milan Brandt.
Optimal topology for additive manufacture: A method for enabling additive
manufacture of support-free optimal structures. Materials & Design, 63:678–
690, 2014.

[15] Space junk could destroy satellites, hurt economies. https://phys.org/news/
2017-05-space-junk-satellites-economies.html. Accessed: 2019-01-27.

[16] Space debris and human spacecraft. https://www.nasa.gov/mission_pages/
station/news/orbital_debris.html. Accessed: 2019-01-27.

[17] John Mark Mattox. Additive manufacturing and its implications for military
ethics. Journal of Military Ethics, 12(3):225–234, 2013.

[18] Samuel H Huang, Peng Liu, Abhiram Mokasdar, and Liang Hou. Additive
manufacturing and its societal impact: a literature review. The International
Journal of Advanced Manufacturing Technology, 67(5-8):1191–1203, 2013.

[19] Di Wang, Yongqiang Yang, Ziheng Yi, and Xubin Su. Research on the fab-
ricating quality optimization of the overhanging surface in slm process. The
International Journal of Advanced Manufacturing Technology, 65(9-12):1471–
1484, 2013.

[20] D Brackett, I Ashcroft, and R Hague. Topology optimization for additive
manufacturing. In Proceedings of the solid freeform fabrication symposium,
Austin, TX, volume 1, pages 348–362. S, 2011.

[21] The European Powder Metallurgy Association (EPMA). Introduction to addi-
tive manufacturing technology, 2nd edition, 2017.

[22] Stl file format (3d printing) – simply explained. https://all3dp.com/
what-is-stl-file-format-extension-3d-printing/#pointone. Accessed:
2019-02-20.

[23] Voxelization. https://labs.cs.sunysb.edu/labs/projects/volume/
Papers/Voxel/index.html. Accessed: 2019-05-12.

[24] Karl T. Ulrich and Steven D. Eppinger. Product design and development.
McGraw-Hill/Irwin, 2011.

44

https://www.materialise.com/en/software/magics/modules/metal-support-generation-module
https://www.materialise.com/en/software/magics/modules/metal-support-generation-module
https://phys.org/news/2017-05-space-junk-satellites-economies.html
https://phys.org/news/2017-05-space-junk-satellites-economies.html
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://www.nasa.gov/mission_pages/station/news/orbital_debris.html
https://all3dp.com/what-is-stl-file-format-extension-3d-printing/#pointone
https://all3dp.com/what-is-stl-file-format-extension-3d-printing/#pointone
https://labs.cs.sunysb.edu/labs/projects/volume/Papers/Voxel/index.html
https://labs.cs.sunysb.edu/labs/projects/volume/Papers/Voxel/index.html

Appendices

I

A
Timetable

Figure A.1 shows the Gantt chart for the project. This Gantt chart represents the
ideal scenario, and is thus prone to change as new information is uncovered. Towards
the end of stage 2 a mid-project presentation will be held. Besides the tasks shown
in the chart there will also be weekly meetings with the project supervisor.

January February Mars April May June

Write report

Literature study

Formulate specification

Prepare presentation

Final presentation

Submit report

Stage 1

Voxel handling

Problem detection

Tidy up code

Stage 2

Geometry alteration

Sort out issues & bugs

Mid-project presentation

Stage 3

Improve alteration algorithm

Stage 4

Experiment with curved surfaces

Evaluate results

Sort out issues & bugs

Figure A.1: This figure displays the ideal Gantt chart for the project.

II

B
Benchmarks

In this section the unprocessed benchmarks are presented. Along with their pictures
and names, there is also a short explanation of the characteristics that makes each
benchmark important.

Label Model Characteristics

Cube
Possesses no problems, and
should remain untouched by the
algorithm.

U-shape 0 Possesses a problematic flat over-
hang.

U-shape arch Possesses an overhanging arch
structure with several bad angles.

III

B. Benchmarks

Cylinder

A cylinder lying parallel to its
internal axis provides a similar
problem to the U-shape arch, but
also has an outside surface with
problematic faces.

Angular

This is the first benchmark that
has problems in more than one
plane (all previous benchmark
models has had problems only in
the XZ-plane)

Sphere

Similar to the "Angular" bench-
mark, the sphere has problems in
all directions, but higher model
complexity.

Arch-sphere

A combination of the "Sphere"
benchmark and the "U-shape
arch" benchmark, ensuring that
one single algorithm can handle
two vastly different problems in
the same process.

IV

	List of Figures
	Background
	A brief introduction to AM
	The space industry: a suiting candidate
	Problems
	The current toolkit
	Support structure generation
	Orientation optimization
	Automatic geometry alteration

	Impact on society
	The ethical and societal context
	The potential impact of this project

	Aim
	Demarcations

	Theory
	Metal additive manufacturing
	Overhang
	Support structures

	Computer aided additive manufacturing
	The STL file format
	Voxel representation

	Method
	Interviews
	Benchmarks
	Concept generation and selection
	Creating the prototype

	Results
	Interviews
	The problem with orientation optimization
	Strict requirements in space technology

	Problem detection algorithm
	Generated problem detection concepts
	Evaluation of concepts
	Concept selection and result

	Basic problem correction algorithm
	Generated correction concepts
	Concept evaluation and selection
	Focus on one face at a time
	Performing the change
	The meta algorithm
	Problems with the basic problem correction

	Advanced problem correction algorithm
	Addressing the problems with curved geometries
	Dealing with leaks
	Overhang without an angle

	Final prototype
	User interface
	Performance of the single face algorithm
	Orientation optimization
	Angle injection

	Discussion
	Geometry alteration and the space industry
	Further development
	Improving the performance
	Improving the results
	Improving the experience
	Improving integration

	Use cases

	Summary
	Bibliography
	Appendices
	Timetable
	Benchmarks

