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Implementation of Optimal Energy Management of High Capacity Vehicles with
Electrically Propelled Dolly Under Lateral Constraint in CasADi
WILHELM JOHANNESSON
YING LI
Department of Mechanics and Maritime sciences
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Abstract
To lower the environmental impact of road freight transport, high-capacity transport
vehicles with electrically propelled dolly trailers (e-dollys) are proposed as a more ef-
ficient way of transportation. This distributed propulsion hybrid vehicle introduces
challenges regarding lateral stability and new possibilities for energy management.
In this thesis, these properties are addressed by a model predictive control (MPC)
strategy. The thesis includes design of an optimal energy management MPC for a
A-double truck with an e-dolly, using the optimization toolbox CasADi. The MPC
controller finds the optimal speed, soc, internal combustion engine (ICE) gears, ICE
propulsion, electric motor (EM) propulsion and retardation and braking.

The MPC is designed using CasADis symbolic framework and sequential linear and
quadratic programs (SLP) and (SQP), and IPOPT as optimization algorithms. The
two dynamic models are: an explicit ordinary differential equation (ODE) describ-
ing the longitudinal dynamics and an implicit differential algebraic equation (DAE)
describing both lateral and longitudinal dynamics. Discretization of explicit and
implicit model dynamics is done with Runge-Kutta and IDAS numerical integration
methods. A method for decoupling ICE gears from the mixed integer nonlinear pro-
gram (MINLP) is designed and gear optimization is done with a one-step algorithm.
A method for implementing online shrinking horizon as the truck is getting close to
its destination is developed for the sequential programs. Two types of lateral sta-
bility constraints are tested, one rule based calculated speed limit, and one directly
constraining states in the lateral dynamics model.

The MPCs are evaluated with simulations and the fuel consumption is compared to
a diesel truck. The MPC computation time is evaluated in respect to real time im-
plementation. The two lateral stability constraints are evaluated. The MPC using
SLP, and the rule based lateral stability constraint is determined to be fast enough
to be implemented in real time but, the rule-based stability constraint is lacking
and cannot guarantee lateral stability unless very conservative constraints are con-
sidered. The MPC including the nonlinear lateral dynamics is too computationally
expensive to implement in real time for long horizons, but its optimal trajectories
can serve as a benchmark for further simplifications of the lateral dynamics.

keywords: Model predictive control, optimal energy management, motion control,
optimization, lateral stability, electrified propulsion, high capacity transport vehi-
cles, distributed propulsion and simulations.

v





Acknowledgements
Firstly, we would like to express our sincere thanks to our supervisor Toheed Ghan-
driz and our examiner Professor Bengt Jacobson. They have always provided us with
tremendous help using their professional expertise and enthusiasm, which are present
throughout the entirety of our project. Also, we appreciate the Volvo Group’s assis-
tance in providing us with the opportunity and challenge to complete the project,
especially for the comfortable environment and facilities they offered for us.

We would also like to express the special thanks to our beloved friends and par-
ents for their support and companionship. They give us the confidence to confront
the unknown and difficulties, even in trying circumstances.

Wilhelm Johannesson and Ying Li, Gothenburg, September 2022

vii





List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

COG Center of Gravity
DAE Differential Algebraic Equations
EM Electric Motor
HCT High Capacity Transport
ICE Internal Combustion Engine
LCV Long Combination Vehicle
LP Linear Program
MILP Mixed Integer Linear Program
MINLP Mixed Integer Nonlinear Program
MPC Model Predictive Control
NLP Nonlinear Programs
NMPC Nonlinear Model Predictive Control
NOCP Nonlinear Optimal Control Problem
OCP Optimal Control Problem
ODE Ordinary Differential Equations
QP Quadratic Program
RHC Receding Horizon Control
RMS Root Mean Square
RTI Real-Time Iteration
SLP Sequential Linear Program
SQP Sequential Quadratic Program
SOC State Of Charge

ix





Contents

List of Acronyms ix

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Theory 5
2.1 Model predictive control (MPC) . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mathematical optimization . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Sequential programs (SQP, SLP) . . . . . . . . . . . . . . . . 7
2.2.2 IPOPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Literature study: Optimization toolbox . . . . . . . . . . . . . . . . . 8
2.4 Matlab toolbox: CasADi . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Numerical integration with CasADi . . . . . . . . . . . . . . . 9
2.4.2 Optimization with CasADi . . . . . . . . . . . . . . . . . . . . 10

3 Methods 13
3.1 Space time conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Optimal control problem . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 States, inputs and parameters . . . . . . . . . . . . . . . . . . 14
3.2.2 Energy management . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2.1 Objective function . . . . . . . . . . . . . . . . . . . 17
3.2.2.2 Equality constraints . . . . . . . . . . . . . . . . . . 17
3.2.2.3 Inequality constraints . . . . . . . . . . . . . . . . . 18
3.2.2.4 Bounds on states and inputs . . . . . . . . . . . . . . 19

3.2.3 Gear optimization . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Safety: lateral stability . . . . . . . . . . . . . . . . . . . . . . 22

3.2.4.1 Including lateral dynamics . . . . . . . . . . . . . . . 23
3.2.4.2 Rule based speed limitation and initial reference tra-

jectory generation . . . . . . . . . . . . . . . . . . . 25
3.3 MPC with CasADi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



Contents

3.3.1 Symbolic NOCP generation with CasADi and sparsity pat-
terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Discretization with CasADi . . . . . . . . . . . . . . . . . . . 28
3.3.3 Updating space dependant constraints and parameters . . . . 29
3.3.4 Solvers used for MPC with rule based speed limitation . . . . 30
3.3.5 MPC with lateral dynamics . . . . . . . . . . . . . . . . . . . 30
3.3.6 Online shrinking horizon (SLP,SQP) . . . . . . . . . . . . . . 32

4 Results 33
4.1 Controller architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Energy management with rule-based speed constraint . . . . . . . . . 34

4.2.1 Solution to the NOCP with SLP, SQP and IPOPT . . . . . . 35
4.2.2 Relaxing the reference trajectory . . . . . . . . . . . . . . . . 37
4.2.3 Moving horizon MPC with SLP and warmstart . . . . . . . . 38
4.2.4 Effect of control horizon on computation time and fuel con-

sumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.5 Implementing RTI . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Comparison between point mass longitudinal model and multibody
lateral and longitudinal model dynamics . . . . . . . . . . . . . . . . 41
4.3.1 Evaluating rule-based lateral stability constraint . . . . . . . . 42

4.4 Energy management with lateral dynamics constraints. . . . . . . . . 42
4.5 Improvements to the rule-based speed constraint . . . . . . . . . . . . 43

5 Conclusion 55
5.1 MPC design using CasAdi . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Evaluating solvers used in the MPC . . . . . . . . . . . . . . . . . . . 56
5.3 Lateral stability and dynamic model evaluation . . . . . . . . . . . . 56
5.4 Evaluation real time implementation . . . . . . . . . . . . . . . . . . 57
5.5 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Bibliography 59

xii



List of Figures

2.1 Schematic figure of the involved parts of a MPC controller. As the
controlled system increments forward, the optimal trajectory for the
states and inputs for the horizon k to k+N is calculated. The states
are subject to a upper bound (orange) and the controller makes sure
that the state trajectories satesfies these constraints. . . . . . . . . . 6

3.1 Energy flow balance in the hybrid powertrain subsystems with arrows
illustrating the direction of the energy flow. This is the same system
description and figure that is used in [6]. . . . . . . . . . . . . . . . . 16

3.2 Trailer swing and jackknifing in articulated vehicles. [7] . . . . . . . 23
3.3 Illustration of an A-double with e-dolly and the wheel groups used for

the multibody lateral dynamics equations. The figure is taken from [7]. 24
3.4 Schematic figure of relevant angels and forces for the A-double com-

bination vehicle as a two and one wheel model. The figure is taken
from [7]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Example of the rule based speed constraint and corresponding steer-
ing angles for a 2km route. . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Figure ilustrating the sparsity pattern of Jh(z, p), Jg(z, γe, p) and
Hf (z, γe, p) without lateral dynamics and with horizon N = 75m and
stepsize ds = 15m. Resulting in dimensions: Jh(z, p) = [18 × 38],
Jg(z, γe, p) = [60× 38], Hf (z, γe, p) = [38× 38]. . . . . . . . . . . . . 29

3.7 Simulations of the lateral dynamics using CasADi IDAS with 1 m
step size and Matlabs ode15i with variable step size. For a two turn
road with no incline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Controller architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Figure illustrating the optimal speed trajectory and ICE gears with

rule-based stability constraint for the SLP, SQP and IPOPT for one
horizon of 5 km with a stepsize of 15 meters. SLP and IPOPT yield
very similar optimal trajectories. . . . . . . . . . . . . . . . . . . . . . 35

4.3 SOC and Fmw trajectories for the SLP and IPOPT algorithm for one
horizon, with route elevation. . . . . . . . . . . . . . . . . . . . . . . 36

4.4 SOC and Fmw trajectories for the SQP and IPOPT algorithm for one
horizon, with route elevation. . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Optimal trajectories for SLP and IPOPT for one horizon. Trajectories
are speed, Fe and Fmw. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xiii



List of Figures

4.6 Optimal trajectories for SQP and IPOPT for one horizon. Trajecto-
ries are speed, Fe and Fmw. . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Optimal speed trajectory from SLP and IPOPT for one horizon with
relaxed arrival time constraint by 10%. . . . . . . . . . . . . . . . . . 42

4.8 Optimal speed trajectory from SLP and IPOPT for one horizon with
relaxed refrence speed constraint, 10% lower than lateral stability
constraint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Speed and SOC trajectories for moving horizon MPC using SLP, com-
pared to IPOPT optimal trajectories. . . . . . . . . . . . . . . . . . . 44

4.10 stage-wise computation times for SLP MPC with moving horizon for
different horizon lengths. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.11 Fuel consumption for moving horizon MPC with SLP and different
control horizons, simulated for a 5 km route. . . . . . . . . . . . . . . 45

4.12 SOC trajectories for MPC with SLP and different horizon length. . . 45
4.13 Speed trajectory for MPCs including RTI forced stops after 2-4 itter-

atons ,full convergence SLP and IPOPT. The control horizon is 5 km
long. The speed trajectories for RTI4 and the full convergence SLP
are very close. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.14 SOC trajectory for MPCs including RTI forced stops after 2-4 ittera-
tons, ,full convergence SLP and IPOPT. The control horizon is 5 km
long. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.15 Stage-wise computation times for RTI algorithms with forces stop
after 2 to 4 iterations, compared to full convergence SLP. . . . . . . . 47

4.16 Road used to simulate lateral and longitudinal dynamics. . . . . . . . 47
4.17 Speed trajectory comparison between the point mass longitudinal

model and the nonlinear multibody lateral and longitudinal model,
for a straight road using the optimal inputs from NOCP using a rule-
based speed limit and point mass longitudinal dynamics. . . . . . . . 48

4.18 Speed trajectory comparison between the point mass longitudinal
model and the nonlinear multibody lateral and longitudinal model,
for a curvy road using the optimal inputs from NOCP using a rule-
based speed limit and point mass longitudinal dynamics. . . . . . . . 48

4.19 Speed trajectory comparison between the multibody dynamic model
and the extended longitudinal dynamics model, using the optimal
inputs from NOCP using a rule-based speed limit and extended lon-
gitudinal dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.20 Lateral acceleration constraints evaluated for optimal trajectories found
for the NOCP using rule-based speed constraint. Index gayi indicates
vehicle unit 1,2 and 4. If the lateral acceleration constraint is larger
than 0 the constraint is violated. . . . . . . . . . . . . . . . . . . . . 49

4.21 Wheel force constraints evaluated for optimal trajectories found for
the NOCP using rule-based speed constraint. Index gF yi indicates
wheel group from 1 to 6. With inputs u mapped with Au matrix
defined in 3.27. If the wheel force constraint is larger than 0 the
constraint is violated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xiv



List of Figures

4.22 The top figure shows the optimal speed trajectory for the NOCP
including lateral dynamics compared to the trajectory found with
the rule-based speed constraint. The bottom figure shows the lateral
acceleration constraint evaluated for the new optimal trajectories. . . 51

4.23 The top figure shows the optimal input trajectories for the NOCP
including lateral dynamics compared to the trajectories found with
the rule-based speed constraint. The bottom figure shows the wheel
force constraint evaluated for the new optimal trajectories. Both
MPCs utilizes the maximum brake force of the dolly in the curve and
the wheel force constraint is not violated. . . . . . . . . . . . . . . . 52

4.24 Comparison between the optimal speed trajectories derived from the
MPC using multibody dynamics with a offline calculated equality
constraint jacobian and the complete multibody dynamics simulated
using IDAS and the the optimal inputs derived by the MPC. . . . . . 53

4.25 Wheel force constraint from equation 3.30 evaluated for the optimal
trajectories derived with the rule-based speed constraint and longitu-
dinal wheel force constraint from equation 4.3, for the 6 wheel groups
defined in figure 3.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xv



List of Figures

xvi



List of Tables

3.1 Decision variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Variables and parameters. . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Variables in the the energy flow balance in the hybrid powertrain

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Table with constant vehicle and road parameters used in all the sim-
ulations presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Table with computation time data for the different solvers used in the
MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Table with fuel consumption used by the optimal trajectories found
by the different MPCs and the fuel consumption used by the diesel
vehicle, for a 5 km hilly route. . . . . . . . . . . . . . . . . . . . . . 40

4.4 Table with fuel consumption, arrival time and computation times for
MPCs with relaxed reference. . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Table with simulated fuel consumption for SLP using RTI with forced-
stop after 2-4 iterations, compared to full convergence SLP. . . . . . . 41

xvii



List of Tables

xviii



1
Introduction

1.1 Background

Carbon dioxide emission and energy consumption are estimated to rise with the
increased demand for road freight transportation [1]. In 2019, road freight transit
accounted for 76.3% of total inland tonne-kilometers of freight transport in Europe
[2]. The transportation industry is facing significant challenges in terms of lower-
ing energy consumption and limiting environmental effects. Consequently, there is
considerable interest in enhancing the efficiency of transportation systems. High
Capacity Transport (HCT) vehicles, i.e., heavier and longer vehicle combinations,
are proposed as one of the solutions to this problem. It is established that HCT
road vehicles can be up to 13% more energy efficient [3] [4], allowing them to be
utilized in an increasing number of nations. Towing units intended for HCTs, on
the other hand, will be overpowered if they are utilized in non-HCTs or lightly
loaded HCTs. One of the proposed solutions to this can be described as scaling
the propulsion for HCTs by adding electrically propelled dollies. A traditional dolly
is a non-powered vehicle trailer that is attached to a truck or tractor and can be
added or removed depending on the quantity of cargo. In this thesis, the electricly
propelled dolly is referred to as an e-dolly. Including a e-dolly in a HCT lowers
the power demand of the towing unit and makes the combination vehicle modular.
The e-dolly also makes the HCT into a distributed propulsion hybrid vehicle. The
distributed propulsion introduces new challenges regarding lateral stability, and the
hybrid powertrain introduces new challenges for energy management and possibili-
ties for further improvements in energy efficiency. Both of these challenges can be
addressed with a new vehicle control strategy.

Previous research [5] has established that adding an electrically propelled dolly
to an HCT vehicle with a diesel-powered towing unit can save 10 to 20 percent
energy. However, there are various aspects to consider when using electrically pro-
pelled dollies in HCTs. A predictive energy management controller that coordinates
the activation of the dolly and towing unit needs to be incorporated in order to
achieve enhanced performance with regards to energy consumption. In [6], several
model predictive controllers are derived for optimal energy management, and their
controllers are fast enough to be implemented in real-time in an HCT vehicle. How-
ever, in [7], it is shown that the lateral stability will be reduced while applying these
controllers on long combination vehicles.
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1. Introduction

The worst case scenario related to lateral instability occurs when the energy manage-
ment controller predicts that it is more energy efficient to only uses the electric drive
axle for braking and propulsion. By only using the electric drive axle for braking, the
combination vehicle is at risk of jack-knifing around the e-dollys articulation points,
as is shown in [7], this scenario discussed in detail in 3.2.4. Only using the electric
axle for propulsion can similarly cause the e-dolly to push the front unit sideways.
Theses kind of situations can arise on curvy roadways with elevation changes and
poor road grip and uneven distribution of load between axles. Because of these risks
it is essential for the controller to evaluate the trade-off between safety and optimal
energy management.

The strategies for handling lateral stability stated in [7] are implemented, the strate-
gies are based on either including a rule based speed constraint or including the
vehicle lateral dynamics and tire model as constraints in the model predictive con-
troller. The vehicle lateral dynamics model are developed based on the methods
described in [8]. The lateral dynamics are complex and highly nonlinear, resulting
in a much computationally expensive model predictive controller. Meanwhile, sev-
eral strategies in [7] for simplifying the constraints are presented, with the goal of
improving the computational efficiency while still accounting for lateral stability.

1.2 Purpose
The purpose of this thesis is to design a energy optimal model predictive controller
using CasADi that accounts for lateral stability, and can be implemented in real time.
The controller will be evaluated in simulations and the resulting fuel consumption is
compared to a simulated conventional diesel vehicle. The driving scenario is a hilly
and curvy country road with no interruptions such as traffic signals or traffic jams.
The model parameters are based on an A-double diesel heavy combination vehicle
with an electric dolly.

1.2.1 Objectives
The purpose of this thesis is gathered into 3 specific objectives that are described
as follows:

- Design a model predictive controller that finds the optimal propulsion distri-
bution, speed, battery state of charge, and gear trajectories for the hybrid
combination vehicle, using CasAdi.

- Implement lateral stability constraints.
- Evaluate controller performance in regards to fuel consumption, real time im-

plementation and lateral stability.

1.3 Organization
The first chapter of the thesis contains the introduction, including the background,
purpose and objectives. The rest of this thesis is organized as follows: Chapter 2

2



1. Introduction

explains the main theories applied in the thesis; Chapter 3 presents the methods
which are implemented in solving the motion control and energy management prob-
lem; Chapter 4 shows the results using different types off MPCs and two different
constraints to ensure lateral stability; Chapter 5 summarizes the conclusion drawn
from the results and suggestions on futher work on the this topic. Finally, a list of
references are attached in the end.
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2
Theory

2.1 Model predictive control (MPC)

Model predictive control (MPC) is an advanced model-based control method that
finds the optimal control signals for a limited future horizon. MPC utilizes a dy-
namic model to predict the behavior of a closed loop system and has been widely
adopted for vehicle-related control problems.

In an MPC controller, the control signal is generated by solving an optimization
problem with a cost function that represents the desired behavior of the controlled
system over a finite horizon, N . The optimization problem can be extended with
constraints that represent physical limitations on control signals and states, as ex-
plained in [26]. These optimization problems can also be refereed to as optimal
control problems (OCP) and if the optimization problem is non linear, NOCP. MPC
is a discrete control method and each step in the discrete control horizon is refereed
to as a stage, k to k + N in figure 2.1.

In a closed-loop system with a MPC controller the control signals and the states in
the horizon are recalculated as the system increments forward and only the current
inputs are fed to the plant , this is refereed to as moving horizon. Recalculating
the prediction horizon at each step makes the controller more robust with respect to
model errors and disturbances. A schematic figure of the states and input trajectory
of a MPC with moving horizon is shown in figure 2.1. For small control problems the
calculated horizon can be discarded after the inputs have been past to the plant, this
is refereed to as receding horizon (RHC). For large or complicated optimal control
problems that are computationally expensive the solution of the current prediction
horizon can be reused as an initial guess for the optimal control problem in the next
stage, this is refereed to as warm starting the optimization algorithm or solver, this
speeds up the computation time at the price of passing around and saving data.

For MPCs using sequential programs, described in 2.2.1 there is an method to speed
up the computation times, at the price of a less optimal solution. This method relies
on warm starting the algorithm with its previous solution and then forcing it to stop
after a fixed number of iterations. This method can be referred to as a simplified
version of the, real time iterations or (RTI) algorithm, further described in [7] and
[28].

5



2. Theory

Figure 2.1: Schematic figure of the involved parts of a MPC controller. As the
controlled system increments forward, the optimal trajectory for the states and
inputs for the horizon k to k+N is calculated. The states are subject to a upper
bound (orange) and the controller makes sure that the state trajectories satesfies
these constraints.

2.2 Mathematical optimization
This section serves as a short introduction to mathematical optimization, and the
optimization algorithms used in the model predictive controller. Mathematical op-
timization is an integral part of model predictive control and makes up the majority
of the computational burden of the online controller.

The structure and notation of the optimization problems derived in this thesis are
defined as in 2.1. with decision variable z, objective function f(z), inequality con-
straint function g(z), equality constraint function h(z) and lower and upper bounds
on decision variable lb and ub. The involved functions can either be linear, quadratic
or nonlinear depending on the problem formulation. The optimization problem de-
fined in this thesis consist only of nonlinear functions and parametric and constant
constraints. The decision variables that minimize the objective function are refereed
to as z∗.

Find z (2.1)
to minimize f(z)
subject to g(z) ≤ 0

h(z) = 0
lb ≤ z ≤ ub

There exist several optimization algorithms that are suitable for solving the nonlin-

6



2. Theory

ear optimal control problem defined in this thesis. The solvers are selected based
on their speed, accuracy and robustness. The solvers examined are two sequential
programs, linear and quadratic, these solvers are derived from [6], and two nonlin-
ear solvers interior point line search filter method (IPOPT) [23] and the software
company Forces Pros non linear solver, (Forces NLP) [19].

2.2.1 Sequential programs (SQP, SLP)
Sequential programs are iterative methods used to solve nonlinear optimization prob-
lems. The programs consist of three main parts. The first part derives a linear
approximation of the constraints and either a quadratic or linear approximation of
the objective function. The approximation is done by first or second order Taylor
series. The second part solves the approximated problem with a linear or quadratic
solver. In part three the optimal solution to the approximated problem is used to
update the previous solution with step length α. The algorithm for the sequential
linear program (SLP) is shown in 1, and sequential quadratic program (SQP) in
2. The variable zVx(i) is optimal longitudinal speed trajectory derived in sequential
itteration i.

Algorithm 1 Sequential linear program (SLP)
zi ← Initial guess, i = 1 ▷ External initial guess
while RMS(zVx,i+1 − zVx,i) < ϵ do ▷ Convergence criteria

f̄ = ∇f(zi, zi+1) ▷ Linearized objective function
ḡ = g(zi) +∇g(zi, zi+1) ▷ Linearized inequality constraints
h̄ = h(zi) +∇h(zi, zi+1) ▷ Linearized equality constraints
z+

i+1 = LinearProgram(f̄ , ḡ, h̄, lb, ub) ▷ Solve with suitable solver
zi+1 = zi + α (z+

i+1 − zi) ▷ Update optimal solution with step length α
end while

Algorithm 2 Sequential quadratic program (SQP)
zi ← Initial guess, i = 1 ▷ External initial guess
while RMS(zVx,i+1 − zVx,i) < ϵ do ▷ Convergence criteria

f̄ = 1
2 ∇

2f(zi, zi+1) +∇f(zi, zi+1) ▷ Quadratic objective function
ḡ = g(zi) +∇g(zi, zi+1) ▷ Linearized inequality constraints
h̄ = h(zi) +∇h(zi, zi+1) ▷ Linearized equality constraints
z+

i+1 = QuadraticProgram(f̄ , ḡ, h̄, lb, ub) ▷ Solve with suitable solver
zi+1 = zi + α (z+

i+1 − zi) ▷ Update optimal solution with step length α
end while

The convergence criterion of both algorithms is the root mean square (RMS) error
of the speed trajectory between the two most recent internal solutions. This cri-
terion is identical to that in [6], where it is determined to be optimal for an MPC
energy management application. The RMS convergence limit ϵ and step length α
are introduced as tuning parameters that affect the convergence rate of the two
programs.

7
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2.2.2 IPOPT
IPOPT (Interior Point OPTimizer) [22] is a nonlinear optimization algorithm de-
signed to deal with large-scale nonlinear programs. It is an open-source optimization
algorithm that uses a interior-point line search filter method. IPOPT allows both
objective function and constraints to be nonlinear and non convex as long as all func-
tions are twice continuously differentiable. IPOPT is more accurate then sequential
programs since it directly evaluates the nonlinear functions rather then linear or
quadratic approximations. IPOPT claims to be computationally efficient compared
to other solvers, and uses internal scaling of constraints and objective function. The
IPOPT solver also claims to be very robust. With all these advantages IPOPT is a
viable solution for solving practical nonlinear optimization problems [23]. Because of
its accuracy and reliability, IPOPT is used as a benchmark to compare the optimal
solutions produced by the faster sequential solvers.

2.3 Literature study: Optimization toolbox
The MPC controller was developed in MATLAB for two reason, to ensure the com-
patibility with previous work done at Volvo Trucks and the availability of MATLAB
toolboxes for solving and building optimization problems.

Two well-known MATLAB toolboxes for handling optimization problems are YALMIP
[17] and CasADi [18], which are contrasted at the beginning of the project. These
toolboxes all use non-commercial, open-source optimization modeling languages in
common. Both toolboxes efficiently interface with MATLAB functions and opera-
tors and are designed to hasten and make the creation of model predictive controllers
simple. However, as we could only utilize one of them for our project, we conducted
a literature study to identify the advantages and disadvantages. The arguments for
choosing CasADi are then presented in the following.

CasADi is a toolbox used for the MPC development, it is a free, open-source software
package, which can be used in Python, MATLAB, or Octave interfaces, as well as
standalone C++ code. It contains a computer algebra system (CAS) for algorithmic
differentiation (AD) and a variety of solvers for nonlinear optimal control problems
(NOCPs). In addition, it offers a computationally efficient symbolic framework that
allows users to construct flexible functions and equations. The flexibility of CasADi
is crucial for the development, due to the number of tuning parameters based on
real world vehicle testing. In addition CasADi’s symbolic framework claims to be
highly efficient in constructing Jacobians and Hessians of symbolic functions, which
is crucial for efficient sequential programs. Instead, YALMIP is frequently used to
address optimization challenges such as linear programming and integer program-
ming. It enables the users to call a variety of external and internal solvers, including
cplex, gurobi, and others. The functionality of YALMIP that can be utilized in our
project is limited, and external solvers such as Gurobi are not accessible on the
internal network of Volvo Trucks due to licensing. We choose not to utilize it in our
thesis for this reason.
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2.4 Matlab toolbox: CasADi
The controller development for this thesis is carried out in MATLAB using the
CasADi toolbox to handle optimization problems, in order to maintain the conti-
nuity of the work done by Volvo. The primary component of CasADi, the symbolic
framework, enables the users to define and apply expressions such that differentiable
functions can be constructed efficiently. The efficient nature of this method stems
from the fact that following expressions for derivatives can be generated by applying
algorithmic differentiation to the preconceived expressions. In particular, CasADi is
flexible for problems constrained by differential equations, which will be addressed
in this section.

Before utilizing CasADi, it must be installed and then imported into Matlab’s editor
with a simple command. For numerical optimum control, CasADi offers a frame-
work of general-purpose building blocks that effectively reduces the amount of effort
required to generate a large number of algorithms. To get the more thorough and
contemporary introduction to CasADi that is recommended to comprehend detailed
example scripts, it is necessary to read the guide [20]. Here, we will skip over the
most fundamental operation commands and only present a few specific examples
pertinent to the thesis. The showcases presented in this session demonstrate the
CasADi syntax and its operation in further detail.

2.4.1 Numerical integration with CasADi
In this thesis, real-world optimal control problems feature a variety of quantity con-
straints, such as implicitly defined constraints and initial value problems. Function
objects are introduced to be defined with CasADi symbolic expressions, which sup-
porting numerical evaluation, symbolical evaluation and derivative calculations. For
example, with the ’MX’ type of CasADi, a RK4 (Runge-Kutta four) algorithm struc-
ture can be constructed with around eight lines of code, more over, all the derivatives
for any order can be automatically calculated. By employing function ′integrator′

in CasADi, it is possible to embed initial value problem solvers in ODEs or DAEs,
as well as calculate all the derivatives of any order. Consider the example of a Van
der Pol oscillator, which can be regarded as an ODE with initial value problem:{

ẋ1 = (1− x2
2)x1 − x2 + ω, x1(0) = a

ẋ2 = x1, x2(0) = b
(2.2)

Where, a and b are constants. Assuming ω = 0.5, a = 0, b = 1, this problem can be
addressed with CasADi by using IDAS/CVODES interfaces from the SUNDIALS
suite in code 3.

This ODE problem contains initial and terminal constraints, and the CasADi so-
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lution is a symbolic representation of the problem, which provide and evaluate a
solver instance in order to obtain the result.

Algorithm 3 Example: Integration with CasADi
% Import CasADi into Matlab
import CasADi.*

% Construct ODE
(Van der Pol oscillator)
x = SX.sym(’x’,2);
ω = SX.sym(’ω’);
z = 1-x(2)ˆ2;
f = [z*x(1)-x(2)+ω; x(1)];
dae = struct(’x’,x,’ω’,ω,. . .
’ode’,f);

% Build integrator
opti = struct(’t0’,0,’tf’,1);
F = integrator(’F’,. . .
’vodes’,dae,opti);

% Integration
res = F(’x0’,[0,1],’ω’,0.5);
disp(res.xf)

2.4.2 Optimization with CasADi
This session will illustrate how to use CasADi synthesis to handle optimal solutions
for nonlinear programming. The ’Opti stack’ syntax will be introduced for modeling
in this part, whereas other NLP solvers can function without it. Considering the
NLP defining in 2.3:

minimize
x,y

(1− x)2 + 0.5(y − x2)2

subject to 1 ≤ (x + 0.2)2 + y2 ≤ 4
(2.3)

In contrast to CasADi, code 4 could be employed to model this optimization prob-
lem utilizing the ’Opti’ stack.

In this example, we select the highly robust nonlinear optimizer IPOPT (Interior
Point OPTimizer) as the NLP solver; it finds solutions despite incorrect initial as-
sumptions. Along with IPOPT, our thesis implements other two solvers, SLP (Se-
quential linear program) and SQP (Sequential quadratic program). The three NLP
solvers will be covered in further detail in 3.3.
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Algorithm 4 Example: Optimization with CasADi
% Import CasADi into Matlab
import CasADi.*

% Choose Opti stack
opti = CasADi.Opti();

x = opti.variable();
y = opti.variable();

% Modelling the NLP
opti.minimize((1-x)ˆ2+0.5*(y-xˆ2)ˆ2);
opti.subject_to(1<=((x+0.2)ˆ2 +yˆ2)<=4);

% Choose solver
opti.solver(’IPOPT’);

% Solution
sol = opti.solve();
sol.value(x)
sol.value(y)

11
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3
Methods

3.1 Space time conversion
In classic mechanics the most common practice is to derive dynamic models in the
time domain, but the vehicle model used in the OCP requires road elevation and
curvature as input. These road-related properties are most convenient to handle
as functions of position, (s) along the vehicles planned route. Building a OCP
with a time domain dynamical model that uses space dependant environmental in-
puts requires additional position estimation potentially resulting in estimation errors
[12][13]. This inherent inaccuracy diminishes the trustworthiness of the reference tra-
jectory produced by the MPC, and consequently the potential energy savings and
lateral stability in the controlled vehicle [14].

In order to handle this inaccuracy, the dynamical model and OCP constraints are
formulated in the space domain. This is done with the method formulated in [6].
Here illustrated in equation 3.1. Where vx is the longitudinal velocity of the vehicle,
(.) represent any differentiable variable. in 3.2 the relationship between longitudinal
speed in space and time domain is illustrated.

d(·)
dt

= d(·)
ds

d(s)
dt
≈ vx

d(·)
ds

(3.1)

dv(s)
ds

= v̇(t)
vx(t) (3.2)
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3.2 Optimal control problem
The fundamental energy management control problem for the MPC design is based
on the results from [7] and [6] where it is formulated as a nonlinear mixed-integer
optimization program (MINLP). The problem can be extended to account for lateral
stability as shown in [7] and further explained in 3.2.4, but at its core it consist of an
objective function fstage, 3 equality constraints hstage, 12 inequality constraints gstage,
and 7 lower and upper bounds on decision variables lbstage and ubstage. With these
equations and bounds the full horizon optimal control problem can be built stage
wise, using the methods described in 3.3. The one stage optimal control problem is
formulated as 3.3.

Find z = [x, u, ud]T (3.3)
to minimize fstage(z)
subject to gstage(z) ≤ 0

hstage(z) = 0
lbstage ≤ z ≤ ubstage

The decision variables z are divided into states x = [vx, soc, t]T , continuous control
inputs u = [Fe, Fmw, Fbr, Fdel]T , Integer control inputs ud = γe. The involved vari-
ables are explained in 3.2.1. The problem is also dependant on several environmental
parameters that are functions of road position, consequently written as param(s).

3.2.1 States, inputs and parameters
Both states x and inputs u are decision variables in the OCP. the states are vehicle
longitudinal velocity vx(s), battery state of charge soc(s) and travel time t(s). The
continuous inputs are Fe(s) force produced by ICE at its output, Fmw(s) wheel force
produced by the electric motor, Fbr(s) brake force from friction brake and retarders
other than electric motors. The forth input Fdel(s) represents the equivalent power
dissipation force from the electric drive train. Fdel(s) is a dummy input and is not
passed on as an actuation request but needs to be a decision variable to handle
the sign change between retarding and propelling with the electric drive train, as is
shown in [6]. All decision variables are gathered in table 3.1. The integer inputs are
EM and ICE transmission gears, γm and γe.

The three space dependant parameters are are road legal speed limit, road grade
and road curvature. α is the road grade or slope and is the key parameter for energy
management since it dictates how the potential energy of the vehicle change along
the planned route. δ is the road curvature and is crucial for calculating the speed
limit that guarantees lateral stability. All space dependant parameter are gathered
in Table 3.2

All the non space dependant parameters are either environmental or connected to the
vehicle specifications. These parameters are further explained in Table 3.2, together
with intermediate variables used in the OCP constraint and objective functions.
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Table 3.1: Decision variables.

Notation Definition
vx vehicle longitudinal velocity
soc battery state of charge
t travel time

Fe wheel force form ICE
Fmw wheel force form EM
Fbr wheel force form friction brakes
Fdel equivalent dissipated force

Table 3.2: Variables and parameters.

Notation Definition
Ff equivalent engine fuel force
Fmc equivalent force between the battery and EM
Fdb equivalent force dissipated in the battery
Few equivalent force at the ICE transmission output
Fa auxiliary force

Fdm equivalent forces dissipated in the EM
Fdmt equivalent forces dissipated in the EM transmission
pbmin the minimum battery power
pbmax the maximum battery power
tref reference trip time
γe ICE gear
γm EM gear
m vehicle total mass
g gravitational acceleration

α(s) road grade
δ(s) road curvature

s distance traveled
fr rolling resistance coefficient
ρa air density
Af equivalent vehicle front area
cd air drag coefficient
Rw wheel radius
re gear ratio from the wheel to ICE
Te ICE torque
ωe ICE speed
rm gear ratio from the wheel to EM
Tm EM torque
ωm EM speed

aij, bm
ij , be

ij, h+,−
ij the coefficients of the fitted functions

Vb battery voltage
R battery resistance

15



3. Methods

3.2.2 Energy management
The vehicle models investigated are equipped with a parallel hybrid powertrain. The
powertrain is illustrated in figure 3.1 taken from [6] and demonstrates the energy
flow balance (input/output power P ) between the multiple powertrain subsystems
in a hybrid vehicle. There are two types of arrows depicted in this figure. The blue
arrow represents the direction of energy flow, whereas the red arrow illustrates that
energy can also flow in one of the other directions. In the fuel tank and battery
components, a dot before the arrow indicates that they are power sources.

The energy flow balance assumes that no energy is stored in any subsystem except
the fuel tank and battery, therefore all inertia of rotating components are neglected,
and it does not account for potential energy losses due to slippage between the
ground and the tyre. The energy flow balance is the basis of the objective function
in the OCP. The forces defined in 3.2.1 are all derived by time integration of the
powers described in the energy flow balance, as is indicated by the notation in table
3.2. An further explanation off the individual energy flows are shown in table 3.3.

Figure 3.1: Energy flow balance in the hybrid powertrain subsystems with arrows
illustrating the direction of the energy flow. This is the same system description
and figure that is used in [6].

Table 3.3: Variables in the the energy flow balance in the hybrid powertrain system.

Notation Definition
Pf fuel power
Pe power at the ICE output
Pde power dissipated in the ICE
Pdet power dissipated in the transmission between ICE and wheels
Pew power at the ICE transmission output
Pbr power for the friction brake (or engine brake power)

16



3. Methods

Notation Definition
Pb power provided by or stored in the battery
Pdb power dissipated in the battery
Pa power used for the auxiliaries
Pmc power consumed or regenerated by the electric motor
Pm power at the EM output to or at the input from the transmission
Pdm power dissipated in the EM
Pdmt power dissipated in the EM transmission
Pmw EM power at the output to or the power at the input from wheels
Pw power at wheels

3.2.2.1 Objective function

The objective function for one stage fstage, shown in equation 3.4 is based on the
energy flow balance. The goal of minimizing the objective function is to minimize
the fuel consumption, the electric drive train energy dissipation and the use of
friction brakes while maximizing the use of the electric motor for propulsion. The
equivalent fuel force is calculated with equation 3.5, which is a polynomial fitted
to measured fuel consumption data, with coefficients aij. The approximation is
based on the results from [6]. In [6] it is shown that depending on the degree of the
fitted polynomial the resulting objective function can be both quadratic and convex.
This particular polynomial degree that is quadratic and has a positive semidefinite
hessian is used for the objective function.

fstage(x, u, ud) = Ff (x, u, ud) + Fbr − Fmw + Fdel (3.4)

Ff (x, u, ud) = 1
vx

5∑
i=0

5∑
j=0

aij(
re(γe)

Rw

vx)i( Rw

re(γe)
Fe)j (3.5)

3.2.2.2 Equality constraints

The equality constraints for one stage hstage consist of the dynamic model equations.
These equations define how the state trajectories are affected by the inputs, and in
the discrete world define how the states progress from one stage to the next. In
addition to the three model equations the initial stage in a control horizon has
an additional equality constraint to make sure that the controller initializes the
problem at the states measured from the plant. The definition of the one stage
equality constraints are shown in 3.6.

hstage(x, u) = [hvx , hsoc, ht]T , first stage : hstage(x, u) = [hx0, hvx , hsoc, ht]T (3.6)

The dynamic vehicle model is a lumped mass model that describe longitudinal ac-
celeration along the planned route and is the same model used in [6], and shown
in equation 3.7, the road grade α is defined as positive down hill. Battery state of
charge dynamics are defined in 3.8, due to the fact that the elctric motor can both
propel and retard the veichle with there are two dynamic equations for each case,
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F +
mc and F −

mc shown in equations 3.11 and 3.12. The equations are taken from [6]
where they are derived as polynomials with coeficients h+,−

i,j fitted to experimental
data. The time dynamics are defined in equation 3.9. The initial state equality is
defined in equation 3.10.

Vehicle longitudinal dynamics:

hvx = dvx

ds
− 1

mvx

(−Fbr + ηteFe + Fmw+

mgsinα−mgfrcosα− 0.5ρaAfcdv2
x) = 0 (3.7)

Battery SOC dynamics:

hsoc = dsoc

ds
− 1

Ebmax
(Fdel + Fmw + Fa) = 0 (3.8)

Time dynamics:

ht = dt

ds
− 1

vx

= 0 (3.9)

initial stage constraint:
hx0 = [v(s0), soc(s0), t(s0)]T − [v0, soc0, t0]T = 0 (3.10)

Electric motor propulsion:

F +
mc =

5∑
i=0

5∑
j=0

h+
ij( (rm(γm)

Rw

vx(s))i( Rw Fmw

rm(γm)ηtm

)j) (3.11)

Electric motor retardation:

F −
mc =

5∑
i=0

5∑
j=0

h−
ij( (rm(γm)

Rw

vx(s))i(Rw Fmw ηtm

rm(γm) )j) (3.12)

3.2.2.3 Inequality constraints

The one stage inequality constraints gstage related to physical limitations are torque
limits for the ICE and EM, and limits on battery charge and discharge power. In
addition to these physical constraints the electric drive train dissipation force Fdel is
approximated as a region lying in between two inequalities. In total there are twelve
inequality constraints present for each stage.

The constraints related to torque limits for the ICE are shown in equation 3.13.
The torque limits are based on results from [6] where they are derived as 4 poly-
nomials with degree j with coefficients be

i,j that is fitted to measured experimental
data. Each of the fitted polynomials act as individual inequality constraints which
means that the dimension of gFe is [4x1]. The EM torque limits are also introduced
as polynomials derived from experimental data, with coefficients bm

i,j. There are
2 polynomials of degree j that define the upper and lower limits. Here shown in
equation 3.14 and 3.15. Each of the polynomials are handled separately which gives
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[gFmw,max , gFmw,min
]T dimension [4×1]. The battery charge and discharge power con-

straints are derived from [6] and are define as gpb,min and gpb,max in equations 3.17
and 3.16.

Due to the fact that the EM can both propel and retard the vehicle the forces
related to the electric drive train can either be positive or negative, the model equa-
tions that describe the dissipation force in the electric drive train for these two cases,
is a piece-wise function with no derivative in the origin. The derivative discontinuity
is handled by splitting up the equality constraint into two inequality constraints here
shown in equation 3.18 and 3.19. By including the Fdel term in the cost function,
when minimizing, Fdel is squeezed in between these two constraints and pushed to-
wards the boundaries, i.e., an equality constraint is satisfied.

ICE torque upper limit:

gF e = Rw

re(γe)
Fe −min{

3∑
j=0

be
ij(

re(γe)
Rw

vx)j} ≤ 0, i = 1, . . . , 4 (3.13)

EM torque limits:

gFmw,max = RwFmw

rm(γm)ηtm

−min{
3∑

j=0
bm

ij (rm(γm)
Rw

vx)j} ≤ 0, i = 1, 2 (3.14)

gFmw,min
= −RwFmwηtm

rm(γm) + max{
3∑

j=0
bm

ij (rm(γm)
Rw

vx)j} ≤ 0, i = 3, 4 (3.15)

Battery power limits:
gpb,min = pbmin − vx(Fdel + Fmw + Fa) ≤ 0 (3.16)
gpb,max = vx(Fdel + Fmw + Fa)− pbmax ≤ 0 (3.17)

gFdel,+ = Fdel − F +
mc − Fmw + Rvx

V 2
b

(F +
mc + Fa)2 ≤ 0 (3.18)

gFdel,− = Fdel − F −
mc − Fmw + Rvx

V 2
b

(F −
mc + Fa)2 ≤ 0 (3.19)

3.2.2.4 Bounds on states and inputs

In addition to the equation based inequality constraints there are direct constraints
or bounds on the states and inputs of the NOCP. These bound serve two purposes,
to speed up the optimization algorithm by shrinking the problems feasible space,
and to describe desired behaviour of the controlled system. There are one upper
and lower bound for each decision variable per stage.

The bounds that shrink the feasible space are lower bound on on longitudinal speed
lbvx shown in equation 3.20, which is introduced as a fraction κ in range (50− 80)%
of the reference speed generated as a initial guess vref , further explained in 3.2.4.2.
vref is space dependant and can change for each stage in the horizon. Upper and
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lower bounds on time ubt and lbt, shown in equation 3.21 where the lower bound
is based on the measured time from the plant at the first stage of the horizon, and
the upper bound is the final time generated from the initial guess. Upper and lower
bounds on all input forces shown in equation 3.22, defined with a constant Fmax in
range (105 − 106).

The bounds that define the desired behavior of the controlled system are upper
and lower bounds soc, shown in equation 3.23 these serve to protect the battery
and extend its lifetime, the parameters (socmin − socmax) are usually in the range
(20 − 80%). A very important state constraint is the upper bound on longitudi-
nal speed vmax, this constraint is used to guarantee lateral stability of the vehicle.
vmax can either be generated by the methods introduced in 3.2.4.2, or derived with
lateral dynamics as described in 3.2.4. With both methods the limit vmax is space
dependant and can change for each stage in the horizon.

There is an additional constraint on battery state of charge soc at either the end
of the horizon or end of the planned route. This constraint can either be used to
make sure that there is as much charge at the start and end of each horizon, or at
the end of the planned route. Without this constraint the energy optimal solution
is to drain the battery down to socmin since there is no penalty in the cost function
regarding soc.

Bound on on longitudinal speed:
vref

κ
≤ vx ≤ vmax (3.20)

Bound on time:
tref,0 ≤ t ≤ tref,N , (3.21)
Bound on Force inputs:
[0,−Fmax, 0, 0]T ≤ [Fe, Fmw, Fbr, Fdel]T ≤ Fmax (3.22)
Bounds on battery SOC:
socmin ≤ soc ≤ socmax (3.23)

(3.24)

3.2.3 Gear optimization
To simplify the NOCP the strategy for gear optimization derived in [6] and [7] is
used. The strategy consist of removing the integer states representing the ICE and
EM gear choice γe and γm from the optimization problem from section 3.2.2, and
instead treat them as stage dependant parameters. The optimal gears are instead
found with a simple one step optimization algorithm defined in 5. The problem
is further simplified by excluding electric motor transmission gears completely and
only trying to find the energy optimal ICE gears. It is important to stress that the
algorithm used does not guarantee either local or global optimality of the MINLP.
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The gear optimization problem can be expressed as in 3.25. Where the decision
variable is the ICE gear for each stage in the horizon, γe. The objective function is
the equivalent fuel force Ff . The constraints are the ICE torque limits, gFe defined
in equation 3.13 and ICE rpm limits which can be expressed as a function of lon-
gitudinal speed vx and gear ratio, shown in equation 3.26. Here all functions and
variables in bold represent all stages in the horizon, i.e. they are vectors or vector
functions of length N . The construction of the gear optimization problem is further
explained in section 3.3.1.

Find γe (3.25)
to minimize Ff (x, u, γe)
subject to gFe(x, u, γe) ≤ 0

ω(x, γe)− ωmax ≤ 0
ωmin − ω(x, γe) ≤ 0

ω(vx, γe) = vx

Rw

re(γe) (3.26)

The gear optimization algorithm 5 for the ICE gears γe is a function that takes the
optimal solution to the problem defined in 3.2.2, x∗ and u∗ and the gear sequence
of length N used for that solution, γ̄e as inputs, and as an output it gives a more
energy efficient gear sequence for the given state and input trajectories γ∗

e . The
possible gear choices for the Volvo trucks used as models are K = [1 − 12]. The
gear optimization is based on first finding all the infeasible gears for each stage in
a horizon, for any infeasible gears a penalty is added to the penalty matrices VgFe

and Vω. The penalty is much larger then any value in the range of Ff which makes
sure that the minimum can never be a infeasible gear. The optimal gear is found
by finding the column index of the minimum value of MFf

in row j with penalties
added. Where MFf

is a matrix containing the equivalent fuel force for all possible
gears K in the horizon N. This can be done with a built-in function in most high
level programming languages. To avoid changing gears to0 frequently the decrease
in Ff for the new gear γ∗

e has to be lower then some fraction ϵ. There are additional
features to ensure the robustness of the algorithm, if no gears are feasible the gears
will not be updated, and if the ICE engine is turned off the gears are chosen to be
in the middle of the feasible RPM range.

21



3. Methods

Algorithm 5 ICE gear optimization
VgFe

= 0 ▷ Penalty matrix with dimension [N, K]
Vω = 0 ▷ Penalty matrix with dimension [N, K]
for i ← 1 to K, γe ∈ K do ▷ Evaluate problem 3.25 for all possible ICE gears

MFf
= Ff (x∗, u∗, i) ▷ Build matrix with Ff values, dimension [N, K]

MgFe
= gFe(x∗, u∗, i) ▷ Build matrix with gFe values, dimension [N, K]

Mω = ω(x∗, i) ▷ Build matrix with ω values, dimension [N, K]
for j ← 1 to N do ▷ Check each stage in horizon N

if MgFe ,[j,i] ≥ 0 OR Mω,[j,i] ≥ ωmax OR Mω,[j,i] ≤ ωmin then ▷ Find
infeasible gears for stage j

VgFe ,j,i = P ▷ Add penalty P to infeasible gears i in stage j
Vω,j,i = P ▷ Add penalty P to infeasible gears i in stage j

end if
γ∗

e,j = min(MFf ,j + VgFe,j
+ Vω,j), w.r.t i ▷ Find γ∗

e for stage j
if Ff (x∗,u∗,γ∗

e )
Ff (x∗,u∗,γ̄e) < ϵ then ▷ Evaluate fuel savings with new gears
γ+

e = γ∗
e ▷ Update gears for stage j

end if
end for

end for

3.2.4 Safety: lateral stability

A vehicle is considered articulated if it has a permanent or semi-permanent pivot
joint that enables it to turn more abruptly. Any vehicle towing trailers (dollies),
including the semi-trailer, would be referred to as articulated in a more general
manner. With distributed propulsion and braking as well as a multi-unit long ve-
hicle structure, the articulated vehicle under consideration in this thesis possesses a
construction that makes it susceptible to losing yaw stability. Trailer swing and jack-
knifing are among the most typical precarious circumstances where lateral stability
is compromised. Trailer swing, also widely recognized as trailer slew, is the term for
when a trailer of an articulated vehicle slides to one side. It frequently takes places
on a wet, slick road surface or in tight turns and cants, while the driver applied the
brakes. The process of collapsing an articulated vehicle into a configuration that is
similar to an acute angle is referred as jackknifing. It derives the name from the
folding pocket knife, which is also illustrative of its understandability. In the event
that a trailer is being towed by a vehicle, the trailer will push the towed vehicle
from behind and force it to turn around when the vehicle starts to skid, resulting
in a collision between the vehicle units [27]. When the lateral instability situation
is getting worse, which is a very dangerous situation that can cause the vehicle to
be damaged as the driver loses control, jackknifing appears to occur.

Unlike jackknifing, trailer swing (trailer slew) does not cause as significant dam-
age to the vehicle since the trailer will realign as the vehicle keeps traveling forward
after the driver releases the brakes [27]. The issue is that, in order to save energy, it
is preferred to use the electrical motor as much as possible. However, the worst case
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Figure 3.2: Trailer swing and jackknifing in articulated vehicles. [7]

jackknifing happens when the energy management controller estimates that it will
be less energy cost to only uses the electric drive axle for braking and propulsion,
which means the propulsion and braking are distributed incorrectly. The figure 3.2
provides an illustration of what trailer swing and jackknifing in trucks and articu-
lated vehicles look like.

There are several approaches to achieving the goal of ensuring lateral stability, one
of which is to extend the vehicle dynamic model to include the lateral dynamics.
Another alternative is to set speed limits with a rule based approach. However, the
drawback of the latter is that it is derived only based on the lateral acceleration and
thus it neglects the effect of combined slip as discussed in [7]. Moreover, the energy
management is decoupled from the lateral motion control which results in mismatch
between the models and consequently an energy loss. Therefore, the first approach
is preferable.

3.2.4.1 Including lateral dynamics

The vehicle model that includes lateral dynamics for a A-dobule truck with a elec-
tric dolly is taken from [7], and illustrated in figure 3.4. The model equations are
generated with the software defined in [8]. The equations are implicit differential
equations and are defined on the same form as in equation 3.29, the full equations
are available in [7] and [8]. The equations from [8] are converted into the space
domain using the method defined in 3.1. The state vector for the lateral dynamics
is defined in 3.28, with X and Y being the global position of the first unit, ϕ is the
angle between the unit x axis and the global x axis, θ1−3 is the angle between the
vehicle units.
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The lateral dynamics from [8] are augmented to have the same inputs as the longi-
tudinal dynamics from 3.2.2.2, this is done with a mapping matrix Au which maps
the force inputs u to a wheel group force, similar to the strategy defined in [7], the
mapping matrix Au is defined in 3.27. The wheel groups defined for an A double
with electric dolly are shown in figure 3.3. The figure is taken from [7].

Au =



0 0 −1
10 0

1 0 −2
10 0

0 0 −3
10 0

0 0 −1
10 0

0 1 0 0
0 0 −3

10 0


, ulateral = Au


Fe

Fmw

Fbr

Fdel

 (3.27)

x = [X, Y, ϕ, θ1, θ2, θ3, vx, vy,
dϕ

ds
,
dθ1

ds
,
dθ2

ds
,
dθ3

ds
]T (3.28)

F (x,
dx

ds
, Au u, α(s), δ(s), param) = 0 (3.29)

Figure 3.3: Illustration of an A-double with e-dolly and the wheel groups used for
the multibody lateral dynamics equations. The figure is taken from [7].

With the lateral dynamics it is possible to directly constrain vehicle unit acceleration
and tire forces to assure lateral stability. This is done by adding two additional
inequality constraints. The first constraint is related to tire forces and slip, and uses
the method from [7] where the friction ellipse model is used to calculate the lateral
tire forces Fy, the longitudinal tire forces Fx are simply ulateral from 3.27, and Fz is
the vertical forces on each tire group and µ is the road friction. The constraint can
be further tuned with a safety factor β. The constraint is shown in equation 3.30.

gF y =
√

(Au u)2 + Fy(x, Au u)2 − 1
β

µ Fz ≤ 0 (3.30)

The unit lateral acceleration is similarly constrained, but with respect to a fixed
allowed value for acceleration ay,max, and is displayed in equation 3.31.

gay = |ay(x, Au u)| − ay,max ≤ 0 (3.31)

The lateral dynamics F , and constraint functions Fy(x, Au u) and ay(x, Au u) are
large nonlinear equations that are computationally expensive to evaluate. Because
of this a simplified strategy to include the lateral dynamics is introduced in 3.3.5.
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Figure 3.4: Schematic figure of relevant angels and forces for the A-double combi-
nation vehicle as a two and one wheel model. The figure is taken from [7].

3.2.4.2 Rule based speed limitation and initial reference trajectory gen-
eration

The rule based speed limitation and initial reference trajectory generation is done
with Volvo software. The software is based on the method derived in [6] and gen-
erates both initial guesses for state and input trajectories, as well as a limitation to
longitudinal speed that guarantees lateral stability. The initial guess is crucial to
speed up the computation time at startup for all solvers used in this thesis, and it
is needed even if lateral dynamics are included in the MPC model.

The initial reference trajectory describe how a diesel driven combination vehicle
drives the planned route as fast as possible without exceeding some predetermined
limit of lateral acceleration for the center of gravity for the whole combination ve-
hicle. The software produces the following trajectories: the speed profile along the
planned route vx,ref , the time trajectory tref and most crucially an arrival time
tref,end, feasible ICE gears γe,ref , ICE forces used to propel the vehicle Fe,ref .

The lateral stability speed limitation produced by the software vx,max is a much
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simpler method compared to including lateral dynamics in the MPC model, due to
the methods simplicity it needs to be more conservative w.r.t. the maximum speed
allowed along the planner route. This is not the ideal approach since the conser-
vative speed limitation has a negative effect on energy optimization, as is shown in
[7]. It is however a very computational efficient, and does not affect the controllers
online computation time, since the limitation can be derived offline. An example of
how the rule based lateral stability speed constraint for a 2 km route is displayed in
figure 3.5

Figure 3.5: Example of the rule based speed constraint and corresponding steering
angles for a 2km route.

3.3 MPC with CasADi
In this section the method used for building the optimal control problem and dif-
ferent types of MPCs using the CasADi toolbox is described. The MPC building
process consists of 3 offline steps, The first step handles how the NOCP is built
using CasADi symbolics and how the sparsity patterns of the constraint jacobians
can be changed depending on this process, secondly how discretization of the model
dynamics is done, and lastly how space dependant state and input constraints are
passed to the online controller. In addition to this the implementation of the differ-
ent optimization algorithms or solvers are defined for the MPC with the two different
methods for lateral stability, together with a method for including a shrinking hori-
zon when the vehicle is closing in on the end of its planned route.
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3.3.1 Symbolic NOCP generation with CasADi and sparsity
patterns

CasADi supplies two types of symbolic variables, SX and MX. The SX symbolic
are best used for mathematical operations in R1, and the MX on the contrary is
more efficient when used for matrix operations. Since none of the equations defined
for the NOCP are based on matrix operations SX symbolics is used to the largest
extent possible. In general expressions built with SX take up more memory than
ones built with MX but since memory space is not a concern this is not considered
an issue for this thesis.

The NOCP is built in a Matlab function that take vehicle parameters that are
independent of space param, control horizon N and discritization stepsize ds as
input. The output is the nonlinear constraint functions and objective function of
the NOCP and their respective jacobians, all functions are defined for horizon N
and discretized with stepsize ds. Both the decision variable vector z and inequality
and equality constraint functions are built stage wise using the equations defined in
3.2.2.3 and 3.2.2.2, but as in CasADi symbolic functions, indicated by sym. This
is done to ensure a diagonal and dense sparsity pattern for their respective jaco-
bians. This can be done with either a for loop, or the built-in CasADi function
CasADi.function.map(N), which is more efficient to evaluate.

The equality constraint are built using the discretized, denoted by¯dynamics h̄stage,
defined in 3.3.2. The space dependant parameters p(s) and decision variables z(s)
are defined as inputs to the constraint functions while the non space dependant
parameters param are defined as constants in the symbolic expression and are not
inputs in the final constraint functions. The resulting constraints functions are de-
fined as in 3.32 and 3.33. With inputs in bold indicating that they are vectors for
the whole control horizon N .

Equality constraints whole horizon: (3.32)
h(z, p) = h̄sym

stage(z(s), p(s), param).map(N)
Inequality constraints whole horizon: (3.33)
g(z, γe, p) = gsym

stage(z(s), γe(s), p(s), param).map(N)

The objective function for the whole horizon is built as a sum of the stage wise
objective functions, defined in 3.2.2.1. With the same symbolic strategy as for the
constraints. The final function is defined as in 3.34

f(z, γe, p) =
k=N∑

k0
f sym

stage(z(s), γe(s), p(s), param) (3.34)

The resulting vector with decision variables for the whole horizon has the form
defined in 3.35, and the constraint functions are defined in 3.36 and 3.37. With each
stage being indicated by si, it comes naturally from the space dynamic discretization
that the stages are defined a distance of ds apart. In addition to building the
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constraint and objective function as CasADi symbolics, the fuel equivalent force
function Ff , and ICE torque constraint gFe are created and passed to the gear
optimization problem.

Decision variable vector
z = [xs0, us0, xs1, us1, ..., xsN , usN , xsN+1]T (3.35)
Equality constraint whole horizon
h(z, p) = [h̄s0(z(s0), p(s0)), ..., h̄sN

(z(sN), p(sN))]T (3.36)
Inequality constraints whole horizon:
g(z, γe, p) = [gs0(z(s0), γe(s0), p(s0)), ..., gsN

(z(sN), γe(sN), p(sN))]T (3.37)

The jacobian of h and g w.r.t the decision variables z is derived with the built in
matlab function jacobian() that calculates the jacobian of a symbolic expression with
respect to a symbolic variable. The resulting symbolic expression is then defined
as a CasADi function with the same inputs as the original function, defined as
Jh(z, p) and Jg(z, γe, p). The jacobian and hessian of the objective function is
derive similarly and defined as Jf (z, γe, p) and Hf (z, γe, p). The sparsity pattern of
the jacobians and hessian is shown in figure 3.6.

3.3.2 Discretization with CasADi
The continuous space dependant dynamic equations need to be discritized before
they can be included in the MPC. Discretization is done with CasADis numerical
integration method Integrator() with stepsize ds for horizon N . The integration
method used for the NOCP depends on which vehicle dynamic model that is used.
For the energy management problem with a rule based lateral stability constraint
the dynamic equations are ordinary differential equations (ODE) and can be solved
with an explicit Runge-kutta method. For a problem that includes lateral dynam-
ics the model equations are implicit, and are first transformed into a differential
algebraic equation (DAE) and solved with the implicit integrator IDAS from the
Sundials suite , which is part of the CasADi toolbox.

Both methods of integration follow the same pattern. The dynamic equations are
evaluated with variables declared as symbolic expression, the symbolic expressions
are then passed to the CasADi Integrator method F where differentiable state,
variable parameters, algebraic states and integration step size ds is declared. The
integrator method is then called N number of times in a for loop where each call
depends on the result of the previous iteration. This method builds a [N ·n, 1] sym-
bolic expression which contains a chain with N number of integration steps with n
being the number of states in the dynamic equations, the expression is declared as
a CasADi function with the same inputs as 3.36 and can directly be evaluated as
a nonlinear equality constraint in MPC optimization algorithm. The algorithm is
displayed in 6.
The IDAS implicit integration strategy is compared with Matlabs ode15i to ensure
that they are stable and that the symbolic functions retain sufficient accuracy, and
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Figure 3.6: Figure ilustrating the sparsity pattern of Jh(z, p), Jg(z, γe, p) and
Hf (z, γe, p) without lateral dynamics and with horizon N = 75m and stepsize
ds = 15m. Resulting in dimensions: Jh(z, p) = [18 × 38], Jg(z, γe, p) = [60 × 38],
Hf (z, γe, p) = [38× 38].

stability. The simulation comparison shown in figure 3.7 is done on a flat road with
one left and right turn. The step size used in IDAS is 1m with a maximum of 4
intermediate steps, the step size used in ode15i is much smaller. This is determined
to be the cause of the discrepancy between the two simulation results.

3.3.3 Updating space dependant constraints and parame-
ters

As mentioned in 3.2.1 and 3.2.2.4 there are both space dependant parameters and
constraint limits. The space dependant parameters are generated from road data
available at Volvo, and interpolated or extrapolated to fit the discretization step
size ds. The reference trajectories calculated with the method defined in 3.2.4.2 are
also discretized with the step size ds. The resulting data files are then passed to the
MPC controller which can read them from its current longitudinal position s and
s + ds · N meters in the future. Both data files can involve roads longer or sorter
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Algorithm 6 Symbolic integration with CasADi
Fs−>s+ds(x, u, p) = hsym

stage(x, u, p) ▷ Symbolic integration step with stepsize ds,
and symbolic ODE or DAE from equation 3.6 or 3.29.
for i ← 1 to N do ▷ Build N number of integration steps

h̄i = xi+1 − Fk−>k+1(xi, ui, pi) ▷ Build discrete equality constraint stage wise
end for

than the MPCs horizon and the planned route length is defined with the variable S
in meters.

3.3.4 Solvers used for MPC with rule based speed limitation
The solvers used for in the MPC with rule based speed limitation are SLP and
SQP algorithms defined in 1 and 2. The linear program solvers used in the SLP
are Matlabs linprog. The quadratic solver used in the SQP is Matlab’s quadprog.
In addition the nonlinear solver IPOPT is used. The MPC are designed as Matlab
functions that have the following inputs, current states x̂, previous solution to the
NOCP ẑ and current longitudinal position ŝ. The current state is the feedback from
the plant, the previous solutions are used to warm start the optimization and the
longitudinal position is used to find the road ahead parameter information. The
output is the optimal trajectories for the states and inputs z∗ for the control horizon
N , and the new gears produced by the gear optimization γ∗

e.

In the sequential programs, the gear optimization is introduced in each sequen-
tial iteration, and the algorithms defined in 1 and 2 are augmented to include a gear
optimization step after each new sequential update of the optimal solution zi+1. In
algorithm 7 a SLP algorithm with gear optimization is defined. This is the same
strategy as the one derived in [6]. The same algorithm can be used for the SQP
with an extra evaluation of the hessian of the objective function.

Both the SLP and SQP algorithm can be changed into RTI algorithms by using
the method defined in 2.1, the convergence criteria is then suppressed and the algo-
rithm stops after a predetermined sequential iteration limit, imax.
For the MPC using IPOPT as its optimization algorithm the NOCP objective func-
tion and constraints is evaluated and optimized directly as nonlinear functions. With
this algorithm the sequential method for gear optimization defined in 7 is not pos-
sible, since IPOPT is not accessible during its internal iterations, and the gear
parameter γe can not be updated. Instead, gear optimization has to be done after
IPOPT has converged, and the IPOPT algorithm has to be called again after one
gear optimization.

3.3.5 MPC with lateral dynamics
The lateral dynamics from equation 3.29 and their related constraints 3.30 and 3.31
are too computationally expensive to include in the long horizons needed for energy
management. To address this problem the lateral dynamics are simplified with the
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Figure 3.7: Simulations of the lateral dynamics using CasADi IDAS with 1 m step
size and Matlabs ode15i with variable step size. For a two turn road with no incline.

methods defined in [7]. The simplification is aimed to handle the equality constraint
jacobian Jh,lat w.r.t the lateral dynamics equality constraint hlat, that is built with
the method defined in 6. This jacobian is expensive to evaluate since it contains
the derivative of (N n) · (N n m) implicit integration steps, where n is the number
of states and m is the number of inputs. To avoid evaluating this jacobian in the
online controller, the jacobian is constructed offline with the optimal trajectories for
the planned route S derived from optimization with a rule based speed constraint.
The resulting jacobian is denoted J̄h,lateral, and can be used inside the sequential
programs. Due to the stiffness of the lateral dynamics equations a small stepsize is
needed when discretizing, the stepsizes are in the range 0.5− 2[m].

The NOCP including lateral dynamics and stability constraints consist of 12 equal-
ity constraints and 21 inequality constraint in each stage, and is built using the
methods defined in 3.3.1. Due to its size and complexity only the SLP is used for
the MPC including lateral dynamics since it is the fastest method derived in this
thesis, as is shown in 4.2.1.

31



3. Methods

Algorithm 7 Sequential linear program with gear optimization
zi ← Initial guess, i = 1 ▷ External initial guess
γe ← γe,ref ▷ Gears from 3.2.4.2
while RMS(zVx,i+1 − zVx,i) < ϵ do ▷ Convergence criteria

f̄ = Jf (zi, zi+1, γe, p) ▷ Linearized objective function
ḡ = g(zi, γe, p) + Jg(zi, zi+1, γe, p) ▷ Linearized inequality constraints
h̄ = h(zi, p) + Jh(zi, zi+1, p) ▷ Linearized equality constraints
z+

i+1 = LinearProgram(f̄ , ḡ, h̄, lb, ub) ▷ Solve with suitable solver
zi+1 = zi + α (z+

i+1 − zi) ▷ Update optimal solution with step length α
γ+

e = GearOptimization(zi+1, γe) ▷ Find optimal gears for trajectory zi
γe = γ+

e ▷ Update gears for next iteration
end while
z∗ = z ▷ Output optimal decision variables
γ∗

e = γe ▷ Output optimal ICE gears

3.3.6 Online shrinking horizon (SLP,SQP)
To address situations when the end of the planned route S is closer than the current
position s and a control horizon N ahead, a method for online shrinking off the
control horizon is defined for the sequential programs. The functions used to build
the NOCP are created offline as defined in section 3.3.1 with a fixed horizon, for this
section refereed to as N0. These functions can not be changed when the controller is
online, instead the algorithm from 7 is augmented so that only parts relevant for the
remaining road of the NOCP function output is passed to the linear or quadratic
programs. This method is defeind in algorithm 8, where s is the current position
along the planned route, and κ is the number of inequality constraints in one stage,
κ = 12 for the energy management problem, and κ = 21 when lateral dynamic
constraints are included. The variable n is the number of states in the dynamic
model, 3 for the simple longitudinal dynamics and 12 for the complex lateral and
longitudinal dynamics, m is the number of inputs, 4 for both models.

Algorithm 8 Shrinking horizon algorithm for (SP)

if s + N0 ≥ S then ▷ If remaining route is shorten than the original horizon N0
Ns = S − s ▷ Length of the remaining route
j ∈ [1, n + (m + n)Ns] ▷ Indices off new decision variable z
f̄ = f̄i,j, i ∈ [1, (n + m)Ns] ▷ Objective function for remaining route
ḡ = ḡk,j, k ∈ [1, κNs] ▷ Inequality constraints for remaining route
h̄ = h̄r,j, r ∈ [1, nNs + 1] ▷ Equality constraints for remaining route

end if
... ▷ As in algorithm 7
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4.1 Controller architecture

The architecture of the controller in this paper is illustrated in Figure 4.1. As shown
in the figure, the controller architecture consists of three main parts: the inputs form
users, the offline controller settings, and the online controller. These three parts will
be elaborately detailed in this section.

The inputs from users will be introduced firstly as it is the beginning of the controller
architecture. There are three modules with inputs, the vehicle specifications, which
include information about the engine, electric motor, battery and other vehicle-
specific parameters which are also used as controller offline setting parameters; the
route data, which contain details about speed limits, road grades, curvatures and
other factors to enable realistic simulations of various routes; as well as the MPC
tuning parameters, which involve the horizon, step size and slack variables etc, which
are used essentially for tuning and testing.

In the second part of the control architecture, as much preparations as possible
are done to speed up the subsequent online control. The controller operates on a
discreteize-then-optimized basis, and the measurement data collected at predeter-
mined time intervals also need be discretized. It is essential to introduce an initial
guess provided by Volvo software, which estimates the fuel consumption of a con-
ventional diesel vehicle with the reference of gears, velocity and arrival time. In this
stage the rule-based stability constraint is also computed.

The third part of the control architecture is the online control, with the data, initial
guess, and optimization problem being provided by the second part. The central
block is the CasADi-implemented MPC controller, which is a Matlab function that
takes measured states and current position as closed-loop input and produces the
optimal state trajectory and force requests. GPS is read independently which pro-
vides real-time position data that is crucial for real-world implementation. The
plant block is an A-double with a electrical dolly. It receives force and gear requests
as inputs. Following that, it then outputs the measured states, which include states,
velocity, time and battery state of charge.
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Figure 4.1: Controller architecture.

4.2 Energy management with rule-based speed con-
straint

In this section an A-double controlled by a energy management MPC with rule-
based lateral stability constraint is evaluated by simulations. The fuel consumption
of the MPC controlled vehicle is compared with a simulated conventional diesel truck
driving the same route. The different optimization algorithms are compared with
respect to computation time, robustness and accuracy. In addition, the effect of
control horizon N for a moving horizon MPC w.r.t fuel consumption is investigated.
Finally, the RTI approach is evaluated.

Important constant vehicle and road parameters are gathered in table 4.1. These
parameters are the same for all simulations done in this thesis.

Table 4.1: Table with constant vehicle and road parameters used in all the simu-
lations presented.

Parameter Value Symbol
Road friction coeficient 0.8 µ
Combination vehicle total mass [kg] 60250 m
Rolling resistance 0.008 fr

Wind drag coefficients 9.9840 ρaAfcd

Wheel radius [m] 0.4910 R
Minimum SOC in battery [%] 20 socmin

Maximum SOC in battery [%] 60 socmax
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4.2.1 Solution to the NOCP with SLP, SQP and IPOPT
The solution of one NOCP or for a control horizon is the optimal trajectories x∗ and
u∗. The accuracy and the number of sequential iterations needed for convergence
for the SLP and SQP depends on the tunable variables ϵ and α, the SLP is tuned
so that the optimal state trajectory x∗

SLP is within RMS(x∗
SLP − x∗

IP OP T ) ≤ 0.01
. The SQP is tuned to be as close to IPOPT as possible, but due to convergence
issues the result are never as close as the SLP algorithm. The NOCP is discretized
with stepsize ds = 15[m] and horizon N = 333[stages], or 5 km.

The optimal speed trajectories for the reference vehicle and the MPCs are shown
in figure 4.2. The SLP and IPOPT derive a very similar trajectory while the SQP
differs significantly. The simulated road has a legal speed limit of 70 km/h, and for
curves in the road the rule-based stability constraints lowers it even further. Due
to the low legal speed limit, the conventional vehicle can keep very close to the
speed limit for the majority of the route and the resulting arrival time leaves little
options for the MPC to change the speed trajectory. Moreover, due to the lower
ICE torques needed for the hybrid drive train the gear optimization can find higher
gears for many of the stages.

Figure 4.2: Figure illustrating the optimal speed trajectory and ICE gears with
rule-based stability constraint for the SLP, SQP and IPOPT for one horizon of 5 km
with a stepsize of 15 meters. SLP and IPOPT yield very similar optimal trajectories.
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In figure 4.3 and 4.4 the SOC and Fmw for the two sequential programs are compared
to the trajectories derived by IPOPT. The SLP solution is very similar to IPOPT
wile the SQPs differs. All MPCs manages to find trajectories that utilizes the EM to
retard and propel the vehicle depending on the road elevation, this is visualised by
the Fmw force switching sign in down and uphill segments. All controllers manages
to find trajectories that start and end with the same SOC which is crucial to make
a fair comparison with the conventional vehicle.

Figure 4.3: SOC and Fmw trajectories for the SLP and IPOPT algorithm for one
horizon, with route elevation.

In figure 4.5 and 4.6 the speed, Fe and Fmw trajectories for the sequential programs
and IPOPT are compared. Here again SLP and IPOPT have similar trajectories
while the SQP diverges. The forces Fmw and Fe work in unison and the optimal
trajectories do not involve them acting in opposite directions at the same stage.
Performance data for the different solvers are displayed in table 4.2. Evaluating the
results achieved with the SLP shows that its both much faster and more accurate
then the SQP. Because of this reason, only the SLP and IPOPT will be used for the
further tests conducted in this thesis.
The fuel consumption needed for each of the trajectories is calculated with Ff and
compared to the conventional diesel vehicle. The results are shown in table 4.3. In
the table the fuel consumption with and without gear optimization is also included.
The lower fuel consumption achieved with the SQP is only a result of the few
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Figure 4.4: SOC and Fmw trajectories for the SQP and IPOPT algorithm for one
horizon, with route elevation.

sequential iterations done in the algorithm, few iterations means that it is a worse
approximation of the nonlinear equations used in IPOPT, and the calculated fuel
consumption is not feasible. The gear optimization contributes to decreasing the
fuel consumption by 0.15 liters, and the computation time is 0.025 seconds in each
sequential iteration, in total 0.1 seconds for the SLP. The fuel consumption for the
SLP and IPOPT optimal trajectories are 27% lower then the conventional vehicle.

4.2.2 Relaxing the reference trajectory
Relaxing the reference trajectory with respect to maximum speed and arrival time
gives more freedom to the MPC to find a optimal speed trajectory that deviates
from the reference vehicles, the results from these tests are shown in figure 4.7 and
4.8. The relaxation is done in two separate cases: either with respect to arrival
time, where the MPC has 10% longer time to complete the route, or with respect to
maximum speed allowed for the reference vehicle, 10% lower then the legal limit or
speed limit derived by the lateral stability constraint. The resulting fuel consump-
tion and arrival time and computation times is displayed in table 4.4. As shown in
table 4.4 relaxing the constraints and increasing the freedom of the optimal trajec-
tories can reduce the fuel consumption further. Relaxing the arrival time constraint
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Figure 4.5: Optimal trajectories for SLP and IPOPT for one horizon. Trajectories
are speed, Fe and Fmw.

lowers the fuel consumption by 35% compared to the fuel consumption for the op-
timal trajectories with a strict time constraint. And with 53% with respect to the
conventional vehicle. Lowering the maximum speed allowed for the reference vehicle
also increases its arrival time and lowers its fuel consumption and the optimal tra-
jectories produced for this scenario has a 50% lower fuel consumption. Increasing
the MPC freedom makes the problem harder to solve, and the SLP requires more
iterations to find the optimal solution.

4.2.3 Moving horizon MPC with SLP and warmstart
To further investigate the MPC using SLP, the closed loop system with moving hori-
zon, and warm starting is simulated and compared to the optimal solution derived
by IPOPT. The MPC includes shrinking horizon, and the sequential program is run
until convergence in each stage.

The moving horizon MPC speed and SOC trajectories are displayed in figure 4.9 the
moving horizon speed trajectory deviates more from the optimal solution derived by
IPOPT, but this is expected since the moving horizon system is simulated with an
external plant model that introduces numerical error compared to the internal MPC
model. The fuel consumption for the simulated moving horizon MPC is 3 liters. The
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Figure 4.6: Optimal trajectories for SQP and IPOPT for one horizon. Trajectories
are speed, Fe and Fmw.

MPC has a horizon of 333 stages or 5 km, and sees the end of the planned route
from its starting position. The decreased speed limit refrence trajectory was used
as a initial guess. Warmstarting the SLP algorithm decreased the computation time
by 0.15 seconds.

4.2.4 Effect of control horizon on computation time and fuel
consumption

Different control horizons where tested to see how their size relates to fuel con-
sumption and computation time, all controllers include shrinking horizon as they
approach the end of the route, 5km away from their starting position. The stage-wise
computation times are shown in figure 4.10. Shortening the initial horizon length
decreases the computation time, it does however, for the given road, produce a less
optimal route trajectory as shown in figure 4.11. This is a expected result since the
more information the controller has about its planned route is the better. Shrinking
the horizon also has a big impact on SOC management. As mentioned previously
the SOC has two constraints, one is the battery lower limit, 20% and one is the end
of the road constraint SOC0 = SOCS to ensure that energy comparisons are fair.
For controllers with short horizons compared to the planned route the battery lower
limit can be reached before the end of the route and it might be impossible to return

39



4. Results

Table 4.2: Table with computation time data for the different solvers used in the
MPC.

SLP SQP IPOPT
Number of sequential itterations 4 2 N/A
Time for LP and QP solution [s] 0.22 12 N/A
Total computation time till convergence [s] 0.85 25.8 30

Table 4.3: Table with fuel consumption used by the optimal trajectories found by
the different MPCs and the fuel consumption used by the diesel vehicle, for a 5 km
hilly route.

SLP SQP IPOPT Refrence
Fuel consumption with gear optimization [liters] 4.6 4.1 4.61 6.3
Fuel consumption without gear optimization [liters] 4.71 4.3 4.74 6.3

to the initial SOC in N stages, resulting in the problem becoming infeasible. Because
of this there is a trade of between robustness and computation time when designing
the controller. The SOC trajectories for the different simulations are shown in 4.12.
A solution to this is to constraint every horizon so that the final state of charge is
the same as its initial state of charge.

4.2.5 Implementing RTI

In this section the simplified RTI strategy defined in, 3.3 is used for decreasing
computation time of the SLP. The results are evaluated and compared to the full
convergence SLP and the optimal solution derived by IPOPT. The evaluations are
done with respect to solution accuracy and computation time. The horizon length
is fixed to N = 333 or 5 km. The RTI forced-stop is implemented after imax = 2, 3, 4
sequential iterations respectively, denoted RTIi in the figures. All sequential algo-
rithms have online shrinking horizon as they approach the end of the planned route.

The speed trajectories for MPCs with 3 different RTI settings together with full
convergence SLP and IPOPT are shown in figure 4.13. All RTI algorithms manages
to stay within the speed limit, but RTI2 diverges from IPOPTs trajectory. The SOC
trajectories are shown in figure 4.14, all SOC trajectories diverge from IPOPTs solu-
tion but once again RTI2s is the most deviant. The computation time for the RTIi

algorithms and a SLP with full convergence is displayed in figure 4.15. The fuel
consumption for the simulated trajectories are displayed in table 4.5. Implementing
a RTI algorithm has negative effect on precision compared to full convergence SLP
and IPOPTs solution but decreases the computation time significantly.
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Table 4.4: Table with fuel consumption, arrival time and computation times for
MPCs with relaxed reference.

Relaxed reference speed SLP IPOPT Refrence
Fuel consumption [liters] 2.98 3.0 6.0
Arrival time 359 359 359
Sequential iterations 6 N/A N/A
Total computation time till convergence [s] 1.24 20 N/A
Relaxed arrival time constraint SLP IPOPT Refrence
Fuel consumption [liters] 2.92 2.95 6.3
Arrival time [s] 362 362 332
Sequential iterations 5 N/A N/A
Total computation time till convergence [s] 1.0 20 N/A

Table 4.5: Table with simulated fuel consumption for SLP using RTI with forced-
stop after 2-4 iterations, compared to full convergence SLP.

RTI2 RTI3 RTI4 Full convergence SLP
Fuel consumption [liters] 3.15 3.05 3.04 3.0

4.3 Comparison between point mass longitudinal
model and multibody lateral and longitudinal
model dynamics

The optimal inputs for the rule-based NOCP found by IPOPT, u∗, are used as inputs
to the advanced lateral and longitudinal dynamics model. The model is created as
a CasADi symbolic function discretized with IDAS with a stepsize ds = 1m. The
two models are compared on a straight and curvy road, the curvy road is shown in
figure 4.16, the same elevation is used for both roads. A speed trajectory comparison
between the point mass longitudinal model and the nonlinear multibody lateral and
longitudinal model for a straight and curvy roads is shown in figure 4.17 and 4.18.

These simulations show that for a curvy road the simple longitudinal model cant
accurately capture the dynamics of the vehicle. This is due to the resistive force
acting in the longitudinal direction as a result of steering and nonzero lateral slip.
In [7] an approximation of these forces are derived into a single term, according to
equation 4.1, where c is a vehicle dependant parameter that needs to be tuned for
each vehicle. The term Fc is added to the longitudinal dynamics defined in 3.7 which
gives a new longitudinal model equation shown in 4.2.

Fc(x, δ(s)) = c vx δ(s)2 (4.1)

hvx,Fc = dvx

ds
− 1

mvx

(−Fbr + ηteFe + Fmw + c vx δ(s)2) (4.2)

Including the new extended dynamics in the longitudinal model improves the match
between the two models for a curvy road, as shown in figure 4.19. In addition the
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Figure 4.7: Optimal speed trajectory from SLP and IPOPT for one horizon with
relaxed arrival time constraint by 10%.

inclusion of additional resistive forces increases the fuel consumption for the optimal
trajectories by 1 to 1.5% for the full 5km route.

4.3.1 Evaluating rule-based lateral stability constraint
To evaluate the rule-based lateral stability constraint the additional inequality con-
straints defined in equations 3.30 and 3.31 are evaluated for the state trajectories
simulated with the lateral dynamics, and the optimal inputs derived by IPOPT.
The lateral stability constraints are evaluated with a maximum lateral acceleration,
ay,max set to 1.5[m/s2] and a safety factor β set to 80%, and the results are shown
in figure 4.21 and 4.20. The lateral stability constraint is violated for two instances
during the 2.25km route, the wheel force constraint is violated due to sharp braking
before a curve.

4.4 Energy management with lateral dynamics con-
straints.

The NOCP including lateral dynamics is solved with a SLP algorithm using the
offline calculated equality constraint jacobian, J̄h,lateral defined in 3.3.5. The opti-
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Figure 4.8: Optimal speed trajectory from SLP and IPOPT for one horizon with
relaxed refrence speed constraint, 10% lower than lateral stability constraint.

mization is done for a 2km horizon and the discretization stepsize ds is 1 m. The
optimal trajectory is compared to the simulated state trajectories and inputs derived
with the rule-based speed constraint. The speed trajectories are shown in figure 4.22
with the rule-based speed constraint. The optimal inputs and speed trajectories is
displayed in figure 4.23. As is visible from the figure the rule-based lateral speed
constraint fails too capture the correct speed limits to guarantee lateral stability. It
is either to conservative or too relaxed.
In order to evaluate the model discrepancies created by offline linearization of the
equality constraint jacobian the optimal inputs found by the SLP are feed to the
IDAS lateral dynamics simulation and the results are shown in figure 4.24. As shown
by the figure the trajectories are very similar and the offline linearization does not
cause large model discrepancies.

4.5 Improvements to the rule-based speed con-
straint

In figure 4.21 is is shown that the optimal trajectories produced by the rule-based
lateral stability constraint violate the wheel force constraint defined in 3.30. This
violation happens when the controller is braking to lower the velocity as its going

43



4. Results

Figure 4.9: Speed and SOC trajectories for moving horizon MPC using SLP,
compared to IPOPT optimal trajectories.

into a curve. Since this violation happens on a relatively straight road it is the lon-
gitudinal wheel forces Fx that violate the constraint, these forces can be constrained
directly for both dynamic models with the mapping matrix Au defined in 3.27. This
results in the following constraint described in 4.3. This constraint in combination
with the rule-based speed constraint generates an optimal solution that no longer
violates the wheel force constraints on the road defined in 4.16 as shown in figure
4.25. It can not however guarantee that the complete wheel force constraint defined
in equation 3.30 is satisfied for all roads, since it does not consider the combination
of both longitudinal and lateral wheel forces. Including this constraint does however
improve the stability properties further, and this constraint can be tuned to ensure
even larger margins with the safety factor β.

gFx = Au u ≤ 1
β

µ Fz (4.3)
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Figure 4.10: stage-wise computation times for SLP MPC with moving horizon for
different horizon lengths.

Figure 4.11: Fuel consumption for moving horizon MPC with SLP and different
control horizons, simulated for a 5 km route.

Figure 4.12: SOC trajectories for MPC with SLP and different horizon length.
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Figure 4.13: Speed trajectory for MPCs including RTI forced stops after 2-4
itteratons ,full convergence SLP and IPOPT. The control horizon is 5 km long. The
speed trajectories for RTI4 and the full convergence SLP are very close.

Figure 4.14: SOC trajectory for MPCs including RTI forced stops after 2-4 itter-
atons, ,full convergence SLP and IPOPT. The control horizon is 5 km long.
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Figure 4.15: Stage-wise computation times for RTI algorithms with forces stop
after 2 to 4 iterations, compared to full convergence SLP.

Figure 4.16: Road used to simulate lateral and longitudinal dynamics.
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Figure 4.17: Speed trajectory comparison between the point mass longitudinal
model and the nonlinear multibody lateral and longitudinal model, for a straight
road using the optimal inputs from NOCP using a rule-based speed limit and point
mass longitudinal dynamics.

Figure 4.18: Speed trajectory comparison between the point mass longitudinal
model and the nonlinear multibody lateral and longitudinal model, for a curvy road
using the optimal inputs from NOCP using a rule-based speed limit and point mass
longitudinal dynamics.
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Figure 4.19: Speed trajectory comparison between the multibody dynamic model
and the extended longitudinal dynamics model, using the optimal inputs from NOCP
using a rule-based speed limit and extended longitudinal dynamics.

Figure 4.20: Lateral acceleration constraints evaluated for optimal trajectories
found for the NOCP using rule-based speed constraint. Index gayi indicates vehicle
unit 1,2 and 4. If the lateral acceleration constraint is larger than 0 the constraint
is violated.

49



4. Results

Figure 4.21: Wheel force constraints evaluated for optimal trajectories found for
the NOCP using rule-based speed constraint. Index gF yi indicates wheel group from
1 to 6. With inputs u mapped with Au matrix defined in 3.27. If the wheel force
constraint is larger than 0 the constraint is violated.
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Figure 4.22: The top figure shows the optimal speed trajectory for the NOCP
including lateral dynamics compared to the trajectory found with the rule-based
speed constraint. The bottom figure shows the lateral acceleration constraint eval-
uated for the new optimal trajectories.
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Figure 4.23: The top figure shows the optimal input trajectories for the NOCP
including lateral dynamics compared to the trajectories found with the rule-based
speed constraint. The bottom figure shows the wheel force constraint evaluated for
the new optimal trajectories. Both MPCs utilizes the maximum brake force of the
dolly in the curve and the wheel force constraint is not violated.
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Figure 4.24: Comparison between the optimal speed trajectories derived from
the MPC using multibody dynamics with a offline calculated equality constraint
jacobian and the complete multibody dynamics simulated using IDAS and the the
optimal inputs derived by the MPC.

Figure 4.25: Wheel force constraint from equation 3.30 evaluated for the optimal
trajectories derived with the rule-based speed constraint and longitudinal wheel force
constraint from equation 4.3, for the 6 wheel groups defined in figure 3.3.
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5
Conclusion

In this section the results derived in this thesis are discussed and evaluated with
respect to the objectives set out in section 1.2.1. Suggestions on further work on
the topic is presented.

5.1 MPC design using CasAdi

Using CasAdi to design and implement MPCs generated good results, building the
NOCP as symbolic expression and functions makes it very flexible and tuneable.
Testing new sparsity patterns, horizon lengths and discretization stepsizes can be
done in a single line of code. Building equality constriant functions from continuous
dynamics with symbolic discretization using high order Runge kutta methods or
implicit integration schemes is a powerful tool that achieves very accurate discrete
model dynamics.

The drawback too CasAdi is that even though it is very efficient, the time required
to evaluate the large equations is not negligible compared to the solvers computa-
tion time. Evaluating the constraint functions and jacobians in the NOCP with rule
based speed constraints takes up to 0.1 seconds for a 5 km horizon using a 15m step-
size, a evaluation time that is significant when the total computation time is between
0.8 and 1 seconds. This drawback is even greater for the lateral model dynamics,
evaluating the equality constraint for a 2.25 km horizon with a 1 m stepsize takes
up to 30 seconds. And evaluating the equality constraint jacobian takes much longer.

It is however possible to further improve the method used to build the NOCP with
CasAdi, in [21] CasAdi developers claim that the correct usages, and mix of SX and
MX symbolic variables can greatly increase the computation efficiency. The same is
true for how the complete horizon functions are built, the CasAdi function.map(N)
approach is not necessarily the most computational efficient. It is also possible to
speed up the function evaluation by splitting up large symbolic expressions into
smaller parts, this is especially relevant for the lateral dynamic equations where the
equations are over 50 A4 pages long. CasAdi developers also claim that compiling
CasAdi scripts into C code can significantly decrease the computation time.
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5.2 Evaluating solvers used in the MPC
When comparing the 3 different solvers used in this thesis the SLP algorithm using
Matlabs linprog with a internal simplex solver stands out as the best option out of
the 3. A well tuned SLP achieved very similar trajectories to the nonlinear solver
IPOPT in only a fraction of the time, it is also sufficiently robust and generates
good results for a RTI approach when a 3-4 iteration limit is used, these results are
similar to the conclusions drawn in [6]. The SQP algorithm derived in this thesis is
not suitable for an MPC application, the optimal trajectories diverge from IPOPTs
with similar computation times. The SQP was only tested with Matlabs quadratic
solver quadprog and it is possible that other solvers may generate better results,
that are closer to the SQP performance in [6]. The nonlinear solver IPOPT is, as
expected, too slow to be implemented in real time, it is however possible to improve
its computational efficiency. Compiling the solver in to C-code can increase the
computation time as well as trying other internal linear solvers.

One important aspect of numerical optimization that was omitted in this thesis
is scaling. Scaling the optimization problem reduces the condition number of the
involved matrices witch makes the problem easier to evaluate and solve, due to the
large difference in numerical values between the decision variables for example soc is
in range [0.2− 0.8] and Fe is in range [0− 106] the condition number of the involved
matrices are large. Potential methods for scaling the NOCP for SLP and IPOPT
are presented in [9] and [21].

5.3 Lateral stability and dynamic model evalua-
tion

The NOCP with and without lateral dynamics showed that resistive forces caused
by the front wheels and nonzero lateral tire slips of all other axles needs to be ac-
counted for to accurately capture the longitudinal dynamics. The inclusion of the
Fc term described in 4.1 does not have a large impact on the complexity of the
problem, and should be included in the longitudinal model dynamics as suggested
in [7].

Simulations comparing the lateral dynamics with and without the offline linearized
jacobian also show that this simplification is a valid strategy for simplifying the
multibody lateral and longitudinal dynamics. The simplification is however not
enough to reduce the computation time so that the NOCP can be solved in real
time. Further simplifications is needed in order to include the lateral dynamics.

Comparing the two lateral stability constraints show that the rule based approach
is not sufficient for finding a speed limit that guarantees lateral stability. Both the
wheel force constraints and the lateral acceleration constraints are violated by the
trajectories derived with the rule based constraint, and the optimal speed trajec-
tories that satisfy these constraints are very different. As is displayed by the large
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discrepancies between the two speed trajectories in figure 4.22. It is however possible
to include a longitudinal force constraint to remove wheel force constraint violation
on straight roads, this does however not guarantee lateral stability in curves.

In addition to this it is concluded that the electric motor used in the simulations is
not powerfull enough to cause lateral instability. It is however a cause for concern
since lateral instability caused by the electric dolly are shown to occur for more
powerfull electric motors in [7].

5.4 Evaluation real time implementation
A schematic diagram of how the designed MPC should be implemented is displayed
in figure 4.1. The MPC requires an online update from an GPS and data on the
planned route. The two critical aspect of implementing the MPC is the computation
time T and lateral stability. In order to implement the MPC the computation time
should be fast enough to produce a new trajectory at each discretized step, ds.
An approximation of the maximum allowed computation time can be derived as
Tmax ≤ ds

vx,max
Ω with some factor Ω ≤ 1. For the legal top speed of heavy trucks

in Sweden 90 km/h and a discretization step size of 15 m the minimum required
computation speed would be 0.6 seconds. In the simulations done in this thesis
this speed is achievable with either using a RTI3 for a 5 km horizon, or lowering
the horizon to 2.25 km for the NOCP with a rule based speed constraint. This
is however a rough estimation and the actual computation time needed is heavily
dependant on available computational resources on the intended truck.

5.5 Further work
In order to implement the controller in a combination vehicle a new reliable lateral
stability constraint needs to be derived. One option is the method derived in [7]
where a short horizon including the multibody lateral dynamics is added to the sim-
ple longitudinal dynamics equality constraint. The short horizon lateral dynamics
will have a smaller discretization stepsize than the simple longitudinal dynamics.
This solution is possible to implement in CasAdi and is the natural next step for
finding more computationally efficient method for ensuring lateral stability.

Any further work with the goal of finding a more computationally efficient lateral
stability constraint can use the trajectories derived by the MPC including both longi-
tudinal and lateral dynamics. The trajectories can be used as a benchmark to verify
the effects of further simplifications. Real world tests of the energy management
controllers derived in this thesis have been initiated at Volvo Trucks Technology,
but due too delays in preparing test equipment the results from these test could not
be included in this thesis.
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