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Abstract

Pedestrian Navigation Systems (PNS) have gained popularity for their poten-
tial application to track people in risky environments or in rescue missions. Studies
have been done to integrate information from accelerometers, gyroscopes, magne-
tometers, barometers, and GPS to accurately track the location of subjects on
indoor and outdoor environments.

In this thesis, accelerometers, gyroscopes, and magnetometers were installed on
a mobile phone to track the position of a person indoors without the aid of wireless
technologies. The phone was placed on the waist and the front pockets of the pants
of the users. To determine the travelled distance, a single vertical accelerometer
was used. Also, a simple sensor fusion algorithm based on the Kalman filter
was designed to determine the heading of the person using information from the
gyroscope and magnetometers.

Experiments were conducted on different scenarios and the results indicate that
the typical positioning accuracy is below 5% for distances up to 170 meters. Issues
and proposed improvements to the system are also discussed in this work.

Keywords: Sensor Fusion, Pedestrian Navigation Systems, Kalman filter, step
detection, step length, heading determination, disturbance detector.
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Chapter 1
Introduction

I
nertial Navigation Systems (INS) were born from the need to track the
movement of objects using accelerometers and gyroscopes. As many other
research studies, the military pioneered in the field to control gun-fire sys-

tems, rockets, and aircrafts [1].With the evolution to Micro-Electro-Mechanical
Systems (MEMS), sensor size and cost have enabled applications in other fields,
for instance, car navigation.

Pedestrian Navigation Systems (PNS) have increased in popularity among re-
searchers. PNS are formed by inertial sensors, magnetometers, barometers, tem-
perature sensors, and even GPS. Researchers on the field have worked on different
techniques to solve the tracking problem by putting the sensors in different places
of the subject [9] [6]. The purpose, motivation, and scope of this work are men-
tioned next.

The research performed by the authors is presented on chapter 2. Then, the im-
plementation of the system is mentioned in detail on chapter 3. The experiments,
results, and issues are discussed on chapter 4. An last, the conclusion and proposed
further work are presented on chapter 5.

1



1.1. PURPOSE AND MOTIVATION CHAPTER 1. INTRODUCTION

1.1 Purpose and Motivation

This master’s thesis was made in collaboration with ASCOM Wireless Solutions.
ASCOM strive to deliver solutions for wireless on-site communications to support
and optimize their customers’ mission. This is achieved through purpose-built
handsets, wireless voice and message transmission systems, and customized alarm
and positioning applications. The current positioning applications rely on wireless
short range beacons that help to identify when a user has crossed a certain place in
a building. This master’s thesis focuses on how to improve the existing positioning
application by using inertial and magnetic sensors.

Enhancements on this application could give better knowledge of the current po-
sition of the person, which could be vital in rescue missions or to locate workers in
risky environments, for instance, guards in correctional facilities. Also, this could
help to reduce the equipment to be installed in the buildings, helping to reduce
costs and to make the positioning solution more flexible.

The purpose of this work is to make a working demo for a sensor-based indoor
positioning solution and to display the results in a map. Figure 1.1 shows an
example of a desired result.

1.2 Scope

As this work represents the start of a new project, restrictions had to be made in
order to measure the advance and to identify the areas to improve. Accelerometers,
magnetometers, and a single gyroscope were the only sensors used in this work.
The position of the mobile phone was restricted to the pocket and waist of the
user, and the starting location and heading were considered to be known. Still,
different persons walking at their own natural pace were used to test the system
in different environments.

1.3 Method

The accelerometer in the vertical axis was used to find the number of steps given by
the user as well as to calculate the length of each one of them. The magnetometers

2
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Tracked position

Figure 1.1: Example of results obtained with the positioning demo.

were used to find the heading and the tilt of the module was calibrated with the aid
of the 3-axis accelerometer. Also, a Kalman filter was used to fusion the gyroscope
angular rate and the compass heading with a disturbance detector. Finally, the
length and heading per step were plotted in a map and the results were obtained.
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Chapter 2
Background

D
ifferent strategies have been used by researchers to accurately track
the position of an object while its moving. This chapter briefly reviews
some of the most relevant studies made in the field of PNS. The distance

and heading estimation algorithms are mentioned as well as the basic calibration
needed for operation. Also, methods to detect magnetic disturbances are explained
and finally, an introduction to the Kalman filters is given with examples of how
other authors have contributed to the field.

2.1 Distance

Different algorithms have been proposed to calculate the distance a person has
walked. If an accelerometer is available, the first solution that one might think of
is to integrate twice the acceleration to obtain the total distance. The problem
with this approach is that sensors are inexact and their errors would accumulate
by integrating. To avoid this, researchers have come up with methods to detect
steps and estimate their lengths without integrating the acceleration.

4



2.1. DISTANCE CHAPTER 2. BACKGROUND

2.1.1 Step Detection

There are several ways to do step detection using accelerometer information, but
the main difference strives on whether the sensor is located on the foot, waist, or
in a different place. Since this project deals with positioning using a mobile device,
the sensors are assumed to be on the waist or the pocket and not on the feet. An
example of how an accelerometer signal looks like is shown in figure 2.1.
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Figure 2.1: Vertical acceleration signal of a person walking.

A popular method proposed by Weinberg [3] detects the peaks on the measure-
ments by using a single accelerometer to sense the vertical acceleration. On the
other hand, Käppi [2] uses the norm of a triad accelerometer to find where the
signal crosses the zero reference within a recognition window.
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2.2. HEADING CHAPTER 2. BACKGROUND

2.1.2 Step Length

Regarding step length estimation, Käppi [2] states that it is possible to obtain an
estimate comparable to the walked distance by integrating the absolute value of the
acceleration magnitude of each step. Weinberg [3] instead, proposed a nonlinear
method that uses the maximum and minimum peaks obtained during the step
detection phase, and a constant that can be fixed or adjusted for different users or
type of activity, such as walking or running. This method is given by

Lstep = k · 4
√
Amax − Amin, (2.1)

where Lstep stands for the step length, Amax and Amin are the maximum and
minimum vertical acceleration values within the step, and k the adjustable constant
mentioned before.

Shin [5] proposed an adaptive method known as the linear method

Lstep = a · f + b · v + c. (2.2)

In this method, the distance is estimated by calculating the walking frequency (f)
and acceleration variance (v) and scaling the results using the constants a, b, c
that can be calculated during a training stage using linear regression.

2.2 Heading

To successfully track the movement indoors, it is crucial to find an accurate rep-
resentation of the direction the person is moving towards. This direction is known
as the heading. In the next sections, the principles to find the heading using
magnetometers and gyroscopes is discussed.

6



2.2. HEADING CHAPTER 2. BACKGROUND

Figure 2.2: The heading is referenced to the north and is found using the magnetic
readings in X and Y axes.

2.2.1 Principles

To find the heading using magnetometers, it is only necessary to know the hor-
izontal magnetic components of the Earth. This can be achieved by using the
equation,

h = arctan

(
my

mx

)
, (2.3)

where h stands for the heading and mx, my are the magnetic readings in the x and
y axis, respectively. See figure 2.2. It is important to mention that the compass
indicates the heading referenced to the magnetic north. To correct the heading to
the geographic north, the angle between the magnetic north and the true north
must be compensated [8].

It is important to note that the compass can be easily corrupted by other sur-
rounding magnetic fields. Chen [6] mentions that compasses can be corrupted by
predictable and unpredictable errors. Predictable errors come from sources such as
hard and soft iron effects, tilt of the phone, and magnetic declination. In sections
2.2.3 and 2.2.4, the basic compass calibration to deal with these types of errors is
discussed.

Unpredictable or dynamic errors can be caused by objects like computers, phones,
calculators, and even metallic tables and chairs. The errors cannot be removed

7



2.2. HEADING CHAPTER 2. BACKGROUND

from the heading information but their effect on the system can be reduced using
different techniques. Section 2.3 presents ideas proposed by Käppi [2], Kim [9],
and Laddeto [7].

To determine the heading using gyroscope information only, it is necessary to
integrate the angular rate over the period of time where the person is walking. It
is important to notice that the initial heading must be known, since the gyroscope
only knows about the turns the person has made or their relative position. The
initial heading can be supplied to the gyroscope using the compass heading or with
a positioning beacon.

Gyroscopes and magnetometers are constituted differently and therefore, have dif-
ferent strengths and weaknesses. The angular rate of the gyroscope is generated by
an electro-mechanical oscillating mass that is sourceless and relatively immune to
environmental disturbances [4]. Gyroscopes have good performance on quick turns
but are subject to bias drifts. When the bias drift is integrated, it results in an in-
crement of the error magnitude at every instance. On the other hand, the compass
does not suffer from bias drifts but has a slow response to quick turns and can be
easily corrupted by surrounding magnetic disturbances [9]. Sections 2.3 and 2.4
introduce how to combine the gyroscopes and magnetometers to take advantage
of their strengths and compensate for their weaknesses.

2.2.2 Reference Frames

Reference frames have to be defined in order to get the right heading. The main
reference frame is called the navigation frame and it is where the navigation takes
place, for instance, inside of a building. The coordinate system used is known as
the North-East-Up (NEU) and it coincides with the Cartesian system, denoted in
this work as X-Y-Z.

Another important reference frame is the body frame. The body frame tells how
the sensors are aligned with respect to the person. In this work, it is assumed that
the body frame matches the natural axes of the body of the person, being the sensor
coordinate x-y-z matched to the person’s Forward-Right-Up axes respectively.

If the body frame is not aligned to the navigation frame, as shown in figure 2.3,
an incorrect heading might be calculated leading to a false determination of the
position of the person. To fix this problem, the inclination or tilt of the sensors
should be determined and compensated prior to calculating the heading. Tilt

8
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calibration is fully discussed in the next section.

2.2.3 Tilt Calibration

Caruso [8] proposed a tilt calibration method that has also been used by Fang [4]
and Chen [6] as well. This method consists of finding the angles of deviation
between the navigation and body frames, known as roll (β) and pitch (α), and
illustrated in figure 2.3.

Figure 2.3: Definition of roll and pitch.

The β-angle can be found by rotating the object of interest around the X-axis and
it is defined as the angle between the y-axis and the Y-axis. The α-angle can be
found by rotating the object of interest around the Y-axis and it is defined as the
angle between the x-axis and the X-axis.

If the phone is still or at rest, the information from the 3-axis accelerometer can
be used to determine the roll and pitch angles. If the body frame is aligned with
the navigation frame, the only acceleration measured by the accelerometers is the
one corresponding to the gravitational force, noted for simplicity as g. The value
of g would only be measured by the z-axis accelerometer, making the norm of the
acceleration vector to be

||a|| =
√
a2

x + a2
y + a2

z = g, (2.4)

9
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where ||a|| stands for the norm of the acceleration vector, and ax, ay, az stand for
the acceleration values in their corresponding axis.

Figure 2.4: Calculation for roll angle β.

If the body frame is not aligned with the navigation frame, some information
from g will be reflected in the other axes rather than only the z-axis. Using basic
trigonometry, the roll and pitch angles can be found to be (refer to figure 2.4)

β = arcsin

(
ay

||a||

)
(2.5)

α = arcsin

(
ax

||a||

)
. (2.6)

Once the roll and pitch angles are known, the tilt can be compensated by rotating
in roll and pitch using the matrices

Mr =


1 0 0

0 cos β sin β

0 − sin β cos β

 (2.7)

Mp =


cosα 0 − sinα

0 1 0

sinα 0 cosα

 , (2.8)

10
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where Mr stands for the roll matrix, and Mp stands for the pitch matrix. The
final rotation matrix (MR) can be obtained by multiplying

MR = Mp ·Mr. (2.9)

In this particular case, the order of the matrix product do not alter the final result.
The tilt-calibrated magnetic readings can be obtain multiplying

mR = MR ·m, (2.10)

where m is a vector containing the raw magnetic readings from the 3-axis magne-
tometer and mR is a vector containing the tilt-calibrated measurements.

2.2.4 Static Calibration

Static disturbances can be generated by objects near to the magnetic sensors. In
the case of pedestrians, disturbances could be generated by metallic objects or
even the person itself. Ideally, if an xy-axis magnetometer is rotated 360◦ free of
disturbance, its plot will look like the red circle centered in the origin in figure 2.5.
In the presence of static disturbances, the result will show as an ellipsoid with an
offset like the blue dotted ellipsoid in figure 2.5.

Caruso [8] proposes a method to compensate for static disturbances by first de-
termining the scaling factors of the ellipsoid and then removing the offset. To fix
the scaling factor, find the maximum and minimum magnetic values of the x and
y magnetic readings and denote them as xmax, xmin, ymax, and ymin. Then find

Xsf = max

{
1,

ymax − ymin

xmax − xmin

}
(2.11)

Ysf = max

{
1,

xmax − xmin

xmax − xmin

}
, (2.12)

where Xsf and Ysf are scale factors and

11



2.3. DISTURBANCE DETECTOR CHAPTER 2. BACKGROUND

Figure 2.5: Static Calibration.

Xoff =

[
xmax − xmin

2
− xmax

]
Xsf (2.13)

Yoff =

[
ymax − ymin

2
− ymax

]
Ysf , (2.14)

where Xoff and Yoff are the offsets. Using the scale factor and the offset values, the
static-calibrated magnetic readings can be found as

Xcal = Xsf ·mx +Xoff (2.15)

Ycal = Ysf ·my + Yoff . (2.16)

2.3 Disturbance Detector

As stated before, the proposed solution combines the gyroscope and the compass
to find an accurate heading. In this section, a simple method that combines the
gyroscope and compass information is used to detect dynamic disturbances.

Käppi [2] and Kim [9] proposed to compare the angular rates from the gyroscope
and compass readings and to trust the gyroscope if there is any discrepancy. Since
the gyroscope information is already in terms of angular rates, it is necessary to

12
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derivate the heading from the compass to find its angular rate. This can be done
as follows

ωcompass =
ψcompass(tk + ∆t)− ψcompass(tk)

∆t
, (2.17)

where ω is the angular rate, ψ is the heading, and ∆t is the time interval.

Another method proposed by Laddeto [7] is to discard fast variations in the mag-
netic readings until they stabilize again, since the compass information normally
variates slowly.

2.4 The Kalman Filters

The Kalman filter is a mathematical tool developed by Rudolph E. Kalman in
1960 to make an estimation of an observed variable using a predictor-update set of
equations [10]. If the noise is characterized as Gaussian and the problem where the
filter is used can be represented as linear, the Kalman filter estimation is considered
to be the optimal solution or the minimum squared error (MSE). In the nonlinear
case, the Kalman filter has to be linearized and the solution is considered an ad hoc
state estimator [10]. In the next sections, the linear and extended Kalman filters
are described as well as some applications to the tracking problem by different
authors.

2.4.1 The Linear Kalman Filter

In the linear case the motion and measurement models can be described by

xk = Fk−1xk−1 + Gkuk + vk−1 (2.18)

zk = Hkxk + wk, (2.19)

13
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where

xk is the state vector,

Fk−1 is the motion model matrix,

Gk is the control matrix,

uk is the control input,

vk−1 is the motion noise,

zk is the measurement vector,

Hk is the measurement matrix, and

wk is the measurement noise.

The noises are independent from each other and their distribution can be described
as

vk−1 ∼ N(0,Qk−1) (2.20)

wk ∼ N(0,Rk), (2.21)

where Qk−1 and Rk are known as the process and measurement noise covariance
matrices respectively. The filtering algorithm can be divided in two sections, the
prediction and the update. The prediction equations are

x̂k|k−1 = Fk−1x̂k−1|k−1 + Gkuk|k−1 (2.22)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1, (2.23)

where x̂ is the approximate mean and P is the measured covariance matrix of the
variable of interest. The update equations are

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 (2.24)

x̂k|k = x̂k|k−1 + Kk(zk −Hkx̂k|k−1) (2.25)

14



2.4. THE KALMAN FILTERS CHAPTER 2. BACKGROUND

Pk|k = (I−KkHk)Pk|k−1, (2.26)

where K is the gain used to weight the measurement against the prediction. The
prediction equations find the a priori distribution by predicting the mean and
variance of the next value of the observed variable. In the case of the update
equations, they calculate the posterior distribution by using the new weighted
measurements.

2.4.2 The Extended Kalman Filter

In the nonlinear case the motion and measurement models can be described by

xk = f(xk−1,uk) + vk−1 (2.27)

zk = h(xk) + wk, (2.28)

where f(xk−1) and h(xk) are the nonlinear functions that describe the motion and
the measurement models respectively. The filter equations are given by

x̂k|k−1 = f(x̂k−1|k−1,uk|k−1) (2.29)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1, (2.30)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)

−1 (2.31)

x̂k|k = x̂k|k−1 + Kk(zk − h(x̂k|k−1)) (2.32)

Pk|k = (I−KkHk)Pk|k−1. (2.33)

The equations are practically the same as the linear case, except that in the case of
the state prediction and update, it is the nonlinear function what is used instead
of the matrix multiplication. In the case of the projected error covariance and
update covariance, it is necessary first to linearize the nonlinear expressions. This
can be achieved by finding the Jacobian matrices of the partial derivatives of f
and h with respect to x as follows:

F[i,j] =
δf[i]

δx[j]

(x̂k−1|k−1,uk) (2.34)
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H[i,j] =
δh[i]

δx[j]

(x̂k|k−1). (2.35)

Note that the subindex k has been dropped from the matrix notation to make it
easier to read.

2.4.3 Kalman Filter Models

The tracking problem is certainly not new and several authors have already pro-
posed models to solve it. Chen [6] proposed to combine accelerometers and mag-
netometers in an extended Kalman filter, and Jirawimut [12] proposed another
one that uses a GPS to aid in the step size and compass bias error correction.
Both setups have proven to work on outdoor conditions, but they do not deal with
magnetic disturbances indoors.

On a different application, Foxlin [11] proposed to use accelerometers, magnetome-
ters, and gyroscopes to track the movement of the head of a person. His approach
uses a complimentary Kalman filter to correct the heading and compensate for
the gyroscope errors. This application could be modified to suit the needs of this
project, but Foxlin assumes that the gyroscope errors are known and that they are
used as a constant in the filter algorithm.

Laddeto [7] and Kim [9] proposed to implement a Kalman filter that combines the
gyroscopic and magnetic information considering their strengths and weaknesses,
and also environments where magnetic disturbances could be present. Based on
this idea, a simple Kalman filter with disturbance detector was designed for this
master thesis. The implementation of the entire system is described in chapter 3.
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Chapter 3
Implementation

S
olutions by other researchers were briefly introduced and discussed in the
previous chapter. In this chapter, a solution is proposed using a single al-
gorithm for distance and heading estimation. Also, the disturbance detector

and kalman filter are discussed in detail.

3.1 Distance Estimation

The step detection and step length estimation were discussed in 2.1. Chen [6] com-
pared the linear and nonlinear step estimation performances. His conclusions were
that the error from the step length estimation does not influence the positioning
accuracy severely. Therefore, the nonlinear model was chosen for this work. In
section 3.1.1 the step detection implementation is discussed, and in section 3.1.2
the step length estimation is presented.

3.1.1 Step Detection

Fang [4] mentions that natural walking speed has a frequency of less than 3 Hz.
Figure 3.1 shows the frequency spectrum for the z-axis raw acceleration data of
one experiment in this project. It can be seen that the main frequency is around
1.8 Hz and that there are harmonics every 0.9 Hz. To reduce random variations
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and get rid of most of the secondary peaks, a low pass filter can be used. Following
Fang’s idea, an 8-sample moving average was implemented

āz(t) =
1

8

t∑
i=t−7

az(i), (3.1)

where az(i) is the raw acceleration sample and āz(t) is the filtered or averaged
result. The result of the filter is also shown in figure 3.1. It can be seen that the
component in 1.8 Hz remains while the others are attenuated or even eliminated.
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Figure 3.1: Frequency spectrum of the z-axis acceleration signal before and after
filtering.
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After filtering the acceleration samples, the offset of the signal is removed and the
negative to positive transitions are marked as the start of each step. Then, the
maximum and minimum values within each step are marked as shown in figure 3.2.

Marking all the negative to positive transitions is not enough to determine the
number of steps given by the person. Sometimes the signal can have fast zero-
crossings that do not represent a step. These crossings could be caused by different
factors such as the gait of the person. A threshold was defined to distinguish
between real and false step detections. Figure 3.2 also shows a fast negative to
positive transition within the first detected step. This was discarded with the aid
of the threshold.
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Figure 3.2: Step detection and max/min values are marked. The figure also shows
a fast zero-crossing transition that was discarded by thresholding.
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3.1.2 Step Length Estimation

Once the steps are defined and their maximum and minimum acceleration values
are known, equation (2.1) can be used to find the length of each step. The equation
is repeated here for convenience

Lstep = k · 4
√
Amax − Amin.

The k value can be adjusted per person or it can also be fixed depending on the
accuracy that is required. In this work, to calibrate k the user walked a known
distance and then the least squares method was used to find the value that would
give the best distance estimation.

3.2 Heading

The way the heading is obtained from the gyroscope and magnetometers was
entirely described in section 2.2. This section is divided in two short parts: the
first one deals with the heading calculation using the magnetometers, and the
second one with the adjustment that is needed for the Kalman filter to operate.

3.2.1 Heading Calculation

After the tilt and static calibrations are performed, the heading is found using
equation (2.3). Figure 3.3 shows the result. It can be seen that the compass
assigns headings only from 0 to 2π radians. When the heading ’jumps’ from 2π
to 0 radians or viceversa, the signal exhibits a discontinuity that looks like an
extremely fast transition. For instance, refer to the sample range between 6000
and 8000 in the figure.
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Figure 3.3: Raw heading from the compass.

3.2.2 Heading Adjustment

In this section, the resulting compass signal is adjusted so that it can be pro-
cessed by the Kalman filter. Since the Kalman filter rely on previous information
to predict the next value, it is key to create a continuous signal with the same
information as the compass signal.

Knowing that the compass samples do not represent the heading per step, it can be
found as the average of all the compass samples within one step. This averaging can
bring new issues, for instance: if a person is walking north, the compass samples
will be around 0 radians with a certain variation. This variation is denoted by the
red-dashed lines on figure 3.4. It can be seen that the values will ’jump’ between
0 and 2π. Averaging these values will give a result around π, which represents
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Figure 3.4: Heading range variation when the person is heading north.

south. To solve this problem, a 3-step adjustment is proposed:

1. Adjust the heading in each step.
First, calculate the variance of the heading in each step. If the variance is
larger than a given threshold, it means that the step is towards the north
direction and that the heading is ’jumping’ between 0 and 2π. After the
’jump’ is detected in the step, add 2π to all the values in the first quadrant
that are close to zero (the level of closeness is defined experimentally). The
top plot of figure 3.5 shows an example of areas with discontinuities. The
bottom plot of figure 3.5 shows the result of the adjustment.

2. Adjust the heading between steps.
After the first adjustment has been done, the signal has continuity within
each step. Now, the entire signal has to be checked to make sure that there
are no discontinuities between the steps. The top plot of figure 3.6 shows an
example of discontinuities between the steps.

The first thing to do is to calculate the heading per step. The result is shown
in the top plot of figure 3.7. Then, two checks are made: (a) if the heading
variance between neighboring steps is larger than a certain threshold, and
(b) if the variance of the sine of the heading between neighboring steps is
smaller than another threshold.

If (a) is met, it means that there is a ’jump’ to consider. If (b) is met, then
that ’jump’ is a discontinuity and 2π must be added or subtracted to the
rest of the signal in order to keep continuity. Once the discontinuities are
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Figure 3.5: Heading comparison before (top) and after (bottom) the first adjust-
ment.

removed, the heading per sample will look like the bottom plot of 3.6. The
bottom plot of figure 3.7 shows how the heading per step would look.

3. Make the compass signal follow the trend of the integrated gyro-
scope signal.
In the case that the person turns for more than 360◦, the signal must be
adjusted so that 0 and 2π are no longer the boundaries of the signal. The
gyroscope integrated signal is a good example for the new compass signal to
follow. This is achieved by adding or subtracting 2π as shown in figure 3.8.
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Figure 3.6: Compass heading per sample after the first (top) and second (bottom)
adjustments.
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Figure 3.7: Compass heading per step after the first (top) and second (bottom)
adjustments.
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3.3 Disturbance Detector

In this master thesis, the angular rate detector mentioned in chapter 2 was im-
plemented and compared to a 3-axis magnetic magnitude (m2) detector. The
m2-detector was implemented by obtaining average magnitude measurements per
step, and comparing them against thresholds. The thresholds were defined doing
tests in disturbance-free areas. If the magnitudes were over the threshold values,
the signal during that step was considered to be disturbed. Figure 3.9 shows an
indoor experiment where the disturbances are categorized in low/none, medium,
and high, using the thresholds mentioned before.
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Figure 3.9: m2-detector.

The method mentioned by Käppi and Kim, where the angular rates from the
gyroscope and compass are compared, is shown in figure 3.10. It can be seen that
when there is no disturbance, the compass follows the gyroscope’s angular rate. To
detect whether there is a disturbance or not, it is necessary to find the difference of
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both signals and define a threshold. Figure 3.11 shows an example of a disturbance
found with the aid of the gyroscope and the threshold.
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Figure 3.10: Comparison of compass and gyroscope’s angular rates.

Both methods were compared to verify their performance. In figure 3.12, it can
be seen that the detectors do not coincide in their results. Only the angular rate
detector was used in the final solution because

3.4 Kalman Filter

Since the compass and the gyroscope cannot solve the positioning problem on their
own, another solution must be designed. In this section, the authors introduce a
simple sensor fusion algorithm based on the Kalman filter. Consider again the
equations 2.18 and 2.19, repeated here for convenience
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Figure 3.11: Angular rate detector.

xk = Fk−1xk−1 + Gk−1uk + vk−1

zk = Hkxk + wk.

In this work, the model is linear and consists of a single equation

φk = φk−1 + ∆t · ωk + vφk−1, (3.2)

note that φk is the state variable, ωk is the control input, F = 1, G = ∆t, and vφk
is the process noise. The measurement model is then given by

zk = φk + vzk, (3.3)
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Figure 3.12: Comparison between both disturbance detectors.

where H = 1 and vzk is the measurement noise.

The measurement is given by the heading of the compass φk, while the angular
rate of the gyroscope is used as the control input ωk. During the Kalman filter
iterations, the angular rate from the gyroscope and the compass is compared to
detect disturbances. When the disturbance flag is clear, this configuration sums
the gyroscope’s angular rate to the heading given by the compass. When the
disturbance flag is set, the algorithm integrates the gyroscope to the last good
compass sample.

The integration of the gyroscope, compass, and disturbance detector reduce the
overall magnetic interference on the system. Also, the gyroscope bias drift effect is
reduced by integrating the gyroscope to the compass heading and not the gyroscope
alone.
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Chapter 4
Experiments

T
his chapter deals with the the experiments that were carried out. First,
the hardware and software used to acquire the sensor information and to
implement the solution are metioned. Then, the experiment conditions are

described and the experiment results are presented. The issues that were found
are discussed in the end of the chapter.

4.1 Hardware and Software

To make the experiments, the authors used the STEVAL-MKI062V2 demostration
kit by ST Microelectronics® -also known as the iNEMO™ board. The board con-
sists of accelerometers, gyroscopes, magnetometers and pressure and temperature
sensors. The complete board specifications can be found in [16].

The sensors that were used for this work are the 3-axis accelerometer, the 3-axis
magnetometer, and the 1-axis yaw gyroscope. The board was mounted on a phone
chassis to emulate a real phone and to be able to test the system under real
conditions. Figure 4.1 shows the setup.

The sensor configuration and acquisition was done through the graphical user
interface (GUI) provided with the iNEMO™ board. The GUI generates a text
file with all the sensor information that can be later used for offline processing.
MATLAB™ [17] was used to process the sensor information.
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Figure 4.1: Hardware setup for the experiments.

4.2 Experiment Conditions

Three positions were considered for the experiments: on the waist, on the left side
of the left pocket, and on the center of the left pocket. The positions can be seen
on figure 4.2. Different positions were used to analyze the effect on the sensor
data. The complete setup needs the user to carry a laptop computer connected to
the iNEMO™ board to act as power supply and to store the sensor information.
Figure 4.3 shows the setup. Different persons were used to test the algorithm, as
well as different indoor and outdoor scenarios.
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Figure 4.2: Phone positions: (left) on the waist, (center) on the left side of the left
pocket, and (right) on the center of the left pocket.
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Figure 4.3: Complete experiment setup.
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4.3 Results

4.3.1 Outdoor

This section shows the result of a single outdoor experiment. The purpose of this
experiment was to verify the reliability of the compass in areas where magnetic
disturbances are at minimum levels. Figure 4.4 shows the trajectory (map courtesy
of Google Maps® [18]) and table 4.1 shows the results. This test was performed by
a man and the phone was positioned in the waist. It can be seen that the compass
trend is close to the travelled path but the trajectory is considerably different from
the original path. The combination of the gyroscope and compass into the Kalman
filter gives a better result.

 

 

Kalman filter

Compass

Gyroscope

Figure 4.4: Outdoor experiment in Slottsskogen, Göteborg, Sweden.
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Table 4.1: Outdoor experimental results.

Distance1 Estimated
Distance

Distance
Error Rate

Max Error
Position

Max Error
Rate in Po-
sition

370 m 348 m 6.3 % 11.8 m 3.2 %

4.3.2 Indoor

In this section, the results of the indoor experiments are shown. Experiments were
carried out at ASCOM’s offices in Göteborg, Sweden. A satellite picture of the
facilities is shown in figure 4.5 (courtesy of Google Maps®). The building names
are marked on each one of them.

Figure 4.5: ASCOM offices in Göteborg, Sweden.
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For convenience, the experiments were named from 1 to 5 and ordered by distance:

1. Building B, second floor (figure 4.6).
Man. Phone in the waist.

2. Building A, second floor (figure 4.7).
Woman. Phone in the pocket.

3. Building C, third floor (figure 4.8).
Woman. Phone in the pocket.

4. Building A and the connecting passage of building B, second floor (figure 4.9).
Woman. Phone in the waist.

5. Buildings A and B, second floor (figure 4.10).
Man. Phone in the waist.

Table 4.2 shows the results obtained for the Kalman filter implementation. For all
the experiments, the R and Q matrices were found empirically and chosen to be
the same. Also, the disturbance threshold was fixed even though buildings C and
B proved to be under more severe disturbances in comparison to building A. For
instance, look at how the compass-only solution of experiment 3 (figure 4.8) gets
out of the map just after a few meters were walked.

Table 4.2: Indoor experimental results.

Exp. Distance1 Estimated
Distance

Distance
Error Rate

Max Error
Position

Max Error
Rate in Po-
sition

1 91 m 86.2 m 5.5 % 1.4 m 1.5 %

2 92.3 m 90.7 m 1.8 % 4.3 m 4.6 %

3 105.6 m 102.2 m 3.3 % 3.4 m 3.2 %

4 166.4 m 167.1 m 0.04 % 5.2 m 3.1 %

5 193 m 204.8 m 6.1 % 13 m 6.7 %

1The distance was calculated based on a perfectly straight path. The real path walked by the
person might differ by a few meters.
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Figure 4.6: Experiment 1.
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Figure 4.7: Experiment 2.
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Figure 4.8: Experiment 3.
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Figure 4.9: Experiment 4.
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Figure 4.10: Experiment 5.
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4.4 Issues

4.4.1 Phone Movement

If the phone position is moved during the experiment, the sensor information will
be affected. The phone movements depend mainly on the person’s walking gait
and where the phone is located in the body.

The human gait is cyclical but is different from person to person. An example of
how the gait changes the sensor information can be seen on figure 4.11. In this
figure, the acceleration data of two different subjects is compared.
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Figure 4.11: Accelerometer signal comparison between two subjects.

Different parts of the body are subject to different oscillations and force magnitudes
while walking. If the phone is located on the waist, it will be subject to a different
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force than if it is located on the hand or chest. Experiments 2 and 4 use the
same subject but the phone is located on different places. It can be seen that the
gyroscope gets most of the impact. However, the Kalman filter was able to recover
the trajectories in these cases.

Phone rotations in the middle of the experiments would change the inclination of
the phone. This would invalidate the tilt calibration and affect the magnetometer
information. Also, since only a single gyroscope is used, the sensor could be fooled
to believe that the user turned for a longer period of time or for a bigger angle.
Figure 4.12 shows a case where the phone rotates and the sensor data becomes
unreliable.

4.4.2 The Magnetic Disturbances

The magnetic disturbances and the disturbance detectors were introduced and
discussed in sections 2.3 and 3.3. As it was said before, the disturbance detector is
a good tool for detecting false direction changes on the compass and to ignore them.
The problem arises when the signal is disturbed, but the disturbance detector is
not triggered. It is possible for the system to be under small disturbances that
change the heading information without triggering the detector. In such cases,
the Kalman filter would still trust the compass, resulting in bad performance.
Figure 4.13 shows an example were the gyroscopic information is relatively good
but the Kalman filter is not because of undetected disturbances.
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Figure 4.12: Trajectory affected by movement.
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Figure 4.13: Undetected disturbances affect the Kalman filter performance.
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Chapter 5
Conclusion

T
he purpose of this work was to find the position of a user on an indoor
environment using only inertial and magnetic sensors on a mobile device.
The motivation was to enhance existing tracking methods to locate people

in risky environments. Different proposals to solve the distance and heading esti-
mations were studied, and a simple sensor fusion algorithm was proposed to solve
the positioning problem.

The overall results for the positioning system show an average error rate in position
of less than 5% with only one test over this result. It is important to note that only
one solution was used for all the experiments, meaning that no changes were made
to the Kalman filter or disturbance detector for the different users and places.
However, the scope of the project was limited to having the mobile device fixed in
the waist or in the pocket of the user and enhancements must be done to adapt
the system to situations were the phone is moving.

Further work must be done to recognize the location of the phone and to adapt the
system accordingly. Location awareness algorithms have been designed for PNS
applications, but they have not been applied to the complete tracking problem
yet [14]. Algorithms to compensate for gait movements could be of help to reduce
the impact on sensor data. Ongoing studies analyze the gait frequency depending
on the position of the sensors which could help on this purpose [15]. Also, con-
sidering the map information and an adaptive step length algorithm could help to
improve the overall performance of the system.
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