
Static Code Analysis For Embedded Systems
Master of Science Thesis in Computer Science and Engineering

MAGNUS ÅGREN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, August 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Static Code Analysis For Embedded Systems

MAGNUS ÅGREN

© MAGNUS ÅGREN, August 2009.

Examiner: PATRIK JANSSON

Department of Computer Science and Engineering
Chalmers University of Technology
SE­412 96 Göteborg
Sweden
Telephone + 46 (0)31­772 1000

Department of Computer Science and Engineering
Göteborg, Sweden August 2009

Abstract

Much software for embedded systems is written in languages such as C. This is
known to be error prone, because of manual memory management and similar
insecurities. A countermeasure against such problems is static code analysis.
This thesis presents an evaluation of techniques for static code analysis, focusing
on methods of fault detection. A number of different analysis tools have been
tested, at Ascom Wireless Solutions, a developer of embedded system for wireless
communication, on production code. The tools were able to detect real faults,
but with significant manual interaction required.

Acknowledgements

This thesis presents the project “Static Code Analysis For Embedded Systems”,
for the degree of master of science in computer science and engineering, at
Chalmers University of Technology. The work was carried out at Ascom Wireless
Solutions, in Gothenburg, during the spring of 2009.

I want to thank my examiner at Chalmers, Patrik Jansson, for taking on
this project and guiding me though it.

I also wish to thank my supervisors at Ascom, Jonas Estberger and Martin
Karlsson, for many fruitful discussions and continuous support.

Lastly, I thank the developers in the Amazon project at Ascom for putting
up with me running much of the analysis software on their compilation server.

i

Contents

1 Introduction 1
1.1 Ascom Wireless Solutions . 1
1.2 Objectives . 1
1.3 Scope . 2

2 Analysis 3
2.1 Software measures . 4
2.2 Tools . 5

3 Pilot study 6
3.1 Tools evaluated . 6
3.2 Simplified faults . 8

4 Results 13
4.1 Lint . 13
4.2 Cppcheck . 13
4.3 Saturn . 14
4.4 Coverity Prevent . 15
4.5 Klocwork Insight . 16

5 Discussion 25
5.1 Conclusions . 25

Bibliography 28

ii

Chapter 1

Introduction

Writing fault-free software is a notoriously difficult task. As software has be-
come ubiquitous, methods for addressing the issue of software faults are of high
importance. Static code analysis is the “analysis of source code carried out with-
out execution of that software”[21]. Ideally, because the code does not need to
be executable, the analysis can be applied at an early stage of development.
How well this works in practise is discussed in chapter 5.

Early feedback allows developers to correct potential faults before code is
committed into central repositories. The merit of this approach lies in the
difficulty of deriving from a failure the fault that caused it. The process of
tracking down the source of a failure is well-known to be costly.

1.1 Ascom Wireless Solutions

Ascom Wireless Solutions is a developer of products and systems for wireless
communication. The end users work within industry, medical care, correctional
institutions etc. The section Mobile Software Design (MSWD) is responsible
for the development of software for wireless telephones. Requirements on the
software are high reliability and usability in safety critical systems. Static code
analysis is proposed as a means to improve the development work and the feed-
back to the developers.

1.2 Objectives

The purpose of this work is to evaluate different methods of static code analysis.
The objective is threefold:

• The definition of a number of different methods of analysis and discussions
of their strengths, limitations and theoretical underpinnings.

• A prototype toolkit for static code analysis, based on these findings. Its
implementation shall permit a high degree of automation and the toolkit
shall be used on code developed by MSWD.

• A recommendation for how MSWD shall proceed with static code analysis.

1

To achieve this, four guiding question will be answered:

• What methods of static code analysis are available?

• What are the inherent limitations of static code analysis?

• Which measurements correlate well to software quality?

• What tools are readily available?

1.3 Scope

The code that is to be analysed is written in a combination of C and C++. Tool
front-ends must therefore be able to handle both C and C++ constructs. The
main intended use case of the toolkit is as an aid during everyday development
work. The amount of manual interaction should therefore be minimised. The
target of the analysis shall be detection of faults.

There are numerous tools for static code analysis available. To avoid rein-
venting the wheel, implementation work will focus on combining existing tools,
as well as processing their output to ease use.

The subject area of software testing is closely related to static code analysis.
Both practises are concerned with defect detection. Testing however, usually
requires executable code, and hence becomes applicable later in the development
cycle. While testing in general is beyond the scope of this report, there is no
clear-cut distinction between test and static analysis.

General quality improvement activities, such as coding guidelines, are be-
yond the scope of this work.

Organisation of this Thesis Chapter 2 details the notion of software faults
and discusses methods for static code analysis. Chapter 3 introduces an eval-
uation of different tools, and chapter 4 presents the results of this evaluation.
Finally, chapter 5 contains conclusions.

2

Chapter 2

Analysis

Defects in software can result in unintended, erroneous behaviour. More for-
mally, a defect or fault is defined as:

A flaw in a component or system that can cause the component or
system to fail to perform its required function e.g. an incorrect state-
ment or data definition. A defect, if encountered during execution,
may cause a failure of the component or system [21].

Consequently, a failure is defined to be:

Deviation of the component or system from its expected delivery,
service or result [21].

Thus, not all faults lead to failures. The terms fault and defect are used inter-
changeably in this thesis.

To achieve an understanding of software defects, and to create a nomencla-
ture, taxonomies of faults have been created. One taxonomy, that combines
results of previous efforts with new contributions, is the Common Weakness
Enumeration (CWE) [3], maintained by MITRE, an American, non-profit fed-
eral research corporation. The focus of CWE is on security flaws, and thus,
many of the faults listed belong to the subset of vulnerabilities: faults that
can be exploited through malicious intent. The classical example of a secu-
rity vulnerability is the buffer overflow: through a carefully crafted string, that
is written to memory past the end of an input buffer, an attacker alters the
function of a program.

Most relevant to this report are faults that are not vulnerabilities; since the
failures most relevant to prevent are those that occur during normal program
execution. Given below is a selection of faults, listed in CWE, that during
normal program execution, without malicious intent, can lead to failures, and
that can be identified through static code analysis.

• Resource exhaustion; an unbounded amount of resources are allocated,
but never released.

• Memory leak; allocated memory is not freed before the last reference is
removed.

• Double free; one memory address is consecutively freed twice.

3

• Use after free; memory is referenced after it has been deallocated.

• Freeing unallocated memory, the free function is invoked on a pointer
not referencing dynamically allocated memory.

• Null pointer dereference.

• Array index out of bounds.

• Data race; data can be altered between two operations, when it is expected
to remain constant.

• Dead code: code that, because of its surrounding context, cannot be exe-
cuted.

2.1 Software measures

One specific method of static code analysis is the collection of different software
measures1. This effort aims to quantify qualitative aspects of software; such
as complexity, testability, reliability, and maintainability. The obtained values
have two different uses. Either to function as basis for resource estimation,
by serving as an assessment of required effort. E.g., a value of testability may
function as basis for determining the number of testers to employ. Alternatively,
the measurement results can serve to predict defect density. Although this may
be valid for entire software products, note however, that Fenton and Neil [11] did
not find correspondence between complexity metrics and the number of faults of
a software module. Voas argue that, although complexity itself is not an error,
it increases the probability of latent, hidden errors [22]. In conclusion, note also
that, in their critique of software defect prediction models [10], Fenton and Neil
remark that:

Despite the many efforts to predict defects, there appears to be little
consensus on what the constituent elements of the problem really are.

2.1.1 Common measures

Below, three complexity measures, commonly used for prediction of defect den-
sity, are given. The common practise is to assume that the number of defects
of a program, is proportional to the value of these measures.

Lines of code (LOC)

Sometimes given in thousands, then written as kLOC, with k for kilo. There
is no universally agreed upon definition, but entities typically summed are: all
lines of text, all non-blank lines, or all non-comment and non-blank lines.

1Zuse [23] argues that the term measure should be used, rather than the term metric;
because, informally, a measure denotes a mapping from an object to a value, whereas a metric
denotes a criterion to determine the distance between two different objects.

4

McCabe’s cyclomatic complexity

Defined by McCabe in 1976 [17]. It is calculated on the control-flow graph of
a program. For most practical purposes it can be computed as the number of
decision nodes plus one.

Halstead’s complexity measures

Halstead [13] defined a program P as consisting of a number of operators and
operands, “and of nothing else”. From this he derived the following:

η1 = Unique operator count
η2 = Unique operand count
η = η1 + η2

N1 = Total number of operators
N2 = Total number of operands
N = N1 +N2

V = N log2 η

where η is called the vocabulary of P , N is called the length of P , and V the
volume of P .

All of the above measures are programming language dependent. They can-
not be used to compare programs performing the same function, but written in
different languages. For a comprehensive overview with comparison of a vast
number of different metrics, see Zuse [23].

2.2 Tools

The first link in a tool-chain for static code analysis is the compiler. The lexical
analyser, parser, and type checker of the compiler can typically catch simple
mistakes, such as syntax errors, undeclared variables, and assigning floating-
point values to integer variables. Although advances in optimisation technology
has led to an increased amount of program analysis being performed by the
compiler [1], the compiler still, in the words of Johnson: “concentrates on quickly
and accurately turning the program text into bits which can be run” [15]. This
warrants the need for specialised analysis tools, continuing where the compiler
leaves off.

5

Chapter 3

Pilot study

As previously noted, there are many tools available for static code analysis.
Evaluating a large number of tools would be infeasible, and beyond the reach
of a single masters thesis project. To get an overview of the field, a pilot
study was carried out, testing tools with different theoretical foundations. Five
applications were selected: a simpler commercial tool already in use at Ascom,
a simpler free tool, a more theoretical, research oriented tool, and two more
advanced commercial tools. As raw data, to feed to the tools, simplified versions
of three faults found in code developed at Ascom, one entire code base, and one
self-contained module, from a project at Ascom, was used. The larger code
base, henceforth referred to as “Amazon”, constitutes the entire firmware for a
DECT1-telephone. A specific version from mid-development, with known errors,
was selected for the pilot study. The size is approximately 300 kLOC. The
module, implementing alarm handling functionality for the phone, has wrapper
stubs for the rest of the surrounding system. Its size is approximately 9 kLOC.

3.1 Tools evaluated

3.1.1 Lint

One of the earliest examples of a program written solely for code analysis is
Lint, introduced by Stephen C. Johnson in 1978 [15]. It targeted questionable
constructs: “bugs and obscurities”, for programs written in the C programming
language. Examples include: variables and functions declared but never used,
unreachable code, and peculiarities, such as the statement of dereferencing a
pointer, but ignoring the value.

*p;

The first version of Lint ran on the Unix system of the time. Lint-like
programs for other systems and languages, e.g. JLint and Splint [14, 20], have
since been devised . Ascom currently employs the PC-lint program, version
9.00b [18].

1DECT: Digital Enhanced Cordless Telecommunications is a standard used for digital
cordless phones.

6

3.1.2 Cppcheck

Cppcheck [5] is a free software tool for static analysis of C and C++ code.
According to the tool webpage, bugs checked for include: memory leaks, use of
references after deallocation, and out of bounds errors; with the goal of no false
positives. Further checks, with known false positives, for bugs such as buffer
overruns and array indexing out of bounds, can be enabled. Furthermore, checks
for conditions always evaluating to the same value, as well as checks for dead
code in the form of unused functions, are optionally available.

Cppcheck was chosen for the pilot study for a rough estimate of what to
expect from free, appearingly simpler, tools.

3.1.3 Saturn

Saturn [19] is a research platform from Stanford University [2]. The goal of the
project is to develop analysis techniques with high scalability, without sacrificing
precision. The platform computes summaries of all the functions used in a
program; these summaries are then used in place of the actual code, for all
further analysis. Analyses are expressed as systems of constraints, written in
Calypso, a special-purpose logic programming language. One such analysis, of
null-pointer dereferencing, is included in the Saturn distribution.

The intention behind including Saturn in the pilot study was to gain insight
into how much work it would be to adapt a less “mature” tool.

3.1.4 Coverity Prevent

Coverity Prevent [4] is a commercial tool, spun of from Dawson Englers work
on metacompilation [9, 12].

Prevent is structured as a suite of command line tools, and a database with
a GUI, running as a local http-server. The separate applications perform dif-
ferent individual tasks, such as, configuration, build, analysis, and commit to
the database. For a given project, the typical workflow is as follows: First, a
configuration is created for each compiler used to build the project. Second,
a regular project build is executed, albeit inspected by Prevent, tracking each
compiler invocation. Thus, all source files of interest are processed for analysis,
and their respective dependencies are resolved. After this, the actual analysis is
performed, and the results are committed to the database. Finally, the results
can be inspected, either in a web browser, or in the Eclipse IDE [7], via a plugin.

A recent study by Emanuelsson and Nilsson [8] presents Coverity as among
market-leaders, and Prevent as current state-of-the-art, within the field of static
analysis tools. An evaluation of Coverity Prevent can be seen as giving one kind
of upper bound of the current capabilities of static code analysis.

3.1.5 Klocwork Insight

Klocwork Insight [16] is a commercial tool, comparable to Prevent [8]. Being
each others foremost competitor, Insight and Prevent show much similarity.
Insight is also structured as a suite of applications, mostly command line tools,
and a database with a GUI, running as a local http-server. Tasks separated
into different applications are configuration, build, analysis, etc. The workflow

7

is also largely similar, and the results can be inspected either in a web browser,
or in Eclipse, via a plugin.

3.2 Simplified faults

Given as source code below, are the three simplified versions of the faults men-
tioned above. The intention when simplifying has been to retain, as far as
possible, the original form of the fault, while cropping away all superfluous in-
formation. This treatment can make the examples appear somewhat contrived.

3.2.1 Data race

This is an example of a potential race condition. The function hazard uses
the variable accum, declared as static on line 14, for internally performed work.
The function f in turn, uses hazard, to compute the sum of a range of integers.
Neither usage is protected by any locks. When f is forked of as two threads on
lines 45 and 46, the loop on lines 31 to 34 will not correctly sum the integers (1
to 10000 and 2000 to 3000 respectively), if the threads are interleaved.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <pthread.h>
4
5 typedef struct {
6 char* name;
7 int from;
8 int to;
9 } args_t;
10
11
12 int hazard(int x)
13 {
14 static unsigned long int accum = 0;
15
16 if (x == 0) {
17 accum = 0;
18 }
19 else {
20 accum += x;
21 }
22
23 return accum;
24 }
25
26 void* f(void* args)
27 {
28 args_t* a = (args_t*) args;
29
30 hazard(0);

8

31 for (int i=a->from; i < a->to; i++)
32 {
33 printf("%s: %d\n", a->name, hazard(i));
34 }
35
36 return NULL;
37 }
38
39 int main()
40 {
41 pthread_t foo, bar;
42 args_t foo_args = {"foo", 1, 10000};
43 args_t bar_args = {"bar", 2000, 3000};
44
45 pthread_create(&foo, NULL, f, (void*) &foo_args);
46 pthread_create(&bar, NULL, f, (void*) &bar_args);
47
48 pthread_join(foo, NULL);
49 pthread_join(bar, NULL);
50 return 0;
51 }

3.2.2 Reference after removal

This is an example of reference to a node, in a linked list, after its removal. The
list nodes are of type list t, defined on lines 10 to 13. All available nodes are
allocated statically at line 15. The function init list creates a list from four
arbitrary nodes, whereas the function remove list entry removes one node
from the list. The reference to a node in the list, on line 66, immediately after
its removal from the list, on line 64, lacks well-defined meaning. Thus, the
else-branch on line 69 will always be taken.

It should be noted that list t contains no pointer to any data, but only
the pointer structure of the list.

1 #define LENGTH 10
2 #define FREE_ENTRY 0xFF
3
4 // shuffle the list
5 #define E1 2
6 #define E2 7
7 #define E3 6
8 #define E4 4
9
10 typedef struct {
11 unsigned char next;
12 unsigned char prev;
13 } list_t;
14
15 list_t list[LENGTH];
16 unsigned char first_entry = FREE_ENTRY;

9

17
18 void remove_list_entry(unsigned char i)
19 {
20 if (i == first_entry) { // first in list
21 if (i == list[i].next) { // and last in list
22 first_entry = FREE_ENTRY;
23 }
24 else { // first but not last
25 first_entry = list[i].next;
26 list[list[i].next].prev = list[i].next;
27 }
28 }
29 else if (i == list[i].next) { // last in list
30 list[list[i].prev].next = list[i].prev;
31 }
32 else { // somewhere in the list
33 list[list[i].prev].next = list[i].next;
34 list[list[i].next].prev = list[i].prev;
35 }
36
37 list[i].next = FREE_ENTRY;
38 }
39
40 void init_list()
41 {
42 for (int i=0; i < LENGTH; i++) {
43 list[i].next = FREE_ENTRY;
44 list[i].prev = FREE_ENTRY;
45 }
46
47 first_entry = E1;
48 list[E1].prev = E1;
49 list[E1].next = E2;
50
51 list[E2].prev = E1;
52 list[E2].next = E3;
53
54 list[E3].prev = E2;
55 list[E3].next = E4;
56
57 list[E4].prev = E3;
58 list[E4].next = E4;
59 }
60
61 int main()
62 {
63 init_list();
64 remove_list_entry(E3);
65
66 if (list[E3].next == E3) {

10

67 return 0; // unreachable
68 }
69 else {
70 return 1;
71 }
72 }

3.2.3 Memory leak

This is an example of a resource leak; there is a path, from the allocation at line
17, through the branch at line 24, via the subsequent call at line 26, finally not
taking the branch at line 5, where all the references to the allocated memory is
lost, but it is never freed. A higher-level description is that Get and Release are
intended to work pairwise as allocation–deallocation functions. Not all paths
are, however, well-behaved in this respect.

As an extra test, for the evaluation of analysis tools, at line 7, deallocation
is made dependent on the value at the allocated memory. This behaviour was
added to the example after simplification, to see to what extent different tools
handle dynamic memory.

1 #define NULL 0
2
3 void Release(int* a_pDynamic)
4 {
5 if (a_pDynamic != NULL)
6 {
7 if (*a_pDynamic != 42)
8 {
9 delete a_pDynamic;
10 a_pDynamic = NULL;
11 }
12 }
13 }
14
15 void Get(int a_i)
16 {
17 int* pVal = new int;
18 *pVal = 42;
19
20 if (a_i >= 2)
21 {
22 Release(pVal);
23 }
24 else if (a_i <= 0)
25 {
26 Release(NULL);
27 }
28 else
29 {
30 delete pVal;

11

31 }
32 }
33
34 int main(void)
35 {
36 Get(2);
37 Get(0);
38
39 return 0;
40 }

12

Chapter 4

Results

4.1 Lint

The PC-Lint version used at Ascom was run on the three simplified example
faults. It could identify two of them:

For the data race example 3.2.1, warnings were raised at lines 45 and 46,
stating that the return values from pthread create were ignored. PC-Lint
can, however, be given additional information about the semantics of a func-
tion, through the means of annotations in the code. When an annotation was
provided, declaring the function f to be a thread, warnings were raised for the
calls to hazard, at lines 30 and 33, stating that the use of accum was unpro-
tected.

For the reference after removal example 3.2.2, noting was reported.
For the memory leak example 3.2.3, three warnings were raised: one after the

Get function, at line 32, stating that the pointer pVal is not deallocated along
all paths, one after the Release function, at line 13, stating that the argument
pointer a pDynamic is never deallocated, and one in the the Release function,
at line 10, stating that the last value assigned to a pDynamic is not used.

The Amazon code base contains 1757 suppressed lint warnings. Suppression
indicates that the warning has been manually reviewed and classified as a false
positive. Data on how many lint warnings that have led to fixes are not available.

The alarm handling module contains 51 suppressed lint warnings.

4.2 Cppcheck

When fed with the simplified example faults, Cppcheck reported nothing, re-
gardless of what checks where enabled. When run on Amazon, with no extra
check enabled, two faults were found. Both were calls to the sprintf library
function — that writes the contents of one character string to another — with
the same pointer used for both input and output. According to C99, the be-
haviour is undefined if the input and output buffers overlap.

sprintf(buf, "%s", buf);

A summary of the reports from running Cppcheck on Amazon, with all
checks enabled, are given in table 4.1.

13

Fault Occurrences
Undefined behaviour 2
False memory leaks 56
Condition always evaluating to true 1
Unused functions 1590
Unused struct or union members 37

Table 4.1: Cppcheck run on Amazon, with all checks enabled.

The cases of undefined behaviour are the same as the ones detailed above.
The false memory leaks refer to pointer typed class instance variables, in class
declarations. This is a known false positive [6].

The reported number of unused functions, 1590, may seem high. Table 4.2
further details their locations in the code. As can be seen, most of the reportedly
unused functions are located in third party libraries; the implementation of
which are outside of Ascom’s control. Although it is normal for library code
to have an extensive API, not used in its entirety within a single application,
the reports can also contain false positives. False positives could result from
Cppcheck failing to handle function pointers, macro expansion, or inheritance
correctly. The occurrences reported for code developed by Ascom could be cases
of dead code.

Similarly to the unused functions, the cases of unused struct or union mem-
bers are all found in libraries.

Location Occurrences
DECT Stack 71
Third party libraries 1388
GUI Implementation 35
Other modules 96

Table 4.2: Location of reported unused functions.

Because the check for unused functions is global, it is not relevant when
checking a single module. Cppcheck was, however, run with all other checks
enabled, on the alarm handling module. One class without constructor, one
case of inheriting from a class with a non-virtual destructor, and four cases of
the known false positive memory leak, was found.

4.3 Saturn

Saturn can, unfortunately, only handle C, not C++. When picking tools for
the pilot study, this was overlooked. Concerning the simplified fault examples, a
null-pointer analysis is of interest with regard to the example memory leak 3.2.3.
This is, however, written in C++. Substantial parts of Amazon is, nevertheless,
written in C.

Before the C source code can be analysed by Saturn, it needs to be run
through the C preprocessor. Among other things, this expands macros and

14

resolves the inclusion of header-files. The library header files for the operating
system used by Amazon contains some extensions to C, to facilitate better
compiler optimisation for the target microprocessor. Saturn could not handle
these extensions. Dealing with the library dependencies, so that Saturn would
be able to analyse the code, may require lots of work. Furthermore, any results
might become invalid, if library dependencies are swept under the carpet. This,
in combination with the applicability being limited to parts of the source code,
led to Saturn being dropped from further evaluation.

4.4 Coverity Prevent

Prevent is a commercial tool, distributed under a licence that requires purchase.
Time-limited trial licences are, however, available without cost, and one such
was acquired. Coverity’s trial process consisted of a number of steps, that
followed the tool workflow: First, a configuration was setup for the compiler,
and the project to be analysed was built. Second, Ascom obtained a trial
licence, and the analysis was carried out. After that, a web conference was
held with Coverity, during which the commit of the results, to the database,
was remotely administered. The results where then manually inspected, and
categorised as either faults, false positives, or constructs working as intended.
A typical example of such a construct is an unreachable default case, often
containing output of error information, in a switch statement. Because the trial
process limited the possibility of committing analysis results to the database,
and thus limited the possibility of manually reviewing each reported defect, the
large Amazon code base was chosen over the medium sized single module, in
hope of detecting more faults; thereby achieving a more thorough evaluation.

The simplified example faults were analysed. For the memory leak 3.2.3, one
resource leak was reported. Owing to the constraints mentioned above, this was
not investigated further. Analysis of the other two examples yielded no reports
of defects.

4.4.1 Amazon

Building the Amazon code base with Prevent was problematic. The documen-
tation provided with Prevent lists the compiler used for Amazon as supported.
The standard C and C++ libraries, provided by the compiler vendor, how-
ever, contains template implementations that Prevent was unable to parse. The
problem affects roughly 150 files, of the circa 1300 that constitute Amazon, but
originates in a small number of base classes, using includes from the problematic
parts of the system library. These problems have a clear negative effect on the
accuracy of the analysis; for example the implementation of the GUI could not
be analysed. There were also some more parse problems, pertaining to a custom
syntax, supported by the compiler vendor, for binding symbols to memory loca-
tions. This is used to create references to memory mapped resources. Around
30 files are affected, and again the source of the incompatibility is located in a
common header file.

The default options were used. The different checkers, the detection mecha-
nism for each fault type, can be individually tweaked, however. Table 4.3 shows

15

the initial report. Table 4.4 shows the categorisation of the results reported,
after manual inspection.

Fault Occurrences
Singleton pointer used as array 9
Inconsistent check of return value 14
Dead code 9
Dereference after positive check for null 28
Break statement missing in switch statement 1
Statement with no effect 2
Unchecked return value possibly null 2
Heap allocated array indexed out of bounds 1
Stack allocated array indexed out of bounds 43
Dereference before check for null 7
Use of uninitialised variable 23
Value assigned but never used 1

Table 4.3: Initial report from Prevent, for Amazon.

Category Number
Faults 67
False positives 56
Working as intended 17

Table 4.4: Prevent, manual categorisation of the reported defects.

Tables 4.5, 4.6, and 4.7 shows faults, false positives, and working as intended,
respectively, by location in the code. The code has been divided into different
logical blocks, components. Figure 4.1 shows the ratios between component
sizes, and faults in each component.

There are known workarounds for certain causes of false positives; the be-
haviour of system functions for assertions and exceptions can be modelled. The
limited possibility of committing analysis results to the database, however, was
a hindrance to experimentation with this.

4.5 Klocwork Insight

Like Prevent, Klocwork Insight is distributed under a licence that requires pur-
chase. Time-limited trial licences are, however, available for Insight as well.
Klocwork’s trial process and licence terms, on the other hand, differs signifi-
cantly from Coverity’s. A technician from a Klocwork reseller visited Ascom,
and installed and set up Insight on site. The trial licence permitted two weeks
of unrestricted use.

The simplified example faults were analysed. The memory leak 3.2.3 was
correctly identified, but the other two examples yielded no reports of defects.

16

14%

21%

45%

20%

LOC
10%

78%

12%

Faults

DECT Stack
Third party code
GUI
Other

Figure 4.1: Prevent, component size vs. faults.

DECT Stack Third party code Other

0

5

10

15

20

25

30

35

40

45

50

55

2

1

2

2

3

7

1
10

11

3

2

21

2

Use of uninitialised variable

Stack allocated array
indexed out of bounds
Unchecked return value
possibly null
Statement w ith no ef fect

Dereferece af ter positive
check for null
Dead code

Inconsistent check of return
value

Table 4.5: Prevent, faults by component.

17

DECT Stack Third party code Other

0

5

10

15

20

25

30

2
1

11

1

2

8

22

1

7

1

Dereference before check
for null
Stack allocated array
indexed out of bounds
Heap allocated array
indexed out of bounds
Dereferece after positive
check for null
Dead code

Singleton pointer used as
array

Table 4.6: Prevent, false positives by component.

DECT Stack Third party code Other

0

5

10

3
1

2

1
1
1

6

1

1

Value assigned but never
used
Stack allocated array
indexed out of bounds
Break statement missing in
sw itch statement
Dead code

Inconsistent check of return
value
Singleton pointer used as
array

Table 4.7: Prevent, working as intended by component.

18

4.5.1 Amazon

No real problems where encountered when building Amazon with Insight. Fur-
thermore, as the number of builds and commits to the database was not re-
stricted by the trial licence, experimentation with modelling the system func-
tions for assertions and exceptions was possible. Using such models eliminated
numerous false positives. All results presented below are taken from a run with
the models in use.

Table 4.8 shows the initial report. Table 4.9 shows the categorisation of the
results reported, after manual inspection.

Fault Occurrences
Array index out of bounds 382
Local array index out of bounds 9
Case labels mixing different enum types 14
Memory leak, might 1
Memory leak, must 1
Fault in assignment operator or copy constructor
Not all data members assigned 8
No assignment operator defined 59
No copy constructor defined 59
Null-pointer dereference
Positively checked, used in call, might 3
Positively checked, used in call, must 2
Positively checked, might 9
Positively checked, must 1
Unchecked return value, might 4
Unchecked return value, must 19
Pointer passed as argument, might 2
Pointer passed as argument, must 1
Local pointer dereference, might 1
Local pointer dereference, must 1
Check after dereference 3
Use of uninitialised symbol
Local array, might 1
Local array, must 3
Local variable, might 7
Local variable, must 1

Table 4.8: Initial report from Insight, for Amazon.

Tables 4.10, 4.11, and 4.12 shows faults, false positives, and working as in-
tended, respectively, by component. Figure 4.2 shows the ratios between com-
ponent sizes, and faults in each component.

19

Category Number
Faults 205
False positives 288
Working as intended 98

Table 4.9: Insight, manual categorisation of the reported defects.

14%

21%

45%

20%

LOC
9%

19%

61%

11%

Faults

DECT Stack
Third party code
GUI
Other

Figure 4.2: Insight, component size vs. faults.

20

DECT Stack Third party code GUI Other
Array index out of bounds 13 13 3 4
Local array index out of bounds - - - 3
Case labels mixing different enum types - 13 - -
Memory leak, might - - - 1
Memory leak, must - - 1 -
Fault in assignment operator or copy constructor
Not all data members assigned - - 1 -
No assignment operator defined - - 57 2
No copy constructor defined - - 57 2
Null-pointer dereference
Positively checked, used in call, might - - - -
Positively checked, used in call, must - 1 - 1
Positively checked, might - 2 - 3
Positively checked, must - 1 - -
Unchecked return value, might 1 - - -
Unchecked return value, must 4 4 6 2
Pointer passed as argument, might - - - 1
Pointer passed as argument, must - - - 1
Local pointer dereference, might - - - -
Local pointer dereference, must - - - -
Check after dereference - - - 2
Use of uninitialised symbol
Local array, might - - - -
Local array, must - - - -
Local variable, might - 5 1 -
Local variable, must - - - -

Table 4.10: Insight, faults by component.

21

DECT Stack Third party code GUI Other
Array index out of bounds 183 8 26 48
Local array index out of bounds 1 - - 1
Case labels mixing different enum types - - - -
Memory leak, might - - - -
Memory leak, must - - - -
Fault in assignment operator or copy constructor
Not all data members assigned - - 6 -
No assignment operator defined - - - -
No copy constructor defined - - - -
Null-pointer dereference
Positively checked, used in call, might - - - 3
Positively checked, used in call, must - - - -
Positively checked, might 1 - - 3
Positively checked, must - - - -
Unchecked return value, might - - - 2
Unchecked return value, must - - - -
Pointer passed as argument, might - - - -
Pointer passed as argument, must - - - -
Local pointer dereference, might - - - -
Local pointer dereference, must - 1 - -
Check after dereference - - - -
Use of uninitialised symbol
Local array, might - - - 1
Local array, must - - 2 1
Local variable, might 1 - - -
Local variable, must - - - -

Table 4.11: Insight, false positives by component.

22

DECT Stack Third party code GUI Other
Array index out of bounds 20 7 47 10
Local array index out of bounds 4 - - -
Case labels mixing different enum types - - 1 -
Memory leak, might - - - -
Memory leak, must - - - -
Fault in assignment operator or copy constructor
Not all data members assigned - - 1 -
No assignment operator defined - - - -
No copy constructor defined - - - -
Null-pointer dereference
Positively checked, used in call, might - - - -
Positively checked, used in call, must - - - -
Positively checked, might - - - -
Positively checked, must - - - -
Unchecked return value, might 1 - - -
Unchecked return value, must 3 - - -
Pointer passed as argument, might - - - 1
Pointer passed as argument, must - - - -
Local pointer dereference, might - - - 1
Local pointer dereference, must - - - -
Check after dereference - - - 1
Use of uninitialised symbol
Local array, might - - - -
Local array, must - - - -
Local variable, might - - - -
Local variable, must - - - 1

Table 4.12: Insight, working as intended by component.

23

4.5.2 Alarm handling module

As mentioned earlier, the trial licence for Insight permitted analysis of both
Amazon and the alarm handling module. Four defects were reported for the
alarm handling module. After manual inspection three of these were classified
as faults, and one to be working as intended

4.5.3 Comparison with Prevent

Figure 4.3 shows the ratios between different categories, for Prevent and Insight.
Although Insight generated more reports than Prevent, 591 versus 170, Prevent
showed a higher hit-rate. The overlap between faults found was limited: 15 of
the faults occurred in reports from both tool. This confirms the observation
by Emanuelsson and Nilsson [8] that: “Even if the tools look for the same
categories of defects . . . the defects found in a given category by one tool can be
quite different from those found by another tool.”

48%

40%

12%

Coverity

35%

49%

17%

Klocwork

Faults
False positives
Working as
Intended

Figure 4.3: Coverity Prevent vs. Klocwork Insight; relative category rates.

24

Chapter 5

Discussion

In the introduction to this thesis it was claimed that static code analysis can
be applied early during development, to non-runnable code. The difficulties in
getting Coverity Prevent and Saturn to run on the code refutes this claim, as do
the false positives reported e.g. for unmodelled assertions. These experiences,
however, together with the analysis results, lead to a number of requirements
to place on analysis tools.

• The manual post-processing of fault reports, to determine whether there
is a fault or not, should be limited. A tool should not only generate few
false positives, it must also be clear from the reports wherein the alleged
fault actually lies.

• The tool should integrate well with the build process, and support the
compiler and libraries used in the code under analysis. The C preprocessor
should also be dealt with correctly; macros must be expanded properly,
and conditional compilation must be handled.

5.1 Conclusions

The first objective of this work was the to define and discuss a number of
different methods of static code analysis. Apart from the exposition given in
previous chapters, the four guiding questions posed are answered below.

What methods of static code analysis are available? Chapter 2 covers
different methods of analysis. From a practitioners point of view, static code
analysis is mainly available through different tools.

What are the inherent limitations of static code analysis? All analysis
must make some simplifying abstraction. Software measures can be seen as the
extreme of simplification, reducing functions, modules or entire programs, to
a single number. The biggest limitation of software measures, however, is the
absence of a measure for predicting fault density.

Among commercial tool vendors, information about underlying abstractions
and simplifications made is usually only available, if available at all, to the

25

customer as marketing material. In this respect, the market for static analysis
tools is a sellers market, which is another kind of limitation.

Which measurements correlate well to software quality? To answer
this question is to define software quality. One possible definition is that quality
lies in few faults reported by some chosen tool. An objection to this definition
is that different tools detect different defects, and that it is hard to predict
what defects will lead to failures. From the user perspective, software quality is
usually closely related to few failures, whereas, from the developer perspective,
software quality can be more abstract characteristics of the source code, such as
readability or elegance. Certain specific qualities, e.g. testability, relate closely
to complexity. Low complexity depends on few paths through the code, which
requires fewer test cases for coverage.

Another reflection on complexity is that it could lead to the introduction of
faults, simply because developers will have difficulty understanding how the code
is supposed to work. In contrast, the opposite could hold; when code is complex
it must be thoroughly understood before any change can be made at all. In
the face of complexity, developers may take greater care to ensure that changes
are indeed correct; whereas straightforward code could lead to sloppiness. The
conclusions of Fenton and Neil indicate that neither of the above explanations
are generally true, but that each can be valid in the single case.

What tools are readily available? The majority of available tools are com-
mercial and non-free. Free software tools, such as Cppcheck or Splint, are of a
relatively simple kind, on par with lint; there is no free software alternative as
advanced as Prevent or Insight. Considering the high availability of free soft-
ware alternatives to non-free software in general, this may seem surprising. It
could have to do with the free software philosophy’s take on faults; Linus’s law,
as formulated by Eric Raymond, states that “given enough eyeballs, all bugs
are shallow”. Thus, it could be that the demand for “bug hunting” software
is lower among developers of free software, than among developers of non-free
ditto.

5.1.1 Prototype toolkit

A prototype toolkit, the second objective of this work, has not been imple-
mented. An initial hypothesis was that different tools would target different
kinds of faults. Through evaluation, a set of tools complementing each other
would be identified, and for these a unifying structure could then be imple-
mented, creating a coherent toolkit. Although different tools find different
faults, the categories of faults targeted are largely the same. At the same time,
the diversity of the categories places each individual tool in the role intended
for the toolkit.

Another expectation, also unmet, was that software measures could form
part of a toolkit as a guide of analysis effort. Part of the code likely to have
many errors would be identified and subjected to more thorough analysis. As
previously mentioned, though, the use of software measures as indicators of fault
density is, at best, questionable.

26

5.1.2 Recommendation

The third objective concludes this report; a recommendation for how MSWD
shall proceed with static code analysis.

The results show that static code analysis is a feasible way of finding actual
faults in production code. In search of good defect detection, one possibility is
to evaluate more tools. As the supposed market leading tools, however, target
faults of similar kind, I recommend instead that these — Coverity Prevent and
Klocwork Insight — be evaluated with regard to aspects complementary to the
defect detection; such as cost and return of investment.

Regardless of what tool is used, I recommend actively using its features
for modelling certain semantics of the code under analysis: with PC-Lint, use
code annotations, with Prevent or Insight, provide models for e.g. assertions
and memory allocation functions. Proactively using such features has several
benefits; annotations and models can serve as documentation of the intended
use of a function, the tools report fewer false positives, but will also detect usage
not in line with these given specifications.

27

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Com-
pilers: Principles, Techniques, and Tools (2nd Edition). Addison Wesley,
August 2006.

[2] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett,
and Peter Hawkins. An overview of the saturn project. In PASTE ’07:
Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 43–48, New York, NY,
USA, 2007. ACM.

[3] Common weakness enumeration. http://cwe.mitre.org. Retreived 2009-
05-31.

[4] Coverity Prevent. http://www.coverity.com/html/
coverity-prevent-static-analysis.html. Retreived 2009-03-14.

[5] Cppcheck - a tool for static C/C++ code analysis. http://cppcheck.
wiki.sourceforge.net/. Retreived 2009-03-09.

[6] Cppcheck, memory leaks. http://cppcheck.wiki.sourceforge.net/
Memory+Leaks. Retreived 2009-03-09.

[7] Eclipse IDE. http://www.eclipse.org/. Retreived 2009-06-01.

[8] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static
analysis tools (extended version). Technical report, Department of Com-
puter and Information Science, Linköping University, January 2008.

[9] Dawson Engler, Benjamin Chelf, and Andy Chou. Checking system rules
using system-specific, programmer-written compiler extensions. pages 1–
16, 2000.

[10] Norman E. Fenton and Martin Neil. A critique of software defect prediction
models. IEEE Transactions on Software Engineering, 25:675–689, 1999.

[11] Norman E. Fenton and Martin Neil. Software metrics. Journal of Systems
and Software, 1999.

[12] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. A system
and language for building system-specific, static analyses. In In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 69–82. ACM Press, 2002.

28

http://cwe.mitre.org
http://www.coverity.com/html/coverity-prevent-static-analysis.html
http://www.coverity.com/html/coverity-prevent-static-analysis.html
http://cppcheck.wiki.sourceforge.net/
http://cppcheck.wiki.sourceforge.net/
http://cppcheck.wiki.sourceforge.net/Memory+Leaks
http://cppcheck.wiki.sourceforge.net/Memory+Leaks
http://www.eclipse.org/

[13] Maurice H. Halstead. Elements of Software Science. Elsevier, 1977.

[14] Jlint 3.0. http://artho.com/jlint/. Retreived 2009-03-15.

[15] Stephen C. Johnson. Lint, a C program checker. In Comp. Sci. Tech. Rep.
Murray Hill, 1978.

[16] Klocwork Insight. http://www.klocwork.com/products/insight.asp.
Retrieved 2009-06-02.

[17] Thomas J. McCabe. A complexity measure. IEEE Transactions on Soft-
ware Engineering, 2(4):308–320, 1976.

[18] Pc-lint for C/C++. http://www.gimpel.com/html/pcl.htm. Retreived
2009-03-09.

[19] The Saturn software analysis project. http://saturn.stanford.edu/.
Retreived 2009-03-14.

[20] Splint. http://www.splint.org/. Retreived 2009-03-15.

[21] Erik van Veenendaal. Standard glossary of terms used in Software Testing.
International Software Testing Qualifications Board, version 2.0 edition,
December 2007. http://www.istqb.org/downloads/glossary-current.
pdf.

[22] Jeffrey M. Voas and Keith W. Miller. Software testability: The new verifi-
cation. IEEE Software, 12:17–28, 1995.

[23] Horst Zuse. Software Complexity. Walter de Gruyter, 1991.

29

http://artho.com/jlint/
http://www.klocwork.com/products/insight.asp
http://www.gimpel.com/html/pcl.htm
http://saturn.stanford.edu/
http://www.splint.org/
http://www.istqb.org/downloads/glossary-current.pdf
http://www.istqb.org/downloads/glossary-current.pdf

	Introduction
	Ascom Wireless Solutions
	Objectives
	Scope

	Analysis
	Software measures
	Tools

	Pilot study
	Tools evaluated
	Simplified faults

	Results
	Lint
	Cppcheck
	Saturn
	Coverity Prevent
	Klocwork Insight

	Discussion
	Conclusions

	Bibliography

