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Investigation of ER Stress in Respiratory Diseases with in Vitro and in Silico Models
JESSICA REIJER
Department of Biology and Biological Engineering
Chalmers University of Technology

Abstract
Chronic respiratory diseases are amongst the most common causes of death world-
wide. Two of these are chronic obstructive pulmonary disease (COPD) and idio-
pathic pulmonary fibrosis (IPF). COPD is the third leading cause of death world-
wide and characterized by irreversible respiratory airflow limitations, with cigarette
smoke as one of the most common causes of disease. IPF is characterized by irre-
versible scarring of the distal lung and often advances into respiratory failure and
death within five years of diagnosis.

Endoplasmic reticulum (ER) stress has been observed in these respiratory diseases.
The aim of this project was to investigate ER stress and the unfolded protein re-
sponse (UPR) with in vitro and in silico models. The in vitro models included
induction of UPR in primary human bronchial epithelial cells (HBECs) by expo-
sure to well characterized ER stress inducers, tunicamycin and thapsigargin, as well
as stimuli associated with chronic respiratory disease, H2O2 and cigarette smoke
extract. Gene and protein readouts of the UPR pathway, that are characterized
markers used to monitor ER stress and UPR, were established and cell viability ex-
amined. Gene expressions of for example BiP, CHOP, spliced XBP1 and PPP1R15A
and protein expressions of eIF2α, phospho-eIF2α, BiP and ATF6 were induced in
HBECs after exposure to the stimuli used.

In the in silico model, an UPR gene signature was investigated in single cell RNA
sequencing (scRNA-seq) datasets from patients with IPF and COPD, to link epithe-
lial cell type specific transcriptomic markers of UPR to the diseases and investigate
the chances in UPR response of different epithelial cell subtypes at gene expression
level. Epithelial club cells and aberrant basaloid cells were the most abundant cell
subtypes found in IPF and with the highest up-regulation of UPR. In COPD, UPR
genes were mostly down-regulated across epithelial cell subtypes.

This project was performed at AstraZeneca in the Bioscience COPD IPF Depart-
ment within the Early Respiratory and Immunology R&D unit located in Gothen-
burg, Sweden.

Keywords: COPD, IPF, ER stress, Unfolded protein response, in vitro, in silico,
human bronchial epithelial cells, qPCR, Western blot, scRNA-seq
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1
Introduction

This chapter describes the background behind the project and why it was performed.
It also includes the main objectives, limitations and ethical aspects concerning the
project and an overview of the methods used.

1.1 Background
Some of the most common non-communicable diseases worldwide are chronic res-
piratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma,
idiopathic pulmonary disease (IPF), pulmonary sarcoidosis and cystic fibrosis, caus-
ing suffering and death of millions of people each year. The prevalence and global
health burden of chronic diseases are large and research dedicated to them is crucial
[1].

COPD is the third leading cause of death worldwide and caused 3.23 million deaths
in 2019, which also contributes to it being a major economic and social burden [2],
[3]. It is characterized by irreversible expiratory airflow limitations and caused by
inhalation of noxious particles or gases, such as cigarette smoke [4]. IPF is another
progressive lung disease with few treatment options available and with a high mor-
tality rate [5]. It is characterized by irreversible scarring of the distal lung, leading
to respiratory failure.

The endoplasmic reticulum (ER) plays a critical role in protein, lipid and glucose
metabolism, and all secretory proteins must be folded and post-translationally pro-
cessed inside the ER. When the protein homeostasis is perturbed, a situation named
ER stress arises. One consequence of ER stress is activation of the unfolded pro-
tein response (UPR), which consist of transcriptional and signaling events that aims
to restore the ER homeostasis via decreased protein translation, upregulation of
ER chaperones and other molecules associated with increased degradation of mis-
folded proteins (ER-associated protein degradation, ERAD) and productive folding
(ER-associated folding, ERAF). The UPR consist of three different arms which
are regulated by different sensors located on the ER membrane. The first arm is
regulated by the ER resident protein kinase RNA-like ER kinase (PERK) which
phosphorylates eIF2α that inhibits translational responses. While phosphorylation
of eIF2α represses global translation, it results in preferential translation of ATF4,
a transcription factor regulating key genes for adaptive functions such as CHOP.
The second arm is regulated by the endoribonucleases inositol requiring enzyme 1
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(IRE1α), that upon activation splices X-box binding protein 1 (XBP1) mRNA, al-
lowing it to become a functional transcription factor, regulating gene expression of
ER chaperones and ERAD genes. Furthermore, IRE1α degrades RNA during high
ER stress levels in a process called regulated IRE1α-dependent decay (RIDD). The
last arm is regulated by the transcription factor ATF6, which enhances ER function
by upregulating chaperones involved in protein folding. Besides regulations within
each arm, the UPR arms regulate and interact with each other [5].

In the airways, ER stress and activation of the UPR can be triggered by a num-
ber of factors such as inhaled toxins (cigarette smoke, pollution) and pathogens
(bacteria, viruses, fungi). Although the UPR aims to restore protein homeostasis
for sustained cell function, in situations where this cannot be achieved it initiates
death programs. The UPR have been found to be upregulated in many respiratory
diseases, however its dysregulation and causal role in disease still need further in-
vestigations [4]. There are evidence of a connection between UPR and disease for
both COPD and IPF [4]. Increased UPR responses are observed in IPF patients,
and surfactant protein C gene mutations in pulmonary fibrosis indicates that ER
stress can be directly causative of the disease. Furthermore, UPR-associated protein
expression has been reported to increase in cells from patients with COPD [4].

Nevertheless, further research is needed to identify key factors that induce ER stress,
both to understand critical downstream processes activated in these chronic respi-
ratory diseases, to enable modulation of UPR pathways for therapeutic benefits and
to find novel treatments [6]. In this project, COPD and IPF was investigated in
silico by analysing epithelial cellular subtypes in the diseases and in vitro by de-
veloping protocols for ER stress induction and UPR activation in human primary
bronchial epithelial cells (HBECs). Increased scientific knowledge around disease-
causing molecular mechanisms could then be used to identify novel targets for treat-
ment of the two respiratory diseases COPD and IPF.

1.2 Aim
The main objective of this project was to investigate and modulate the UPR path-
way in lung epithelial cells. The project was divided into two parts. In the first
part, bioinformatics was used to investigate UPR gene signatures in single cell RNA
sequencing (scRNA-seq) datasets from studies including IPF/COPD patients. The
bioinformatics part was performed in order to explore UPR in the airway epithelium
and link transcriptomic markers of ER stress and the UPR pathway with disease. In
the second part, protocols were established to induce ER stress and monitor UPR
response and associated biological pathways in vitro in HBECs.

1.3 Specification of objective
The main objective can be divided into the following focus areas:
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• Characterisation of cell type specific UPR signatures in the airway epithelium
for IPF and COPD by investigating publicly available scRNA-seq datasets.

• Establishment of protocols for gene and protein readouts to induce ER stress
and monitor the UPR and associated disease relevant biological pathways in
primary lung cells by:

– Investigation of cell viability and UPR induction in submerged HBECs
challenged with either tunicamycin, thapsigargin, cigarette smoke or H2O2.

1.4 Limitations
The project will involve tests on healthy submerged HBECs. Other cell types are
affected in IPF and COPD patients as well, but they will not be investigated in this
thesis. When it comes to the bioinformatics component, there is a limited number
of publicly available scRNA-seq datasets concerning these diseases, which will limit
the establishment of cell type specific UPR signatures in the airway epithelium.
Furthermore, different dissociation methods used for extracting lung cell popula-
tions affects cell types and number of cells extracted, which is a major limitation
regarding both the proportion of different cell types and the actual number of ep-
ithelial cells in each study. Regarding experimental limitations, there is a limitation
in only exposing cells to acute ER stress when investigating novel targets for chronic
diseases. Thereby, it is of importance to also try to establish a ’chronic’ ER stress
model where cells are repeatedly challenged, which will be dealt with when analysing
scRNA-seq datasets in silico.

1.5 Societal and ethical aspects
The project will only include in vitro experiments performed on HBECs. Hence, no
harm will be inflicted on either animals or humans. The cells are purchased from
Swiss pharmaceutical and biotech company Lonza and no additional approval by
the Swedish Research Ethical Committee in Gothenburg will be needed.

The results from this thesis might be used for further testing in vivo. Therefore,
ethical dilemmas concerning whether it is right or not to use animals for testing
might arise in the future. However, it can be argued that the benefits outweigh
the risks since the procedure of drug development follows the 3 Rs (replace, reduce,
refine) in animal research. This is accomplished by performing experiments in vitro
and in silico prior to in vivo testing, thereby replacing the use of animals with
other methods and reducing the number of animals required. Since the research
to be conducted will increase the scientific knowledge around respiratory diseases
and might contribute to novel information about IPF and COPD, which are major
causes of death worldwide, the positive impacts on society can be seen as of higher
value than the number of animals that might be needed in future research.
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1.6 Thesis structure
The following chapters of the thesis are divided into theory, analytical procedure,
materials and method, result, discussion and conclusion. In the theory chapter, the
respiratory system and epithelium are explained, as well as ER stress and UPR
in relation to the diseases COPD and IPF and information about in vitro and in
silico models. The analytical procedure chapter will include the analytical methods
being used, namely qPCR, Western blot and an algorithm for scRNA analysis called
Venice. The materials and method chapter will include explanations of the datasets
used for the bioinformatics part and the analyses made, and the methods used in the
experimental part. The result, discussion and conclusions will then be presented.
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Theory

This chapter is divided into six sections. The respiratory system and its epithelial
cell subtypes are explained in the first section, followed by an explanation of ER
stress and the UPR pathway in the second section. Thereafter, the two respiratory
diseases COPD and IPF are explained in section 3 and 4, followed by an explanation
of in silico and in vitro models in section 5 and 6.

2.1 Respiratory system and epithelial cells
The respiratory tract is a complex organ system which primary responsibility is to
efficiently carry out gas exchange between inhaled air and the bloodstream. It can
be divided into two compartments. The upper respiratory tract that consists of the
nasal cavity, pharynx and larynx and the lower respiratory tract that consist of the
conducting airways and the respiratory zone. The conducting airways includes the
bronchea, bronchi and bronchioles while the respiratory zone includes respiratory
bronchioles and alveoli. The main purpose of the conducting airways is the inhala-
tion and exhalation of air that passes it, while the main purpose of the respiratory
zone is gas exchange between the lungs and the pulmonary capillaries [7]. For an
illustrative overview of the conducting and respiratory zones, see Figure 2.1.

The respiratory system also plays an important part in maintaining respiratory
homeostasis, which if dysregulated might lead to disease. It is also important for
host defence, since it supports a multifaceted frontline defence system together with
immune cells and maintains homeostasis by protecting against particles, toxins,
allergens and pathogens in the airways [8]. For example, the epithelium has to
manage toxins within the inhaled environment and it has been shown that epithelial
dysfunction drives several chronic respiratory diseases [7].

2.1.1 Epithelial cell subtypes
The respiratory epithelial cells lining the airways are phenotypically and function-
ally different depending on location in the respiratory tract. The nasal and tracheal
airways mainly consist of ciliated, goblet, basal, club, neuroendocrine and serous
cells, the bronchiolar epithelium mainly consist of bronchioalveolar stem cells and
club cells, and the alveoli consist of alveolar type 1 (AT1) and type 2 (AT2) cells.
For an illustrative overview of the cell subtypes, see Figure 2.1.
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Figure 2.1: (A) Human epithelial cell subtypes. (B) The conducting (i) and respiratory
(ii) zone of the lower respiratory tract. Reprinted from [9], with permission from Elsevier.

Basal cells have a cuboidal shape and are key modulators of respiratory homeostasis
and epithelial regeneration when the epithelium has been injured. They can be seen
as principal stem cells of the airway due to their ability of differentiating into for ex-
ample goblet, club and ciliated cells. Club cells on the other hand are dome-shaped
but also act as stem cells. They can give rise to ciliated and goblet cells and in a
study by Habermann et al., it was observed that they differentiate into transitional
AT2 cells as well [8], [10]. Club cells can contribute to epithelial repair, when acting
as stem cells, and act as secretory cells due to expressing secretory proteins such as
SCGB1A1, which is the most abundant protein in the airway lining fluid [8]. Hence,
they are important for maintenance of the respiratory homeostasis and dysregula-
tion of these cells contributes to respiratory diseases, such as COPD and IPF [8].

Goblet cells are the main mucus producing cells which contributes to effective MCC
together with ciliated cells. The mucus is a collection of different products, amongst
others mucins like MUC5AC and MUC5B that protects the lung by lining them
with a mucus layer. However, an increased mucus production is a common feature
in several pulmonary diseases, such as COPD and asthma. Ciliated cells can be
found throughout the airways and are descendants of goblet and club cells. They
are also important for homeostasis through mucociliary clearance (MCC), which is
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a process where microorganisms and other particles are trapped in the mucus and
expelled through rhythmic beating of hair-like cilia. Impairment of ciliated cells,
resulting in shortening of cilia and reduction of cell numbers, leading to impaired
MCC, is a consequence of smoking and a main feature of COPD [8].

AT2 cells have a cuboidal structure and their main function is to synthesize and
secrete pulmonary surfactants. However, they also act as alveolar stem cells that
can differentiate into AT1 cells as a repair mechanism to restore alveolar homeosta-
sis. AT1 cells in turn are much larger squamous cells, covering 95 % of the alveolar
surface area and are an important component for the epithelial part of the thin
air-blood barrier and for gas exchange since it allows oxygen into the bloodstream
by passive diffusion [11].

2.2 Endoplasmic reticulum stress and unfolded
protein response

The ER consist of a membranous tubular network and is important for processes
such as protein and lipid biosynthesis and calcium homeostasis. Together with the
Golgi apparatus, endosomes, lysosomes and secretory vesicles, the ER is part of the
protein secretory pathway. Secretory proteins are synthesized, folded and assembled
in the ER before transportation to the Golgi apparatus where they are directed to
their final compartment. The folding and processing in the ER take place in a highly
oxidizing environment with the help of specific ER resident proteins that support
the folding, disulfide bond formatting and oligomerization [12].

Conditions that perturb protein folding and homeostasis, such as protein load exag-
geration and incorrect amino acid sequences, will lead to accumulation of unfolded
or misfolded proteins and ER stress [4]. Furthermore, ER stress and UPR contribute
to production of reactive oxygen species (ROS) through dysregulated disulfide bond
formation, which lead to oxidative stress. The highly oxidizing environment in the
ER is important for protein folding, but ER stress and oxidative stress can accentu-
ate each other and result in cell dysfunction and apoptotic signals when the protein
folding load is increased [13].

The stress conditions are recognised by activation of the three stress sensors located
in the ER membrane, that are part of the UPR. The activation occurs when the
chaperones called BiP are dissociated from the sensors and instead bind to unfolded
proteins in the ER [14]. There are three main purposes with activated ER stress
response: to decrease the rate of protein synthesis while enhancing the ER folding
capacity, to stimulate disposal of terminally misfolded proteins and lastly, if unable
to restore homeostasis, to trigger cell death [14]. The UPR pathway and the down-
stream cellular events as result of the three stress sensors can be seen in Figure 2.2.

The first UPR arm is initiated by the ER stress sensor called protein kinase RNA-
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Figure 2.2: The pathways of the unfolded protein response. Reprinted from [15], with
permission from Elsevier.

like ER kinase (PERK/EF2AK3), which is responsible for several different down-
stream processes. First, PERK phosphorylates the translation initiation factor
eIF2α, which then inhibits translation of most proteins but paradoxally enhances
the translation of others, such as the transcription factor ATF4. ATF4 in turn
controls genes that regulate protective and apoptotic pathways, such as its target
CCAAT/enhancer-binding protein-homologous protein (CHOP/DDIT3), which can
contribute to oxidative stress and ROS production. ATF4 together with CHOP
induce the protein phosphatase 1 regulatory subunit 15A (PPP1R15A/GADD34)
which dephosphorylates eIF2α selectively and contributes to a negative feed-back
loop [4]. Since the block on protein translation is reversed by this negative feedback
loop, normal ribosomal activity can be restored by increased levels of PPP1R15A.
Furthermore, a study by Monkley et al. showed reduction of PPP1R15A in IPF
patients, in lung fibroblasts, and that restoration of PPP1R15A potentially could
be used as a therapeutic strategy in IPF, for example to interrupt the deposition of
ECM that occurs [16].

Besides from PERK, that primarily is activated by ER stress and accumulation of
unfolded proteins, there is another eIF2α kinase involved in UPR called GCN2 that
senses the level of available amino acids and regulates translation initiation. GCN2
is activated by amino acid deprivation through binding of uncharged transfer RNAs
(tRNAs). These tRNAs accumulates when there is a lack of essential amino acids
or inhibition of non-essential amino acids. Besides from this, GCN2 can also be
activated by glucose deprivation, UV-irradiation and viral infections [17].
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The second UPR arm is initiated by the endoribonucleases inositol requiring en-
zyme 1 (IRE1α/ERN1), which is the most conserved transducer of UPR. It splices
the X-box binding protein (XBP1) mRNA and translates the active transcription
factor sXBP1 that stimulates expression of chaperones and ER resident proteins
necessary for folding and the ER-associated protein degradation (ERAD) [5]. When
the level of ER stress is high, the activity of the IRE1α kinase domains leads to ac-
tivation of the endoribonuclease domain which in turn facilitates splicing of XBP1
and degradation of several mRNAs and micro-RNAs in a process called Regulated
IRE1α-Dependent Decay (RIDD). RIDD has shown to both induce cell death and
preserve ER homeostasis. When comparing RIDD activity to XBP1 splicing during
ER stress, the regulatory function of the UPR transducer IRE1 differs and the two
processes may have opposite effects on cell fate [18].

Finally, the third UPR arm is initiated by transcription factor ATF6. When acti-
vated, the ATF6 protein exits the ER and migrates to the Golgi apparatus membrane
where it is integrated and cleaved to an active form by membrane bound transcrip-
tion factor site-1 and 2 proteases. The active form then translocates to the nucleus
where it acts as a transcription factor and increases the transcription of UPR chap-
erone proteins such as BiP, for improved protein folding capacity, and of ERAD
components, that degrade misfolded proteins [4].

Since ATF6, PERK and IRE1α are primarily activated by ER stress and accumu-
lation of unfolded proteins through dissociation of BiP, while GCN2 primarily re-
sponds to starvation of amino acids, the focus in this study is on these three sensors.

2.3 COPD
COPD is a respiratory disorder where expiratory airflow limitations are developed
due to inhalation of noxious stimuli, such as cigarette smoke. These airflow limita-
tions are irreversible and the disease is the third leading cause of death worldwide
and caused 3.23 million deaths in 2019 [3]. The disease is heterogeneous and can in-
clude several different clinical phenotypes; 1) emphysema, where the airspaces distal
to terminal bronchioles have been destructively enlarged and the alveoles destructed,
2) chronic bronchitis, where the airways are remodeled with mucous hypersecretion,
3) small airway disease and 4) fibrosis. For example, emphysema often coexist with
small airway disease [2].

Some of the molecular pathways that has been linked to smoking, airflow limita-
tions and emphysema are chronic immune response and inflammation, tissue dam-
age, oxidative stress, cellular senescence and lung epithelial cell apoptosis [2]. One
of the most important groups of proteins involved in COPD are cytokines, which
are released by inflammatory cells such as alveolar macrophages, contributing to
disease pathology. There is an increase in number of macrophages in the lungs of
COPD patients and several inflammatory proteins are expressed that are related to

9



2. Theory

the senescence associated secretory phenotype (SASP), including TGFβ and several
matrix metalloproteinases (MMPs). SASP is also found in structural cells, such as
epithelial cells and fibroblasts. Furthermore, an accelerated aging is observed in
patients with COPD [19].

Macrophages stimulate the immune response by releasing inflammatory mediators,
such as TNF-α, IL1-β, CXCL1, CXCL8 and LTB4, thereby recruiting monocytes,
lymphocytes and neutrophils to the inflammatory site and inducing MMP secre-
tion by epithelial cells. Increased macrophage number in the lung is associated
with increased ROS-induced oxidative stress and dysfunctional macrophage response
contributes to alveolar wall destruction and induced ECM degradation [19]. Neu-
trophilic inflammation is another feature of COPD and is induced by cigarette
smoke, oxidative stress, bacteria and viruses. These inducers activate inflamma-
tion via nuclear factor-kβ and p38 mitogen protein kinase (MAPK) signaling in
airway epithelial cells, resulting in neutrophilic mediators and induction of mucus
hypersecretion, MMPs, oxidative stress and release of proteases that cause tissue
damage [2]. See Figure 2.3 for an overview of the pathophysiology of COPD.

Figure 2.3: Patophysiology of COPD. From [19].

There are currently no treatments available to reverse COPD pathology and investi-
gated drug target mechanisms often do not reach the clinical phase. Two commonly
used treatments to reduce the symptoms of COPD are bronchodilators and corti-
costeroids. Bronchodilators relieve dyspnea, which is one of the main symptoms of
COPD and defined by shortness of breath. The result of using bronchodilators is
reduction of airway resistance, muscle relaxation in the lung and widening of the
airway. However, they are not very efficient in patients with COPD and can only
be used for a limited time. Corticosteroids are an anti-inflammatory drug shown to
be very efficient against asthma but only have a limited anti-inflammatory effect in
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COPD [19].

2.3.1 COPD and unfolded protein response
Activation of the UPR pathway has been observed in COPD but the pathogenic con-
tribution of UPR to COPD is not fully understood [20]. For example, an increase
in expression of CHOP and eIF2α has been reported from immunoblotting in lungs
of COPD patients and decreased expression of miR199a-5p has been correlated to
increased expression of sXBP1, BiP and ATF6 in monocytes [21]. The presence of
these UPR markers could correlate with adverse airway remodeling and possibly be
used as biomarkers and therapeutic targets. Opposite to the above mentioned cor-
relations, there are also studies about AT2 cells that has been derived from COPD
lungs and only shown low expression of these genes [20]. Forced exploratory vol-
ume decline (FEV1) has also been investigated in patients with COPD and in one
study, FEV1 was shown to be correlated with an airway gene expression signature
which led to identification of an UPR signature of genes downstream of sXBP1 [22].
Furthermore, acute UPR activation has been reported in airway epithelial cell lines
and HBECs when exposed to cigarette smoke [4].

2.4 IPF
Pulmonary fibrosis is a chronic lung disease with progressive accumulation of ex-
tracellular matrix (ECM) in the peripheral lung, leading to matrix stiffness, stress,
strain forces and loss of functional alveolar gas exchange units. It reflects the later
stages of chronic interstitial lung diseases, the most severe form being IPF. IPF is
a chronically scarring lung disease known to advance into respiratory failure and
death within 5 years of diagnosis, with lung transplantation as one of few available
treatments for prolonged survival [10]. However, the survival rate at 5 years of di-
agnosis has been estimated to 45 % in a study by Kaunisto et al. and depend on
factors such as age and lung function at diagnosis [23]. The cause and mechanisms
behind IPF are not fully known, but of clinical interest due to the high mortality
rate and to the fact that it often is misdiagnosed or that patients are diagnosed with
the disease in a late state of disease development [24].

The pathogenesis of IPF is partly explained by recurrent epithelial cell injuries and
accelerated epithelial aging that causes abnormal repair of the alveolar cells, which
is the current model for disease initiation. Another typical phenotype is senescence
of alveolar epithelial cells and fibroblasts, where shortened telomeres, ER stress,
oxidative injury and mitochondrial dysfunction are features that contribute to de-
creased cell proliferation. Furthermore, IPF is characterised by ECM deposition and
abnormal mucociliary clearance. Another finding in patients with IPF are single-
nucleotide polymorphism in the promoter region of MUC5B, which has shown to
increase the risk of IPF since it leads to over expression of mucin in small-airway
epithelial cells [24]. Epithelial–mesenchymal transition (EMT) is also a result of
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ECM deposition. It contributes to loss of epithelial cell characteristics and markers,
and gain of mesenchymal ones such as invasion, migration and production of ECM.
EMT can be divided into three different types and the one occurring in IPF is called
type II. Type II is characterised by normal wound healing and are important for
reduntant tissue repair, which can be observed in IPF where the EMT-signals are
over-induced. The over activation in turn causes ECM accumulation, with organ
pathology and tissue remodeling as result [25].

Furthermore, innate immune cells, such as monocyte derived alveolar macrophages,
has shown to be critical for the disease development and an increased bacterial bur-
den has shown to increase disease progression in patients with IPF. Another connec-
tion between IPF and microbes are the genetic variation by a gene called TOLLIP
and innate immune response in gene variants of the TOLLIP gene that have been
associated with increased IPF susceptibility. The gene encodes a protein in the toll-
like receptor pathway, which inhibits responses to microbes and contributes to the
complex relation between IPF, host defense pathways and microbiome diversity [24].

Advances has been made when it comes to pharmacotherapeutic approaches to IPF,
even if there still are no drug available that cures the disease, but rather prevent
disease progression. Two of the medications that have shown to be effective, safe and
to reduce severe respiratory events, such as acute exacerbations, are nintedanib and
pirfenidone. There are also data suggesting that they contribute to reduction of the
mortality rate of IPF. Nintedanib is a tyrokine kinase inhibitor that targets growth
factor pathways while pirfenidone has antifibriotic and anti-inflammatory effects
such as downregulation of TGF-β, inhibition of collagen synthesis and reduction in
fibroblast proliferation [24]. An overview of the pathogenesis of IPF can be seen in
Figure 2.4.

Figure 2.4: Pathobiologic features of IPF. Reprinted from [26], © 2017 with permission
from Springer nature.
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2.4.1 IPF and unfolded protein response
ER stress has been shown to be upregulated in IPF and all three arms of the UPR
has previosuly been connected to the disease. There are several genetic links between
pulmonary fibrosis and UPR. One link is through AT2 cells that secrete surfactants
and where mutations in surfactant protein C (SFTPC) has been related to pul-
monary fibrosis and impaired SFTPC folding, which lead to activation of the UPR
and to protein aggregation [27]. Another population-wide genetic risk factor is the
MUC5b promoter variant rs35705950 that leads to increased expression of MUC5B
in the distal airways [24]. XBP1 is co-expressed with MUC5B and has been shown
to induce expression of MUC5B in the distal bronchial epithelial by activating the
promoter variant, contributing to a positive feedback mechanism that links the in-
duction of UPR expression to IPF [28].

Evidence of UPR in pulmonary fibrosis has been observed in mouse models, where
mutations in SFTPC has shown to drive pulmonary fibrosis directly by disrupted
lung morphogenesis. Furthermore, markers of UPR has been observed in patients
with sporadic or genetically determined IPF. One example is in alveolar epithelial
cells in fibroblastic foci, where activation och upregulation of ATF6, expression of
ATF4, CHOP and the IRE1 pathway has been observed and linked UPR to apoptosis
[29]. Finally, ER-stress induced EMT has been related to IPF pathogenesis through
upregulation of UPR markers such as BiP and XBP1, together with reduction of
epithelial cell markers and a change in cell morphology to fibroblast-like structures
[30], [31]. Nevertheless, the exact biological mechanisms and connections between
IPF and UPR are not fully understood [4].

2.5 scRNA-seq and in silico models
An emerging tool used to map different pathways to disease states that has evolved
recently is scRNA-seq. While bulk RNA is used to analyse pooled cell populations
or tissue sections, scRNA-seq enables analysis of cells at individual cell level. The
process starts with isolation of cells which is the main step that differs between bulk
RNA-seq and scRNA-seq [32].

There are several different single-cell isolation techniques available and which one to
use depends on cells of interest and number of cells available. If the cell number is
low, micromanipulation can be used, where cells are collected by microscope-guided
capillary pipettes. The main advantage with micromanipulation is the precise cell
isolation, but it comes with the disadvantages of having a low throughput and be-
ing time-consuming. If the cell number instead is higher, preferably > 10 000, a
more commonly used and preferred isolation method called flow-activated cell sort-
ing (FACS) can be used, where flourescent monoclonal antibodies tag the cells, since
they recognize specific surface markers. The main advantages with FACS is the pos-
sibility to receive highly purified single cells, its high-throughput and the possibility
to target cells with low level of cell type markers. However, FACS requires a larger
number of cells and specific monoclonal antibodies for isolation of cell types of in-
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terest [33].

After the cell isolation, the cells are lysed before applying reverse transcription into
first-strand cDNA, second-strand synthesis and cDNA amplification. To cope with
the large amounts of transcripts generated, either 3’ or 5’ ends of transcripts are
usually sequenced. To remove PCR bias and improve the accuracy of the reverse
transcription step, unique molecular identifiers (UMIs) or barcodes can be used
where reads are assigned to its original cell and enables a higher reproducibility due
to the molecular counting achieved. However, the problem with sequencing either 3’
or 5’ end of transcripts remains, which makes the method unsuitable for analysing
isoforms or allele-specific expression. See figure 2.5 for an overview of commonly
used single cell isolation methods and an example of cDNA amplification using bar-
code primer beads [33].

Figure 2.5: Single cell RNA isolation methods (a-f) and a droplet-based library gen-
eration technique with uniquely barcoded beads used for reverse transcription (g). From
[33].

There are several advantages with using scRNA-seq compared to bulk RNA. One
of the major advantages is the possibility of unbiased identification of cellular sub-
populations from heterogeneous populations. Using scRNA-seq also allows for a
more comprehensive knowledge of the diversity of molecular processes and states of
different cell types and is an important tool for understanding the complexity and
heterogeneity of different diseases [34].
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One of the main challenges with scRNA-seq is to quickly and accurately capture and
isolate single cells. Furthermore, the cells are exposed to a non-native environment
when being isolated, which increases the risk of inducing cell stress, transcriptomic
changes and a decreased viability. Another large challenge with scRNA-seq is to en-
able amplification of the often very small amounts of mRNA that exist in each cell
and to achieve higher throughput, which is easier to accomplish with bulk RNA [34].

In this study, scRNA-seq is used to map UPR to IPF/COPD and to investigate the
role of different epithelial cell subtypes in the two diseases. As previously mentioned,
progress has been made in identifying IPF regulating factors in experimental mod-
els. However, in order to understand the diversity of different cell types, their states,
molecular programs and the central mechanisms driving pathological epithelial re-
modelling in IPF lungs more comprehensively, alternative in silico models based on
scRNA-seq are required. The cellular mechanisms of the lung in respiratory diseases
are complex and heterogeneous, with a large variation between and within different
cell subtypes. By scRNA analyses of these cells, the inherent spatial heterogeneity
of disease pathology and cell type specific changes in diseased tissue can be inves-
tigated. This will enable identification of key mechanistic mediators and contribute
to overcoming the limitations with bulk RNA studies [10].

In previous studies, novel cell subtypes has been discovered when analysing IPF
with scRNA-seq. One example is an epithelial cell subtype called aberrant basaloid
that has been found in two different studies, performed by Habermann et al. [10]
and Adams et al. [35], and has been further investigated in this study. The cells ex-
press extracellular matrix components across a subset of histopathologic patterns of
pulmonary fibrosis and cell markers of basal epithelial cells, epithelial-mesenchymal
transition, cellular senescence, ECM production and IPF. They were shown to be
disease-enriched and almost only discovered in IPF lungs in both datasets [10], [35].

Pseudo-time trajectory can also be utilized to investigate the connection between
different epithelial cell types. These trajectories are performed by identifying a path
through a high dimensional expression space that shows the different cellular states
of the cells in a continuous process. It can be used to analyse differentiation patterns
of cell types to multiple differentiated cellular states [36]. In Habermann et al., one
pseudo-time trajectory analysis was performed of the aberrant basaloid cells, which
led to the discovery that these cells probably evolve from transitional AT2 cells. An-
other pseudo-time trajectory performed resulted in the discovery that a SCGB3A2+
cell subtype, ie secretory club cells, could differentiate into AT2 cells [10]. These
discoveries could be made thanks to utilization of scRNA-seq data. Furthermore,
scRNA-seq has been used to investigate the role of different UPR components in
specific cell subtypes in IPF, such as the gene PPP1R15A in lung fibroblasts, where
it was observed that the gene have a distinct role in both senescent and proliferate
states of these cells [16].

Regarding COPD, there are only a few scRNA-seq studies that have been executed.
One of these is a study by Li et al. [2] where scRNA-seq was used to identify lung
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cell subtype specific gene expression signatures by profiling lung tissue samples from
patients with and without COPD. One of the observations made was that a decline
of macrophages, AT2 cells, endothelial cells and fibroblasts could be seen in patients
with COPD [2]. However, the data from the study by Li et al. was not accessible
and thereby not analysed in this study. Instead, a study performed by Adams et al.
[35] was used to analyse COPD, which is a study where IPF was compared against
COPD in order to create an IPF cell atlas and investigate cell specific changes in
gene expression [35].

2.6 In vitro models of unfolded protein response
In vitro models are commonly developed and used to investigate specific disease
mechanisms and the effect of modulation of specific pathways important in disease.

In this project, primary cells were used. Primary cells are very similar to the tis-
sue of origin since they are taken from the tissue directly and processed to enable
optimal culture conditions without modifying the cells. Hence, they imitate the in
vivo state well and exhibit normal physiology, which is desirable when for example
studying biochemistry, such as aging and signaling, and effects of drugs and toxic
compounds. From start, the cultures are heterogeneous and represent several cell
types from the tissue, but can only be maintained in that state for a limited period
of time. They can also be transformed into cell lines that has the ability to prolifer-
ate indefinitely. The downside with this transformation is that they then no longer
represent the in vivo state to the same extent due to genetic modifications made
that changes the physiological properties [37].

Besides reflecting the in vivo state, primary cells allow experiments on human tissue
that could not have been done in vivo, ethical dilemmas that may arise with animal
experiments can be avoided and it is cost effective due to reducing the need of in
vivo animal models. However, primary cells require longer growth time than cell
lines, have limited growth potential and life span, their phenotype change once in
culture and their characteristics may change between passages if not cultured opti-
mally. Furthermore, primary cells are hard to obtain, are often not pure and cells
from different donors might respond differently to for example pro-inflammatory
cytokines [37].

Some commonly used primary cells are epithelial cells, endothelial cells, fibroblasts
and different stem cells. In this project, primary human lung epithelial cells were
used, that are available either as bronchial epithelial cells, which were used in this
study, or small airway epithelial cells. The HBECs were used to enable investiga-
tion of ER stress responses and the UPR pathway in epithelial cells when exposed to
different stimuli. As previously mentioned, ER stress activates the UPR to resolve
pathological alterations in protein folding. The UPR in turn causes cellular tran-
scriptional, translational and degradation pathway changes to take place through
the activation of PERK, IRE1 and ATF6. By studying these responses with in vitro
models, the pathology and development of diseases where ER stress is activated can
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be uncovered [38].

Two commonly used ER stress inducers that outlines the pathological alterations
caused by ER stress in vitro are tunicamycin and thapsigargin. Tunicamycin in-
hibits UDP-N-acetylglucosamine-dolichol phosphate N-acetylglucosamine-1- phos-
phate transferase (GPT), which blocks the first step of glycoprotein biosynthesis in
the ER. The blocking leads to accumulation of unfolded glycoproteins inside the
ER and activation of UPR. Thapsigargin causes ER stress by inhibiting sarcoplas-
mic/endoplasmic reticulum Ca2+-ATPase (SERCA) and thereby decreases the levels
of calcium in the ER. ER-dependent chaperones, which assist in the proper folding
of proteins, lose their activity when the levels of calcium are lowered and thereby
thapsigargin causes accumulation of unfolded proteins [39]. ER stress and UPR
activation has previously been observed by upregulation of CHOP and BiP when
challenging cells with tunicamycin or thapsigargin [38].

Besides from tunicamycin and thapsigargin, there are several compounds that can
be used to induce ER stress and the UPR by oxidative stress. Oxidative stress oc-
curs when there is an imbalance between the antioxidant capacity of the cells and
the free radical production. This imbalance occurs due to accumulation of ROS
that overwhelms antioxidant defense mechanisms. While hydrogen peroxide (H2O2)
treatment has various effects in cells, ER stress and a subsequent UPR have been
observed too. In fact, several studies demonstrate PERK-mediated upregulation of
CHOP in H2O2 stress-induced senescence models [40], [41].

Cigarette smoke extract (CSE) exposure of cells in vitro has shown to induce the
UPR in several studies as well. Firstly, PERK-dependent phosphorylation of eIF2α
and induction of ATF4 and PPP1R15A was observed when HBECs from non-
smoking individuals were exposed to CSE [42]. Furthermore, CHOP has been shown
to be upregulated in HBECs when exposed to CSE, together with ROS generation
and induction of apoptosis. When these HBECs thereafter were exposed to antiox-
idants, the CSE-induced apoptosis was inhibited and CHOP expression decreased,
indicating that oxidative stress and UPR occur when cells are exposed to CSE [41].

17



2. Theory

18



3
Analytical procedures

3.1 Quantification of gene expression
Quantitative polymerase chain reaction (qPCR) is a PCR method that monitors
the progress of the PCR run throughout the running time and thereby collects
data continuously. TaqMan assays are commonly used for qPCR, which are based
on targeting of specific primers and probes optimized for the specific gene. For
gene expression measurements with TaqMan, 5’ nuclease chemistry is applied and
a fluorogenic probe is used that enables detection of the chosen PCR product as
it accumulates. The assay process for TaqMan gene expression can be observed in
Figure 3.1 [43].

Figure 3.1: TaqMan Gene Expression Assay reaction steps. From [43].

In step 1, double stranded cDNA is denatured by a temperature increase and the
fluorescent dye signal on the 5’ end of the probe is quenched by a non-fluorescent
quencher (NFQ) at the 3’ end. In step 2, the temperature of the reaction is lowered
to enable the primers and probe to anneal to their specific target sequences. Lastly,
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when the Taqman DNA polymerase reaches the bound probe, it can thanks to
its exonuclease activity chop the probe apart and continue the elongation. The
separation of the dye from the quencher results in a fluorescent signal proportional
to the amount of templates. When the fluorescence emitted is greater than the
background signal, the cycle threshold (Ct) is reached. Hence, the emitted light
reaches this threshold faster if the gene of interest is highly expressed and results in
a lower Ct-value than a lower expressed gene [43].

3.2 Quantification of protein expression
Western blot is a routine technique used for protein analysis. It uses specific interac-
tions between antibody and antigen to detect the protein of interest from a complex
mixture and can produce both qualitative and semi-quantitative data [44].

Western blotting can be divided into different steps. First, gel electrophoresis is
used to separate proteins in a sample based on their physical properties. This
is commonly done with sodium dodecyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) which separates proteins on a polyacrylamide gel based on mass due
to using the negative charge that is imparted on the proteins when bound to the
ionic SDS detergent. Thereafter, the separated proteins are transferred onto a sec-
ond membrane, often made of nitrocellulose or polyvinylidene diflouride (PVDF),
using a sandwich construction where the gel is placed in direct contact to the mem-
brane with porous pads and filter papers around it that facilitates the transfer. The
sandwich of layers is exposed to an electric field allowing the proteins to transfer
from the gel and onto the membrane surface where the proteins attach. The transfer
efficiency is dependent on several factors, such as the gel composition, the complete
contact between gel and membrane, the electrode position, transfer time, protein
size and composition, field strength and detergents in the buffer used. Successful
protein transfer can be assessed by reversible Ponceau S staining, which visualises
the total protein amount [44].

Before probing the proteins of interest with antibodies, it is important to block
nonspecific binding on the membrane. The probing can then be performed and
is either based on direct or indirect detection. The indirect detection consist of a
primary antibody specific for the protein of interest, but without being detectable,
and a secondary antibody, conjugated with a detectable tag, which binds to the
primary antibody through specificity against host species of the primary antibody.
The tag can either consist of an enzyme together with a substrate that emits a
detectable signal, or a fluorophore detectable by an instrument that can capture
fluorescence. In the direct method, the primary antibody is conjugated with a
detectable tag directly, eliminating the need for a secondary antibody. Even if the
direct method only requires one antibody, the indirect method is often preferred
due to the signal amplification achieved by using a secondary antibody and the
possibility of multiplexing [44]. The two detection methods can be seen in Figure
3.2. In this study, the indirect method was used.
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Figure 3.2: Direct detection of proteins with primary antibody conjugated with de-
tectable tag (A) and indirect detection of proteins with primary and secondary antibodies
(B), where the secondary antibody is conjugated with a detectable tag. From [44].

3.3 Analysis in silico
The most commonly used methods for finding marker genes in RNA data are based
on bulk RNA sequencing where differentially expressed genes are defined as genes
with different means of expression value. In these methods, a small group of homo-
geneous cells are compared to the rest of the data (outside group) to find DE genes.
However, to enable capturing the large cell heterogeneity of scRNA-seq data, which
consist of many different cell types/states, a single parameter (mean value) cannot
represent the complete population of cells and the outside group cannot be said to
have a specific distribution [45].

Venice has been developed to meet these challenges with scRNA-seq data and is
the method used in this study for DE analysis of scRNA-seq data. It is based on
a non-parametric test where marker genes in a group of cells are the ones that can
be used to distinguish these cells from the rest. The significance of a marker gene is
scored using accuracy of classification as metric, which is estimated by how well a
certain gene can be used to predict cells inside or outside the chosen cluster of cells.
Thereafter, this accuracy metric is used for marker gene ranking and to classify DE
genes as up- or down-regulated [45].

In a study by Vuong H. et al., Venice was compared to 14 other methods by validating
precision and performance with two simulated datasets as test data. Venice had the
highest true positive rate (AUC score > 0.98) and amongst the methods with similar
rate, Venice performed both faster and used significantly less memory [45].
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4
Materials and Methods

This chapter is divided into two main parts. Part one consists of the methods used
for the in silico analysis of scRNA-seq datasets and are explained in section 4.1.
Thereafter, the in vitro part is explained in section 4.2-4.5.

4.1 Analysis of scRNA-seq data
The scRNA-seq analysis of IPF and COPD was performed in BBROWSER, a plat-
form for single cell transcriptome analysis and spatial transcriptomics [46]. DE
analysis of epithelial cells from subjects with IPF or COPD was performed and the
datasets and methods used for analysis in BBROWSER are explained in this section.

4.1.1 Datasets
Three datasets were used for scRNA-seq analysis of IPF. The first dataset was col-
lected from a study by Habermann et al. [10] which had the objective to investigate
cell types/states in IPF and the mechanisms driving pathologic epithelial remodel-
ing and ECM expansion in the human lung. Single cell suspensions from peripheral
lung tissue of healthy and diseased subjects were made from 12 IPF lungs and 10
non-fibrotic lungs. Thereafter, sequencing was performed with the 10x Genomics
Chromium platform. Canonical lineage defining data was used to annotate clusters
and a total of 31 cell types was found, whereof 12 epithelial subtypes in a subcluster
of 37 325 cells. One of these cell subtypes was a previously unrecognized one, called
KRT5-/KRT17+ in the study. This subset expressed collagen and ECM components
and was shown to be enriched in pulmonary fibrosis [10].

The second dataset came from a study by Reyfman et al. [47] which had the objec-
tive to determine if scRNA-seq could be used to reveal disease-related heterogeneity
within human lung cells from patients with pulmonary fibrosis. Lung biopsies from
healthy donors and lung explants from patients with pulmonary fibrosis, whereof
4 patients with IPF, were used and scRNA-seq performed. The assignment of cell
subtypes to each cluster of cells was done based on expression of established markers
from the databases ImmGen and LungMap. A total of 13 cell types were found,
whereof five epithelial subtypes. A single-cell atlas of pulmonary fibrosis was gener-
ated and heterogeneity within epithelial cells from patients with pulmonary fibrosis
was observed [47].
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The third dataset was collected from a study by Adams et al. [35] which had the
objective to develop a single-cell atlas for IPF of aberrant cellular populations from
the epithelium, endothelium and stroma of the IPF lung. A total of 32 IPF lungs,
18 COPD lungs and 28 control donor lungs were profiled and the computational
analysis resulted in identification of 38 cell types by using markers without batch or
cell cycle effects. Besides previously known cell subtypes, a new population of cells
was identified in IPF lungs but not in controls or COPD lungs, called aberrant basa-
loid cells. The aberrant basaloid cell subgroup is similar to the KRT5-/KRT17+
subgroup annotated by Habermann et al. and both these groups will therefore
be referred to as aberrant basaloid cells. The aberrant basaloid cells express both
epithelial markers, basal markers such as KRT17, epithelial-mesenchymal markers
such as COL1A1, senescence related markers such as CDKN1A and IPF biomarkers
such as MMP7. To validate this new cell subtype, the authors compared it with
the data published by Habermann et al., which resulted in a similar marker pro-
file and a correlation coefficient (Spearman’s rho) close to 1 for each cell subtype [35].

The three studies analysed will hereafter be referred to by the surnames of the
authors, namely Habermann, Reyfman and Adams. To summarize their character-
istics, a comparison was made that can be seen in Table 4.1 where several differences
can be observed that might effect the analysis. For example, the number of cells
where there are more IPF cells than control cells in Habermann and Adams, the
methods and markers used to annotate cell types and the GO enrichment. The GO
enrichment affects the representation of cells for different cell types and depending
on method used, the true number of cells will be more or less reflected in the data.

4.1.2 Differential expression analysis of IPF
DE analysis of IPF versus control cells was performed with the Venice algorithm
in BBROWSER on each of the annotated epithelial cell subtypes from the studies
by Habermann, Reyfman and Adams. Prior to the DE analysis, an UPR gene
signature was generated through the use of Ingenuity Pathway Analysis, which is a
platform for visualization and data analysis of omics data [48], and by adding some
additional genes related to the IRE pathway from an article by Becker et al. [22].
The signature was then used to analyse the UPR pathway for each cell subtype by
observing the fold-changes of genes with FDR < 0.1 from the DE analysis. Only
cell subtypes with close to or more than 100 cells in both IPF and the control group
were analysed.

4.1.3 Analysis of aberrant basaloid cells
To investigate the connection between the aberrant basaloid cells found in Haber-
mann, IPF and the UPR pathway, DE analysis was performed comparing the cell
subgroup against the other epithelial cell subgroups. The most upregulated genes
(fold-change > 1.4) were selected and the percentage difference in number of cells ex-
pressing these markers was calculated. The 12 most upregulated genes were chosen,
which had percentage differences larger than 66 % between aberrant basaloid and
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Table 4.1: Comparison of datasets from Habermann [10], Reyfman [47] and Adams [35].

other epithelial cells. The gene signature was first applied on the already annotated
aberrant basaloid subgroups in Habermann and Adams, to confirm its existence,
investigate their similarities and validate the usage of these markers to sub-cluster
a similar group in the third dataset by Reyfman. The gene signature was then used
to investigate if a similar subgroup could be found in Reyfman by sub-clustering
cells in that dataset that had a large ratio between gene expression in the created
subgroup and the rest of the epithelial cells. DE between the created subgroup and
the rest of the epithelial cells was performed and the fold-changes of the UPR sig-
nature genes observed.

Furthermore, GO enrichment was performed on the most upregulated genes in the
created aberrant basaloid cell subgroup in Reyfman, to investigate the biological
processes and cellular components that the most upregulated genes was related
to. The GO enrichment was performed within BBROWSER with the Gene Set
Enrichment Analysis (GSEA) method, where the rest of the epithelial cells was used
as background, and outside of BBROWSER with DAVID, a database for annotation,
visualization and integrated discovery of gene lists [49].

4.1.4 Differential expression analysis of COPD
To investigate the regulation of UPR genes in COPD, the dataset from Adams was
used. Similarly as for IPF, only cell subgroups with close to or more than 100 cells
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in both COPD and the control group were analysed.

4.2 Experimental layout
The in vitro part of the project consisted of three individual experiments. Gene
readouts for the UPR pathway were established in all three experiments, protein
readouts in the first experiment and cell viability was measured in the third experi-
ment. An overview of the experimental layouts can be seen in Table 4.2. In addition,
already available samples were used for establishment of protein readouts. In these
samples, cells had been stimulated with 0.1 µg/ml tunicamycin, with or without an
inhibitor of the PERK pathway. For detailed protocols of the experimental part of
the project, see section B.1 in Appendix B.

Table 4.2: Experimental layouts of experiments performed.

4.2.1 Primary human bronchial epithelial cells
HBECs, isolated from the surface epithelium of human bronchi, were obtained from
LONZA. The cells used in this project are from healthy donors (Lonza, CC-2540)
and will be referred to as N3375 (batch number 0000613375) and N1936 (batch
number 0000501936). The cells were received at passage 3 and have been tested for
mycoplasma and viability post-freezing before use.

4.2.2 Culture conditions
In the first experiment, cells from donor N1936 were seeded onto three 48 well plates
(Costar, 3548) in 300 µl media and with a cell density of 30 000 cells/well, and three
96 well plates (Costar, 3596) in 100 µl media per well and with a corresponding cell
density of 10 000 cells/well. The medium used was PneumaCult™-Ex Plus Medium
(STEMCELL™ Technologies, 05040), which is designed for airway epithelial cell
research and primary HBECs, and the cells were cultivated over night at 37 °C prior
to stimulation.

In the second and third experiment, the cells from donor N3375 were seeded into two
different 96 well plates. In the second experiment, two 96 well Corning™ Costar™
Flat Bottom Cell Culture Plates (Costar, 3595) were used and cells were seeded in
100 µl media and with a cell density of 30 000 cells/well. In the third experiment,
six of these 96 well plates and one PhenoPlate™ 96-well microplate (PerkinElmer,
6055302) with black cell walls were used and cells were seeded in 100 µl media with a
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cell density of 12 500 cells/well. The cells were then cultivated over night at 37 °C in
BEGM™ Bronchial Epithelial Cell Growth Medium (CC-3171), which is specifically
designed for growth of primary HBECs. The media was used in experiment 2 and 3
based on previous observations that ExPlus media rendered the cells unresponsive to
H2O2 and that BEGM media might contain less antioxidants and thereby decrease
the risk of H2O2 neutralisation caused by culture media.

4.2.3 Stimulation of cells
Before stimulation of cells, the media was changed in the first experiment, but not
in the second and third. The cells were stimulated with tunicamycin in experiment
1, H2O2 in experiment 2 and tunicamycin, thapsigargin, H2O2 and cigarette smoke
extract (CSE) in experiment 3. Concentrations of thapsigargin were chosen based on
previous studies by Schadewijk et al. [50] and Kemp et al. [51], where HBECs were
cultivated in BEGM media. Regarding concentrations of tunicamycin, H2O2 and
CSE, these were selected based on previous experiments performed at AstraZeneca.
The concentrations and stimulation timepoints used can be seen in Table 4.2 in the
beginning of section 4.2.

In the third experiment, cells stimulated with tunicamycin, thapsigargin and H2O2
were exposed to a mixture of IncuCyte NucLight Rapid Red Reagent (Essen Bio-
science, 4717) and IncuCyte Caspase 3/7 Green Reagent (Essen Bioscience, 4440)
for 2 hrs before addition of stimuli, to enable measurement of cell proliferation and
apoptosis. After the exposure time, these cells were stimulated with the same con-
centrations as the other plates in the experiment. Finally, the plate was imaged for
48 h in an Incucyte® Live-Cell Analysis instrument for cell imaging.

4.2.4 Lysis for RNA analysis by qPCR
In all three experiments, the cells in the 96 wells, except for the plate analysed with
the Incucyte instrument, were lysed with RLT lysis Plus buffer (Qiagen, 79216) and
kept in -80 °C freezer prior to RNA purification and subsequent gene expression
analysis with qPCR.

4.2.5 Lysis for protein analysis by Western blot
The cells in the 48 well plates from the first experiment were lysed with a ly-
sis buffer consisting of M-PER lysis buffer (ThermoFisher, 78501), DNAse I solu-
tion (Sigma Aldrich, D4527), cOmplete™ Mini Protease Inhibitor Cocktail (Roche,
11836170001) and PhosSTOP™ (Roche,4906837001). Lysed cells were then kept in
-80 °C freezer prior to protein expression analysis with Western blot.
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4.3 Gene expression analysis
The methods used for the gene expression analysis is presented in this section and
was performed in the same way for all experiments. Complete protocol can be seen
in section B.2 in Appendix B.

4.3.1 RNA purification
Lysed cells were thawed on ice and then purified according to the manufacturer’s
protocol using the RNeasy 96 Kit (QIAGEN, 74192). Most of the Taqman probes
used for qPCR span several exons, which excludes the need of a gDNA elimination
step prior to the RNA purification since the probability of detecting genomic DNA
is small. After the purification steps, the RNA concentrations was measured using
a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). RNase-free water was used as blank prior to quantification of the RNA content
by adding 1 µl of the sample on the NanoDrop. The cDNA synthesis was thereafter
performed, without prior normalisation of the RNA concentrations in the samples.

4.3.2 cDNA synthesis
After RNA purification, samples were prepared for cDNA synthesis with a High
Capacity cDNA reverse Transcription kit (Applied Biosystems, 4368813). For each
sample, 20 µL master mix was prepared on ice with reagents from the kit. Master
mix was prepared for the number of samples in each experiment and added together
with 20 µL sample to non-skirted 96 well PCR plates (VWR, 82006-636), to a total
volume of 40 µL. Two negative controls were used, one with master mix and Rnase-
free water instead of RNA and one with RNA but without the MultiScribe Reverse
Transcriptase in the master mix in order to detect background signal and potential
signals from genomic DNA. The samples in the PCR plate were mixed and spun
down to the bottom of the wells. A Veriti 96 well Thermal Cykler was then used to
synthesise cDNA.

4.3.3 Quantitative polymerase chain reaction
Quantitative polymerase chain reaction (qPCR) was performed according to the
TaqMan Gene Expression Assay (ThermoFisher, Waltham, MA, USA). The cDNA
was thawed on ice and nuclease-free water was added for a 2X or 3X dilution of
cDNA, depending on the amount of RNA previously quantified. Taqman Fast Ad-
vanced master mix (Applied Biosystems, 4444554) was prepared for each TaqMan
probe in triplicates and with 30 % extra volume. TaqMan plates were prepared using
an automated BioMek NX pipetting station (Beckman Coulter) to add 3 uL cDNA
and 7 uL prepared master mix into a 384-well plate. The qPCR was performed with
the Quantstudio Real-Time PCR system for comparative CT method. The genes
analysed with the TaqMan Gene Expression assay can be seen in Table 4.3. The
last part of the assay IDs indicate whether the probes span an exon junction (m) or
if they might be found within a single exon (g).
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Table 4.3: Genes analysed with the TaqMan Gene Expression assay.

4.3.4 Data analysis
For each tested gene and sample, a Ct (cycle threshold) value is returned, which is
defined by the number of cycles required to reach a threshold where the fluorescent
signal overreaches the background signal. The Ct value is reversely proportional to
the amount of target nucleic acid in the sample, meaning that a higher amount of
target is indicated by a lower Ct value. Hence, high Ct values are an indication of
low gene expression.

The mean Ct value calculated from the triplicates of each sample, was used to cal-
culate the fold-change between the reference and the target. The geometric means
of the reference genes run on the samples were calculated to then normalize the tar-
get mean Ct values against. The resulting ∆Ct-value is calculated with equation 4.1.

∆Cttarget = Cttarget − Ctreference (4.1)

∆Ct values of the non-stimulated controls are thereafter used to calculate the ∆∆Ct
value with equation 4.2.

∆∆Cttarget = ∆Cttarget −∆Ctcontrol (4.2)

Finally, the fold changes are calculated according to equation 4.3.

Foldchange = 2−∆∆Cttarget (4.3)

4.4 Protein expression analysis
The Western blot methods used for the protein expression analysis in experiment
1 are presented in this section. The analysis was performed on the samples from
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experiment 1 in this study, but also on previously generated samples from an in-
house experiment where cells were stimulated with 0.1 µg/ml tunicamycin for 24
h with and without a PERK inhibitor. For protocols of protein purification and
Western blot, see section B.3-B.5 in Appendix B.

4.4.1 Protein quantification
Protein lysates from the 48 well plates were thawed on ice and protein quantifica-
tion was performed with Pierce™ BCA Protein Assay Kit (Pierce, 23225) according
to the manufacturer’s protocol. Albumin standards for protein determination were
prepared in M-PER and samples further diluted in M-PER. A working reagent mix-
ture consisting of BCA reagent A and B was prepared and added to Nunc™ clear
polystyrene (PS) 96-well MicroWell™ plates (Thermo Scientific Nunc, 269620) to-
gether with diluted standards or samples. The OD was measured in a spectropho-
tometer at 562 nm and a standard curve created based on the albumin standards’
OD-values. The protein concentration in the samples were calculated from the stan-
dard curve. The remaining protein samples were stored at -80 °C until Western blot
analysis was performed. See Appendix B for protocol, table with concentrations of
BSA standards and resulting standard-curves used for protein determination.

4.4.2 Automated Western blot
An automated, capillary based Western blot method called JESS (ProteinSimple)
was used for relative protein detection. JESS has a high protein sensitivity, enabling
multiplexing for both chemiluminescence and fluorescence detection, and requires
low sample volume. JESS also allows a much higher throughput than traditional
Western blot since it is possible to run 24 samples at the same time and can com-
plete protein separation, reagent additions, incubations, detection steps and analysis
during a 3 h run. There are several possible detection methods, for example chemi-
luminescence detection and fluorescence detection with Stellar NIR/IR modules,
which can be used to measure several proteins in the same capillary [52].

JESS was first optimised on samples from another in-house experiment and then
used on time-course samples from experiment 1. Information about the proteins
measured and the antibodies used can be seen in Table 4.4 and 4.5. Two JESS-
plates were run, one with 3 and 6 h samples, with 0.98 µg total protein per well,
and one with 24 h samples, with 1.83 µg total protein per well. For the 3 and 6 h
plate, samples were run in singlets to fit into one plate, while the 24 h samples were
run in duplicates.

The automated Western blot was performed with Jess 12-230 kDa separation module
kit (ProteinSimple, SM-W004), according to the manufacturer’s protocol. Samples
were diluted in 0.1X sample buffer and water, and combined with a master mix
consisting of DTT solution and 10X sample buffer. The antibodies were diluted in
milk-free antibody diluent and chemiluminescent substrate was prepared by com-
bining Luminol-S and Peroxidase. Ladder, samples, antibodies, antibody diluent,
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Table 4.4: Proteins used for automated Western blot, their molecular weights and
information about primary antibodies used.

Table 4.5: Secondary antibodies used in automated Western blot with JESS.

streptadivin HRP, chemiluminescent substrate and wash buffer were added to the
JESS plate. The plate and capillaries were inserted into the JESS machine and
the standard protocol modified by changing separation time to 30 min and primary
antibody time to 60 min. The JESS run was started and ran for approximately 4
hrs.

4.4.3 Traditional Western blot
To further investigate if it is possible to establish readouts for ATF6 and CHOP,
since detection failed in automated Western blot, the same in-house samples were
used. Western blot was thereafter performed on samples from experiment 1 in this
study, following the same procedure. Information about the proteins measured and
the antibodies used can be seen in Table 4.6 and 4.7.

Table 4.6: Proteins used for traditional Western blot, their molecular weights and
information about primary antibodies used.

Purified protein samples were thawed on ice and diluted with water and a mixture
of NuPAGE LDS Sample Buffer (4x) (InVitrogen, NP0007) and NuPAGE Sample
Reducing Agent (10x) (InVitrogen, NP0004). Samples and ladder, Chameleon Duo
(LiCOR, 928-60000), were loaded into 1.5 mm thick 10 well NuPAGE 4-12 % Bis-
Tris Protein gels (InVitrogen, NP0335BOX).

SDS-PAGE was run with NuPAGE® MES SDS Running Buffer (Invitrogen, NP0335
- BOX), to resolve CHOP, and NuPAGE™ MOPS SDS Running Buffer (20X) (In-
vitrogen, NP0001), to resolve ATF6. PVDF membrane from Invitrolon™ PVDF/-
Filter Paper Sandwiches (InVitrogen, LC2005) was activated in 100 % methanol
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Table 4.7: Secondary antibodies used in traditional Western blot.

(Honeywell, 34966) and a transfer sandwich prepared for the protein transfer by
putting together sponges, filter paper, gel and PVDF membrane. The Sandwich
was added to a transfer box and filled with NuPAGE™ Transfer Buffer (20X) (In-
Vitrogen, NP00061). The membranes were blocked in Intercept® (TBS) Blocking
Buffer (LiCOR, 927-50000) after transfer.

The membranes were incubated with primary antibodies overnight at 4 °C for
CHOP/β-actin and ATF6/β-actin. The membranes were washed in Tris buffered
saline with Tween® 20 (Sigma ,91414-100TAB) prior to incubation with secondary
antibodies for 2 hrs at room temperature and then washed again. Finally, the pro-
teins were quantified by measuring infrared signal from the secondary antibodies by
a LI-COR Odyssey platform. β-actin was used as normalization in between wells
and conditions. See Appendix B for detailed protocols, including timepoints and
settings used for SDS-PAGE and protein transfer.

4.5 Statistical analysis
The data from the qPCR was analysed with GraphPad Prism® v9.0 (GraphPad
Software, Inc.). Nonlinear regressions was performed to examine EC80-values for
the dose response curves of stimulation with tunicamycin in experiment 1. For ex-
periment 2 and 3, the different concentrations of stimuli was plotted in bar plots to
compare stimulation times and stimuli against each other.

Cell viability measurements performed in experiment 3 was analysed by first trans-
ferring raw data images to MATLAB to transform the data. The transformed data
was then transferred into Columbus software to analyse the number of live, apoptotic
and total cells. The percentages of live and apoptotic cells were thereafter plotted
in GraphPad Prism to compare apoptosis and proliferation between different time
points and stimuli.
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In this chapter, the results from the scRNA-seq analysis and the experimental results
are presented.

5.1 scRNA-seq analysis on epithelial cells
The results from the analysis of the three scRNA-seq data sets, including lungs
originating from control, IPF and COPD patients, are presented in this section.
The aim was to characterize UPR gene expression profiles in both COPD and IPF
lung epithelial cells, but due to lack of thorough scRNA-seq datasets from COPD
lungs, the main focus will be on the analysis of IPF versus control cells. The results
from the DE of IPF are shown for data from Habermann, Reyfman and Adams,
while Adams’ scRNA-seq dataset was the only that contained data from COPD
patients.

5.1.1 Datasets
To get an overview of cell distribution between the studies, BBROWSER [46] was
used to extract the distribution of cells within IPF, COPD and control subjects, and
between different smoking conditions, age and gender. Cell distributions were cal-
culated from epithelial cells in the datasets from Habermann, Reyfman and Adams,
which had different coverages of IPF and control cells. The result can be seen in
Figure 5.1.

The gender distribution differed in between studies, but seemed to be quite con-
sistent between control and diseased lung. All three studies had a substantial age
difference between control and diseased subjects and the smoking history differs
both between datasets and between the conditions within each dataset. A differ-
ence between the smoking history of controls is that the majority are never-smokers
in Adams.
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Figure 5.1: Comparison across the three datasets visualizing distributions of gender,
age (male/female) and smoking history (never/active/unassigned/former) in control, IPF
and COPD lungs.

5.1.2 Differential expression analysis of IPF
Results from DE analysis of IPF vs control cells for the different epithelial cell sub-
types were analyzed if both groups, ie control and IPF, contained close to or more
than 100 cells each. The fold-changes of genes in the UPR gene signature were
investigated for predefined cell subtypes. The UPR gene signature collected from
IPA and Becker et al. [22] can be seen in Table A.1 in Appendix A.

The analysed epithelial cell subtypes from all three datasets were AT1, AT2, club
and ciliated cells. The genes with p-value < 0.1 were plotted and the result can be
seen in Figure 5.2. The club cells from the study by Habermann, containing the
largest number of analysed epithelial cells, had further been subdivided into 3 dis-
tinct populations: SCGB3A2+, SGB3A2+/SCGB1A1+ and MUC5B+, annotated
Habermann 1, 2 and 3 respectively in Figure 5.2. This further division of club cells
were made based on canonical lineage-defining markers and possible to accomplish
due to the large amount of extracted IPF cells.

An upregulation of UPR gene expression can be seen for the majority of genes for
AT1 and club cells, while a downregulation of UPR gene expression can be observed
for AT2 cells, with exception for genes in the PERK pathway for the Habermann
data. Concerning the ciliated cells, four of the genes are significantly downregulated
in IPF (PPP1R15A, HSPA1B, HSPA1A and HSPA5/BiP) for the Habermann data
and one for the Reyfman data (HSPH1), while the rest are similarly expressed in
both IPF and control.
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Figure 5.2: Differential expression of UPR signature genes across epithelial cell sub-
types in IPF versus control cells. The UPR genes are divided into PERK, IRE1, ERAD,
ER folding proteins (ERF), ATF6 and HSPA5 (All). The cell subtypes analysed across all
three scRNA-seq datasets were AT1, AT2, ciliated and club. The club cells for Habermann
was divided into SCGB3A2+/SCGB1A1+ (1), SCGB3A2+ (2) and MUC5B+ (3). The
datasets are distinguished by colour and the significance of each gene expression are visu-
alized by size, based on False Discovery Rate (FDR) where a higher FDR-value indicates
a lower p-value and a more significantly expressed gene.

Most of the genes are similarly regulated across datasets within each cell subtype,
with some exceptions, such as PERK and ERAD genes in the Reyfman data for AT1
cells and PERK genes for AT2 cells and some genes for ciliated cells and SCGB3A2+
club cells (Habermann (1)) in the Habermann data.

35



5. Results

Further on, a comparison of the epithelial cell subtypes was made, where the cell
distribution between IPF and control was calculated. An overview of cell distribu-
tions can be seen in Figure 5.3. For detailed cell distributions, see Figure A.2 in
Appendix A.

Figure 5.3: Distribution of epithelial cell subtypes in IPF versus control lungs in inves-
tigated scRNA-seq studies.

The majority of AT1 and AT2 cells was found in control, while the majority of club
and ciliated cells were found in IPF. Epithelial cells in IPF are known from previous
studies to consist of an increased proportion of club and ciliated epithelial cells and
by a decline in alveolar epithelial cells, which was confirmed by the three scRNA-seq
studies investigated in this study and consistent with the distribution seen in Figure
5.3.

5.1.3 Analysis aberrant basaloid cells
The aberrant basaloid cells discovered by Habermann and Adams were almost only
found in patients with IPF (97 % and 93 % respectively). Based on the key features
of this epithelial cell population, such as expression of collagen and ECM markers,
this subgroup is likely to contribute to the disease pathogenesis. Thereby, this sub-
group was further investigated in this study to examine its characteristics and the
regulation of UPR in these cells. The gene signature created in Habermann of 12
upregulated genes for the aberrant basaloid subgroup can be observed in Table 5.1,
together with p-value, FDR and percentage difference between the aberrant basaloid
cells and other epithelial cells.

To first confirm that the gene signature can be used to annotate aberrant basaloid
cells, the signature was applied on the epithelial cells in Habermann and Adams
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to extract the cells with largest expression of these genes. In Habermann, the cell
extraction resulted in a sub-cluster of 497 cells where 97 % were from IPF and 70
% of the cells were from the aberrant basaloid cell subgroup. For Adams, 448 cells
were sub-clustered, 93 % of these were found in IPF and 80 % were annotated as
aberrant basaloid cells or basal cells. For more details, see Figure A.1 and A.2 in
Appendix A where the resulting cell distributions are visualized in T-SNE images
and with graphs of the cell distribution between different subgroups.

Table 5.1: Gene signature of genes upregulated in aberrant basaloid cells compared to
other epithelial cells from dataset by Habermann.

Gene p-value FDR perc diff (%)
COL1A1 1.44E-214 210.16 82.59
FN1 4.68E-189 185.30 81.00
IL32 1.26E-191 187.82 79.56

KRT17 1.80E-185 181.76 77.40
PRSS2 3.27E-168 164.65 73.28
CALD1 4.52E-135 131.83 72.81
PTGS2 9.75E-137 133.48 70.24
PMEPA1 2.14E-126 123.19 69.34
DPYSL3 6.89E-122 118.74 68.92

MARCKSL1 4.13E-134 130.88 67.71
FHL2 1.05E-118 115.58 67.08

SLCO2A1 1.41E-107 104.58 67.02

The high percentages of IPF cells and aberrant basaloid cells led to the conclusion
that the gene signature could be used to annotate an aberrant basaloid subgroup in
Reyfman. In Reyfman, the epithelial cells with largest expression of the signature
genes were chosen and the created sub-cluster consisted of 209 cells where 82 % of
the cells were from IPF, and where the majority of cells were annotated as AT1 or
AT2 (35 % and 48 % respectively). See Figure A.3 in Appendix A for T-SNE images
and graph of cell distribution between different subgroups in Reyfman.

To compare the regulation of the gene signature from Habermann between cell sub-
types in all three datasets and to investigate the reproducibility of the aberrant
basaloid cells from Habermann in Adams and Reyfman, the proportions of IPF cells
expressing these genes and the level of expression were plotted in heatmaps, which
can be seen in Figure 5.4. The 12 signature genes are visibly more expressed in the
aberrant basaloid cells, annotated KRT5-/KRT17+ for Habermann and Reyfman,
than the rest of the epithelial cells for the subgroup in Habermann and Adams. For
Reyfman, around half of the genes are higher expressed, but still quite low expres-
sion levels compared to Habermann and Adams since the maximal expression level
is 1.5, opposed to 3.0 in Habermann and Adams. Additionally, it can be seen that
KRT17, that is a basal cell marker, is expressed both in the aberrant basaloid cells
and in the basal cells in Habermann and Adams.

After the gene signature comparisons, DE analysis between IPF and control for the
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Figure 5.4: Heatmap of genes from the aberrant basaloid cell gene signature defined
by data from Habermann. Gene expressions for the epithelial cell subtypes in IPF from
Habermann, Reyfman and Adams are visualized. The aberrant basaloid cells are anno-
tated as KRT5-/KRT17+ for Habermann and Reyfman. From [46].
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aberrant basaloid cells was performed both on the created subgroup in Reyfman
and the originally annotated aberrant basaloid cells in Habermann. However, the
comparison was made on only 13 and 37 healthy cells respectively on the data from
Habermann and Reyfman which is too few cells for the result to be significant or
comparable.

To investigate if the UPR gene signature was especially upregulated in the aberrant
basaloid cells compared to other epithelial cells, DE was performed with only IPF
as condition, for all three datasets. For the subgroup in Habermann, there were
374 aberrant basaloid cells and 24891 other epithelial cells. For Adams, there were
448 aberrant basaloid cells and 12 775 other epithelial cells. Finally, for the created
subgroup in Reyfman, there were 172 cells in the created aberrant basaloid subgroup
and 3085 other epithelial cells. The DE analysis was performed both on the UPR
gene signature from IPA and the study by Becker et al. [22], and on a terminal UPR
(T-UPR) signature chosen from an article by Aueyung et al. [53], with genes that
are associated with maladaptive UPR signaling.

Due to small or insignificant gene regulations for DE analysis performed on data
from Reyfman, only the results from Habermann and Adams are shown in Figure
5.5, and only genes with p-value < 0.1. An upregulation of all UPR genes except
ERN2/IRE1β, XBP1 and HSBH1 can be observed for the aberrant basaloid cells
and for all T-UPR genes except for TXNIP in Habermann.

Figure 5.5: Differential expression of UPR genes in IPF for aberrant basaloid cells vs
other epithelial cells from data by Habermann and Adams. DE analysis performed on
data from Reyfman is not visualized due to lack of significantly regulated genes.

To further investigate the characteristics of the subgroup in the three datasets, the
28 most upregulated genes from the DE analyses between the subgroup and other
epithelial cells was extracted from each dataset and compared against each other.
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The comparison was made to investigate if similar gene regulations could be found
across the datasets for the aberrant basaloid cells compared to all other epithelial
cells. The majority of the most upregulated genes was found in all three datasets.
Besides these, Habermann and Adams had the highest number of genes in common,
while Reyfman had the highest number of unique genes, which could be due to fewer
annotated cells in the subgroup in Reyfman.

As previously mentioned, the subgroup in Habermann and Adams expressed keratin
genes, ECM components, collagens, markers of epithelial-mesenchymal transition,
senescence marker genes, distal epithelial programs and the IPF biomarker MMP7.
When comparing the cellular processes of the upregulated genes found in this study,
they are consistent with these biomarkers. For example, upregulation of genes re-
lated to senescence, such as CDKN2A and GDF15 and upregulation of MMP7,
which is a key biomarker for IPF, was found. Furthermore, upregulations of genes
related to collagen and ECM were observed, such as the keratin genes and COL1A1
and FN1, where KRT7 and KRT17 are either the most regulated or amongst the
top eight most regulated genes found. For more details, see Table A.3 in Appendix
A where 28 of the most upregulated genes can be observed across the three datasets.

The characteristics of the created subgroup in Reyfman and its similarities to the
annotated subgroups in Habermann and Adams were further investigated by per-
forming GO enrichment for the most upregulated genes. Initially, DAVID was used
for gene enrichment and the result for genes with fold-change > 0.7 can be seen in
Table 5.2.

Table 5.2: GO enrichment of most upregulated genes for the created aberrant basaloid
cell subgroup in Reyfman performed with DAVID and with the whole human atlas as
background. Genes with fold-changes > 0.7 can be observed.

40



5. Results

The majority of genes have characteristics similar to the annotated aberrant basa-
loid cell subgroup in Habermann and Adams. For example, there is an enrichment
of cellular components such as cytoskeleton, extracellular space and extracellular
matrix and of biological processes such as actin filament binding/organization, cell
adhesion, cytokine mediated signaling, keratinization and integrin binding.

However, the analysis in DAVID was made with the whole human atlas as back-
ground, which might be too broad when looking at scRNA-seq data, hence a second
GO enrichment analysis was performed in BBROWSER with GSEA where only the
epithelial cells from the study was used as background. IDs with enrichment score <
0.8 and FDR < 0.13 was used. Examples of enriched cellular components are protein
complex involved in cell adhesion, filamentous actin, keratin filament, myofilament
and collagen trimer and of biological processes are cell matrix adhesion, cell-cell
adhesion and integrin mediated signaling and processes connected to collagen.

5.1.4 Differential expression analysis of COPD
A comparison of cell distribution between COPD and control was calculated based
on the data from the study by Adams, which was the only available scRNA-seq
dataset with COPD patients, and the result can be seen in Figure 5.6. For a more
detailed overview of the exact cell numbers, see Table A.2 in Appendix A.

There is an equal distribution between COPD and control cells for cells annotated
as AT1, ciliated, basal and goblet, while the majority of annotated AT2 cells were
found in control and the majority of annotated club cells were found in COPD.

Figure 5.6: Cell distribution between COPD and control for the analysed epithelial cell
subtypes annotated in the data from Adams.

For the DE analysis of COPD, the same UPR gene signature was used as for IPF
and the data used was extracted from Adams. Only cell subtypes with around 100
cells or more in both COPD and control were analysed, which resulted in five ep-
ithelial cell subtypes; AT1, AT2, basal, ciliated, club and goblet. The genes with
p-value < 0.1 was plotted and the result can be seen in Figure 5.7.

In contrast to IPF, a downregulation can be observed for almost all UPR genes in
each of the analysed cell subtypes, with exception of AT1 cells where most genes are
upregulated. Due to low numbers of available cells for the different cell subtypes
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Figure 5.7: DE analysis of UPR genes for COPD vs control for the epithelial cell
subtypes AT1, AT2, basal, club, goblet and ciliated annotated in data by Adams.
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and to lack of significantly regulated genes, no further investigation of COPD was
performed.

5.2 In vitro experiments - gene readouts
The purpose with the first experiment was to establish protocols for gene and pro-
tein readouts of UPR. Gene readouts from the experiment can be seen in Figure
5.8, where the fold-change has been calculated as the ratio of stimulated cells com-
pared to non-stimulated controls. The cells were stimulated with 0.01-0.5 µg/ml
tunicamycin and concentrations transformed to a logarithmic scale with base 10.

An upregulation of gene expression can be observed for almost all genes. Maximum
response was observed at 6 h stimulation, with high fold-changes for BiP, CHOP
and sXBP1. However, the highest fold-change for sXBP1 seen in Figure 5.8 occurs
after 3 h stimulation, which is not a result of transcriptional activation, but due to
the fast kinetics of sXBP1 which results in a fast upregulation as a direct effect of
IRE1 activation.

When comparing non-spliced and spliced XBP1, expressed in the IRE1 pathway, a
compensatory effect can be observed. This could be due to that splicing of XBP1 de-
pletes the stores of full-length XBP1 mRNA, which is restored after 24 h when gene
transcription is induced. An upregulation can also be seen for ATF4 and PPP1R15A
that represent the PERK pathway, for all concentrations except PPP1R15A at 24
h. Finally, there is almost no regulation of ATF6 at any of the three timepoints.

Cell morphology was imaged at the different timepoints. Tunicamycin inhibits pro-
tein glycosylation and is known to induce changes in cell morphology, which was
observed in the experiment since the cell viability was reflected by the dose of tu-
nicamycin, with the highest cell density for non-stimulated cells and lowest cell
density at 0.5 µg/ml. No visual effect was observed after 3 h stimulation, but a
gradual decrease of live cells can be observed at 6 h or first at 24 h. The decrease
in cell viability most likely contribute to the decreased gene expression observed at
house-keeping gene level at 24 h. See Figure A.4 in Appendix A for cell images.

Thereafter, it was explored how H2O2 as an external source of oxidative stress could
impair redox balance in the cells and thereby induce ER stress and UPR. The cells
were stimulated with 50-1000 µM H2O2. Gene readouts of BiP, CHOP, ATF4,
ATF6, XBP1, sXBP1 and PPP1R15A from the experiment is visualised in Figure
5.9, where fold-changes were calculated as the ratio of stimulated cells compared to
non-stimulated controls.

There is almost no gene regulation after stimulation with H2O2 apart from some
upregulation that can be seen for CHOP and sXBP1 after 6 h stimulation, and
some downregulation of the genes after 24 h stimulation. Cell images were taken
after 6 and 24 h stimulation with H2O2 and a high cell death can be observed at
600-1000 µM H2O2. See Figure A.5 in Appendix A for cell images from experiment
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Figure 5.8: Dose-response of UPR genes in healthy HBECs after 3, 6 and 24 h stim-
ulation with 0.01-0.5 µg/ml tunicamycin, normalized against non-stimulated control at
each timepoint. The fold-change of stimulated cells relative to non-stimulated controls are
visualized and tunicamycin concentrations are shown in a logarithmic scale with base 10.
At the EC80-values, a dose-response around 0.1 µg/ml can be observed for the majority
of genes after 3 h stimulation and around 0.03 µg/ml after 6 h stimulation
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Figure 5.9: UPR gene expression in healthy HBECs after stimulation with 50-1000 µM
H2O2, normalized against non-stimulated control at each time point. The fold-change of
stimulated cells relative to non-stimulated controls are visualized.

In a final experiment, multiple stimuli were used to induce ER stress and compare
how stimuli with different modes of action modulates key UPR gene expression and
to confirm the results from the previous experiment with H2O2. The fold-change
was calculated as the ratio of stimulated cells compared to non-stimulated controls
at each separate timepoint. Gene readouts of BiP, CHOP, ATF4, ATF6, XBP1,
sXBP1, PPP1R15A and HSP90B1 were established for the different stimuli used.

The gene readouts for H2O2 can be seen in Figure 5.10. As in previous experiment,
very little UPR gene induction was observed after H2O2 challenge.
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Figure 5.10: UPR gene expression in healthy HBECs after stimulation with H2O2, nor-
malized against non-stimulated control at each time point. The fold-change of stimulated
cells relative to non-stimulated controls are visualized. The concentrations used were 50,
100, 200, 300 and 400 µM.

UPR gene induction after tunicamycin challenge was similar to that observed in
previous experiment. The gene readouts for tunicamycin in the final experiment
can be seen in Figure 5.11.

Figure 5.11: UPR gene expression in healthy HBECs after stimulation with tuni-
camycin, normalized against non-stimulated control at each time point. The fold-change
of stimulated cells relative to non-stimulated controls are visualized. The concentrations
used were 0.01, 0.03, 0.06, 0.1 and 0.5 µg/ml.
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For stimulation with tunicamycin, there is a 10-fold increase of BiP, CHOP and
sXBP1 and a 5 fold-increase for PPP1R15A and HSP90B1. For BiP, a dose re-
sponse can be seen at 6 and 24 h and for CHOP there is a dose response at 24
h. Regarding sXBP1, PPP1R15A and HSP90B1, there is only a small difference in
gene expression for 0.03 µg/ml and higher doses, which is the same concentration
as for the EC80-values for PPP1R15A and sXBP1 in experiment 1. However, the
fold-changes for XBP1, ATF4 and ATF6 are only around two as max.

The gene readouts for thapsigargin can be seen in Figure 5.12. Regarding stimulation
with thapsigargin, the same genes are regulated as for tunicamycin, namely CHOP,
BiP, sXBP1, PPP1R15A and HSP90B1, and at the same timepoints. However,
the upregulation of genes are higher and there is no clear dose-response between
concentrations. What can be observed is an increase until 10 or 50 nM for most
of the regulated genes. For BiP, the fold-change is highest after 24 h stimulation
while CHOP shows a similar regulation at all three time points. For sXBP1 and
PPP1R15A, the fold-change is largest at 3 and 6 h stimulation, while HSP90B1 only
is upregulated after 24 h stimulation.

Figure 5.12: UPR gene expression in healthy HBECs after stimulation with thapsi-
gargin, normalized against non-stimulated control at each time point. The fold-change
of stimulated cells relative to non-stimulated controls are visualized. The concentrations
used were 5, 10, 50, 100 and 500 nM.

The gene readouts for cigarette smoke extract (CSE) can be seen in Figure 5.13. The
stimulation with CSE resulted in upregulation of CHOP, sXBP1 and PPP1R15A.
All three genes are upregulated at 3 and 6 h stimulation, while only CHOP and
sXBP1 is up-regulated after 24 h. Furthermore, the highest upregulation of these
genes are around 5 and 7.5 % CSE stimulation.

Finally, the housekeeping genes used in all experiments, to normalize the Ct-values
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for the UPR genes, were GAPDH and RPLP0. Gene expressions for both genes are
stable at 3 and 6 h gene readouts in all experiments. However, after 24 h stimulation,
the Ct-values differed several cycles in the first experiment, for 600-1000 µM H2O2 in
the second and in the third experiment together with CSE. The reason for deviating
Ct-values at 24 h could be due to lower cell viability at this time point. A larger
amount of apoptotic or dead cells can be observed at 24 h for higher doses of H2O2
and CSE, which contribute to decreased amount of expression in the housekeeping
genes used and to higher Ct-values. The Ct-values for GAPDH and RPLP0 for all
three experiments can be found in Figure A.7 in Appendix A.

Figure 5.13: UPR gene expression in healthy HBECs after stimulation with cigarette
smoke extract (CSE), normalized against non-stimulated control at each time point. The
fold-change of stimulated cells relative to non-stimulated controls are visualized. The CSE
consisted of smoke from five cigarettes and the percentages of CSE used for stimulation
was 1, 2.5, 5, 7.5 and 10 %.

5.3 In vitro experiments - protein readouts
The protein readouts from the first experiment is presented in this section. Protein
readouts were established to compare the expression at gene and protein level and
measure pathway activation of UPR, since gene and protein expression do not always
correlate. Protein expressions from automated Western blot with JESS is presented
first, followed by the results from traditional Western blot.

5.3.1 Automated Western blot
The automated Western blot, performed with JESS, was first performed on the
same samples from an in-house experiment, with cells stimulated with tunicamycin
in absence or presence of a commercially available PERK inhibitor. The run was
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performed to validate antibodies and find an optimal antibody concentrations that
allows for quantitative measurements of protein expressions. Antibodies for protein
expressions of eIF2α, phosphorylated eIF2α (phospho-eIF2α), ATF6 and CHOP
were tested. Each of the proteins were tested with 1.56 µg protein content and with
two different concentrations if primary antibodies, as can be seen in Table 4.6 in sec-
tion 4.4. The JESS run resulted in protein readouts for eIF2α and phospho-eIF2α,
but no readouts for ATF6 and CHOP. See Figure A.8 in Appendix A for visualiza-
tion of the run and figures of protein expression normalized against β-actin.

Selected antibody concentration for phospho-eIF2α (1:5 dilution) was used to inves-
tigate the expression of phospho-eIF2α in the time-course samples. This expression
was investigated together with readout of a fifth protein, BiP (1:100 dilution), which
optimal antibody concentration previously had been established at AstraZeneca.
The ratio of the proteins of interest against β-actin can be seen for the three time-
points for both BiP and phospho-eIF2α in Figure 5.14. For images of the runs, see
Figure A.9 in Appendix A.

Figure 5.14: UPR protein expression readouts with automated Western blot for BiP
and phospho-eIF2α after 3, 6 and 24 h stimulation with tunicamycin.

The protein expressions of BiP after 3 h stimulation are similar for all concentrations
of tunicamycin. Furthermore, a dose-response can be seen for BiP and phospho-
eIF2α after 6 h stimulation where the protein expression increases with increased
concentration of stimulus. At 24 h, BiP was strongly induced at all concentrations
of tunicamycin. Phosphorylation of eIF2α displayed a similar dose-response rela-
tionship to tunicamycin at all timepoints investigated. When comparing the 24 h
readout of phospho-eIF2α from cells stimulated with 0.1 µg/ml in Figure A.8 in
Appendix A, the same level of protein expression can be observed, demonstrating
that the result is reproducible.

5.3.2 Traditional Western blot
The traditional Western blot was performed to further investigate protein read-
outs of ATF6 and CHOP, normalized to β-actin, since these readouts could not
be established with automated Western blot. Western blot was first performed on
cells stimulated with tunicamycin in absence or presence of a commercially available
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PERK inhibitor. The experiment resulted in protein readout of ATF6 and cleaved
ATF6, which can be seen in Figure 5.15, while no readout of CHOP could be estab-
lished.

For the PBS control, only bands for non-cleaved ATF6 could be observed. For
the tunicamycin stimulated samples, both non-cleaved and cleaved ATF6 could be
observed, with a higher expression of cleaved ATF6 for the samples with no inhibitor
added.

Figure 5.15: Detection of cleaved ATF6 with traditional Western blot after 24 h stim-
ulation with tunicamycin. Protein expression in non-stimulated cells with PBS and tuni-
camycin stimulated cells with and without inhibitor of the PERK pathway can be seen.

Western blot was thereafter performed with the same antibodies to investigate pro-
tein readout for CHOP with the protein extractions from experiment 1. However,
the experiment only resulted in protein readout of β-actin, which could be due to an
unsuccessful transfer of proteins from gel to membrane since almost no proteins were
visualized when staining with Ponceau S. An unsuccessful transfer could depend on
the small size of CHOP (27 kDa) or to space between gel and membrane during
transfer, disabling transfer of proteins.

5.4 Cell viability
Cell viability over a 48 h time-course stimulation of H2O2, thapsigargin and tuni-
camycin was performed in the final experiment. The cells were stained with IncuCyte
NucLight Rapid Red Reagent, that stains nuclei in cells, and with IncuCyte Caspase
3/7 Green Reagent, that detects apoptosis in live cells by cleavage of green fluores-
cent protein when caspase-3/7 is activated, resulting in staining of nuclei DNA. The
fluorescence was measured every third hour and the resulting percentages of live and
apoptotic cells can be seen in Figure 5.16.

Regarding live cells, there is a large drop in cell viability for the three highest doses
of H2O2 compared to the lower doses that had a constant viability throughout the
run. For thapsigargin, the constant percentage of live cells seen indicates that there
is no or a very small toxic effect of this stimulus, except for 100 nM and 500 nM
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where a drop in live cells can be observed. there is a linear decrease of live cells
for tunicamycin, indicating that it has a toxic effect on the cells at the chosen
concentrations. Regarding the results from the apoptotic stain, the percentage of
apoptotic cells did not correlate with live cells for H2O2, which could be due to
unsuccessful staining or that the programs used to target these cells did not find the
correct cells. However, the apoptotic staining did correlate with tunicamycin and
thapsigargin, indicating that the staining did work.

Figure 5.16: The percentage of live and apoptotic cells when stimulated with different
concentrations of H2O2, thapsigargin and tunicamycin during a 48 h time-course experi-
ment.
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6.1 Differential expression of IPF
To comprehensively understand cell diversity and central mechanisms that drive
pathological epithelial remodelling in disease, in silico models can provide valuable
insights. Both bulk RNA and scRNA can be utilized to gain important knowl-
edge, but due to the variety of functionally distinct cell types that exist in the
lung, scRNA-seq provides insight not available from bulk RNA-seq analysis. It en-
ables potential identification of key mechanistic mediators as well as highlighting cell
subtypes with key role in disease pathologies. Analysis of the scRNA-seq datasets
utilized in this study has enabled identification of epithelial cell subtypes that differs
significantly in UPR at the transcriptional level and in distribution between disease
and control, especially for IPF.

The DE analyses in IPF identified gene regulations that were consistent across the
three independently performed studies, which strengthens the reliability and robust-
ness of the result and the analysis of the UPR pathway. From the DE analysis and
the cell distribution between IPF and control several observations were made. For
example, all three studies demonstrated a loss of AT2 and AT1 cells in IPF, which
indicates that lung fibrosis is promoted by disrupted alveolar epithelial homeostasis,
even if this hypothesis is in need of further investigation.

Regarding AT2 cells, their low abundance in IPF is consistent with previous litera-
ture. AT2 cells differentiate into AT1 cells when required as a repair mechanism to
restore alveolar homeostasis. However, in IPF, exposure to intrinsic and extrinsic
factors have been correlated to dysfunctional AT2 cells, which lead to AT2 hyper-
plasia, damaged capacity of differentiating into AT1 cells, induction of senescence
programs, apoptotic AT2 cells, fibroblast activation and tissue remodelling [54], [55].
However, opposite to the hypothesis about upregulation of UPR, no UPR induction
could be observed in AT2 cells of IPF patients compared to control. Previously
performed studies have shown induction of UPR in AT2 cells in in vivo models of
pulmonary fibrosis, for example through disrupted EMC3 [56], knockout of BiP [57]
or mutations in SFTPC [27]. The downregulation seen in this study could be due
to that gene expression do not necessarily correspond to protein expression or to a
deficiency in inducing functional UPR in AT2 cells, which could lead to reduced cell
numbers in disease. The analysed control lungs, which at least in Habermann were
declined for organ donation, could have been derived from non-healthy subjects with
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increased UPR.

In IPF tissue, the number of AT1 cells were scarce but those identified had an up-
regulated UPR expression profile. This may suggest that the few remaining AT1
cells were under stress. The low abundance of AT1 cells is consistent with previous
findings where it has been confirmed that there is a loss of AT1 cells in IPF [55].
It can be explained by their regulatory role in the thin air-blood barrier together
with their morphology, ie thin and stretched, and their large coverage of the alveolar
area (90-95 %) which makes them very vulnerable in IPF where ECM accumulates
and the lungs become rigid. However, dissociation biases between different studies
during cell isolation contribute to different cellular proportions than those found in
vivo due to variable cellular sensitivities and AT1 cells has previously been found to
be under-represented in scRNA-seq data [58].

The observed abundance of club cells in IPF are consistent with previous studies.
Club cells are the main secretory cells in human small airways and their secretory
products SCGB1A1, MUC5B and SCGB3A2 have been observed to be significantly
increased in epithelial lining fluid of patients with IPF in a scRNA-seq study by
Zuo et al. [59]. Previous correlations between club cells and IPF and the fact that
UPR is important for functional secretory cells, contribute to the conclusion that
the induction of UPR seen in the annotated club cell types might contribute to the
abundance of club cells and to the pathogenesis of IPF [60].

Finally, the large abundance of ciliated cells in IPF could be due to that these
cells normally are found throughout the airways and therefore might have replaced
alveolar units in IPF. The hypothesis is strengthened by a scRNA-seq study from
Xu et al. where cell markers of ciliated, goblet and basal cells but not alveolar cells
were observed in IPF and a loss of regional specification and gene expression was
suggested [61]. The lack of UPR gene regulation seen in these cells compared to
the upregulation seen in more secretory cells could also be due to a smaller need for
protein folding, contributing to that UPR is of less significance in ciliated cells.

6.2 Aberrant basaloid cells
The heatmaps of the 12 signature genes from Habermann applied on epithelial cells
in Habermann and Adams confirmed that these genes distinguish the aberrant basa-
loid cells from other epithelial cells and that the annotated subgroups have similar
characteristics. The existence of this newly found subgroup was further confirmed
by the created subgroup in Reyfman, which showed similar characteristics as the
already annotated subgroups. Both by similar heatmap results and since the ma-
jority of cells were from IPF and annotated as AT2 cells, which complies with the
slingshot-based pseudo-time trajectories made of cells from pulmonary fibrosis in
Habermann [10]. From the trajectories, the authors hypothesised that the aberrant
basaloid cells might be derived from transitional AT2 cells. Finally, the comparison
of biological processes between the annotated subgroups and the created subgroup in
Reyfman by GO enrichment strengthened the reproducibility of the aberrant basa-
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loid cells since similar GO enrichment as described by Habermann and Adams were
achieved.

Altogether, above mentioned findings in IPF patients across the three scRNA-seq
datasets investigated confirm the existence of aberrant basaloid cells since similar
characteristics were discovered and the cells were shown to be reproducible across
datasets.

Regarding the UPR induction and abundance of aberrant basaloid cells in IPF, it
can be stated that UPR in these cells might be important for development of IPF.
One explanation to the observed upregulation of UPR genes could be the secretory
phenotype of these cells which increases the need for protein folding. However, fur-
ther studies are required to enable such conclusions. The impact of UPR is further
strengthened by upregulated T-UPR genes since they are specific for maladaptive
UPR signalling. In a study by Auyeung et al. [53], it was suggested that IRE1 is
activated during conversion into these cells and that gene expression changes caused
by IRE1 activation during lung epithelial injury are part of terminal UPR [53]. The
upregulation of IRE1 and T-UPR genes in this study confirms these previous find-
ings and the connection of UPR to IPF.

Unfortunately, regulation of the UPR could not be seen for the created aberrant
basaloid subgroup in Reyfman, which could be due to that Reyfman had fewer
aberrant basaloid cells annotated than Habermann and Adams and thereby small
and insignificant regulations of UPR genes. The fact that aberrant basaloid cells
are a rare cell type could also contribute to the difficulties of correctly annotating
the cell subgroup across datasets.

6.3 Differential expression of COPD
Regarding the DE analysis of COPD, there might have been too few cells for a
significant comparison of COPD and control, which is important to take into account
since the number of cells have a large impact on the validity of the results. When
comparing the regulation of genes for the epithelial subtypes in this study with
literature, there is one article where the distribution of AT2 cells was similar and
where the authors concluded the importance of AT2 cells in COPD [58]. Thereby,
the impact of AT2 cells in COPD can be confirmed, but not the role of UPR.

6.4 Comparison of datasets
When comparing different datasets it is important to consider the differences in
methods and technologies used. For scRNA-seq datasets specifically, multiple fac-
tors are likely to influence the result; the number of cells and samples, cell types,
method used for annotating cell subtypes, quality control cut-offs and cell extraction
methods.
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Age distribution was one clear differentiating factor between IPF and control tissue
that is likely to have an impact on the analysis.For example, if the difference in gene
regulation between controls and diseased subjects mainly are due to disease state,
age differences or other age-related changes not related to disease. Another crucial
parameter was the epithelial cell numbers, which enables in depth investigation of
epithelial cell subtypes. Lung tissue processing most likely influence the extraction
of different cell types and the number of cells extracted. It involves both enzymatic
and mechanical processing that can injure cells, leading to cell death and loss of
specific cell populations. The enzymes chosen for digestion differed between the
datasets and their different digestion capacities effect the efficiency and digestion
rates. Furthermore, different digestion efficiencies between IPF and control lungs
due to the accumulated ECM in IPF can also introduce biases.

6.5 In silico future analyses

A comparison interesting to make is to integrate the three datasets and analyse
the whole set of epithelial cells. To create an integrated epithelial cell atlas could
help capturing the variability seen concerning age, number of cells and samples,
and the risk of wrongly annotate cell subtypes. Furthermore, a cell atlas could be
used to better distinguish between disease-specific changes and natural variations in
the datasets. Biological heterogeneity could be captured more accurately, which is
useful when analysing rare cell types such as the newly discovered aberrant basaloid
cells.

To further explore the role of UPR in epithelial cell subtypes, a similar process as
for the aberrant basaloid cells could be implemented for the MUC5B+ subgroup
from Habermann by applying biomarkers of MUC5B+ cells on epithelial cells in
Reyfman and Adams. The analyse would be of interest since the MUC5B+ cells
showed similar characteristics as the aberrant basaloid cells and could be important
for the disease pathology. An UPR dependent genetic link, MUC5B promoter poly-
morphism, between these cells and IPF has previously been confirmed by Chen et
al. via IRE1β and spliced XBP1 in the IRE1 pathway [28]. How MUC5B contribute
to IPF initiation and progression is intriguing and it might be a future targeting
molecule.

It would also be of interest to apply all three secretory (club) subtypes from Haber-
mann on the data from Adams and perform a trajectory analysis. That would allow
the hypothesis made by Habermann to be explored about SCGB3A2+ being able
to differentiate into AT1 cells via transitional AT2 cells. A similar cell trajectory
analysis has been observed in a scRNA-seq study on mice, where both club cells and
AT2 cells could transition into AT1 cells [62].
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6.6 Gene readouts
The upregulation of BiP, CHOP and spliced XBP1 seen in HBECs when challenged
with tunicamycin confirm the induction of UPR by activation of the IRE1 and PERK
pathways at transcriptional level. However, the ATF6 pathway was only activated
at protein level, which demonstrates the importance of investigating expression at
both transcription level and protein level since observations on mRNA level do not
necessarily reflect the response at protein level.

Regarding H2O2 challenged cells, PERK-mediated upregulation of CHOP has been
observed in previous studies [40], but almost no regulation was seen in any of the two
experiments performed with H2O2 in this study at gene expression level. This could
be due to cell death and that cells changed into a senescent phenotype at higher
concentrations of H2O2, which affects the transcriptional machinery. However, the
ER is overall not sensitive to H2O2 stress since its oxidizing environment contribute
to that the majority of cysteines in the ER already are oxidized and forms disulfide
bonds, with H2O2 constantly created as byproduct when the disulfide bridges are
created.

The upregulation observed when stimulating cells with CSE indicates that UPR can
be induced through oxidative stress and that CSE is more efficient than H2O2 in
inducing UPR. In previous studies, expression of CHOP and ATF4 were upregulated
in primary small epithelial cells and HBECs during acute induction of ER stress,
while long-term chronic CSE exposure led to decreased expression of CHOP. The
regulation of CHOP in this study is coherent with the acute model and may be
important in early induction of lung disease. However, ER stress levels changes over
time, which makes it important to establish chronic ER stress models as well [63].

The stimulation with tunicamycin in the final experiment resulted in similar but
lower upregulations than in previous experiment, which indicates that the choice
of cell media has a large impact on cell growth and can be optimized to best fit
the experiment to be performed. The ExPlus media is known to result in higher
proliferation of cells than BEGM media and their usage resulted in different mor-
phologies, which can affect transcriptional regulations. Similar results were achieved
by stimulation with thapsigargin as for tunicamycin and a conclusion can thereby
be drawn that these stimulus can be used to set up robust mechanistic models in
primary lung cells for stimulation of UPR.

6.7 Protein readouts
The establishment of protein readouts for eIF2α and phospho-eIF2α indicates that
the primary antibodies used to target these proteins worked as well as the sec-
ondary antibodies used since signals were detected. Since the signal was very strong
for the higher concentration of eIF2α primary antibody, the lower antibody dose
is preferred. Regarding phospho-eIF2α, the signal was low and the higher dose of
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primary antibody preferred.

No protein expression could be detected for CHOP or ATF6, which might be due to
that the primary antibodies chosen did not work with JESS. However, the antibody
for ATF6 led to signals of ATF6 and cleaved ATF6 in traditional Western blot,
which implies that the ATF6 arm is activated on protein level. Since the sample
with inhibitor of the PERK pathway resulted in lower expression of cleaved ATF6,
it is possible that the PERK and ATF6 pathways interact. Signaling of UPR is
known to be complex with cross-talk and compensations between transcription re-
sponse from the three arms [53]. Together with the fact that the UPR arms might
be expressed at different levels, monitoring both gene and protein level is important
to capture the complexity of UPR.

The actual investigation of protein expression with JESS from the time-course ex-
periment performed in this study resulted in readouts for phospho-eIF2α and BiP.
Thereby, both BiP and phospho-eIF2α can be used to establish protein readouts of
UPR, but preferably at different timepoints and with different antibody concentra-
tions since maximal expression levels were achieved at different timepoints and the
detected signals differed in strength between proteins.

6.8 In vitro future analyses
To further investigate the use of thapsigargin for UPR induction, an experiment
similar to the first one performed in this study could be executed to see if the levels
of gene expression would increase even more, as could be seen for tunicamycin when
comparing cultivation in ExPlus and BEGM media. Furthermore, a comparison of
the two donors could be made, to see if the difference in UPR mostly depends on
chosen donor or cell media. To examine UPR in COPD or IPF donors is also of
interest since the response in healthy vs diseased cells most likely differs. Thereby,
it is important to, besides from mechanistic models with healthy cells, also develop
in vitro disease models with diseased cells for ER stress and UPR.

To continue with thapsigargin or tunicamycin, that has shown to induce UPR, dif-
ferent inhibitors could be tested to examine if the inhibition of certain genes in the
UPR pathway contributes to decreased levels of gene expression and to higher cell
viability. A suggestion for tunicamycin is then to continue with the ExPlus media
and 6 h stimulation with 0.03 µg/ml since the EC80-value for majority of genes and
the largest fold-changes were found at this concentration and timepoint, using Ex-
Plus media.

Finally, it is of interest to investigate chronic vs acute ER stress and UPR since
cells are exposed to chronic ER stress in COPD and IPF. Chronic models could be
developed by challenging cells with lower doses of stimuli during a longer time-course
and then compare with that of more acute ER stress.
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6.9 Comparison in silico and in vitro models
To directly compare results from in silico and in vitro models is a challenge, but
the results from one of these domains can be used to confirm or further validate the
results in the other. One of the challenges with in vitro experiments is to capture
the complexity of the cells in their natural environment. When investigating chronic
diseases, such as COPD and IPF, it is important to both look at acute and chronic
responses and to capture the cellular response over time. One example from this
study is the gene expression of XBP1 and sXBP1 in the IRE1 pathway, where there
is a shift in response between 6 and 24 h stimulation with tunicamycin that indicate
a cellular adaption to the stress exposure where unspliced XBP1 has been refilled
at the 24 h timepoint. The in silico analysis can be of great use to investigate such
changes over time and to capture the complexity of respiratory diseases by enabling
analysis of diseased tissue at single cell level.

The results from single cell analysis could be used to create hypotheses about bi-
ological processes in the diseased state that then can be further examined in vitro
and in vivo. One example from this study is the expression of PPP1R15A, which
was downregulated in the DE analysis for the majority of epithelial cell subtypes
investigated and then analysed in the in vitro experiments to validate UPR upon
induction of ER stress with different stimuli. However, it was upregulated at gene
level in vitro, while previous literature has resulted in downregulation of PPP1R15A,
similar to the in silico result in this study [16]. The difference might be due to that
the complexity of cellular processes in vivo is not always reflected with in vitro mod-
els. For example, interactions between different cell types are complex and hard to
capture in vitro. Furthermore, a challenge with in in silico models is that extracted
tissues are from sever disease state developed during a long time, which do not di-
rectly reflect the early phase of disease, where the possibility of reversing the disease
state is maximal.
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Based on the experimental results of UPR gene regulations with different stim-
uli, thapsigargin and tunicamycin could be used to create robust mechanistic mod-
els for modulation of ER stress and UPR, especially for CHOP, BiP, sXBP1 and
PPP1R15A. However, oxidative stress caused by H2O2 and CSE lead to small in-
duction of the UPR pathway or none at all and are therefore, based on this study,
not optimal to use to set up models for modulation of UPR.

Regarding protein readouts and the use of different Western blot methods, several
conclusions can be made. First, that tunicamycin can be used to induce the expres-
sion of proteins in the UPR, which was accomplished for eIF2α, phospho-eIF2α, BiP
and ATF6. Second, that automated Western blot with JESS can be used with the
tested primary antibodies for eIF2α, phospho-eIF2α and BiP, but not for CHOP
and ATF6. Third, that traditional Western blot can be used with the tested primary
antibody for ATF6, indicating that different methods of Western blot can be useful
depending on tested primary antibodies.

Since club cells and aberrant basaloid cells were upregulated in IPF and the ma-
jority of cells from these subgroups were IPF cells, they might be important in the
development of IPF and be affected by ER stress and induction of UPR in patients.
Furthermore, AT1 and AT2 cells were mostly found in healthy patients, which is
consistent with previous studies, and the regeneration of these could be used to
improve the health of IPF patients.

Regarding the regeneration of the aberrant basaloid cells in Reyfman, the created
subgroup did show similar characteristics, strengthening the existence of the sub-
group and its reproducibility across datasets.

Both in vitro and in silico models are of high importance when investigating bi-
ological processes of disease. Together, they can be used to understand disease
mechanisms in specific cellular subsets and enable identification of new drug tar-
gets. scRNA-seq data can be used to establish hypothesis around biological path-
ways important in disease that thereafter can be further investigated with in vitro
models.
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A
Appendix - Results

In this chapter, figures and tables supporting the results in the result chapter of
the report can be found. Results from the bioninformatics part is presented first,
followed by results from the experimental part of the project.

A.1 Unfolded protein response gene signature
The UPR gene signature collected from IPA can be seen in Table A.1.

Table A.1: UPR gene signature from IPA.
Gene symbol UPR pathway

All HSPA5 (BiP)
PERK EIF2AK3, DNAJC3, NFE2L2, EIF2A, ATF4, BCL2, CALR,

CANX, DDIT3 (CHOP), HSP90B1, PPP1R15A, PPARG
ATF6 ATF6, ATF6B, MBTPS1, MBTPS2
IRE1 ERN1, ERN2, XBP1, EDEM1
ERAD DNAJB9, HSPA1A, HSPA1B, HSPA4, HSPH1

OS9, SEL1L, SYVN1, UBXN4, VCP
ER protein folding ERO1B, P4HB
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A.2 Cell distribution across epithelial cell sub-
types

The analysed epithelial cell subtypes in the three datasets and the number of cells
belonging to diseased and control state was compared and can be seen in Table A.2.

Table A.2: Analysed epithelial cell subtypes and number of IPF and control cells from
the three datasets by Habermann, Reyfman and Adams.
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A.3 T-SNE images of aberrant basaloid cells
T-SNE images of the aberrant basaloid cell gene signature applied on epithelial cells
from the three datasets can be seen in this section. The expression of these genes
in the cells are visualised in the first image, red indicating higher expression and
lighter color indicating lower expression. The cells with highest expression of these
genes were analysed.

The selected aberrant basaloid gene signature applied on the data from Habermann
is visualised with T-SNE images in Figure A.1. The selection of cells resulted in a
sub-cluster of 497 cells where 97 % are from IPF and 70 % of the cells are from the
aberrant basaloid cell subgroup annotated in Habermann.

Figure A.1: T-SNE images of epithelial cells from the Habermann dataset, coloured by
expression (red to yellow) and annotated cell subgroups. From [46].

The selected aberrant basaloid gene signature applied on the data from Adams is
visualised with T-SNE images in Figure A.2. The selection of cells resulted in a sub-
cluster where 95 % of the cells are from IPF and 80 % are annotated as aberrant
basaloid cells or basal cells.

Figure A.2: T-SNE images of epithelial cells from the data by Adams, coloured by
expression (red to yellow) and annotated cell subtype. From [46].

The created aberrant basaloid subgroup in Reyfman is visualised with T-SNE images
in Figure A.3. The selection of cells resulted in 209 cells being selected where 82 %
of the cells was from IPF and the majority was defined as AT1 or AT2 cells.
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Figure A.3: T-SNE images of epithelial cells from the Reyfman dataset, coloured by
expression (red to yellow) and annotated cell subtype. From [46].
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A.4 Marker genes for the aberrant basaloid cells

In Table A.3, 28 of the most upregulated genes for the aberrant basaloid cells in
Habermann and Adams, and the created aberrant basaloid subgroup in Reyfman
can be observed.

Table A.3: Log2 Fold changes of marker genes for the aberrant basaloid cells in Haber-
mann and Adams, and the created aberrant basaloid cell subgroup in Reyfman.

Gene Habermann Reyfman Adams
CALD1 2.00 0.58 2.91
CCND2 1.86 1.00 2.46
CDH2 1.375 - 2.19

CDKN2A 1.65 - 2.26
COL1A1 2.78 0.82 2.68
DST 1.46 0.80 2.72
FN1 3.03 0.89 3.30

GDF15 2.83 - 2.49
IFI27 1.73 1.35 2.85
IL32 2.54 1.25 3.39

ITGB6 2.24 0.61 2.55
KRT17 3.43 1.24 3.43
KRT18 1.41 0.92 2.62
KRT19 - 0.89 2.28
KRT7 2.89 1.63 3.82
KRT8 - 0.71 2.61
MDK 2.03 - 2.56
MMP7 2.16 0.78 3.54

PMEPA1 1.67 0.66 2.40
PTGS2 3.32 1.00 2.22
S100A10 1.80 1.25 2.52
SFN 2.20 0.54 2.22
SOX4 2.22 0.80 2.16

TM4SF1 2.65 1.35 2.74
TMSB10 2.22 1.07 3.33
TMSB4X 2.41 1.06 3.83
TPM1 2.30 0.84 2.51
TRAM1 1.82 0.85 2.36

A.5 Cell images after 3, 6 and 24 h stimulation

Cell images from cells stimulated with tunicamycin in experiment 1 can be seen in
Figure A.4.
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Figure A.4: Cell images of cells stimulated with tunicamycin in experiment 1 after 3,
6 and 24 h stimulation.
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Cell images from cells stimulated with H2O2 in experiment 2 can be seen in Figure
A.5.

Figure A.5: Cell images of cells stimulated with H2O2 in experiment 2 after 6 and 24
h stimulation.
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Cell images from cells stimulated with H2O2, thapsigargin, tunicamycin and CSE in
experiment 3 can be seen in Figure A.6.

Figure A.6: Cell images of cells stimulated with H2O2, CSE, thapsigargin and tuni-
camycin in experiment 3 after 6 and 24 h stimulation.
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A.6 Ct-values for housekeeping genes
The Ct-values for the housekeeping genes GAPDH and RPLP0 from the three ex-
periments can be seen in Figure A.7. The Ct-values for experiment 1 and 2 can be
observed in the first row, while Ct-values for for experiment 3 can be seen in the
second row.

Figure A.7: Ct-values of housekeeping genes from the three performed experiments.
Experiment 1 with tunicamycin and experiment 2 with H2O2 in the first row, and exper-
iment 3 with H2O2, thapsigargin, tunicamycin and cigarette smoke extract (CSE) in the
second row.
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A.7 Western blot
Images of the result from the automated Western blot runs can be seen in Figure
A.8.

Figure A.8: UPR protein expression readouts with automated Western blot for differ-
ent concentrations of eIF2α and phospho-eIF2α primary antibodies. Readouts for non-
stimulated cells with PBS and tunicamycin stimulated cells with and without inhibitor of
PERK can be seen.
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Protein readouts with automated Western blot for different concentrations of eIF2α
and phospho-eIF2α primary antibodies can be seen in Figure A.9. Samples with cells
stimulated with tunicamycin with or without an inhibitor of the PERK pathway
were used.

Figure A.9: Protein expression of UPR proteins after 3, 6 and 24 h stimulation. Protein
readouts for BiP, phospho-eIF2α and using samples from experiment 1 can be seen in the
top four figures and protein readouts for eIF2α and phospho-eIF2α using samples from
another experiment can be seen in the last figure together with an attempt to measure
ATF6 and CHOP, which did not succeed.
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The protein readout of β-actin derived from rabbit after unsuccessful Western blot
run for CHOP, using samples with cells stimulated for 24 h with and without in-
hibitor of the PERK pathway, can be seen in Figure A.10.

Figure A.10: Detection of β-actin rabbit after unsuccesful traditional Western blot
run for detection of CHOP. Samples are from cells stimulated with tunicamycin for
24 h with and without inhibitor of the PERK pathway.
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Protocols for the experimental part of the project are presented in this chapter. Pro-
tocols regarding cell cultivation, RNA purification, cDNA synthesis, qPCR, protein
quantification, traditional Western blot and automated Western blot are provided.

B.1 Cell culture
The following cell culture protocol was used in experiment 1. For experiment 2 and
3, the same protocol was followed as for the 96 well plates explained below, but
with different experimental layouts and stimuli, as can be seen in Table 4.2 in the
materials and methods chapter.

Day 1

1. Heat medium in 37.5 °C prior to usage.
2. Thaw vials with cells in 37 °C water bath.
3. Add cells to 2x10 mL pre-warmed medium.
4. Centrifuge at 300 x g for 10 min.
5. Resuspend in 8 mL medium.
6. Add 200 µL to eppendorf-tube and count cells in Nucleocounter.
7. Dilute cells in medium to 1*105 cells/mL.
8. Add 100 µL to three 96 well plates (10 000 cells/well, 12 wells in total) and

300 µL to three 48 well plates (30 000 cells/well, 12 wells in total).
9. Add 200 µL PBS to surrounding wells.
10. Incubate cells over night at 37.5 °C and with 5 % CO2.

Day 2 - 96 well plates

1. Remove medium and add 100 µL fresh medium.
2. Add 10 µL tunicamycin of each concentration (final concentrations: 0.01, 0.03,

0.06, 0.1 and 0.5 µg/mL) in duplicates.
3. Harvest plates at 3 h, 6 h, 24 h by the following steps:
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• Aspirate the media carefully.
• Wash cells in 200 µL of PBS and lyse cells in 150 µL of RLT Lysis Plus

buffer.
• Quickly transfer cell-lysate plates to -80 °C freezer awaiting sample pro-

cessing.

Day 2 - 48 well plates

1. Remove medium and add 200 µL fresh medium.
2. Add 20 µL tunicamycin of each concentration (final concentrations: 0.01, 0.03,

0.06, 0.1 and 0.5 µg/mL) in duplicates.
3. Harvest plates at 3 h, 6 h, 24 h by the following steps:

• Aspirate the media carefully.
• Wash cells in 300 µL of PBS two times and add 25 µL lysis buffer/well.
• Keep plates on ice for 5 min and scrape cells with a pipette tip.
• Shake plates for 30 min in a cold room
• Transfer plates to -80 °C freezer awaiting sample processing.

The lysis mixture used for the lysis of cells in the 48 well plates was prepared by
adding 850 µL M-PER Lysis Buffer, 50 µL DNAse I (50 µg/mL) and 100 µL of a
mixture with tablets of 10X cOmplete Mini protease inhibitor (Roche, 11836170001)
and 10X PhosSTOP (Roche, 4906837001) dissolved in dH2O.

B.2 Gene expression analysis

B.2.1 RNA purification
The RNA purification was performed with the RNeasy 96 kit and on 150 µL lysates.

1. Place an RNeasy 96 plate on top of an S-Block. Mark the plate for later
identification.

2. Add 1 volume (150 µL) of 70 % ethanol to each well of the assay plate. Mix
well by pipetting up and down 3X.

3. Transfer the samples (300 µL) to the wells of the RNeasy 96 plate.
4. Seal the RNeasy 96 plate with an AirPore tape sheet
5. Place plate in vacuum pump before centrifugation to empty wells.
6. Centrifuge at 6000 rpm ( 5600 x g) for 4 min at 20-25 °C.
7. Empty the S-block and remove the AirPore tape sheet.
8. Add 800 µL Buffer RW1 to each well of the RNeasy 96 plate, and seal the

plate with a new AirPore tape sheet.
9. Place plate in vacuum pump before centrifugation to empty wells.
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10. Centrifuge at 6000 rpm ( 5600 x g) for 4 min at 20-25 °C.

11. Empty the S-block and remove the AirPore tape sheet.

12. Add 800 µL Buffer RPE to each well of the RNeasy 96 plate, and seal the
plate with a new AirPore tape sheet.

13. Place plate in vacuum pump before centrifugation to empty wells.

14. Centrifuge at 6000 rpm ( 5600 x g) for 4 min at 20-25 °C.

15. Empty the S-block and remove the AirPore tape sheet.

16. Add 800 µL Buffer RPE to each well of the RNeasy 96 plate, and seal the
plate with a new AirPore tape sheet.

17. Place plate in vacuum pump before centrifugation to empty wells.

18. Centrifuge at 6000 rpm ( 5600 x g) for 4 min at 20-25 °C.

19. Remove the AirPore tape sheet. Place the RNeasy 96 plate on top of a rack
of Elution Microtubes CL.

20. Add 50 µL RNase-free water to each well, and seal the plate with a new AirPore
tape sheet.

21. Incubate for 1 min at room temperature (15-25 °C).

22. Centrifuge at 6000 rpm ( 5600 x g) for 4 min at 20-25°C to elute the RNA.

RNA concentrations were measured using NanoDrop ND-1000 spectrophotometer
(ThermoFisher Scientific) at 260 nm.

B.2.2 cDNA synthesis
The components in the master mix from the High Capacity cDNA reverse Tran-
scription kit added to each well for the cDNA synthesis can be seen in Table B.1.

Table B.1: Master mix used for each sample in the cDNA synthesis.
Component Volume (µL)
10X RT buffer 4
25X dNTP 1.6

10X Random Primer 4
RNase-free Water 8.4

MultiScribe Reverse Transcriptase 2
Total 20

The cDNA protocol used in the Veriti 96w Thermal Cykler (Applied Biosystems)
can be seen in Table B.2. The cover temperature used prior to start was 105 °C.
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Table B.2: cDNA protocol used for amplification in the Thermal Cykler.
Temperature (°C) Time

25 10 min
37 2 h
85 5 min
4 ∞

B.2.3 qPCR
1. Thaw cDNA plate on ice.
2. Mix and spinn the cDNA for 30 s respectively.
3. Dilute cDNA in nuclease-free water to 3X by adding 80 µL water to each well.

4. Use TaqMan Pipetting BioMek NX robot to add 7 µL master mix and 3 µL
cDNA in triplicates to a 384 well plate.

5. Centrifuge at 700 rpm for 1 min.
6. Run the qPCR on the QuantstudioTM 7 Flex Real-Time PCR system (Applied

Biosystems) for comparative CT method.

The components in the master mix for the qPCR added to each well can be seen in
Table B.3.

Table B.3: Master mix used for each sample in the qPCR run.
Component Volume (µL)

TaqMan Master Mix 5
TaqMan probe 0.5

nuclease-free water 1.5
Total 7
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The qPCR protocol used with the Quantstudio Real-Time PCR system can be seen
in Figure B.1.

Figure B.1: Program for qPCR run with Quantstudio Real-time PCR system.

B.3 Protein quantification
Protein quantification was performed with Pierce BCA Protein Assay kit by mea-
suring protein concentrations in the supernatants from the cell lysates. All equal
samples were pooled and tested as singlets.

1. Thaw lysates on ice and transfer to eppendorf tubes.
2. Spin lysates for 10 minutes at 14 000 rcf at 4 °C and save supernatant.
3. Dilute lysates 1:5 directly in plate by adding 5 µL lysate and 20 µL M-PER

buffer.
4. Dilute BSA ampule into clean vials with same diluent as samples (M-PER).
5. Add 25 µg/mL of standards in duplicates into plate.
6. Prepare working reagent by mixing 11 mL working reagent A and 220 µL

working reagent B and shake.
7. Add 200 µL working reagent mixture to each well.
8. Cover and incubate at room temperature for 10-20 min (read when enough

colour).
9. Uncover the plate and measure OD at 562 nm with SpectraMax 190 (Molecular

Devices).
10. Calculate standard curves from BSA standards by plotting BSA concentrations

against measured OD-values.
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11. Calculate protein concentrations from measured ODs and the slope (k) and
y-intercept (m) of the standard curve by using equation B.1.

Concentration = ODsample −mvalue

kvalue
(B.1)

BSA standard dilutions can be observed in Table B.4.

Table B.4: BSA standard dilutions used to determine protein concentrations.
Conc (µg/mL) Volume BSA (µL) Volume M-PER (µL)

2000 0 300
1500 125 375
1000 325 325
750 175 175
500 325 325
250 325 325
125 325 325
25 400 100
0 400 0

Standard curves calculated from the OD measurements of BSA standard dilutions
can be seen in Figure B.2.

Figure B.2: Standard curves for protein determination of the samples from exper-
iment 1. The samples from 3 and 6 h stimulation with tunicamycin to the left and
samples from 24 h stimulation with tunicamycin to the right.

B.4 Traditional Western blot
1. Samples were pre-diluted with water
2. NuPAGE LDS Sample Buffer (4x) and NuPAGE Sample Reducing Agent (10x)

were added to each sample at working concentration.
3. Samples were vortexed, spinned and heated to 70 °C for > 10 min.
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4. Box for SDS-run was prepared by setting the gel in the box and adding MOPS
or MES buffer in the box, covering the wells.

5. 2.5 µL of chameleon Duo ladder was loaded into its designated wells.
6. Samples were loaded into their designated wells according to the defined setup.

7. 0.5 mL NuPAGE Antioxidant was added to the 200 mL of MOPS/MES SDS
running buffer in the upper (cathode) buffer chamber.

8. The gels were run with a constant voltage of 150 V and with 1 A as maximal
ampere level for 1 h with MES running buffer or 90 min with MOPS running
buffer.

9. Prepare concentrated methanol solution and transfer buffer solution for the
membrane.

10. Immerse the PVDF membrane for 1 min in concentrated methanol solution
and then transfer to transfer buffer.

11. Put the gel after the SDS-run in transfer buffer
12. Prepare the transfer by putting together sponges, membrane protection, gel,

membrane (transfer sandwich) och setting it in the running-box.
13. Fill middle of box with blocking buffer and the rest with distilled water.
14. Transfer proteins from the gels to PVDF membranes at room temperature for

105 minutes at 80 V and with max 1 A.
15. Block membranes in LI-COR Intercept TBST blocking buffer for 60 minutes

at Room temperature.
16. Incubate with primary antibodies at 4°C overnight.
17. Wash at room temperature with TBS-Tween for 3x10 min.
18. Incubate with secondary antibodies at room temperature for 2 h.
19. Washing at room temperature with TBS-Tween for 3x10 min.
20. Detect fluorescence signals on Odyssey reader.

All antibodies were diluted in LI-COR Intercept TBST blocking buffer.

B.5 Automated western blot
1. Thaw samples in ice.
2. Prepare standard pack reagents by piercing the fold lids and add as follows:

• Add 40 µL deoinized water to the DTT reagent and pipette up and down
• Add 20 µL of the diluted DTT solution and 20 µL 10X sample buffer to

the 5X master mix reagent.
• Add 20 µL deoinized water to the ladder.
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3. Prepare 0.1X sample buffer by mixing 10 µL 10X SB stock and 990 µL deoinized
water.

4. Dilute lysates in 0.1X sample buffer if needed, use 0.5 mL tubes.
5. combine 1 part flourescent 5X master mix with 4 parts diluted lysate.
6. Spinn down and boil lysates at 70 °C for 10 min, spin down.
7. Dilute antibodies in Milk-free antibody diluent.
8. Prepare chemiluminescent substrate by mixing 200 µL Luminol-S and 200 µL

Peroxidase.
9. Peel away upper pat of folio on the JESS plate and add 5 µL ladder, 3.9 µL

sample, 10 mL antibody diluent, 10 µL streptadivin HRP, 10 µL primary an-
tibody, 10 µL secondary antibody and 15 µL HRP substrate to the designated
wells by pipetting to wall of wells, avoiding bubbles.

10. Cover (dedicated Jess cover and an adhesive foil) and spin at 1000 x g for 5
min.

11. Add 520 µL buffer/wash buffer well.
12. Clean inside of Jess door with 70 % ethanol.
13. Peel away lower foil and place plate in the JESS machine.
14. Insert capillaries, blue light when inserted correctly.
15. Open software and modify standard protocol by changing separation time to

30 min and primary antibody time to 60 min.
16. Start the JESS run and run for approximately 4 hrs.
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