
Outdoor global pose estimation from RGB
and 3D data

Master’s thesis in Systems, Control and Mechatronics

SIMON BASTÅS
ROBERT BRENICK

Department of Mechanics and Maritime Sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

Master’s thesis 2019:14

Outdoor global pose estimation from RGB and
3D data

SIMON BASTÅS
ROBERT BRENICK

Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems

Chalmers University of Technology
Gothenburg, Sweden 2019

Outdoor global pose estimation from RGB and 3D data
SIMON BASTÅS
ROBERT BRENICK

© SIMON BASTÅS, ROBERT BRENICK, 2019.

Supervisor: Yaowen Xu, CPAC Systems AB
Examiner: Peter Forsberg, Mechanics and Maritime Sciences

Master’s Thesis 2019:14
Department of Mechanics and Maritime Sciences
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Lidar scan generated from the simulation environment CARLA.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Outdoor global pose estimation from RGB and 3D data
SIMON BASTÅS
ROBERT BRENICK
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
Accurate and robust localization is crucial for safe and reliable autonomous vehicles.
In this thesis we present a machine learning approach for localization using RGB
images and 3D structure information. More specifically we use two types of neural
networks, one that predicts a pose in an given environment with a RGB-D image as
input and one that uses a 3D LiDAR scan and a prebuilt 3D map of the environment
to refine the prediction. The advantages of using neural networks for localization is
the constant runtime and that it use natural navigation, i.e. without the need of
infrastructure enhancement.
We show that the RGB-D network gains increased accuracy from the multi-modal
RGB-D data, compared to an uni-modal network trained on RGB or depth images
when used in outdoor scenes. Additionally, we show the benefit of using 3D LiDAR
data for pose refinement.

Keywords: Localization, RGB-D, Neural networks, Machine learning, Pose estima-
tion, Point cloud registration.

v

Acknowledgements
We would like to take this opportunity to thank our examiner Peter Forsberg and
supervisor Yaowen Xu for their guidance and continuous support during the project.
We would also like to thank CPAC Systems AB and their employees for hosting us
and making us feel very welcomed. We would also like to thank Annika Lundqvist
and Sabina Linderoth for sharing their insights about the simulator CARLA.

Simon Bastås and Robert Brenick, Gothenburg, May 2019

Thesis advisor: Yaowen Xu, CPAC Systems AB
Thesis examiner: Peter Forsberg, Chalmers

vii

Abbreviations
NNNeural Network
CNN..................Convolutional Neural Network
FFNN................Feed Forward Neural Network
MLP..................Multi-Layer Perceptron
LKLucas-Kanade
LiDARLight detection and ranging
FOVField of View
RGBRed, Green, Blue. Used for color images
VOVisual Odometry
ICPIteratvie Closest Point

ix

x

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Background and Related work . 2
1.2 Purpose . 3
1.3 Scope . 3

2 Theory 5
2.1 Neural networks . 5

2.1.1 Layers . 6
2.1.2 Neural network topologies . 8
2.1.3 Training neural networks . 9

2.2 Rigid Motion and twist . 10
2.2.1 Rotation formalism . 11

2.3 Point clouds . 13
2.3.1 Iterative Closest Point . 13
2.3.2 Surface Normals . 14
2.3.3 PointNet . 14

2.4 The Lucas–Kanade algorithm . 15
2.5 PointNetLK . 17

3 Method 21
3.1 Full system design . 21
3.2 Data sets . 22

3.2.1 CARLA Simulator . 22
3.2.2 Data collection . 24
3.2.3 Angle representation . 25

3.3 RGB-D Neural network . 26
3.3.1 Network design . 26
3.3.2 Network training & preprocessing 27

3.4 Point Cloud registration network . 29
3.4.1 Network design . 30
3.4.2 Training PointNetLK . 30
3.4.3 Map segment matching . 31
3.4.4 Sliding window method . 32

xi

Contents

4 Results 35
4.1 Results from autopilot test set . 35

4.1.1 Performance with clear weather data set 35
4.1.2 Performance with varying weather 38
4.1.3 Performance with PointNetLK refinement on varying weather 40

4.2 Results from challenging data set . 41
4.2.1 Performance with RGB-D and PointNetLK networks 41

4.3 Visual results of point cloud matching 42
4.3.1 Failure cases . 43

5 Discussion 45
5.1 RGB-D network performance . 45
5.2 PointNetLK performance . 45

5.2.1 Network training . 46
5.3 Lack of benchmarking test set . 46
5.4 Execution times . 46

6 Conclusion 49
6.1 Future Work . 49

Bibliography 51

A Appendix 1 I
A.1 Challenging test dataset . I

xii

List of Figures

2.1 Diagram of an artificial neuron, by Chrislb, Wikibooks, Licensed un-
der CC BY-SA 3.0, unaltered. 6

2.2 Sigmoid and ReLU activation functions. 6
2.3 Illustration of two fully connected 4x1 layers with an input layer and

output layer. 7
2.4 Figure illustrating the convolution operation of a 2×2 filter with stride

1. In this example, no zero-padding is used and the dimension of the
output will be different from the input. 8

2.5 Illustration of a max-pooling operation. 8
2.6 A simplified schematic view of the PointNet architecture as it is pre-

sented in the original PointNet paper [28]. 15
2.7 The PointNetLK network used for registration. 19

3.1 Flowchart of the fully combined system. 21
3.2 Example RGB image and corresponding depth map. 23
3.3 Images visualizing images in different weather conditions. 23
3.4 LiDAR scan from CARLA. 24
3.5 Top view of the used environment in CARLA simulator. 25
3.6 Generated 3D map from scans. 25
3.7 Illustration of an inception module. 27
3.8 Overview of the top layers of the full network architecture. The out-

put size of the concatenated RGB and depth network is 7x7x2048 and
the fully connected layer has 1024 neurons. 28

3.9 JET colormap encoding for a 5 bit depthmap. 28
3.10 Example depth image and its corresponding JET encoded represen-

tation. 29
3.11 The PointNetLK network used for registration. 30
3.12 Two identical point clouds with a transformation perturbation ap-

plied to one of them. Input to the left, to the right the point clouds
after applying the transformation from the PointNetLK algorithm.
PointNetLK finds the exact transformation matrix between them. . . 31

3.13 Top view of a map segment before and after 3D to 2.5D conversion. . 33
3.14 A schematic view of the GoogLeNet architecture. 34

4.1 RGB network, clear weather, Every bar is 0.25 m/degree wide. 36
4.2 Depth network, clear weather, Every bar is 0.25 m/degree wide. . . . 37
4.3 RGB-D network, clear weather, Every bar is 0.25 m/degree wide. . . 37

xiii

List of Figures

4.4 RGB network, varying weather, Every bar is 0.25 m/degree wide. . . 38
4.5 Depth network, varying weather, Every bar is 0.25 m/degree wide. . 39
4.6 RGB-D network, varying weather, Every bar is 0.25 m/degree wide. . 39
4.7 Refined prediction from RGB-D network with PointNetLK, varying

weather, Every bar is 0.25 m/degree wide. 40
4.8 Example images from the hard test data set. 41
4.9 Case were PointNetLK match two different point clouds. In the left

image, the blue LiDAR scan point cloud is overlaid on the red map
segment produced from the RGB-D networks initial prediction. The
right image shows the result after transforming the source point cloud
with the found transformation from PointNetLK. 43

4.10 Case when PointNetLK were not able to refine the pose accurately.
Input point clouds to the left, refined points clouds to the right. . . . 43

4.11 Case when PointNetLK made the position estimate worse. The scan
contains points higher up than the map. Input point clouds to the
left, refined points clouds to the right. 44

4.12 RGB-D network and refined, varying weather, Every bar is 0.25 m
wide. 44

xiv

List of Tables

3.1 Results using different step size to extract map segments for matching. 33

4.1 Mean and median error with single and RGB-D networks. The results
show that the additional information from both image types improve
the translation accuracy but deteriorate the angle predictions. 36

4.2 Mean and median error on RGB, depth and RGB-D network on the
data set with weather variation. The RGB models prediction errors
increases more compared to the depth model when tasked to predict
in the varying weather scenarios. 38

4.3 Table with results from the refinement network PointNetLK com-
pared to the RGB-D prediction network without refinement. 40

4.4 Summary of test results. PointNetLK can refine the translation esti-
mate in several cases. 42

xv

List of Tables

xvi

1
Introduction

Autonomous robots have attracted a lot of attention from researchers over the past
decades. More recently there has also been an increased focus from the commercial
sector, both spawning new companies trying to disrupt current markets and old
ones investing heavily into autonomy to keep its product offering relevant in the
future [1][2][3].

One of the major fields in robotics is localization, i.e. the ability for a robot to po-
sition itself in the environment it is operating in. Notable ways of localizing are the
use of inertial navigation by dead reckoning [4] and various global navigation satel-
lite systems (GNSS). Inertial measurements are often fast and accurate but since it
has no external reference to the world, they are cursed with integration drift. GNSS
systems solve this by keeping track of satellites and triangulating the receiver’s po-
sition with these for external references. This is however slower, more inaccurate
and do not work with obstructed line of sight between receiver and satellites.

In more recent work, localization solutions that try to solve the above issues have
been introduced. Visual odometry (VO) and a wide set of simultaneous localiza-
tion and mapping (SLAM) algorithms [5][6] are a few of these. Commonly, visual
systems navigate by detecting salient key-features in the environment and does not
depend on external beacons sending signals that can be blocked or distorted. VO is
the process of estimating the ego-motion of an agent by estimating the relative pose
between camera frames. SLAM is the process of localizing with (but not exclusive
to) a system such as VO, while simultaneously building a map of the environment.
The map is used to maintain global consistency between the estimated camera tra-
jectory and the map, which reduces global drift in the localization.

A great amount of research has recently been done on object detection and fea-
ture learning using RGB-D data [8]. This development can be extensively credited
to the release of the Microsoft Kinect [7] sensor in 2010, making RGB-D sensors
available at consumer prices. RGB-D sensors fuse the information from a ranging
sensor with the image from a camera to map a depth value to each pixel in the
image. However, these early RGB-D sensors have not been capable of producing
accurate depth maps at larger distances, typically not more than 5-6 meters. So the
great majority of research with these sensors have been conducted in indoor settings.

Light detection and ranging (LiDAR) sensors sense the time-of-flight of reflected
laser pulses, produced and received by the sensor, to calculate the distance to its

1

1. Introduction

surroundings. These types of sensors can achieve centimeter precision at distances
over a hundred meters [9], enabling them to accurately sense the scale of 3D struc-
tures encountered outdoors. However, they have until recently often been limited in
their ability to discriminate smaller features, highly attributed to the design of early
LiDARs. Early LiDARs typically scan the surrounding environment by emitting
multiple layers of laser beams that spin at a high rate, sharing the design principles
of spinning radars. But just like the performance of radars has drastically improved
by the advent of solid-state radars, the same is on the verge to happen with LiDARs.
Solid-state LiDARs are promised to produce much denser 3D point clouds, at longer
distances and at higher frame rates [10]. This increase in density means they can
be coupled with cameras to produce RGB-D images that can capture outdoor ge-
ometries.

Expecting solid state LiDAR to be available in the near future, it is the intent of
this thesis to explore how to improve upon the latest research in visual localization
using synthetic RGB-D data.

1.1 Background and Related work
Many traditional localization techniques extract features from an image using feature
detectors such as ORB [19], SIFT [11], SURF [20] and match these to features from
previous frames to establish correspondences. From the matches, a 6-DoF pose is
estimated by triangulation and later optimized using robust fitting algorithms such
as RANSAC [13]. Feature-based methods such as SIFT [11] and ORB-SLAM2 [12]
are able to localize in real-time with an error of a few centimeters in indoor environ-
ments but fail in low-texture environments. To solve this issue, direct approaches
uses the whole input and minimizes a combination of the photometric and geometric
error to estimate the camera pose between images [22][23]. Both methods tend to
drift over time. To overcome the drift, these approaches check for loops by compar-
ing the current image with a database of saved frames. If a loop is encountered and
validated, the camera poses are globally optimized to minimize the drift.

Lately, probabilistic methods using random forest [24] and neural networks have
emerged as potential techniques to solve the localization problem. While introduc-
ing a certain degree of problems on its own, the ability to learn from multiple, high
dimensional input sequences and extract meaning from it is unmatched with these
trainable systems. One other advantage of neural networks is that the time complex-
ity of a model is constant compared to feature-based methods whose computational
time increases as the number of saved frames grows.

The first neural network trained end-to-end for 6-DoF camera pose estimation,
PoseNet (2015) [17], was built upon the GoogLeNet [18] architecture. The soft-
max classification layer from the original GoogLeNet model was replaced by two
fully-connected regression layers which were modified to produce a vector with po-
sition and orientation estimates separately. The network used transfer learning
technique from weights trained on object recognition tasks which drastically re-

2

1. Introduction

duces the amount of training data needed. Several networks have since improved
upon PoseNet. The authors of PoseNet proposed a trainable geometric loss function
which removes the need for manual tuning of hyperparameters [43]. VLocNet [15]
is a similar network that combines a network for global pose estimation together
with a siamese network for visual odometry as a mean of improving the global pose
estimation with multitask learning [44]. VLocNet++ [14] improves it additionally
by adding a semantic network and fusing the extra information to the global pose
network.

None of the above mentioned methods uses depth in the input data. Accurate RGB-
D data is harder to acquire due to lack of cheap high resolution sensors. However,
research has shown that depth data can improve the accuracy of object recognition
networks [21]. Eitel et al. [26] argue that a siamese network with RGB and JET-
encoded depth input data outperforms other combinations of depth encodings when
used in combination with transfer learning.

1.2 Purpose
Encouraged by the success of fusing multi-modal information in VLocNet++, the
purpose of the thesis project is to investigate how additional 3D information can
improve the accuracy of outdoor localization in a predefined environment using
neural networks. To quantify the system, the network will be compared to a baseline
without depth information.

1.3 Scope
To prevent the scope of the thesis to grow to proportions unfeasible in the available
time some limitations are set on the project.

• No limitation will be set on the computational resources needed to run the
network.

• The network will be limited to localize in the area it is trained for. An adaptive
algorithm which can learn to localize in new environments online would be
preferable but it is outside the scope of the project to investigate such an
algorithm.

• The project will primarily focus on how 3D information can improve the lo-
calization, not to optimize the whole localization system.

3

1. Introduction

4

2
Theory

In this chapter, the theory of the relevant topics for the thesis project is briefly
described. The first section describes the basics of machine learning and neural
networks. The second section covers the theory of rigid motion, rotation transfor-
mations and representations. The third section presents the theory on point clouds
used in the project. The fourth section covers the optical flow method, Lucas-
Kanade, used in the thesis and in the final section, the theory on the point cloud
registration network used in the system is presented.

2.1 Neural networks

Neural networks (NN) is a subfield in the area of artificial intelligence. The main
idea of NNs is to mimic the neurons and synapses of the human brain. A NN is
built up of layers of connected nodes, called neurons. Each neuron is essentially
a weighting function which increases or decreases the strength of an input signal
before propagating it forward to connected neurons. These weights are said to be
trained through a process called backpropagation [37]. One strength with NNs is
their ability to derive meaning from and generalize about complex data.

Mathematically the output of a neuron can be derived as

y = f(
m∑
i=1

wixi + b)

where b is the bias in the neuron, wi corresponds to the i:th weight and xi corresponds
to the i:th input. The input x might come from another neuron or it can be the
input to the network.

5

2. Theory

Figure 2.1: Diagram of an artificial neuron, by Chrislb, Wikibooks, Licensed under
CC BY-SA 3.0, unaltered.

f(.) is called an activation function. An activation function maps the weighted
input to the output of a neuron. The important characteristic of the activation
function is that of a normalizer, meaning that it should restrict the favored path in
the network of growing without bound. It can also be shown that if the activation
function is a non-linear function, a two or more layer NN can be proven to be a
universal function approximator [38], which is not the case with linear activation
functions. Two common activation functions are the rectified linear unit, ReLU and
the sigmoid function. The ReLU function is defined as

f(x) = max(0, x)
The sigmoid activation function is defined as

f(x) = 1
1 + e−x

Figure 2.2: Sigmoid and ReLU activation functions.

2.1.1 Layers
Larger neural networks are built-up by multiple layers. In this subsection, com-
monly used layers and their properties are described.

6

2. Theory

Fully-connected layer The neurons in fully connected layers input every single
output from the previous layer and propagate its activation to every single neuron
in the next layer. A big advantage with fully connected layers is that they can learn
new features from all combination of inputs, though they are very computationally
expensive. Therefore fully connected layers are usually found in the end of convolu-
tional neural networks dedicated to do higher level reasoning.

Figure 2.3: Illustration of two fully connected 4x1 layers with an input layer and
output layer.

Convolution layers While a fully connected layer propagates the output from
each activated neuron to every other neuron in the next layer, a convolutional layer
resembles an ensemble of filters that calculates the cross-correlation over a small
area of the input and convolving the filters over the entire input. This ensemble
of filters produces a map of activations called a feature map, which is the output
of the layer. The depth of the feature map is equal to the number of filters in the
layer. The vertical and horizontal dimension of the feature map is determined by
the kernel size, stride, padding and input size. The kernel size is the size of the filter
sliding across the input, typically 1×1, 3×3 or 5×5. Stride determines the step size
of the filter and helps in reducing the output dimension of the layer. If a consistent
dimension is desirable, padding the input with zeros on the borders make the out-
put dimensions the same after the convolution operation, this is called zero-padding.
Weights for each feature map are then trained the same as the fully connected layers
with backpropagation. A schematic view of the convolution operation can be seen
in Figure 2.4

Pooling layer Pooling layers are also convolution layers, but unlike the convo-
lutional layer explained above, pooling layers have no trainable weights but rather
uses a heuristic to determine the action of the kernel. For a max pooling kernel of
size 2×2, the heuristic is simply to select the largest value of the four and pass that
to the next layer. The result is a sub-sampling of the input. An illustration of this
operation can be seen in Figure 2.5.

7

2. Theory

7 9 3 5

0 7 0 0

5 0 9 3

9 2 9 6

Conv.
=

-1 1

-1 1
-12 16

Input 4x4 image

2x2 filter
Output 3x3 feature map

Figure 2.4: Figure illustrating the convolution operation of a 2×2 filter with stride
1. In this example, no zero-padding is used and the dimension of the output will be
different from the input.

7 9 3 5 9 4

0 7 0 0 9 0

5 0 9 3 7 5

9 2 9 6 4 3

2× 2 max pooling

9 5 9

9 9 7
2

2

Figure 2.5: Illustration of a max-pooling operation.

2.1.2 Neural network topologies

How a network can be used and its properties are determined by its layers and how
they are composed. When network designs share similar structure the topologies
are said to be similar and they can usually be grouped under a label. Two common
topologies and the ones used in this thesis are presented below.

Multi-Layer Perceptron A Multi-Layer Perceptron (MLP) is a neural network
built with only fully connected layers. The entire design consists of an input layer,
one or more fully connected layers and an output layer. It is a simple architecture
were no connections between nodes form any loop. An example of a MLPs can be
seen in Figure 2.3.

Convolutional neural networks A convolutional neural network (CNN) is, sim-
ilar to the MLP, constructed by an input layer, several intermediate layers and an
output layer. The intermediate layers are typically convolutional layers, pooling
layers and ReLU activation layers. Before the prediction is done there is usually
a few fully connected layers. CNNs are often used when the input has a spatial
connection, like images. The filters in the convolution layers learn to detect features
and objects in the image. The first layers typically learn filters to detect features
like edges, blobs and lines while the middle filters detect combined features like
wheels and noses. The last layers then detect more complex shapes like cars and
faces. Compared to fully connected networks, CNNs can handle higher dimensional

8

2. Theory

inputs and build deeper models without exploding the parameter space. CNNs is
commonly used in image analysis tasks such as object detection and classification.

2.1.3 Training neural networks
Machine learning can be divided into three main parts. Supervised learning, unsu-
pervised learning and reinforcement learning. In supervised learning, each prediction
is evaluated with respect to a known ground truth value and the loss is calculated
from the difference of the prediction and the true value. In unsupervised learning,
there is no ground truth data. Instead, the network finds patterns in the data and
learn how to group the data together. In reinforcement learning an agent learns a
task by trial and error where good actions are rewarded and the network learns to
maximize the reward over time.

Loss functions A loss is often calculated as the difference between the ground
truth and the network’s prediction on a training example. To train the network,
the weights are shifted by taking a step in the negative gradient direction of the
computed loss by use of backpropagation. Commonly used loss functions are the
mean squared error for regression tasks and categorical cross entropy for classifica-
tion tasks.

Multi-loss functions To jointly learn several tasks in a network, a multi-loss func-
tion can be used. If the predicted values of these tasks are of different scales or even
different domains, a tuning parameter β can be used to scale each part of the loss
function such that all parts influence the loss. In the optimal case, the parameter is
tuned such that each part contributes equally to the loss function.

Ltot = Lx + βLq
A big drawback with the above mentioned approach is that the tuning parameter
has to be manually adjusted for each scene. It’s a tedious process which takes a
long time and must be repeated for different data sets. To overcome the problem,
trainable tuning parameters can be introduced in the loss function. If one assumes
there is an uncertainty in the output which can be represented as Gaussian noise,
an output fW (x) where W is the weight on an input, the likelihood can be written
as

p(y|fW (x)) = N (fW (X), σ2) (2.1)

The log likelihood can be written as.

log(p(y|fW (x))) ≈ − 1
2σ2 ||y − f

W (x)||2 − log(σ) (2.2)

With two model output, the likelihood can be factorized as

p(y1, y2|fW (x)) = p(y1|fW (x)) · p(y2|fW (x)) =
= N (y1; fW (X), σ2

1) · N (y2; fW (X), σ2
2) (2.3)

9

2. Theory

This leads to the minimization objective, L(W,σ1, σ2) for the multi-output model.

−log(p(y1, y2|fW (x))) ≈ 1
2σ2

1
||y1 − fW (x)||2 1

2σ2
2
||y2 − fW (x)||2 + log(σ1σ2) (2.4)

With L1(W) = ||y1 − fW (x)||2 and L2(W) = ||y2 − fW (x)||2 the final loss function
can be written as

Ltot = 1
2σ2

1
L1 + 1

2σ2
2
L2 + log(σ1σ2) (2.5)

This can be interpret as minimizing the loss with respect to σ1 and σ2 as learning
the relative weight of the losses L1 and L2 adaptively based on the data. A large
uncertainty leads to a lower weight on the corresponding loss. The last term acts as
a regularization term, avoiding a large increase in the uncertainty which could grow
independant of the data to minimize the loss otherwise.

Transfer Learning Transfer learning is a method in machine learning where a
model trained on a task is reused as the base for another task. For example, the
weights from a network used to classify objects in an image can be reused in a
network designed to output a bounding box for the object in the image. The ben-
efits of transfer learning are primarily that it reduces the amount of training data
needed. Secondly, it also speeds up the learning process since the weights are in a
better range to start with. The similarity of the tasks and the domains between two
networks determine how effective transfer learning can be and if it can be used at all.

When adding new layers on top of pre-trained models the new weights will be
initialized randomly according to some distribution. The random initialization might
lead to exploding gradients during the initial training which may propagate down
into the pre-trained layers and severely alter their weights. To prevent this, layers
can be frozen, meaning that their weights do not change during training. When the
new weights have been more or less set, the earlier layers can be unfrozen and the
whole model can be fine-tuned together.

2.2 Rigid Motion and twist
3D rigid body motion can be represented as m(x) := Rx + t, where R ∈ SO(3) is
a rotation vector with SO(3) := {R ∈ R3×3|det(r) = 1} and t ∈ R3 is a translation
vector. If homogeneuos coordinates are used, m can be written like

The set of all matrices of this form is called the Lie group SE(3). For every Lie
group, there is a corresponding Lie algebra. The Lie algebra for SO(3) is so(3) :=
{A ∈ R3×3|AT = −A}, and the Lie algebra for SE(3) is se(3) := {(v, ω)|v ∈
R3, ω ∈ so(3)}. The elements in se(3) can be mapped to elements in SE(3), and
vice versa, which means that rigid rotations can be represented with the elements
in se(3). These elements are usually called twist. The advantage being that we can

10

2. Theory

represent a six degree of freedom rotation with six parameters instead of twelve.
The elements of so(3) and se(3) can be written both as vectors or matrices with the
following expressions

ω̂ =

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0

 ∈ so(3), ξ =
[
ω̂ v

03×1 0

]
∈ se(3). (2.6)

A twist se(3) can be converted to an transformation in SE(3) by the exponential
function M = exp(ξ) = ∑∞

k=0
ξk

k! . Full derivation can be read in [40].

2.2.1 Rotation formalism
There exist many different ways of representing rotations in 3D. Common represen-
tations are Euler angles, quaternions and rotation matrices. Inherent to all these
representations is that they can describe rotations with three degrees of freedom,
even though they use different numbers of parameters.

Rotation matrix All square matrices are rotation matrices if and only if RT =
R−1 and det(R) = 1. In the 3D case, they can be represented by three elemental
rotation matrices.

Rx =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (2.7)

Ry =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (2.8)

Rz =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (2.9)

These three matrices each describe a counterclockwise rotation of θ degrees around
the x-, y-, or z-axis in a right-hand rule coordinate system pointing towards the
observer. A general rotation can be described by matrix multiplying the three
elemental matrices with each other as

R = Rx(θ)Ry(φ)Rz(ψ). (2.10)

Describing rotations as rotation matrices make it easy to apply to vectors, but in
turn, makes it a less concise representation than other alternatives.

Euler Angles Using Euler angles is one way of describing a rigid body rotation
with respect to an extrinsic (fixed) or intrinsic (moving) frame with three angles,
Roll(θ), Pitch(φ) and Yaw(ψ). Each angle corresponds to a rotation around each

11

2. Theory

axis in a 3-dimensional coordinate system, making it a compact representation which
is easy to comprehend. Depending on if an intrinsic or extrinsic frame is used, an
orientation can be calculated as the rotation over the axes in multiple orders. In
the extrinsic case, this results in 3! = 6 combinations and in the intrinsic case this
yields 3 · 2 · 2 = 12 combinations.

Euler Angels are restricted by the Gimbal lock phenomenon. Gimbal lock is the
name for the situation when one of the rotation axes align itself with another and
now any rotation around these two axes represent the same rotation, effectively re-
moving one degree of freedom from the system.

Another problem with the Euler angle representation for regression learning of poses
is the discontinuous nature of the defined set of allowed rotations, i.e. if the allowed
rotations are in the set [0, 360°], and the object points in a direction close to 360° in
one axis, adding any more rotation on that axis makes the orientation angle jump
down close to 0.

Quaternions A Quaternion can be described with the equation

q = qw + bqi + cqj + dqk (2.11)

where qw is described as the scalar part of q and [qi, qj, qk] is described as the vector
part of q. The representation of a rotation as a quaternion (4 numbers) is more com-
pact than the representation as an orthogonal matrix (9 numbers) but one larger
than the Euler representation. However, this extra number brings with it several
key-properties that makes the quaternion representation common in engineering.

For a given axis and angle, one can easily construct the corresponding quaternion,
and conversely, for a given quaternion one can get the axis and the angle. Both of
these are much harder to easily extract from rotation matrices or Euler angles.

The expression qpq−1 rotates any vector quaternion p around an axis given by the
vector a and the angle θ where a and θ depends on the quaternion q = qr + qii +
qjj + qkk. a and θ can be found from the following equations:

(ax, ay, az) = (qi, qj, qk)√
q2
i + q2

j + q2
k

(2.12)

θ = 2 atan2
(√

q2
i + q2

j + q2
k, qr

)
(2.13)

Euler angle to quaternion conversion One problem when converting from an
Euler angle representation to a quaternion q, is that both q and −q represent the
same rotation. Given a vector represented by the quaternion p, and a rotation
represented by the quaternion q, the resulting quaternion rotated by q is p′ = qpq−1.
On the other hand, rotating p by −q yields

12

2. Theory

−qp(−q)−1 = (−1)qpq−1(−1) = (−1)2qpq−1 = qpq−1, (2.14)

which is an identical rotation.

One way of restricting this duality is to only allow the scalar part of the quaternion
to be positive and if a situation arises when the resulting quaternion gets a negative
scalar value, setting the quaternion to its inverse instead as q = −q.

2.3 Point clouds
Point clouds are sets of 3D data points usually sampled from a continuous geometric
shape, either from the real world with sensors or from mathematical models in a
computer.

2.3.1 Iterative Closest Point
One of the most common methods for point cloud registration is the iterative closest
point (ICP) algorithm, introduced by Besl and McKay in 1992 [30]. The algorithm
is used for aligning two similar point clouds

S = sii=1...N (2.15)
T = tii=1...N (2.16)

where the source cloud is denoted as S and the target point cloud is denoted as
the T . The algorithm computes the transformation matrix W which transform the
source cloud to the target cloud. The main part of the algorithm is the iterative
search for closest match point pairs and finding the transformation that best aligns
these by least squares. Point pairs are found by comparing the distance from one
point in S to every other point in T and choosing the one with the smallest distance,
as long as it is below some bound d > 0. The transformation is then calculated as

W = argmin
W

1
Np

Np∑
i=1
||ti −Wsi||2 (2.17)

The algorithm terminates when the resulting mean square error of the registration
falls below some bound τ > 0.

There are however two main downsides of the ICP algorithm. The explicit estimation
of closest point correspondences results in the complexity scaling quadratically and
it easily gets stuck in bad local minimum if the initial alignment is not very accurate.
The algorithm is also nontrivial to integrate which leads to issues in using it with
deep learning frameworks.

13

2. Theory

2.3.2 Surface Normals
In 3D, the surface normal of a point p = (x, y, z) is a vector perpendicular to the
surface spanned by the neighboring points to p. The problem of determining the
normal to a point on the surface can be approximated by the problem of estimating
the normal of a plane tangent to the surface, which in turn can be solved by a
least-square plane fitting algorithm.

One way of finding the tangent normal for a point is by Principal Component Anal-
ysis (PCA). PCA analyzes the eigenvector and eigenvalue of the covariance matrices
created from k number of points in the neighborhood of the point of interest. For
each point pi the covariance matrix Ci is created as

C = 1
k

k∑
i=1

(pi − p̄) · (pi − p̄)T , C · −→vj = λj · −→vj , j ∈ {1, 2, 3} (2.18)

where p represents the 3D centroid of the nearest neighbors, λj is the j-th eigenvalue
of the covariance matrix, and ~vj the j-th eigenvector.

As C is a symmetric and positive semi-definite matrix and its eigenvalues are real
numbers λj ∈ R, the eigenvectors ~vj form an orthogonal frame, corresponding to the
principal components of Pk. If 0 ≤ λ0 ≤ λ1 ≤ λ2, the eigenvector ~v0 corresponding
to the smallest eigenvalue λ0 is the approximation of ~n = (nx, ny, nz) or −~n.

2.3.3 PointNet
Until recently, most work on 3D data analysis with neural networks has been done
with CNNs. There have been many proposed ways of representing 3D data in a
way that makes it compatible with the architecture of CNNs. Some methods that
have been used to do this is to represent the point set in a 3D occupancy grid or
as 3D voxels. However, this data transformation often render the resulting data
unnecessarily voluminous. The primary concern with this approach is that the com-
putations needed to process high resolution volumes grows unfeasibly fast. Other
concerns are that 3D point clouds typically are very sparse, which yields unneces-
sarily many computations on empty data cells.

PointNet [28] is a method of processing raw point cloud data that has greatly im-
proved performance in classification and segmentation tasks. PointNet has also
recently been shown to be suitable for point cloud registration, which will be pre-
sented in Section 3.4.1. The structure of the PointNet architecture originates from
insights that one key property of point clouds is that they are, unlike image arrays
or voxel grids, inherently unordered. This insight the design of the network to one
that is invariant to input permutations. PointNet does this by independently and
identically process each point with a shared Multi-Layer Perceptron network. After
the MLP network, the output propagates through a symmetric operation which in
most circumstances is a max-pooling layer. These symmetric operations encode sets

14

2. Theory

of optimization functions/criteria that select interesting or informative points of the
point cloud. A general function of this can be expressed as

f(x1,, xn) ≈ g(h(x1), ..., h(xn)), (2.19)

where f : 2RN −→ R, h : RN −→ RK and g : RK × ...× RK︸ ︷︷ ︸
n

−→ R.

In PointNet, h is approximated by the MLP network and g by a set of single-
parameter functions and a max-pooling function. From this operation, a global fea-
ture vector [f1, ..., fn] is acquired from which additional processing can be made for
various tasks. In the original paper, methods for object classification and pointwise
segmentation is presented. A simplified visualization of the network architecture as
it is described in the original PointNet paper [28] is shown in Figure 2.6

Figure 2.6: A simplified schematic view of the PointNet architecture as it is pre-
sented in the original PointNet paper [28].

2.4 The Lucas–Kanade algorithm
In 1981, Lucas and Kanade introduced an algorithm to estimate the optical flow in
an image [31]. By assuming that corresponding pixels in two pictures taken close
together in time shifts only a small amount, one can assume that the flow in the
local region around a pixel is constant. The goal of the algorithm is to minimize
the sum of squared error between the template image T and the source image S by
finding the transformation that best aligns the two images.

∑
x

[S(W (x; p))− T (x)]2 (2.20)

where W (x; p) is the set of allowed warps of the image and p a set of parameters
p = [p1...pn]T for the warp function. The sum is minimized with respect to p and
the sum is over all pixels in the image T .

15

2. Theory

The algorithm assumes there exists some initial guess of the parameters p and then
iteratively update the guess p by minimizing the sum

∑
x

[S(W (x; p+ ∆p))− T (x)]2 (2.21)

with respect to ∆p and then update p as p← ∆p+ p.

This is then repeated until a threshold ε is reached on the norm of the updated p;
ε ≤ ||∆p||.

The derivation of this algorithm starts by linearizing 2.20

∑
x

[S(W (x; p)) +∇S∂W
∂p

∆p− T (x)]2 (2.22)

where ∇S = (∂S
∂x
, ∂S
∂y

) is the gradient of S evaluated at W (x; p) and ∂W
∂p

is the
Jacobian of the warp with the form

∂W

∂p
=
[∂Wx

∂p1
∂Wx

∂p2
...∂Wx

∂pn
∂Wy

∂p1

∂Wy

∂p2
...∂Wy

∂pn

]
(2.23)

minimizing 2.21 is a min-mean square error problem with a closed form solution
that is derived as

2
∑
x

[∇S∂W
∂p

]T [S(W (x; p)) +∇S∂W
∂p

∆p− T (x)] (2.24)

which is the partial derivative of 2.21 with respect to ∆p. Setting this expression to
zero and solving for ∆p yields

∆p = H−1∑
x

[∇S∂W
∂p

]T [T (x)− S(W (x; p))] (2.25)

where H−1 is the Hessian matrix

H =
∑
x

[∇S∂W
∂p

]T [∇S∂W
∂p

]. (2.26)

In the end, the LK algorithm iteratively applies 2.25 and updates p as p← ∆p+ p.
When referring to different versions of the Lucas-Kanade (LK) algorithm, this is
often called the additive approach.

Another approach that produces the same result, solves for an update of the inverse
warpW−1 instead of an update of the warp parameters p. In this approach, the roles

16

2. Theory

of the source and template images are inverted which will be shown can decrease the
cost of the computations tremendously. This version of the LK algorithm is often
called the inverse compositional (IC) approach.

The goal objective in the IC case is to minimize∑
x

[T (W (x; ∆p))− S(W (x; p))]2 (2.27)

and update the warp function W by

W (x; p)← W (x; p) ·W (x; ∆p)−1. (2.28)

The derivation of the IC approach starts with

∑
x

[T (W (x; 0)) +∇T ∂W
∂p

∆p− S(W (x; p))]2. (2.29)

By assuming that the identity warp (W (x; 0) = x) is in the set of warps being
considered the expression can be simplified to

∆p = H−1∑
x

[∇T ∂W
∂p

]T [S(W (x; p))− T (x)] (2.30)

where H−1 is the Hessian matrix

H =
∑
x

[∇T ∂W
∂p

]T [∇T ∂W
∂p

] (2.31)

where the Jacobian ∂W
∂p

is evaluated at W (x; 0). In 2.31, there is nothing that
depends on p across iterations, therefore this Hessian can be kept constant and
pre-computed. Since this is by far the costliest computation in the algorithm, this
version is most often found in systems that need to run in real-time.
proof that the two presented versions of the Lucas-Kanade algorithm are equal can
be found in the paper[32].

2.5 PointNetLK
In 2019, Y. Aoki et al. presented a neural network for point cloud registration called
PointNetLK [29]. This network was based on PointNet and a modified version of the
IC Lucas-Kanade algorithm. They show that this network outperforms the current
best ICP based methods both in its ability to match severely miss-aligned point
clouds while at the same time converge to a solution several orders of magnitude
faster.

17

2. Theory

The PointNetLK architecture uses a PointNet MLP network as a function φ :
RNx3 → RK . With this function any N-dimensional point cloud P will produce
a K-dimensional global feature vector φ(P). The optimization is set up as find-
ing the rigid transformation G ∈ SE(3) that best aligns the source and template
point clouds PS and PT . The objective is first formulated as finding the inverse
transformation G−1 with the Inverse Compositional LK method as

φ(P) = φ(G−1 · PT) (2.32)

this is then linearized as

φ(P) = φ(PT) + ∂

∂ξ
[φ(G−1 · PT)]ξ (2.33)

where G−1 is defined as the inverse exponential map from se(3) to SE(3) G−1 =
exp(−∑i ξiTi) where ξ is the twist parameters and T is the generators for the expo-
nential map. Just as in the original IC approach this prevents us from doing costly
Jacobian calculations every iteration.

In the classical LK algorithm, the Jacobian J = φ(PT)+ ∂
∂ξ

[φ(G−1 ·PT)] is calculated
by splitting the expression in two and using the chain rule to calculate an image
gradient in the ND image directions and an analytical warp Jacobian. But, as
mentioned before, this does not work in this case since it does not exists any structure
which allows taking gradients in the x, y or z directions. The solution presented
to this issue is to calculate J in a stochastic gradient approach. This is done by
calculating each column i in J as a finite difference gradient as

Ji = φ(exp(−ξiTi) · PT)− φ(PT)
ti

(2.34)

where ti are infinitesimal small perturbations of the twist parameters ξ. It is now
possible to solve for ξ as

ξ = J+[φ(PT)− φ(PS)] (2.35)

where J+ is the pseudoinverse of J. The iterative algorithm consists of calculating
the twist parameter with 2.35 and updating the source point cloud as

PS ← ∆G · PS ∆G = exp
∑
i

ξiTi. (2.36)

This loop is repeated until a stopping criterion is reached which is either reaching a
max number of iterations or updating less than a minimum threshold for ∆G. The
final estimate is then calculated as the composition of the iterative updates ∆G as

Gest = ∆Gn · ... ·∆G1 ·∆G0. (2.37)

A visual representation of the algorithm is shown in Figure 2.7.

18

2. Theory

Figure 2.7: The PointNetLK network used for registration.

19

2. Theory

20

3
Method

In this chapter, the workflow and methods used to construct the various sub-
components of the localization system are presented. The main focus of this chapter
is the presentation of the two neural networks used and how the data sets were ac-
quired in the project.

Most of the developed code was written in Python, using Keras [33] with Tensor-
Flow [34] as backend for the implementation of the convolutional RGB-D network.
For the PointNetLK code, Pytorch was used to implement the network. All training
was done on a GeForce RTX 2080 Ti, with 11GB of GDDR6 memory and 4352
CUDA cores.

Figure 3.1: Flowchart of the fully combined system.

3.1 Full system design
The purpose of the thesis was to test if camera and depth sensor data can be com-
bined and fused in a way that increased the performance and robustness of a system
for localization. The final system estimates the 6 DoF pose in a known environment
with a RGB image, a depth image and a LiDAR scan taken at the same position as
input. Figure 3.1 shows the dataflow of the entire system which was constructed in
two parts.

21

3. Method

Image based localization prediction network The first part was an image
based prediction network used to produce an initial guess of the pose where a RGB
and a depth image was taken. The image pair was fed through a convolutional neu-
ral network which estimates a 3D position and a quaternion, together representing
the pose of the camera. The idea was to utilize the ability of neural networks to gen-
eralize about complex input data to learn a suitable way of fusing the information
from the color and depth image, making the predictions more robust to changes in
the environment.

Point cloud position refinement network The position refinement network
was used to correct the guess from the prediction network by matching the current
LiDAR scan to a previously created map of the surrounding area. The refinement
network that was used is a state-of-the-art 3D point cloud registration network called
PointNetLK. However, one limitation of this network is its inability to match partial
segments of a 3D model to the full model. This shortcoming guided our implemen-
tation to one that uses the predicted position from the image network to extract
areas around the predicted position in the full 3D map. This set of candidate areas
was then matched to the LiDAR scan. The goal being that these cropped areas
contain the right amount of similar 3D data for PointNetLK to estimate a correct
transformation. The output transformation G was then used to refine the initial
position estimate.

3.2 Data sets

To train a neural network with supervised learning, a large amount of data is typ-
ically needed. To train and evaluate the system design, a data set that contains
RGB images, depth images and high resolution LiDAR scans with corresponding
pose labels would be needed. This was however not found in the public domain and
it was decided that a simulator should be used to create the required data.

3.2.1 CARLA Simulator

To generate simulated data, the CARLA driving simulator [27] was used. CARLA
is an open source simulator developed for autonomous car research. With CARLA,
any amount of high quality data with matching pose labels can easily be created.

A camera sensor can be attached to a vehicle in CARLA, recording images with a
preset frame rate. The image size and field-of-view can be set to create images with
the correct input size for a certain network architecture. The camera sensor can
produce both RGB and depth images, as shown in 3.2

22

3. Method

(a) RGB Image (b) Depth Image

Figure 3.2: Example RGB image and corresponding depth map.

The simulator has the capability to simulate several weather conditions, as depicted
in 3.3 For example, rainy weather with puddles reflecting light, cloudy weather which
darkens the environment and a simulated sunset which create artificial lens flares
when the sun is in frame. With a data set consisting of varying weather, the network
can hopefully learn more general information in the environment and become more
robust.

(a) Clear weather (b) Sunset

(c) Cloudy weather (d) Rainy weather

Figure 3.3: Images visualizing images in different weather conditions.

Emulated LiDAR sensors are available in CARLA as well. All relevant parameters
such as upper and lower field of view, number of channels, max range and number
of points per channel can be configured in CARLA. During a scan capture, the
simulation environment can be frozen resulting in a 360° scan without any need for
velocity adjustments. A scan is shown in Figure 3.4.

23

3. Method

Figure 3.4: LiDAR scan from CARLA.

3.2.2 Data collection
To generate the data sets used in the project, a vehicle was set to drive around a map
on autopilot with a RGB and a depth camera sensor attached to it. The map used
to generate the data set was approximately 120 000m2 containing a downtown area,
suburban areas and wooded areas. Figure 3.5 shows a top view of the environment.
Two training data sets were acquired, one with 7600 image pairs in clear weather and
one with 10400 image pair with varying weather conditions. The varying weather
data set had an equal distribution of images taken in clear, cloudy, rainy and sunset
conditions. 10% of the training images were used for validation during training.
Two smaller corresponding test data sets were recorded to be used to evaluate the
performance of the networks. The test data sets also contained LiDAR scans that
are used in the refinement process.
To generate data equally distributed over the entire city, a delay of approximately
5 seconds were introduced between each captured image. The vehicle was also ran-
domly re-spawned at regular intervals into different parts of the city during the data
acquisition.

3D map creation To create a point cloud map, the same autopilot mode was used
as with the image data collection. All individual scans were then added together
to build a map. Every scan was captured in a local coordinate system with the
sensor position as origin and thus each local scan had to be converted into a global
coordinate system to create the full map. Given the vehicles global position and
heading, a scan can be transformed from a local to a global coordinate system.
The whole scan was rotated with a yaw rotation matrix 3.1. A yaw rotation, ex-
pressed in degrees, was used instead of a full rotation matrix since the map is flat
and the roll and pitch angle are almost constant in the data set.cos(φ) −sin(φ) 0

sin(φ) cos(φ) 0
0 0 1

 (3.1)

24

3. Method

Figure 3.5: Top view of the used environment in CARLA simulator.

After the rotation, the ground truth position of the vehicle was added to all points.
During this process the road geometry is cropped by removing all points with a
height lower than a certain threshold. Since the road height was identical around
the map no extra global position information was gained from it. The road surface
also created problems in the point cloud registration system, both by decreasing
pose accuracy but also by increasing the computational speed as the number of
points in the map and the scan increased. Figure 3.6 shows the final 3D map.

Figure 3.6: Generated 3D map from scans.

3.2.3 Angle representation
The ground truth rotation output from CARLA was in Euler angles, where Roll(θ),
Pitch(φ) and Yaw(ψ) was in the range -180° to 180°. With this representation,
there is a non-continuous transition between -180° and 180°. This is an issue when

25

3. Method

training neural networks on a regression task since a -180° prediction where the
ground truth is 179.9° is accurate but in terms of non-cyclic loss functions it would
produce close to a maximal loss. To overcome this problem the angels were converted
to a constrained quaternion using the following equations:

qw = cos(ψ2)cos(φ2)cos(θ2) + sin(ψ2)sin(φ2)sin(θ2) (3.2)

qx = cos(ψ2)cos(φ2)sin(θ2)− sin(ψ2)sin(φ2)cos(θ2) (3.3)

qy = sin(ψ2)cos(φ2)sin(θ2) + cos(ψ2)sin(φ2)cos(θ2) (3.4)

qz = sin(ψ2)cos(φ2)cos(θ2)− cos(ψ2)sin(φ2)sin(θ2), (3.5)

q =

qw
qx
qy
qz

 . (3.6)

To restrict the quaternion to one hemisphere each element was inverted if qw was
negative. Constraining a quaternion to one hemisphere results in a smooth rotation
since the duality property, described in Section 2.2.1, is removed.

3.3 RGB-D Neural network
The aim was to design a network that takes two images, one RGB and one depth
image, as input and produce a 3D translation vector and a quaternion representing
the orientation. The idea was that the network learns to connect objects in the scene
to an orientation, effectively building a virtual map encoded in the network’s weights.

3.3.1 Network design
The network design was inspired by the work of Kendall et al. [17]. It uses the
GoogLeNet [18] architecture with inception modules. The inception module, pic-
tured in Figure 3.7, consists of several convolutions filters with different kernel size.
The varying filter size increases the probability that a network finds similar features,
even if the size of them differs between images. To reduce the computational cost of
the bigger convolutions, 1×1 convolutional filters are added prior to reduce the di-
mensionality. The module allows a network to learn similar features with fewer layers
and weights compared to a network were layers are just stacked on top of each other.

Using this existing network architecture enables the use of pretrained weights to
speed up the learning process and reduce the need of a large data set. The chosen
pre-trained weights are initially trained on a scene recognition task on a data set
called Places[41]. Intuitively, this task should be similar to that of scene localization
as both depend on scene understanding more than the typical object recognition
task.

26

3. Method

Figure 3.7: Illustration of an inception module.

The whole GoogLeNet architecture is shown in Figure 3.14. The network begins
with a few max pooling, batch normalization and convolution layers before 9 incep-
tion modules are stacked on top of each other. After the final inception modules
a large 7×7 max pooling layer decreases the input size to the final fully connected
layer. Two small auxiliary networks are added after the third and sixth inception
module. The idea of them is to avoid vanishing gradients while backpropagating
through many layers.

Complete network architecture The complete RGB-D network, depicted in
Figure 3.8, uses two identical GoogLeNet models. One that is trained on RGB im-
ages as input and one with JET encoded depth images as input. The final three
layers fuse the information from both networks before the rotation and translation
predictions are made. The fusing was done by stacking the output from the last
inception module of both networks depth wise and inputting this to a 7×7 average
pooling layer. A fully connected layer with 1024 neurons then encode the informa-
tion and learns how to extract the pose from the combined feature map. In total
there were 14 million trainable weights in the network.

3.3.2 Network training & preprocessing
The network was trained in several stages. First the identical RGB and depth
models were trained individually for 800 epochs each, saving the weights from the
best performing epoch. Afterwards, the models were fused into one network as
described in Section 3.3.1 and finetuned while the previously trained layers were
frozen. Training the networks separately took around 5 hours each and finetuning
took approximately 60 hours, leading to a total training time of 70 hours.

For training, all images were center-cropped to the size of 224x224 pixels. The
Adam [35] optimizer was used with a clip value on the gradients of 1.5 and a learning

27

3. Method

Figure 3.8: Overview of the top layers of the full network architecture. The output
size of the concatenated RGB and depth network is 7x7x2048 and the fully connected
layer has 1024 neurons.

rate of 0.001. To be able to effectively use pretrained weights, the inputs on the
new task needs to be in the same range as they were in the original training, in
other words the same preprocessing techniques need to be applied. For this task,
the mean of the training data set was subtracted from all images. The same mean
was used for the training, validation and test data set. The mean was calculated as

µc =
∑
i

Xi,c (3.7)

where the sum was taken over all pixel in the three available channels ci. The idea
behind the normalization technique is to center the data into a similar range. This
will prohibit the gradients to explode and a common learning rate can be applied
to the whole training process.

Colorized depth encoding The depth sensor produces a one channel depth map
where each pixel value corresponds to the distance from the sensor to the pixel. En-
coding the one channel depth value to a three channel color encoding is useful since
it enables the use of pre-trained RGB network architectures for depth images as well.

To calculate the colorized image, the depth map was first normalized to values
between 0 and 255 and then passed through a function which transforms the map
to a 3 channel encoding. In the project the JET colormap function was used.

Figure 3.9: JET colormap encoding for a 5 bit depthmap.

28

3. Method

Using the JET colormap, pixels near the sensor were colored blue and pixels far
away were colored red. A depth image encoded this way is shown in Figure 3.10

(a) Depth Image (b) JET colorized Image

Figure 3.10: Example depth image and its corresponding JET encoded represen-
tation.

Trainable loss function The network has two tasks, to predict a translation and
a rotation. During training the angle error and the translation error will have dif-
ferent magnitudes, meaning they will impact the magnitude of the gradients during
backpropagation differently. To balance the importance of both tasks, a trainable
loss function described in Section 2.1.3 was implemented with a minor modification.
To create a more numerically stable loss function and avoid division with zero, the
loss was rewritten as

Ltot = e−ŝxLx + ŝx + e−ŝqLq + ŝq (3.8)

With ŝx = log(σ2
x) and ŝq = log(σ2

q). In addition to being more stable, the e−ŝ term
is positive thus representing a valid variance value. In this loss function ŝx and ŝq
are trainable parameters which shift during training so that the losses calculated for
each task is balanced.

As the lowest loss from the trainable loss function doesn’t necessarily correspond to
the best accuracy and best weights, a custom metric was implemented. This metric
calculates the mean translation error and angle error for the whole validation data
set at the end of each epoch. The weights from the epoch with the lowest combined
error were saved as the best weights.

3.4 Point Cloud registration network
The second portion of the localization system was a point cloud registration network
that aligns a 3D LiDAR scan taken at the vehicles current position with a highly
detailed map of the operational area. For the registration network to be able to
match a scan to the map, it is necessary that the scan and the crop of the map

29

3. Method

contain approximately the same points. This was achieved by using the predicted
position from the RGB-D image network to extract portions of the map close to the
scan and pre-process the map to make it more similar to a LiDAR scan. Additional
accuracy gains were achieved by applying a sliding-window type approach that crop
multiple n × n [m2] shaped map segments around the initial prediction and try to
match the crops with the scan.

3.4.1 Network design
PointNetLK [29] is a neural network for point cloud registration that promises to be
both robust to bad initial alignment of the point clouds and converge much faster
than traditional ICP methods. It is based on PointNet together with a modified
version of the Lucas-Kanade method. The main idea behind PointNetLK is to
utilize a PointNet network as an imaging function, encoding the 3D geometry in an
"image" vector and then use the LK algorithm to align two of these vector "images".
The novel idea of this approach is the modification of the LK algorithms so that
it can be used without image gradients calculated with 2D or 3D convolutions. A
visualization of the network structure can be seen in Figure 3.11. The theoretical
motivation behind the design can be found in Section 2.5.

Figure 3.11: The PointNetLK network used for registration.

3.4.2 Training PointNetLK
As with all neural network, the registration network PointNetLK needs training be-
fore it will be able to do any predictions. The initial training of the MLP weights
was done on a classification task. For this training, the ModelNet40 [36] data set
was used which consists of point cloud models of 40 different classes. The models
range from guitars to airplanes and each class has around 100 different models split
into a train and a test set.

All models passed to PointNet were first normalized and centered to fit within a
unit cube. The training ran until convergence which took around 16 hours. The
weights of the first MLP portion of PointNet, after the classification training, was
then transferred to PointNetLK and used as initialization weights for the registration
training. PointNetLK was also trained on ModelNet40 models using 20 of the classes

30

3. Method

for training and 20 for testing. The training was done by applying a varying degree
of translation and rotation perturbations to each source point cloud, creating a
very large data set of source and template point cloud pairs with known ground
truth transformation Ggt. During training, PointNetLK uses a loss function that
minimizes the error between the estimated transformation and the ground truth

||G−1
est ·GgtI4||2. (3.9)

3.4.3 Map segment matching
To evaluate the performance after the PointNetLK training process, a map segment
from the 3D map was used to test the networks ability to match point clouds with
markedly different geometries than trained on. A map segment cropped from the
full 3D map was used as the target and the same point cloud, transformed with a
random translation and rotation, was used as the source. Images from before and
after the transformation are shown in Figure 3.12.

Figure 3.12: Two identical point clouds with a transformation perturbation applied
to one of them. Input to the left, to the right the point clouds after applying
the transformation from the PointNetLK algorithm. PointNetLK finds the exact
transformation matrix between them.

The result, as seen in Figure 3.12, shows that PointNetLK has no problem matching
identical map segments even though it has not been trained on such point clouds.
When trying to match two different point clouds with partially overlapping surfaces,
such as a map segment and a scan, the results were not as good and could often
fail. This inability required that additional preprocessing had to be done to create
similar looking scan and map segments.

31

3. Method

Preprocessing for map matching To be able to match the map to a scan, some
preprocessing needs to be done on the map to make it "scan-like", as described be-
low. There were three steps used in the preprocessing pipeline for PointNetLK.

Crop The first step was to crop the map to a pre-determined size. From visual
inspection of different crop sizes, 60 × 60 m produced a well weighted amount of
geometries that were shared with and could be differentiated from the scan. The
same crop size was applied to the scan to remove sparse geometries with few scan
points far away from the origin of the scan.

Downsampling The map segment was then downsampled to a density similar to
the scan. This was be done by using a voxel grid filter. Given a voxel size, the
algorithm takes into account all occupied voxels in the grid and generates a new
point by averaging all point in each respective voxel.

2.5D extraction A single LiDAR scan only contains 3D information from a single
point of view, only reaching surfaces in direct line-of-sight, often called 2.5D. This
2.5D structure is rather different from the combined multi-view 3D map.
To make the 3D map segment similar to a 2.5D scan, all the points with surface
normals pointing away from the predicted position was removed. In this way, most
points not visible from the predicted position could be removed from the 3D seg-
ment. In this way, the map segments could be better matched with the 2.5D scans
from the LiDAR. The surface normals for the points in the map are pre-calculated
before run-time and aligned with the gravity vector, as described in Section 2.3.2.
During matching, points that should be removed are found by taking the dot prod-
uct of the vector from the 3D point, Pi, to the predicted position, PredPos, and
the normal of the 3D point, N3D as

Vi = PredPos− Pi ∀i ∈ points in crop
if Vi ·N3D > 0 :
keep Pi

Figure 3.13 visualizes a top view of a map segment before and after the 3D to 2.5D
conversion.

3.4.4 Sliding window method
The preprocessing steps enable PointNetLK to match a scan with a map segment.
But if the initial prediction was too inaccurate, PointNetLK could fail because the
extracted map segment and scan could be too different. To solve the issue a sliding
window approach was developed where several map segments were cropped and
compared to the scan. Using the initial prediction, a larger map was cropped and
several patches were extracted using a smaller window and a predefined step size.
The method helps PointNetLK to correct more and worse initial estimates as the
search area increases, though with increased computational time as a payoff.

32

3. Method

Figure 3.13: Top view of a map segment before and after 3D to 2.5D conversion.

Crop size tuning To test how large offsets PointNetLK can handle, different step
sizes were tested while cropping the map segments. Step sizes of 1.7 m, 3 m and
6 m were tested. In all cases a 12× 12 m area was searched around the prediction,
leading to 225 iterations for 1.7 m step size, 81 iterations for 3 m step size and 25
iterations for the 6 m step size. Table 3.1 show the result.

Refinement on hard test cases
Original prediction 6.5 m, 8.3° 7.6 m, 10.3°

Test case Median error Mean error
-12 m to 12 m search, 5 steps 2.7 m, 11.5° 4.3 m, 13.0°
-12 m to 12 m search, 9 steps 1.9 m, 9.5° 2.3 m, 10.7°
-12 m to 12 m search, 15 steps 1.8 m, 9.5° 2.7 m, 10.5°

Table 3.1: Results using different step size to extract map segments for matching.

On the tested step sizes, there were no big difference in performance between a step
size of 3.0 m and 1.7 m, while the larger step size requires 15 · 15 − 9 · 9 = 144
fewer iterations to cover the same map size. Though a performance drop was seen
with the largest 6 m step size. A 3 m step size was used in the project as it was
considered a good trade-off between accuracy and number of iterations. The map
size to cover is purely a trade-off between accuracy and computational time since a
larger search area increases our chances to correct inaccurate predictions.

33

3. Method

Figure 3.14: A schematic view of the GoogLeNet architecture.

34

4
Results

In this chapter, the results from the evaluation of the performance and characteristics
of the different networks will be presented. This includes the individual performances
of image networks trained on RGB, depth images and the final RGB-D network. We
then present the result from the position estimate refinement with PointNetLK.
Two types of test sets were created to evaluate the estimation accuracy of the net-
works. The first was created independently but in the same manner as the training
data set, by means of an autopilot. The second was manually created by collecting
data at poses not found in the training data set. This manually created data set was
designed to show the ability of the RGB-D network to generalize and the potential
benefits of using a PointNetLK type registration network for pose refinement.

4.1 Results from autopilot test set
Initially, the image networks were tested with two test sets gathered by using the
autopilot. The first of these contained only image pairs from the clear weather set-
ting and the second contained four different weather types. After the prediction,
the error is calculated as the Euclidean distance between the ground truth pose and
the predicted pose. The same test sets were used to evaluate both the single image
networks and the RGB-D network.

4.1.1 Performance with clear weather data set
The first test was done on a model trained on a data set with 7600 images generated
with clear weather conditions. The corresponding test set for this scenario contained
707 images.

The results presented in Table 4.1 show that the single image network is able to
learn to predict a pose given either a RGB or a JET encoded depth image. The
performance on both RGB and depth images show similar accuracy which implies
that the network can learn to localize using both JET encoded geometry informa-
tion from depth images or textures from RGB images. The result also shows that
the fused information from both RGB and depth images improve the performance
of the translation prediction. The angle prediction, however, is worse when using
the RGB-D model.

35

4. Results

Clear weather - Test set
Model Median error Mean error
RGB 3.0 m, 2.1° 4.6 m, 3.9°
Depth 2.6 m, 2.5° 4.3 m, 3.8°
RGB-D 1.6 m, 5.0° 3.2 m, 8.3°

Table 4.1: Mean and median error with single and RGB-D networks. The results
show that the additional information from both image types improve the translation
accuracy but deteriorate the angle predictions.

From the histograms in Figure 4.1-4.3, this result is made clearer. The RGB-D
network produces more accurate translation predictions with fewer large error pre-
dictions.

Figure 4.1: RGB network, clear weather, Every bar is 0.25 m/degree wide.

36

4. Results

Figure 4.2: Depth network, clear weather, Every bar is 0.25 m/degree wide.

Figure 4.3: RGB-D network, clear weather, Every bar is 0.25 m/degree wide.

37

4. Results

4.1.2 Performance with varying weather
The second test was done on a model trained on a data set with varying weather. The
test set contained 1011 images with an equal distribution of the same four weather
scenarios as in the training set. In this case, the RGB images have additional noise
added in the form of new lighting conditions and textures which should increase the
difficulty of the task. The depth sensor has however not been affected by this noise
as the geometries are unchanged.

Varying weather - Test set
Model Median error Mean error
RGB 4.8 m, 3.1° 8.6 m, 6.5°
Depth 3.1 m, 3.3° 4.8 m, 4.9°
RGB-D 1.7 m, 2.6° 3.3 m, 4.9°

Table 4.2: Mean and median error on RGB, depth and RGB-D network on the
data set with weather variation. The RGB models prediction errors increases more
compared to the depth model when tasked to predict in the varying weather scenar-
ios.

As expected, the RGB network saw decreased performance with weather variation
while the depth network produces similar results as in the first case. The result also
shows that when fused together, the combined information from both modalities
results in a better prediction than any of the single networks. Histograms of the
rotation error and translation error are presented in Figure 4.4-4.6.

Figure 4.4: RGB network, varying weather, Every bar is 0.25 m/degree wide.

38

4. Results

Figure 4.5: Depth network, varying weather, Every bar is 0.25 m/degree wide.

Figure 4.6: RGB-D network, varying weather, Every bar is 0.25 m/degree wide.

39

4. Results

4.1.3 Performance with PointNetLK refinement on varying
weather

Refining the initial prediction from the RGB-D network with PointNetLK led to the
results presented in Table 4.2 and Figure 4.7. The result shows that PointNetLK
does improve the translation accuracy but struggles to improve the angular predic-
tion. The translation histogram in Figure 4.7 show that there still exists outliers,
but there are fewer predictions in the range 5-15 meters compared to the initial
predictions, shown in Figure 4.6.

Varying weather - Test set
Model Median error Mean error
RGB-D 1.7 m, 2.6° 3.3 m, 4.9°
Refined RGB-D 1.6 m, 5.1° 3.1 m, 8.7°

Table 4.3: Table with results from the refinement network PointNetLK compared
to the RGB-D prediction network without refinement.

Figure 4.7: Refined prediction from RGB-D network with PointNetLK, varying
weather, Every bar is 0.25 m/degree wide.

For all cases, a 3m step size was used covering an area of 84x84m which resulted in
a total of 81 map to scan comparisons.

40

4. Results

4.2 Results from challenging data set

To validate the RGB-D and PointNetLK networks further, a challenging test set was
created consisting of 26 different poses were the car is shifted perpendicular and/or
not aligned parallel with the road. This type of test is interesting as the images will
be fairly different from what exists in the training data set, which would indicate
to what degree the RGB-D network has learned to generalize. Two examples from
the test set can be seen in Figure 4.8. The rest of the collection can be found in
Appendix A.1

(a) Example image, car driving in
the opposite lane

(b) Example image, car rotated
28° counter clockwise in lane

Figure 4.8: Example images from the hard test data set.

4.2.1 Performance with RGB-D and PointNetLK networks

Testing the two networks on the challenging data set show that the RGB-D network
is considerably less accurate when encountered with shifted images. From Table 4.4,
the reliability of the predictions is shown to vary considerably, even though the
input images are changed in a similar way throughout the whole data set. From
the corresponding images in Appendix I, we see that these estimates are taken from
viewpoints likely to be encountered in a dynamic setting. These results will be
discussed further in Section 5.1
Refining the initial predictions with PointNetLK led to the results, also presented
in Table 4.4. This test case shows the benefit of using PointNetLK since many
large prediction errors is improved. Though, when the prediction error is too large,
PointNetLK is not able to refine it. This is likely due to the search area of the
sliding window algorithm being too small to extract a map segment similar to the
scan.

41

4. Results

Case RGB-Dpos. error
w/ PointNetLK

pos. error
RGB-D

angle error
w/ PointNetLK

angle error
1 140.1 m 120.8 m 31.9° 18.2°
2 25.4 m 8.9 m 18.0° 25.0°
3 5.6 m 0.6 m 4.9° 5.4°
4 32.4 m 19.3 m 21.3° 23.2°
5 7.5 m 1.9 m 3.8° 10.5°
6 6.1 m 1.0 m 7.3° 7.7°
7 116.8 m 131.6 m 65.5° 72.6°
8 26.2 m 7.5 m 11.1° 12.0°
9 4.6 m 1.9 m 11.5° 11.7°
10 11.6 m 3.1 m 28.8° 47.6°
11 58.2 m 71.6 m 17.1° 39.3°
12 6.9 m 1.5 m 5.1° 4.7°
13 0.9 m 2.6 m 8.9° 19.5°
14 24.6 m 20.7 m 28.9° 31.7°
15 33.0 m 35.6 m 26.5° 172.2°
16 5.6 m 2.1 m 3.1° 6.2°
17 3.3 m 10.1 m 21.6° 32.9°
18 46.0 m 69.7 m 10.2° 19.4°
19 8.3 m 3.3 m 19.0° 11.9°
20 8.2 m 1.8 m 19.8° 14.7°
21 14.1 m 2.0 m 3.6° 3.4°
22 72.7 m 64.7 m 20.9° 31.8°
23 8.8 m 2.4 m 1.7° 4.6°
24 2.4 m 2.4 m 22.5° 4.6°
25 8.2 m 1.2 m 32.5° 19.1°
26 22.1 m 2.8 m 26.9° 15.0°

Mean 26.9 m 22.7 m 17.7° 25.9°
Median 10.2 m 3.0 m 17.5° 16.6°

Table 4.4: Summary of test results. PointNetLK can refine the translation estimate
in several cases.

4.3 Visual results of point cloud matching
Figure 4.9 shows a map segment and a scan prior to and after the refinement process.
This shows that PointNetLK is able to find a transformation that better match two
point clouds even though they contain non-identical points and with partial overlap
of the 3D structure.

42

4. Results

Figure 4.9: Case were PointNetLK match two different point clouds. In the left
image, the blue LiDAR scan point cloud is overlaid on the red map segment pro-
duced from the RGB-D networks initial prediction. The right image shows the
result after transforming the source point cloud with the found transformation from
PointNetLK.

4.3.1 Failure cases
In this section, cases were PointNetLK failed to refine the point clouds are visualized
and discussed.

Figure 4.10: Case when PointNetLK were not able to refine the pose accurately.
Input point clouds to the left, refined points clouds to the right.

In this case, PointNetLK is able to improve the prediction but still produces an error

43

4. Results

at around 5 m. The scan and the map segment are too different for PointNetLK to
refine it further. The large differences between the map segment and the scan appear
when the 3D map is converted to a 2.5D representation. The initial prediction is so
inaccurate that points being removed in the 2.5D conversion actually appear in the
scan and vice versa.

Figure 4.11: Case when PointNetLK made the position estimate worse. The scan
contains points higher up than the map. Input point clouds to the left, refined
points clouds to the right.

In this case, the initial guess is already accurate but the refinement process makes it
worse. The scan and the map segment are from the same area, but the scan contains
points higher up than the map segment does. The difference causes PointNetLK to
"pull down" the scan, resulting in a worse position estimate. In essence, since the
prediction network is trained in a flat environment, the z-error in the prediction
is always spot on and the z-error could actually be disregarded in the refinement.
However, this failure case shows that a difference in geometry in the z-axis direction
could be problematic in other scenarios as it could worsen the refinement results.
This can be seen in a histogram showing the xyz and xy error respectively.

Figure 4.12: RGB-D network and refined, varying weather, Every bar is 0.25 m
wide.

44

5
Discussion

In this chapter, the results from the previous chapter are discussed. We try to explain
some of the observed properties and discuss problems found in the performance.

5.1 RGB-D network performance
We see several interesting properties in the multi-modal RGB-D network compared
to the uni-modal. We see increased translation prediction performance in all of the
test sets. Most noticeably, the gains grow larger with more difficult scenarios. The
increased robustness to varying scenes was one of the main motivation when pursu-
ing multi-modal image networks, which makes these results encouraging.

As was already mentioned in Section 1.3, the focus with this thesis was never to
reach the accuracy performance of the current state-of-art network such as VLoc-
Net++ [14], but rather to investigate if RGB-D fusion in outdoor environments
could lead to any performance gains. While this seems to be the case, we also saw
that running the image networks on poses that were less similar to what is found
in the training data set produced much less accurate predictions or could often fail
entirely. PointNetLK was added to improve some of these inaccurate predictions,
though it was not able to refine very large errors in a reasonable computational time.
We believe that a larger, more diverse training data set could solve this issue, while
unfortunately also limiting the feasibility of using pose prediction networks in real
world applications. In a recently published paper, Sattler et al. [42], draws simi-
lar conclusions with a thorough theoretical explanation on the limitations of pose
prediction CNNs, arguing that they are actually more related to image retrieval
networks than methods that regress the pose from 3D geometries. This, in princi-
ple, says that when the network is fed a new query image, the estimation will be
constituted of a combination of previously learned poses of similar images. This, in
turn, means that query images taken at poses which is not in the set of combinations
will not be accurately predicted as the network does not actually learn the spatial
relation of similar images, rather retrieve similar poses.

5.2 PointNetLK performance
PointNetLK shows great potential with the ability to find the transformation be-
tween similar point clouds and thus refine a pose. The big benefits of PointNetLK is

45

5. Discussion

the fact that the computational time is much less than commonly used ICP meth-
ods [29] and it doesn’t need to be retrained for different point clouds.

A substantial limitation is, however, that the inputs have to be similar for Point-
NetLK to work well. Due to this reason, a 3D to 2.5D conversion and sliding window
crop comparison were needed to achieve high accuracy, resulting in a lot more compu-
tations. This data preprocessing needed to create similar point cloud was dependent
in a fairly good initial prediction. If the predicted position is bad or unfortunately
guessed, the 2.5D transformation algorithm, described in Section 3.4.3, can remove
prominent features visible in the scan and reduce the possibility for a good match,
as seen in Figure 4.10. If more tuning had been performed on the creation of the
2.5D segments this would hopefully also correct the large angular error that we see
occur during refinement.

5.2.1 Network training
PointNetLK was only trained to match two identical objects with different pose in
3D space. Even though the inputs in this scenario are not identical, the algorithm is
often able to find a good transformation between them. It would be very interesting
to see if the matching process could be improved if the network was trained on
matching scans to a map. Though it is a tedious process to create a large enough
data set which requires a lot of manual work and since the matching worked without
this training it was not prioritized.

5.3 Lack of benchmarking test set
The customary way of comparing the performance of neural networks is to bench-
mark them against some established data set. The combination of RGB and depth
images together with a high resolution 3D map of a city were nothing we were able
to find, wherefore, a comparison to a public benchmark have been omitted. This
lack of available data also resulted in all development being done on simulated data.
While the virtual environment was sophisticated, there is still a big difference be-
tween simulated and the real world data, therefore it is hard to say how this system
would perform in a real world scenario.

5.4 Execution times
One of the largest benefits with the use of neural networks for localization is the fast
and constant inference time. A prediction with the RGB-D Network takes about
11 ms on a Nvidia GeForce RTX2080 Ti. Each PointNetLK iteration takes 0.2-
0.5 seconds depending on the number of 3D points in the current scan and map
segment. Though the total running time depends on the number of PointNetLK
iterations to run. There is a big trade-off between speed and accuracy, as a larger
search radius and more iterations lead to an improved chance to correct bad ini-
tializations. One idea to reduce the computational time was to introduce an early

46

5. Discussion

stopping routine, which would stop the process if it converged or if a metric were
below some threshold. Though none of these methods performed well when tested
and since the focus has been on the accuracy performance rather than the compu-
tational speed the issues of finding a stable metric and tuning thresholds were not
prioritized.

47

5. Discussion

48

6
Conclusion

The purpose of this thesis has been to explore one way of combining RGB and depth
images and evaluate to what degree multiple modalities would be beneficial when
training end-to-end neural networks. We saw two main benefits with this approach.

More accurate predictions by learning to fuse information from two modal-
ities The two systems were shown to complement each other well as the image
network often could predict what region images were taken, but produced fairly in-
accurate results when placed in poses not occurring in the training data set. While
the registration network was not able to compare single scans to the entire map,
it could use the prediction to extract comparable regions, reducing the number of
comparisons needed. The two networks were seen to complement each other and
together they produced a more accurate pose.

Self-contained pose estimation system suitable for outdoor areas With
reservation that we perform all development and testing in a simulated world, we
are able to localize in an outdoor environment where we are constrained to move not
too far from where the training data was gathered. We had hoped that an end-to-end
trained CNN might share the ability to generalize about image inputs which CNNs
have been shown to do in other applications [41]. Though, results show that it fails
to produce a viable initial prediction when the input image is taken at poses that
largely differs from what is found in the training data. This would indicate that the
network has not learned a "virtual map" but instead finds similarities to previously
seen images and the prediction is rather a combination of previously learned poses.

6.1 Future Work
Based on our work we see that point cloud registration methods based on Point-
NetLK can improve the position estimate greatly. PointNetLK shows great potential
and for future work, it would be interesting to see if the matching performance can
be increased by training the network on partially visible scans in a map. Hopefully,
it would increase the robustness of the system and lower the computational time,
as the number of iterations could be decreased.

Regarding the RGB-D network, as we found issues when using the image network to
predict on poses not found in the training data, additional work should preferably
focus on making it robust to pose changes. Since PointNetLK is able to correct many

49

6. Conclusion

inaccurate predictions, this could open up the possibility to use different methods
to generate an initial pose. We suggest that the future prediction system should
be designed to learn a scene representation, rather than continuing making more
accurate estimations based on PoseNet.

50

Bibliography

[1] R. Hussain, and S. Zeadally, "Autonomous Cars: Research Results, Issues
and Future Challenges", IEEE Communications Surveys Tutorials, 2018, doi:
10.1109/COMST.2018.2869360, ISSN: 1553-877X.

[2] S. Tang, V. Kumar, "Autonomous Flight", In: Annual Review of Con-
trol, Robotics, and Autonomous Systems, volume 1, pages 29-52, 2018, doi:
10.1146/annurev-control-060117-105149.

[3] C. Benson, P. Sumanth, A. Colling, "A Quantitative Analysis of Possible Fu-
tures of Autonomous Transport", In: INEC 2018 Conference, arXiv:1806.01696.

[4] A. Lawrence, "An Outline of Inertial Navigation," In: Modern Inertial Tech-
nology, Mechanical Engineering Series, 1998, Springer, New York, NY. doi:
10.1007/978-1-4612-1734-3_2

[5] D. Nistér, O. Naroditsky, J. Bergen, "Visual odometry," In: Proceedings of
the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2004), vol. 1, pp. I–652 (2004)

[6] G. Grisetti, S. Grzonka, C. Stachniss, P. Pfaff, W. Burgard, "Efficient esti-
mation of accurate maximum likelihood maps in 3D," In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2007 (IROS 2007), pp.
3472–3478 (2007)

[7] J. Han, L. Shao, D. Xu and J. Shotton, "Enhanced Computer Vision With
Microsoft Kinect Sensor: A Review," In: IEEE Transactions on Cybernetics,
vol. 43, no. 5, pp. 1318-1334, Oct. 2013.

[8] L. Shaoa, Z. Caic, L. Liud, K. Lue, "Performance Evaluation of Deep Feature
Learning for RGB-D Image/Video Classification", In: Information Sciences,
385. pp. 266-283. ISSN 0020-0255, 2017.

[9] B. Behroozpour, P. A. M. Sandborn, M. C. Wu and B. E. Boser, "Lidar System
Architectures and Circuits," In: IEEE Communications Magazine, vol. 55, no.
10, pp. 135-142, Oct. 2017. doi: 10.1109/MCOM.2017.1700030

[10] Lumotive (2019), [Online]. Available: https://www.lumotive.com/
[11] D. Lowe, "Distinctive image features from scale-invariant keypoints," In: Inter-

national Journal of Computer Vision, 60, 2 (2004), pp. 91-110.
[12] R. Mur-Artal and J. D. Tardós "ORB-SLAM2: An Open-Source SLAM

System for Monocular, Stereo and RGB-D Cameras," In: IEEE Trans-
actions on Robotics, vol. 33, no. 5, pp. 1255-1262, Oct 2017. doi:
10.1109/TRO.2017.2705103

[13] M.A. Fischler and R.C. Bolles, "Random sample consensus: A paradigm for
model fitting with applications to image analysis and automated cartography,"
In: Communications of the ACM, 24(6):381–395, 1981.

51

Bibliography

[14] N. Radwan, A. Valada, W. Burgard, ”VLocNet++: Deep Multitask Learn-
ing for Semantic Visual Localization and Odometry”, In: IEEE Robotics and
Automation Letters (RA-L), 3(4):4407-4414, 2018.q

[15] A. Valada, N. Radwan, W. Burgard, ”Deep Auxiliary Learning for Visual Lo-
calization and Odometry”, In: IEEE International Conference on Robotics and
Automation (ICRA), 2018.

[16] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon.
"Scene coordinate regression forests for camera relocalization in RGB-D im-
ages." In: Computer Vision and Pattern Recognition (CVPR), 2013

[17] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional network for
real-time 6-dof camera relocalization,” In: ICCV, 2015.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, "Going deeper with convolutions," arXiv
preprint arXiv:1409.4842, 2014

[19] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, "ORB: an efficient alternative
to SIFT or SURF," In: IEEE International Conference on Computer Vision
(ICCV), 2011

[20] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool, "SURF: Speeded Up Robust Fea-
tures", In: Computer Vision and Image Understanding (CVIU), Vol. 110, No.
3, pp. 346–359, 2008

[21] S. Zia, B. Yüksel, D. Yüret, Y. Yemez, "RGB-D object recognition using deep
convolutional neural networks", In: Proc. IEEE Int. Conf. Comput. Vis. Work-
shop (ICCVW), pp. 887-894, Oct. 2017.

[22] J. Engel, T. Schoeps, D. Cremers, "LSD-SLAM: Large-scale direct monocular
SLAM", In: ECCV, 2014.

[23] J. Engel, V. Koltun, D. Cremers, "Direct Sparse Odometry", In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, Mar. 2018.

[24] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, A. Fitzgibbon, "Scene
Coordinate Regression Forests for Camera Relocalization in RGB-D Images",
In: IEEE Conference on Computer Vision and Pattern Recognition, Mar. 2013.

[25] X. Song, L. Herranz, S. Jiang, "Depth CNNs for RGB-D scene recognition:
learning from scratch better than transferring from RGB-CNNs", In: AAAI,
2017.

[26] A. Eitel, J. T. Springenberg, L. Spinello, M. A. Reidmiller, W. Burgard, "Multi-
modal Deep Learning for Robust RGB-D Object Recognition", In: IROS 2015,
2015.

[27] A. Dosovitskiy, G. Ros, F. Codevilla, A. López, V. Koltun, "CARLA: An Open
Urban Driving Simulator", In: CoRL, 2017.

[28] C. Qi, H. Su, K. Mo, L. Guibas, "PointNet: Deep Learning on Point Sets for
3D Classification and Segmentation", arXiv:1612.00593v2, 2017.

[29] Y. Aoki, H. Goforth, R. A. Srivatsan, S. Lucey, "PointNetLK: Robust & Effi-
cient Point Cloud Registration using PointNet", arXiv:1903.05711v1, 2019.

[30] P. Besl, N. McKay, "A Method for Registration of 3-D shapes", In: IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1992.

52

Bibliography

[31] B. Lucas, T. Kanade, "An Iterative Image Registration Technique with an Ap-
plication to Stereo Vision", In: Proceedings of Imaging Understanding Work-
shop, pp. 121-130 (1981).

[32] S. Baker, I. Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework",
In: "International Journal of Computer Vision 56(3)", p221–255, 2004.

[33] F. Chollet et al, "Keras," https://keras.io, 2015.
[34] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xi-
aoqiang Zheng. "TensorFlow: Large-scale machine learning on heterogeneous
systems," 2015. Software available from tensorflow.org.

[35] D. P. Kingma and J. Ba. "Adam: A Method for Stochastic Optimization," In:
International Conference on Learning Representations (ICLR), 2015

[36] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao, "3D
ShapeNets: A Deep Representation for Volumetric Shapes" In: Proceed-
ings of 28th IEEE Conference on Computer Vision and Pattern Recognition
(CVPR2015), 2015

[37] D. E. Rumelhart, G. E. Hinton, R. J. Williams, "Learning Representations by
Back Propagating Errors", In: Nature volume 323, p533-536, 1986

[38] Cybenko, G.V. "Approximation by Superpositions of a Sigmoidal function". van
Schuppen, Jan H. In: Mathematics of Control, Signals, and Systems. Springer
International. pp. 303–314, 2006

[39] M. Ester, H-P. Kriegel, J. Sander, X. Xu, "A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise", In: Proceedings
of 2nd International Conference on Knowledge Discovery and Data Mining,
Portland, Oregon, 1996.

[40] F. Hemprech, C. Schnörr, B. Jähne, "Pattern recognition : 29th DAGM sym-
posium," Heidelberg, Germany, September 2007, p164-165 : proceedings, (elec-
tronic resource)

[41] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. “Learning Deep Fea-
tures for Scene Recognition using Places Database.”, In: Advances in Neural
Information Processing Systems 27 (NIPS), 2014. PDF Supplementary Mate-
rials

[42] T. Sattler, Q. Zhou, M. Pollefeys and L. Leal-Taixe. "Understanding the Limi-
tations of CNN-based Absolute Camera Pose Regression", In: Computer Vision
and Pattern Recognition (CVPR), 2019

[43] A. Kendall, Y. Gal, and R. Cipolla, "Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics.", In: CVPR, 2018.

[44] A. Kendall and R. Cipolla, "Geometric loss functions for camera pose regression
with deep learning", In: ICRA, 2016.

53

Bibliography

54

A
Appendix 1

A.1 Challenging test dataset

Below are all images used in the hard dataset presented. They can result from the
car being either in the wrong lane or not aligned with the road as it is in the training
images.

(a) Hard test case 1 (b) Hard test case 2

(c) Hard test case 3 (d) Hard test case 4

I

A. Appendix 1

(e) Hard test case 5 (f) Hard test case 6

(g) Hard test case 7 (h) Hard test case 8

(i) Hard test case 9 (j) Hard test case 10

II

A. Appendix 1

(k) Hard test case 11 (l) Hard test case 12

(m) Hard test case 13 (n) Hard test case 14

(o) Hard test case 15 (p) Hard test case 16

III

A. Appendix 1

(q) Hard test case 17 (r) Hard test case 18

(s) Hard test case 19 (t) Hard test case 20

(u) Hard test case 21 (v) Hard test case 22

IV

A. Appendix 1

(w) Hard test case 23 (x) Hard test case 24

(y) Hard test case 25 (z) Hard test case 26

V

	List of Figures
	List of Tables
	Introduction
	Background and Related work
	Purpose
	Scope

	Theory
	Neural networks
	Layers
	Neural network topologies
	Training neural networks

	Rigid Motion and twist
	Rotation formalism

	Point clouds
	Iterative Closest Point
	Surface Normals
	PointNet

	The Lucas–Kanade algorithm
	PointNetLK

	Method
	Full system design
	Data sets
	CARLA Simulator
	Data collection
	Angle representation

	RGB-D Neural network
	Network design
	Network training & preprocessing

	Point Cloud registration network
	Network design
	Training PointNetLK
	Map segment matching
	Sliding window method

	Results
	Results from autopilot test set
	Performance with clear weather data set
	Performance with varying weather
	Performance with PointNetLK refinement on varying weather

	Results from challenging data set
	Performance with RGB-D and PointNetLK networks

	Visual results of point cloud matching
	Failure cases

	Discussion
	RGB-D network performance
	PointNetLK performance
	Network training

	Lack of benchmarking test set
	Execution times

	Conclusion
	Future Work

	Bibliography
	Appendix 1
	Challenging test dataset

