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Abstract
Laser powder bed fusion (L-PBF) is an additive manufacturing technique that sees
more and more use in industrial settings, but is held back by a lack of cost-effective
quality validation of created products. One core attribute of high-quality additive
manufactured products is a low porosity, i.e. a high ratio of solid to empty volume
inside the object. This thesis provides an overview of the state of the art for in-situ
monitoring of L-PBF manufacturing and investigates the use of outlier detection
methods as a way of encoding optical tomography data from an L-PBF process.
This is done using a commercial L-PBF machine with its accompanying in-situ
monitoring camera. The results show that outlier detection methods can be used
to detect porosity in created objects (0.94 - 0.99 ROC-AUC, receiver operating
characteristics’ area under curve) and that it can generalize between similar object
geometries. The thesis also provides a discussion of the limitations of the current
research and suggests future work both building upon the methods introduced in
the thesis and in the field of in-situ monitoring of L-PBF.

Keywords: Machine Learning, Outlier Detection, Additive Manufacturing, Powder
Bed Fusion, Optical Tomography, Porosity
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• Additive Manufacturing (AM) - Manufacturing method where the object
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model.
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spread to form the powder bed. The build plate is lowered after each layer to
keep the top of the powder bed at the same height.

• Clustering - A type of unsupervised machine learning method.

• Cross validation - A method used in machine learning to determine suitable
parameters for a model.

• Co-axical - Set up where the camera is aligned with the laser beam, so that
the camera follows the laser spot. See also off-axial.

• Gas pore - A pore that occurs as a result of gas being trapped in the powder
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1
Introduction

1.1 Additive Manufacturing
Laser Powder Bed Fusion (L-PBF) is a manufacturing method where an object is
created by melting layers of a fine metal powder on top of each other, one after
another, according to a specification (often a CAD file). It is an additive manufac-
turing method, i.e. a method where instead of creating an object by removing parts
from a larger chunk, it is created by adding material. L-PBF initially mainly saw
use in prototyping, but increasingly sees use in production settings as well.
Although L-PBF offers a number of benefits compared to traditional metal manu-
facturing methods such as less waste, faster prototyping and the possibility to create
unique shapes, the technology is still held back by a lack of process repeatability and
inconsistent quality of build objects due to defects arising during the manufacturing
process [9].
One type of defect, porosity (the amount of empty space inside an object), can
severely impact the durability and toughness of a component [3]. Although some
degree of porosity is to be expected due to impurities in the material used, limiting
the occurrence of pores is of high importance to ensure the reliability of objects
created using L-PBF.
Traditionally, the way to address the issue has been in an open-loop fashion [14].
This means that an object would be manufactured, then checked for faults. If these
faults are considered severe enough, the object is discarded and the parameters
controlling the manufacturing process are tweaked if needed. This approach is time-
consuming (since it adds a qualifying step in the manufacturing of a component)
and if a critical issue occurs in an early layer, the object is still finished before it is
evaluated.

1.2 In-situ monitoring
To overcome these issues and increase the viability of L-PBF at scale, there has been
a surge in research of in-situ monitoring. Instead of waiting until the component
is completed, in-situ monitoring aims to evaluate the component as it is being con-
structed. In addition to increasing production speed and reducing material waste,
in-situ monitoring could potentially aid in taking corrective action when defects
occur, reducing the amount of constructed objects that are discarded.
Any in-situ monitoring system consists of at least two parts: a sensing part gathering
data about the manufacturing process and an analysis part looking at making sense
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1. Introduction

of the gathered data. Multiple types of sensors have been used, some of the most
frequently used ones being optical sensors such as cameras or photodiode based
systems [3]. Although different researchers [23][24][6][15] have used similar sensing
setups when looking at the whole build area (called the powder bed) and concluded
that there is the potential to use this type of data in-situ monitoring, there is limited
research in algorithmically analysing the sensor data to actually quantify porosity.
The research that exists has focused on using probability maps (a statistical tool)
to predict porosity in small parts of an object, and without taking the surrounding
area or layers into account [11].

1.3 Spatial Data Mining and Machine Learning
One way information could be extracted from the kind of images produced by in-
situ monitoring cameras is through the use of spatial data mining, the process of
extracting patterns from spatial data. It spans a range of methods, some commonly
sorted under supervised machine learning (such as artificial neural networks) as
well as unsupervised machine learning (clustering being one example). Clustering
in particular has seen a wide range of uses, such as identifying power outages [7],
identifying dangerous stretches of road [18] and identifying credit card fraud [1].

1.4 Study objectives
This thesis contributes to the existing research by assessing the use of spatial data
mining methods to automatically classify AM objects based on their porosity using
powder bed images. The aim of the thesis is to predict the porosity of components
manufactured using laser powder bed fusion by looking at in-situ images. Mohr et
al. [15] found that higher porosity results in uneven thermal conductivity (i.e. differ-
ent parts of the constructed object staying warmer for longer than the surrounding)
and that this difference in thermal conductivity can be detected using optical to-
mography. This thesis identifies and quantifies this phenomenon using spatial data
mining methods, compare their precision to each other as well as existing in-situ
monitoring methods. In doing this, we face the following challenges:

• Producing training data is expensive, since this involves physically building
objects. As a consequence, the training data is limited in terms of number of
instances.

• Due to the limited size of the training data, the traditional approach for image
classification (convolutional neural networks) is unlikely to be effective, and
other means of encoding need to be used.

• The available research on how one layer in a build object affects the previous
layers has been limited.

This thesis overcomes these challenges and contribute to existing research by looking
at optical microscopy data, which is cheaper to obtain, that has been used in a
different study. It also introduces a new way of encoding the data, based on spatial
outlier detection methods, which also takes multiple layers into account.

2



2
Additive Manufacturing

This chapter explains additive manufacturing and Laser Powder Bed Fusion (L-
PBF). It serves as an introduction for readers with a computer science background
to provide a bit of context for the rest of the thesis. It begins by providing an
overview of additive manufacturing methods before moving on to explain the nu-
merous parameters for L-PBF and how these parameters impact the process. Finally,
the chapter explains some in-situ sensing methods relevant to the thesis.

2.1 Introduction to L-PBF
There are multiple different additive manufacturing methods that vary from each
other in terms of material used, source of power and type of method used for con-
structing the object. Three forms of material (called base) are common: powder,
solid and liquid. The types of methods can be further divided by the method used
to fuse material together, such as melting, binding or lamination [4]. Figure 2.1
shows an overview of some AM methods according to this classification, with Laser
Powder Bed Fusion (the method used in this thesis) highlighted in blue.

Figure 2.1: Laser Powder Bed Fusion (blue) in relation to other additive manu-
facturing methods. Figure adapted from Dharnidharka et al. [4]

Laser Powder Bed Fusion (L-PBF) is one of the more common methods for metal
based additive manufacturing. L-PBF works in an iterative fashion, where an item
is constructed in multiple layers. Each step begins with a powder roller spreading a
thin layer of a fine metallic powder on top of the powder bed. After the powder has
been spread, a powerful laser quickly scans across the layer, melting the powder,

3



2. Additive Manufacturing

to form a cross-section of the item under construction. After each layer, the object
being constructed is lowered by the same thickness as the layer and the process is
repeated, melting each layer to the previous layer. This process is repeated until the
item under construction is complete. Figure 2.2 shows an overview of the L-PBF
build chamber.

Figure 2.2: Overview of L-PBF process

2.2 Parameters in L-PBF
There are multiple parameters controlling a PBF process that need to be properly
set in order to build objects properly. These parameters are commonly set according
to established best practises or the manufacturer’s recommendation in an open-loop
fashion, meaning that the operator manually tunes parameters after the construc-
tion of an object depending on the quality of the last object [15]. Some of the more
common parameters include:

• Scan Speed: The speed at which the laser tracks across the powder bed.
• Powder depth: The thickness of the powder in each layer
• Hatch Distance: The distance between the middle of two scan tracks of the

laser
• Laser Power: The power of the laser beam
• Volumetric Energy Density (VED): The energy used, measured in J/mm3.

It is composed of four other parameters: scan speed (the speed at which the
laser scans across the object), laser power, powder layer thickness and hatch
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2. Additive Manufacturing

distance (the distance between two parallel tracks in the laser scanning path).
VED can be calculated as shown in equation 2.1, where P is the laser power
in watt, S is the scan speed, H is the hatch distance and D is the powder layer
thickness.

V ED = P

S ∗ H ∗ D
∗ 103 (2.1)

• Beam Diameter: The diameter of the laser/electron beam
• Scan Strategy: How the laser tracks across the object, for instance making a

lot of parallel lines or alternating horizontal and vertical lines between layers
• Printing angle: Depending on where on the build plate an object is, the

printing angle will be different. Directly under the power source the printing
angle is 0 and the further from that location, the higher the angle will be

• Air flow direction: The direction of the air flow inside the build chamber
• Air flow rate: The rate of air flow through the build chamber
• Powder recoating direction: The direction the recoater spreads the powder

between each layer
• Material: The build material. Different materials have different properties

and require the other parameters to be tuned differently
• Baseplate thickness: The thickness of the baseplate (the plate the object is

built upon). It needs to be sufficiently thick to allow proper thermal conduc-
tivity from the build object [9]

2.3 Defects in L-PBF

During an L-PBF process, various kinds of defects can occur, impacting the density
or durability of the component being constructed. These defects can occur for a
number of different reasons.

2.3.1 Pores and Porosity

Pores are voids appearing inside the component during the manufacturing process
and can greatly impact the durability of a component. They are commonly split
into three categories: gas pores, lack-of-fusion (LOF) pores and keyhole pores. Each
of these pores are formed under different conditions, and they tend to have different
physical characteristics. Still, these characteristics exist along a continuous spec-
trum, making it often hard or downright impossible to say what class a given pore
belongs to. Figure 2.3 shows cross-sections from two objects with some examples of
pores.
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2. Additive Manufacturing

(a) Lack of fusion pores (b) Melt pools and a single gas or key-
hole pore. Red is the approximate di-
rection of the laser

Figure 2.3: Two cross-sections of a built object. The black dots in the left image
are pores with the typical, elongated and irregular shape of lack of fusion (LOF)
pores. In the right image, the teeth or finger-like shapes are melt pools. The small,
circular black dot is indicative of a gas or keyhole pore. Pictures taken from [19],
with permission.

• Gas pores are the smallest kind of pores. They are created as a result of gas
being trapped inside the powder. These pores are typically very small and
spherical.

• Keyhole pores often occur as a result of the VED being set too high. They
occur inside the melt pool (the small volume the laser heats to melt the metal).
Like gas pores, keyhole pores tend to be fairly spherical, but they do however
tend to be larger than gas pores. As a consequence, it is often hard to tell the
difference between a keyhole pore and a gas pore.

• Lack-of-fusion pores, are named after how they are formed: they occur when
there is a lack of fusion between the metal grains of the powder, which can
occur if the VED is too low (resulting in the powder not melting completely),
or if the hatch distance is too high (resulting in elongated pores between scan
tracks). These pores typically have highly irregular shapes [22].

Since it is more important to fix larger pores and since gas pores are unavoidable, it
is of interest to be able to classify pores as they occur. In a closed-loop setting (i.e.
a setting where the process parameters are tweaked based on what happens during
the build process), this may enable correcting pores as they occur since the laser
parameters in future layers can heal previous layers [22][5].

2.3.2 Other Defects
In addition to porosity, there are a number of other defects that can occur during the
additive manufacturing process. Below, we list some of the more common defects
and their causes.
Balling Due to surface tension, the molten material in the melt pool may at times
form small beads instead of a layer. The irregularity of these beads can result in
lack of fusion pores (when occurring inside the object), increased surface roughness
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(when occurring closer to the edge) as well as equipment damage in severe cases.
Balling can occur as a consequence of the scan speed being too high [9].
Geometric defects The constructed part may have a different shape or size than
the intended design. This can occur due to various reasons, including where on the
build plate the object is located (since this impacts the printing angle) [2].
Surface Roughness The surface roughness of a component can often be improved
by post-processing of the component (such as grinding). However, it can negatively
impact the fatigue performance, i.e. how prone the object is to break due to stress
[9]. A certain degree of surface roughness is to be expected due to the metal and the
layer-by-layer method of construction (resulting in tilted surfaces getting a surface
like a staircase), however it can become worse by pores occurring on the surface or
balling defects happening close to the surface.
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3

Data Mining and Machine
Learning

This chapter explains the needed background knowledge within the field of data
mining and machine learning. It starts by providing a brief introduction to the
common terminology used in the field. It then goes on to explain different evaluation
metrics, followed by a section on outlier detection with an emphasis on spatial outlier
detection.
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3. Data Mining and Machine Learning

3.1 Data Mining and Machine Learning Overview

Figure 3.1: Overview of some data mining methods. Methods in orange are statis-
tical methods, blue are supervised learning algorithms and green are unsupervised
learning algorithms. Figure adapted from Maimon and Rokach [12]

.

Data Mining is a field of computer science concerned with making sense and find-
ing connections in data. Maimon and Rokach [12] view the field as a hierarchy of
categories and methods (figure 3.1), which can be split into two distinct categories:
verification and discovery. Verification is about validating and testing existing hy-
pothesis (typically created by experts in their field), and commonly uses traditional
methods from statistics. Discovery on the other hand is about discovering a hypoth-
esis, rather than testing one. Out of the two, discovery is the category that is more
heavily associated with data mining. Discovery is in turn split in two categories of
methods: prediction and description methods.
Prediction (referred to as supervised learning in machine learning terminology) al-
gorithms attempt to find relationships in between input parameters (called features)
and their corresponding output attribute (called the label). They do this by training
a model. Although training a model often is time-consuming, once a model has been
trained it can typically make predictions quickly [12].
Description algorithms aim at providing some insight into a data set when there
is no clear "right" answer to a question. Some description methods (for instance
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clustering) fall under the unsupervised learning field of machine learning. Others
(for instance visualization) are not part of the machine learning field [12].

3.1.1 Regression and Classification Problems
Supervised learning models can further be split in two categories depending on
the nature of the prediction they are making. A regression model is predicting a
continuous value (for instance the price of a house given its location, size, number
of rooms etc.), whereas a classification model is predicting what category a given
instance belongs to (for instance whether a tumour is malign or whether someone
will default on their bank loan) [12].
Although it may appear natural to view any problem involving a continuous value as
a regression problem, it can often be easier to instead transform it into a classification
problem. This can be done by means of splitting the continuous range up into a
finite set of bins and predicting what bin an instance belongs to, rather than what
exact numeric value it should have. A common approach is to use two bins, one
for values at or above a given threshold and one for values below a threshold. This
approach of transforming a regression problem to a binary classification problem has
seen widespread use for in-situ monitoring in additive manufacturing [3][11][16].

3.1.2 Accuracy Metrics for Binary Classification
In order to determine how well any sort of algorithm is performing, it needs to
be evaluated. There is a large amount of different methods and metrics suitable
for different situations depending on a range of factors. Since the thesis is looking
at a binary classification problem, that is what this section will focus upon. For
binary classification problems, a common way of viewing things is to assign one of
the classes as the "positive" class and the other one as the "negative" class. The
convention is to let the class that one wishes to identify as positive, for instance the
occurrence of a defect in manufacturing or the presence of a disease in a medical
test, and let the other case (often the normal situation) be the negative one, i.e.
an object not having a defect in manufacturing or the absence of a disease in a
medical test. Using this terminology, we get four possible outcomes from any binary
classification:

• True Positive (denoted TP in formulas) is the case when a positive instance
is correctly identified as positive

• False Positive (denoted FP in formulas) is the case when a negative instance
is incorrectly identified as positive

• False Negative (denoted FN in formulas) is the case when a negative instance
is incorrectly identified as positive

• True Negative (denoted TN in formulas) is the case when a negative instance
is correctly identified as negative

Summarizing the occurrence for each of the cases and denoting them TP, FP, FN
and TN, we can define some commonly used metrics:

Precision = TP

TP + FP
(3.1)
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Predicted Class
Positive Negative

True Class Positive TP FP
Negative FN TN

Table 3.1: The four possible results in binary classification

Precision is a measurement of how often the classification is correct when identifying
the positive class. If one considers a defect to be the positive case, precision is
the rate of defective objects to all objects that were identified as defective. In
manufacturing, where defective objects are scrapped, having a high precision is
important to avoid material waste.

Recall = TP

TP + FN
(3.2)

Recall (also called sensitivity or hit rate) is a measurement of how often the clas-
sification catches a positive instance. Using the same example as for precision (i.e.
a defect being the positive case), recall is the rate of all defective objects that were
identified as defective. In manufacturing, having a high recall is important to avoid
defective components accidentally being used.

Accuracy = TP + TN

TP + FP + FN + TN
(3.3)

Accuracy is the rate of correctly classified instances. In a situation with an unbal-
anced data set (that is, a data set not containing an equal number of instances for all
classes), accuracy quickly becomes unreliable as a measurement. If for instance one
class occurs 90% of the time and the second only 10% of the time, always guessing
that an instance belongs to the majority will result in an accuracy of 90%.

F1-score = 2 ∗ Precision ∗ Recall

Precision + Recall
(3.4)

F1-score combines precision and recall into a single measurement to weigh them
together [17]. It is often used when a single metric is called for. However, since
precision or recall are often not equally important (both in manufacturing and med-
ical tests, it is usually more important to have a high recall rather than precision),
F1-score is often not ideal [3].
A common tool for visualizing the trade-off between true positive rate and false
positive rate is a receiver operating characteristic curve (ROC curve). A ROC curve
displays the true positive rate as the false positive rate is varied. The better a
classifier is, the closer it is to the top left corner. ROC curves are often drawn with
a diagonal line down the middle: the performance of the dashed line can be achieved
simply by guessing, which often is a useful benchmark. If a given situation calls for
a numeric metric to evaluate a classification model, the area under the curve (called
ROC AUC, short for Receiver Operating Characteristic Area Under Curve) can be
measured [17]. An ideal classifier has a ROC AUC of 1, guessing has a ROC AUC
of 0.5. Figure 3.2 shows an example of a ROC curve.
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Figure 3.2: Example of a ROC curve

One final evaluation tool that is more specific towards manufacturing is the Proba-
bility of Detection (POD) curve. A POD curve displays the probability of detecting
a defect (i.e. the recall) as the size of the defect varies. It can be a valuable tool since
it provides information about how severely compromised an item can be, while still
being flagged as OK. Although useful, creating a POD curve often requires rerun-
ning experiments with different configurations. As a consequence, in the literature
surveyed for this thesis only one paper used POD curves as part of the evaluation
[3], and the paper in question was specifically about how to evaluate performance.
Figure 3.3 shows an example of a POD curve.
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Method Benefits Drawbacks
Accuracy Easy to measure Performs poorly on unbal-

anced data sets
F1-score Works well with unbalanced

data sets
Gives equal importance to
precision and recall, which is
often not desirable

ROC AUC Accounts for both precision
and recall in a single metric

Does not provide as much in-
formation about the trade-
off between precision and re-
call as a ROC curve

ROC Curve Visualizes the trade-off be-
tween precision and recall

Hard to optimize according
to

POD Curve Accounts for the magnitude
of an instance

Hard to calculate, often re-
quires re-running analysis
with different settings

Table 3.2: Overview of classification evaluation methods

Figure 3.3: Example of a POD curve

Table 3.1 shows an overview of the evaluation methods.

3.2 Outlier Detection Methods
Outlier detection is the process of identifying data points in a set that are signifi-
cantly different from the rest of the data points. For spatial data (such as the kind
of images produced by in situ optical sensors), there are a special set of algorithms

14



3. Data Mining and Machine Learning

called spatial outlier detection algorithms. Formally, a spatial data set is a data
set that has one or more spatial dimensions describing the distance between data
points, as well as potentially any number of non-spatial attributes [12]. In a data
set of mountain peaks in a country, the latitude and longitude of the peak would be
spatial dimensions, whereas the snow depth and number of visitors per year could be
considered non-spatial dimensions. Outlier detection is different in spatial compared
to other data because of a phenomenon known as spatial autocorrelation: that is,
points which are close together in spatial dimensions often have similar non-spatial
attributes. A peak in the north of Sweden covered in a deep layer of snow during the
summer would be nothing out of the ordinary, whereas a peak in the south having
any amount of snow would be rather different from peaks in the area. Similarly, if
one peak had a high number of visitors compared to surrounding peaks, one might
consider such a peak an outlier even if the number of visitors is lower compared to
other peaks in the data set. Building on this intuition, we can define a spatial outlier
as a data point that has a non-spatial attribute that is significantly different from
its neighbourhood. The neighbourhood of a data point consists of the points that
(by some distance function) are the closest to the point in the spatial dimensions.

The methods used in this thesis are explained in the following subsections.

3.2.1 Scatter Plot

A scatter plot, often used as a visualization tool, can be adapted to identify outliers.
Consider the data points in image 3.4. Each point has a non-spatial attribute (the
Y-axis) and a spatial location (the X-axis). By plotting each point with its attribute
value on one axis and the average value of its neighbourhood (in this case, the point
immediately below and above it in the spatial dimension), we get the plot shown in
figure 3.5. The diagonal line is fitted to the points. Because the attribute value of
each point in general is similar to that of its neighbours, the points tend to be close
to the line, but there is some variance between how close they are. The distance from
this fitted line to each point can be used as a metric to rank each point according to
how much of an outlier it is. The further away from the line a point is, the stronger
the outlier is. In the plot, points P, Q and S are furthest from the line: S because
it has a significantly higher attribute value than its neighbourhood, and P and Q
because they are next to S, resulting in them having lower attribute values than
their neighbourhood [12].
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Figure 3.4: Example spatial data set with one spatial dimension and one non-
spatial dimension

Figure 3.5: Scatter plot for the data set in figure 3.4. The further a point is from
the fitted line, the more different it is compared to its neighbours
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3.2.2 Moran Scatter Plot
A Moran scatter plot works similarly to a normal scatter plot, except instead of
looking at the attribute value directly the Z-score of the value and the average Z-
score of the neighbourhood is considered instead. The Z-score can be calculated
according to equation 3.5, where μf is the mean of the attribute values and σf is
the standard deviation of the attribute values [12]. The Z-score is also called the
standardized value in machine learning terminology. Figure 3.6 shows a Moran
scatter plot for the example data in figure 3.4.

Z[f(i)] = f(i) − µf

σf

(3.5)

Figure 3.6: Moran scatter plot for the data set in 3.4. The further a point is from
the fitted line, the more different it is compared to its neighbours

3.2.3 Spatial Statistic
Spatial statistic is a numeric method of identifying outliers. Similarly to Moran
scatter plot, it uses normalization. There are two formulae that are relevant. First,
we need to calculate the difference between the attribute value of x and the average
in its neighbourhood. In equation 3.6 this difference is denoted S(x). f(x) is the
attribute value of point x and m(x) is the average of the attribute values for all
neighbours of x (including x itself).

S(x) = [f(x) − m(x)] (3.6)
The spatial statistic Zs(x) can then be calculated using formula 3.7, where μs is the
average value of S(x) for all points in the data set and σs is the variance of S(x) for
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all points in the data set. Using machine learning terminology, the spatial statistic
is the Z-score of the difference between the attribute value of x and the average of
its neighbourhood [12].

Zs(x) =
∣∣∣∣∣S(x) − µs

σs

∣∣∣∣∣ (3.7)

Figure 3.7 shows the spatial statistic for all data points in figure 3.4.

Figure 3.7: Spatial statistic values for the data points in figure 3.4. The further
from 0 on the Y-axis a point is, the more different it is from its neighbours.
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4
Problem Statement and State of

the Art

This chapter begins by outlining the problem statement and scope of the thesis. It
then provides an overview of the current state of the art of related in-situ monitoring
research. It then presents a number of identified challenges for in-situ monitoring,
along with opportunities for research.
This chapter assumes familiarity with additive manufacturing (covered in chapter
2) as well as machine learning and data mining(covered in chapter 3).

4.1 Thesis Problem Statement and Scope
An optical tomography setup reports the relative temperature of the powder bed,
creating one image per layer during the build process. These images form a data
stream, S = s1, s2, ... , sn, with s1 corresponding to the first layer of the constructed
object and sn the last layer. Figure 4.1 shows one such image for a build object. The
relative temperature differs inside each individual object, with slimmer sections typ-
ically being warmer due to a combination of less thermal conductivity and less time
to cool down compared to wider sections. This thesis identifies and quantifies "hot
spots" in locations where they are unexpected to occur, which could be indicative
of porosity due to worse thermal conductivity. Using this quantification, we then
predict whether the object’s porosity falls above or below a threshold, i.e. whether
it is an object of acceptable or unacceptable porosity level.
Due to the availability of data, the scope of the thesis is limited to distinguishing
objects with lack of fusion pores (i.e. insufficient energy input) from objects without
them (i.e. normal energy input), thus not taking objects created with too high energy
input into account. In addition, due to only having accurate porosity measurements
for larger segments of objects since the data was acquired using optical microscopy,
the thesis looks at classifying these larger segments instead of locating pores or
porous areas.
The main metric used to evaluate the performance of the proposed method is the
area under the receiver operating characteristic curve (ROC-AUC). This metric is
used since it is a common metric for binary classification problems, it is not affected
by class imbalance, and it has been used by previous research [3][13]. In addition,
due to the timing constraints for in-situ monitoring (if it takes too long, construction
of the next layer needs to be delayed), the execution speed will also be a factor in
the evaluation of the proposed method.
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Figure 4.1: Example of an image of a build object. To the left, the image is shown
in its original greyscale values. To the right, the same image is illustrated using
pseudocolours

4.2 Overview of Previous Research
Multiple research projects have been conducted on this and related problems. Table
4.1 provides an overview of known research results relating to the topic of this thesis.
Within the scope of the thesis, literature relating to two related research problems
have been considered:

• Classification of entire layers or objects as porous or not
• Identifying locations of pores or porous areas

For both problems, similar sensors and methods have been applied, which is why
both are included despite this thesis focusing on the first problem.
We can distinguish three parts in the approaches used:

1. Sensing, the process of acquiring data from the manufacturing process
2. Preprocessing, i.e. transforming the data into a form that can be used for

classification
3. Analysis, i.e. drawing conclusions or making predictions from the processed

data

4.2.1 Sensing methods
Multiple different types of sensors have been used to measure so-called process sig-
natures, readings observed during the manufacturing process. Grasso and Colosimo
provides an overview in their metastudy [9]. Although most methods used are optical
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(either cameras or photodiodes), there has also been some research using ultrasound
and vibration measurements. Since this thesis uses a camera setup, the rest of this
section will focus on that.

When considering camera setups used, two types exist: co-axical and off-axical
setups. Figure 4.2 illustrates the two setups.

4.2.1.1 Co-axical setups

In a co-axical setup, the sensor is in line with the laser, which is accomplished using
semi-permeable mirrors. As a result, it senses whatever the laser is targeting. A
lot of research using co-axical setups have used high-speed cameras (395 Hz in the
paper by Zhang, Shunyu, and Yung 2019, [25], 100kHz in the paper by de Winton
et al. [3]) to monitor how the melt-pool changes over time, which then has been
used to identify the occurrence of pores and other defects [3][25][10].

4.2.1.2 Off-axical setups

In an off-axical setup, the camera monitors the whole powder bed from a static
angle instead of just where the laser beam is at a given point. The sampling rate
of the sensors used in this setup can vary greatly, from one sample per layer to
several thousands per second (2.5 kHz in the paper by Estalaki et al. [13]). One
benefit of off-axical setups is that they make it easy to create a three-dimensional
representation of the object, since it’s just a matter of aggregating all images of
the same layer (commonly done by looking at the number of frames the grey value
of each pixel is above a given threshold) into a single image and then layering the
images on top of each other. This process is known as optical tomography. Although
there exists research using cameras without any particular filter [8], most research
has involved using a filter to observe the heat radiating from the object instead
of radiation in the visible spectrum. As a result, the images have a single colour
channel and are typically shown in greyscale or using pseudocolours (i.e. artificially
added colours) to make the differences more visible.
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Figure 4.2: Illustration of a co-axical setup (left) and an off-axical setup (right)

Regardless of whether the camera is mounted co- or off-axically, different types of
cameras with different filters can be used. Although cameras looking at the visual
spectrum of light have been used in at least one study [8], a more common approach
is to attempt to capture information about the thermal signatures from the process.
This is done either using an infrared or near infrared camera, or a camera equipped
with a bandpass filter adapted to capture the black body radiation omitted by the
build object while filtering out the laser radiation. Table 4.1 shows the different
types of cameras and setups used in the research.

4.2.2 Methods of Preprocessing and Analysis
Different approaches have been used for preprocessing and analysing sensor data,
with different levels of complexity. On the one hand, in the research conducted by
Zhang, Shunyu and Yung [10], the intensity values were just standardized (meaning
the mean value of the intensity was subtracted and divided by the standard devia-
tion) before being entered into a convolutional neural network. Gobert et al. [8] used
the same method for preprocessing (i.e. standardization), but had a more complex
analysis step. Due to them using multiple lighting setups with their camera, they
used four support vector machines (a type of machine learning model) for different
lighting settings. They then used the outputs from these support vector machines
as input to another support vector machine, creating a so-called ensemble model.
In the study by Winton et al. [3], different methods of encoding were used. The most
successful one was using computer vision algorithms to extract features of interest
from each image, such as the number of spatters, the amount of spatter, the size of
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Table 4.1: Overview of existing research on in-situ monitoring using optical sensors
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the spatter etc. These values were aggregated across multiple images following each
other, and then used as input to a K-nearest neighbour model.
The research conducted by Mohr et al. [15], Lough et al. [11] and Estalaki et al.
[13] used similar camera setups and preprocessing methods to each other. For each
layer, they looked at the time each pixel was above a given temperature threshold
(abbreviated TOT, time over threshold) as well as the maximum measured radiance
of each pixel. Their methods of analysis did however differ: Mohr et al. did a
qualitative assessment (i.e. they had an expert assess whether the results were
useful or not). Lough et al. built upon their research by using probability maps
(a statistical tool) for predicting porosity. However, Lough et al. only considered
the readings of the pixel where they were trying to predict the porosity. This was
addressed in the research by Estalaki et al., who took the values of the surrounding
area into account. They looked at values in a grid stretching out up to three pixels
in the X- and Y- dimension as well as three layers above and below, forming a grid
of size 7x7x7. The values of these pixels were then used as input to six different
off-the-shelf machine learning algorithms, out of which random forest performed the
best.

4.2.3 Types of Ground Truth Data
Another aspect that sets the research apart is the type of ground truth data used.
There are two methods used in the literature: optical microscopy and X-ray CT
(computed tomography). When using an optical microscopy, the data is obtained
by cutting an object apart, and taking a picture of the cross-section of the object.
Figure 4.3 shows and example of such an image. This kind of data can be used
to measure the porosity of an object, but since it only gives information about a
cross-section the assumption is often made that this cross-section is representative of
the object as a whole [19][3]. In addition, the method is only useful when trying to
predict the porosity of larger areas, since individual pores occur in different locations
in each layer. The main benefit of the approach is that it is fast and cheap. However,
since the process involves destroying the object it cannot be used to ensure the
quality of an object after it has been constructed, unlike X-ray CT, a non-destructive
techniques (NDT). The drawback of X-ray CT is that it is more time-consuming and
more expensive, since it requires more specialized equipment. However, X-ray CT
can be used to obtain a three-dimensional representation of the object, making it
possible to locate individual pores or calculate the porosity of much smaller areas.
Depending on the problem considered, one or the other tend to be used. For pre-
dicting porosity in a small area (such as individual voxels from an OT recreation) or
locating discontinuities (such as pores), X-ray CT data is required. For predicting
porosity across a whole object, optical microscopy have been used [3].

4.3 Challenges
From a computer science perspective, numerous challenges exist within the research
field. These include:
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Figure 4.3: Example of optical microscopy image. The white area is solid, the
black area is pores.

• A lack of shared accuracy metrics. Different studies have used different metrics
to evaluate their models, making it hard to compare results between studies.
In a recent study by de Winton et al. [3], they proposed ROC (receiver
operating characteristics) and POD (probability of detection) as metrics for
future research.

• A lack of publicly available data sets. In each study encountered, the re-
searchers have created their own data set by physically building and analysing
new objects. This further complicates comparisons between studies: since
everyone is working with their own data set, it is not possible to say with
certainty how well one method would work on a different data set.

• Difference in materials, parameters and geometry makes it hard to generalize.
Since changing these affect the input to the sensor used, machine learning
models need to be retrained for each part constructed. Due to the volume of
examples needed for training, this process can be costly [16].

• Closed loop control. Once defects can reliably be identified, there is a need to
research how these can be corrected live.

4.4 Related Research in the field: Pore classifica-
tion

For the interested reader, this section introduces some additional research in the
field. The research presented here is not directly related to the work presented in
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this thesis, but it is still relevant to the topic of this thesis.
As mentioned in section 2.3.1 about pores, there are three different kinds that occur
under different circumstances and understanding what kind of pores exist in an
object can provide useful information about what actions to take to improve quality.
Snell et al. [22] investigated the use of unsupervised learning in the form of K-
nearest neighbour clustering for understanding the different caricatures of pores
and differentiating between the different types. They found that three-dimensional
data was more useful than two-dimensional, and that it is harder to differentiate
between gas pores and keyhole pores than lack-of-fusion pores and other pores.
In a recent paper by Schwerz and Nyborg [21], they used a convolutional neural
network (CNN) to classify optical tomography images taken during the build process
according to the types of pores in the image. The accuracy, precision and recall all
were above 96%, which is a promising sign for future research applying convolutional
neural networks on this and related problems.
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The method used looks at predicting whether a build object is porous or not given
a series of greyscale images taken from the surrounding layers. These images are
used as input to the first step in a series of steps, where the result of each step is
used as input to the next. This series of steps ends with a prediction of whether
the images are from a porous object or not. Figure 5.1 provides an overview of the
method proposed in the thesis. Each step of the method is described in more detail
in the following sections.

Figure 5.1: Overview of the method proposed in the thesis. The greyscale images
are illustrated using a different colour scale to be consistent with the representation
elsewhere in this thesis.
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5.1 Preprocessing

The first thing done to the images is a small amount of pre-processing, where the
background is filtered out in order to avoid it being included in the analysis. Figure
5.2 shows an image before and after the background has been removed.

(a) Before background removal (b) After background removal

Figure 5.2: Background removal from the images during the preprocessing step
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5.2 Outlier Quantification

(a) Input (b) Output

Figure 5.3: Visualization of an example input and output from spatial statistics

Once preprocessing is done, the result is forwarded to an outlier detection method
used to quantify the severity and amount of outliers. Three different methods are
investigated:

• Spatial Statistics
• Scatter plot
• Moran scatter plot

All methods work by comparing one central point to each point in its surrounding,
also called its neighbourhood. The neighbourhood can be of any size, so it does not
necessarily have to be limited to the points directly surrounding the central point.
The neighbourhood can also be of any shape and use different weights depending
on distance. For simplicity, a square neighbourhood is used in this thesis. The size
of the neighbourhood in the X-, Y- and Z-directions are parameters of the outlier
detection method.
The output of spatial statistics is a value for each point indicating to what extent it
is an outlier. For the rest of this thesis, this value will be referred to as the outlier
value of a pixel. Since each pixel has an outlier value, these can be visualized as
an image (or series of images) with similar size to the original image. Figure 5.3
shows an example input and output for spatial statistics. The output is slightly
smaller due to the neighbourhood at the edges being ill-defined: if a point has
missing neighbours, how should that be accounted for? In this thesis, the points
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with incomplete neighbourhoods are ignored, but other approaches exist as well.
Unlike spatial statistics, Moran scatter plot and scatter plot does not directly pro-
duce a numerical value for each point. They are visual tools for identifying outliers,
and so there is a need to convert the result from these methods to a numeric rep-
resentation. This can be done by fitting a line to the scatter plot and calculating
the distance from each point to the line [12]. Figure 5.4 shows a Moran scatter plot
with lines fitted to the data, as well as its corresponding image representation.

(a) Moran scatter plot of the input image
with the background removed

(b) Visualization of the output of
Moran scatter plot

Figure 5.4: Moran scatter plot. The points are coloured based on their distance
from the line. Each point in the scatter plot corresponds to a pixel in the image

The time complexity for all the outlier detection methods discussed are O(nml),
where n is the number of pixels, m the number of layers considered as part of the
neighbourhood and l the size of the neighbourhood. However, since only the next
couple of layers affect the current one under normal operating conditions m can be
viewed as a constant, reducing the time complexity to O(nl).

5.3 Aggregation

Due to the high number of features from the outlier quantification (that is, each
point corresponding to one feature), there is a need to reduce the dimensionality
of the data. The approach used in this thesis to accomplish that is to convert the
data to a histogram, although other options could be considered as well. Figure 5.5
compares the histogram of outlier values obtained using Moran scatter plot from
one high-porosity object to 25 other objects. The blue is the average across all the
26 objects and orange is the high-porosity object. The dark orange/grey area is the
overlap between the two.
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(a) Linear scale (b) Logarithmic scale

Figure 5.5: Histogram of outlier values obtained using Moran scatter plot from
one high-porosity object compared with the average of 26 objects. The left plot is
on a linear scale, while the right plot is on a logarithmic scale.

Due to the difference in scale between different features (i.e. bins of the histogram)
and some machine learning models performing poorly on data with different scales,
it is important to normalize the data. This can be done by subtracting the mean
and dividing by the standard deviation. This is done for each feature separately.
Figure 5.6 shows the histogram of the high porosity object from figure 5.5 before
and after normalization.

(a) Before (b) After

Figure 5.6: Histograms of the data points from the same high porosity object as
in figure 5.5 before and after normalization.

5.4 Classification
The histogram is then used as input to a machine learning model. Any machine
learning classifier could be used, for this thesis k-nearest neighbours classifier and
decision tree are used due to their high degree of explainability.
A k-nearest neighbour classifier classifies an instance by looking at the majority class
of the K nearest neighbours of the instance. Figure 5.7 shows an example for a data
set having two features, X and Y.
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Figure 5.7: Example of how a K-nearest neighbour classifier works for a data set
with two features, X and Y. On the left is the training dataset, with two classes (red
and green). When the classifier is asked to predict the class of a test instance (blue)
in the right image, it predicts the majority class among the K-closest instances from
the training dataset. In this case, for K = 5, the majority class is green and so it
predicts the test instance is green.

A decision tree is a tree-like structure where each leaf node represents a class la-
bel (such as porous/non-porous) and each internal node represent a condition to
evaluate. Figure 5.8 shows an example of a decision tree.
Both of the classifiers were implemented using the Scikit-learn library [20].

5.5 Evaluation Methods and Metrics
For evaluating the classification results, this thesis uses the evaluation methods
proposed by de Winton et al. [3]: receiver operating characteristics (ROC) and
probability of detection (POD). These are explained in more depth in chapter 3, but
in short, due to the potentially high cost of false negatives (i.e. predicting that a
component is fine when it is not) F1-score is not suitable in additive manufacturing.
Furthermore, both de Winton et al. [3] and later research by Lough et al. [11] and
Malakpour et al. [13] have used receiver operating characteristics. In cases when a
single metric is needed, the area under the ROC curve is used (ROC-AUC).
Probability of detection has seen less widespread use, but provides useful information
about how well a classifier performs for different levels of severe defects. This is
useful, since classifying an object with 0.8% porosity as non-porous is not as bad
as classifying an object with 10% porosity as non-porous, something other common
evaluation methods miss.
In terms of computational performance evaluation, since the recoating between each
layer takes a few seconds, there is a "deadline" for the classifier to produce a result
within that timeframe. This is not a hard deadline, but it is useful to meet it since
otherwise construction time would increase.
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Figure 5.8: Example of a decision tree
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Evaluation

This chapter explains how the method were evaluated and compares their perfor-
mance. The chapter begins by outlining the experimental setup that was used for
the evaluation, how the data was collected and how the ground truth labels were
obtained. The result section then presents and compares the results of the different
methods used.

6.1 Data Set Description
The method was evaluated on two sets of data consisting of 26 objects each. In the
first set, referred to as the H-set (since the objects were cut horizontally), the build
object is a five-tiered pyramid printed laying down. In the second set, referred to
as the V-set (since the objects were cut vertically), the build object is a cube with
two narrower sections on top, forming a shape similar to a house. Figure 6.1 shows
the two shapes used in the data sets, and figure 6.2a shows the layout of the objects
across the powder bed.

Figure 6.1: The two shapes constructed, numbers denoting distances in mm. On
the left is an object from the H-set (cut horizontally) and on the right is an object
from the V-set (cut vertically). Picture taken from [19]
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(a) OT image of layer 92 during the
construction process. The objects are
numbered according to their position,
from left to right and from bottom to
top

(b) Example of an optical microscopy
image of the cross-section of an ob-
ject. Picture from object H8.

6.1.1 Test Object Construction
The objects in the two data sets were originally created for a different study in-
vestigating the effect of parameters on build quality [19]. Some of these parameter
settings are outside what is considered as best practise and as a consequence, the
result contains a mix of porous and solid objects. Table 6.1 shows the build settings
used for the H-set and V-set, respectively. Note that two objects from each set
(H21, H28, V21 and V28) are excluded from the evaluation: this was done since the
build parameters resulted in a large amount of keyhole pores, and it was deemed
infeasible to evaluate the method on these objects due to only having four objects
of this type.
Each object was split into a number of segments: the objects in the H-set was split
into five segments (one per "step" of the pyramid shape) and the objects in the V-set
was split into three segments (the base, the middle and the top), producing a total
of 130 data points in the H-set and 78 data points in the V-set. Figure 6.3 shows
the segmentation.

6.1.2 Collection of Optical Tomography Data for Classifica-
tion

The optical tomography (OT) images were collected using the built-in camera of
the EOS M290 machine used for building the objects. The camera took one image
per layer. The camera only uses one colour channel, resulting in greyscale images.
Because of this, the grey value of a pixel is the brightness of the pixel, similar to how
the red value of a pixel in a colour image is the amount of red in that pixel. The
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Object Laser energy Scan speed Hatch distance Volumetric
(W) (m/s) (µm) energy density

H1, V1 270 800 0.09 46.88
H2, V2 270 1200 0.13 21.63
H3, V3 300 1000 0.11 34.09
H4, V4 330 1200 0.09 38.19
H5, V5 300 1000 0.11 34.09
H6, V6 330 800 0.13 39.66
H7, V7 270 1200 0.09 31.25
H8, V8 330 1200 0.13 26.44
H9, V9 300 1000 0.11 34.09

H10, V10 270 800 0.13 32.45
H11, V11 330 800 0.09 57.29
H12, V12 300 1000 0.11 34.09
H13, V13 300 1000 0.11 34.09
H14, V14 300 1000 0.14 26.79
H15, V15 300 673 0.11 50.66
H16, V16 300 1327 0.11 25.69
H17, V17 349 1000 0.11 39.66
H18, V18 300 1000 0.11 34.09
H19, V19 251 1000 0.11 28.52
H20, V20 300 1000 0.08 46.88
H21, V21 250 664 0.08 58.83
H22, V22 250 1336 0.14 16.71
H23, V23 250 664 0.14 33.62
H24, V24 250 1336 0.08 29.24
H25, V25 350 1336 0.14 23.39
H26, V26 350 664 0.14 47.06
H27, V27 350 1336 0.08 40.93
H28, V28 350 664 0.08 82.36

Table 6.1: Overview of the parameters used when constructing each object in the
H- and V-set. Objects H21 and H28 were excluded due to the high VED resulting
in a lot of keyhole pores
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(a) H-set (b) V-set

Figure 6.3: Schematic view of the segments in the two sets

higher the grey value (i.e. the brighter a given point appears), the warmer the point
was. Note that these images are often coloured using a different colour map in the
interest of making them easier to parse. In the case of this thesis, the viridis colour
map is used, where the warmer points are coloured yellow and the cooler points are
coloured dark blue.

6.1.3 Collection of Porosity Data Used as Ground Truth
The ground truth, i.e. the porosity values of each object, was collected by using
an optical microscope to take a high resolution picture of the cross-section of each
object. Figure 6.2b shows an example of the cross-section of an object, taken from
object H8. The porosity was then calculated by measuring the amount of dark,
hollow area to white, solid area in each segment of each object. Figure 6.4 shows
the porosity of each object in relation to the average grey value of all pixels across
all OT images of the object.

6.1.4 Parameters Used
For both evaluations, a range of parameters were evaluated:

• The outlier detection methods used were Moran scatter plot, scatter plot
and spatial statistics. All of these methods work by assigning a numerical value
to a point representing how much of an outlier it is according to the values in
the neighbourhood (the area surrounding) the point. Since the Z-dimension
represents the layers in each object whereas the X- and Y-dimensions repre-
sent distance inside the same layer, the Z-length was treated as a separate
parameter from the X- and Y-length.
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Figure 6.4: Porosity and average grey value for each segment in the two data sets.
Each point represents one segment from one object, resulting in a total of 26*5=130
points from the H-set and 26*3=78 points from the V-set

• The Z-length of the neighbourhood is the depth of the neighbourhood, mea-
sured in number of layers. Each layer is 80 µm thick.

• The X- and Y-length of the neighbourhood is the size of the neighbourhood
in the same layer, measured in pixels. The size of a pixel is approximately 125
µm x 125 µm.

• The only type of aggregation used was a histogram. Other types of aggre-
gation are possible, for instance picking values at given percentiles, but were
not used in this thesis.

• The number of bins is specific to the aggregation method chosen (histogram),
and is the number of bins used in the histogram.

• The type of classifier is the machine learning model used to classify the
data. The models used were decision tree and k-nearest neighbour classifier.

• Hyperparameters are the parameters of the classifiers and vary depending
on the classifier. For the decision tree, the class weights were balanced to be
inversely proportional to the frequency of the two classes (i.e. porous and non-
porous), and the maximum depth was altered between 10, 14 and 22. For the
k-nearest neighbour classifier, the number of neighbours was altered between
5, 7 and 9.

Table 6.2 provides an overview of the parameter settings used. All combinations of
settings were attempted, resulting in 288 different combinations of settings.
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Parameter Settings Description

Outlier detection
method

Moran scatter plot,
scatter plot, spatial
statistics

Outlier detection method used

Z-size of neighbour-
hood

1, 3, 5, 7 Length of the neighbourhood in the Z-
dimension measured in number of layers

XY-size of neigh-
bourhood

3, 5, 7 Length of the neighbourhood in the X- and Y-
dimensions measured in pixels

Type of aggregation Histogram Type of aggregation used to combine the val-
ues produced by the outlier detection method

Number of bins 5, 10, 20, 40 Number of bins to use when calculating the
histogram

Type of classifier Decision tree, k-
nearest neighbour
classifier

Machine learning model used to produce clas-
sifications from the aggregated values

Class weights (deci-
sion tree only)

Balanced Weights used for each class when building the
decision tree

Max-depth (decision
tree only)

10, 14, 22 The maximum depth of the decision tree

k (k-nearest neigh-
bour classifier only)

5, 7, 11 The number of neighbours considered

Table 6.2: Parameters settings investigated
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6.2 Results
Two different evaluations were done. In the first evaluation, the H-set was split into
a training and a test set. In the second evaluation, the H-set was used for training
and the V-set for testing in order to see how well the model could generalize to a
different geometry.
Since it is of interest to understand what role the surrounding area plays when
predicting porosity, the neighbourhood Z-length and XY-length was varied, whereas
the number of bins in the histogram and the hyperparameters of the classifiers were
determined through 5-fold cross-validation.
Three different thresholds for porosity were investigated: 0.5%, 0.25% and 0.1%.
The 0.5% and 0.25% thresholds are the same as the ones used by de Winton et
al. [3], and the 0.1% threshold was included in agreement with Zhouer Chen, a
researcher in material sciences at Chalmers University of Technology, as a lower
limit of what is interesting to look at. According to Chen, although pores can still
impact the quality even if the porosity is under 0.1%, it is more interesting to look at
pore size and location at that scale, something that is not possible with the ground
truth data used in this thesis.
In order to provide some indication of the performance of the method, there is a
need for a baseline classifier. As shown in figure 6.4, there is a negative correlation
between the average grey value across all OT images of an object and the porosity
(i.e. for low average grey value, the porosity is high and vice versa). Because of this,
a decision tree with a depth of 1 only considering the average grey value was used to
provide a baseline to compare against for the outlier detection method setups used.
The following section provides an overview of the results. A complete set of tables
for all settings can be found in appendix A.

6.2.1 Evaluation on the H-set
Since the H-set on its own only consisted of 130 instances (26 objects with five
segments each), the OT data of the objects were split into three parts to increase
the number of instances. Each OT representation was split horizontally, such that
the bottom layers, the middle layers and the top layers were kept separate, effectively
producing three different, thinner instances of the original, thicker object. Figure
6.5 shows how the OT data for one object was split.
In the following subsections, the results for each threshold are presented in more
detail.

6.2.1.1 Evaluation for Threshold at 0.50% Porosity

For the 0.50% porosity threshold, the setting with the highest ROC-AUC was the
scatter plot with a k-nearest neighbour classifier, neighbourhood Z-length of 1 and
XY-length of 3, which had a ROC-AUC of 0.989. Figure 6.6a shows the ROC curve
for the three best settings according to ROC-AUC, as well as the baseline classifier.
As can be seen in the ROC, depending on the desired true positive rate (TPR) or
false positive rate (FPR), three different classifiers are ideal, with one of them being
the baseline classifier. Figure 6.7 shows the confusion matrices for the four classifiers
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(a) The original instances

(b) The instances after splitting

Figure 6.5: Schematic view of the splitting of the build objects during the H-set
evaluation, as seen from the side. Figure 6.3a shows the segments as seen from above

at the crosses in the ROC curve, and figure 6.6b shows the POD plot. All results
can be found in table A.2 in the appendix.

6.2.1.2 Evaluation for Threshold at 0.25% Porosity

For the 0.25% porosity threshold, the best score was achieved by the k-nearest
neighbour, scatter plot, neighbourhood Z-length of 3 and XY-length of 5 setting,
that had a ROC-AUC of 0.975. Figure 6.8a shows the ROC curve for the three
best settings according to ROC-AUC, as well as the baseline classifier. As can be
seen in the ROC curve, similarly to the 0.5% threshold the best classifier depends
on the trade-off between TPR and FPR, with three different settings being ideal at
different intervals, one of them again being the baseline classifier. Figure 6.9 shows
the confusion matrices for the four classifiers at the crosses in the ROC curve, and
figure 6.8b shows the POD plot. Table A.3 in the appendix contains all results at
the threshold.

6.2.1.3 Evaluation for Threshold at 0.1% Porosity

Finally, at the 0.1% porosity threshold the best scoring setting was the k-nearest
neighbour, Moran scatter plot, neighbourhood Z-length 1 and XY-length 7 setting,
which had a ROC-AUC of 0.940. Figure 6.10a shows the ROC curve for the three
best settings according to ROC-AUC, as well as the baseline classifier. Unlike at
the two other thresholds, at this one any of the four classifiers may be the best
depending on the TPR/FPR trade-off. Figure 6.11 shows the confusion matrices
for the four classifiers at the crosses in the ROC curve, and figure 6.10b shows the
POD plot. Table A.4 of the appendix shows all results.
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(a) ROC plot (b) POD plot

Figure 6.6: Receiver operating characteristics (ROC) and probability of detection
(POD) plots for the three best settings for the 0.50% porosity threshold of the H-set
evaluation. The crosses mark the location of the confusion matrices and pod plot

(a) KNN, Scatter plot, Z=1, XY=3 (b) KNN, Moran scatter plot, Z=1,
XY=7

(c) KNN, Scatter plot, Z=1, XY=7 (d) Baseline

Figure 6.7: Confusion matrices for the three best settings and the baseline classifier
for the 0.50% porosity threshold of the H-set evaluation
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(a) ROC plot (b) POD plot

Figure 6.8: Receiver operating characteristics (ROC) and probability of detection
(POD) plots for the three best settings for the 0.25% porosity threshold of the H-set
evaluation. The crosses mark the location of the confusion matrices and pod plot

(a) KNN, Scatter plot, Z=3, XY=5 (b) KNN, Scatter plot, Z=1, XY=7

(c) KNN, Scatter plot, Z=1, XY=3 (d) Baseline

Figure 6.9: Confusion matrices for the three best settings and the baseline classifier
for the 0.25% porosity threshold of the H-set evaluation

44



6. Evaluation

(a) ROC plot (b) POD plot

Figure 6.10: Receiver operating characteristics (ROC) and probability of detection
(POD) plots for the three best settings for the 0.10% porosity threshold of the H-set
evaluation. The crosses mark the location of the confusion matrices and pod plot

(a) KNN, Moran scatter plot, Z=1,
XY=7

(b) KNN, Moran scatter plot, Z=1,
XY=5

(c) KNN, Scatter plot, Z=1, XY=5 (d) Baseline

Figure 6.11: Confusion matrices for the three best settings and the baseline clas-
sifier for the 0.10% porosity threshold of the H-set evaluation
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(a) ROC plot (b) POD plot

Figure 6.12: Receiver operating characteristics (ROC) and probability of detection
(POD) plots for the three best settings for the 0.50% porosity threshold of the V-set
evaluation. The crosses mark the location of the confusion matrices and pod plot

6.2.2 Evaluation on the V-set
For the evaluation on the V-set, the objects in the H-set were used for training and
the objects in the V-set were used for testing in order to see how well the method
could generalize between different geometries. Unlike the evaluation on the H-set,
the objects were not separated into multiple instances but kept whole, meaning the
training set had 130 instances (five segments per object and 26 objects) and the test
set had 78 instances (three segments per object, 26 objects).
Table A.5 provides a summary of the best settings for each classifier and outlier
detection method at each threshold, as well as the performance of the baseline
classifier. In the following subsections, the results for each threshold are presented
in more detail.

6.2.2.1 Evaluation for Threshold at 0.50% Porosity

For the 0.50% porosity threshold, the best ROC-AUC was achieved using the k-
nearest neighbour classifier with spatial statistics as the outlier detection method
and a neighbourhood Z-length of 1 layer and an XY-length of 7, for which the ROC-
AUC was 0.999. Multiple other settings also outperform the baseline, although none
of the scatter plot settings. All results can be found in table A.6 in the appendix.
Figure 6.12 shows a ROC and POD plot and figure 6.13 shows the confusion matrices
for the top three settings, as well as the baseline classifier. Unlike the H-evaluation,
now there’s clearly one dominant setting that regardless of FPR/TPR trade-off
performs at least as well as the other settings.
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(a) KNN, Spatial statistics, Z=1,
XY=7

(b) KNN, Moran scatter plot, Z=1,
XY=7

(c) KNN, Moran scatter plot, Z=1,
XY=5

(d) Baseline

Figure 6.13: Confusion matrices for the three best settings and the baseline clas-
sifier for the 0.50% porosity threshold of the V-set evaluation
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(a) ROC plot (b) POD plot

Figure 6.14: Receiver operating characteristics (ROC) and probability of detection
(POD) plots for the three best settings for the 0.25% porosity threshold of the V-set
evaluation. The crosses mark the location of the confusion matrices and pod plot

6.2.2.2 Evaluation for Threshold at 0.25% Porosity

For the 0.25% porosity threshold, the best ROC-AUC was achieved using the k-
nearest neighbour classifier with Moran scatter plot as the outlier detection method
and a neighbourhood Z-length of 1 layer and XY-length of 7. The results for numer-
ous settings are identical to at the 0.5% threshold, likely due to the two data sets
having very few instances with a porosity in this range: for the test set, it is 2 out
of 78 instances (2.5%) whereas for the training set it is 4.6%. One of the settings
(KNN, Moran scatter plot, Z=1, XY=7) performed better at the 0.25% threshold
than the 0.5% threshold due to it classifying the two instances in the 0.25%-0.5%
porosity range as porous for both thresholds. All results are shown in table A.7 in
the appendix.
Figure 6.14 shows a ROC curve and POD plot and figure 6.15 shows the confusion
matrices for the baseline classifier and the top three settings.

6.2.2.3 Evaluation for Threshold at 0.1% Porosity

Finally, at the 0.1% porosity threshold the best result was achieved using the k-
nearest neighbour classifier with Moran scatter plot as the outlier detection method
and a neighbourhood Z-length of 1 layer and XY-length of 7, which had a ROC-
AUC of 0.904. There are numerous settings that outperformed the baseline classifier
(which had a ROC-AUC of 0.819) at this threshold. However, as for the other thresh-
olds in the V-set evaluation, none of the settings using the decision tree classifier
or scatter plot for outlier detection outperformed the baseline classifier. The results
for all settings are shown in table A.8 in the appendix.

48



6. Evaluation

(a) KNN, Moran scatter plot, Z=1,
XY=7

(b) KNN, Moran scatter plot, Z=1,
XY=5

(c) KNN, Moran scatter plot, Z=1,
XY=3

(d) Baseline

Figure 6.15: Confusion matrices for the three best settings and the baseline clas-
sifier for the 0.25% porosity threshold of the V-set evaluation
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(a) ROC plot (b) POD plot

Figure 6.16: Receiver operating characteristics (ROC) and probability of detection
(POD) plots for the three best settings for the 0.10% porosity threshold of the V-set
evaluation. The crosses mark the location of the confusion matrices and pod plot

Figure 6.16 shows a ROC curve and POD plot and figure 6.17 shows the confusion
matrices for the baseline classifier and the top three settings.

6.3 Discussion of results from the two evaluations
Between the evaluation on the H-set and V-set, a couple of differences as well as
similarities were observed. First, the POD plots show that for all thresholds across
both evaluations, most methods (including the baseline) are effective at classifying
the instances with the highest porosity. This is important, since it is a lot more
OK to misclassify an object with 1% porosity as solid compared to an object with
10% porosity. However, focusing on a single metric such as ROC-AUC or F1-score
misses that.
Second, the ideal method/classifier very much depends on the acceptable false pos-
itive rate and true positive rate. Across most thresholds in both evaluations, there
was no method that clearly was superior.
Third, surprisingly the k-nearest neighbour classifier combined with the Moran scat-
ter plot or spatial statistics performed better in the evaluation on the V-set than
the H-set for the 0.25% and 0.5% thresholds, despite not being trained on the V-set.
The small size of the data set may contribute to the result being somewhat inflated
due to randomness. Furthermore, because of the H-set geometry being slightly more
complex, with five segments instead of three. In addition, splitting the object into
three parts during the H-set evaluation may also have played a role.
Forth, the spatial statistics and Moran scatter plot tended to generalize well between

50



6. Evaluation

(a) KNN, Moran scatter plot, Z=1,
XY=7

(b) KNN, Moran scatter plot, Z=1,
XY=5

(c) KNN, Spatial statistics, Z=1,
XY=5

(d) Baseline

Figure 6.17: Confusion matrices for the three best settings and the baseline clas-
sifier for the 0.10% porosity threshold of the V-set evaluation

51



6. Evaluation

the geometries unlike the baseline classifier and the scatter plot. This may be due to
both Moran scatter plot and spatial statistics normalizing the data before calculating
the outlier values, fitting them in a similar range regardless of the raw grey values,
whereas the scatter plot is more effected by the absolute values.
Furthermore, I find it surprising that additional layers (i.e. increasing the Z-length)
is not helpful, since this would allow for ignoring areas that are consistently warm
between layers, such as edges. It should be noted however that in a study by Feng
et al. using a similar set up, the additional layers were indeed helpful [5].
Finally, in the H-set evaluation the baseline classifier was never completely out-
classed by another setting, but always offered a TPR/FPR balance that could be
considered. This is in stark contrast to the V-set evaluation, where there always
was a better classifier.

6.4 Execution Speed
In addition to the evaluation of the classification accuracy, it is of interest to have
the execution of the classification be done quickly. In order for it to not slow down
the manufacturing process, it should ideally be able to run within the scope of the
couple of seconds when the L-PBF machine is conducting recoating between each
layer. Figure 6.18 shows a box plot of the execution time. The box extends from
the 25th to the 75th percentile, with the median being marked in red. The whiskers
show the smallest and largest values. The values were obtained by running each of
the methods presented in the evaluation (apart from the baselines) 20 times each,
resulting in 20*3*3*2 = 360 data points. The time was measured using the time
module in Python, and the computation was run on a MacBook Pro 2022 with 16
GB of memory.

Figure 6.18: Box plot of the execution time

As can be seen in the plot, the classification takes significantly longer than the avail-
able time between each layer. However, since the classification reads and processes
all data at the same time, there is ample room for improvement. The execution time
could likely be reduced significantly by treating the data as a stream and reading
and processing the data as it becomes available, one layer at a time.

6.5 Comparison to Previous Research
As previously discussed in chapter 4, there are a number of studies that have used
similar methods to detect porosity. Table 6.3 shows an overview of the results of
this thesis compared with the state of the art.
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The closest comparison in terms of methodology is to de Winton et al., who used
the same ground truth data (i.e. optical microscopy images) but different features
(co-axical camera readings). The result of the thesis are in line with theirs, except
for at the 0.1% threshold where their method performed better. They also included
POD plots (although only for the 0.5% threshold), which are similar to the ones in
this thesis.
In contrast, Estalaki et al. [13] used similar features (off-axical camera readings) but
different ground truth data (X-ray CT images). It is hard to compare their results
to the ones in this thesis for two reasons. First, they considered a different problem,
namely predicting the porosity of individual voxels of an object. Predicting whether
an individual voxel is porous or not is likely to be more useful than predicting the
porosity of an entire object, since it allows accounting for a single large porous area
being worse than a lot of small ones. In addition, in the interest of being able to
fix defects (something that needs additional research) it is important to know where
defects are located. Second, although they have precision recall curves (which are
equivalent to ROC curves) and although they show bar charts of the ROC-AUC,
they stop short of actually stating what the score was. They do however state that
their best performance was reached using a random forest classifier, for which their
best F1-score was 0.966.
When it comes to the two alternative evaluations conducted in this thesis (namely in-
vestigating the performance of generalization between geometries and computational
speed), this thesis is to the best of my knowledge the first research to investigate
that. Here, the thesis serves as a first step, and the results indicate that it may
be feasible to run the classification in real time if the data is treated as a stream
instead of as a chunk. Furthermore, the results indicate that there is the possibility
to generalize between geometries.

Table 6.3: Comparison of methods investigated with existing methods

Method/Paper Porosity ROC-AUC Execution
Threshold (or other metric) Time

This thesis 0.5% 0.989 / 0.999 10.9s
This thesis 0.25% 0.975 / 0.989 10.8s
This thesis 0.1% 0.940 / 0.906 11.2s
de Winton et al. [3] 0.5% 0.98 -
de Winton et al. [3] 0.25% 0.95 -
de Winton et al. [3] 0.1% 0.98 -
Estalaki et al. [13] 0.5%1 0.966 F1-Score -
Feng et al. [5] -2 >0.95 Pearson’s r -

1Considered voxels of size 130 x 135 x 50µm3, not entire objects
2Modelled it as a regression problem, i.e. predicting the level of porosity
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7
Conclusion and Future Work

This chapter provides a conclusion to the findings of this thesis and how it relates to
the existing research, as well as goes over some future areas of research that could
be explored.

7.1 Conclusion
In this thesis, it was found that spatial outlier detection methods can be used to
identify porous objects in laser powder bed fusion (L-PBF). Furthermore, it was
found that there is the possibility to generalize between similar geometries. However,
making comparisons to existing research is difficult due to a lack of shared data
sets and agreed upon benchmarks. In addition, both this thesis and most existing
research have only considered fairly simple geometries, such as cubes and cylinders,
and the research has been conducted by creating objects with artificial defects by
setting some component of the volumetric energy density to an unsuitable value. As
such, it remains to be seen how well the methods presented in this thesis as well as
the existing research are able to generalize to more complex geometries and defects
that occur naturally in the manufacturing process.

7.2 Future Work
Based on the literature survey and results of the thesis, I have identified the following
potential areas for future work in the field:

• Investigating how well models trained on one geometry generalize to other
geometries. In this thesis, it appears that between the two geometries investi-
gated the models generalize well. However, the two geometries investigated are
similar. In particular, it would be interesting to investigate how well models
can generalize from geometries such as cylinders and cubes to ones that are
more prone to defects, such as overhangs, and geometries that are unique to
additive manufacturing, such as lattice structures.

• Relating to generalizing between geometries, it would be interesting to investi-
gate the use of transfer learning to obtain better results. Since producing new
data is expensive, one way to overcome this could be to first train a machine
learning model on one data set and then on another. This could be used to
first train a model on a large, publicly available data set and then retraining
it on a smaller data set of a different material, or a different geometry that
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is closer to the one of interest. Unfortunately, as mentioned in the previous
section, there is a lack of publicly available data sets for the research field.

• Improving upon the methodology presented in this thesis. There are numer-
ous areas that could result in better results, such as using investigating more
machine learning models with more hyperparameter settings, more method
of spatial outlier detection, more methods of aggregation, upsampling of the
data etc. This would be of particular interest if applied in a real-world setting,
where the goal is to obtain the best possible results.

• Investigating the feasibility of federated learning, i.e. training a model on data
that is distributed across multiple devices. This could be used to train a model
on data from multiple 3D printers, or data from multiple materials, without
the researchers directly sharing information about the geometry constructed,
which may be valuable in a production setting.

• Combining multiple existing methods. The research has looked at using one
form of data from one sensor. This could be complemented with other types
of data (such as using both a co- and off-axical camera) to produce a more
accurate model.

• Investigating the possibility to fix defects in previous layers. Estalaki et al.
showed that the sensor readings of future layers have predictive power for the
current layer [13] and Feng et al. [5] showed that if the laser power is too low in
one layer, changing it to a better in the next layers can fix some defects. This
could be investigated further, for example by investigating different settings
for the laser power.

• Establish common data sets and benchmarks for evaluation. de Winton et al.
[3] have proposed a method and metrics for the research to follow, but without
a common data set it is difficult to compare results.

• Computational efficiency. As seen in this thesis, despite using a setup produc-
ing a low amount of data (i.e. an off-axical camera setup producing a single
image per layer), the timing constraints are still not trivial to meet. In order
for the methods to be applicable in a production setting, there is a need to
make the methods more efficient and benchmark the execution speed of in-
situ monitoring methods, in particular when using sensor setups with a higher
spatial or temporal resolution than the one used in this thesis.
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A
Appendix 1

This appendix contains additional data from the evaluation. The tabels are color
coded, with green signifying a higher score than the baseline classifier, red a lower
score and white a score that was similar to the baseline.
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A. Appendix 1

(a) 0.50% Threshold

(b) 0.25% Threshold

(c) 0.10% Threshold

Table A.1: ROC-AUC for the best combination of Z-length and XY-length for
each classifier and outlier detection method combination in the H-set evaluation.
Green indicates better results than the baseline classifier, red indicates worse results
than the baseline classifier

II



A. Appendix 1

(a) Decision tree

(b) K-nearest neighbour

Table A.2: ROC-AUC for the two classifiers for different outlier detection methods
and different neighbourhood sizes at 0.50% porosity during the evaluation on the H-
set. The baseline classifier had a ROC-AUC of 0.93: values at this level are white,
with worse values being progressively darker red and better values progressively
darker green.

(a) Decision tree

(b) K-nearest neighbour

Table A.3: ROC-AUC for the two classifiers for different outlier detection methods
and different neighbourhood sizes at 0.25% porosity during the evaluation on the H-
set. The baseline classifier had a ROC-AUC of 0.89: values at this level are white,
with worse values being progressively darker red and better values progressively
darker green.
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A. Appendix 1

(a) Decision Tree

(b) K-nearest neighbour

Table A.4: ROC-AUC for the two classifiers for different outlier detection methods
and different neighbourhood sizes at 0.10% porosity during the evaluation on the H-
set. The baseline classifier had a ROC-AUC of 0.81: values at this level are white,
with worse values being progressively darker red and better values progressively
darker green.
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A. Appendix 1

(a) 0.50% Threshold

(b) 0.25% Threshold

(c) 0.10% Threshold

Table A.5: ROC-AUC for the best combination of Z-length and XY-length for
each combination of classifier and outlier detection method in the V-set evaluation.
Green indicates better results than the baseline classifier, red indicates worse results
than the baseline classifier

V



A. Appendix 1

(a) Decision tree

(b) K-nearest neighbour

Table A.6: ROC-AUC for the two classifiers for different outlier detection methods
and different neighbourhood sizes at 0.50% porosity during the evaluation on the
V-set

(a) Decision tree

(b) K-nearest neighbour

Table A.7: ROC-AUC for the two classifiers for different outlier detection methods
and different neighbourhood sizes at 0.25% porosity during the evaluation on the
V-set
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A. Appendix 1

(a) Decision Tree

(b) K-nearest neighbour

Table A.8: ROC-AUC for the two classifiers for different outlier detection methods
and different neighbourhood sizes at 0.10% porosity during the evaluation on the
V-set

VII
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