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Simulation-based Analysis of Partially Automated Vehicular Networks
A Parametric Analysis Utilizing Traffic Simulation
FREDRIK NILSSON
Department of Electrical Engineering
Chalmers University of Technology

Abstract
For microscopic traffic simulation to be useful it is critical that the results can be
trusted. This thesis proposes a method for tuning traffic simulation against real
world detector data by using a black-box optimization algorithm to minimize the
difference (with respect to some objective function) between simulation and reality
with driver parameters from the car following and lane change models as input
variables.

This method of fitting the simulation to data was then used to model, fit and test
a specific area in Gothenburg within the simulation environment. The purpose was
to see both what behaviour in human drivers that lead to traffic congestion and to
introduce different fractions of autonomous vehicles into the tuned simulation to see
their impact. Finally, the autonomous vehicles also had their behaviour optimized
with the same optimization algorithm (but of course a different objective function)
to see how much they could potentially improve traffic while constituting 10%, 25%,
50% and 100% of the total traffic.

The optimized simulations show significant improvement in accuracy as compared to
a default setting simulation and this is presented both numerically and graphically
in the report. The results also show that while there is room for improvement in
human drivers, a lot of the congestion in the area is unavoidable even with a fully
automated system if the in- and outflow of vehicles is kept the same. This can be
due to road design or other factors but the way in which the objective function was
defined penalizes the autonomous vehicles slightly for sticking to the speed limit.
Despite this fact, having only AVs in the area would increase the average speed by
over 14% during rush hours while also never going above the speed limit.

Keywords: Autonomous vehicles (AVs), traffic simulation, human driver behaviour,
optimization
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1
Introduction

Traffic and the complex interplay between physics and the psychological behaviour
that drive it have been studied for over 100 years. Many models to describe the flow
of traffic and the behaviour of drivers have been developed including the Kinematic
wave model [1], Newell-Daganzo merge model [2][3] and various car-following models,
see Section 2.1.1.

These types of models have lead to the development of many different simulation
software, both commercial (e.g. Vissim [4]) and open-source (e.g. Sumo [5]). In this
report, simulation is used to study the effects of human driver behaviour in partially
automated vehicular networks.

This thesis is done at Alten Sweden and is done as the final project for a master’s
degree in Product Development, however the thesis is hosted by the Department of
Electrical Engineering at Chalmers University of Technology.

1.1 Background

As the automotive industry becomes more focused on autonomous vehicles there
is an increased need for understanding how traffic works, why it works this way
and how it can be manipulated to optimize the flow of vehicles on the roads. Of
course, the transition from manually driven vehicles to autonomous vehicles will
happen continuously as more autonomous vehicles are introduced, rather than im-
mediately reaching the supposed end state where all cars are autonomous. The
point of this project is to take a deeper look at how the introduction of autonomous
vehicles will affect areas prone to congestion and what type of behaviour (from both
autonomously driven and human driven vehicles) lead to traffic congestion.

1.2 Aim

The aim of the project is to find which driver parameters trigger traffic congestion
in vehicular networks both with and without the presence of autonomous vehicles.
This will be done by modelling a real location in a simulation environment, tune
the simulation to match real world detector data and to then analyse the simulation
results when introducing different driver behaviour and autonomous vehicles.

1



1. Introduction

1.3 Limitations
There are certain limitations on the project that are mostly due to the nature of
simulations. One of main challenges of the project will be to adequately model and
differentiate between the behaviour of the autonomously driven vehicles and human
driven vehicles, since the human drivers are still following a certain algorithm in the
simulation. There might be good reason to introduce some stochastic behaviour in
human driven vehicles to better replicate the drivers on the road today.

The project will focus only on one specific area, but the goal is for the findings to
be universal to some extent. Specific behaviour might be related only to the chosen
location but other more general trends may be applicable anywhere.

Finally, one important consideration is that not all behaviour that might impact
traffic is tracked in neither simulation nor camera data from the location, such as
drivers giving one another gestures through the car window. There is a risk that
one or more of these types of behaviours have a major impact that will be missed.

1.4 Research questions
The thesis aims to answers the following research questions:

• What driver behaviour leads to more or less congestion in the area?
• How does introducing different fractions of autonomous vehicles impact traffic

in the area?
• How can autonomous vehicles behave to improve traffic?
• What do the findings imply for the future development of autonomous vehicles?

1.5 Method
The project follows a specific structure that is presented in detail in Chapter 3. A
flowchart describing the process is presented in Figure 1.1.

1.5.1 Simulation software
The thesis used Sumo as its simulation software. The main reasons behind this
decision was:

• It’s free and open source, meaning that others can relatively easily replicate
the study.

• It has a command line interface, making it easy to use together with other
tools.

• It has previously been used in Gothenburg with good results [6].

2
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Figure 1.1: Flowchart describing the process used in the project.
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2
Theory

This chapter aims to describes the theory used throughout the report, including
traffic specific theory and other mathematical models. In some cases, the theory is
only described briefly in broad terms and other papers on the matter are referenced
instead.

2.1 Simulation parameters

The simulation can take different input parameters which will produce different
outputs. This section describes those input parameters.

2.1.1 Car-following model

The most fundamental part of traffic simulation is perhaps the car-following model
as it dictates how vehicles interact, follow and avoid each other longitudinally while
driving. This project uses the SUMOKrauß model for human drivers, which is based
on the original Krauß model [7]. There are two changes that have been made in
SUMOKrauß as compared to the original [8]:

• Different deceleration capabilities among the vehicles are handled without vi-
olating safety (the original model allowed for collisions in this case).

• The formula for safe velocity was adapted to maintain safety when using the
Euler-position update rule. This was done by discretizing some of the contin-
uous terms. The original model was defined for the Ballistic-position updated
rule and would produce collisions when using Euler.

The implementation of the model in C++ can be seen on SUMO’s GitHub page [9].
The parameters available in SUMOKrauß are listed and described in Table 2.1.

5



2. Theory

Parameter Description
accel The acceleration ability of vehicles of this type [m/s2]
decel The deceleration ability of vehicles of this type [m/s2]

emergencyDecel The maximum deceleration ability of vehicles
of this type in case of emergency [m/s2]

sigma The driver imperfection (between 0 and 1)*
tau The driver’s desired (minimum) time headway [s]
minGap The minimum distance between two vehicles at stand-still [m]

Table 2.1: Parameters available in SUMOKrauß.

*The driver imperfection applies a uniform random deceleration from [0, sigma *
min(accel, currentSpeed)], effectively meaning that the larger the driver imperfection
the less stable driving behaviour becomes.

Rather than using the same model for autonomous vehicles, a Cooperative Adaptive
Cruise Control (CACC) model is used. CACC has previously been assessed using
SUMO [10] and the same paper also describes the transfer functions that the CACC
model implements in SUMO. The parameter names and descriptions in SUMO’s
nomenclature can be seen in Table 2.2.

Parameter Description

speedControlGainCACC The control gain determining the rate of
speed deviation (Speed control mode)

gapClosingControlGainGap The control gain determining the rate of
positioning deviation (Gap closing control mode)

gapClosingControlGainGapDot
The control gain determining the rate of
the positioning deviation derivative
(Gap closing control mode)

gapControlGainGap The control gain determining the rate of
positioning deviation (Gap control mode)

gapControlGainGapDot
The control gain determining the rate of
the positioning deviation derivative
(Gap control mode)

collisionAvoidanceGainGap The control gain determining the rate of
positioning deviation (Collision avoidance mode)

collisionAvoidanceGainGapDot
The control gain determining the rate of
the positioning deviation derivative
(Collision avoidance mode)

Table 2.2: Parameters available in CACC.

2.1.2 Lane-changing model
While the car-following model deals with longitudinal behaviour it does not cover the
cars movement laterally, most importantly lane-changes. For this purpose a separate

6



2. Theory

set of models exist, namely lane-changing models. In this project the SUMO default
model LC2013 [11] is used. The parameters available in LC2013 are listed and
described in Table 2.3 [12]

Parameter Description

lcStrategic
The eagerness for performing strategic lane changing.
Higher values result in earlier lane-changing.
default: 1.0, range [0-inf[

lcCooperative
The willingness for performing cooperative lane
changing. Lower values result in reduced cooperation.
default: 1.0, range [0-1]

lcSpeedGain
The eagerness for performing lane changing to gain speed.
Higher values result in more lane-changing.
default: 1.0, range [0-inf[

lcKeepRight
The eagerness for following the obligation to keep right.
Higher values result in earlier lane-changing.
default: 1.0, range [0-inf[

lcOpposite
The eagerness for overtaking through the opposite-direction lane.
Higher values result in more lane-changing.
default: 1.0, range [0-inf[

lcLookaheadLeft
Factor for configuring the strategic lookahead distance when a
change to the left is necessary (relative to right lookahead).
default: 2.0, range ]0-inf[

lcSpeedGainRight

Factor for configuring the treshold asymmetry when changing to
the left or to the right for speed gain. By default the decision for
changing to the right takes more deliberation. Symmetry is
achieved when set to 1.0. default: 0.1, range ]0-inf[

lcAssertive
Willingness to accept lower front and rear gaps on the target lane.
The required gap is divided by this value.
default: 1, range: positive reals

Table 2.3: Parameters available in LC2013.

2.1.3 Other parameters
There are many other simulation parameters in SUMO that are not part of the
car-following or lane-changing models and the relevant ones are discussed here.

By default, lane-changes are instantaneous in SUMO, however the parameter lane-
change duration can be set to change this behaviour. In real world traffic, drivers do
not follow the exact speed limit and may choose to drive faster or slower depending
on external factors such as road condition and visibility. This behaviour is captured
by the speedFactor parameter which is the factor by which the drivers interpret and
follow the speed limit. The speedFactor parameter is accompanied by a speedDev
parameter which is the standard deviation of drivers from the mean speedFactor.
Finally, SUMO lets vehicles teleport if they get stuck for a period longer than a

7



2. Theory

given threshold, called time-to-teleport. If a vehicle is teleported it is inserted on
the next edge (essentially the next available road segment) on its trip.

2.2 Space-mean speed vs time-mean speed

Average speed is one of the most critical parameters in traffic flow theory and the
choice of how it is calculated can be detrimental to the results of analysis. The
average speed can be represented as a space-mean or a time-mean, where the average
is weighted spatially or temporally, respectively.

Mathematically this means that the time-mean speed vt can be expressed as the
arithmetic mean

vt = 1
n

n∑
i=1

vi (2.1)

and after some algebraic manipulations [13] it can be shown that the space-mean
speed vs can expressed as the harmonic mean

vs = n∑n
i=1

1
vi

. (2.2)

2.3 Fundamental diagram of traffic flow

In traffic theory, the fundamental diagram (FD) of traffic flow is a diagram showing
the relation between traffic density and traffic flow. An illustration of this diagram
can be seen in Figure 2.1.

8



2. Theory

Figure 2.1: Illustration of the fundamental diagram of traffic flow.

Traffic flow q will increase as the density k increases up until it reaches it the
maximum flow Q at the critical density kc. Increasing the density further (i.e.
moving to the right of the dotted line in the diagram) will reduce the flow until it
reaches zero at the jam density kj. Flow, density and speed v are related through
Equation 2.3.

v = q

k
(2.3)

Many different authors have written about the fundamental diagram dating back to
1969 [14] and more recently, in 2008, verification of its existence on a macroscopic
level was published [15].

2.4 Optimization

Optimization is the mathematical field focusing on finding the best (e.g. largest,
smallest) solution to a given problem. These problems are usually expressed by an
objective function that is to be either maximized or minimized subject to certain
constraints. The standard way of formulating such a problem is using negative null
form as shown in Equation 2.4.

9



2. Theory

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, ..., m

hj(x) = 0, j = 1, ..., p

(2.4)

In this formulation m ≥ 0 & p ≥ 0, maximization problems are handled by setting
either 1/f(x) or −f(x) as the objective function and x can be a vector of several
variables.

If f(x) can be expressed in analytical form and meet certain other criteria such
as continuity and differentiability the problem can be solved either analytically or
numerically by utilizing the function gradient ∇f(x) to find the minimum. Unfortu-
nately, when optimization is used in this thesis the objective function is described,
in part, by terms that can only be generated by running a simulation.

To deal with this, a different type of optimization that is not contingent on knowing
the gradient must be used. This type of optimization is called Black-box optimiza-
tion or derivative-free optimization and the specific optimization package that is
implemented in this project is called RBFOpt [16].

2.4.1 Objective function for fitting simulation to data
A major part of this thesis is tuning the simulation environment to match real data
using optimization. This raises the question as to what it means for the simulation
and reality to match. Since traffic is often described by the fundamental diagram
(as described in Section 2.3), it was decided that the goal would be to have the
fundamental diagram scatter plots of real traffic and simulated traffic be as similar
as possible.

2.4.1.1 Distance

Two datasets each containing points (k, q, t), i.e. density, flow and time, for both the
real traffic data and the simulated traffic data can be compared on a point-by-point
basis by calculating the distance in the kq-plane for each point in time. Important
to note here is that because flow and density should be equally important in the
optimization it is necessary to scale both k and q to be in the range [0, 1] by dividing
by the max value for each variable. After scaling the parameters, the distance d can
be found by simply using the distance formula in Equation 2.5.

d =

√√√√(ki − k̂i

k̂max

)2
+
(

qi − q̂i

q̂max

)2
(2.5)
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2.4.1.2 Error

The distance d is now the error at each point in time t and calculating this value
for all t gives a vector of errors. There are several valid ways of summarizing this
error vector into a single error value E, but in this case the root mean square error
(RMSE) (Equation 2.6) was chosen.

E =
√√√√ n∑

i=1

d2
i

n
(2.6)

Substituting in d and cancelling the square and square root gives the complete
expression for E in Equation 2.7.

E =

√√√√√√ n∑
i=1

(
ki−k̂i

k̂max

)2
+
(

qi−q̂i

q̂max

)2

n
(2.7)

2.4.1.3 Weighting

The error expression presented in Equation 2.7 is reasonable from a mathematical
standpoint but in reality, it turns out that the distribution of points along the k-axis
is very non-uniform in the chosen location. The result of this is that by using a the
standard RMSE the optimization will almost exclusively focus on fitting the cluster
of points where k is small (i.e. free flow) and not consider the sparse points where
the k is large. For this reason, a modified version of the RMSE was used, a weighted
root mean square error.

The points are divided into equal-width bins by binning along the k-axis. The
number of bins B was chosen based on the largest number of bins that would ensure
that no bin was empty. Each bin is assigned a weight based on the number of points
in that bin and the sum of all weights add up to 1 to keep the magnitude of the
final value the about the same as without weights. The error E is then calculated
as shown in Equation 2.8.

E =

√√√√ n∑
i=1

wi

((
ki − k̂i

k̂max

)2

+
(

qi − q̂i

q̂max

)2)
(2.8)

It should be noted that the sum is being calculated rather than the mean and this
is because the sum of all weights w is already scaled to add up to 1. Calculating
w comes down to solving a system of equations, satisfying Equations 2.9, 2.10 and
2.11.

l∑
i=1

wi = B (2.9)
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wi

wi+1
= bi+1

bi

, i = 1, ..., B (2.10)

wB

w1
= b1

bB

(2.11)

Where b is the number of points in a given bin. Solving this system explicitly gives
the solution.

wi = 1
Bbi

, i = 1, ..., B (2.12)

As can be seen by Equation 2.12, b 6= 0. Substituting w into Equation 2.8 gives
Equation 2.13.

E =

√√√√ n∑
i=1

1
Bbi

((
ki − k̂i

k̂max

)2

+
(

qi − q̂i

q̂max

)2)
j

(2.13)

Finally, since there are a number of different detectors being considered the final
step is to simply average these detectors, as shown in Equation 2.14.

Etot = 1
m

m∑
j=1

Ej (2.14)

Substituting in E into Equation 2.14 gives the final objective function, see Equation
2.15.

Etot = 1
m

m∑
j=1

√√√√ n∑
i=1

1
Bbi

((
ki − k̂i

k̂max

)2

+
(

qi − q̂i

q̂max

)2)
j

(2.15)

2.4.2 Objective function for improving traffic
Fitting the simulation to real data is not the only objective of this thesis, in fact
it is only a means to investigate how traffic can be improved with the introduction
of autonomous vehicles. This requires a metric for describing how well the traffic
flows. There are many different proposed ways of doing this ranging from simple
ones such as critical density and critical flow to more sophisticated ones like the
Road Congestion Index [17] and the Road Segment Congestion Index [18]. In the
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end this project utilizes the Speed Performance Index (Rv), see Equation 2.16, which
is the basis for the Road Segment Congestion Index.

Rv = v

Vmax

× 100 (2.16)

Where v is current speed and Vmax is the speed limit. This means that Rv essentially
describes at what per centage of the speed limit drivers are driving at any given
moment. If traffic is uncongested Rv will be around 100 and if it is congested it may
be significantly lower.

Implementing the mean of the Speed Performance Index on one lane gives Equation
2.17.

Rlane = 1
n

n∑
i=1

Rvi
(2.17)

Inserting the expression for Rv into Equation 2.17 and rearranging slightly gives
Equation 2.18.

Rlane = 100
n

n∑
i=1

vi

Vmax

(2.18)

Finally, taking the mean over all the lanes gives Equation 2.19.

Rtot = 1
m

m∑
j=1

(
100
n

n∑
i=1

vi

Vmax

)
j

(2.19)

2.4.3 Optimization algorithm and global search method
As previously discussed, this project implements the RBFOpt library which contains
two optimization algorithms and three global search methods. The optimization
algorithms are:

1. Gutmann’s Radial Basis Function (RBF) [16]
2. Metric Stochastic Response Surface Method (MSRSM ) [19]

Further explanations on how these algorithms work is beyond the scope of this
report and full derivations can be read at the sources cited for RBF and MSRSM
respectively in the list above. The global search methods are:

1. Genetic
2. Sampling
3. Solver

13
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Again, full explanations of these methods are beyond the scope of the report, but
very brief explanations will be given. Genetic utilizes the principal of survival of
the fittest by spawning a population and letting the best performing ones survive.
Sampling simply samples several points and picks the best ones. Solver finds the
next points by finding a local minimum of the response model, however this is not
very effective when the real model is extremely non-linear and non-continuous.

All combinations of optimization algorithms and global search methods are possible
but not all have great performance, either from a results or iteration time perspec-
tive. For example, Solver has poor performance with MSRSM and Gutmann’s RBF
performs best with solver unless iteration speed is an issue.
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In this chapter, the methods used in the project are presented. A flowchart describ-
ing the process can be seen in Figure 1.1.

3.1 Data preparation

Detector data used for this project was provided by Trafikverket and had to be
extensively processed before it could be used. Because of the sheer amount of data
(for reference, the total data provided, had 21 columns and over 600 000 rows in
csv-format), a visual tool like Excel would not be able to open the files. Instead,
the data was processed using the pandas library in Python.

The data had to be filtered a lot in order to extract the information that was
relevant to the project. Filtering the data made it possible to search for a location
(as described in Section 3.2) easily.

3.2 Location

The basis for the analysis conducted in this project is the modelling of a real-
world location and the subsequent calibration of the model to match detector data.
Because of this, choosing a good location is a crucial part of project.

There are certain criteria for what constitutes a good location in regard to this
project, of which the first is to have all in- and outflows covered by detectors. If this
is the case, the location can be modelled without having to guess critical parameters.
Many different types of data from detectors can be used depending on availability
and calibration strategy. Examples of such data are speed, flow, occupancy, gap and
headway.

If detector coverage is sufficient, both spatially (as discussed above) and temporally
(i.e. the detectors worked throughout the sample period), the location should ex-
perience both free-flow and some level of congestion. Finally, the location should
general enough that conclusions drawn from the analysis can at least in some respect
be applicable elsewhere.
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3.3 Dynamic traffic assignment
Even with detector coverage at all in- and outflows of the studied location there
is one crucial piece of information that is not known, the origin-destination (OD)
matrix. This matrix contains information about the paths (or at least in- and
outflow locations) are being taken during the studied time period. This information
is hardly ever known from data since it requires the tracking of each individual
vehicle, instead it must be estimated by Dynamic Traffic Assignment (DTA).

Different methods of estimating OD matrices have been proposed [20][21] but in
this project it was found by using the SUMO tool flowrouter [22]. Flowrouter is a
Python script that finds the OD matrix by solving a maximum flow problem and
setting the measured flows as the maximum flow capacity for the given time period.
This can be aggregated over the whole time period studied or over shorter intervals
(e.g. 1 min, 5 min or 1 hour).

3.4 Optimization
In order to make the simulation match reality, an optimization (in this case a mini-
mization) of the objective function presented in Equation 2.15 had to be conducted.
With this formulation in mind, the constants of this particular optimization can be
inserted.

First, there are four detectors on four adjacent lanes that are of interest in the
optimazation. This means that in the expression for the objective function m = 4.
The simulation is four hours, or 240 minutes, long. The data is aggregated into 10
minute intervals meaning that there are 240/10 = 24 data points per detector, which
means that n = 24. Each detector is binned horizontally along the density axis into
five bins, i.e. B = 5. Finally, the number of points per bin bi, the maximum density
k̂max and the maximum flow q̂max are all different per detector or bin. Putting the
constant values into Equation 2.15 gives Equation 3.1.

Etot = 1
4

4∑
j=1

√√√√ 24∑
i=1

1
5bi

((
ki − k̂i

k̂max

)2

+
(

qi − q̂i

q̂max

)2)
j

(3.1)

Finding the remaining values ki and qi for each time interval and detector comes
down to running the simulation and extracting the data. For this it is necessary to
decide which input parameters should be input.

3.4.1 Optimization parameters
For the optimization to reach a result it needs to be able to alter the input to
the simulation on each iteration and evaluate the results. The input parameters
available are described in Section 2.1.
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Not all available parameters were used as input to the optimization and the ones
that were not used were simply using the default values instead. The reasons for not
including every possible input parameter was the optimization time and complexity
it would incur, with no particularly large upside. The most important parameters
were chosen and are presented in Table 3.1 along with their limits. Each limit
will not be justified individually but they were all picked based on the simulation
or physical properties applicable. Description of the parameters can be found in
Section 2.1.

Parameter Range Distribution type Unit
accel (mean) 0.5-1.5 Normal m/s2

accel (std) 0.05-0.5 Normal m/s2

decel (mean) 4.0-6.0 Normal m/s2

decel (std) 0.1-0.8 Normal m/s2

sigma (mean) 0.01-1.0 Normal N/A
sigma (std) 0.05-0.2 Normal N/A
tau (alpha) 8.0-36.0 Gamma s*
tau (beta) 8.0-60.0 Gamma s*
minGap (mean) 1.5-4.0 Normal m
minGap (std) 0.1-1.0 Normal m
lcStrategic (mean) 0.01-10.0 Normal N/A
lcStrategic (std) 0.05-2.0 Normal N/A
lcCooperative (mean) 0.01-1.0 Normal N/A
lcCooperative (std) 0.05-0.01 Normal N/A
speedFactor (mean) 0.7-1.3 Normal N/A
speedFactor (std) 0.1-0.3 Normal N/A
time-to-teleport 5.0-300.0 Fixed value s
lanchange-duration 1.0-5.0 Fixed value s

Table 3.1: Parameters used in optimzation.

3.5 Sensitivity Analysis

While it is obvious that not all the parameters listed in Table 3.1 are equally im-
portant to the result, it is not as obvious which parameters have the biggest impact
on the outcome.

To figure out which parameters were the biggest and smallest contributors respec-
tively, a sensitivity analysis was used. The setup of the analysis was that each
parameter would be independently varied, the simulation would be run and the re-
sult of the objective function would be noted. Each parameter would be evaluated
at four different levels: ±10% and ±25%.

17



3. Method

3.6 Introduction of Autonomous Vehicles

One of the main points of the thesis is the evaluation of traffic when different frac-
tions of autonomous vehicles are introduced into regular traffic. The outcome of
the simulations are compared based on the objective function presented in Equation
2.19. There are four lanes (m = 4), the speed limit is 70 km/h ≈ 19.44 m/s on
all lanes (Vmax = 19.44) and just as in Equation 3.1 there are 24 data points per
detector (n = 24). This results in Equation 3.2.

Rtot = 1
4

4∑
j=1

(
100
24

24∑
i=1

vi

19.44

)
j

(3.2)

This can be simplified to Equation 3.3.

Rtot ≈ 0.0536
4∑

j=1

( 24∑
i=1

vi

)
j

(3.3)

This objective function was used to optimize the behaviour of autonomous vehicles
at different fractions of AVs (0%, 10%, 25%, 50%, 100%). The controller parameters
in Table 2.2 were not used as input parameters to the optimization because changing
them can cause odd dynamics behaviour and they are already tuned beforehand.
Instead their default values were used according to Table 3.2.

Parameter Value
speedControlGainCACC −0.4
gapClosingControlGainGap 0.005
gapClosingControlGainGapDot 0.05
gapControlGainGap 0.45
gapControlGainGapDot 0.0125
collisionAvoidanceGainGap 0.45
collisionAvoidanceGainGapDot 0.05

Table 3.2: CACC default parameters used.

Instead, the parameters that are shared between the SUMOKrauß and CACC are
used as input parameters to the optimization. For autonomous vehicles all param-
eters are fixed values since they are not expected to have any variation in their
behaviour and for the same reason the driver imperfection is set to 0. The parame-
ters and their ranges can be seen in Table 3.3.
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Parameter Range Unit
accel 0.5-1.5 m/s2

decel 4.0-6.0 m/s2

tau 0.5-3.0 s
minGap 1.5-4.0 m/s2

lcStrategic 0.01-10.0 N/A
lcCooperative 0.01-1.0 N/A

Table 3.3: Parameters used in AV optimzation.
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4.1 Location

The process of finding and deciding upon a location was a process of elimination
based on the criteria presented in Section 3.2 and the set of possible locations was
defined by the detector data provided by Trafikverket. Initially, the geographical
location of the detectors was provided as a shapefile (.shp) and a quick conversion
to Keyhole Markup Language (.kml) allowed the detectors to be overlaid on Google
Maps as shown in Figure 4.1.

After carefully looking through all possible locations, three candidates were found.
The candidate locations all had in- and outflows covered with detectors and were
known to experience a decent amount of traffic. The first location is located along
Lundbyleden and is shown as a map and a satellite image in Figures 4.2 and 4.3
respectively.

Figure 4.2: Map view of location
candidate 1.

Figure 4.3: Satellite view of location
candidate 1.

The second location candidate is relatively close to the first one at the entrance to
Tingstadstunneln and is shown the same way as location 1 in Figures 4.4 and 4.5.
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Figure 4.1: All detectors in Gothenburg overlaid on Google Maps.
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Figure 4.4: Map view of location
candidate 2.

Figure 4.5: Satellite view of location
candidate 2.

The third and final location candidate is located on the opposite side of Tingstad-
stunneln along Kungsbackaleden and is shown the same way as the previous locations
in Figures 4.6 and 4.7.
After inspecting the data available for the detectors in these locations it was con-
cluded that location 1 and 2 did not have sufficient data coverage and that location
3 had almost perfect coverage. The only problem with location 3 was that a detector
on one of the lanes would randomly throughout the day stop registering the flow.
This was solved by sorting the data for periods when the detector had full coverage.

Figure 4.6: Map view of location
candidate 3.

Figure 4.7: Satellite view of location
candidate 3.
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4.1.1 Location in Sumo

In Sumo, it is possible to import maps directly from OpenStreetMap [23]. After
removing all surrounding bike lanes, train tracks, walkways and roads that are not
relevant to the simulation, the model location for the simulation is finished, see
Figure 4.8.

Figure 4.8: Sumo model of Kungsbackaleden.

The lanes are split at the in and outflows to make it more obvious where vehicles are
flowing in and out of the system while viewing the simulation graphically. The effect
this has one the simulation is completely negligible, and it only serves as visual aid.

An important note about the speed limit is that the real speed limits were not used
in the simulation and instead it was adjusted to match the speed that drivers were
going in free flow, as collected from detector data. This meant that all the lanes
essentially had their true speed limit except for the lane coming in from the far
right, which in reality has a speed limit much higher than what drivers choose to
drive. There are a few factors for this including the rather sharp turn radius and
that there is an overpass that the entering vehicles drive under.
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4.2 Dynamic traffic assignemnt
Because the data obtained from Trafikverket for analysis is aggregated every minute
it was decided that the DTA should be aggregated every minute as well, to get as
close of a match to reality as possible.

Unfortunately, the flowrouter script tends to underestimate the flow there is high
fluctuation in the data, which often happens when using a small aggregation time
like 1 minute. In order to adjust for this a separate script was written that checks
and makes sure that all in- and outflows exactly match the collected detector data
and assigns routing based on best guesses by looking at the difference between flows
in real detectors and simulated detectors.

4.3 Simulation results
The result of the simulations will be presented graphically as fundamental diagram
plots (density-flow plots, see Section 2.3) where data is aggregated to 10 min in-
tervals, meaning that each point in the plot represents a 10 min interval. The raw
data both in the simulation and the real detectors is collected as speed and flow in 1
min aggregated intervals and the speed is further averaged to 10 min by using time-
mean speed because the raw data from Trafikverket used this averaging method.
While space-mean speed might have been a better representation, it was still more
important to remain consistent throughout.

The real and simulated data are overlaid on the same plot with real data being blue
and simulated data being red. This holds true for all plots where real and simulated
data are plotted against each other.

4.3.1 Default parameter simulation
To give a reference for the improvement that the optimization contributes, a simu-
lation was run with the all default parameters. This simulation still used the correct
in- and outflows and the modelled location, but regarding driver behaviour was set
to the defaults.

The simulation model is equipped with detectors in the same positions as the real
detectors, see Figures 4.6 and 4.7. The detectors that can be seen in the plots are
detectors with IDs 35138, 35139, 35140 and 35141 which are the detectors on the
four adjacent lanes circled in Figure 4.9, starting from the left.

Now, using the model above, Figures 4.10, 4.11, 4.12 and 4.13. shows the funda-
mental diagram plot of real and simulated data with default parameters for the four
detectors in Figure 4.9. Detector 35141 is the least interesting since that detector is
placed right as the inflow meets the rest of the traffic and thus have not had much
of a chance to interact with other vehicles. It is still included since the four lanes
together cover the entire road segment.
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Figure 4.9: Sumo model of Kungsbackaleden with detectors circled.
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Figure 4.10: Default parameter simulation output for detector 35138.

Figure 4.11: Default parameter simulation output for detector 35139.
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Figure 4.12: Default parameter simulation output for detector 35140.

Figure 4.13: Default parameter simulation output for detector 35141.

Each detector (in simulation and reality) collects flow and speed, which can also
be used to calculate the density. These three parameters can be plotted over the
four-hour interval to show how simulation and reality line up in a temporal sense.
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Figures 4.14, 4.15 and 4.16 shows combined pictures of all detectors, but individual
pictures can be seen in Appendix A.

4.4 Optimization for fitting simulation to data
While the default simulation is not a horrible match with reality, it can be improved
significantly. This section describes the optimization process and progress.

4.4.1 Optimization setup
The parameters in Table 3.1 were used as the input variables that the optimization
can alter. Other parameters were left at the default settings except for the simulation
time-step which was changed from the default of 1 second down to 0.25 seconds to
avoid collisions when the time gap was below 1 second.

The different combinations of optimization algorithms and global search methods
discussed in Section 2.4.3 were tested and it was concluded that MSRSM in combi-
nation with Genetic yielded the best results in this particular case.

4.4.2 Optimization progress
The optimization initializes by trying out several points spread out over the input-
space and evaluating them. After this the optimization continuously reports its
actions on each iteration back to the user. Figure 4.17 shows the current best value
found for the objective function plotted against the iteration number. The red dot
directly above the final value shows the value of the objective function evaluated
with the default parameters.
Note: The optimization was allowed to run for more than another 300 iterations
without finding a new optimum. The optimized parameters were also checked
against the afternoon of the same day to make sure they were not overfitted to
the particular dataset.

Figure 4.17: Progress of the optimization.
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4.4.3 Parameters optimized to match real data

The best parameters found by the optimization are presented in Table 4.1 (all values
rounded to 4 decimal places).

Parameter Value Unit
accel (mean) 1.4976 m/s2

accel (std) 0.0555 m/s2

decel (mean) 4.0522 m/s2

decel (std) 0.9979 m/s2

sigma (mean) 0.7954 N/A
sigma (std) 0.1615 N/A
tau (alpha) 33.6166 s*
tau (beta) 40.6236 s*
minGap (mean) 1.5401 m
minGap (std) 0.2188 m
lcStrategic (mean) 0.0122 N/A
lcStrategic (std) 1.6575 N/A
lcCooperative (mean) 0.9978 N/A
lcCooperative (std) 0.1 N/A
speedFactor (mean) 1.2081 N/A
speedFactor (std) 0.1425 N/A
time-to-teleport 181.0 s
lanchange-duration 1.1362 s

Table 4.1: Parameters used in optimzation

4.4.4 Visualizing the result

As can be seen from Figure 4.17, the objective function was more than cut in half.
The next step is to see it visually and the Figures 4.18, 4.19, 4.20 and 4.21 show the
resulting fundamental diagram plots for detectors 35138, 35139, 35140 and 35141.
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Figure 4.18: Optimized parameter simulation output for detector 35138.

Figure 4.19: Optimized parameter simulation output for detector 35139.
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Figure 4.20: Optimized parameter simulation output for detector 35140.

Figure 4.21: Optimized parameter simulation output for detector 35141.

For temporal comparison, data can once again be plotted over time for flow, speed
and density, see Figures 4.22, 4.23 and 4.24. For plots for each detector individually,
see Appendix B.
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4.5 Optimization for improving traffic

In this section different fractions of autonomous vehicles are introduced and their
parameters are optimized to improve traffic. The objective function used in this
optimization can be seen in Equation 2.19. For reference the value of the objective
function with no AVs is 61.69%. It should be noted that AVs are not allowed to
drive faster than the speed limit and that human drivers, when given the chance, go
on average 21% over the speed limit in the area. This means that the improvements
seen in this section are slightly more impressive than they seem at first glance.

The same in- and outflows as in the real data was used and the AVs were randomly
inserted in place of a real vehicles in the appropriate fractions. The optimization
parameters and their respective ranges can be seen in Table 3.3.

4.5.1 10% autonomous vehicles

The best value found for 10% AVs was 65.95% (with respect to Equation 2.19) and
the parameter values found can be seen in Table 4.2.

Parameter Value Unit
accel 1.0288 m/s2

decel 4.000 m/s2

lcCooperative 0.9773 N/A
lcStrategic 9.6796 N/A
minGap 2.8473 m
tau 0.5000 s

Table 4.2: Optimized parameters for 10% AVs.

4.5.2 25% autonomous vehicles

The best value found for 25% AVs was 67.17% (with respect to Equation 2.19) and
the parameter values found can be seen in Table 4.3.

Parameter Value Unit
accel 1.3003 m/s2

decel 5.8798 m/s2

lcCooperative 1.0000 N/A
lcStrategic 8.7962 N/A
minGap 2.2847 m
tau 0.5000 s

Table 4.3: Optimized parameters for 25% AVs.
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4.5.3 50% autonomous vehicles

The best value found for 50% AVs was 68.29% (with respect to Equation 2.19) and
the parameter values found can be seen in Table 4.4.

Parameter Value Unit
accel 1.4960 m/s2

decel 5.6712 m/s2

lcCooperative 0.9991 N/A
lcStrategic 9.9933 N/A
minGap 3.9989 m
tau 0.5010 s

Table 4.4: Optimized parameters for 50% AVs.

4.5.4 100% autonomous vehicles

The best value found for 100% AVs was 70.58% (with respect to Equation 2.19) and
the parameter values found can be seen in Table 4.5.

Parameter Value Unit
accel 1.5000 m/s2

decel 6.0000 m/s2

lcCooperative 0.9999 N/A
lcStrategic 10.0 N/A
minGap 1.5014 m
tau 0.5000 s

Table 4.5: Optimized parameters for 100% AVs.

4.5.5 Visualization of the impact of AVs

Since the objective function used to measure how well traffic flows is wholly depen-
dent on the speed, the speed over time is plotted for all fractions of AVs together in
Figures 4.25, 4.26, 4.27 and 4.28. It can be clearly seen for detectors 35138, 35139
and 35140 that the more AVs the less likely it is that the average speed will rapidly
drop and cause a short stand still. As for detector 35141 the opposite effect can be
observed, the more AVs are introduced the lower the average speed. This is simply
because 35141 is located at the end of a lane connecting to the other three and is
essentially in a permanent state of free flow. This means that the non automated
vehicles can go above the speed limit while the AVs still have to obey the speed
limit.
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Figure 4.25: Speed over time for different fractions of AVs for detector 35138.

Figure 4.26: Speed over time for different fractions of AVs for detector 35139.
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Figure 4.27: Speed over time for different fractions of AVs for detector 35140.

Figure 4.28: Speed over time for different fractions of AVs for detector 35141.

For completeness, the same temporal plots for Flow and Density can be seen in
Appendix C.
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4.6 Sensitivity analysis

This section describes the results of the different sensitivity analyses conducted.
Because each sensitivity analysis contains four times as many values as variables, it
was concluded that only the five largest contributors would be presented.

4.6.1 Sensitivity with respect to fit

Table 4.6 shows the largest contributors in the sensitivity analysis for the objective
function in Equation 2.15.

Parameter Modifier Objective function
lcCooperative (mean) +25% +32.24%
lcCooperative (mean) +10% +27.28%
lcCooperative (mean) −10% +25.34%
accel (mean) +25% +23.60%
speedFactor (mean) −25% +21.55%

Table 4.6: Biggest increases to the objective function found from the sensitivity
analysis.

4.6.2 Sensitivity with respect to improving traffic

Table 4.7 shows the largest positive contributors in the sensitivity analysis for the
objective function in Equation 2.19.

Parameter Modifier Objective function
speedFactor (mean) +25% +6.45%
tau (alpha) −25% +5.89%
decel (mean) +25% +4.88%
sigma (mean) −25% +3.99%
lcCooperative (mean) +10% +3.53%

Table 4.7: Biggest positive increases to the objective function found from the
sensitivity analysis.

Table 4.8 shows the largest positive contributors in the sensitivity analysis for the
objective function in Equation 2.19.
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Parameter Modifier Objective function
speedFactor (mean) −25% −16.26%
decel (mean) −25% −14.54%
lcCooperative (mean) −25% −11.95%
lcStrategic (std) −25% −10.37%
accel (mean) −25% −7.86%

Table 4.8: Biggest negative increases to the objective function found from the
sensitivity analysis.
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5
Conclusion

This chapter describes the contributions of the thesis, answers the research questions
and touches on possible future work.

5.1 Research questions

The thesis set out to answer four research questions, namely:

• What driver behaviour leads to more or less congestion in the area?
• How does introducing different fractions of autonomous vehicles impact traffic

in the area?
• How can autonomous vehicles behave to improve traffic?
• What do the findings imply for the future development of autonomous vehicles?

5.1.1 What driver behaviour leads to more or less conges-
tion in the area?

As can be seen from the sensitivity analysis in Section 4.6.2, quite a few different
parameters have a big impact on traffic in the area. The biggest improvement is by
simply having everyone drive faster in free flow, which is not necessarily a very good
idea in terms of safety. The same goes for decreasing the time gap and decelerating
more rapidly, since the simulation will not allow collisions to occur it may still not
be advantageous in real life.

Other factors that improve traffic according to the sensitivity analysis is reducing
the driver imperfection (i.e. driving in a more stable and predictable manner) and
being more cooperative with lane changes. These two changes to driver behaviour
could more reasonably work out in real world traffic.

In terms of behaviour which makes traffic worse (with respect to Equation 2.19)
it seems rather straight forward with parameters such as driving slowly, decelerat-
ing slowly (forcing others to adapt), not being cooperative with lane changing, not
planning lane changes ahead of time and accelerating slowly. The outcome of chang-
ing these parameters is quite self explanatory and actually has a negative effect on
traffic.
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5.1.2 How does introducing different fractions of autonomous
vehicles impact traffic in the area?

Introducing autonomous vehicles did improve traffic flow slightly but even with 100%
AVs the improvement was not particularly large. There are a few possible reasons
for why this would be the case, for example the AVs were not allowed to exceed the
speed limit while human drivers in the area on average driver 21% above the speed
limit. This does skew the comparison a bit but also means that the improvement
seen by introducing AVs is actually larger than the numbers suggest.

There are other reasons for the rather small improvement brought on by the in-
troduction of AVs, such as road design. It is possible that no matter how vehicles
behave they cannot pass through this segment with these levels of flow without hav-
ing to slow down. Finally, there is also a possibility that other parameters that were
not subject to optimization could have further improved the result.

5.1.3 How can autonomous vehicles behave to improve traf-
fic?

The findings indicate that both in small fractions (e.g. 10%) and when there are only
AVs on the road it is optimal for them to max out both lcStrategic and lcCooperative
which essentially means that they should change lanes as far in advance as possible
and be as cooperative as possible with lane changes.

Another point to take away is that the fewer human drivers are in the system the
more aggressively the AVs can accelerate and decelerate. This is most likely because
of the effects of reaction time in human drivers, when there are exclusively AVs the
upsides of keeping a steady speed go away. The comfortability of the passengers
must be considered and accelerating and decelerating too rapidly may be limited
due to this factor.

Finally, the minGap seems to have no big effect while it is always best to keep as
small of a time gap as possible. This may not be true in reality however, since
collisions can occur. The takeaway from the time gap is that AVs should keep a
time gap that works well with human driver reaction time, which is a study of its
own.

5.1.4 What do the findings imply for the future develop-
ment of autonomous vehicles?

There are a couple of takeaways from the analysis of the behaviour of the AVs, for
instance it would make sense to focus on improving/developing sensors and software
to see and plan far ahead making it possible for the AVs to plan their actions ahead
of time (seeing as lcStrategic is being maxed out by the optimization).

The other most important point is that since it was found that keeping the time
gap as small as possible and being as cooperative as possible, it would make sense
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to study the interaction between humans and AVs further to see how to be as
cooperative as possible. Finding the proper time gaps and lane changing procedures
is clearly of big importance in creating well functioning AVs.

5.2 Sustainability implications
This thesis looks into the introduction of AVs on a large scale and possible de-
velopments that may occur within the foreseeable future. Implementation of fully
automated networks, such as the ones investigated in this thesis, are expected to
drastically reduce emissions and environmental impact compared to non-automated
networks [24].

Because human errors are the overwhelmingly leading cause of vehicle accidents
(94%) [25] and injury or even death is common in these types of incidents, it could
be argued that the introduction of autonomous vehicles would be a major contributor
to public safety.

5.3 Future work
This report should be enough to be able to replicate this study given that similar data
is available. There are a few possible improvements that could be made to improve
the results further, such as introducing more than just passenger cars (e.g. buses,
motorcycles, trucks). This requires at least the knowledge of which proportions of
vehicles are of each type, which is information that was gathered for this thesis but
never utilized. The reason for this is simple, adding just one more type of vehicle
almost doubles the numbers of parameters in the optimization. This can still be
worked out but the optimization time would be increased, and the unambiguity of
the result becomes even worse. It also important to note that passenger cars account
for over 80% of vehicles on the road in Sweden [26] which makes the introduction of
other vehicle types much less important than that of passenger cars.

The model could be improved further by taking in other types of data (e.g. time
gap) and use this data directly as a parameter instead of letting the optimizer play
with parameters that can be found out for certain. This reduces the complexity of
the optimization, increases the accuracy of the result and makes the result a little
less ambiguous.
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A
Default parameter simulation time

plots

Figure A.1: Default parameter simulation flow output over time for detector
35138.
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A. Default parameter simulation time plots

Figure A.2: Default parameter simulation speed output over time for detector
35138.

Figure A.3: Default parameter simulation density output over time for detector
35138.
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A. Default parameter simulation time plots

Figure A.4: Default parameter simulation flow output over time for detector
35139.

Figure A.5: Default parameter simulation speed output over time for detector
35139.
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A. Default parameter simulation time plots

Figure A.6: Default parameter simulation density output over time for detector
35139.

Figure A.7: Default parameter simulation flow output over time for detector
35140.
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A. Default parameter simulation time plots

Figure A.8: Default parameter simulation speed output over time for detector
35140.

Figure A.9: Default parameter simulation density output over time for detector
35140.
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A. Default parameter simulation time plots

Figure A.10: Default parameter simulation flow output over time for detector
35141.

Figure A.11: Default parameter simulation speed output over time for detector
35141.
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A. Default parameter simulation time plots

Figure A.12: Default parameter simulation density output over time for detector
35141.
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A. Default parameter simulation time plots
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B
Optimized parameter simulation

time plots

Figure B.1: Optimized parameter simulation flow output over time for detector
35138.
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B. Optimized parameter simulation time plots

Figure B.2: Optimized parameter simulation speed output over time for detector
35138.

Figure B.3: Optimized parameter simulation density output over time for
detector 35138.
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B. Optimized parameter simulation time plots

Figure B.4: Optimized parameter simulation flow output over time for detector
35139.

Figure B.5: Optimized parameter simulation speed output over time for detector
35139.
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B. Optimized parameter simulation time plots

Figure B.6: Optimized parameter simulation density output over time for
detector 35139.

Figure B.7: Optimized parameter simulation flow output over time for detector
35140.
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B. Optimized parameter simulation time plots

Figure B.8: Optimized parameter simulation speed output over time for detector
35140.

Figure B.9: Optimized parameter simulation density output over time for
detector 35140.
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B. Optimized parameter simulation time plots

Figure B.10: Optimized parameter simulation flow output over time for detector
35141.

Figure B.11: Optimized parameter simulation speed output over time for
detector 35141.
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B. Optimized parameter simulation time plots

Figure B.12: Optimized parameter simulation density output over time for
detector 35141.
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B. Optimized parameter simulation time plots

XVI



C
Optimized parameter simulation

time plots

Figure C.1: Flow over time for different fractions of AVs for detector 35138.
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C. Optimized parameter simulation time plots

Figure C.2: Flow over time for different fractions of AVs for detector 35139.

Figure C.3: Flow over time for different fractions of AVs for detector 35140.
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C. Optimized parameter simulation time plots

Figure C.4: Flow over time for different fractions of AVs for detector 35141.

Figure C.5: Density over time for different fractions of AVs for detector 35138.
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C. Optimized parameter simulation time plots

Figure C.6: Density over time for different fractions of AVs for detector 35139.

Figure C.7: Density over time for different fractions of AVs for detector 35140.
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C. Optimized parameter simulation time plots

Figure C.8: Density over time for different fractions of AVs for detector 35141.
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