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Adams modelling of contact forces between discecwethd mount

Thesis in the Master’s programme Solid and FluiccMmics
ANDERS ERICSSON

Department of Applied Mechanics

Division of Dynamics

Chalmers University of Technology

ABSTRACT

The purpose of this thesis has been to develodcalaaon module for use in the

simulation software Adams. The calculation modgldased on equations found in
the literature. A disc cutter is the tool in contadth the mount for example in tunnel

boring machines. A disc cutter is a circular dis@de of high strength steel. A
literary study was made where equations determittiegforces acting on the disc
cutter were found. The equations used in the modrdebased on the disc cutter's
penetration into the rock, the spacing betweenduts and the rock properties, such
as the compressive and Brazilian tensile strengtle. simulation module was made
and used in the simulation software Adams wherddhmes and moments acting on
the disc cutter while cutting rock can be simulat€de advantage of the simulation
model is that it is built in such a way that mamgcccutters can be linked together and
the forces from each of them can work togetheregt tvas made on the simulation
model and compared to a real test from the liteeatmmade in a Linear Cutting

Machine, and the theoretical calculated force frtra model for the given rock

penetration and spacing between the two cuts. thelaion model showed a clear

correlation to the theoretical calculated normatéo the normal force from the LCM

test was higher. The rolling force from the theilsetmodel correlated well to the

rolling force from the LCM test while the simulatigenerated a higher rolling force.
The side forces for the LCM test and the simulatiwdel correlated well.

Key words: Disc cutter, tunnel boring machine, Adacutter force, simulation



Adams-modellering av kontaktkraften mellan cutten berg

Examensarbete inom Solid and Fluid Mechanics
ANDERS ERICSSON

Institutionen for tillampad mekanik

Avdelningen foér Dynamik

Chalmers tekniska hdgskola

SAMMANFATTNING

Syftet med detta arbete har varit att skapa enkbergsmodul att anvanda i
simuleringsprogrammet Adams. Berakningsmodulen rbaspa ekvationer funna i
litteraturen. En cutter ar verktyget som ar i kahtened berget i till exempel en
tunnelborrmaskin. Cuttern ar en rund skiva, gjord hoghallfast stal. En
litteraturstudie gjordes dar ekvationer som beskrirafterna som agerar pa cuttern
hittades. De ekvationer som anvands i modulen gerade pa cutterns penetrering i
berget, avstandet i sidled mellan tva cuttrar astyéts egenskaper, tryckhallfastheten
och den brasilianska draghallfastheten. Simulenmmgiellen har byggts i
simuleringsprogrammet Adams dar de krafter och nmireem agerar pa cuttern nar
den penetrerar berget kan simuleras. Fordelen mecladsimuleringsmodell &r att den
kan simulera manga cuttrar tillsammans, dar kraftédr moment pa var och en av
dem arbetar tillsammans. Ett test har gjorts daftér fran simuleringsmodellen
jamforts med de teoretiska krafterna och krafteinda ett riktigt test beskrivet i
litteraturen, gjort i en Linear Cutting Machine, MC Normalkraften fran den
teoretiska modellen stamde mycket val o©verens meadmalkraften fran
simuleringsmodellen medan normalkraften fran dekliga testet var nagot hogre.
Rullkraften fran den teoretiska modellen stamde asrens med rullkraften fran
LCM-testet medan simuleringen gav en hogre rultk@itokrafterna fran LCM-testet
och simuleringsmodellen korrelerade val.

Nyckelord: Cutter, tunnelborrmaskin, Adams, cuttaf simulering
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Notations

Roman upper caseletters

A ement Element area

C Constant

F Friction force

F, Normal force

F, Rolling force

F Cutter force

Feot Total force

F, Force in the x-direction

F,' Force in the x-direction in the local coordinaystem
F, Force in the y-direction

F,' Force in the y-direction in the local coordinaystem
F, Force in the z-direction

H Height

K Node number in y-direction
L Node number in x-direction
L, Length

Mg Total moment

N Normal vector

P' Base pressure

R Cutter radius

R, Transformation matrix

R, Transformation matrix
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R, Transformation matrix

S Spacing between cuts

T Cutter tip thickness

TVEL Translational velocity

T' Moment around the local x-axis
T, Moment around the local y-axis
T, Moment around the local z-axis
VREF Velocity vector

Roman lower caseletters

C Centre of disc cutter

Crrax Maximum damping coefficient

d Penetration for when full damping is applied
dg Direction of the friction force

% Vector

dx Element length in the x-direction

dy Element length in the y-direction

€ Exponent

€, Element normal vector

& Distance vector

k Stiffness

Kk, Start node number in the x-direction

Kk, Start node number in the y-direction

Ky Lowest node number in the actual element in td@ection
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K, Highest node number in the actual element irxtdeection

Ky Lowest node number in the actual element in tdeegction
Ky, Highest node number in the actual element irytdeection
I Length

n, X-component of normal vector

n, Y-component of normal vector

n, Z-component of normal vector

p Cutter penetration

P Point

P, Centre of penetrated plane

penetratin
r

r

Penetration depth
Radius

Distance vector

rockdx Element length in x
rockdy Element length in 'y
rockx.;, Coordinate node one in X
rockx. .. Coordinate last node in x
rocky,,, Coordinate node one iny
rocky, .. Coordinate last node iny
rockz Rock surface matrix
step: Parameter

S Cutter force

t Variable

trockz Temporary rock surface matrix
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vector, . Vector

Direction vector for the penetrated plane

Spl 1

Sl Direction vector for the penetrated plane

Vo Velocity vector

Vi Friction velocity

Vi Friction velocity vector

v, Velocity x-direction in the local coordinate sgtst

v,' Velocity y-direction in the local coordinate sgst

v, Vector

A Vector

X Coordinate in the x-direction

X oord X-coordinate

Xyisc X-coordinate

Xjist Distance in x-direction

X, X-coordinate

Xiocal Local x-coordinate

Xjocal edge Local x-coordinate on the disc cutter edge

X, Actual position of the centre of the elementha k-direction

X Coordinate of node one in the x-direction

X Time derivative of x

X Distance in the global y-direction for when theeghgets in contact
with ground

X' X-component in the new local coordinate system

y Coordinate in the y-direction

CHALMERS, Applied MechanicaMaster’'s Thesis 2010:30 X



ycoord

ydisc

Yaist

Y

ylocal
ylocal ,edge
Ym

ymin

y.
Zcoord,wheel

Zcoord,wheelcente

Zdisc

ZIocal

Zlocal,edge

Y-coordinate

Y-coordinate

Distance in y-direction

Y-coordinate

Local y-coordinate

Local y-coordinate on the disc cutter edge
Actual position of the centre of the elementhia y-direction
Coordinate of node one in the y-direction
Y-component in the new local coordinate system
Z-coordinate on the edge of the wheel
Z-coordinate in the wheel centre

Z-coordinate

Z-coordinate

Mean z-value

Rock surface matrix

Z-component in the new local coordinate system

Z-coordinate
Z-coordinate
Local z-coordinate

Local z-coordinate on the disc cutter edge

Greek upper caseletters

(o)

Av

Xl

Angle of the part in contact with the rock

Difference in velocity
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© Angle

Greek lower caseletters

a Angle to the point of interest

Jé; Angle

w, Angular velocity around the z-axis

w Angular velocities

7 Friction coefficient

o, Uniaxial compression strength of rock

o, Brazilian tensile strength of rock

y Angle from the x-axis of the new coordinate sgste the total force
7] Exponent of the pressure distribution function

Angle from the normal to the point of interest
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1 Introduction

1.1 Background

As the infrastructure projects are getting largest eoads and railways are expanding,
the greater the tunnelling industry gets. Theretas@ main disciplines of building
tunnels in rock. Either the tunnel is built throudtll and blast or by different types
of tunnel boring machines. Tunnel boring machinagehplenty of advantages, they
are fast and safe as long as the profile of thedlis the same.

In the front of the tunnel boring machine there @dise cutters that are in contact with
the rock. To be able to make the tunnel boring nmeshfaster, and to reduce the
damage on the machine, the machine performancesneelie optimized and the
machine needs to be designed to withstand therelifféorces acting on it. To do that,
the forces acting on the front part of the maclHiiam the rock needs to be known.

1.2 Purpose

Computer simulations are a good way to reduce tame costs during the
development of new tunnel boring machines. The gaepwith this master thesis is to
build a simulation model of the rock cutting usisigc cutters, which can be used to
study the contact forces between the disc cuttérttae mount.

The forces acting on the disc cutter are hard limutaste exactly and a completely true
simulation model of the rock fragmentation procesBard to make. There are many
force estimation models to use to calculate theirgutforces from a known

penetration depth, which will be used in this mastesis to simulate the rock cutting.

1.3 Limitations

A model of the disc cutting should be developedthe mechanical simulation
software Adams, which is used by Atlas Copco ABe Tinodel should be constructed
such that many different disc cutters can be lintoggtther and that the forces acting
on each disc cutter can be summed to a total force.

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 1



2 Rock fragmentation by disc cutting

2.1 Introduction totherock cutting process

Tunnel boring machines are the most frequently useghines in the tunnelling
industry. The reason for the extensive use of tutweing machines is the large
amount of advantages it has. The tunnel boring madk fast, safe and it works well
in different ground conditions as long as the peo6f the tunnel is kept constant.
Disc cutters can be used in the front of a tunoehlg machine, see Figure 1.

Figure 1 A tunnel boring machine with disc cuttéégrtsch et al (2002)

A disc cutter is a disc made of high strength dtest rolls against the rock with thrust
force acting on it. A number of disc cutters areumted on a big drum, the drum is
rotating and a thrust is added to it, and a turbeing machine is created. The
diameter of the drum can be very large, it depamdthe strength of the rock and the
number of disc cutters needed. Since the machihe cam produce a given thrust
force and the torque of the machine is limited, thenber of disc cutters possible to
use is limited. The total thrust force is the surnthe thrust force on each disc cutter.

2 CHALMERS, Applied MechanicsMaster’s Thesis 2010:30



Figure 2 Example of a disc cutter. Lindqvist e{Z980)

When a disc cutter is rolling against the rock act®n force from the rock is acting
on the disc cutter. This force is then divided itki@ components, called the normal
and rolling forces. The normal force is the thriste and the rolling force is the
force in the rolling direction. The rolling forceuttiplied with the distance to the
centre of the drum will create a rotational moméFhe maximum value of that
moment is the torque available in the machine. Rangle of a disc cutter cutting
rock can be seen in Figure 2.

2.2 Performance prediction models

Many performance prediction models have been ptedemhere the force acting on
the disc cutter has been a function of the cuttmefration, e.g. Sanio (1985),
Snowdon et al (1982) and Ozdemir and Rostami (1983hese studies the number
of disc cutters and the spacing to penetratioro fative been optimized. The force
acting on the disc cutter or the specific energy been studied as a function of the
spacing to penetration ratio and by using thatatimmum spacing to penetration ratio
has been achieved. The specific energy is the gnergded for cutting a specific
volume of the rock. Therefore the specific energyaigood way of measuring the
cutting efficiency. When measuring the specificrggeduring rock cutting with disc
cutters the horizontal, or the rolling, force iddo calculate the energy. Since the
penetration is rather small in comparison with lgmegth of the cut the energy from
the normal force can be neglected.

In the performance models the performance of timmebliboring machine will be

calculated as a function of the thrust and poweilable in the machine for rock
cutting. By using this information together withetbalculated forces that will act on
the disc cutter while cutting, a rate of penetratean be calculated for the specific

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 3



tunnel boring machine. The rate of penetrationsigally expressed in terms of m3/h
of excavated rock volume or m/h, the tunnel lergired per hour.

2.3 Rock mechanics

2.3.1 Crushed zone

During rock cutting with disc cutters, a zone witighly fractured rock will appear
just beneath the cutter. This zone is called thshed zone and is caused by the high
stress concentrations from the edges of the digercgeometry. Since the fragments
are very fine grained, the area of new surfacestededuring the fragmentation
process is very large. This means that the creatigdhe crushed zone is very energy
consuming. If the size of the crushed zone insieathall, less energy will be needed
to create it and the energy can be used for sig®iciy. The different zones in the
rock during the rock cutting process can be sedfigare 3.

Compacted zone Crater _ Hertzian crack

Side crack

Radial crack

Crushed zone

Cracked zone Median crack

Figure 3 The different zones occurring during in@ion in the rock. Shaoquan
(1995)

The crushed zone is assumed to have a shape df ellsoid with the shortest

diameter in the direction of the loading and theyéat diameter parallel to the cut,
since the measurement is not truly possible to make width of the crushed zone is
assumed to be approximately 1.2 — 1.3 times thewtgih and the depth of the
crushed zone is proportional to the penetratiorttdéfhe tip width is the width of the

cutter tip, see Figure 9.

2.3.2 Compacted zone

There occurs a zone of compacted rock above theheduzone during the chipping

process rather than the stable penetration proéss.is because the rock powder is
trapped in between the disc cutter and the cradédis\and when it is compressed it is
formed to a new material with properties almostghme as the intact rock material,
Lindgvist (1982). This process has a negative erftte on the cutting process, even if
the amount of energy used for this is not thatdarg

4 CHALMERS, Applied MechanicsMaster’s Thesis 2010:30



2.3.3 Cracked zone

Underneath the crushed zone a zone with highlykechcock will appear. This zone
is called the cracked zone. The size of the crackewe varies with the load
magnitude and the macro mechanical propertieseofdbk, Shaoquan (1995).

2.3.4 Chipping procedure

During rock cutting with disc cutters rock chipg areated. This phenomenon is not
completely investigated and an exact theoreticgblaaation is not available.
Chipping is supposed to occur at the front nondlogdone, Gertsch et al (2002). The
front non-loading zone can be seen in Figure 11iamdescribed in Chapter 3.2.2.
When the pressure in the crushed zone is high énaugck chip is created. There are
two cases for rock chipping, the first is that ttrack meets a free surface and
therefore forms a chip. The second case is thatcthek meets an adjacent crack
created by another disc cutter from an earlierand a large chip is created. The
adjacent crack can also be in the rock from thenb@gg. Exactly when and in what
direction the crack will propagate is not knownt lusually it propagates in the
weakest direction or where the stresses in the aoekhe largest. The rock chipping
and the chips created can be seen in Figure 4.

Figure 4 Chips and crushed rock during disc cuttibgdqvist et al (1980)

2.3.5 Spacing

The distance between the disc cutters sidewayallisdcthe disc cutter spacing. The
disc cutter spacing plays an important role in tbek fragmentation process. The
force needed for the rock fragmentation can be aedluf the spacing between the
cuts can be optimized. Normally the S/P-ratio, sgato penetration, is between 10
and 20. This value depends on the disc cutter ayyoethe rock type that the cut will
be made in. A typical curve of the specific eneagya function of the S/P-ratio with
the optimum S/P-ratio can be seen in Figure 5.

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 5



Specific energy

optimum

S/P-ratio

Figure 5 Typical optimum S/P-ratio curve

When the distance between two cuts is too largeh@n the pressure in the crushed
zone is too low to generate a chip a ridge is fatmiéhat is when the rock material
between the cuts is still there and not chipped lbdihe force instead is too high the
chips created can be thicker than the penetratpithd The optimum spacing between
two adjacent cuts is instead the distance wherctheks propagates straight to the
neighbouring crack and forms a chip. The shorterdfack propagation path is the
less energy is needed, Ozdemir et al (1993).

2.4 Cutting speed

The cutting speed has minimal influence on theirggitforces acting on the disc
cutter. The same behaviour has been seen alsbefgidld and specific energy during
rock cutting. Yield is the volume of rock excavategthe disc cutter per unit length
of cut. This can be seen in Figure 6.

6 CHALMERS, Applied MechanicsMaster’s Thesis 2010:30
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Figure 6 The rolling and normal force and the sfiecenergy as a function of the
cutting speed. Roxborough (1975)

When the cutting speed is of the same order of madg as the crack propagation
rate of rock then there are some noticeable eff@agborough and Phillips, (1975).
Gertsch et al (2002) made several tests on ColoRRdd Granite where they
investigated the dynamic behaviour of rock fragragah with disc cutters. They
noticed that increasing the spacing and the permirdecreases the dynamic range of
the forces acting on the disc cutter. The larger spacing and penetration is, the
smaller the deviation from the mean force will be.

The force will have a shape as a saw tooth functioring disc cutting. This is
because of the chipping process, when chippingrscttie pressure in the crushed
zone will decrease and therefore the force actimghe cutter will decrease and the
force can be described as a saw tooth. Gertsdn(20@2) also found that the number
of chips created during a cut is independent ofciliger velocity. The behaviour of
the saw tooth shaped force is dependent on thegstref the rock, the stronger the
rock is the higher the amplitude of the variatioii ae and the shorter the period will
be. For a weak rock it is the other way around, émaplitude and a long period.

2.5 Linear cutting machine

Most of the laboratory work in this area is carrmat in a linear cutting machine,
LCM. An LCM is a machine that can roll a disc cuiteoriginal size against the rock
with a controlled thrust or with a specific pen@tra depth. The cutting speed can be
controlled in the LCM rig, so also the spacing kestw the cuts, Nilsen et al (1993).
One can study the influence of all the differentapaeters affecting the cutting

efficiency by using the LCM. An example of a lineatting machine can be seen in
Figure 7.

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 7
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Figure 7 An example of a linear cutting machinestami (1997)

The size of the rock block that the disc cuttetsralgainst in the LCM is limited.
Therefore the cuts closest to the edges are abaddhre to the side effects. From the
results from the LCM different force estimation mnetglcan be obtained. These are
discussed in Chapter 3.

2.6 Specific energy

One of the most common things to study, in for epl@niinear cutting tests, is the
specific energy. The specific energy is the energgded to excavate a specific rock
volume and is a measurement of the cutting effyerf the specific energy is low
the energy needed to excavate a unit volume of i@d&w. The specific energy is
normally calculated as the energy during one cutddd by the excavated rock
volume. The energy needed during the cut is thekwdone by the two force
components, the normal and rolling force. Sincelémgth of the cut is much larger
than the penetration depth the work by the nornoatef can be assumed to be
negligible.

2.7 Cutter types
There are many different types of disc cutters usae type of disc cutters has

inserted buttons of high strength metal, see Figuiut the most common type is the
constant cross section disc cutter (CCS) whichlalused in this model.

8 CHALMERS, Applied MechanicsMaster’s Thesis 2010:30



Figure 8 Disc cutter with inserted buttons. Lindsjy1982).
As mentioned above the most common type of distecus the CCS cutter. The

cutter that will be used in this model is a CCSteruand can be seen in Figure 9
together with the measures.

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 9
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Figure 9 The disc cutter from a cross sectionalwand viewed from the side with the
measures
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3 Forceestimation models

3.1 Introduction

There is no simple explanation of the behaviouthef rock fragmentation process
under a disc cutter. Many attempts have been madegtto find out all the
mechanisms involved in the rock fragmentation psscender a disc cutter. What is
known is that a crushed zone will appear beneathtifhof the cutter because of a
high pressure concentration from the cutter tipstRmi and Ozdemir (1993) and
Lindgvist (1982). The exact pressure distributiarthis zone is not known but it is
assumed to be circular, Rostami and Ozdemir (19B88. size of this zone needs to
be small in order to get a highly efficient cuhe® it requires a great deal of energy to
crush the rock into small pieces instead of crgal@nger chips of the rock. Because
of the formation of microcracks in the crushed zotieere will be a volumetric
expansion in the crushed zone. This expansionoailise tensile stresses which will
give rise to tensile crack propagation to the suafto form rock chips, Hongyuan
(2003). When a chip comes into being, the pressuithe crushed zone decreases
which leads to an oscillation in the force actimgtiee cutter, Sanio (1985).

3.2 Cutter forces

3.2.1 Forceestimation methods

The following part, Chapter 3.2.1, is taken fromd@mir and Rostami (1993) and it
presents a model for the forces acting on the rcatea function of penetration and
rock type. In this model, the stress is supposduetdistributed as:

9V
P= P'(l—Ej (1)

where

P’ Base pressure

7] Angle from the normal to the point of interest

) Angle of the part in contact with the rock

7] Exponent of the pressure distribution function

The angles can be seen in Figure 10.

The exponent of the pressure distribution determitines shape of the pressure
distribution, a value of¢y = (means a uniform pressure distribution along theecu

edge. For a pressure distribution starting frono zerthe front of the disc cutter and
P’ under,¢ = 1s used. A negative value @f means higher pressure in the front of

the disc cutter. Ozdemir and Rostami, (1993)

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 11



The base pressure is calculated from test data diitierent tests made with an LCM
(linear cutting machine) on several rock types eodditions. From these tests three
different equations for calculating the base pressue presented, depending on how
many parameters that are known. The most accurathothes the third and it
depends on the compression and tensile strengtheofock, the cutter radius, the
spacing between the different cuts, the penetrarmhthe thickness of the cutter. The
third method has a square of the correlation coiefit of 0.865, the second has a
square of the correlation coefficient of 0.78 am first has a square of the
correlation coefficient of 0.525. The pressure fior are, equation (2) to (4):

P! = -32628+5215°° )
P',=103400+ 42008 - 7370, + 2480, ~1260p-21030 -1174R  (3)

P',=100500+1217( + 7880, — 2883w ' —192S° - 0.00014 %> — 294507 —~1300(R

4)
where
o, Uniaxial compression strength of rock [psi]
o, Brazilian tensile strength of rock [psi]
S Spacing between cuts [in]
T Cutter tip thickness [in]
R Cutter radius [in]
p Penetration [in]
P'.-P, Pressure on the brim

This model is valid for the following values of thariables, according to Table 1.

Table 1 The limit values for the force model

Variable Lower limit Upper limit Unit
o, 10000 30000 psi
g, 500 2500 psi
R 15 18 in

S 2 4 in

P 0.25 3 in

12
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The total force acting on the cutter can be seefrigure 10 and is calculated
according to

_P'RT®
t w+1

(5)

where

P! Base pressure [psi]
Cutter radius [in]
Cutter tip thickness [in]

Angle of the part in contact with the rock

<« ¢ 4 =—

Exponent of the pressure distribution function

| Normal
f X Coordinates

| =
Cutter edge ,a p
|I : ty

=R

\ Radius

Rock Surface

Reaction ¥
force

Figure 10 The stress distribution. Gertsch et al020

To be able to describe the base pressure undeuttez m a more general way a new
angle is introduced to determine the pressure watpamt in contact with the rock.
The equation for the pressure distribution in a gangay using a power function is
described in equation (6):
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¢
p= P'(ﬂj (6)

Where
a Angle to the point of interest

The force component at any anglef interest can be calculated as
aV
dF :TPRotr:TRP(—J da =TRP¢t?dt @)
@

where

t Variable replacingq
@

The force components in the x- and y-directionshia mew coordinate system are
calculated as equations (8) and (9):

F, = J(/Zde :TdF coda) (8)

F.=

y y

o t—%

dF, =de sin(a) 9)

The angle from the x-axis of the new coordinateesysto the axis of the total force is
then calculated from

-1 FY'
y=tan™| — (20)
F,
where
y Angle from the x-axis of the new coordinate systerthe total force
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Ozdemir and Rostami (1993) also present equationsatculate the normal and
rolling forces on the cutter. The equations forribtléng and normal forces calculated
according to equations (11) and (12).

F, = F, cod3) (11)
F, = F,sin(p) (12)
where
F, Normal force
F, Rolling force

3.2.2 Non-loading zones

During investigations, Rostami (1997), the stresdridution on the disc cutter is
found out not to be hydrostatic. Instead theren®m@-loading zone in the front and in
the rear of the contact zone on the disc cuttestdoi (1997). Tests have been done
where strain gauges where mounted on the discrouttée doing linear cuts with a
linear cutting machine which showed that the stoedg acts on a limited area on the
disc cutter. There is a non-loading zone in thetflaamd in the rear of the area in
contact with the rock. The front non-loading zonassumed to appear because of the
chipping procedure in front of the disc cutter. Thar non-loading zone depends on
the removal of crushed material from the back @& tutter, Rostami (1997) and
Gertsch et al (2002). The pressure distributionhendisc cutter can be seen in Figure
11.
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Figure 11 The pressure distribution on the disc euth the method presented by
Rostami (1997). Gertsch et al (2002)

3.3 Cutter force model

Based on the above mentioned stress distributem F&ggure 11, a complete series of
regression analysis have been made on severalaiesbbtained from tests on a linear
cutting machine, LCM. The results have been analyreti the correlation between

cutting forces and different rock parameters hanbsudied. The result from these
analyses is the following force equations. This éamodel is different from the force

model by Ozdemir and Rostami (1993), since it tatkes actual loading area into

consideration.

The normal force acting on the disc cutter accordimg-igure 11 is as follows,
Gertsch et al (2002), equation (13).

F, =TR¢P'co{%’j (13)

where

Fy Normal force [N]

T Tip thickness of the cutter [m]
R Cutter radius [m]
¢ Angle of the contact area
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P Average pressure in the contact area [Pa]

The angle of the contact area is calculated as

_ .« R-p
@=cos (—R j (24)

where

p Cutter penetration [m]

The mean pressure in the loading area is calcuésted

2
5/9c ;S

P=C
JRT

(15)

where

C = 212 is a constant

The rolling force is the horizontal component o¢ tforce acting on the disc cutter.
The rolling force is calculated using the cuttirgefficient, which means how much
of the force that is used for the rolling. The iral force is calculated according to
equation (16). The location of the actual loadingaasee Figure 11, depends on the

rock properties and penetration depth. It can geaneral case be set to half of the
angle of the contact area.

- L
Fr = Fy tar( 2) (16)

One can therefore say that resultant force thatastlon the edge of the disc cutter in
contact with the rock will be

F =TR¢P' (17)

Equation (17) will be used later in the reportdatculating the cutter forces.
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4 Simulation tools
4.1 Adams

Adams, Automatic Dynamic Analysis of Mechanical 8yss, mechanical simulation
software is used in this Master Thesis. Adams sefavare used to simulate Multi
Body Systems (MBS). A Multi Body System consistspafts, rigid or flexible, that
are linked together by joints and/or force elemeAttams can be used to simulate
flexible bodies, but a standard Adams part is ragid can not be deformed. Each part
has six degrees of freedom, three translationaltlares rotational. An example of an
MBS with bodies, joints and forces can be seergare 12.

Spherical

[ws]
I\Jg
-

Revolute

External
force

External
force

Figure 12 Example of a multi body system with patd forces

4.2 Markers

A marker is a coordinate system and is used in Adahenever a certain direction or
position needs to be specified. It can for exansplecify where a geometry needs to
be anchored to the part or where the centre of ma#ise part is. When building a

model, a marker defining the global origin will @ys be attached. This marker also
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defines the global directions. All new markers willtomatically have their positions
and directions expressed in the global referensgery.

4.3 Joints

A joint is a connection between two parts in ADAMfat constrains 1-6 degrees of
freedom. There are many different types of joiAtsevolute joint constrains the three
translational degrees of freedom and two rotatidegirees of freedom. Another
example of a joint is the translational joint, wiaéwo translational degrees of
freedom and all three rotational degrees of freedoaremoved. When creating a
joint two markers will be created. They are called |- and J-markers. The I-marker
belongs to the first part and the J-marker beldadkee second part of the two parts
jointed together. For example, the revolute joietineen the fork and the wheel, one
marker will be on the fork and one marker on the&hThe two markers will have
their z-axis parallel and they will rotate arouhdttaxis.

4.4 Forces

A force in ADAMS is a connection between 2 paristthill try to move the parts in a
certain way depending on the definition. The mowveimeill be affected by the
properties of the parts, i.e. mass, inertia, ahérogproperties of the system.

4.4.1 General force

A general force is a six component force, threedsrand three moments, that can be
acting on a part. When creating a general forgegtimarkers are created. One marker
will be placed on the action part, called the I-kesy one marker on the reaction part,
J-marker, and one reference marker. The refererendem can be placed on the
ground, which means that the components will beesged in a system that is not
moving with the part. This reference marker cowdcobaced on any part of the model.
The reaction part can be the ground and the aponcan be any part of the model.
Both the I- and J-markers will be placed anywhenetlme part but the J-marker
belongs to the ground and will not rotate with thearker. The I-marker will rotate
with the part.

45 Adams solver

The kinematic, dynamic and quasi-static analyse8dams involve the solution of
the governing equations of motion. The equationbecsolved for the analyses are
non-linear algebraic or differential-algebraic etijuas. It is an iterative process where
Adams uses a predictor polynomial to predict tHatsm to the equations. The order
of the predictor polynomial can be as high as teelvhe predictors look at past
values and estimates a solution based on themthangredicted values almost never
satisfy the governing equations. An example of mpg first order prediction
polynomial can be seen in Figure 13.
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Figure 13 A first order predictor polynomial andethtime step made. Online
documentation, Adams 2008 r1

If the predicted value is not the solution to theveyning equations, an iterative
scheme is used to iterate to the solution. A titnep $s the length of the time step
made to the predicted time. If the solution canlefound for the iterations, the size
of the time step will be reduced and the iteratmncess starts again. When the
iteration yields a solution to the governing eqoiagi the time step is considered to be
fulfilled and a new time step can be made and a pesdicted solution to the
equations can be predicted. An example of a predigiolynomial, corrected values
and the time steps made can be seen in Figure Helcdrrected value is the final
solution to the governing equations for that spec¢iie step, and it is the value from
the iteration process.

Znd Order Predicting Palynomial
(based on w(), &S, yis), yis))

W /
1
i -

fTe =y I N I ..\, )

g, el Predicted p(t6)

Corrected p(i6)

il Time

n_#a 2.8 . H8 e 5
hi_ k3 . h3 _  hd wun hS o bR

Figure 14 Example of prediction polynomial and tisteps. Online documentation,
Adams 2008 r1
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5 Virtual tunnel face

5.1 Introduction

When the disc cutter has rolled against the roakeasome parts of the rock have
chipped and some have been crushed and fell awhgn\We next disc cutter comes,
the tunnel face needs to be updated with the n@mggy. If the next disc cutter will
roll in the track as the first one, then it willlron the crater created from the first disc
cutter. The tunnel face mesh and the referenceenadn be seen in Figure 15.

DA st & i8

Figure 15 The tunnel face mesh with the referemcedinate system

5.2 Modelling the tunnel face

The tunnel face will be modelled as a large meshgusiangular elements. In each

element the surface will be flat. Each node inrtfesh corresponds to a height value.
The z-coordinates for each node can be changedebsfarting a simulation. This

means that any shape of tunnel face can be stutiedonly demand on this model of
the tunnel face has is that it must be rectangilae. numbers of nodes in the x- and
y-directions do not need to be the same, and teenasits do not need to be
equilateral. When the first cutter has rolled agaihe tunnel face the nodal values
will be updated with the deformed surface for tlestrcutter to roll against the new

and updated actual geometry of the face. The elswdrihe tunnel face used in the
later simulation work can be seen in Figure 16.
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Figure 16 The elements of the tunnel face

In this model of the tunnel face the number of ohethe x- and y-direction can be
chosen, as well as the maximum and minimum val@ig#seocoordinates in the x- and
y-direction. This means that the tunnel face camadesmall and large as the user
wishes. When the cutter rolls against the tunnet,féhe actual position of the cutter
will be measured and by using that position the@adbeight of the tunnel face can be
determined. The height of each node is stored mma#ix, the rock surface matrix,
where each row corresponds to the node numbetreix-tirection and each column
corresponds to the node number in the y-directian.a given position in the mesh
the surrounding nodes are calculated accordinguateons (18) to (23).

Kk, = INT(X_ Xmmj (18)
dx
Y= VY
Kk, = INT min 19
’ ( dy j 49
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k, =Kk, +1 (20)

k,, =kk, +1 (21)
K, =k, +1 (22)
K, =k, +1 (23)

where

INT(A) RoundsA to the nearest integer less than or equa to

kk, Start node number in the x-direction

kk, Start node number in the x-direction

X Actual position of the centre of the disc cuttethe x-direction

y Actual position of the centre of the disc cuttethe y-direction

X i Coordinate of node one in the x-direction

Yoin Coordinate of node one in the y-direction

dx Element length in the x-direction

dy Element length in the y-direction

K, Lowest node number in the actual element in tdeection

K, Lowest node number in the actual element in theegction

K, Highest node number in the actual element irxtdeection

Ky, Highest node number in the actual element iryttaection

5.3 Elements

For each position in the rock surface matrix, tharfsurrounding nodes are being
calculated. Then the distance between the poininterest and the lowest node
number in the x- and y-direction is calculated. Tdistances between the actual
position and the lowest node number in the x- artirgction are calculated as
equations (24) and (25).

xxL=x-(kk, [ax+ X ) (24)

yyL=y—(kk, Ly +y,,) (25)
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These distances are used to determine whetheretiteecof the disc cutter is in the
upper or the lower element of the square rectarsgle,Figure 17 and Figure 18. The
actual element is determined as:

if xxil<yyl - upper

(26)
else lower

5.3.1 Lower dement

The actual position is located in the lower elemwhen the distance between the
lowest node number and the actual position in tkéirection is larger than the

distance in the y-direction. Otherwise the actuasifion is located in the upper

element. When the location is known and the acalement is determined the

derivatives of the heights in the x- and y-direci@nd the value of the height for that
specific position can be calculated according eodfuations below, equations (27) to
(29).

dz — Z(kx2 J kyl) - Z(kxl’ kyl)

— 27
dx dx @n
E — Z(kXZ ! kyz) - Z(kx2 ' kyl) (28)
dy dy

dz dz
Ziock (X! y) = Zioek (kxl’ kyl) + & XL+ @ yyl (29)

The case where the actual position is in the le@lement can be seen in Figure 17.
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Figure 17 The actual position for a point in tloevier element

5.3.2 Upper element

When the actual location is located in the uppemelint the distance in the x-direction
is larger than the distance in the y-direction. @ieavatives of the height in the x- and
y-direction and the value of the height can nowdatermined according to the

equations below, equations (30) to (32).

d_z — Z(kxz ' kyz) - Z(kxl’ kyz) (30)
dx dx
E — Z(kxl’ kyz) - Z(kxl’ kyl) (31)
dy dy

dz dz
Zrock (X! y) = Zioek (kxl’ kyl) + & XL+ @ yyl (32)

The case where the actual position is in the upfgnent can be seen in Figure 18.
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Figure 18 The actual position for a point in theper element
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6 Cutter geometry

The geometry of the disc cutter that is used insihaulation model in Adams can be
seen in Figure 19. A common disc diameter is 1’amg that is the size used in this
simulation. The disc radius is an input to eaclt distter used in the simulation
model, as well as the small radius r, see Figure 9.

Figure 19 The disc cutter geometry from Adams

6.1 Coordinate systems

Four markers will be used in the computational nhodee reference coordinate
system on the ground, the reference marker forgtreeral force, common for all
cutter discs used in one simulation. One refer@ocedinate system, marker, on the
fork to get the directions of the local coordinagstem and to measure the positions
and velocities and two joint markers from the jologtween the fork and the disc
cutter to measure the rotational velocities.

Two coordinate systems will be used in the compartat model, the local coordinate
system on the disc cutter and the reference coaelisystem that the forces and
moments will be expressed in. The reference coateiaystem will be attached to the
ground and the rock surface will be attached td'lie reference coordinate system
will therefore not rotate with the disc cutter. Tlbeal coordinate system will have its
origin at the centre of the disc cutter and witlte with the fork, but it will not rotate
with the disc cutter. The z-axis of the local copate system will be parallel to the
fork, and the x-axis will be in the direction thetter is moving. The two coordinate
systems can be seen in Figure 20.

CHALMERS, Applied MechanicsMaster’s Thesis 2010:30 27



yé’o

.me

Z ref
y ;rgf

Figure 20 The local and reference coordinate system

6.2 Coordinate system transfor mations

In the computation model there are two coordingtesns that are used. The first is
the reference coordinate system that is the coatelisystem attached to the rock
surface and where the forces will be expresset@ihia.second coordinate system is the
local coordinate system. The local coordinate sydtas its origin in the centre of the
disc cutter. In Adams, the yaw-pitch-roll rotatisnmeasured as 3 -2 1. The rotation
matrices can be seen below, equations (33) to (@M. transformation coordinate
systems and angles can be seen in Figure 21.
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Figure 21 The transformation coordinate systemsthiedransformation angles

coda) -sinfa) 0
R,(a)=|sin(@) coda) © (33)
0 0 1

codf) 0 -sin(B)
R(B)=| o 1 o0 (34)
sin(8) 0 codp)

Where £ is the pitch angle with opposite sign, becausendgleneasures the rotation
sequence 3 -2 1.

1 0 0
R.(y)=|0 cody) sin(y) (35)
0 -sin(y) cody)

To go from the reference coordinate system todballcoordinate system one can use
the equations below, equations (36) and (37).

Xlocal X X
ylocal = Rx (y)Ry (IB)RZ (0') Y= Y (36)
Z|ocal Z Z

To go from the local to the global coordinate systéhe transpose of the
transformation matrix is used, see the followingagmn.
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X Xlocal
Y = RT ylocal (37)
Z

Z|ocal

The rotation angles are measured between the nefereoordinate system for the
rock surface and a marker in the centre of the Wla¢tached to the fork.

6.3 Cutter edge

When searching the edge of the cutter to determithe cutter has penetrated, a loop
will be made over a number of points on the edgehefdisc cutter. At first, the
coordinates of the centre of the disc cutter arasmeed. Then the local coordinate
system is attached to the centre of the disc cutitr its origin in the centre of the
disc cutter and the direction of the coordinatesdxem the transformation matrices in
Chapter 6.2. At first the local y-coordinate isetatined. Then the y-dependent radius
is calculated according to equation (38).

R(ylocal) =R-r+4r ? - ylocal2 (38)

When the y-dependent radius is known the local md &-coordinates can be
calculated according to equations (39) and (40).

Xlocal,edge = I:'2(ylocal ) Eoia) (39)

Z|oca|,edge = _R(ylocal ) |ﬁln(a’) (40)

The anglen and the local y-coordinate are looped. The angklooped from O ta
radians and the local y-coordinate is looped frdnio b, where b is the width of the
disc cutter, see Figure 9. Equations (39) and #@®kxplained in Figure 22.

30 CHALMERS, Applied MechanicsMaster’s Thesis 2010:30



xfocai 2dge

Zfocaf,edge

R(yiocai)

Figure 22 The local x- and z-coordinates on the distter edge
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7 Forcecalculation

7.1 Introduction

The cutter force will act in the direction normalthe surface penetrated by the cutter.
In the model presented by Rostami (1997), the cidittee is then divided into a
horizontal rolling force and a vertical normal ferdhe normal force from the model,
by Rostami (1997), Figure 11, is normal to the shrapplied. The different forces
from the simulation model and their directions t@nseen in Figure 23. In Figure 23
the normal force is the normal force to the penetrgplane, the normal force to the
penetrated plane is the total force from equatiof),(see Figure 11.

penetrated plane

Figure 23 The forces on the disc cutter, crossigeat view to the left and seen from
the side to the left

7.2 Forcecalculationsin Adams

The force descriptions found are all calculatedaligcat the contact point and in the
contact plane directions. The force element usedeial force, is applied at a marker
(I-marker) on the part and this marker is lockedirdy the simulation. The contact
between the cutter disc and the mount can occuwlaeng on the brim.

The cutter disc is moving with six degrees of fi@ad The position of the I-marker
can be measured and then the possible contact fmied) can be detected by
searching the surface of the brim. If a contaatatected the contact point and plane
can be determined and the calculations can be toad#y. The local force is then
transformed back to the I-marker.
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7.3 Penetrated plane

For determination of the direction of the cuttingde the penetrated plane needs to be
determined. The penetrated area needs to be deldufast. That is done in a
subroutine, where a loop is made over the edgkeoflisc cutter. The edge of the disc
cutter is divided into a number of small elemersfirst the local y-coordinate is
calculated. The local y-coordinate is used to daeitee the y-dependent radius. The y-
dependent radius is then used to calculate thd locaordinate and the local z-
coordinate. When the local coordinates are knowwy Hre transformed into the global
coordinate system as described in Chapter 6.2e¥eny point in the z-coordinate of
the rock surface is calculated as described in @napl. If the wheel has penetrated
into the rock surface, i.e. the z-coordinate ofwneel is smaller than the z-coordinate
of the mesh, the three coordinates for the meshesleare stored in three vectors.

7.4 Normal vector

When the loop in the previous section has reacheoiat on the wheel that has

penetrated into the rock surface another subrousgicalled. This subroutine makes a
search in the mesh and calculates the four surimngmebdes and determines in which
element the point is. Then it calculates the twotmes on the edges of the element
and calculates the cross product between them vwgives the normal to the element.

The normal is calculated using equation (41) ar2j. (4

For the upper element, Figure 24:

& =V xV, (41)

Figure 24 Vectors for calculating the element normahe upper element.
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For the lower element, Figure 25:

& =XV, (42)

L 4

Figure 25 Vectors for calculating the normal in tlogver element.

The normal vector is normalized and stored. All tleemal vectors calculated in the
loop are stored and all the unique normal vecteessammed. The summation of the
normal vectors is then normalized. By doing thahean normal vector has been
calculated for the penetrated plane. This vectdnesnormal vector to the penetrated
plane and is called .N

When all the points on the disc cutter have beepdd over, a vector is calculated
between the first point and the last point storeeGtor one. After that the cross
product between the normal vector and the vectioulzed between the first and the
last point is calculated, vector two. The plandrdef by vector one and vector two is
called the penetrated plane.

The centre of the penetrated plane is in the midtileector one and is calculated as:
P =P+ 0508 43)

The forces will be applied onto the edge of the distter on the point at the edge of

the wheel where the vector from the centre of tineel to the centre of the plane

crosses the cutter edge, see Figure 26. The vieotarthe centre of the disc cutter to
the point of force application is calleg f
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Figure 26 A cross sectional view of the penetratieshe and a definition of the point
of force application

The penetrated plane viewed from above can be iseEigure 27. The figure also
shows the direction vectors of the penetrated p&arnkthe normal to the penetrated

plane.
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Figure 27 The two vectors defining the penetratéehg and the normal to the
penetrated plane for the ideal case with a flat dmdizontal tunnel
face

All the lengths and angles for the following cabtidns, equations (44) to (53), can
be seen in Figure 28. When the centre of the pateektrplane is calculated the
direction of the_f vector can be calculated. That vector is calcdlatecording to
equation (44).
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\ penetrated plane

Figure 28 The lengths and vectors for calculatihg point of force application

dp:pc—g (44)

The direction vector will then be transformed ithe local coordinate system using
the transformation matrices in Chapter 6.2. Whenldlcal coordinates are known for
the direction vector, the vector from the centrela disc cutter to the point in the
edge of the disc cutter with the same local z-coatté as the ybut with the local y-
coordinate in the centre of the disc cutter, zeam be calculated. That vector is
calculated according to equation (45).

d,=d, @t o of+d,@E)fo o 1 (45)

That vector will then be multiplied with the disatter radius, according to equation
(46), which will give a vector from the centre bktdisc cutter to the brim of the disc
cutter.

d
Sn =R

= e

(46)
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Then the length to the point in the direction of @ vector from the centre of the
wheel to the point with the same local z-coordirege¢he g point, see Figure 28, can
be calculated, according to equation (47).

| R[Iengtt{dp)

- Iengtﬂd_mj (47)

Then the angle between thgeector and thedvector can be calculated according to
equation (48).

©= cos‘l(l—Rj (48)

Then the xlength can be calculated according to equatioih (49
x, =sin(@){R-r) (49)

And the y can be calculated according to equation (50).

Y, =4r2=x’ (50)

When the yis calculated the;zan be calculated according to equation (51).
z, =cod@){R-r) (51)

When all the lengths are known the length of thetaefrom the centre of the disc
cutter to the point on the edge where the forcdk b applied can be calculated
according to equation (52).

L, =y, +z2 (52)
The {, vector can finally be calculated according to eigua(53).

f,=L, O,

(53)

7.5 Penetration

The penetration is one of the factors determiniregdize of the force that will act on
the disc cutter. When the penetrated plane is ket one can calculate the
penetration depth. The penetration depth is caledlas the difference in the local z-
coordinate of the penetrated point with the highlestal z-coordinate and the
penetrated point with the lowest local z-coordinaléne penetration depth is
calculated according to equation (54).

penetratia = ‘z,ypl - Z|,p2‘ (54)
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7.6 Friction

There will be a friction force acting on the disdgter at the point on the edge of the
disc cutter where the forces will be applied. Thetibn force will be calculated as the
normal force, normal to the penetrated plane, mligtl by the friction coefficient.
The equation for the friction force is:

Fo =—Fy (59)

To be able to calculate the friction coefficiene thelocity of the disc cutter edge
relative the penetrated plane needs to be detedmifiee friction coefficient as a
function of the velocity can be seen in Figure d8d is thoroughly described in
Appendix A, Chapter A.2.2.

friction coefficient

mu -

Wi

Figure 29 The friction coefficient as a functiontioé velocity

7.6.1 Velocity

The penetrated plane is used to calculate the wglime the friction. The translational

velocities of the centre of the disc cutter are snead using the Adams built in
function TVEL which generates all three translationelocities expressed in the
reference coordinate system. The three rotatioefdcities of the disc cutter are
measured using the Adams built in functions WX, Ved WZ. They give the

rotational velocities of the disc cutter expresgethe local coordinate system. The
rotational velocities of the disc cutter are tramsfed from the local coordinate
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system into the reference coordinate system usimg ttansformation matrices
presented in Chapter 6.2. The vector from the eewitthe disc cutter to the point of
the disc cutter where the force will be appliedised to calculate the velocity in that
point. This is done according to

VREF=TVEL+wxr (56)

When the velocity of that point on the disc cuigeknown the velocity needs to be
transformed to the penetrated plane. The transfitmmé done using equation (57)
and the transformation vectors can be seen in &igar

Spia
Vy =S, VREF (57)

&

This transformation gives the velocity in the thoBeections, the first two values are
the velocities in the directions of the directioactors of the plane and the third
component is the velocity in the direction of th@mal vector. The magnitude of the
velocity in the plane is calculated as the squaw of the sum of the first two
components of the velocity vector from the planeoading to equation (58).

v, = v @0 +v,, (2 (58)

The two velocity vectors for the penetrated pland the sum of them, the friction
velocity, can be seen in Figure 30.

3 pil

pl2

Figure 30 The two velocity vectors in the penettgiane and the friction velocity
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The direction of the friction force is opposite ttee friction velocity. The first two
components of the plane velocity vector is the e#jon the direction of the sum of
the two vectors defining the plane. The directidthe friction velocity is calculated
by adding the two velocity vectors of the penettapgane, which can be seen in
equation (59).

Vfr = VpI (l) EpI A + VpI (2) |Epl 2 (59)

The equation above defines the direction of thetifnh force, and since there is a
minus sign in the equation for the friction fordeetfriction force vector can be
calculated as

— (60)

fr

7.6.2 Friction coefficient

When the friction velocity is known the friction efficient can be calculated. The
friction coefficient is a function of the frictiovelocity and is determined from Figure
29.

7.7 Cutter force

When the normal vector is calculated the directmfnthe cutter force can be
calculated. The cutter force is the force calcadtem the force model presented in
Chapter 3.3, and can be seen in Figure 11. Sireceutter force always will work in
the direction of the normal vector from the pertetlaplane the components of the
cutter force can be calculated using equation {&{§5).

F.=nF; (61)
F,=nF; (62)
F, =n,F (63)

The three equations for the components of the rciitiees can be written in the
following way

F =NF, (64)

The total force that will be acting on the discteuin the point of force application is
the addition of the cutter force vector and thetiion force vector. The total force is
calculated according to

Foa=F*F (65)

This is possible to do since all the componentshef forces are expressed in the
reference coordinate system.
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7.8 Cutter moment

The cutter force calculated in the section abovehe translated to the centre of the
disc cutter to the general force. Since the gerferak is applied in the centre of the
disc cutter and the forces are working on the eddke disc cutter a moment needs to
be attached to the general force.

The moment of the cutter force about the centrahef disc cutter is calculated
according to equation (66) wheggd given by equation (53).
M _ =f xF

tot p tot

(66)

The total force vector and the distance vector liaeg components expressed in the
reference coordinate system. The moment will bentbenent around the three axes
of the reference coordinate system.
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8 Rock fragmentation

8.1 Deformation

When the cutter rolls against the rock a crushetk awill appear. The shape of the
crushed zone is presented more thoroughly in Chaph& but is assumed to be
ellipsoidal, with the smallest radius in the direotof the cut and the largest radius
parallel to the cut.

The update of the rock surface matrix will be mad¢he subroutine DEFORM. A
loop will be made over all the nodes in the entiresh. The coordinates of each node
will be calculated using equation (67) to (69).

X_oorg = FOCKX. . + rockdx(L —1) (67)
ycoord = rOCkymin + rOdeXK _1) (68)
Z..a = FOCkAL, K) (69)

Then a vector will be calculated from the centretted disc cutter to the node of
interest, according to the following equation.

X Xcoord Xcentre
y = ycoord - ycentre (70)
z Zcoord Zcentre

The coordinates of the vector from the centre efdisc cutter to the node of interest
will be transformed into the local coordinate systdescribed in Chapter 6.1. If the
local y-coordinate is less than half the width bé tdisc cutter and the local x-
coordinate is smaller than the large radius ofdise cutter the y-dependent radius
can be calculated as in Chapter 6.3. The nodewitlien the area shadowed by the
disc cutter if the local x-coordinate is less thha y-dependent radius. Then the z-
value of the node can be calculated and compardeta-value on the point on the
wheel with the same local x- and y-coordinates. dtea shadowed by the disc cutter
can be seen in the figure below. If the node igdamshe shadowed area it might be
penetrated by the disc cutter, otherwise not.
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Figure 31 Figure over the shadowed area.

When the disc cutter is within the shadowed area,Hgure 31, it might penetrate

into the rock. The z-coordinate of the node is waled above in equation (69) and
will be compared to the z-coordinate of the whexl the corresponding x- and y-

coordinate. The local y-coordinate of the wheelised to calculate the y-dependent
radius as above. When the radius is known the pdawate can be calculated using
equation (71).

Zdisc = \/r (ycoord)2 _Xcoord2 (71)

The z-coordinate of the disc is then compared éaxztihoordinate of the node. If the z-
coordinate on the disc cutter is lower than the @m¢he node the disc has penetrated
into the rock surface.

8.2 Maitrix update

If the point on the wheel surface has penetratéal time rock surface and created an
inelastic deformation the rock surface matrix mstupdated with a new z-value for
that specific node. In this case all of the pertietnainto the rock surface has been
seen as an inelastic deformation.

In this model the rock fragmentation is simplifi®hen the time step is achieved, the
temporary rock matrix will be copied to the rocktma The penetration into the rock
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will be reduced from the node that is penetratedhim rock surface matrix. The
updating is done according to equation (72).

trockzL, K ) =rockZL,K)-(rockqL,K)- z,..) (72)

8.2.1 Temporary rock matrix

When there is an inelastic penetration into th& uarface causing a deformation of
the rock a temporary rock matrix is created. Fromtemporary rock matrix a certain
part of the z-value of the node of interest is reed in this case all of the penetration
depth. If the time step is successful the temporack matrix is copied to the rock
matrix, but if the time step is not successful temporary rock matrix will not be
copied. If the time step is too long and the systam not be solved the length of the
time step needs to be shortened. When this hapipentemporary matrix will be
replaced with the rock matrix since the temporargkrmatrix is not valid when the
time step is decreased and the simulation timesdses.
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9 Model validation

The model will be validated by simulating rock ougt with a disc cutter on a flat
rock surface. The resultant forces will be compateda similar case from the
literature, so the model can in some sense beatatid

9.1 Inputs

The inputs to Adams will be given as in AppendixFar each cutter a specific force
number can be given, large and small radius for dbier, see Figure 32. As
described in Appendix A.2.3, the special ID-sedss given, they contain the markers
that will be used for each cutter to calculate fbsition, velocity, rotational velocity
and rotational angles. The different markers usedhbe seen in the figure below. All
the parameters that can vary, and do not need tedoel for all cutters in a
simulation, are sent to the subroutine in the garferce.

Figure 32 The markers used in the simulation arddbrresponding directions

Inputs that are valid for all the parts in the diation as the friction values, the
compressive and tensile strength of the rock amedtin a common vector and used
in the simulation. These values are the same Fonaldisc cutters in one simulation.

In this specific model validation the forces frometsimulation model will be
compared to an LCM test from the literature. Thauinvalues and the results are from
Gertsch et al (2007) and can be seen in Table &.di$c cutter will have a large
radius of 17 in and a small radius of 0.5 in. Th#iog speed will be 1.0 m/s and the
length of the cut will be 1 m. Only one disc cutteitl be used but to be able to
compare to the case from the literature a spacinglomm will be used. The
compressive strength of the rock in this test 8 W#a, and the tensile strength of the
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rock will be 6.78 MPa. The tip width of the disctew is 13 mm. The penetration will
be set to 3.8 mm.

Table 2 The input values for the simulation test

R [mm] C Uniaxial Brazilian Spacing | Cutting Penetration
compressive tensile [mm] speed [mm]
strength strength [m/s]
[MPa] [MPa]

215.9 2.12 | 158 6.78 51 1 3.8

9.2 Theoretical force

The theoretical force for the given rock parametpenetration depth and spacing as
given above is calculated according to equatiof). (72

F, = TR¢P' (72)
With the given numbers from above, the mean valuth® force on the disc cutter

will be, according to the equation (74), 61.1 kNheTmean pressure in the pressure
zone, see Figure 11, is calculated according tatemu(73).

2 6 \2 6
p'= Cs,I—UC_RUf = 2.125:1/ (158D0—0)2i.;§®l2;013@.051:115'8Mpa (73)

The pressure calculated in equation (73) is usestjiration (74) to calculate the total
force.

0.2159-0.0038) ; 1 ca_ 511 kN (74)
0.2159

F; =TR¢P'= 0.015E0).21598DOS’1(

From equation (15) and (18), the rolling and norrf@ices can be calculated,
according to equation (75) and (76).

F, = TR@'co{fj =F, @o{ﬁ’j =611010° [€0'2159_ o.oossj = 60.8kN
2 2 0.2159

(75)
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Fr =Fy Eﬂar(iz”j =61.100° Eﬂar{cos‘l( 0.2159-00038

D =58kN  (76)
0.2159

9.3 Simulation force

A simulation will be made with the inputs given Tiable 2. The model before the
simulation starts can be seen in Figure 33.

Bl #ile

Figure 33 The simulation model before starting shraulation

The forces from the general force can be seengur€&i34, Figure 35 and Figure 36.

Cutting force in the x-direction of the reference coordinate system

Analysis: rock2 Time (sec)
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Figure 34 The cutting force in the x-direction loétreference marker
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Cutting force in the y-direction of the reference coordinate system
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Analysis: rock2 Time (sec)

Figure 35 The cutting force in the y-direction bétreference marker

Cutting force in the z-direction of the reference coordinate system
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61000.0
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Analysis: rock2 Time (sec)
Figure 36 The cutting force in the z-direction lo¢ reference marker

During the simulation, one can choose when the mgkace matrix will be saved.
For instance, if a simulation needs to be continae@ certain time, the old rock
surface matrix saved from an older simulation canubed as the start rock surface
matrix. To view the rock surface matrix in Adame fiile type .shl is used. One can
save the .shl file on the same way as the roclasarmatrix. The .shl is the shell file
type where the nodes and how they are linked amedt In the subroutine for the
force calculations the file type .rsf is used. he trsf file, rock surface file, the node
numbers and their coordinates are stored. The sadlace matrix is attached to the
reference marker and has its directions in theeafie coordinate system.

The shape of the updated and deformed rock sunfi@ésh after the simulation can be
seen in Figure 37.
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Figure 37 The updated rock surface, note the tndagelements and the deformation
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Figure 38 The rock surface attached to the refeeemarker
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9.4 Comparison

The forces from the real test in a LCM comparedh® results from the theoretical

formula and the simulation can be seen in Table 3.

Table 3 Table over the forces from the theoretfoade model, a real test in a LCM
and from an Adams simulation with the model deweslap this Master

Thesis
Model Spacing Penetration | Average Average Average
[mm] [mm] cutter force| cutter force| cutting
(normal) (rolling) force (side)
[KN] [kN] [KN]
Theoretical | 51 3.8 60.8 5.8 -
Test in| 51 3.8 81 7.3 11.2
LCM
Simulation | 51 3.8 60.9 13.4 12.6

Table 3 shows that the average cutter normal fisr¢egher in the LCM test than in

the simulation and the theoretical calculation. Huwmulation and the theoretical
calculation give almost the same value for the ayernormal force. The average
rolling force for the theoretical calculation arektLCM test is close each other while
the simulation generates a higher rolling forcee Slde force from the simulation and

the LCM test is almost the same.
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10 Model limitations
10.1 Detecting penetration

The loop made over the surface of the disc cutteletect if it has penetrated or not is
only made on the double curved surface of the clisier. If the side of the disc cutter
is touching the rock it will not be detected. Tl®p is only made for negative z-
coordinates of the local coordinate system, whieams that if the double curved area
of the disc cutter is in contact with the mount amositive local z-coordinate the
contact will not registered for that point. Thisosld not influence the reliability of
the simulation model.

10.2 Penetrated plane

The penetrated plane is assumed to be a flat plame,s an assumption and a
simplification made. This is not completely truet Buwill not influence the result so
much. The direction of the cutter is correctly cédted since it is the mean normal of
all the points penetrated by the disc cutter.

10.3 Chipping

This simulation model does not take the side chmigpr the cracking process into
consideration at this stage. To be able to use rtluodgel to simulate a complete
tunnelling operation the chipping and cracking pssneeds to be taken into account.
Since the chipping is not studied, the behaviouthef forces and moments of this
model is not completely true since the dynamic bieha of the force is not studied.
As mentioned in Chapter 2.3.4, the magnitude ofctiténg force will decrease when
a chip is created and after that increase agaii thet next chip is created. The
variation in force can not be studied but the sizéhe forces and moments and their
directions can be studied using this simulation ehod
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11 Discussion and results

As can be seen in Table 3, the forces from the Igitiom and from the theoretical
formula are almost equal. This is because thapémetration in the model is set to the
same value as the penetration in the theoreticgahdfta. The reason for the larger
rolling force in the simulation model is that thecfion force is working in the
beginning of the simulation, see the first 0.4 ssphulation in Figure 34. From
Chapter 3.2.2 one can see that the cutter foresiking in the loading zone. In the
simulation model the cutter force is assumed tokworthe centre of the penetrated
plane, see equation (43), Figure 23 and FigurerB6.point of force application can
easily be changed in equation (43) and the congsfamt equation (15) can be
optimized for the specific rock and cutting conalitito be studied.

To make a simulation on a flat ground like thisaiggjood way of calibrating the
computational model. For instance, the constantevalf C in equation (15) can be
adjusted so that the forces are matching the fayb&gined from measurements on a
test rig or a linear cutting machine (LCM). Othargmeters to adjust are the friction
coefficient for example.

A calibrated model can be used for simulationsheffbrces acting on the disc cutter
while cutting rock for any geometry of the rock fage. The simulation model can
also be used to link a number of cutters togetheredate a tunnel boring machine for
instance, to study the total force acting on thendiof the machine. The total force
can then be used to design the front parts of thehime to withstand it and to design
an automatic control system.

The simulation model is built such that many diatters can be linked together to a
real tunnel boring machine. Because of that theyeisd# the model increases. The
force model can be updated, a number of simulatansbe done and the results from
them can be used to update the force model. Favem get of parameters, such as
penetration, spacing, compressive strength etantiael can be calibrated.
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12 Futurework

To get a more accurate and reliable result fromsthmulations the chipping process
needs to be implemented into the model. Some idaas been thought about during
the Master Thesis work but because of lack of fimmeas never implemented into the

model.

When the chipping process is implemented to thaulsition model one can create a
number of disc cutters and link them together tea tunnel boring machine. If the
rock parameters are set to a known value fromtartdke literature, the performance
of the simulation model can be evaluated. Themtbdel can be tuned in and be used
for the early stage in the design and developmertgss.
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Appendix A

In Appendix A a simplified approach to the modailiprocedure is presented. This is
the way the simulation model presented in this Era$hesis has come into being.
The Master Thesis is made through a crawl, walkrancapproach. In appendix A the
modelling of a wheel on a flat ground is considered

A Modelling of arolling wheel on aflat surface
A.1 Rolling wheel model

To get a better understanding and knowledge of Adamadelling and to make sure
that the model works as expected a simple wheelmadelled. The wheel had the
shape of a disc with sharp edges and was rolling dlat surface. The wheel was
attached to a fork, added to a vertical cylinddre Vertical cylinder was attached to a
horizontal cylinder, see Figure 39.

A.1l.1 Markers

A marker is used in Adams whenever a certain doecor position needs to be

specified. It can for example specify where a gdoyneeeds to be anchored to the
part or where the centre of mass of the part iseWbuilding a model, a marker
defining the global origin will always be attachdthis marker also says where the
global directions are. All new markers will automatly have their positions and

directions expressed in the global reference system

A.1.2 Joints

Between the fork and the vertical cylinder theresvaarevolute joint, which means
that the wheel was free to rotate in that directibhere was a cylindrical joint
between the vertical and horizontal cylinder, thason for that was to be able to steer
the wheel. The horizontal cylinder was then jointedhe ground with a translational
joint. This means that the horizontal cylinder didt rotate around the vertical
cylinder. The translational joint can be replacgdlplanar joint for example, keeping
the distance to the ground constant but is abtetede around the vertical cylinder.

When creating a joint two markers will be creat@tiey are called the I- and J-

marker. The I-marker belongs to the first part #relJ-marker belongs to the second
part of the two parts jointed together. For examibie revolute joint between the fork

and the wheel, one marker will be on the fork and marker on the wheel. The two

markers will have their z-axis parallel and theyl vatate around that axis.
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Figure 39 The wheel and the flat surface modeitedADAMS

A.1.3 General force

The contact between the wheel and the ground watkelfed with a six component
general force. The same type of general force béllused later when building the
simulation model for the disc cutter. The geneoaté was attached to the centre of
the wheel with its reference marker attached togtieeind. This means that the force
will act on the centre of the wheel with its compaots in the directions of the axis of
the reference marker.

A.1.4 Directions

The directions in which the forces will act and ttbment will act around are
illustrated in Figure 45, with the z-direction ptiny upwards from the grey box and
the x-z-plane on the top of the grey box that tihe&V will roll on.

A.l5Markers

When creating a general force, three markers aa&ted. One marker will be placed
on the action part, called the I-marker, one madtethe reaction part, J-marker, and
one reference marker. The reference marker is i dase placed on the ground,
which means that the components will be expresseal system that is not moving
with the wheel. This reference marker could be gilagn any part of the model. The
reaction part will in this case be the ground dreldction part will be the wheel. Both
the I- and J-markers will be placed in the cenfrthe wheel but the J-marker belongs
to the ground and will not rotate with the I-mark&he I-marker will rotate with the
wheel.
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A.2 Forces and moments

A.2.1 Impact force

When the wheel touches the ground a normal fordeappear. This normal force is
modelled with the Adams function IMPACT. The IMPACHnction in Adams
calculates the impact force for when the wheelhesahe ground. The function is

—y\¢ — - X <
IMPACT:{MaX(O'k(Xl X)® = STEHRX, X, —d,Crn X 0)X)  X<X )
0 X=X

where

X Distance from the centre of the wheel to the gdyuue. they-coordinate
of the general force in the global coordinate systised in the model

X Time derivative of the distance

X, Distance in the global-direction in the model for when the wheel gets
in contact with ground

k Stiffness of the boundary surface interaction

€ Exponent of the force damping characteristics

Crrax Maximum damping coefficient

d Penetration for when full damping is applied

The step function approximates the Heaviside stepction with a cubical
polynomial. It has continuous first derivatives artd second derivates are
discontinuous at xsxand x=x, see Figure 40.
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Figure 40 The step function used in the Adams iemciMPACT. Online
documentation, Adams 2008r1

The IMPACT function never returns a negative forss.can be seen in the function
expression, equation (1), it only generates a farbhen the wheel is in contact with
ground. The positive direction is the positive pedtion in reference system of the
general force. The distance from the centre ofwheel to the ground is measured
using the Adams built in function DZ and velocity ineasured with the Adams
function VZ. When measuring the distance, one shepkcify the marker to measure
to, the marker to measure from and the marker ¢oassa reference. The velocity is
measured in a similar way, but then one could sisexify a reference frame to take
the time derivative of the displacement vector. Tmearker for the general force,
placed in the centre of the wheel is used as tlrkeno measure the distance to. The
reference marker of the general force is used asttihne marker to measure from and
the marker to use as a reference, i.e. the codedgyastem to measure in. The velocity
is measured to the J-marker for the joint betwéenfork and the wheel, on the fork.
This marker is placed at the centre of the wheelhensame place as the I-marker of
the general force. The reference system for themgémmorce is used as the reference
frame for the time derivatives of the displacemerttor. Since the stiffness
multiplied by the penetration always will yield agitive force, the force from the
damping factor will work against the motion. Atsfif when it moves into the ground
it will be positive, and then the velocity will chge sign and the force from the
damper will be negative. The damping factor asretion of the penetration can be
seen in Figure 41.
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Figure 41 The damping factor as a function of tbagiration
A.2.2 Friction force

A rolling condition is attached to the model, te sethe wheel is rolling or sliding.
The rotational velocity of the wheel is measuredhia joint between the fork and the
wheel. The translational velocities of the whee areasured in the reference system
of the general force. A local coordinate systenthen attached to the centre of the
wheel for the simplicity of calculations. The loaaordinate system can be seen in
Figure 42. The z-axis has the same direction, whiglans that the x-y-planes are
parallel.
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Figure 42 The orientation of the local coordinatestm

Then the translational velocities are transformedhte new local coordinate system
using a transformation matrix. The prime indicates new local coordinate system.
This transformation only takes the rotation arouhd z-axis into account. When
modelling the disc cutter all three rotations wile taken into account. The
transformation is made as:

x| [ coda) sin(a) 0
y'|=| -sin(a) coda) Ofy 2)
z 0 0 1|z

And
x] [coda) -sin(a) O] x
y|=|sin(a) coda) O]y (3)
z 0 0 1|7

where

a Angle of rotation between the two coordinate syste

X X-component in the global reference system

y Y-component in the global reference system

z Z-component in the global reference system
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X X-component in the new local coordinate system

y' Y-component in the new local coordinate system

z Z-component in the new local coordinate system

The angle of rotation between the two coordinatstesys is measured with the
Adams function YAW. The two markers used are th&lpentroduced marker
attached to the fork but located in the centrehefwheel, and the reference marker of
the general force. This means that the pitch aisgheeasured of the marker’s rotation
in the reference coordinate system.

The difference between the translational velocityd athe rotational velocity
multiplied with the radius of the wheel is thenatdated. If the difference is zero, the
wheel is rolling, otherwise is it sliding. A fricin coefficient is calculated using this
difference in velocity. When the friction coeffidieis calculated the friction force can
be determined. The friction force is working in ttieection of the velocity vector
calculated with the velocity difference in the xetition due to sliding and the
velocity in the z-direction, in the local coordieatystem. The velocity difference is
calculated as:

AV =V, "=, (4)
where
Av  Difference in velocity

v,' Velocity in the x’-direction
w Angular velocity around the z-axis

r Radius of the wheel

The minus sign between the velocity in the x-dimttand the rotational velocity in
the y-direction comes from the directions of theessxwe want the difference in
velocity. The velocity in the direction that thécfron force will work is calculated as:

Vi =4OV +v, )

where
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Vi Magnitude of the velcocity in the direction of thigtion force

T

Av  Difference in velocity

v,'  Velocity in the y'-direction

The different velocities and the rotation of theeehcan be seen in Figure 43. The
friction velocity will always have the same componha the local y-direction as the
real translational velocity of the wheel in the sadirection.

Figure 43 The coordinate systems with the diffevefdcity components

When the friction velocity is calculated the frani coefficient can be calculated. The
friction coefficient is calculated using a step dtian. The step function for
calculating the friction coefficient can simplifglexpressed as:

a=h -h,
p=2"% (6)
X, =%
hy X< X
STEP={h, +af’(3-28) X, <X<X,
h X2 %
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Using the friction parameters this will be:

a=2u
p=Ye @
2VS
- V, < -V,
STEP=1a/A’(3-24) -V, <V, <V,
U Vg, 2V,

The friction model is simplified and does not camtdne stiction friction coefficient,
which would have given a higher friction force ftive specific stiction velocity.
Stiction is the phase just before sliding and esrttaximum friction force. The friction
coefficient distribution used in this model candaen in Figure 44.
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Figure 44 The friction coefficient as a functiontioé velocity

When the friction coefficient is determined thecfion force can be calculated as the
friction coefficient multiplied with the normal foe as:

Fo =Fu )
where
F,  Friction force
F, Normal force
Y7 Friction coefficient

The force components can then be calculated inldbal coordinate system, by
multiplying the friction force with the velocity irthat direction divided by the
magnitude of the velocity in the direction of tmetion force. This is done as:
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Fo= = F (©)
fr
] Vyl
F'=—F; (10)
fr
where
F,' Force in the-direction in the local coordinate system
F," Force in the/-direction in the local coordinate system
Vi, Magnitude of the velocity in the direction of thietion force

Av Difference in velocity

F, Friction force

The forces are acting at the contact between theeldind ground. When they are

moved to the centre of the wheel they give risadded moments. The moments are
calculated in the local coordinate system at farstl will then be transformed to the

global reference system at a later stage. The miznaea calculated as:

T'=F,'R
T,'=-F,'R (11)
T,'=0

Where

T,' Moment around the local x-axis

T, Moment around the local y-axis

T, Moment around the local z-axis

R Radius of the wheel

The distance between the centre of the wheel t@ahéact point on the ground will
always be positive. The forces and moments in dballcoordinate system will then
be transformed back to the global reference systsimg the transformation matrix
introduced before. Since the global and local m=aeee not transformed the
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components will be the same. The transformationdyi¢he following forces and
moments:

F, = F.'cos@) - F,'sin(@)
F, = F,'sin(@) +F, 'cos@)
F,=F,

T, =T, 'cos@)-T,'sin(a)

T, =T,'sin(@) +T,'cos@)

T,=T,

(12)

When the forces and moments are calculated thewttaehed in the centre of the
wheel, the I-marker of the general force.

A.2.3 Subroutine

All the measurements and calculations describedeaboe made in a subroutine. A
subroutine is a more general and flexible way atimg functions in Adams. There
are subroutine templates available in Adams to wken writing a user written
subroutine. In this case, the template for a GFO®UBed, general force subroutine.
In the beginning of the subroutine the input antbouparameters are stated.

The subroutines are written in the computer prognarg language Fortran 77. The
parameters from the model such as wheel radiusewiglth, friction coefficient,
stiffness, damping, friction velocity and the dista for full damping are stored in a
vector and are then sent to the subroutine. Allitipeit data are then defined, and a
number of checks are made to see that the corteober of inputs are sent to the
subroutine and that the vector has the correct eummbelements and that the correct
number of parameters are sent to the subroutineselparameters are in this case the
a branch number, an ID-serie, the Adams ID-numibeh® I-marker of the general
force, the Adams ID-number for the reference madfehe general force, the Adams
ID-number of the I-marker of the joint between Whieeel and the fork, the Adams ID-
number of the J-marker of the joint between the ekltend the fork and the ID-
number of the array. Each marker has a Adams IDbaum

When that is made all the measurements can be rmadefirst measurements to do
are ones required to calculate the free heighhefitpact function. That is done to

know if the wheel is in contact with the groundmat, if it is not in contact then the

forces can be set to zero leave the subroutinthonext step. When the wheel is in
contact with ground, the measurements describedeaiee made and the forces and
moments are calculated and attached to the cehthe avheel. The directions of the

general force can be seen in Figure 45.
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Figure 45 The directions of the components of tbeegal force and the reference
coordinate system, the x-axis is red, the y-axggéen and the z-axis is
blue
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Appendix B

In Appendix B the simplified model to update thefadmation of the ground is
presented.

B Ground deformation model

B.1 Introduction

To be able to simulate rock cutting with a discteuthe rock fragmentation process
must be modelled. The ground will be modelled ushregymesh described in Chapter
5. This chapter is about the first simple modeihaef ground deformation, to learn the
tools that will be used on the rock fragmentatiate.

B.2 Force calculation

The force will be modelled as a general force attdco the centre of the wheel as in
Appendix A. The difference from that case is thatvrthe rock surface matrix is used
to describe the ground instead of the z-coordimate. The rock surface matrix is a
matrix with all the z-coordinates from each nodenfra triangular mesh stored in
each position of the matrix. The matrix is thorolygtescribed in Chapter 5.

B.2.1 Mean surface

Since the IMPACT function described in Appendix@hapter A.2.1 will be used to
calculate the force acting in the z-direction o tteference marker of the general
force, a mean value of the height of the groundtrbaescalculated. The position of the
centre of the wheel is measured using the ADAMSt lmiimeasure functions DX,
DY and DZ. When the position is known one can sweeg the area just beneath the
wheel and calculate the z-coordinates as a fundidhe x- and y-coordinates of the
wheel surface. The wheel surface is divided intumber of small elements where
the z-coordinate in the centre of each small elénsecalculated. The area of the rock
surface under the wheel is illustrated in Figure #@ere the distances and
coordinates calculated below are defined.
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Figure 46 The distances for the calculation of tean surface

The distance from the centre of the wheel to thdreeof each small element that the
area under the wheel is divided into, in x- andingation, in the local coordinate
system is calculated according to equation (13)(addl

_ (2, _

X =T +[nxj(L 05) (13)
_b. (b)), _

Y, _E-{n_y](K 05) (14)

The coordinates are then transformed to the referesystem according to the
following transformation equation (15).

Xon = X, cos(a)— Y, sin(a)

Yon = X, sin(a) + y, coda) (15)

Finally the coordinate of the centre of the smidheent can be calculated according
to the equations below, equation (16) and (17).

Xn = X~ X (16)

Yoo =Y~ Yon (17)
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When the position of the centre of the small elenedetermined, here,yand x,,

the four surrounding nodes can be calculated. ihealculated according to

equations (19) to (24).

where
INT(A)

kk

KK,
X
Ym
Xinin
Yimi
dx
dy
Ky
Ky

kx2

Kk, = |NT(%}

X
Kk, = INT(—y’“ ;;’mi” )
Ka =Kk, +1
ky,, =kk, +1
Ko =k +1
K, =k, +1

RoundsA to the nearest integer less than or equa to
Start coordinate in the x-direction

Start coordinate in the y-direction

Actual position of the centre of the elementha k-direction
Actual position of the centre of the elementhia y-direction
Coordinate of node one in the x-direction

Coordinate of node one in the y-direction

Element length in the x-direction

Element length in the y-direction

Lowest node number in the actual element in td@ection
Lowest node number in the actual element in theegction

Highest node number in the actual element irxtdeection
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k Highest node number in the actual element irytt@ection

y2
When the four surrounding nodes in the rock surfaegrix are determined one can
determine whether the centre of the node is locitelde upper or lower element. At
first, the distance from the centre of the smadhent to the k and k; node must be
calculated. This distance is calculated accordingpuations (24) and (25).

xxL=x - (kk, [ax+X;.) (24)

yyL=y—(kk, Ly +vy,,) (25)

These distances are used to determine whetheretiteecof the disc cutter is in the
upper or the lower element, see Figure 47 and Eigi. The actual element is
determined as:

if xxil<yyl - upper

(26)
else lower

When the actual element in the rock surface mattvere the centre of the small
element is located is determined one can interpala¢ z-coordinate in the rock
surface for the point of interest. This interpaatis done according to the following

equations, see also Section 3.3.1 for a furthecrge®n of the calculations. When

the centre of the small element is located in aeloglement in the rock surface the z-
coordinate is calculated using the following equ@atiequation (27).

dz dz
Z(Xml ym) = Zrock(kxll kyl) + & xxL+ @ YW- (27)

The figure below, Figure 47, shows the situatiorewkhe point of interest is located
in the lower element.
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Figure 47 The actual position in the lower element

When the centre of the small element is locatethen upper element in the rock
surface the z-coordinate is calculated using theviing equation.

dz dz
Z(Xm’ ym) = Zrock(kxl’ kyl) + & xxL+ d_y yyl (28)

The actual position in the upper element can be BeEigure 48.
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Figure 48 The actual position in the upper element

The mean surface under the cutter is calculateagubie z-coordinate for the centre
of each small element multiplied with the area athe small element. The area of
each element is calculated as equation (29):

2r _b
=2 1= 29
A\element nx ny ( )

The total area of the whole surface under the wileeatalculated according to
equation (30).

A, =bl2r (30)

The mean surface under the wheel is calculateeasum of the z-coordinate of the
centre of each small element multiplied with theaaof each small element, this is
then divided by the total area of the surface utidemheel. This is done according to
equation (31).

3 (Avenen 2%, Vo)

Zmean = = (3 1)
Aot

Where

i Small element number
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n Total number of small elements

B.2.1 Impact function

The mean value of the z-coordinate for the roclaser under the wheel will be used
to calculate the distance from the centre of theelko the ground. This distance will
be used in the ADAMS built in function IMPACT tolcalate the force working on
the wheel. The force is calculated in the same agay Chapter A.2.1, but now with a
varying distance to the ground instead of z=0 asl tisen.

B.2.2 Deformation

When the wheel is rolling on the rock surface mgteates into it. When it penetrates
the rock surface matrix must be updated with the deformed z-coordinate for the
nodes that has been penetrated.

B.2.3 Penetration

The penetration of the wheel into the ground wdldalculated using a loop that will
be made over all the elements in the rock surfaatixn The coordinate in the x- and
y-direction will be calculated for the nodes, acting to equation (34) and (35). The
calculations made for one node can be seen in &g
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Figure 49 The distances and angles when calculdtiegpenetration of each node in
the rock surface matrix

Xeoorg = X + XL —1) (32)

coord

ycoord = ymin + dX[ﬂK _1) (33)
The coordinates of the node of interest will theruked to calculate the distance from

the centre of the wheel to the specific node. Tistadce from the node to the centre
of the wheel is calculated using the equation below

Xdist = Xcoord - X (34)
ydist = ycoord -y (35)
When the distance is calculated it will be transfed into the local coordinate system

according to equation (36), to be able to turnwineel in different directions in the
rock surface.

{xdist} _ { coda) Sin(a)}{xwm} (36)

ydist. _Sin(a ) Coia) Yaist

Now we make a check to see if the node we are mhgpthirough right now is located
in the area under the wheel or not. If the absolatae of the transformed distance in
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the local x-direction is smaller than the wheeliuadand if the absolute value of the
transformed distance in the y-direction is smallem half of the wheel width, then
the node is located under the area of the whed.i$tldone according to:

X4 < I then

if inside (37)
Vi < b/2 then
If the node of interest is located inside the aye#éhe wheel the z-coordinate of the
point of the wheel corresponding to the positiontttéd node is calculated. The z-
distance for the point on the wheel surface frommdéntre of the wheel is calculated
according to:

H=r? —xg," (38)

The calculation of the distance from the centr¢hefwheel to the point of the wheel
edge and the z-coordinate for the point of the Wwhdge can be seen in Figure 50.

Figure 50 Definition of the z-coordinate for eaabirt in the loop over the edge of the
wheel

The last check to make is that if the point onwiineel has a smaller z-coordinate than
the corresponding point on the rock surface. Tlwwardinate for the point on the
wheel edge is calculated as the z-coordinate fercéntre of the wheel minus the
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distance in the z-direction from the centre ofwheel to the point on the wheel edge,
according to equation (39).

(39)

Zcoord,wheel = Zcoord,wheelcenne - H

When the z-coordinate of the point on the whedbseris calculated one can check if
the point has penetrated into the rock accordirggteation (40).

If Zcoord,wheel < Zrock(L’K) then penetratiCIn (40)

The depth of the penetration for a certain nod@énrock surface mesh can be seen in
Figure 51.

zrock.("f" K}

wmean

penetration

Z coard wheel

Figure 51 The penetration for each node in the reaiace matrix

B.3 Matrix update

If the point on the wheel surface has penetratéal time rock surface and created an
inelastic deformation the rock surface matrix mustupdated with a new z-value for
that specific node. In this case half of the peatein into the rock surface has been
seen as an inelastic deformation.
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B.3.1 Temporary rock matrix

When there is an inelastic penetration into th& uarface causing a deformation of
the rock a temporary rock matrix is created. Frdra temporary rock matrix a

determined part of the z-value of the node of edeirs removed, in this case half of
the penetration depth. If the time step is succkdble temporary rock matrix is

copied to the rock matrix, but if the time stepn® successful the temporary rock
matrix will not be copied.

B.3.2 Time steps
If the time step is too long and the system carbedtolved the length of the time step
needs to be shortened. When this happens the tampuoatrix will be replaced with

the rock matrix since the temporary rock matrixn@ valid when the time step is
decreased and the simulation time decreases.
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