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I 

Adams modelling of contact forces between disc cutter and mount 
 
Thesis in the Master’s programme Solid and Fluid Mechanics 
ANDERS ERICSSON 
Department of Applied Mechanics 
Division of Dynamics 
Chalmers University of Technology 

 

ABSTRACT 

The purpose of this thesis has been to develop a calculation module for use in the 
simulation software Adams. The calculation module is based on equations found in 
the literature. A disc cutter is the tool in contact with the mount for example in tunnel 
boring machines. A disc cutter is a circular disc, made of high strength steel. A 
literary study was made where equations determining the forces acting on the disc 
cutter were found. The equations used in the module are based on the disc cutter’s 
penetration into the rock, the spacing between two cuts and the rock properties, such 
as the compressive and Brazilian tensile strength. The simulation module was made 
and used in the simulation software Adams where the forces and moments acting on 
the disc cutter while cutting rock can be simulated. The advantage of the simulation 
model is that it is built in such a way that many disc cutters can be linked together and 
the forces from each of them can work together. A test was made on the simulation 
model and compared to a real test from the literature, made in a Linear Cutting 
Machine, and the theoretical calculated force from the model for the given rock 
penetration and spacing between the two cuts. The simulation model showed a clear 
correlation to the theoretical calculated normal force, the normal force from the LCM 
test was higher. The rolling force from the theoretical model correlated well to the 
rolling force from the LCM test while the simulation generated a higher rolling force. 
The side forces for the LCM test and the simulation model correlated well.   

Key words: Disc cutter, tunnel boring machine, Adams, cutter force, simulation 



 

 

II  

Adams-modellering av kontaktkraften mellan cutter och berg 
 
Examensarbete inom Solid and Fluid Mechanics  
ANDERS ERICSSON 
Institutionen för tillämpad mekanik 
Avdelningen för Dynamik 
Chalmers tekniska högskola 

 

SAMMANFATTNING 

Syftet med detta arbete har varit att skapa en beräkningsmodul att använda i 
simuleringsprogrammet Adams. Beräkningsmodulen baseras på ekvationer funna i 
litteraturen. En cutter är verktyget som är i kontakt med berget i till exempel en 
tunnelborrmaskin. Cuttern är en rund skiva, gjord av höghållfast stål. En 
litteraturstudie gjordes där ekvationer som beskriver krafterna som agerar på cuttern 
hittades. De ekvationer som används i modulen är baserade på cutterns penetrering i 
berget, avståndet i sidled mellan två cuttrar och bergets egenskaper, tryckhållfastheten 
och den brasilianska draghållfastheten. Simuleringsmodellen har byggts i 
simuleringsprogrammet Adams där de krafter och moment som agerar på cuttern när 
den penetrerar berget kan simuleras. Fördelen med denna simuleringsmodell är att den 
kan simulera många cuttrar tillsammans, där krafter och moment på var och en av 
dem arbetar tillsammans. Ett test har gjorts där krafter från simuleringsmodellen 
jämförts med de teoretiska krafterna och krafterna från ett riktigt test beskrivet i 
litteraturen, gjort i en Linear Cutting Machine, LCM. Normalkraften från den 
teoretiska modellen stämde mycket väl överens med normalkraften från 
simuleringsmodellen medan normalkraften från det verkliga testet var något högre. 
Rullkraften från den teoretiska modellen stämde väl överens med rullkraften från 
LCM-testet medan simuleringen gav en högre rullkraft. Sidokrafterna från LCM-testet 
och simuleringsmodellen korrelerade väl.  

Nyckelord: Cutter, tunnelborrmaskin, Adams, cutterkraft, simulering 
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Notations 

Roman upper case letters 

elementA   Element area 

C    Constant 

frF   Friction force 

nF   Normal force 

rF   Rolling force 

TF   Cutter force 

totF   Total force 

xF   Force in the x-direction 

'xF   Force in the x-direction in the local coordinate system 

yF   Force in the y-direction 

'yF   Force in the y-direction in the local coordinate system 

zF   Force in the z-direction 

H   Height 

K   Node number in y-direction 

L   Node number in x-direction 

fL   Length 

totM   Total moment 

N   Normal vector 

'P   Base pressure  

R    Cutter radius 

ZR   Transformation matrix 

'yR   Transformation matrix 
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''xR   Transformation matrix 

S    Spacing between cuts 

T   Cutter tip thickness 

TVEL  Translational velocity 

'xT   Moment around the local x-axis 

'yT   Moment around the local y-axis 

'zT   Moment around the local z-axis 

VREF  Velocity vector 

 

Roman lower case letters 

c   Centre of disc cutter 

maxc   Maximum damping coefficient 

d   Penetration for when full damping is applied 

frd   Direction of the friction force 

pd   Vector 

dx  Element length in the x-direction 

dy   Element length in the y-direction 

e  Exponent 

ne   Element normal vector 

pf   Distance vector 

k   Stiffness 

xkk   Start node number in the x-direction 

ykk   Start node number in the y-direction 

1xk   Lowest node number in the actual element in the x-direction 
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2xk   Highest node number in the actual element in the x-direction 

1yk   Lowest node number in the actual element in the y-direction 

2yk   Highest node number in the actual element in the y-direction 

l   Length 

xn   X-component of normal vector 

yn   Y-component of normal vector 

zn   Z-component of normal vector 

p    Cutter penetration 

1p   Point 

cp   Centre of penetrated plane 

npenetratio  Penetration depth 

r   Radius 

r   Distance vector 

rockdx Element length in x 

rockdy Element length in y 

minrockx  Coordinate node one in x 

maxrockx  Coordinate last node in x 

minrocky  Coordinate node one in y 

maxrocky  Coordinate last node in y 

rockz  Rock surface matrix 

stepz  Parameter 

ms   Cutter force 

t   Variable  

trockz  Temporary rock surface matrix 
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onevector  Vector 

1,pls   Direction vector for the penetrated plane 

2,pls   Direction vector for the penetrated plane 

plv   Velocity vector 

frv   Friction velocity 

frv   Friction velocity vector 

'xv   Velocity x-direction in the local coordinate system 

'yv   Velocity y-direction in the local coordinate system 

2v   Vector 

1v   Vector 

x   Coordinate in the x-direction 

coordx   X-coordinate 

discx   X-coordinate 

distx   Distance in x-direction 

fx   X-coordinate 

localx   Local x-coordinate 

edgelocalx ,  Local x-coordinate on the disc cutter edge 

mx   Actual position of the centre of the element in the x-direction 

minx   Coordinate of node one in the x-direction 

x&   Time derivative of x 

1x  Distance in the global y-direction for when the wheel gets in contact 
with ground 

'x   X-component in the new local coordinate system 

y   Coordinate in the y-direction 
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coordy   Y-coordinate 

discy   Y-coordinate 

disty   Distance in y-direction 

fy   Y-coordinate 

localy   Local y-coordinate 

edgelocaly ,  Local y-coordinate on the disc cutter edge 

my   Actual position of the centre of the element in the y-direction 

miny   Coordinate of node one in the y-direction 

'y   Y-component in the new local coordinate system 

wheelcoordz ,  Z-coordinate on the edge of the wheel 

ewheelcentrcoordz ,  Z-coordinate in the wheel centre 

discz   Z-coordinate 

fz   Z-coordinate 

meanz   Mean z-value 

rockz   Rock surface matrix 

'z   Z-component in the new local coordinate system 

1,plz   Z-coordinate 

2,plz   Z-coordinate 

localz   Local z-coordinate 

edgelocalz ,  Local z-coordinate on the disc cutter edge 

 

Greek upper case letters 

Φ    Angle of the part in contact with the rock 

v∆   Difference in velocity 
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Θ   Angle 

 

Greek lower case letters 

α   Angle to the point of interest 

β      Angle 

zω   Angular velocity around the z-axis 

ω   Angular velocities 

µ   Friction coefficient  

cσ   Uniaxial compression strength of rock 

tσ    Brazilian tensile strength of rock 

γ   Angle from the x-axis of the new coordinate system to the total force 

ψ   Exponent of the pressure distribution function 

θ     Angle from the normal to the point of interest 

 

 

 
 



 CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 XIV  



CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 1 

1 Introduction 

1.1 Background  

As the infrastructure projects are getting larger and roads and railways are expanding, 
the greater the tunnelling industry gets. There are two main disciplines of building 
tunnels in rock. Either the tunnel is built through drill and blast or by different types 
of tunnel boring machines. Tunnel boring machines have plenty of advantages, they 
are fast and safe as long as the profile of the tunnel is the same.  

In the front of the tunnel boring machine there are disc cutters that are in contact with 
the rock. To be able to make the tunnel boring machines faster, and to reduce the 
damage on the machine, the machine performance needs to be optimized and the 
machine needs to be designed to withstand the different forces acting on it. To do that, 
the forces acting on the front part of the machine from the rock needs to be known.  

1.2 Purpose 

Computer simulations are a good way to reduce time and costs during the 
development of new tunnel boring machines. The purpose with this master thesis is to 
build a simulation model of the rock cutting using disc cutters, which can be used to 
study the contact forces between the disc cutter and the mount. 

The forces acting on the disc cutter are hard to calculate exactly and a completely true 
simulation model of the rock fragmentation process is hard to make. There are many 
force estimation models to use to calculate the cutting forces from a known 
penetration depth, which will be used in this master thesis to simulate the rock cutting. 

1.3 Limitations 

A model of the disc cutting should be developed in the mechanical simulation 
software Adams, which is used by Atlas Copco AB. The model should be constructed 
such that many different disc cutters can be linked together and that the forces acting 
on each disc cutter can be summed to a total force. 
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2 Rock fragmentation by disc cutting 

2.1 Introduction to the rock cutting process 

Tunnel boring machines are the most frequently used machines in the tunnelling 
industry. The reason for the extensive use of tunnel boring machines is the large 
amount of advantages it has. The tunnel boring machine is fast, safe and it works well 
in different ground conditions as long as the profile of the tunnel is kept constant. 
Disc cutters can be used in the front of a tunnel boring machine, see Figure 1. 

 

Figure 1 A tunnel boring machine with disc cutters. Gertsch et al (2002) 

 

A disc cutter is a disc made of high strength steel that rolls against the rock with thrust 
force acting on it. A number of disc cutters are mounted on a big drum, the drum is 
rotating and a thrust is added to it, and a tunnel boring machine is created. The 
diameter of the drum can be very large, it depends on the strength of the rock and the 
number of disc cutters needed. Since the machine only can produce a given thrust 
force and the torque of the machine is limited, the number of disc cutters possible to 
use is limited. The total thrust force is the sum of the thrust force on each disc cutter. 



CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 3 

  

Figure 2 Example of a disc cutter. Lindqvist et al (1980) 

When a disc cutter is rolling against the rock a reaction force from the rock is acting 
on the disc cutter. This force is then divided into two components, called the normal 
and rolling forces. The normal force is the thrust force and the rolling force is the 
force in the rolling direction. The rolling force multiplied with the distance to the 
centre of the drum will create a rotational moment. The maximum value of that 
moment is the torque available in the machine. An example of a disc cutter cutting 
rock can be seen in Figure 2. 

2.2 Performance prediction models 

Many performance prediction models have been presented where the force acting on 
the disc cutter has been a function of the cutter penetration, e.g. Sanio (1985), 
Snowdon et al (1982) and Ozdemir and Rostami (1993). In these studies the number 
of disc cutters and the spacing to penetration ratio have been optimized. The force 
acting on the disc cutter or the specific energy has been studied as a function of the 
spacing to penetration ratio and by using that an optimum spacing to penetration ratio 
has been achieved. The specific energy is the energy needed for cutting a specific 
volume of the rock. Therefore the specific energy is a good way of measuring the 
cutting efficiency. When measuring the specific energy during rock cutting with disc 
cutters the horizontal, or the rolling, force is used to calculate the energy. Since the 
penetration is rather small in comparison with the length of the cut the energy from 
the normal force can be neglected.  

In the performance models the performance of the tunnel boring machine will be 
calculated as a function of the thrust and power available in the machine for rock 
cutting. By using this information together with the calculated forces that will act on 
the disc cutter while cutting, a rate of penetration can be calculated for the specific 
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tunnel boring machine. The rate of penetration is usually expressed in terms of m³/h 
of excavated rock volume or m/h, the tunnel length bored per hour.  

2.3 Rock mechanics 

2.3.1 Crushed zone 

During rock cutting with disc cutters, a zone with highly fractured rock will appear 
just beneath the cutter. This zone is called the crushed zone and is caused by the high 
stress concentrations from the edges of the disc cutter geometry. Since the fragments 
are very fine grained, the area of new surfaces created during the fragmentation 
process is very large. This means that the creation of the crushed zone is very energy 
consuming. If the size of the crushed zone instead is small, less energy will be needed 
to create it and the energy can be used for side chipping. The different zones in the 
rock during the rock cutting process can be seen in Figure 3. 

 

Figure 3 The different zones occurring during indentation in the rock. Shaoquan 
(1995) 

The crushed zone is assumed to have a shape of a half ellipsoid with the shortest 
diameter in the direction of the loading and the largest diameter parallel to the cut, 
since the measurement is not truly possible to make. The width of the crushed zone is 
assumed to be approximately 1.2 – 1.3 times the tip width and the depth of the 
crushed zone is proportional to the penetration depth. The tip width is the width of the 
cutter tip, see Figure 9. 

2.3.2 Compacted zone 

There occurs a zone of compacted rock above the crushed zone during the chipping 
process rather than the stable penetration process. This is because the rock powder is 
trapped in between the disc cutter and the crater walls and when it is compressed it is 
formed to a new material with properties almost the same as the intact rock material, 
Lindqvist (1982). This process has a negative influence on the cutting process, even if 
the amount of energy used for this is not that large.   
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2.3.3 Cracked zone 

Underneath the crushed zone a zone with highly cracked rock will appear. This zone 
is called the cracked zone. The size of the cracked zone varies with the load 
magnitude and the macro mechanical properties of the rock, Shaoquan (1995).  

2.3.4 Chipping procedure 

During rock cutting with disc cutters rock chips are created. This phenomenon is not 
completely investigated and an exact theoretical explanation is not available. 
Chipping is supposed to occur at the front non-loading zone, Gertsch et al (2002). The 
front non-loading zone can be seen in Figure 11 and is described in Chapter 3.2.2. 
When the pressure in the crushed zone is high enough a rock chip is created. There are 
two cases for rock chipping, the first is that the crack meets a free surface and 
therefore forms a chip. The second case is that the crack meets an adjacent crack 
created by another disc cutter from an earlier cut and a large chip is created. The 
adjacent crack can also be in the rock from the beginning. Exactly when and in what 
direction the crack will propagate is not known, but usually it propagates in the 
weakest direction or where the stresses in the rock are the largest. The rock chipping 
and the chips created can be seen in Figure 4. 

 

Figure 4 Chips and crushed rock during disc cutting. Lindqvist et al (1980) 

 

2.3.5 Spacing 

The distance between the disc cutters sideways is called the disc cutter spacing. The 
disc cutter spacing plays an important role in the rock fragmentation process. The 
force needed for the rock fragmentation can be reduced if the spacing between the 
cuts can be optimized. Normally the S/P-ratio, spacing to penetration, is between 10 
and 20. This value depends on the disc cutter type and the rock type that the cut will 
be made in. A typical curve of the specific energy as a function of the S/P-ratio with 
the optimum S/P-ratio can be seen in Figure 5. 



CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 6 

 

Figure 5 Typical optimum S/P-ratio curve 

When the distance between two cuts is too large or when the pressure in the crushed 
zone is too low to generate a chip a ridge is formed. That is when the rock material 
between the cuts is still there and not chipped out. If the force instead is too high the 
chips created can be thicker than the penetration depth. The optimum spacing between 
two adjacent cuts is instead the distance when the cracks propagates straight to the 
neighbouring crack and forms a chip. The shorter the crack propagation path is the 
less energy is needed, Ozdemir et al (1993).  

2.4 Cutting speed 

The cutting speed has minimal influence on the cutting forces acting on the disc 
cutter. The same behaviour has been seen also for the yield and specific energy during 
rock cutting. Yield is the volume of rock excavated by the disc cutter per unit length 
of cut. This can be seen in Figure 6. 
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Figure 6 The rolling and normal force and the specific energy as a function of the 
cutting speed. Roxborough (1975) 

When the cutting speed is of the same order of magnitude as the crack propagation 
rate of rock then there are some noticeable effects, Roxborough and Phillips, (1975). 
Gertsch et al (2002) made several tests on Colorado Red Granite where they 
investigated the dynamic behaviour of rock fragmentation with disc cutters. They 
noticed that increasing the spacing and the penetration decreases the dynamic range of 
the forces acting on the disc cutter. The larger the spacing and penetration is, the 
smaller the deviation from the mean force will be.  

The force will have a shape as a saw tooth function during disc cutting. This is 
because of the chipping process, when chipping occurs the pressure in the crushed 
zone will decrease and therefore the force acting on the cutter will decrease and the 
force can be described as a saw tooth. Gertsch et al (2002) also found that the number 
of chips created during a cut is independent of the cutter velocity. The behaviour of 
the saw tooth shaped force is dependent on the strength of the rock, the stronger the 
rock is the higher the amplitude of the variation will be and the shorter the period will 
be. For a weak rock it is the other way around, low amplitude and a long period.  

2.5 Linear cutting machine 

Most of the laboratory work in this area is carried out in a linear cutting machine, 
LCM. An LCM is a machine that can roll a disc cutter in original size against the rock 
with a controlled thrust or with a specific penetration depth. The cutting speed can be 
controlled in the LCM rig, so also the spacing between the cuts, Nilsen et al (1993). 
One can study the influence of all the different parameters affecting the cutting 
efficiency by using the LCM. An example of a linear cutting machine can be seen in 
Figure 7. 
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Figure 7 An example of a linear cutting machine. Rostami (1997) 

The size of the rock block that the disc cutter rolls against in the LCM is limited. 
Therefore the cuts closest to the edges are abandoned due to the side effects. From the 
results from the LCM different force estimation models can be obtained. These are 
discussed in Chapter 3.  

2.6 Specific energy 

One of the most common things to study, in for example linear cutting tests, is the 
specific energy. The specific energy is the energy needed to excavate a specific rock 
volume and is a measurement of the cutting efficiency. If the specific energy is low 
the energy needed to excavate a unit volume of rock is low. The specific energy is 
normally calculated as the energy during one cut divided by the excavated rock 
volume. The energy needed during the cut is the work done by the two force 
components, the normal and rolling force. Since the length of the cut is much larger 
than the penetration depth the work by the normal force can be assumed to be 
negligible. 

2.7 Cutter types 

There are many different types of disc cutters used. One type of disc cutters has 
inserted buttons of high strength metal, see Figure 8. But the most common type is the 
constant cross section disc cutter (CCS) which will be used in this model.  
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Figure 8 Disc cutter with inserted buttons. Lindqvist (1982). 

As mentioned above the most common type of disc cutter is the CCS cutter. The 
cutter that will be used in this model is a CCS cutter and can be seen in Figure 9 
together with the measures. 
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Figure 9 The disc cutter from a cross sectional view and viewed from the side with the 
measures 
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3 Force estimation models 

3.1 Introduction 

There is no simple explanation of the behaviour of the rock fragmentation process 
under a disc cutter. Many attempts have been made trying to find out all the 
mechanisms involved in the rock fragmentation process under a disc cutter. What is 
known is that a crushed zone will appear beneath the tip of the cutter because of a 
high pressure concentration from the cutter tip, Rostami and Ozdemir (1993) and 
Lindqvist (1982). The exact pressure distribution in this zone is not known but it is 
assumed to be circular, Rostami and Ozdemir (1993). The size of this zone needs to 
be small in order to get a highly efficient cut, since it requires a great deal of energy to 
crush the rock into small pieces instead of creating larger chips of the rock. Because 
of the formation of microcracks in the crushed zone, there will be a volumetric 
expansion in the crushed zone. This expansion will cause tensile stresses which will 
give rise to tensile crack propagation to the surface to form rock chips, Hongyuan 
(2003). When a chip comes into being, the pressure in the crushed zone decreases 
which leads to an oscillation in the force acting on the cutter, Sanio (1985).  

3.2 Cutter forces 

3.2.1 Force estimation methods 

The following part, Chapter 3.2.1, is taken from Ozdemir and Rostami (1993) and it 
presents a model for the forces acting on the cutter as a function of penetration and 
rock type. In this model, the stress is supposed to be distributed as: 

 

ψθ









Φ
−= 1'PP  (1) 

where  

'P  Base pressure  

θ    Angle from the normal to the point of interest 

Φ   Angle of the part in contact with the rock 

ψ  Exponent of the pressure distribution function 

The angles can be seen in Figure 10. 

The exponent of the pressure distribution determines the shape of the pressure 
distribution, a value of  0=ψ  means a uniform pressure distribution along the cutter 
edge. For a pressure distribution starting from zero in the front of the disc cutter and 
P’ under, 1=ψ is used. A negative value of ψ means higher pressure in the front of 
the disc cutter. Ozdemir and Rostami, (1993) 
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The base pressure is calculated from test data from different tests made with an LCM 
(linear cutting machine) on several rock types and conditions. From these tests three 
different equations for calculating the base pressure are presented, depending on how 
many parameters that are known. The most accurate method is the third and it 
depends on the compression and tensile strength of the rock, the cutter radius, the 
spacing between the different cuts, the penetration and the thickness of the cutter. The 
third method has a square of the correlation coefficient of 0.865, the second has a 
square of the correlation coefficient of 0.78 and the first has a square of the 
correlation coefficient of 0.525. The pressure functions are, equation (2) to (4): 

 

5.0
1 52132628' cP σ+−=  (2) 

RTpSP ct 1174021030126048.237.74200103400'2 −−−+−+= σσ  (3) 

RTSSP ctc 1300029450000147.01922883088.712170100500' 231.0
3 −−−−−++= σσσ

 (4) 

where  

cσ   Uniaxial compression strength of rock [psi] 

tσ    Brazilian tensile strength of rock [psi] 

S    Spacing between cuts [in] 

T   Cutter tip thickness [in] 

R    Cutter radius  [in] 
p    Penetration [in] 

31 '' PP −  Pressure on the brim 

This model is valid for the following values of the variables, according to Table 1. 

Table 1 The limit values for the force model 

Variable Lower limit Upper limit Unit 

cσ  10000 30000 psi 

tσ  500 2500 psi 

R  15 18 in 

S  2 4 in 

p  0.25 3 in 
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The total force acting on the cutter can be seen in Figure 10 and is calculated 
according to 

 

1

'

+
Φ=

ψ
RTP

Ft  (5) 

 

where 

 

'P  Base pressure [psi] 

R  Cutter radius [in] 

T  Cutter tip thickness [in] 

Φ  Angle of the part in contact with the rock 

ψ  Exponent of the pressure distribution function 

 

Figure 10 The stress distribution. Gertsch et al (2002) 

To be able to describe the base pressure under the cutter in a more general way a new 
angle is introduced to determine the pressure at any point in contact with the rock. 
The equation for the pressure distribution in a general way using a power function is 
described in equation (6): 



CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 14 

ψ

φ
α







= 'PP  (6) 

 

Where  

 

α  Angle to the point of interest 

 

The force component at any angle α of interest can be calculated as 

dttTRPdTRPTPRddF ψ
ψ

φα
φ
αα '' =






==  (7) 

where  

t  Variable replacing 
φ
α

 

 

The force components in the x- and y-directions in the new coordinate system are 
calculated as equations (8) and (9): 

( )∫∫ ==
φφ

α
00

'' cosdFdFF xx  (8) 

( )∫∫ ==
φφ

α
00

'' sindFdFF yy  (9) 

 

The angle from the x-axis of the new coordinate system to the axis of the total force is 
then calculated from 









= −

'

'1tan
x

y

F

F
γ  (10) 

where  

γ  Angle from the x-axis of the new coordinate system to the total force 
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Ozdemir and Rostami (1993) also present equations to calculate the normal and 
rolling forces on the cutter. The equations for the rolling and normal forces calculated 
according to equations (11) and (12). 

 

( )βcostn FF =  (11) 

( )βsintr FF =  (12) 

where  

nF  Normal force 

rF  Rolling force 

3.2.2 Non-loading zones 

During investigations, Rostami (1997), the stress distribution on the disc cutter is 
found out not to be hydrostatic. Instead there is a non-loading zone in the front and in 
the rear of the contact zone on the disc cutter, Rostami (1997). Tests have been done 
where strain gauges where mounted on the disc cutter while doing linear cuts with a 
linear cutting machine which showed that the stress only acts on a limited area on the 
disc cutter. There is a non-loading zone in the front and in the rear of the area in 
contact with the rock. The front non-loading zone is assumed to appear because of the 
chipping procedure in front of the disc cutter. The rear non-loading zone depends on 
the removal of crushed material from the back of the cutter, Rostami (1997) and 
Gertsch et al (2002). The pressure distribution on the disc cutter can be seen in Figure 
11. 
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Figure 11 The pressure distribution on the disc cutter in the method presented by 
Rostami (1997). Gertsch et al (2002) 

3.3 Cutter force model 

Based on the above mentioned stress distribution, see Figure 11, a complete series of 
regression analysis have been made on several test data obtained from tests on a linear 
cutting machine, LCM. The results have been analyzed and the correlation between 
cutting forces and different rock parameters has been studied. The result from these 
analyses is the following force equations. This force model is different from the force 
model by Ozdemir and Rostami (1993), since it takes the actual loading area into 
consideration.  

The normal force acting on the disc cutter according to Figure 11 is as follows, 
Gertsch et al (2002), equation (13). 








=
2

cos'
φφPTRFN  (13) 

where  

NF   Normal force [N] 

T   Tip thickness of the cutter [m] 

R   Cutter radius [m] 

φ   Angle of the contact area 
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'P   Average pressure in the contact area [Pa] 

The angle of the contact area is calculated as 








 −= −

R

pR1cosφ  (14) 

where  

p   Cutter penetration [m] 

The mean pressure in the loading area is calculated as 

3

2

'
RT

S
CP tC σσ=  (15) 

where 

12.2=C  is a constant 

The rolling force is the horizontal component of the force acting on the disc cutter. 
The rolling force is calculated using the cutting coefficient, which means how much 
of the force that is used for the rolling. The rolling force is calculated according to 
equation (16). The location of the actual loading area, see Figure 11, depends on the 
rock properties and penetration depth. It can in a general case be set to half of the 
angle of the contact area.   








=
2

tan
φ

NR FF  (16) 

One can therefore say that resultant force that will act on the edge of the disc cutter in 
contact with the rock will be 

'PTRFt φ=  (17) 

Equation (17) will be used later in the report for calculating the cutter forces. 
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4 Simulation tools 

4.1 Adams 

Adams, Automatic Dynamic Analysis of Mechanical Systems, mechanical simulation 
software is used in this Master Thesis. Adams is a software used to simulate Multi 
Body Systems (MBS). A Multi Body System consists of parts, rigid or flexible, that 
are linked together by joints and/or force elements. Adams can be used to simulate 
flexible bodies, but a standard Adams part is rigid and can not be deformed. Each part 
has six degrees of freedom, three translational and three rotational. An example of an 
MBS with bodies, joints and forces can be seen in Figure 12. 

 

Figure 12 Example of a multi body system with joints and forces 

4.2 Markers 

A marker is a coordinate system and is used in Adams whenever a certain direction or 
position needs to be specified. It can for example specify where a geometry needs to 
be anchored to the part or where the centre of mass of the part is. When building a 
model, a marker defining the global origin will always be attached. This marker also 
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defines the global directions. All new markers will automatically have their positions 
and directions expressed in the global reference system. 

4.3 Joints 
A joint is a connection between two parts in ADAMS that constrains 1-6 degrees of 
freedom. There are many different types of joints. A revolute joint constrains the three 
translational degrees of freedom and two rotational degrees of freedom. Another 
example of a joint is the translational joint, where two translational degrees of 
freedom and all three rotational degrees of freedom are removed. When creating a 
joint two markers will be created. They are called the I- and J-markers. The I-marker 
belongs to the first part and the J-marker belongs to the second part of the two parts 
jointed together. For example, the revolute joint between the fork and the wheel, one 
marker will be on the fork and one marker on the wheel. The two markers will have 
their z-axis parallel and they will rotate around that axis. 

4.4 Forces 

A force in ADAMS is a connection between 2 parts that will try to move the parts in a 
certain way depending on the definition. The movement will be affected by the 
properties of the parts, i.e. mass, inertia, and other properties of the system. 

4.4.1 General force 

A general force is a six component force, three forces and three moments, that can be 
acting on a part. When creating a general force, three markers are created. One marker 
will be placed on the action part, called the I-marker, one marker on the reaction part, 
J-marker, and one reference marker. The reference marker can be placed on the 
ground, which means that the components will be expressed in a system that is not 
moving with the part. This reference marker could be placed on any part of the model. 
The reaction part can be the ground and the action part can be any part of the model. 
Both the I- and J-markers will be placed anywhere on the part but the J-marker 
belongs to the ground and will not rotate with the I-marker. The I-marker will rotate 
with the part.  

4.5 Adams solver 

The kinematic, dynamic and quasi-static analyses in Adams involve the solution of 
the governing equations of motion. The equations to be solved for the analyses are 
non-linear algebraic or differential-algebraic equations. It is an iterative process where 
Adams uses a predictor polynomial to predict the solution to the equations. The order 
of the predictor polynomial can be as high as twelve. The predictors look at past 
values and estimates a solution based on them, and the predicted values almost never 
satisfy the governing equations. An example of a simple first order prediction 
polynomial can be seen in Figure 13.  
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Figure 13 A first order predictor polynomial and the time step made. Online 
documentation, Adams 2008 r1 

If the predicted value is not the solution to the governing equations, an iterative 
scheme is used to iterate to the solution. A time step is the length of the time step 
made to the predicted time. If the solution can not be found for the iterations, the size 
of the time step will be reduced and the iteration process starts again. When the 
iteration yields a solution to the governing equations the time step is considered to be 
fulfilled and a new time step can be made and a new predicted solution to the 
equations can be predicted. An example of a prediction polynomial, corrected values 
and the time steps made can be seen in Figure 14. The corrected value is the final 
solution to the governing equations for that specific time step, and it is the value from 
the iteration process. 

 

Figure 14 Example of prediction polynomial and time steps. Online documentation, 
Adams 2008 r1 
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5 Virtual tunnel face 

5.1 Introduction 

When the disc cutter has rolled against the rock once some parts of the rock have 
chipped and some have been crushed and fell away. When the next disc cutter comes, 
the tunnel face needs to be updated with the new geometry. If the next disc cutter will 
roll in the track as the first one, then it will roll in the crater created from the first disc 
cutter. The tunnel face mesh and the reference marker can be seen in Figure 15. 

 

Figure 15 The tunnel face mesh with the reference coordinate system 

5.2 Modelling the tunnel face 

The tunnel face will be modelled as a large mesh using triangular elements. In each 
element the surface will be flat. Each node in the mesh corresponds to a height value. 
The z-coordinates for each node can be changed before starting a simulation. This 
means that any shape of tunnel face can be studied. The only demand on this model of 
the tunnel face has is that it must be rectangular. The numbers of nodes in the x- and 
y-directions do not need to be the same, and the elements do not need to be 
equilateral. When the first cutter has rolled against the tunnel face the nodal values 
will be updated with the deformed surface for the next cutter to roll against the new 
and updated actual geometry of the face. The elements of the tunnel face used in the 
later simulation work can be seen in Figure 16.  
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Figure 16 The elements of the tunnel face 

 

 

In this model of the tunnel face the number of nodes in the x- and y-direction can be 
chosen, as well as the maximum and minimum values of the coordinates in the x- and 
y-direction. This means that the tunnel face can be as small and large as the user 
wishes. When the cutter rolls against the tunnel face, the actual position of the cutter 
will be measured and by using that position the actual height of the tunnel face can be 
determined. The height of each node is stored in a matrix, the rock surface matrix, 
where each row corresponds to the node number in the x-direction and each column 
corresponds to the node number in the y-direction. For a given position in the mesh 
the surrounding nodes are calculated according to equations (18) to (23). 

 








 −
=

dx

xx
INTkkx

min  (18) 








 −
=

dy

yy
INTkky

min  (19) 
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11 += xx kkk  (20) 

11 += yy kkk  (21) 

112 += xx kk  (22) 

112 += yy kk  (23)

  

where  

)(AINT  Rounds A  to the nearest integer less than or equal to A  

xkk   Start node number in the x-direction 

xkk   Start node number in the x-direction 

x   Actual position of the centre of the disc cutter in the x-direction 

y   Actual position of the centre of the disc cutter in the y-direction 

minx   Coordinate of node one in the x-direction 

miny   Coordinate of node one in the y-direction 

dx  Element length in the x-direction 

dy   Element length in the y-direction 

1xk   Lowest node number in the actual element in the x-direction 

1xk   Lowest node number in the actual element in the y-direction 

2xk   Highest node number in the actual element in the x-direction 

2yk   Highest node number in the actual element in the y-direction 

5.3 Elements 

For each position in the rock surface matrix, the four surrounding nodes are being 
calculated. Then the distance between the point of interest and the lowest node 
number in the x- and y-direction is calculated. The distances between the actual 
position and the lowest node number in the x- and y-direction are calculated as 
equations (24) and (25). 

)(1 minxdxkkxxx x +⋅−=  (24) 

)(1 minydykkyyy y +⋅−=  (25) 
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These distances are used to determine whether the centre of the disc cutter is in the 
upper or the lower element of the square rectangle, see Figure 17 and Figure 18. The 
actual element is determined as: 

lowerelse

upperyyxxif →< 11
 (26) 

 

5.3.1 Lower element 

The actual position is located in the lower element when the distance between the 
lowest node number and the actual position in the x-direction is larger than the 
distance in the y-direction. Otherwise the actual position is located in the upper 
element. When the location is known and the actual element is determined the 
derivatives of the heights in the x- and y-directions and the value of the height for that 
specific position can be calculated according to the equations below, equations (27) to 
(29). 

dx

kkzkkz

dx

dz yxyx ),(),( 1112 −
=  (27) 

dy

kkzkkz

dy

dz yxyx ),(),( 1222 −
=  (28) 

11),(),( 11 yy
dy

dz
xx

dx

dz
kkzyxz yxrockrock ++=  (29) 

 

The case where the actual position is in the lower element can be seen in Figure 17. 
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Figure 17 The actual position for a point  in the lower element 

 

5.3.2 Upper element 

When the actual location is located in the upper element the distance in the x-direction 
is larger than the distance in the y-direction. The derivatives of the height in the x- and 
y-direction and the value of the height can now be determined according to the 
equations below, equations (30) to (32).  

dx

kkzkkz

dx

dz yxyx ),(),( 2122 −
=  (30) 

dy

kkzkkz

dy

dz yxyx ),(),( 1121 −
=  (31) 

11),(),( 11 yy
dy

dz
xx

dx

dz
kkzyxz yxrockrock ++=  (32) 

The case where the actual position is in the upper element can be seen in Figure 18. 
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Figure 18 The actual position for a point  in the upper element 
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6 Cutter geometry 

The geometry of the disc cutter that is used in the simulation model in Adams can be 
seen in Figure 19. A common disc diameter is 17 in, and that is the size used in this 
simulation. The disc radius is an input to each disc cutter used in the simulation 
model, as well as the small radius r, see Figure 9. 

 

Figure 19 The disc cutter geometry from Adams 

6.1 Coordinate systems 

Four markers will be used in the computational model, one reference coordinate 
system on the ground, the reference marker for the general force, common for all 
cutter discs used in one simulation. One reference coordinate system, marker, on the 
fork to get the directions of the local coordinate system and to measure the positions 
and velocities and two joint markers from the joint between the fork and the disc 
cutter to measure the rotational velocities. 

Two coordinate systems will be used in the computational model, the local coordinate 
system on the disc cutter and the reference coordinate system that the forces and 
moments will be expressed in. The reference coordinate system will be attached to the 
ground and the rock surface will be attached to it. The reference coordinate system 
will therefore not rotate with the disc cutter. The local coordinate system will have its 
origin at the centre of the disc cutter and will rotate with the fork, but it will not rotate 
with the disc cutter. The z-axis of the local coordinate system will be parallel to the 
fork, and the x-axis will be in the direction the cutter is moving. The two coordinate 
systems can be seen in Figure 20. 
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Figure 20 The local and reference coordinate systems 

6.2 Coordinate system transformations 

In the computation model there are two coordinate systems that are used. The first is 
the reference coordinate system that is the coordinate system attached to the rock 
surface and where the forces will be expressed in. The second coordinate system is the 
local coordinate system. The local coordinate system has its origin in the centre of the 
disc cutter. In Adams, the yaw-pitch-roll rotation is measured as 3 -2 1. The rotation 
matrices can be seen below, equations (33) to (35). The transformation coordinate 
systems and angles can be seen in Figure 21. 
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Figure 21 The transformation coordinate systems and the transformation angles 
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Where β  is the pitch angle with opposite sign, because Adams measures the rotation 
sequence 3 -2 1. 

( ) ( ) ( )
( ) ( )
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




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
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−
=
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001

''xR  (35) 

To go from the reference coordinate system to the local coordinate system one can use 
the equations below, equations (36) and (37). 

( ) ( ) ( )
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
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Zyx
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αβγ '''  (36) 

To go from the local to the global coordinate system the transpose of the 
transformation matrix is used, see the following equation. 
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 (37) 

The rotation angles are measured between the reference coordinate system for the 
rock surface and a marker in the centre of the wheel, attached to the fork.  

6.3 Cutter edge 

When searching the edge of the cutter to determine if the cutter has penetrated, a loop 
will be made over a number of points on the edge of the disc cutter. At first, the 
coordinates of the centre of the disc cutter are measured. Then the local coordinate 
system is attached to the centre of the disc cutter with its origin in the centre of the 
disc cutter and the direction of the coordinate axes from the transformation matrices in 
Chapter 6.2. At first the local y-coordinate is determined. Then the y-dependent radius 
is calculated according to equation (38). 

( ) 22
locallocal yrrRyR −+−=  (38) 

When the y-dependent radius is known the local x- and z-coordinates can be 
calculated according to equations (39) and (40). 

( ) ( )αcos, ⋅= localedgelocal yRx  (39) 

( ) ( )αsin, ⋅−= localedgelocal yRz  (40) 

The angle α and the local y-coordinate are looped. The angle α is looped from 0 to π 
radians and the local y-coordinate is looped  from –b to b, where b is the width of the 
disc cutter, see Figure 9. Equations (39) and (40) are explained in Figure 22. 
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Figure 22 The local x- and z-coordinates on the disc cutter edge 
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7 Force calculation 

7.1 Introduction 

The cutter force will act in the direction normal to the surface penetrated by the cutter. 
In the model presented by Rostami (1997), the cutter force is then divided into a 
horizontal rolling force and a vertical normal force. The normal force from the model, 
by Rostami (1997), Figure 11, is normal to the thrust applied. The different forces 
from the simulation model and their directions can be seen in Figure 23. In Figure 23 
the normal force is the normal force to the penetrated plane, the normal force to the 
penetrated plane is the total force from equation (17), see Figure 11. 

 

Figure 23 The forces on the disc cutter, cross sectional view to the left and seen from 
the side to the left 

7.2 Force calculations in Adams 
The force descriptions found are all calculated locally at the contact point and in the 
contact plane directions. The force element used, general force, is applied at a marker 
(I-marker) on the part and this marker is locked during the simulation. The contact 
between the cutter disc and the mount can occur anywhere on the brim. 
  
The cutter disc is moving with six degrees of freedom. The position of the I-marker 
can be measured and then the possible contact point (area) can be detected by 
searching the surface of the brim. If a contact is detected the contact point and plane 
can be determined and the calculations can be made locally. The local force is then 
transformed back to the I-marker. 
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7.3 Penetrated plane 

For determination of the direction of the cutting force the penetrated plane needs to be 
determined. The penetrated area needs to be calculated first. That is done in a 
subroutine, where a loop is made over the edge of the disc cutter. The edge of the disc 
cutter is divided into a number of small elements; at first the local y-coordinate is 
calculated. The local y-coordinate is used to determine the y-dependent radius. The y-
dependent radius is then used to calculate the local x-coordinate and the local z-
coordinate. When the local coordinates are known they are transformed into the global 
coordinate system as described in Chapter 6.2. For every point in the z-coordinate of 
the rock surface is calculated as described in Chapter 8.1. If the wheel has penetrated 
into the rock surface, i.e. the z-coordinate of the wheel is smaller than the z-coordinate 
of the mesh, the three coordinates for the mesh element are stored in three vectors.  

7.4 Normal vector 

When the loop in the previous section has reached a point on the wheel that has 
penetrated into the rock surface another subroutine is called. This subroutine makes a 
search in the mesh and calculates the four surrounding nodes and determines in which 
element the point is. Then it calculates the two vectors on the edges of the element 
and calculates the cross product between them which gives the normal to the element. 
The normal is calculated using equation (41) and (42). 

For the upper element, Figure 24: 

21 vven ×=  (41) 

 

Figure 24 Vectors for calculating the element normal in the upper element. 
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For the lower element, Figure 25: 

21 vven ×=  (42) 

 

Figure 25 Vectors for calculating the normal in the lower element. 

The normal vector is normalized and stored. All the normal vectors calculated in the 
loop are stored and all the unique normal vectors are summed. The summation of the 
normal vectors is then normalized. By doing that a mean normal vector has been 
calculated for the penetrated plane. This vector is the normal vector to the penetrated 
plane and is called N. 

When all the points on the disc cutter have been looped over, a vector is calculated 
between the first point and the last point stored, vector one. After that the cross 
product between the normal vector and the vector calculated between the first and the 
last point is calculated, vector two. The plane defined by vector one and vector two is 
called the penetrated plane.   

The centre of the penetrated plane is in the middle of vector one and is calculated as: 

11 5.0 sppc ⋅+=  (43) 

The forces will be applied onto the edge of the disc cutter on the point at the edge of 
the wheel where the vector from the centre of the wheel to the centre of the plane 
crosses the cutter edge, see Figure 26. The vector from the centre of the disc cutter to 
the point of force application is called fp. 
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Figure 26 A cross sectional view of the penetrated plane and a definition of the point 
of force application 

The penetrated plane viewed from above can be seen in Figure 27. The figure also 
shows the direction vectors of the penetrated plane and the normal to the penetrated 
plane. 
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Figure 27 The two vectors defining the penetrated plane and the normal to the 
penetrated plane for the ideal case with a flat and horizontal tunnel 
face 

All the lengths and angles for the following calculations, equations (44) to (53), can 
be seen in Figure 28. When the centre of the penetrated plane is calculated the 
direction of the fp vector can be calculated. That vector is calculated according to 
equation (44). 
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Figure 28 The lengths and vectors for calculating the point of force application 

cpd cp −=  (44) 

The direction vector will then be transformed into the local coordinate system using 
the transformation matrices in Chapter 6.2. When the local coordinates are known for 
the direction vector, the vector from the centre of the disc cutter to the point in the 
edge of the disc cutter with the same local z-coordinate as the pc but with the local y-
coordinate in the centre of the disc cutter, zero, can be calculated. That vector is 
calculated according to equation (45). 

( ) [ ] ( ) [ ]10030011 ⋅+⋅= ppm ddd  (45) 

That vector will then be multiplied with the disc cutter radius, according to equation 
(46), which will give a vector from the centre of the disc cutter to the brim of the disc 
cutter. 
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Then the length to the point in the direction of the dp vector from the centre of the 
wheel to the point with the same local z-coordinate as the sm point, see Figure 28, can 
be calculated, according to equation (47). 

( )
( )m

p

dlength

dlengthR
l

⋅
=   (47) 

Then the angle between the sm vector and the dp vector can be calculated according to 
equation (48). 








=Θ −

l

R1cos   (48) 

Then the xf length can be calculated according to equation (49). 

( ) ( )rRx f −⋅Θ= sin  (49) 

And the yf can be calculated according to equation (50). 

22
ff xry −=  (50) 

When the yf is calculated the zf can be calculated according to equation (51). 

( ) ( )rRz f −⋅Θ= cos  (51) 

When all the lengths are known the length of the vector from the centre of the disc 
cutter to the point on the edge where the forces will be applied can be calculated 
according to equation (52). 

fff zyL +=  (52) 

The fp vector can finally be calculated according to equation (53). 

pfp dLf ⋅=  (53) 

7.5 Penetration 

The penetration is one of the factors determining the size of the force that will act on 
the disc cutter. When the penetrated plane is calculated one can calculate the 
penetration depth. The penetration depth is calculated as the difference in the local z-
coordinate of the penetrated point with the highest local z-coordinate and the 
penetrated point with the lowest local z-coordinate. The penetration depth is 
calculated according to equation (54). 

2,1, plpl zznpenetratio −=  (54) 
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7.6 Friction 

There will be a friction force acting on the disc cutter at the point on the edge of the 
disc cutter where the forces will be applied. The friction force will be calculated as the 
normal force, normal to the penetrated plane, multiplied by the friction coefficient. 
The equation for the friction force is: 

µ⋅−= Nfr FF  (55) 

To be able to calculate the friction coefficient the velocity of the disc cutter edge 
relative the penetrated plane needs to be determined. The friction coefficient as a 
function of the velocity can be seen in Figure 29, and is thoroughly described in 
Appendix A, Chapter A.2.2. 

-v 0 v

-mu

0

mu

friction coefficient

vfr

µ

 

Figure 29 The friction coefficient as a function of the velocity 

7.6.1 Velocity 

The penetrated plane is used to calculate the velocity for the friction. The translational 
velocities of the centre of the disc cutter are measured using the Adams built in 
function TVEL which generates all three translational velocities expressed in the 
reference coordinate system. The three rotational velocities of the disc cutter are 
measured using the Adams built in functions WX, WY and WZ. They give the 
rotational velocities of the disc cutter expressed in the local coordinate system. The 
rotational velocities of the disc cutter are transformed from the local coordinate 
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system into the reference coordinate system using the transformation matrices 
presented in Chapter 6.2. The vector from the centre of the disc cutter to the point of 
the disc cutter where the force will be applied is used to calculate the velocity in that 
point. This is done according to  

rTVELVREF ×+= ω  (56) 

When the velocity of that point on the disc cutter is known the velocity needs to be 
transformed to the penetrated plane. The transformation is done using equation (57) 
and the transformation vectors can be seen in Figure 27. 
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
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1,

 (57) 

This transformation gives the velocity in the three directions, the first two values are 
the velocities in the directions of the direction vectors of the plane and the third 
component is the velocity in the direction of the normal vector. The magnitude of the 
velocity in the plane is calculated as the square root of the sum of the first two 
components of the velocity vector from the plane according to equation (58). 

( ) ( )22 21 plplfr vvv +=  (58) 

The two velocity vectors for the penetrated plane and the sum of them, the friction 
velocity, can be seen in Figure 30.  

 

Figure 30 The two velocity vectors in the penetrated plane and the friction velocity 
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The direction of the friction force is opposite to the friction velocity. The first two 
components of the plane velocity vector is the velocity in the direction of the sum of 
the two vectors defining the plane. The direction of the friction velocity is calculated 
by adding the two velocity vectors of the penetrated plane, which can be seen in 
equation (59). 

( ) ( ) 2,1, 21 plplplplfr svsvv ⋅+⋅=  (59) 

The equation above defines the direction of the friction force, and since there is a 
minus sign in the equation for the friction force the friction force vector can be 
calculated as 









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
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⋅=

fr

fr
frfr

v

v
FF  (60) 

7.6.2 Friction coefficient 

When the friction velocity is known the friction coefficient can be calculated. The 
friction coefficient is a function of the friction velocity and is determined from Figure 
29. 

7.7 Cutter force 

When the normal vector is calculated the direction of the cutter force can be 
calculated. The cutter force is the force calculated from the force model presented in 
Chapter 3.3, and can be seen in Figure 11. Since the cutter force always will work in 
the direction of the normal vector from the penetrated plane the components of the 
cutter force can be calculated using equation (61) to (65). 

Txx FnF =  (61) 

Tyy FnF =  (62) 

Tzz FnF =  (63) 

The three equations for the components of the cutter forces can be written in the 
following way 

TT FNF =  (64) 

The total force that will be acting on the disc cutter in the point of force application is 
the addition of the cutter force vector and the friction force vector. The total force is 
calculated according to  

frTtot FFF +=  (65) 

This is possible to do since all the components of the forces are expressed in the 
reference coordinate system.  
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7.8 Cutter moment 

The cutter force calculated in the section above will be translated to the centre of the 
disc cutter to the general force. Since the general force is applied in the centre of the 
disc cutter and the forces are working on the edge of the disc cutter a moment needs to 
be attached to the general force.  

The moment of the cutter force about the centre of the disc cutter is calculated 
according to equation (66) where fp is given by equation (53). 

totptot FfM ×=  (66) 

The total force vector and the distance vector have their components expressed in the 
reference coordinate system. The moment will be the moment around the three axes 
of the reference coordinate system.  
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8 Rock fragmentation 

8.1 Deformation 

When the cutter rolls against the rock a crushed zone will appear. The shape of the 
crushed zone is presented more thoroughly in Chapter 2.3, but is assumed to be 
ellipsoidal, with the smallest radius in the direction of the cut and the largest radius 
parallel to the cut.  

The update of the rock surface matrix will be made in the subroutine DEFORM. A 
loop will be made over all the nodes in the entire mesh. The coordinates of each node 
will be calculated using equation (67) to (69). 

( )1min −+= Lrockdxrockxxcoord  (67) 

( )1min −+= Krockdyrockyycoord  (68) 

( )KLrockzzcoord ,=  (69) 

Then a vector will be calculated from the centre of the disc cutter to the node of 
interest, according to the following equation.  
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 (70) 

The coordinates of the vector from the centre of the disc cutter to the node of interest 
will be transformed into the local coordinate system described in Chapter 6.1. If the 
local y-coordinate is less than half the width of the disc cutter and the local x-
coordinate is smaller than the large radius of the disc cutter the y-dependent radius 
can be calculated as in Chapter 6.3. The nodes are within the area shadowed by the 
disc cutter if the local x-coordinate is less than the y-dependent radius. Then the z-
value of the node can be calculated and compared to the z-value on the point on the 
wheel with the same local x- and y-coordinates. The area shadowed by the disc cutter 
can be seen in the figure below. If the node is inside the shadowed area it might be 
penetrated by the disc cutter, otherwise not. 
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Figure 31 Figure over the shadowed area.  

When the disc cutter is within the shadowed area, see Figure 31, it might penetrate 
into the rock. The z-coordinate of the node is calculated above in equation (69) and 
will be compared to the z-coordinate of the wheel for the corresponding x- and y-
coordinate. The local y-coordinate of the wheel is used to calculate the y-dependent 
radius as above. When the radius is known the z-coordinate can be calculated using 
equation (71). 

( ) 22
coordcoorddisc xyrz −=  (71) 

The z-coordinate of the disc is then compared to the z-coordinate of the node. If the z-
coordinate on the disc cutter is lower than the one on the node the disc has penetrated 
into the rock surface. 

8.2 Matrix update 

If the point on the wheel surface has penetrated into the rock surface and created an 
inelastic deformation the rock surface matrix must be updated with a new z-value for 
that specific node. In this case all of the penetration into the rock surface has been 
seen as an inelastic deformation.  

In this model the rock fragmentation is simplified. When the time step is achieved, the 
temporary rock matrix will be copied to the rock matrix. The penetration into the rock 
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will be reduced from the node that is penetrated in the rock surface matrix. The 
updating is done according to equation (72). 

( ) ( ) ( )( )disczKLrockzKLrockzKLtrockz −−= ,,,  (72) 

 

8.2.1 Temporary rock matrix 

When there is an inelastic penetration into the rock surface causing a deformation of 
the rock a temporary rock matrix is created. From the temporary rock matrix a certain 
part of the z-value of the node of interest is removed, in this case all of the penetration 
depth. If the time step is successful the temporary rock matrix is copied to the rock 
matrix, but if the time step is not successful the temporary rock matrix will not be 
copied. If the time step is too long and the system can not be solved the length of the 
time step needs to be shortened. When this happens the temporary matrix will be 
replaced with the rock matrix since the temporary rock matrix is not valid when the 
time step is decreased and the simulation time decreases.  
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9 Model validation 

The model will be validated by simulating rock cutting with a disc cutter on a flat 
rock surface. The resultant forces will be compared to a similar case from the 
literature, so the model can in some sense be validated.  

9.1 Inputs 

The inputs to Adams will be given as in Appendix A. For each cutter a specific force 
number can be given, large and small radius for the cutter, see Figure 32. As 
described in Appendix A.2.3, the special ID-series are given, they contain the markers 
that will be used for each cutter to calculate the position, velocity, rotational velocity 
and rotational angles. The different markers used can be seen in the figure below. All 
the parameters that can vary, and do not need to be equal for all cutters in a 
simulation, are sent to the subroutine in the general force. 

 

Figure 32 The markers used in the simulation and the corresponding directions 

Inputs that are valid for all the parts in the simulation as the friction values, the 
compressive and tensile strength of the rock are stored in a common vector and used 
in the simulation. These values are the same for all the disc cutters in one simulation. 

In this specific model validation the forces from the simulation model will be 
compared to an LCM test from the literature. The input values and the results are from 
Gertsch et al (2007) and can be seen in Table 2. The disc cutter will have a large 
radius of 17 in and a small radius of 0.5 in. The cutting speed will be 1.0 m/s and the 
length of the cut will be 1 m. Only one disc cutter will be used but to be able to 
compare to the case from the literature a spacing of 51 mm will be used. The 
compressive strength of the rock in this test is 158 MPa, and the tensile strength of the 
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rock will be 6.78 MPa. The tip width of the disc cutter is 13 mm. The penetration will 
be set to 3.8 mm. 

 

Table 2 The input values for the simulation test 

R [mm] C Uniaxial 
compressive 
strength 
[MPa] 

Brazilian 
tensile 
strength 
[MPa] 

Spacing 
[mm] 

Cutting 
speed 
[m/s] 

Penetration 
[mm] 

215.9 2.12 158 6.78 51 1 3.8 

 

9.2 Theoretical force 

The theoretical force for the given rock parameters, penetration depth and spacing as 
given above is calculated according to equation (72). 

'PTRFT φ=  (72) 

With the given numbers from above, the mean value of the force on the disc cutter 
will be, according to the equation (74), 61.1 kN. The mean pressure in the pressure 
zone, see Figure 11, is calculated according to equation (73). 

( )
MPa
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S
CP tC 8.115

013.02159.0

051.01078.610158
12.2' 3

626

3

2

=
⋅

⋅⋅⋅⋅⋅== σσ
 (73) 

The pressure calculated in equation (73) is used in equation (74) to calculate the total 
force. 

kNCOSPTRFT 1.618.115
2159.0

0038.02159.0
2159.0015.0' 1 =⋅







 −⋅⋅== −φ  (74) 

From equation (15) and (18), the rolling and normal forces can be calculated, 
according to equation (75) and (76). 

kNFPTRF TN 8.60
2159.0

0038.02159.0
101.61

2
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 (75) 
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kNFF NR 8.5
2159.0

0038.02159.0
costan101.61

2
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9.3 Simulation force 

A simulation will be made with the inputs given in Table 2. The model before the 
simulation starts can be seen in Figure 33.  

 

Figure 33 The simulation model before starting the simulation 

The forces from the general force can be seen in Figure 34, Figure 35 and Figure 36.  

 

Figure 34 The cutting force in the x-direction of the reference marker 
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Figure 35 The cutting force in the y-direction of the reference marker 

 

Figure 36 The cutting force in the z-direction of the reference marker 

During the simulation, one can choose when the rock surface matrix will be saved. 
For instance, if a simulation needs to be continued at a certain time, the old rock 
surface matrix saved from an older simulation can be used as the start rock surface 
matrix. To view the rock surface matrix in Adams the file type .shl is used. One can 
save the .shl file on the same way as the rock surface matrix. The .shl is the shell file 
type where the nodes and how they are linked are stored. In the subroutine for the 
force calculations the file type .rsf is used. In the .rsf file, rock surface file, the node 
numbers and their coordinates are stored. The rock surface matrix is attached to the 
reference marker and has its directions in the reference coordinate system. 

The shape of the updated and deformed rock surface mesh after the simulation can be 
seen in Figure 37.  
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Figure 37 The updated rock surface, note the triangular elements and the deformation 

 

Figure 38 The rock surface attached to the reference marker 
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9.4 Comparison 

The forces from the real test in a LCM compared to the results from the theoretical 
formula and the simulation can be seen in Table 3.  

Table 3 Table over the forces from the theoretical force model, a real test in a LCM 
and from an Adams simulation with the model developed in this Master 
Thesis 

 

Table 3 shows that the average cutter normal force is higher in the LCM test than in 
the simulation and the theoretical calculation. The simulation and the theoretical 
calculation give almost the same value for the average normal force. The average 
rolling force for the theoretical calculation and the LCM test is close each other while 
the simulation generates a higher rolling force. The side force from the simulation and 
the LCM test is almost the same.  

Model Spacing 
[mm] 

Penetration 
[mm] 

Average 
cutter force 
(normal) 
[kN] 

Average 
cutter force 
(rolling) 
[kN] 

Average 
cutting 
force (side) 
[kN] 

Theoretical 51 3.8 60.8 5.8 - 

Test in 
LCM 

51 3.8 81 7.3 11.2 

Simulation 51 3.8 60.9 13.4 12.6 
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10  Model limitations 

10.1  Detecting penetration 

The loop made over the surface of the disc cutter to detect if it has penetrated or not is 
only made on the double curved surface of the disc cutter. If the side of the disc cutter 
is touching the rock it will not be detected. The loop is only made for negative z-
coordinates of the local coordinate system, which means that if the double curved area 
of the disc cutter is in contact with the mount on a positive local z-coordinate the 
contact will not registered for that point. This should not influence the reliability of 
the simulation model.  

10.2  Penetrated plane 

The penetrated plane is assumed to be a flat plane, this is an assumption and a 
simplification made. This is not completely true but it will not influence the result so 
much. The direction of the cutter is correctly calculated since it is the mean normal of 
all the points penetrated by the disc cutter. 

10.3  Chipping 

This simulation model does not take the side chipping or the cracking process into 
consideration at this stage. To be able to use this model to simulate a complete 
tunnelling operation the chipping and cracking process needs to be taken into account. 
Since the chipping is not studied, the behaviour of the forces and moments of this 
model is not completely true since the dynamic behaviour of the force is not studied. 
As mentioned in Chapter 2.3.4, the magnitude of the cutting force will decrease when 
a chip is created and after that increase again until the next chip is created. The 
variation in force can not be studied but the size of the forces and moments and their 
directions can be studied using this simulation model.  
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11  Discussion and results 

As can be seen in Table 3, the forces from the simulation and from the theoretical 
formula are almost equal. This is because that the penetration in the model is set to the 
same value as the penetration in the theoretical formula. The reason for the larger 
rolling force in the simulation model is that the friction force is working in the 
beginning of the simulation, see the first 0.4 s of simulation in Figure 34. From 
Chapter 3.2.2 one can see that the cutter force is working in the loading zone. In the 
simulation model the cutter force is assumed to work in the centre of the penetrated 
plane, see equation (43), Figure 23 and Figure 26. The point of force application can 
easily be changed in equation (43) and the constant C in equation (15) can be 
optimized for the specific rock and cutting condition to be studied. 

To make a simulation on a flat ground like this is a good way of calibrating the 
computational model. For instance, the constant value of C in equation (15) can be 
adjusted so that the forces are matching the forces obtained from measurements on a 
test rig or a linear cutting machine (LCM). Other parameters to adjust are the friction 
coefficient for example.  

A calibrated model can be used for simulations of the forces acting on the disc cutter 
while cutting rock for any geometry of the rock surface. The simulation model can 
also be used to link a number of cutters together to create a tunnel boring machine for 
instance, to study the total force acting on the drum of the machine. The total force 
can then be used to design the front parts of the machine to withstand it and to design 
an automatic control system.   

The simulation model is built such that many disc cutters can be linked together to a 
real tunnel boring machine. Because of that the usage of the model increases. The 
force model can be updated, a number of simulations can be done and the results from 
them can be used to update the force model. For a given set of parameters, such as 
penetration, spacing, compressive strength etc. the model can be calibrated.  
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12  Future work 

To get a more accurate and reliable result from the simulations the chipping process 
needs to be implemented into the model. Some ideas have been thought about during 
the Master Thesis work but because of lack of time it was never implemented into the 
model.  

When the chipping process is implemented to the simulation model one can create a 
number of disc cutters and link them together to a real tunnel boring machine. If the 
rock parameters are set to a known value from a test in the literature, the performance 
of the simulation model can be evaluated. Then the model can be tuned in and be used 
for the early stage in the design and development process. 
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Appendix A 

In Appendix A a simplified approach to the modelling procedure is presented. This is 
the way the simulation model presented in this Master Thesis has come into being. 
The Master Thesis is made through a crawl, walk and run approach. In appendix A the 
modelling of a wheel on a flat ground is considered.  

A Modelling of a rolling wheel on a flat surface 

A.1 Rolling wheel model  

To get a better understanding and knowledge of Adams modelling and to make sure 
that the model works as expected a simple wheel was modelled. The wheel had the 
shape of a disc with sharp edges and was rolling on a flat surface. The wheel was 
attached to a fork, added to a vertical cylinder. The vertical cylinder was attached to a 
horizontal cylinder, see Figure 39. 

A.1.1 Markers 

A marker is used in Adams whenever a certain direction or position needs to be 
specified. It can for example specify where a geometry needs to be anchored to the 
part or where the centre of mass of the part is. When building a model, a marker 
defining the global origin will always be attached. This marker also says where the 
global directions are. All new markers will automatically have their positions and 
directions expressed in the global reference system. 

A.1.2 Joints 

Between the fork and the vertical cylinder there was a revolute joint, which means 
that the wheel was free to rotate in that direction. There was a cylindrical joint 
between the vertical and horizontal cylinder, the reason for that was to be able to steer 
the wheel. The horizontal cylinder was then jointed to the ground with a translational 
joint. This means that the horizontal cylinder did not rotate around the vertical 
cylinder. The translational joint can be replaced by a planar joint for example, keeping 
the distance to the ground constant but is able to rotate around the vertical cylinder.  

When creating a joint two markers will be created. They are called the I- and J-
marker. The I-marker belongs to the first part and the J-marker belongs to the second 
part of the two parts jointed together. For example, the revolute joint between the fork 
and the wheel, one marker will be on the fork and one marker on the wheel. The two 
markers will have their z-axis parallel and they will rotate around that axis. 
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Figure 39 The wheel and the flat surface modelled in ADAMS 

 

A.1.3 General force 

The contact between the wheel and the ground was modelled with a six component 
general force. The same type of general force will be used later when building the 
simulation model for the disc cutter. The general force was attached to the centre of 
the wheel with its reference marker attached to the ground. This means that the force 
will act on the centre of the wheel with its components in the directions of the axis of 
the reference marker.  

A.1.4 Directions 

The directions in which the forces will act and the moment will act around are 
illustrated in Figure 45, with the z-direction pointing upwards from the grey box and 
the x-z-plane on the top of the grey box that the wheel will roll on. 

A.1.5 Markers 

When creating a general force, three markers are created. One marker will be placed 
on the action part, called the I-marker, one marker on the reaction part, J-marker, and 
one reference marker. The reference marker is in this case placed on the ground, 
which means that the components will be expressed in a system that is not moving 
with the wheel. This reference marker could be placed on any part of the model. The 
reaction part will in this case be the ground and the action part will be the wheel. Both 
the I- and J-markers will be placed in the centre of the wheel but the J-marker belongs 
to the ground and will not rotate with the I-marker. The I-marker will rotate with the 
wheel. 
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A.2 Forces and moments 

A.2.1 Impact force 

When the wheel touches the ground a normal force will appear. This normal force is 
modelled with the Adams function IMPACT. The IMPACT function in Adams 
calculates the impact force for when the wheel touches the ground. The function is 
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=
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11max11

0
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xx

xxxxcdxxSTEPxxkMax
IMPACT

e
&

 (1) 

 

where  

 

x  Distance from the centre of the wheel to the ground, i.e. the y-coordinate 
of the general force in the global coordinate system used in the model 

x&  Time derivative of the distance 

1x  Distance in the global y-direction in the model for when the wheel gets 
in contact with ground 

k  Stiffness of the boundary surface interaction 

e Exponent of the force damping characteristics 

maxc  Maximum damping coefficient 

d  Penetration for when full damping is applied 

The step function approximates the Heaviside step function with a cubical 
polynomial. It has continuous first derivatives and its second derivates are 
discontinuous at x=x0 and x=x1, see Figure 40. 
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Figure 40 The step function used in the Adams function IMPACT. Online 
documentation, Adams 2008r1 

The IMPACT function never returns a negative force. As can be seen in the function 
expression, equation (1), it only generates a force when the wheel is in contact with 
ground. The positive direction is the positive z-direction in reference system of the 
general force. The distance from the centre of the wheel to the ground is measured 
using the Adams built in function DZ and velocity is measured with the Adams 
function VZ. When measuring the distance, one should specify the marker to measure 
to, the marker to measure from and the marker to use as a reference. The velocity is 
measured in a similar way, but then one could also specify a reference frame to take 
the time derivative of the displacement vector. The I-marker for the general force, 
placed in the centre of the wheel is used as the marker to measure the distance to. The 
reference marker of the general force is used both as the marker to measure from and 
the marker to use as a reference, i.e. the coordinate system to measure in. The velocity 
is measured to the J-marker for the joint between the fork and the wheel, on the fork. 
This marker is placed at the centre of the wheel on the same place as the I-marker of 
the general force. The reference system for the general force is used as the reference 
frame for the time derivatives of the displacement vector. Since the stiffness 
multiplied by the penetration always will yield a positive force, the force from the 
damping factor will work against the motion. At first, when it moves into the ground 
it will be positive, and then the velocity will change sign and the force from the 
damper will be negative. The damping factor as a function of the penetration can be 
seen in Figure 41. 
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Figure 41 The damping factor as a function of the penetration 

A.2.2 Friction force 

A rolling condition is attached to the model, to see if the wheel is rolling or sliding. 
The rotational velocity of the wheel is measured in the joint between the fork and the 
wheel. The translational velocities of the wheel are measured in the reference system 
of the general force. A local coordinate system is then attached to the centre of the 
wheel for the simplicity of calculations. The local coordinate system can be seen in 
Figure 42. The z-axis has the same direction, which means that the x-y-planes are 
parallel.  
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Figure 42 The orientation of the local coordinate system 

 

Then the translational velocities are transformed to the new local coordinate system 
using a transformation matrix. The prime indicates the new local coordinate system. 
This transformation only takes the rotation around the z-axis into account. When 
modelling the disc cutter all three rotations will be taken into account. The 
transformation is made as:  
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where  

α  Angle of rotation between the two coordinate systems 

x  X-component in the global reference system 

y  Y-component in the global reference system 

z  Z-component in the global reference system 
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'x  X-component in the new local coordinate system 

'y  Y-component in the new local coordinate system 

'z  Z-component in the new local coordinate system 

 

The angle of rotation between the two coordinate systems is measured with the 
Adams function YAW. The two markers used are the newly introduced marker 
attached to the fork but located in the centre of the wheel, and the reference marker of 
the general force. This means that the pitch angle is measured of the marker’s rotation 
in the reference coordinate system.   

The difference between the translational velocity and the rotational velocity 
multiplied with the radius of the wheel is then calculated. If the difference is zero, the 
wheel is rolling, otherwise is it sliding. A friction coefficient is calculated using this 
difference in velocity. When the friction coefficient is calculated the friction force can 
be determined. The friction force is working in the direction of the velocity vector 
calculated with the velocity difference in the x-direction due to sliding and the 
velocity in the z-direction, in the local coordinate system. The velocity difference is 
calculated as: 

 

rvv yx ω−=∆ '  (4) 

where  

v∆  Difference in velocity 

'xv  Velocity in the x’-direction 

zω  Angular velocity around the z-axis 

r  Radius of the wheel 

 

The minus sign between the velocity in the x-direction and the rotational velocity in 
the y-direction comes from the directions of the axes, we want the difference in 
velocity. The velocity in the direction that the friction force will work is calculated as: 

 

22 'yfr vvv +∆=  (5) 

 

where 

 



CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 8 

 

frv  Magnitude of the velcocity in the direction of the friction force 

v∆  Difference in velocity 

'yv  Velocity in the y’-direction 

 

The different velocities and the rotation of the wheel can be seen in Figure 43. The 
friction velocity will always have the same component in the local y-direction as the 
real translational velocity of the wheel in the same direction.  

 

Figure 43 The coordinate systems with the different velocity components 

When the friction velocity is calculated the friction coefficient can be calculated. The 
friction coefficient is calculated using a step function. The step function for 
calculating the friction coefficient can simplify be expressed as: 
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Using the friction parameters this will be: 
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The friction model is simplified and does not contain the stiction friction coefficient, 
which would have given a higher friction force for the specific stiction velocity. 
Stiction is the phase just before sliding and is the maximum friction force. The friction 
coefficient distribution used in this model can be seen in Figure 44.  

 

 



CHALMERS, Applied Mechanics, Master’s Thesis 2010:30 10 

-v 0 v

-mu

0

mu

friction coefficient

vfr

µ

 

Figure 44 The friction coefficient as a function of the velocity 

 

When the friction coefficient is determined the friction force can be calculated as the 
friction coefficient multiplied with the normal force as: 

 

µnfr FF =  (8) 

where  

frF  Friction force 

nF  Normal force 

µ  Friction coefficient  

 

The force components can then be calculated in the local coordinate system, by 
multiplying the friction force with the velocity in that direction divided by the 
magnitude of the velocity in the direction of the friction force. This is done as: 
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where 

'xF  Force in the x-direction in the local coordinate system 

'yF  Force in the y-direction in the local coordinate system 

frv  Magnitude of the velocity in the direction of the friction force 

v∆  Difference in velocity 

frF  Friction force 

 

The forces are acting at the contact between the wheel and ground. When they are 
moved to the centre of the wheel they give rise to added moments. The moments are 
calculated in the local coordinate system at first and will then be transformed to the 
global reference system at a later stage. The moments are calculated as: 
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Where  

'xT   Moment around the local x-axis 

'yT   Moment around the local y-axis 

'zT   Moment around the local z-axis 

R   Radius of the wheel 

The distance between the centre of the wheel to the contact point on the ground will 
always be positive. The forces and moments in the local coordinate system will then 
be transformed back to the global reference system using the transformation matrix 
introduced before. Since the global and local z-axes are not transformed the 
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components will be the same. The transformation yields the following forces and 
moments: 
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 (12) 

 

When the forces and moments are calculated they are attached in the centre of the 
wheel, the I-marker of the general force.  

 

A.2.3 Subroutine 

All the measurements and calculations described above are made in a subroutine. A 
subroutine is a more general and flexible way of writing functions in Adams. There 
are subroutine templates available in Adams to use when writing a user written 
subroutine. In this case, the template for a GFOSUB is used, general force subroutine. 
In the beginning of the subroutine the input and output parameters are stated.  

The subroutines are written in the computer programming language Fortran 77. The 
parameters from the model such as wheel radius, wheel width, friction coefficient, 
stiffness, damping, friction velocity and the distance for full damping are stored in a 
vector and are then sent to the subroutine. All the input data are then defined, and a 
number of checks are made to see that the correct number of inputs are sent to the 
subroutine and that the vector has the correct number of elements and that the correct 
number of parameters are sent to the subroutine. These parameters are in this case the 
a branch number, an ID-serie, the Adams ID-number of the I-marker of the general 
force, the Adams ID-number for the reference marker of the general force, the Adams 
ID-number of the I-marker of the joint between the wheel and the fork, the Adams ID-
number of the J-marker of the joint between the wheel and the fork and the ID-
number of the array. Each marker has a Adams ID-number.  

When that is made all the measurements can be made. The first measurements to do 
are ones required to calculate the free height of the impact function. That is done to 
know if the wheel is in contact with the ground or not, if it is not in contact then the 
forces can be set to zero leave the subroutine for the next step. When the wheel is in 
contact with ground, the measurements described above are made and the forces and 
moments are calculated and attached to the centre of the wheel. The directions of the 
general force can be seen in Figure 45. 
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Figure 45 The directions of the components of the general force and the reference 
coordinate system, the x-axis is red, the y-axis is green and the z-axis is 
blue 
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Appendix B 

In Appendix B the simplified model to update the deformation of the ground is 
presented. 

B Ground deformation model 

B.1 Introduction 

To be able to simulate rock cutting with a disc cutter the rock fragmentation process 
must be modelled. The ground will be modelled using the mesh described in Chapter 
5. This chapter is about the first simple model of the ground deformation, to learn the 
tools that will be used on the rock fragmentation later. 

B.2 Force calculation 

The force will be modelled as a general force attached to the centre of the wheel as in 
Appendix A. The difference from that case is that now the rock surface matrix is used 
to describe the ground instead of the z-coordinate zero. The rock surface matrix is a 
matrix with all the z-coordinates from each node from a triangular mesh stored in 
each position of the matrix. The matrix is thoroughly described in Chapter 5.  

B.2.1 Mean surface 

Since the IMPACT function described in Appendix A, Chapter A.2.1 will be used to 
calculate the force acting in the z-direction of the reference marker of the general 
force, a mean value of the height of the ground must be calculated. The position of the 
centre of the wheel is measured using the ADAMS built in measure functions DX, 
DY and DZ. When the position is known one can sweep over the area just beneath the 
wheel and calculate the z-coordinates as a function of the x- and y-coordinates of the 
wheel surface. The wheel surface is divided into a number of small elements where 
the z-coordinate in the centre of each small element is calculated. The area of the rock 
surface under the wheel is illustrated in Figure 46, where the distances and 
coordinates calculated below are defined.   
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Figure 46 The distances for the calculation of the mean surface 

The distance from the centre of the wheel to the centre of each small element that the 
area under the wheel is divided into, in x- and y-direction, in the local coordinate 
system is calculated according to equation (13) and (14). 
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The coordinates are then transformed to the reference system according to the 
following transformation equation (15). 
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Finally the coordinate of the centre of the small element can be calculated according 
to the equations below, equation (16) and (17). 

nnm xxx −=  (16) 

nnm yyy −=  (17) 
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When the position of the centre of the small element is determined, here ym and xm, 
the four surrounding nodes can be calculated. This is calculated according to 
equations (19) to (24).  
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11 += xx kkk  (20) 

11 += yy kkk  (21) 

112 += xx kk  (22) 

112 += yy kk  (23)

  

where  

)(AINT  Rounds A  to the nearest integer less than or equal to A  

xkk   Start coordinate in the x-direction 

ykk   Start coordinate in the y-direction 

mx   Actual position of the centre of the element in the x-direction 

my   Actual position of the centre of the element in the y-direction 

minx   Coordinate of node one in the x-direction 

miny   Coordinate of node one in the y-direction 

dx  Element length in the x-direction 

dy   Element length in the y-direction 

1xk   Lowest node number in the actual element in the x-direction 

1xk   Lowest node number in the actual element in the y-direction 

2xk   Highest node number in the actual element in the x-direction 
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2yk   Highest node number in the actual element in the y-direction 

When the four surrounding nodes in the rock surface matrix are determined one can 
determine whether the centre of the node is located in the upper or lower element. At 
first, the distance from the centre of the small element to the kx1 and ky1 node must be 
calculated. This distance is calculated according to equations (24) and (25). 

)(1 minxdxkkxxx x +⋅−=  (24) 

)(1 minydykkyyy y +⋅−=  (25) 

 

These distances are used to determine whether the centre of the disc cutter is in the 
upper or the lower element, see Figure 47 and Figure 48. The actual element is 
determined as: 

lowerelse

upperyyxxif →< 11
 (26) 

When the actual element in the rock surface matrix where the centre of the small 
element is located is determined one can interpolate the z-coordinate in the rock 
surface for the point of interest. This interpolation is done according to the following 
equations, see also Section 3.3.1 for a further description of the calculations. When 
the centre of the small element is located in a lower element in the rock surface the z-
coordinate is calculated using the following equation, equation (27). 

11),(),( 11 yy
dy

dz
xx
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dz
kkzyxz yxrockmm ++=  (27) 

 

The figure below, Figure 47, shows the situation when the point of interest is located 
in the lower element.  
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Figure 47 The actual position in the lower element 

When the centre of the small element is located in the upper element in the rock 
surface the z-coordinate is calculated using the following equation. 

11),(),( 11 yy
dy

dz
xx

dx

dz
kkzyxz yxrockmm ++=  (28) 

The actual position in the upper element can be seen in Figure 48. 
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Figure 48 The actual position in the upper element 

The mean surface under the cutter is calculated using the z-coordinate for the centre 
of each small element multiplied with the area of each small element. The area of 
each element is calculated as equation (29): 

ny

b

nx

r
Aelement ⋅= 2

 (29) 

The total area of the whole surface under the wheel is calculated according to 
equation (30). 

rbAtot 2⋅=  (30) 

The mean surface under the wheel is calculated as the sum of the z-coordinate of the 
centre of each small element multiplied with the area of each small element, this is 
then divided by the total area of the surface under the wheel. This is done according to 
equation (31). 
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Where  

i   Small element number 
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n   Total number of small elements 

B.2.1 Impact function 

The mean value of the z-coordinate for the rock surface under the wheel will be used 
to calculate the distance from the centre of the wheel to the ground. This distance will 
be used in the ADAMS built in function IMPACT to calculate the force working on 
the wheel. The force is calculated in the same way as in Chapter A.2.1, but now with a 
varying distance to the ground instead of z=0 as used then. 

B.2.2 Deformation 

When the wheel is rolling on the rock surface it penetrates into it. When it penetrates 
the rock surface matrix must be updated with the new deformed z-coordinate for the 
nodes that has been penetrated.  

B.2.3 Penetration 

The penetration of the wheel into the ground will be calculated using a loop that will 
be made over all the elements in the rock surface matrix. The coordinate in the x- and 
y-direction will be calculated for the nodes, according to equation (34) and (35). The 
calculations made for one node can be seen in Figure 49.  
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Figure 49 The distances and angles when calculating the penetration of each node in 
the rock surface matrix 

( )1min −⋅+= Ldxxxcoord  (32) 

( )1min −⋅+= Kdxyycoord  (33) 

The coordinates of the node of interest will then be used to calculate the distance from 
the centre of the wheel to the specific node. The distance from the node to the centre 
of the wheel is calculated using the equation below. 

xxx coorddist −=  (34) 

yyy coorddist −=  (35) 

When the distance is calculated it will be transformed into the local coordinate system 
according to equation (36), to be able to turn the wheel in different directions in the 
rock surface.  
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Now we make a check to see if the node we are looping through right now is located 
in the area under the wheel or not. If the absolute value of the transformed distance in 
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the local x-direction is smaller than the wheel radius, and if the absolute value of the 
transformed distance in the y-direction is smaller than half of the wheel width, then 
the node is located under the area of the wheel. This is done according to:  
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if

dist

dist

2/'

'

<
<

 (37) 

If the node of interest is located inside the area of the wheel the z-coordinate of the 
point of the wheel corresponding to the position of the node is calculated. The z-
distance for the point on the wheel surface from the centre of the wheel is calculated 
according to: 

22 'distxrH −=  (38) 

The calculation of the distance from the centre of the wheel to the point of the wheel 
edge and the z-coordinate for the point of the wheel edge can be seen in Figure 50.  

 

Figure 50 Definition of the z-coordinate for each point in the loop over the edge of the 
wheel 

The last check to make is that if the point on the wheel has a smaller z-coordinate than 
the corresponding point on the rock surface. The z-coordinate for the point on the 
wheel edge is calculated as the z-coordinate for the centre of the wheel minus the 
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distance in the z-direction from the centre of the wheel to the point on the wheel edge, 
according to equation (39). 

Hzz ewheelcentrcoordwheelcoord −= ,,  (39) 

When the z-coordinate of the point on the wheel surface is calculated one can check if 
the point has penetrated into the rock according to equation (40). 

( ) npenetratiothenKLzzif rockwheelcoord ,, <  (40) 

The depth of the penetration for a certain node in the rock surface mesh can be seen in 
Figure 51.  

 

Figure 51 The penetration for each node in the rock surface matrix 

 

B.3 Matrix update 

If the point on the wheel surface has penetrated into the rock surface and created an 
inelastic deformation the rock surface matrix must be updated with a new z-value for 
that specific node. In this case half of the penetration into the rock surface has been 
seen as an inelastic deformation.  
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B.3.1 Temporary rock matrix 

When there is an inelastic penetration into the rock surface causing a deformation of 
the rock a temporary rock matrix is created. From the temporary rock matrix a 
determined part of the z-value of the node of interest is removed, in this case half of 
the penetration depth. If the time step is successful the temporary rock matrix is 
copied to the rock matrix, but if the time step is not successful the temporary rock 
matrix will not be copied.  

B.3.2 Time steps 

If the time step is too long and the system can not be solved the length of the time step 
needs to be shortened. When this happens the temporary matrix will be replaced with 
the rock matrix since the temporary rock matrix is not valid when the time step is 
decreased and the simulation time decreases.  

 

 

 


